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Abstract

Genomics research often uses Gene Set Enrichment Analysis (GSEA) to rank genes that corre-

late with the presence of phenotypical traits and to interpret how variations in gene expression

influence those traits. GSEA provides an explanation of found genes through their associations

with gene sets. As gene sets represent different biological mechanisms, they can indicate overall

shifts in expression values in relation to their biology.

This thesis investigated the relationships between patients and diseases by using gene sets,

integrating gene expression data and gene set ontologies to develop a new analytics method

called gene expression anomaly scores. These scores measure the deviation of expression values

from expected values.

This thesis investigated the representation of patient biology as two-dimensional graphs de-

rived from anomaly scores. There are thousands of patient gene sets relating to a given disease,

such as cancer. To identify strongly associated gene sets, this thesis apply principal component

analysis (PCA) and maximum relevance and minimum redundancy (MRMR), selecting the

two most prominent dimensions. Thus, PCA and MRMR were each used to embed patients

into a 2-dimensional anomaly score space. Embedding patients using anomaly scores revealed

relationships between patients and patient biology through clustering and feature selection in

this space. Moreover, this thesis applied explainable AI (XAI) to understand patients’ biology

(gene sets) responsible for prediction by predictive models or AI algorithms. This thesis applied

Local Interpretation-Driven Abstract Bayesian Network (LINDA-BN) which extracts patients

biology and shows the relationships between biologies responsible for a prediction.

The proposed method was used to analyse gene expression data of cancer patients from

four different data sets. More specifically, anomaly scores followed by PCA or MRMR showed

groups of cancer patients in scatter plots. These groups appeared to be related to treatment
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outcomes. In addition, MRMR was able to identify potential gene sets with meaningful biolog-

ical implications. Comparatively, when raw and state-of-the-art gene expression scores were

analyzed, only genes patterns were apparent. The outcomes of the distributions showed that

the distribution of anomaly scores varied significantly between patients who relapsed and those

who did not. In addition, the k-means algorithm revealed that the anomaly score performs better

clustering than state-of-the-art methodologies.

Furthermore, anomaly scores uncovered novel cancer biology in contrast to gene set enrich-

ment analysis (GSEA) and state-of-the-art approaches. Finally, the outcomes of instance-based

LINDA-BN showed an interpretable and explicable method for predicting medical condition a

cancer patient.
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Contribution

This thesis has developed a combined knowledge-and data-driven approach to understand gene

expression, which determines an anomaly score that captures the combined shift in gene ex-

pression for all genes in a gene set. This thesis has demonstrated that constructing a data model

based on gene set “anomaly scores” can effectively capture a combined shift in gene expression

for all genes in a gene set. Anomaly scores serve as a counterpart to gene expression values,

enabling new classifications of disease states based on gene expression data. This thesis has

shown that this principle of combining knowledge-driven and data-driven analysis can lead to

insights into genetic responses to disease. In summary, the proposed approach introduces a new

analytical tool and new directions for understanding the genetic causes of diseases.
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Chapter 1

Introduction

“Genes that underlie the capacity to receive, use and transmit information are the evolving

properties”. -Peter R. Grant

This chapter provides an overview of the problem to solve, the background for conducting

research, its objectives, research questions, key contributions and organisation of this thesis.

1.1 Background on gene set enrichment analysis

A genome is the collection of all genes of an organism, and genomics is the study of genomes.

The more understandable the genome of an organism and how it affects the organism, the easier

it will be to learn about health and make informed decisions about health and disease. Some

diseases and syndromes are associated with mutations in a gene or group of genes during a

human life cycle. Studies of genomic data enable genetic information associated with human

health and disease to be understood [1].

Gene expression is part of a process by which a gene is used to synthesize a protein.

Subsequently, the protein controls cellular functions in humans. The synthesis of a gene begins

with transfer RNA (tRNA), which is an intermediate step in protein synthesis, then tRNA used

to create messenger RNA (mRNA), and finally, a protein [2]. The amount of gene expression

(mRNA) in a given cell controls what that cell can do [3]. Understanding gene expression

1
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allows us to know the behaviour of genomes and provide insights into disease-patient relation-

ships, how organisms behave, adapt, evolve, and reproduce a new organism. For example,

gene expression has been used to distinguish acute myoblastic leukaemia (AML) and acute

lymphoblastic leukaemia (ALL), which are alternative analysis to fully characterise them using

conventional molecular and cellular analyses [4].

Gene sets are groups of genes that represent the biological functionalities of patients and

their diseases [5]. Biological functionalities may include cell cycle, cell locations, DNA repli-

cation (a process that duplicates a molecule of DNA), cell proliferation (a process that di-

vides cells), and pathways (a chain of genes, e.g. KEGG (Kyoto Encyclopedia of Genes and

Genomes) [6, 7]. Gene expression and gene set analyses allow the investigation of genetic

variation and cancer progression in human tumour genomes. One popular approach is gene set

enrichment analysis (GSEA). A gene is considered enriched when the level of expression of

that gene correlates with a chosen phenotype trait.

GSEA is a method to understand the functional relationships between genes and a chosen

phenotypical features in genomic data [8]. Subramanian et al. [9] proposed a gene set enrich-

ment score, which is a measure of overexpressed genes that are either at the top or bottom of a

ranked list of genes in a gene set. An enriched gene set indicates that the number of its genes at

the other end of the ranking list are similar to the genes from the gene expression values. GSEA

measures enrichment scores (ES) using the Kolmogorov-Smirnov (K-S) statistics.

GSEA works on a selection of genes that are ranked by a classifier or model. The function-

ality represented within the gene selection is predicted by measuring the ES which quantifies

cumulated fold changes between matched genes, where a fold change is the ratio between an

initial and a final gene expression value [10]. Genes correlating with the chosen phenotypical

features tend to the top or the bottom of the ranking order within a gene set. Several studies

and reviews explore GSEA over different foci, for example, phenotype similarities [11–13],

biological functions [14, 15], clinical outcomes [16–20], knowledge-based gene expression

analysis [21], and gene set discovery [22]. Tian et al. [23] proposed a gene set analysis

using a t-test or Wilcoxon rank-sum test statistics to create an enrichment score that measures

overexpressed genes. Kim and Volsky [24] presented PAGE (Parametric Analysis of Gene Set

Enrichment), which generates an enrichment score using the z-score. The z-score takes into

account fold changes, which is the ratio between a patient’s initial and final gene expression
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values. PAGE achieves high sensitivity but has low specificity [25]. Irizarry et al. [26] proposed

a t-test statistic for the gene set score to determine the degree of association between each gene

and phenotype information. However, they ignored gene-gene correlation [27]. Tamayo et

al. [27] proposed a method that combines both parametric and GSEA in terms of gene-gene

correlation. Moreover, there is extensive literature on methods of gene set enrichment [28–43],

each emphasizing different mathematical formulations and computational approaches.

Figure 1.1: Schematic diagram showing the application of GSEA.

Figure 1.1 shows the processing involved to perform GSEA. The process starts with gene

expression profiles giving an expression value for each gene, for each profile. An expression

profile is typically associated with a patient. GSEA can work with other quantified data, as

can our proposed method, but here we concentrate on gene expression data. In GSEA, the

profiles are grouped into two classes (experiment and control) which is important when using

the method. In addition to gene expression profiles, GSEA uses gene sets. A small number

of gene sets are selected by the researcher based on hypotheses that the selected gene sets are
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relevant to explaining the expression values of the two classes.

The first processing step of GSEA uses the gene expression profiles to rank the genes.

There are multiple methods for doing this and the selection of a ranking method is largely

from common practice rather than theoretical considerations. The idea is to use a method so

that high-ranked genes have higher expression values in the experiment class and low-ranked

genes have higher expression values in the control class.

The next processing step produces an enrichment score for each gene set. An enrichment

score measures how well the ranks of the genes of the gene set cluster together (particularly

at the start and end of the ranking). An enrichment score is calculated from a running sum

by processing each gene in its rank order. If a gene is in the gene set, the running sum is

increased, otherwise it is decreased. The enrichment score is the maximum/minimum of the

running sum. Each enrichment score can also have an associated probability of being produced

by chance. GSEA permits further analysis of the selected gene sets by plotting the running sum,

in so-called enrichment plots, and relating this to each of the two classes.

Gene sets characterize the biological functionalities of human diseases. Thus, gene sets

are hypothesized to be valuable knowledge to understand the behaviour of diseases such as

leukaemia and blood cancer, breast cancer, and colon cancer. If a relationship can be established

between patients, their disease and gene sets, it would be possible to understand which biolog-

ical functionalities are responsible for a particular patient in relation to a particular disease. In

particular, if it is possible to investigate the relationship with disease abnormalities in patients,

this would provide insight into understanding the biology behind the diseases. The relationship

would also be valuable for investigating and designing treatment planning and patient prediction

for a particular disease.

In this research, the relationships between genomics and diseases specifically to patient

biology as defined by gene sets are investigated by integrating gene expression data and gene

set knowledge. Specifically, the relationships between patients and diseases are examined in

relation to gene set anomalies. Also, this thesis investigates how anomaly distributions varies

between cancer patient groups related to their gene sets. In addition, this thesis investigates

how the anomalies may improve predictions about a patient. Finally, this thesis shows how

prediction results may be analysed that makes sense to humans, not just computers, specifically,

techniques from explainable artificial intelligence are explored.
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1.2 Problem statement

Genomic data analysis is a topic of importance in understanding cancer and other diseases. One

challenge is to identify anomalies in gene expression data which relate to tumour behaviour.

Detecting anomalous gene expression leads to insights into the cellular mechanisms underlying

disease by clarifying the functional impact of anomalous genes. Gene Set Enrichment Analysis

(GSEA) uses gene sets that group genes according to their functional interrelationships. The

functionality represented with gene selection is predicted by measuring an enrichment score

that quantifies the cumulative fold changes between matched genes, where a fold change is

a ratio between an initial and a final gene expression value. GSEA ranks genes in gene sets

according to their correlation with the presence of a phenotypic trait and thus can be used to

interpret the influence of variation in gene expression on traits. Genes that correlate with the

selected phenotypic traits are usually at the top or bottom of the rank order within a gene set.

GSEA considers only a small number of genes that are top or bottom of the rank and does

not consider variations in gene expression values. However, this thesis sees that gene sets also

embody knowledge about how a group of genes is related to each other, so the group may be

used to understand more deeply the effects of anomalous gene expression.
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1.3 Research questions

This thesis poses the following hypothesis

That aggregation of gene expression values into their respective gene sets will provide

opportunities for building a knowledge-based classification.

The hypothesis is divided into the following four research questions.

• Research question 1

What technique(s) can assess the variation of gene expression in each gene set for

each patient and build a model using this assessment?

To answer this question, it is necessary to find an appropriate approach to gene expression

data and gene set analyses. Gene set anomalies could be an important consideration to

find the characteristics of cancers. Statistical and machine learning approaches could

facilitate the study of gene set anomaly analyses.

• Research question 2

What approach can visually map a patient, with respect to the biology of the patient,

to determine the response to cancer treatment?

To answer this question, it is necessary to investigate the relationships between patients

and the patients’ biology as patient embedding or mapping with respect to anomaly

scores.

• Research question 3

How do the distributions of gene set anomaly scores vary across different groups of

patients?

To answer this question, it is necessary to understand how anomaly scores may change,

conditioned on whether a cancer patient relapsed or not.

• Research question 4

How can an explainable and interpretable method predict a patient status (healthy

or cancerous or relapse or non-relapse) built on an individual instance in relation to

anomaly scores?
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To answer this question, it is necessary to find an approach that considers a different set

of knowledge from the training data to reach a decision for each different test instance.

Moreover, it is necessary to find a method that explains the process of predictive methods

and makes it interpretable in a trustworthy way. To evaluate the prediction results, it

is important to explain which genes or gene sets are important for cancer prediction to

understand the whole process of prediction. Appropriate explainable methods increase

confidence in the prediction results.

Figure 1.2 shows relationships between hypothesis and research questions.

Figure 1.2: Research questions.

The four research questions presented above are designed to address various aspects of the

main hypothesis. These questions break down the overarching hypothesis into smaller, more

manageable components, allowing for a targeted investigation of each aspect. By addressing

these specific questions, this thesis aims to gather the necessary information to determine

whether aggregating gene expression values into gene sets will be valuable for understanding

the underlying biology responsible for cancer treatment and classification in patients.

For example, research question 1 will investigate development of a method for combining

gene expression values into a gene set. Research question 2 will investigate the mapping of

cancer patients with respect to the variation of gene expression values. In this case, patients

will be grouped together to identify their respective cohorts. Research question 3 will examine
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how anomaly score distributions may vary across multiple patient groups, such as high-risk,

medium-risk, and low-risk patient groups. The final question will ensure the generation of

interpretable and explainable prediction analyses concerning anomaly scores. In the figure 1.2,

the arrows demonstrate the subdivision of the main hypothesis into four distinct parts. Each

arrow points to a specific research question that addresses a particular aspect of the hypothesis.
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1.4 Thesis organization

The aim of this thesis is to advance our understanding of the relationship between patient

biology (gene sets) and disease with respect to anomaly scores. The thesis consists of five

chapters. The structure of the thesis and the flow of the chapters are shown in Figure 1.3.

Chapter 1 provides the background to the research, defines the research questions and

problem statement.

Figure 1.3: Organization of thesis chapters.

Chapter 2 presents a literature review. This chapter provides a brief overview of the main

aspects of the thesis. It presents general information about gene set enrichment analysis. It then

discusses the modelling approaches for mapping, dimensionality reduction, prediction method

and explainable AI.

Chapter 3 answers research questions one, two and three and reports on the development of

an anomaly score for gene set analysis. In this chapter, the processes to generate the anomaly

score are described and dimensionality reduction is explained. Then the gene set is mapped

with the patients and the validation process of the patient mapping is described.
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Chapter 4 presents methods for generating cancer biology and instance-based interpretable

machine learning for predicting medical condition of a cancer patient. This chapter also includes

outcomes of new cancer biology. Finally, this chapter shows predictive outcomes of instance-

based explainable AI.

Finally, Chapter 5 presents a summary of the thesis and its findings with suggestions for

how the techniques presented in this thesis can be developed and applied further.
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1.5 Key Contributions

The contributions of this thesis are as follows:

Contribution 1

statistical and machine learning approach for generating anomaly scores by integrating gene

sets and gene expression data. A patient embedding approach to identify patient cohorts in terms

of highly associated patient biology or gene sets has been developed.

This thesis proposes that careful aggregating gene expression values into gene sets can lead

to valuable insights from data analysis of gene expression profiles. Specifically, it posits that

understanding variations in gene expression values within gene sets can improve the visibility

and detectability of patterns across different expression profiles, rather than using expression

values directly.

To achieve this, the thesis develops an approach by considering both a data and knowledge-

driven approach that starts with the integration of gene expression profiles and gene sets. Key

consideration is that the proposed is designed to work with large numbers of gene sets, such as

those found in one or more ontologies. The method generates an “anomaly score” for each gene

set within each gene expression profile, measuring variations in gene expression values.

Gene set anomaly scores provide a new way to represent each profile, making it possible

to use different data processing methods from statistical analytics and machine learning. This

approach combines the benefits of the knowledge found within gene sets while still allowing for

profile-based data analysis. Additionally, it supports methods that don’t require splitting profiles

into only two classes (i.e., no classes or more than two classes), providing more flexibility in

classification for users who may be new to the subject.

In conclusion, this thesis introduces the concept of calculating anomaly scores for each

gene set is presented, opening up the possibility to use various data processing methods from

statistics and machine learning. This novel approach takes advantage of the information found

in gene sets and keeps the benefits of analysing data based on profiles, making the investigation

of gene expression values more complete and flexible.
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Contribution 2

generating understanding of new cancer biology.



Chapter 2

Systematic literature reviews

“What do researchers know? What do they not know? What has been researched and what

has not been researched? Is the research reliable and trustworthy? Where are the gaps in the

knowledge? When you compile all that together, you have yourself a literature review”.-Jim

Ollhoff

2.1 Introduction

This thesis has a purpose of undertaking a literature review on gene set enrichment analysis

(GSEA), gene expression data analysis, disease prediction algorithms, and gene ontology. A

question is how to start a literature review on these broad areas? To search a paper, read it,

search another, read it and continue to search and read. This is an unstructured and tedious

process. In addition, there is a possibility of missing out some section of the relevant literature

that could be useful in discovering a problem or a suitable idea. Therefore, in order to carry

out a comprehensive literature review, it would be useful to undertake a literature review that is

both structured and systematic. A structured and methodological literature review would allow

an individual to undertake a complete literature review [44].

A systemic literature review (SLR) is a research strategy that involves conducting a thorough

and methodical analysis of published research in a particular area of study. An SLR process

includes contents found in literature, search strategies used by an individual, and how and where

an individual searched. In addition, an SLR includes evaluation criteria that an individual uses

to choose which pieces of literature should be included or excluded from the review. An SLR,

13
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like any other literature review, provides a broad overview of the study area. However, an SLR

differs from other literature reviews in the way it is compiled [45]. Fink [46] defined an SLR as

a ”process that is methodical, precise, and replicable for finding, analyzing, and summarizing

the preexisting amount of finished and published work generated by researchers, scholars, and

practitioners”.

2.2 Overview of the chapter

The aim of this chapter is to provide a systematic literature review of genomic data mining tech-

niques, including algorithms, software, models, and tools for uncovering relationships between

genomic data and phenotypic traits, related to genetic diseases [47]. Specially this review will

focus on genomic data refers to gene expression, gene sets, and genomics [48]. Gene expression

is the conversion of DNA sequence to mRNA and represent the process of “transcription”,

“mRNA” represents the gene and the amount of mRNA is it’s expression [49]. Gene sets are

groups of genes that represent biological functionalities. Modern technology generates huge

amounts of genomic data. Therefore, data scientists and researchers are interested in analysing

the large amounts of genomic data processed by data analysis techniques.

Data mining and predictive modelling play an important role in extracting insights from

data. This thesis considers two approaches for data analysis, namely data-driven and knowledge-

driven approaches. A data-driven approach is the process of building a model using sample

data. A data-driven approach is effective when there are large amounts of sample data from

the domain and one’s understanding of the domain is weak [50]. A knowledge-driven approach

is the process of building one’s understanding of the domain. Knowledge-driven modelling

is useful when it is difficult to obtain sample data and one’s understanding of the domain is

strong [51].

Genomic data analysis typically forms a data processing pipeline, such as data acquisi-

tion, preprocessing, mapping, presentation, visualisation, and publication. The data processing

pipeline can be performed in a linear fashion, but this is not always the case.

The pipeline requires combinations of multiple steps to solve a complex genomic task, such

as gene expression analysis [52]. Appropriate combinations of pipeline steps lead to meaningful

results from a large amount of genomic data. However, this review shows that current genomic
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data processing analysis faces the following challenges.

• Large amounts of genomic data are difficult to process due to the limitations of con-

ventional computer hardware and algorithms. (i.e., a gene set contains many genes or

traits.) [53, 54].

• Existing techniques for analyzing genomic data predict only genes or gene sets for a

disease without considering any meaningful relationship between genes, i.e., gene sets,

diseases, and patients [55]. An approach that examines the relationships between genes,

gene sets, and gene expression is called gene set analysis (GSA) or gene set enrichment

analysis (GSEA) [56].

• Sometimes, high-dimensional gene expression data are difficult to process when it’s im-

balance of class labels of sample instances. Moreover, cross-validation does not explain

why some predictions are wrong while others are correct.

In GSA, knowledge-driven approaches integrate gene expression and gene sets that char-

acterise biological functions, such as phenotype correlations, molecular interactions, or regula-

tions of gene extraction [57]. However, existing research mostly focuses on the identification of

genes or gene groups from the integration of genes and gene sets. Thus, there is an opportunity

to study the relationships between patient characteristics, patient gene expression, and gene

sets to understand disease. Similarly, many of the data-driven approaches developed for GSA

can help in the study of diseases [58–62]. In addition to predictive modelling, GSA is used

to identify genes or gene sets from a large amount of genomic data on breast cancer, obesity,

bipolar disorder, schizophrenia, and arthritis [61–69].

In addition to GSEA and GSA, this review explored the use of AI approaches to better

comprehend gene expression data analysis in complicated diseases. These diseases include

leukemia, breast cancer, colorectal cancer, and adrenal cancer, among others. Figure 2.1)

shows that GSEA has association with multiple datasets (gene expression data, microarray data,

and genomics data) that span multiple GSEA domains. Specifically, the goal of the review

is to examine current predictive modelling, data-driven, and knowledge-driven approaches to

identify their strengths, limitations, and the opportunities for GSA and GSEA.

This review is arranged as follows: Section 2.3 describes the methods of SLR with six sub-

sections, namely scope ( 2.3.1), research objective ( 2.3.2), inclusion criteria ( 2.3.4), evaluation
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Figure 2.1: Literature review of three themes (left) for gene set analysis with respect to data-
driven, knowledge-driven, predictive models (right), and gene set enrichment analysis (GSEA).

criteria ( 2.3.5), literature search ( 2.3.3), and results and taxonomy ( 2.3.6). The last subsection

describes the taxonomy of the listed literature. The taxonomy considers associations between

biological functionalities and gene expression data in complex disease analyses. Sections 2.4,

2.5, 2.6, 2.7 and 2.8 provide an overview of the classified works. Section 2.9 recognises the

research gaps and proposes solutions to improve GSEA analysis. Section 2.12 concludes the

review.
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2.3 Paper selection method

2.3.1 Scope

The aim of this review is to explain GSA methods and suggest areas where existing methods

can be improved to provide a deeper understanding of the relationships between genomics and

diseases.

2.3.2 Research objective

The research objective (RO) of this review is to gain deeper understanding of gene expression

data, diseases that are related with gene expression data, the impact of patient biological func-

tions on diseases, and impact of variations in gene expression values on diseases. In addition

to that, this thesis will explore anomalies in gene expression data, the processes of disease

prediction, and approaches for dealing with imbalanced data. Finally, this thesis will explore

how disease analysis could benefit from explainable artificial intelligence (explainable AI),

which is a paradigm for interpretable artificial intelligence.

To explore the contents of the literature, the research objective (RO) has been broken down

into three research questions (RQs) (Table 2.1). These questions will be reviewed while reading

various literature to see whether any of the literature satisfy these requirements. A key mo-

tivation for these research questions is to gather relevant information and ideas while reading

a research paper or any related article. Therefore, this thesis defined these research questions

as review research questions (RRQs). These RRQs differ from the research question posed in

chapter 1 as these research questions only focused on gathering desired information from an

article. Where research questions in chapter 1 are the quarries from a global context of all

literature.

2.3.3 Literature search in Google Scholar

The literature was reviewed using the Preferred Reporting Items for Systematic Reviews and

Meta-Analyses (PRISMA) model [70]. This thesis searched journals and publishers such as Na-

ture, Bioinformatics, PubMed and preprint archives for research articles published as recently

as October 2020. The search strings were: “GSEA”, “Data-Driven approaches for GSEA”,
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Table 2.1: Research objective and questions.
Reference Research questions Domain

RO
This thesis focused to understand impact of integrating gene sets
with gene expression data under different circumstances (anomaly testing,
disease status prediction) and analyse the results with explainable AI.

Machine learning
with genomic data

RRQ1
How can biological functionalities integrate into gene expression
data to improve the gene set enrichment analysis leading to anomalies
in gene expression data?

Genomic data

RRQ2
How does predictive modelling classify disease status and propose
treatment planning by considering imbalanced training samples?

Machine learning

RRQ3
How can results of cross-validation evaluate
that are incorrect and correct prediction?

Machine learning

“Knowledge-Driven approaches for GSEA”, “Predicting model for cancer status”, “Sampling

Models in Gene Set Enrichment Analysis”, “Enricher tools”, “Cluster and visualisation GSA”,

and “Microarray data analysis for GSEA”.

2.3.4 Inclusion criteria

This thesis explored literature that focused on at least one of the following parameters:

• tools of gene or gene set prediction.

• ranking of genes or gene sets exploring biological perturbations

• visualization or clustering tools for visualizing gene clusters and gene ranking.

• prediction methods or tools on microarray and RNA sequences.

• enricher tools for the analysis of coding and non-coding regions for microarray data

• statistical prediction methods for different cancers

• knowledge-driven GSA

This thesis reviewed the abstracts and full texts of the selected studies with the inclusion criteria

as shown in Table 2.2.



2.3. PAPER SELECTION METHOD 19

Identification 

437  published articles were identified by databases (IEEE 
Xplore, ACM, Scopus, INSPEC, O' Reilly ) search.                                                                                            

89 articles were excluded because they were published 
before 12-12-2015. 

348 were searched by title                                                                                


197 were excluded by title:
85 related to biomarkers.

68 were published on gene signatures.
44 were published on genome sequencing.                                                                 

S
creening

151 full-text studies of eligibility                                                                                  


49 published studies did not meet our inclusion criteria 
because they did not include gene sets analyzes or ranking 

or statistical prediction methods.
5 published studies were not properly organized.                                                                                                                                                            

E
ligibility 

97papers  were included in the systematic review

Included

Figure 2.2: Steps in the PRISMA model to search and identify articles or research papers
related to gene set enrichment analysis (GSEA).

Table 2.2: Standards for selecting literature.
Ref. Description
Grouping rules
GR1 Exploration strings appear in the title
GR2 Written in English
GR3 Published in a journal or conference
GR4 Books
Elimination rules
ER1 Out of the scope of genes or GSA
ER2 Citations
ER3 Irrelevant to research questions
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Figure 2.3: Taxonomy of genomics data processing approaches.

2.3.5 Evaluation criteria

To achieve objective, this thesis will explore the following requirements to understand possible

contributions to GSA and GSEA:

Requirement 1 (R1): This review will result in a better understanding of the integration of

biological functionalities into gene expression data to improve the perception of complex dis-

ease analyses. In addition, genomic data analysis techniques should explore the association of

biological functions with gene expression data and between instances (patients) and biological

functions with a concentration on gene expression data.

Requirement 2 (R2): This review will result in a better understanding of the impact of

machine learning on the association of genes, gene sets and patients to improve existing gene

set enrichment analyses as machine learning becomes more widely used. In addition, the

interpretation of genomic data using only known statistical analyses should apply predictive

modelling, data-driven and knowledge-driven approaches to explain the relationships between

related biological traits and patients in complex disease analysis.

Requirement 3 (R3): This review will result in a better understanding of how to classify

(predict) a disease state by looking at genomic data samples integrated with their functionalities

(gene sets) and demonstrate the results with explainable AI [71]. Furthermore, predictive

modelling should explore ”trustworthy explainability” that focuses on predicting patients’ class

labels. Current cross-validation techniques that predict target attributes do not track why some
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predictions are wrong while others are correct.

Following the evaluation criteria of R1-R3, this review highlights ways to improve current

genomic data analysis by integrating genes and gene sets (biological functionalities) into an

AI-based framework. Many research articles and applications focus on gene expression data

analysis (Table 2.3), while some studies [72–75] explore ways to achieve R1-R3. Even with

approaches that focus directly on gene set enrichment, most do not meet R1 – R3 which relate

to the integration of genes and gene sets (biological functionalities) in genomic data analysis

for disease instance mapping.

The relationships between the four components (i.e., genes, gene sets [biological functions],

instances [patients], and explainable AI) have not yet been investigated. Therefore, it is unclear

which relationships are significant. Therefore, this review explores the implications of integrat-

ing gene sets with gene expression data, leading to complex disease analyses with predictive

modelling, data-driven and knowledge-driven approaches, particularly in relation to leukaemia

and cancer.

2.3.6 Results and taxonomy

Figure 2.2 shows literature searching mechanism using a PRISMA model [76]. Titles and

abstracts of the individual articles were reviewed and evaluated using taxonomy of PRISMA

model shown in Figure 2.3. Of these articles, 344 could not be classified into the taxonomy and

were discarded from further analysis. The remaining 97 papers were thoroughly reviewed.

Table 2.3 presents a group of research publications on cancer disease analysis using gene

expression data, RNA-seq data, and protein data. The second column of the table labelled ”Have

any gene integration,” and the third column, labelled ”Have any anomaly analysis,” are criteria

that indicate whether or not these papers focused on these criteria. If an article not meet them,

it will be a cross sign, otherwise, it will be a check mark. Last column of the table represents

whether these articles meet the requirements mentioned above.
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Table 2.3: An evaluation of the selected literature review of the research publications on cancer
genomics datasets from the following categories: gene expression data, RNA-seq data, and
protein data.

Paper Year
Have any gene
set integration?

Have any
anomaly analysis?

Is their focus on
these requirements?
R1 R2 R3

Chang et al. [77] 2016 ✓ × ✓ × ×
Geistlinger et al. [78] 2020 ✓ × ✓ × ×
Maleki et al. [79] 2020 ✓ × ✓ × ×
Hu et al. [80] 2014 ✓ × ✓ × ×
Joly et al. [81] 2020 ✓ × ✓ × ×
Rahmatallah et al. [82] 2014 × × × ×
Tiong et al. [83] 2019 ✓ × ✓ × ×
Eupa et al. [84] 2019 × × × × ×
Meng et al. [85] 2019 ✓ × ✓ × ×
Neupane et al. [86] 2018 ✓ × ✓ × ×
Kong et al. [87] 2018 ✓ × ✓ × ×
Arloth et al. [88] 2020 × × × × ×
Roy et al. [67] 2020 × × × × ×
Allahyar et al. [89] 2019 × × × × ×
Zhou et al. [90] 2019 × × × × ×
Tong et al. [91] 2020 × × × × ×
Soltis et al. [92] 2013 × × × × ×
Xin et al. [93] 2020 × × × × ×
Walter et al. [94] 2015 × × × × ×
Ge et al. [95] 2020 ✓ × ✓ × ×
Yusuf et al. [96] 2005 ✓ × ✓ × ×
Rho et al. [97] 2011 ✓ × ✓ × ×
Kang et al. [98] 2014 × ✓ × ×
Ewing et al. [99] 2020 ✓ × ✓ × ×
Wang et al. [100] 2020 × × × × ×
Ong et al. [101] 2019 × × × × ×
Perampalam et al. [102] 2020 × × × ✓ ×
Reyes et al. [103] 2019 × × × ✓ ×
Yousif et al. [104] 2020 × × × × ×
Zhu et al. [105] 2019 × × × × ×
Netanely et al. [106] 2019 ✓ × ✓ × ×
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2.4 Gene set enrichment analysis

GSEA is an approach that analyses gene expression data to identify sets of genes that relate to

specific biological functions (e.g., chromosomal location, molecular function, or gene regula-

tion).

GSEA uncovers gene sets from an ontology that are strongly associated with a named

phenotypic trait. Samples with gene expression data are classified into two groups: those with

the trait and those without the trait (e.g., cancer vs. normal or male vs. female) [56]. This thesis

explored a large body of literature on GSEA that considers relationships between genetics and

disease. The papers listed in (Table 2.4) describe data mining and statistical methods on GSEA

that explain the relationships between gene sets and gene expression data.

Before describing the computational steps of GSEA, it would be useful to be familiar with

several terms related to GSEA, namely differential gene expressions, mRNA and false discovery

rate.

The computational steps (Figure 2.4) of GSEA are as follows:

• The first step of GSEA is to rank the genes in the gene expression data. The ranking is

created by measuring the fold change (FC) of a gene, which is a ratio between two states

of that gene. For example, the ranking of a gene list is created by measuring the fold

change of gene expression values between tumour and normal genes.

• The second step is to find a matching gene for each gene set which finds the position of

each gene in the gene set within the ranked gene list.

• An enrichment score (ES) is calculated for each gene set using weighted Kolmogorov

Smirnov statistics [107]. ES measures overexpressed genes in gene sets that are either at

the top or bottom of the rankings. ES is used to calculate the variation between genes in

each gene set by assigning the ranking and the number of matched genes in the gene set

(Figure 2.5). Figure 2.5 shows FC, hit and miss, i.e. fold change, matched genes between

gene expression and gene set, unmatched genes in gene sets and gene expression data.

The running total in the figure 2.5 shows the summation of the total hits and misses. For

example, ES for a gene set is 0.59 for the given data in Figure 2.5.
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Figure 2.4: Computational steps for GSEA.

• Repeat steps 1-3 for all gene sets, noting that each gene set from an ontology is processed

in order of gene list ranking.

• The final step of GSEA is to measure the false positive rate or false discovery rate

(equation 2.1)) for multiple gene sets using statistical tests (e.g., t-test) [108].
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FDR =
m0

m
(2.1)

Figure 2.5: Calculation of enrichment scores for GSEA.

GSA examines the relationship of correlated genes between multiple sets of genes and can

provide the context for genomic changes in these genes [40–43, 115]. In addition, GSEA has

been used to understand the biological functions of genes using gene expression data to analyse

complex diseases, such as schizophrenia [116], bipolar disorder [117], Crohn’s disease [118],

rheumatoid arthropathy [119], breast tumour [120], obesity [121] and gossypium [33]. There

are three broad categories of GSEA [122]:

• over-representation analysis,

• functional class scoring,

• pathway-topological-based methods.

This thesis will explain and explore these categories.
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Table 2.4: Literature review of the research publications on existing approaches to GSEA.
Technique R1 R2 R3
Permutation-based gene set analysis [77] ✓ × ×
Biological reasoning on the relevance of enriched gene sets [78] ✓ × ×
Integrative differential expression [68] ✓ × ×
Gene set enrichment analysis for DNA methylation [109] ✓ × ×
Benchmarking of gene set [110] ✓ × ×
Method to classify gene set analysis[79] ✓ × ×
Comparative simulation analysis for breast cancer [80] × × ×
Differential gene set enrichment analysis to
quantify the relative enrichment of two gene sets [81]

✓ × ×

Multivariate differential co-expression test to compare
gene signatures [82]

× × ×

Combinatorial relations of feature scores [83] ✓ × ×
Alternative assessments of enrichment [84] × × ×
A framework which combines both gene expression
changes and gene set analysis approaches [85]

✓ × ×

A network analysis to identify gene sets [86] ✓ × ×
Method for analysis of repeatedly measured
phenotype data [111]

× × ×

A method for differentially expressed genes and mutated
cancer genes [112]

× × ×

Gene Ontology (GO) enrichment analysis tool for
tissue-specific information [113]

× × ×

An innovative statistical approach for interpreting
gene expression data [62]

✓ × ×

Gene set analysis algorithm for biomarker identification [114] ✓ × ×
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2.4.1 Over-representation analysis

Over-representation analysis (ORA) examines whether genes from gene sets are represented

more than expected in gene expression data [123]. For example, the transcriptome of acute

lymphoblastic leukaemia (ALL) has 12,000 genes. Suppose 300 genes are characterised as

‘axon direction’and in an analysis an individual observe 1,000 genes that are differentially

expressed. If 200 of these genes are in the ‘axon direction’class, the over-representation anal-

ysis determines the significance of the ‘axon direction’class at ALL. ORA uses conventional

statistical tests like the t-test, hypergeometric test, binomial test and chi-square test.

Many publications on genomic disease analysis use ORA, which depicts the relationships

between genomic data and diseases in their methodology. In Figure 2.7, this thesis divide ORA

into two broad categories: (1) gene ontology and differential expression and (2) pathway tools.

All existing approaches for these two categories are included.

2.4.2 Gene ontology and differential expression

Two Greek words, “onto” and “logia”, form the word onotology [124], where onto means real

and logia means science [125]. Philosophically, ontology describes the existing world and

non-philosophically, it says something about a particular domain. In bioinformatics, it is a

combination of genes and gene products. Moreover, GO describes the relationships between

genes and gene sets. In addition, GO maintains and develops its control vocabulary for genes

and gene product attributes [105, 126].

This GO is divided into three categories: molecular function ontology, biological process

ontology, and cellular component ontology [127]. Molecular function describes the function

of a gene at the molecular level. Biological process describes the function of specific genes

integrated into cells, tissues, and organs. The cellular component describes cellular functional-

ities with their environment. These ontologies are used for classification problems with binary

labels or for multi-label classification, which tests whether classifiers can identify class labels

for a gene or not, using gene annotation information defined in the following [128–132]. Gene

annotation is a process of identifying the location of genes in a genome.
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2.4.3 Pathway analysis

Pathway analysis (PA) is a set of interactions between gene sets and differentially expressed

genes; a gene is differentially expressed if a variation in expression level is observed between

two experimental counts. Figure 2.6 illustrates a pathway analysis where the blue circles

represent differentially expressed genes and the green circles represent gene sets that interact

for gene set enrichment. In addition, Figure 2.6b shows how enrichment and non-enrichment

occur in the GSEA. Enrichment analysis within the PA determines the genes responsible for

cancer [133] and helps compare tumour cells vs. normal cells [134].

Figure 2.6: Interactions between pathways and differentially expressed genes. (a) shows the
initial phase in which pathways and overexpressed genes interact with similar genes, and (b)
shows the final phase of interactions in which matched genes are labeled as enriched and
mismatched genes are labeled as not enriched.

2.4.4 Functional class scoring of GSEA

Functional class scoring (FCS) generates enrichment scores from a gene expression matrix

containing all the information from genes to explain the relationships between genomic data

and diseases [27]. FCS is divided into two classes: univariate and multivariate. Univariate

applies a signal-to-noise ratio (SNR), which is a deviation between gene expression measured

in training and test samples, to calculate an enrichment score. Multivariate FCS calculates

enrichment scores directly without intermediate steps using differential expression (DE), which

is an approach to determine whether genes are expressed at significantly different levels between
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two mRNA (messenger RNA) sample groups.

A comparative review of these three GSEA approaches is presented in Table 2.5.

Text

Gene set Analysis 
for Microarray data

Annotation Information Non-annotation Information

Over representation genes Competitive self-contained

GO & DE Pathways & QTL

GO 
Tools: 
DAVID 

AGRIGO 
EASE                 

DE 
Tools: 
GOStat 
FatiGO          

Pathways 
Tools: 

GenMAPP 
Catmap 

Pathview 
sigPathway                
QTLTools: 

GSAQ       

Sub sampling model Gene Sampling model

Supervised Unsupervised

Tools:       
GSEA        
SAFE          
GSA            

PAGE       

Tools:       
GSEA        
SGSE          
MPDT           
TWT                   

Univariate Multivariate

Methods:          
Fisher's 
Method   
Mean P            
Tools:                   
LIMMA                  

SAM-GS               
GenePattern        

eBayes     

Methods:          
Linear 

Modelling   
Regression 
Logistics       

PCA              
Tools:                   

Globaltest                  
ANCOVA

Figure 2.7: Taxonomy of GSEA approaches.
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Table 2.5: Advantages and limitations of over-representation analysis, functional class score
and topological analysis.

Over-Representation Analysis Functional Class Score Topological Analysis

Advantages:
1. Simple and powerful.
2. Requires less input data

Advantages:
1. More Accurate than ORA.
2. Uses entire list of genes
measured.

Advantages:
1. Considers the role,
position, magnitude and
interactions of each gene.
2. Can make predictions.

Limitations:
1. Discards 90% of data.
2. Assumes all genes
are independent.
3. Evaluates only the number
of significant genes.

Limitations:
1. Ignores interaction among
genes.
2. Analyzes each pathway
independently.
3. Many false positives.

Limitation:
1. Requires more data
2. Takes slightly longer
3. Not currently applicable
to metabolic pathways.

Table 2.6: Algorithms and tools for gene set analysis using microarray data (gene expression
data, RNA-seq data, and protein data).

Approaches Algorithm/Tools

Over-representation Analysis

DAVID [135], GenMAPP [136], GoMiner [137],
FatiGO [138], GOToolBox [139], GeneMerge [140],
GOEAST [141], ClueGO [142], FunSpec [143],
GARBAN [144], WebGestalt [145],GOFFA [146],
WEGO [147], GOTM [148], Pathview [149],
Wholepathwayscope [150]

Functional Class Score

Random set [151], PCOT2 [152], SAM-GS [153],
LIMMA [154], Catmap [155], T-profiler [156],
FunCluster [157],GeneTrail [158], Gazer [159],
CAMERA [160], GAGE [161], SGSE [162],
GSNCA [82],GSA-SDR [163], GenePattern [164]

Topological Analysis
PathwayExpress [149], ScorePAGE [165], SPIA [166],
NetGSA [167], TopoGSA [168], CliPPER [169]
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2.4.5 RNA-Seq technologies and micro-array genomics data

Microarray technology is a widely used method in genomics for investigating gene expression

values [170]. This technique involves placing small DNA fragments, known as probes, on a

solid surface like a glass slide. These probes can specifically bind to complementary RNA

molecules from a sample [171]. When the RNA molecules bind to their matching probes,

they produce a fluorescent signal. By measuring the intensity of these signals, researchers can

determine the abundance of specific genes in the sample [171]. Microarray technology has been

a valuable tool in genomics research for many years to investigate gene expression patterns and

easy understanding of various biological processes and diseases [170]. Although microarrays

have been widely used in genomics research for decades, they have some limitations, such as

reduced sensitivity, probe design issues, and background noise [172]. Despite this, microarrays

still have a place in genomics research, particularly in applications where cost and data analysis

simplicity are important factors [173].

However, newer approaches like RNA-Seq are gradually becoming more popular due to

their increased sensitivity and ability to detect a wider range of transcripts [174]. RNA-Seq

technologies are a group of methods used in genomics to investigate gene expression values.

These technologies analyse the complete collection of RNA molecules in a cell or organism at

a specific time, known as transcriptome [174, 175]. With the help of advanced high-throughput

sequencing techniques, RNA-Seq offers detailed insights into the transcriptome, providing

valuable information about which genes are active and to what extent, in order to understand

complex biological processes [176]. By producing a large amount of data, these technologies

present a novel approach for learning about the molecular mechanisms behind various bio-

logical processes, such as growth, change, and diseases [170]. One of the main advantages

of RNA-Seq over microarray technology is its ability to detect a broader range of transcripts,

including low-abundance and novel transcripts [177]. This increased sensitivity is particularly

important when studying genes that are expressed at low levels, which can be challenging to

detect using microarrays [178]. Additionally, RNA-Seq is not dependent on prior knowledge

of the genome, allowing for the discovery of novel transcripts, alternative splicing events, and

gene fusions [179].

Table 2.7 describes the Comparison between RNA-Seq and Microarray Technologies.
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Table 2.7: Comparison between RNA-Seq and Microarray Technologies.
Aspects RNA-Seq Microarray
Detection
Method

High-throughput sequencing
technologies directly
sequence RNA molecules
and provide a digital
representation of gene
expression based on the
number of reads mapped to
each gene [180].

Hybridization between
known complementary
DNA probes on a solid
surface and fluorescently
labeled target cDNA or
cRNA samples; fluorescence
intensity corresponds to
expression level [181].

Dynamic Range Broader, allowing reliable
detection of low and high
abundance transcripts [182].

Limited by background noise
and signal saturation at high
expression levels [183].

Transcript
Discovery

Can detect new transcripts,
splice variants, non-
coding RNAs, and fusion
genes [184].

Relatively limited to mea-
suring expression of known
genes represented by array
probes [183].

Quantification Less cross-hybridization and
background noise [185].

Depends on fluorescence in-
tensity, which is affected by
probe quality, dye biases,
and sample labelling effec-
tiveness [186].

Reproducibility Better reproducibility
between technical replicates
and laboratories [187].

Depends on probe synthesis,
array construction, and hy-
bridization conditions [188].

Data Analysis Needs advanced
computational and
bioinformatics
pipelines [189].

Normalisation and differen-
tial expression analysis are
utilised with relatively less
computational processing re-
quired [190].

Cost Relatively expensive [191]. Cost-effective, making
it a popular choice for
large-scale gene expression
analysis [192].
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2.5 Knowledge-based gene set enrichment analysis

Genomics describes the study of a person’s genes, including the interactions of these genes and

sets of genes with respect to diseases such as cancer. In addition, genomics helps scientists

investigate why a patient develops certain diseases and why one disease recurs after cure while

others do not. For example, many patients undergo cancer treatments such as chemotherapy

and bone marrow transplant and have routine checkups but their cancer recurs. Other patients

receive similar treatments but are cured. Genomics may hold the clues to explain these vari-

ations. Understanding the relationships between genes and gene sets through genomics helps

scientists gain insight into diseases and patients.

Genomic data mining allows the estimation of gene expression levels of a large number of

genes simultaneously. Many GSA approaches have been used to derive valuable information

from genomic data, such as the discovery of differentially enriched genes associated with a

particular biological function or disease phenotype. The integration of biological functions into

gene expression data could be useful to explain the relationships between genomic data and

disease and could help to understand how genomic data for specific patients relate to these

functions [193]. In this section of the review, this thesis explore literature on knowledge-based

GSEA that assesses the relationships between genomic data and disease.

2.5.1 Algorithms integrating biological knowledge

Stephan et al. [72] integrated pathway information (biological knowledge) and gene expres-

sions to identify genes that are highly significant in cancer. Pathway data were collected from

the GSEA [56] and sigPathway [194] databases. Both GSEA and sigPathway ranked genes

based on differential expression and p-values, respectively. In this research, the random forest

algorithm was used to select genes from gene expression data [195].

Chen et al. [196] combined GO and gene expression datasets and applied principal compo-

nent analysis to separate relevant genes to predict survival consequences. The results showed

that integrating biological knowledge (GO) outperformed prediction accuracy compared to

approaches that only considered gene expression for prediction.

Miguel et al. [197] integrated gene sets with gene expression data to classify genes from

the gene set provided by the expert. Four different classification algorithms (IBk, naive Bayes,
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support vector machine, C4.5) were used to select all the matched genes from a given gene set.

The results showed that the combination of biological knowledge and gene expression data can

outperform classifiers that rely solely on gene expression data.

Bandyopadhyay et al. [198] designed a pathway-centric approach to feature extraction by

integrating pathway and gene expression data to reduce overfitting. The results showed that

accuracy improved after biological knowledge was integrated.

Kim et al. [199] integrated pathway information with gene expression data to improve the

efficiency of cancer subtype classifications.

Parraga Alava et al. [198] designed a clustering approach (NSGA-II [200], path-relinking [201]

and Pareto local search [202]) by integrating biological knowledge and gene expression data to

find gene clusters. First, the approach finds relationships between genes in the gene expression

data to ensure there are duplicate genes in the collected gene expressions. Next, it searches for

similar genes from the gene sets and clusters them if there is a match. The approach was applied

to four different gene expression datasets.

Cui et al. [203] proposed a gene clustering approach using a deep learning autoencoder

method [204]. The input was gene expression data and the biological information was gene

networks. The novelty of this approach was to investigate whether the same gene was present

in two networks using gene networks as biological information. The inclusion of gene network

information improves the performance of gene clustering. The comparative result showed

that the current method outperformed the traditional clustering of k-means and hierarchical

clustering.

Bauer et al. [205] introduced a Bayesian inference approach to gene selection by integrating

GO and gene expression data. Here, conditional probabilities are used to generate a score

that identifies matching genes with the GO and categorises gene types. Here, genes were

grouped based on gene expression data, and biological knowledge is used after analysis to

perform a similarity check of the groups. However, this method has several shortcomings. In

particular, grouping genes based on expression data only yields isolated co-expressed genes,

but not significantly biologically coherent blocks [206, 207].

In a multivariate approach (MVA), Fagan et al. [208] and Busold et al. [209] integrated

GO and gene expression data and grouped similar genes by measuring the distances between
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chromosomal positions between genes on both sides of the chromosomes.

Verbanck et al. [210] identified clusters of co-expressed genes (genes with similar ex-

pression levels) by integrating GO and gene expression data using an unsupervised clustering

algorithm (k-means). The location of one co-expressed gene may be a gene regulatory network,

while another could be from a specific biological response.

Brown et al. [211] applied a support vector machine (SVM) to classify genes from gene

expression data by considering the known functions of gene sets.

Nepomuceno et al. [212] proposed an unsupervised bi-clustering approach that examines

groups of genes with similar expressions according to a subset of preconditions. A scatter

search, a metaheuristic optimization technique [213], helps identify gene patterns. The term bi-

clustering refers to the identification of two distinct gene clusters from two separate input files.

One input file contains gene expression data and the other file contains gene names associated

with their GO annotations. The most fundamental difference of bi-clustering from conventional

clustering is that bi-clustering aims to cluster genes and conditions (gene annotations) simul-

taneously. However, it has been shown that a scatter search leads to low accuracy. Fyad et

al. [74] proposed a bisecting k-means leader clustering that forms multiple clusters of genes by

integrating GO and gene expression. Finally, they identified the genes with shorter distances

between these clusters.

Imoto et al. [214] proposed a gene network by combining biological knowledge and gene

expression data with a Bayesian network that identifies genes from GO.

Gan et al. [215] proposed projection on convex sets (POCS) to find missing values, i.e.,

expression values, in gene expression data. Local least squares regression was used to identify

genes by integrating gene expression and GO [216].

Kong et al. [217] presented a multivariate approach for clustering genes by integrating

gene expression and gene sets. The approach identifies genes from multivariate samples by

considering their phenotype in each gene set. Hotelling’s T2 T2 [218–222] measured the

covariances between genes and gene sets for similar clustering genes.

Gene regulatory networks, representing either protein-protein interactions, cellular signalling,

or precise molecular control, integrate GO and gene expression data to form a network [223–

227]. Some popular approaches for gene regulatory networks are Boolean networks, differential
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equations, and Bayesian networks (BNs) [228–230].

Three different approaches have been used to summarise gene regulatory channels: Boolean

networks, differential equations, and Bayesian networks (BNs). The strategy that has received

increased attention involves an inference mechanism for causal probabilistic networks in partic-

ular BNs and dynamic Bayesian networks (DBNs) [228–238]. Finally, some other approaches

that integrate both gene expression and gene ontology are presented in Table 2.8 with respect to

R1-R3.

Table 2.8: Literature review of the research publications on existing approaches to knowledge-
driven GSEA approaches.

Technique R1 R2 R3
A statistical prior biological knowledge [239] × ✓ ×
Classification of cancers to compare the clinical markers [240] × × ×
An integration of biological knowledge [241] × × ×
A self-sufficient prediction for relevant pathways for
functional enrichment [242]

× × ×

Integrating gene signatures [243] × × ×
Microarray experiments to define signatures [244] ✓ × ×
Integrated genes association network [245] × × ×
Bi-clustering unsupervised method to search for patterns in
gene expression [246]

× × ×

Network construction for series of data [247] × × ×
Multivariate statistical procedure [248] × × ×
Multi-objective clustering algorithm [249] × × ×
A gene expression analysis to find the
transcriptional activity of a cell [250]

× × ×

Method for functionally classifying genes [251] × × ×
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2.6 Data-driven GSA

2.6.1 Classification methods and visualization tools

A data-driven approach in GSA allows the analysis of genomic information to find patterns

in genes or gene sets, or to determine insights into diseases associated with genes or gene

sets. Gene expression contains a large amount of information about a patient profile, which

are characteristics of patient diseases or biological insights. Over the years, many data-driven

approaches have been developed to investigate the gene expression profile that explains a pa-

tient’s condition [123, 252]. In genomic data analysis, high-throughput predictions and optimal

visualisations are challenging for researchers. Therefore, many types of genomic research has

been conducted to classify and visualise genomic or microarray data. One such approach is

gene set enrichment analysis [56]. In addition, there are other approaches that identify genes

while others visualise genes [253].

Yuanyuan et al. [254] designed a data-driven approach to classify a patient with respect

to a particular cancer type using gene expression data. Similarly, Maisa et al. [255] applied

neural networks (NNs) to investigate whether a patient has cancer or not. Shuguang et al. [256]

developed an approach to classify the survival status of cancer patients using a supervised

learning algorithm.

Ciaramella et al. [257] introduced a data-driven approach, FH-Clust, to discriminate patient

subgroups from various omics data (e.g., miRNA expression, methylation, gene expression).

Another data-driven approach is GeneSetCluster, which can identify gene clusters and visualise

gene networks. GeneSetCluster uses an R package to identify a gene cluster of common

genes [99] by calculating distances between overlapping genes. K-means and hierarchical

clustering algorithms were applied to cluster genes from gene sets. GeneSetCluster represents

gene networks in the visualisation phase to show the gene clusters using a dendrogram and a

heatmap.

In addition, Wang et al. developed [100] GOMCL, a Python-based tool that captures terms

(genes or gene sets) from Gene Ontology (GO) to reduce the redundancy of overrepresented

genes. Markov clustering (MCL) is used to cluster GO terms from overlapping genes. GOMCL

represents GO terms as heatmaps and hierarchical structures for cluster information.

A vaccine investigation ontology (VIO) used the LIMMA statistical model to reanalyze one
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of the Gaucher and Quebec datasets and found different gene lists to previous studies. The

researchers also found that the gene and pathway lists in this study were significantly different

from previous studies.

BEAVR is a tool [102] developed with the R language and uses DESeq2 as the engine for

differential gene expression analysis. DESeq2 uses statistical tests and displays the results using

a heat map, lists of graphs, and plots.

Another web application, GENAVi (Gene Expression Normalisation Analysis and Visu-

alisation), is used to normalise RNA-seq data and display gene clusters in the form of gene

expression correlation, principal component analysis, and gene enrichment scores [103].

Yousif et al. [104] developed an open-source platform, NASQAR (Nucleic Acid Sequence

Analysis Resource) which enables the interactive visualisation of gene clusters. The NASQAR

toolbox analyses and visualises transcription from metagenomics and RNA-seq data.

Zhu et al. [105] presented new perceptual methods to promote the exploration and exploita-

tion of GO data using a directed acyclic graph. They also presented open-source software for

connecting data visualisations. This tool is used for visualisations to identify gene sets based

on gene expression.

Natanely et al. [106] proposed the Profiler of Multi-Omic data (PROMO) to investigate

genomics datasets on cancer and their associated clinical data. PROMO uses different algo-

rithms for prepossessing, visualising and clustering cancer data. PCA and t-SNE are applied

for visualisation, k-means, hierarchical clustering, Click for data clustering and GO enrichment

analysis for feature selections. Many similar data-driven approaches have been studied and are

summarised in Table 2.9.
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Table 2.9: Literature review of the research publications on classification methods and
visualization tools for genome study analysis (GSA).

Technique R1 R2 R3
Multi-view integration procedure for distinguishing
patient subgroups [257]

× × ×

Omics data similarity presentation using dendrogram for
hierarchical clustering [99]

✓ × ×

Network-based gene weights [258] ✓ ✓ ×

Novel network-weighted gene-set clustering [259] ✓ × ×

Functional gene networks [260] × × ×

Engine for gene regulation [261] × ✓ ×

Scale-able and versatile factor [262] × × ×

Overdispersion analysis of gene set [263] ✓ × ×

Transcriptional profiling of microglia [264] × × ×

Repesent non-functional overlapped cluster genes [100] × × ×

A vaccine investigation ontology (VIO) visualization [101] × × ×
Visualize RNA sequence data [102] × ✓ ×
Gene annotation and visualization to normalize
RNA sequences [103]

× ✓ ×

An interactive visualization to normalize transcription data [104] × × ×

Graph theory for the exploration and utilization of GO data [105] × × ×

Profiler for examining huge genomics cancer data sets [106] × ✓ ×

Visualization of gene set over-representation analysis [265] ✓ × ×

PathDIP [266] ✓ × ×

Cluster profiler for over-representation gene sets [267] ✓ × ×

topGO [268] ✓ × ×
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2.7 Enricher and related tools

Enricher is a web application that provides gene set enrichment analysis for annotated gene

sets, i.e., functions of genes. Gene set enrichment finds annotated gene sets that are similar to a

given query gene set [269]. Enrichment similarity measures evaluate a set of intersections. The

significance of an intersection is evaluated using Fisher’s exact test, a statistical significance test

used to measure a contingency table which is a matrix that represents frequency distributions

of several variables [270]. Fisher’s exact test is a statistical test used to determine if there is a

significant association between two categorical variables in a 2x2 contingency table [271]. It is

often used when sample sizes are small and the assumptions of the chi-square test are not met.

Enricher contains a collection of 400000 annotated gene sets and 300 gene set libraries.

Some popular libraries are KEGG (Kyoto Encyclopedia of Gene and Genomes) [6], GO Bi-

ological Process , ChEA, Wiki Pathways, Reactome, BioCarta [272], and many more. The

annotated genes within Enricher provide insight into specific genes and gene sets associated

with diseases, drugs, and biological processes (Table 2.7).

Table 2.10: Literature review of the research publications on gene set Enricher tools.
Technique R1 R2 R3
Integrated method to visualize enrichment results [269] × × ×
Tool to recognize functional advancement of qualities [273] × × ×
MutEnricher tool used for researching somatic mutation enhancement [92] × × ×
Gene ontology analysis visualisation system [93] × × ×
Visually combining approach for expression data [94] × × ×
A graphical gene-set enrichment tool [95] ✓ × ×
An open-source gene set analysis tool [96] ✓ × ×
Gene sets annotation [97] ✓ × ×
Functional gene sets application [98] ✓ × ×
A novel web-based tool to compare gene lists [274] ✓ × ×

Zhang et al. [273] proposed AllEnricher, a GSEA tool to measure the functional enrichment

of gene sets with respect to custom gene set libraries such as KEGG, ChEA, etc. Two statistical

tests, namely Fisher’s hypergeometric test and Fisher’s precise test were used for ranking the

gene sets with respect to the enrichment score. Moreover, AllEnricher used R to visualise the

ranked gene sets.
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MutEnricher, another GSEA enricher tool, was used to identify somatic mutation enrich-

ments in both coding and non-coding genomic regions, which are defined next [92]. The

coding genomes are the DNA that encodes proteins and the non-coding genomes do not encode

proteins. MutEnricher investigates the transformation of coding and non-coding genes. A

software package implemented in Python explores the enrichment of somatic mutation genes.

2.8 Predictive modelling

Predictive modelling is a process of transforming data into actionable future insights. Predictive

analytics is a category of data analysis that aims to predict future outcomes based on historical

data and analytical techniques such as statistical methods and machine learning. In genomics,

advanced tools and models can be used to analyze past and present data, allowing researchers to

make reliable predictions about future trends and behaviors in gene expression [275]. Predictive

analytics plays a crucial role in this process. For genomics scientists and researchers, this

approach can help detect unusual patterns in genomic data. For example, they can identify

genes or sets of genes associated with diseases such as cancer [276].

Predictive approaches such as deep learning, neural networks, and decision trees are used to

apply gene regulatory networks to identify genes from a large amount of gene expression data.

Kong et al. introduced a forest deep neural network (fDNN) to extract genes from the gene

set [87]. In the initial stage, the random forest algorithm extracts genes from gene sets. Then,

these genes are fitted into the deep network and overfitting genes are identified. Similarly,

Arloth et al. proposed [88] DeepAWS to investigate single nucleotide polymorphisms (SNPs)

and multinucleotide polymorphisms, i.e., variations of DNA nucleotides in an individual (A,

T, C, G), using deep learning-based LASSO (Least Absolute Shrinkage and Selection Oper-

ator). DeepAWS identifies genes associated with disease-related SNPs from tissues. Roy et

al. [67] used a supervised classifier to predict genes in invasive ductal carcinoma (IDC). They

investigated IDC in two different stages, early IDC and late IDC.

Allahyar et al. [89] proposed a synergistic network (SyNet) using a linear regression model

to aggregate and rank cancer genes. The authors also used the Spearman correlation coefficient

to identify highly correlated breast cancer genes. Another network analysis identifies prognostic
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cancer genes using the Pearson correlation coefficient [90] between every two genes. In addi-

tion, Cytoscape [277] is used to visualise the co-expression and module networks. Permutation

of genes is applied to construct module networks and find high density networks.

Moreover, the gene ranking algorithm was used to rank genes and identify important gene

networks for cancer. Tong et al. [91] proposed a predictive approach to identify colorectal

cancer genes by considering high-dimensional data with unsupervised clustering. In addition,

a considerable amount of similar research on gene prediction was reviewed and is presented in

Table 2.11.

Table 2.11: Literature review of the research publications on predictive approaches to gene set
enrichment analysis.

Techniques R1 R2 R3
Forest deep neural network (fDNN) to extract the features
gene sets [87]

✓ × ×

Genome-wide association studies (GWAS)
to integrate single nucleotide polymorphism [88]

× × ×

Supervised classifier for invasive ductal carcinoma (IDC)
progression [67]

× × ×

A gene network approach for gene expression [89] × × ×
A module-based network analysis to identify cancer
prognostic modules [90]

× × ×

Prognosis approach to prediction colon cancer [91] × × ×
Dirichlet process regression to predict gene expressions [278] × × ×
Reduced accuracy to predict genetic information [279] × × ×
Subset of genes prediction [280] × × ×
Predictive performance of PrediXcan [281] × × ×
Testing process for cross-population to predict gene expression [282] × × ×
Comparative study of the prediction accuracy [283] × × ×
Reconstructed genomes sequencing [284] × × ×
Improvements to imputation machinery of genotype [285] × × ×
New phasing algorithm for Haplotype phasing genetics [286] × × ×
Machine learning method for cardiovascular disease [287] × × ×
Machine learning method for lipid traits [288] × × ×
Machine learning method for lipid modification [289] × × ×
Statistical model for genome wide association [290] × × ×
Gene expression (cis expression quantitative trait loci (eQTLs)) [291] × × ×
Prioritize causal genes [292] × × ×
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2.9 Summary of the literature review

According to the discussion in sections 2.4, 2.5, 2.6, 2.7, and 2.8, the literature are primarily

focused on identifying genes, predicting diseases, and determining how genes interact with one

another.

Section 2.4 discussed on GSEA. GSEA uses collections of genes that have been categorized

according to their shared functions. GSEA ranks genes in gene sets based on how strongly they

are associated with the presence of a phenotypic trait. So, GSEA can be used to understand the

impact of variation in gene expression characteristics. GSEA incorporates gene sets as well as

gene expression profiles. GSEA selects a limited number of gene sets with the assumption that

the selected gene sets are useful to explain the expression levels of the two classes (experiment

and control).

Section 2.5 discussed about knowledge-driven approaches where gene expression values

and gene sets are integrated to identify genes. All approaches predicted genes that are related

to specific cancer diseases using both machine learning and statistical approaches.

Section 2.6 discussed data-driven approaches where gene expression values are used to

predict diseases and genes. According to the literature, many of the data-driven methods

discussed in this section involve analyzing genes or diseases using gene expression values.

Section 2.7 discussed tools that used to identify genes or gene sets related to diseases.

Similarly, section 2.8 discussed about different AI and machine learning approaches such as

deep learning, neural network, support vector machine, k-nearest neighbor, and rule-based

systems.

RQ1 provides an opportunity to examine existing research to see if integrating gene sets

with gene expression data helps to evaluate abnormalities in complex disease studies. Instead

of looking at a few genes in the gene set, all member genes of a gene set will participate in the

anomaly analysis. RQ2 focuses on predictive modelling and instance-based learning to propose

treatment planning considering imbalanced genomic data samples. Finally, RQ3 focuses on

explainable AI. Explainable AI helps to understand why prediction, classification, and cross-

validation models are correct or incorrect.
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2.10 Research gaps in genomics studies

The above-mentioned scientific literature in the field of genomics focuses mainly on the iden-

tification of genes associated with diseases by analyzing gene expression values. To achieve

this goal, researchers use one of two main strategies. The first approach, called the data-driven

method, focuses primarily on examining gene expression levels. The second approach, called

the data-and knowledge-driven method, involves both gene expression values and gene sets and

provides a deeper understanding of the relationships between genes and disease.

The overall goal of these research effort is to identify specific genes or gene sets that have a

correlation with a particular disease.

In contrast, this thesis argues that gene sets not only provide information about individual

genes, but also offer insights into the relationships and interactions between genes within a

group. Consequently, examining these gene sets can help researchers better understand the

impact of anomalous gene expression patterns and their potential implications in disease devel-

opment and progression.

In addition, this thesis contends that analysis of variations in gene expression values is

crucial for uncovering anomalies that may exist within these values. Such anomalies can

contribute to our understanding of the molecular mechanisms underlying various diseases such

as leukaemia, colorectal cancer, and breast cancer. By investigating these variations and their

potential association with specific diseases, researchers can gain valuable insights that may ulti-

mately lead to the identification of novel treatment planning or improved diagnostic techniques.

Predictive modeling and datadriven approaches are used to predict a patient’s condition and

gene. But there are ways to look at differences in the way genes are identified through data

mining methods and link a patient’s disease. There are ways to identify similar cohorts of

patients in terms of variations in gene expression levels.

2.11 Hypothesis and research questions on gene set analysis

The systematic literature review on GSEA conducted in this thesis facilitates the adoption of

effective methods to address research questions related to anomaly analysis using cancer gene

expression data. By carefully examining existing GSEA literature, this thesis identifies relevant
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statistical methods, algorithms, and techniques that are widely used in this domain. Assessing

the strengths and weaknesses of these methods allows for the determination of successful

approaches for detecting anomalies in gene expression data, particularly in the context of cancer.

However, much of the existing research primarily focus on identifying specific gene sets

associated with specific diseases from limited numbers of differentially expressed genes. How-

ever, consideration of the totality of genes when grouped into gene sets for each patient was not

considered. This observation has motivated this thesis to develop a novel approach for detecting

anomalies in cancer gene expression data when they are considered within gene sets groupings.

By building on the insights gained from the literature review and addressing the limitations of

previous studies, this thesis aims to develop an approach for analyzing gene expression data in

the context of cancer research. As a result, the insights and limitations identified in the literature

review shape the methods used in this thesis for addressing the research questions ensuring a

well-informed and effective approach.

Based on the literature review and research gaps, this thesis argues that knowledge inherent

in gene sets keeps an opportunity for profile-based data analytics by integrating gene sets and

gene expression values. In addition, this thesis proposes a hypothesis that carefully aggre-

gating gene expression values into measures over gene sets creates a potential for gaining

insights from the analysis of data pertaining to gene expression profiles. Specifically, this

thesis proposes that in comparison to using expression values directly, integration of gene sets

and gene expression values would be useful to measure anomalies exist in each profile. This

anomaly analysis might be effective to enhance visibility and detectability of patterns across

distinct expression profile.

• Research question 1

How can aggregation of gene expression values into their respective gene sets provide

opportunities for building a knowledge-based classification?

• Research question 2

How can a technique be developed to assess variation of gene expression in each gene

set for each patient and build a model using this assessment?

• Research question 3
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How can we use an approach to map patients with respect to the biology of the

patient that determines the response to cancer treatment?

2.12 Conclusion for systematic review on genomics related literature

Upon review, it was not uncommon to see an apparent variation in the methods used to analyse

genomic data, from gene prediction to gene set ranking. Surprisingly, this thesis found that there

are many ways to understand gene expression values and gene sets for complex disease analysis

in an AI-based environment. This study motivated several research opportunities for gene set

enrichment analyses to understand the gaps. However, finding solutions requires a remarkable

interdisciplinary exercise between biology (science), mathematics (science), and data analysis.
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2.13 States-of-the-art methodologies

Raw gene expression data can be processed in a number of ways and several existing pre-

processing approaches have been reviewed. In next sections, I provide an overview of some

of these pre-processing methods that generate modified gene expression values from raw gene

expression values.

2.13.1 Gene fuzzy score

Abha and colleagues [293] proposed the Gene Fuzzy Score (GFS), a modified gene expression

score derived from raw gene expression values. The term “fuzzy” in GFS means that the gene

expression values are converted to a range between zero and one using a mathematical equation

other than the fuzzy membership function, which is detailed in (Equation 2.2). The processing

steps of GFS are as follows.

1. The raw gene expression values for each patient are ranked in ascending order. The

position of a gene does not change in this ranking. The expression values for each sample

are simply ordered from lowest to highest values.

2. The ordered gene expression values are processed to generate the GFS. To process the

ordered gene expression data, two thresholds are considered, which are θ1 and θ2. Gene

expression values above θ1 are considered 1, and gene expression values below θ2 are

considered 0. Equation 2.2 is used to convert gene expressions between zero and one that

exist between θ1 and θ2.

The processing steps of GFS are shown in Figure 2.8, beginning with ranking the raw gene

expression values, splitting them into two thresholds of θ1 and θ2, and then converting the

remaining gene expression values to 0 and 1 using equation 2.2.

f(gi, pj) =



1, if q(pj, θ1) < r(gi, pj)

r(gi,pj)−q(pj ,θ2)

q(pj ,θ1)−q(pj ,θ2)
, if q(pj, θ1) > r(gi, pj) ≥ q(pj, θ2)

0, Otherwise

(2.2)
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where f(gi, pj) is the fuzzy score for a gene gi in patient pj , and r(gi, pj) is the rank of gene

expression of a gene gi in patient pj , and q(pj, θ1) be the rank corresponding to the quantile

thresholds of gene expression in patient pj .

Objectives

• This pre-processing technique focused to find consistent results across different data sets

for different phenotypes (e.g., healthy patients, cancer patients).

• To identify highly expressed genes from all given data sets.

• To ensure coherent groups of genes differ from other genes with respect to their GFS

scores.

Figure 2.8: Processing steps of gene fuzzy scores.

2.13.1.1 Pros, cons and uses of GFS

Pros

• The GFS is a normalized gene expression score that scales raw gene expression data

between 0 and 1. Top 15-20% of GFS scores were considered for cancer analysis.

• GFS ranked genes and embeds patients with respect to the highest-ranked genes.

Cons

• Only a limited portion of gene expression data was included in the GFS.
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• Due to exclusion of a substantial proportion of gene expression values from the GFS,

there is a possibility that some valuable gene expression data were overlooked.

• Patient embedding with respect to gene may not captured full biological functions as GFS

excluded some genes.

Uses

• GFS has been used to show clustering of patients with respect to genes in two-dimensional

plots.
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2.13.2 Feature regression and classification (FRaC)

Keith and colleagues [294] developed a feature regression and classification (FRaC) approach

which generates modified gene expression values from raw gene expression values. Initially,

input data were divided into training and test samples and the model was trained using the

training samples. Then, FRaC predicts the test gene expression values and calculates the

prediction errors. The prediction errors are considered as pre-processed gene expression values.

The steps performed by FRaC are as follows.

1. The input data is divided into training and target attributes (test gene expression values).

2. A regression and classification method is selected to predict target attributes.

3. Prediction errors are measured for each target gene expression value, i.e., the modified

expression score for measuring changes in genes.

Figure 2.9 shows the processing steps of FRaC to identify prediction errors in raw gene

expression values. First, FRaC sets some features as target features while other features are

used to train the supervised prediction model to predict the target features. Then, the prediction

errors for each target gene expression values are measured.

Consider a set of training samples, X = {X1, X2, · · · , XN} with D number of features

for each sample, Xj = {Xj1, Xj2, · · · , XjD}. First, FRaC selects the target features whose

value is to be predicted and other features that will be used as training features. Separating

the test sample from the training sample is crucial to avoid bias. If test and training data have

similarities, it may result in higher accuracy than anticipated, which might not represent the

model’s actual performance on unseen data. By employing distinct test and training datasets,

the model’s performance can be evaluated more accurately, guaranteeing its effectiveness in

generalizing to new, unseen cases.

After separating the training and test features, FRaC selects supervised learning algorithms

to predict the feature values. FRaC selects multiple predictor models for each feature prediction.

Here, ρi refers to the set of predictor features used to predict the target feature i. Thus, the

predictor feature for a sample Xj can be defined as follows,

ρi(Xj) = ⟨xj1, xj2, · · · , xj,i−1, xj,i+1, · · · , xjD⟩ (2.3)
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For each target gene, FRaC calculates a modified expression score based on a comparison

of predicted values to actual values. The following equation is used to calculate the prediction

error.

error(xq) =
P∑

p=1

D∑
i=1

distance(xqi, Cp,i(ρi(xq))) (2.4)

where xq is the target sample, Cp,i is the classification predictor, P is the supervised learning

model, and D is the features of the training sample.

Figure 2.9: Processing steps of FRaC on raw gene expression values.

Figure 2.10 shows an example of identifying prediction errors using raw gene expression

values in leukemia with FRaC. The figure shows that three values of the target attributes DDR1,

FIP1L1, and RFC2 are predicted with respect to four training attributes (SLC5A11, TAZ,

ZNF133, and PPMIF). First, the model was trained with these four training samples and then
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the test samples were predicted with FRaC. Finally, the prediction errors were calculated by

measuring the differences between the values of the original attributes and the predicted values

of these target attributes.

Figure 2.10: An example of prediction error identification for leukaemia gene expression
values.

Objectives

• To establish a relationship between genes of two different distributions.

• To generate modified gene expression scores by considering noisy and irrelevant data.

2.13.2.1 Pros, cons and uses of FRaC

Pros

• FRaC predict gene using feature regression and classification approach and measures

prediction errors.

Cons

• FRaC determines “variation scores” based on calculated prediction errors. However,

it’s important to understand that these prediction errors might reflect limitations of the

algorithm rather than actual variations in gene expression. In other words, just because
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an algorithm fails to predict accurately, it doesn’t necessarily mean there is a variance in

the gene expression values.

Uses

• A machine learning approach to predict genes with respect to training data sets.
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2.13.3 Characterizing systematic anomalies in expression values (CSAX)

Keith and colleagues [295] introduced characterizing systematic anomalies in expression data

(CSAX) to identify anomalous gene sets or pathways for a patient. The processing steps of

CSAX are as follows.

1. The input data is divided into two groups: healthy and diseased. The healthy group is

treated as a training sample and the diseased group is the test sample.

2. CSAX uses FRaC [294] to identify prediction errors in raw gene expression values for the

test samples. This step produces modified gene expression values for each test attribute.

3. Using the modified gene expression values from the previous steps, CSAX uses GSEA [9]

to select the number of gene sets that are at the top of the list.

Figure 2.11 shows the processing steps of CSAX. The figure shows that the input data

are divided into two groups, training and test samples. The training data are all healthy gene

expression values and the test data are a combination of both diseased and healthy gene expres-

sion values. CSAX uses FRaC to generate modified gene expression values by measuring the

prediction errors for each test gene. After the modified gene expression values are obtained,

CSAX applies GSEA. CSAX measures the gene set enrichment score to identify gene sets. The

modified gene expression scores are calculated using the following equation.

anomaly score =
G∑
i=1

γi−1 × ES(Mi) (2.5)

where G is the number of gene sets, γ controls how many gene sets are included in the

calculation of the enrichment score, CSAX sets γ = 0.95, and M is the position of the gene

sets in the ranking list.

This thesis applies the CSAX approach to acute lymphoblastic leukaemia gene expression

scores (ALL) to generate modified raw gene expression scores. The input data were divided

into two groups: normal and cancer patients. Then, CSAX calculates the prediction errors for

the molecular function ontology gene sets (C5 MF).
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Figure 2.11: Processing steps of CSAX.
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Objective

• To identify anomalous gene sets or pathways.

2.13.3.1 Pros, cons and uses of CSAX

Pros

• CASX trained feature regression and classification approach using training data from

healthy patients.

• CSAX uses a feature regression and classification to predict genes and then measures

prediction errors of its predictions.

Cons

• lCSAX generates varied gene expression scores by computing prediction errors from the

expected value. However, these prediction errors may actually indicate limitations of

the algorithm itself. Therefore, these prediction errors shouldn’t be interpreted as gene

variation scores.

Uses

• A machine learning approach for predicting genes based on training data sets.
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2.13.4 TEMPO: Detecting pathway-specific temporal dysregulation of gene expression

in disease

Christopher and colleagues [296] proposed temporal modeling of pathway outliers (TEMPO)

to identify changes in gene expression over time. This approach uses partial least squares

regression (PLSR) [297], a feature classification technique, to measure prediction errors in the

collected data sets. Collected gene expressions were divided into test and training samples,

with healthy gene expressions considered as training samples and diseased expressions as test

samples. PLSR was trained with a healthy training sample to predict the diseased sample and

measure the prediction error. The processing steps of TEMPO are as follows.

1. The input data is separated into two phenotype groups: control and diseased.

2. Partial least squares regression (PLSR) is used to train the samples.

3. After the method is trained, the ages of the gene expressions (diseased) were predicted

using the leave-one-out method and the prediction errors are measured.

Figure 2.12 shows the computational steps of TEMPO using PLSR. From the figure, it can

be seen that the input data were divided into control (healthy) and diseased groups. TEMPO

uses the gene expression data from the control group to train the PLSR model and predict the age

of gene expression for the diseased samples. Multiple PLSRs were used to identify prediction

errors. Finally, TEMPO calculates the prediction errors from the actual and predicted ages.

TEMPO generates a prediction error for each gene set G, which is measured using the

differences between the predicted ages and actual ages. Here,EG,s is the prediction error for

each sample,s under the gene set,G. TEMPO calculates a score using these prediction errors to

find out which gene set, G is temporally dysregulated, which is calculated using the following

equation.

score(G) =
|C|
∑

sϵD −log(N(EG,s))

|D|
∑

sϵC −log(N(EG,s))
(2.6)

where the probability error N(EG,s) is calculated using the z-score with the normal distribution

with mean µG and standard deviation, σG, D is the disease sample and C is the control sample.

Objectives
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• To identify the temporal changes in raw gene expression for a particular disease.

• To identify the temporal dysregulation of biologically relevant gene sets for different

diseases.

Figure 2.12: Computing prediction errors for groups of genes using PLSR.

2.13.4.1 Pros, cons and uses of TEMPO

Pros

• TEMPO identify prediction errors in gene expression using the feature classification

approach, which is PLSR. TEMPO measures variations by predicting a gene expression

values for a test gene and then measures the differences between test and taring values.

• TEMPO Incorporates both microarray and RNA-seq data sets to predict gene expression

for a given test gene.

• TEMPO extract gene sets using GSEA tool.

Cons

• In order to get modified gene expression score, TEMPO computes variation of gene

expression values from predicted value.
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Uses

• A machine learning approach for predicting genes based on training data sets.
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2.13.5 aTEMPO: anomaly temporal modeling of pathway outliers

Christopher and colleagues [298] introduced anomaly temporal modeling of pathway outliers

(aTEMPO), an extension of TEMPO [296], to identify changes in gene expression values

with respect to time. In contrast to TEMPO, aTEMPO uses microarray Significant Profiles

(maSigPro ) [299], a regression analysis method to find outliers genes. maSigPro is used to

rank genes. After the genes are classified, the prediction errors are measured by predicting a

test sample. The processing steps of aTEMPO are as follows.

• The input data is divided into two groups of phenotypes: healthy and diseased.

• Microarray Significant Profiles (maSigPro) [299], a regression analysis method, is applied

to rank the gene expression values of normal samples.

• The gene sets are identified using GSEA [9] taking into consideration the ranks of genes

determined in step 2.

• Fourth step is to train Partial Least Squares Regression (PLSR) [297] with training sam-

ples.

• The age of the gene expressions (diseases) is predicted with PLSR and cross-validated

using the leave-one-out method and the prediction errors for the corresponding genes are

measured.

Figure 2.13 shows the computational steps of aTEMPO where the blue square represents the

training data (control samples) and the green square represents the test data (diseased samples).

In both datasets, the rows contain the genes (g11, g12, · · · , g22) and the columns contain the

samples (S1, S2, · · · , Sj, Sj+1, · · · , Sk). In the next phase, i number of PLSR is trained on j

training samples and the age PG,c is predicted. From the actual ages Ac and the predicted ages

PG,C , aTEMPO calculates the error EG,C . Similarly, the predicted error EG,D is measured from

the diseased data using Single PLSR, Mtest. Finally, the error probability for the gene set G and

sample s is calculated as follows.

LG,s = −log(NG(EG,S)) (2.7)
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Figure 2.13: Processing steps of aTEMPO gene expression scores.

where EG,S is the prediction error calculated from the difference between the predicted and

actual ages. NG is the probability estimate calculated from the z-score using the mean and

standard deviation of the prediction errors.

2.13.5.1 Pros, cons and uses of aTEMPO

Pros

• aTEMPO is a pathway-based outlier detection approach which used FRaC to detect pre-

diction errors of test genes. aTEMPO predicted gene expression values with respect to

age of training data (temporal data) and measures predicted errors.

• aTEMPO extracted gene sets using GSEA tool.
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Cons

• In order to get modified gene expression score, aTEMPO computes variation of gene

expression values from predicted value.

Uses

• aTEMPO identified gene sets from GSEA with respect to the prediction errors.
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2.13.6 Outlier detection in gene expression data

Anindya and colleagues [300] describe an approach for identifying outliers in gene expression

values, where outliers in gene expression are observations that quantify an abnormal distance

between one sample and another, as opposed to the normal distance between two samples. The

procedure for conducting this study is as follows.

1. The Pearson correlation between all genes is calculated.

2. A numerical value is assigned to each gene. This is due to the fact that after applying

Pearson correlation, some gene-to-gene correlation values may be 1, resulting in an

outlier situation. In this strategy, a numerical value is assigned to each gene to solve

the problem.

3. The normalized distance for each gene is measured. There is a relationship between the

normalized distance and the assigned weight for each gene. If the normalized distance is

smaller, the weight is larger, and if the distance is larger, the weight is smaller.

The steps of outlier detection approach are shown in figure 2.14. Gene expression values are

shown in the first table in this figure, with rows representing genes and columns representing

samples. Using Pearson correlation, this approach then provides a gene-to-gene relationship

matrix indicating the degree of relationships between genes. Next, a normalized distance matrix

is created from the correlation matrices and a weight is assigned to each gene based on the

distance matrices. Finally, the new weight is multiplied by the gene expression values, resulting

in new modified scores.

Let us consider a set of n genes X = {g1, g2, · · · , gn} with m−dimensional gene expres-

sion. The similarity between the gene pair (gi, gj) is calculated using the Pearson correlation

corr(xi, xj), which is defined as follows:

corr(xi, xj) =

∑m
l=1(xil − xi)(xjl − xj)√∑m

l=1(xil − xi)2
∑m

l=1(xjl − xj)2
(2.8)

where xil and xjl are the gene expression values of ith and jth, respectively, and l is the sample.

This similarity value is biased due to outliers. This similarity value should be close to 1 for

coregulated genes, but due to outliers, the correlation value deviates greatly from 1. To solve this



64 Systematic literature reviews

Figure 2.14: Processing steps of outlier gene identification using raw gene expression values.

problem, the distance for each gene must be normalized. The normalized distance is calculated

as follows.

Dijl =
√

(til − ti)2 + (tjl − tj)2 (2.9)

where Dijl is the normalized distance, til and tjl are the normalized gene expression values of

expression xil and xjl. ti) and tj) are the mean of the normalized distance. Next, the weight is

calculated for each pair of genes. When the normalized distance is smaller, the weight is higher

and when the distance is larger, the weight is lower. The weight is defined for the gene pair

(gi, gj) as follows.

wlij = e−α×Dijl (2.10)

where wlij is the weight for the gene pair and α ≥ 1 is a constant. The new gene expression

values are the product of the weight and the original gene expression, which is defined as
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follows:

xw
ijl = wlij × xil

xw
jil = wlij × xjl

(2.11)

where xw
ijl and xw

jil are the new gene expression for xil and xjl, respectively.

2.13.6.1 Pros, cons and uses of outlier detection

Pros

• Pearson correlation and Euclidean distance were used in this method to measure an

amount of variation in gene expression data. According to the distances, the genes could

be divided into two categories: those that were very similar to one another and those that

were very different.

Cons

• Excluded a group of genes based on their similarities and differences. Employing the

Pearson correlation coefficient in outlier detection might not be optimal due to its sensi-

tivity to outliers. Future advancements in this field could consider alternative measures,

such as the Spearman rank correlation [301]. This is a statistical technique that helps

understand how closely two sets of data are linked. It works well even when the data isn’t

evenly distributed and is not as affected by outliers as the Pearson correlation [302].

Uses

• This approach identified a group of similar genes.
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2.13.7 SNet: finding consistent disease sub-networks

Donny and colleagues [303] introduced SNet, which processes gene expression values by con-

sidering two thresholds. These thresholds generate a SNet gene expression score from raw

gene expression values. This modified gene expression value is used to identify the relationship

between genes in a gene network. The processing steps of SNet are as follows.

1. The gene expression values for each patient are ranked in ascending order. The position

of a gene does not change in this ranking. The expression values for each sample are

simply ranked from lowest to highest.

2. Ordered gene expression data is processed. Two threshold values are considered, α% and

β%. SNet sets the value of α% to 10% to extract the 10% best genes from the highest-

ranked genes.

3. Specific gene expression values are selected. After selecting 10% of the genes in step

2, SNet assigns β% to 50%. This means that SNet selects the 50% best genes from the

originally selected 10% best genes.

Figure 2.15 shows the processing steps of SNet. The first step in the figure is to rank the

gene expression values. Then, thresholds are assigned to the tables of ranked gene expression

values, and finally, the modified gene expression values are constructed for further processing.

As shown in the figure, SNet ranks the raw gene expression values and extracts 10% of the

genes from the top genes. Finally, 50% of the genes were selected from the top 10% of the

genes.

2.13.7.1 Pros, cons and uses of SNets

Pros

• SNets ranked genes according to their modified gene expression scores and included only

top 10% of the total genes.

Cons

• The ranking list generated by SNets did not include 90% percent of the total genes.
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Figure 2.15: Processing steps of SNet.

Uses

• SNets built sub-gene networks based on similarities between genes.
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2.13.8 Finding consistent disease sub-networks using PFSNet

Kevin and colleagues [304] developed PFSNet, which processes raw gene expression values and

generates PFSNet scores. PFSNet, unlike the SNet approach, is an extension that circumvents

the limitations of the SNet approach. Two thresholds and a fuzzy membership function are ap-

plied to the gene expression value to generate new modified expression values. The processing

steps of PFSNet are as follows.

1. The gene expression values for each patient are ranked in ascending order.

2. To generate modified gene expression values, PFSNet considers two thresholds, namely

θ1 and θ1. Gene expression values above θ1 are considered 1, and gene expression values

below θ2 are considered 0. For gene expression values between θ1 and θ2, the following

fuzzy membership function is applied to convert them to a value between 0 and 1.

fs(x) =



0, x ≤ a

x−a
b−a

, a < x ≤ b

1, x = b

c−x
c−b

, b < x ≤ c

(2.12)

where fs(x) is the fuzzy value for gene expression, and a,b,c are the minimum, mean and

maximum gene expression values in the datasets, as shown in Figure 2.17.

Figure 2.16 shows the processing steps of PFSNet. The figure shows that gene expression

values above θ1 are converted to 1 and gene expression values below θ2 are converted to 0.

Gene expression values between θ1 and θ2 are converted to a value between 0 and 1 as shown

in Figure 2.17.

2.13.8.1 Pros, cons and uses of PSNets

Pros

• PSNets is an updated version of SNets. PSNets converted raw gene expression values to

zero and one using a fuzzy function.
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• PSNets included a relatively small number of genes, each of which had a value of one,

which enabled identification of highly expressed genes.

Cons

• The ranking list generated by SNets did not include a large section of genes.

Uses

• PSNets built sub-gene networks based on similarities between genes.

Figure 2.16: Fuzzification of gene expression values to between 0 and 1.
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Figure 2.17: Triangular fuzzy values conversion.
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2.13.9 qPSP: Quantitative proteomics signature profiling

Wilson and colleagues [305] proposed quantitative proteomic signature profiling (qPSP) that

converts gene profiling data into fuzzy values. The steps of this method are as follows.

1. The gene expression values for each patient are ranked in ascending order based on the

profiling values.

2. qPSP sets two thresholds, alpha1 and alpha2 and selects the 10% best genes considering

the threshold alpha1. Gene expression values above alpha1 are considered as 1. qPSP

then selects the next 10% of genes using the threshold alpha2.

3. qPSP determines the rank weight for the top 10-20% genes using four different ranges.

For 10-12.5%, the weight is 0.80; for 12%-15%, 0.60; for 15%-17.5%, 0.40; and for

17.5% to 20%, 0.20. All other proteins outside alpha2 receive a weight of 0. All proteins

above alpha1 receive a weight of 1 (Figure 2.18).

Figure 2.18: Fuzzification of raw gene expression values using qPSP.

2.13.9.1 Pros, cons and uses of qPSP

Pros
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• qPSP produced modified gene expression scores of range between zero and one using a

fuzzy function.

Cons

• qPSP did not use measure any variation in gene expression values.

Uses

• qPSP used to identify gene clusters.
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2.13.10 Eigfusion: Outlier cancer gene detection with potential rearrangements

Alshalalfa and colleagues [306] proposed EigFusion, which rearranges genes by deletion, fu-

sion, and overrepresentation to identify outlier genes from raw gene expression values. Eigfu-

sion evaluates outlier genes based on the generated modified gene expression values. The steps

performed by Eigfusion are as follows.

1. The raw gene expression values for the cancer samples are normalized by measuring the

median values.

2. The cancer samples are divided into two groups according to the median values, where

values that are greater than the median are group one and values that are less than the

median value are group two. From these two groups, Eigfusion measures two median

(one median from each group) values and measures the average median value of these

two medians.

3. The modified gene expression scores were measured using the following equation.

X̂ij =
Xij − AV Gmedian

median(|Xij −mediani|)
(2.13)

Here X̂ij is the modified gene expression values, mediani is the median value of genei

for all the profiles.

Figure 2.19 shows the processing steps of Eigfusion. The first table shows the raw gene

expression values. From this data, Eigfusion measures the median value. Then the samples are

divided into two groups: gene expression values that are greater than the median value and gene

expression values that are less than the median value. Finally, the modified scores are generated

from the average median value.
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Figure 2.19: Processing steps of Eigfusion to detect outlier genes.

2.13.10.1 Pros, cons and uses of Eigfusion

Pros

• Eigfusion is a way to find genes that are over-expressed or under-expressed. It did this by

measuring the median values of raw gene expressions.

Cons

• There is a possibility to missing out group of genes as they focused one group at a time.

Uses

• Eigfusion used to recognise gene clusters.
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2.14 Explainable AI for gene expression data analysis

Existing artificial intelligence (AI) approaches for DNA sequencing, gene expression analysis,

drug prediction, personalised medicine, and next-generation sequencing allow users to observe

processed results with greater accuracy. However, the internal data processing of these AI

approaches is too complicated to be understood by humans without prior technical knowledge.

Artificial algorithms are well suited to perform this task. However, many AI algorithms are

often so complex that they are a black box, offering users few clues about internal data pro-

cessing. Explainable AI (XAI) provides alternative analyses that are more understandable and

technically equivalent to complex black-box AI approaches. In most cases, XAI and IML make

it clear how features are linked together to produce the final predictions and analyses. The aim

of this review is to examine the current XAI approaches in the areas of disease prediction, health

systems, and gene expression analysis. In addition, a taxonomy of XAI is also discussed in this

review.

2.14.1 Introduction

“Omics” datasets, such as genomics, proteomics, and metabolomics generate large-scale gene

expressions that allow researchers to gain insights for cancer treatment planning. However, gene

expression are not immediately comprehensible to humans. While experts are able to accurately

identify images of fruits, they are unable to recognise genome sequences in general-at least

not without the help of advanced computational models. AI approaches are used to extract

features for insights with small assumptions and lots of processing capacity. Due to their higher

processing capacities, AI approaches are often used in genomic data processing. In addition,

AI algorithms are widely used in genomic data mining, medical imaging, and disease predic-

tion [307, 308]. AI is helping to enhance our perception of complex relationships in underlying

gene expressions, personalised medicine, treatment planning, and drug development [309].

Despite all their strengths and capabilities, many AI approaches present a number of chal-

lenges, particularly in the biomedical context, most notably, in terms of explainability, in-

terpretability, and trustworthiness. Deep neural networks, for example, consist of layers of

interconnected variables that are adapted by training the network on multiple instances [310].

As neural networks become more complex, it becomes more difficult to understand how number
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of parameters interact to make decisions. Even when AI developers have access to these pa-

rameters, the neural network’s decisions cannot be accurately deconstructed [311]. Inputs may

go through a series of iterative nonlinearities involving thousands of features before a decision

is made. How can even the most accurate black-box approaches improve user understanding of

biomedical data processing? How can users trust what they do not understand?

Explainable AI works between AI and humans to interpret the predictions of black-box

AI approaches [312, 313]. Suppose x is a gene set in a person who has cancer. Predictions

provide knowledge about what this gene set, x, represents. Explainability offers understanding

as to why this collection of gene set, x, exists. Explainability thus brings value to making

trustworthy and understandable decisions. The European Union’s latest General Data Protec-

tion Regulation (GDPR) emphasises the importance of citizens understanding how AI systems

make decisions [314]. Additionally, the Australian Federal Government has established eight

ethical criteria for artificial intelligence, including those relating to explainability and trans-

parency [315].

2.14.2 Explainable artificial intelligence and terminologies

Explainable AI refers to a set of approaches that operate between AI algorithms and users

to increase the trustworthiness of the results produced by AI algorithms [316, 317]. The

term explainable was used to focus on human understanding of the decisions of current AI

approaches, the main interest being the human psychology of explaining. For more clarity, there

are similar terms such as explainability that can help to reconcile the ideas with explainable

AI [317–320].

• Understandability: A model’s understandability refers to its ability to perform its pur-

pose without requiring an explanation of the model’s underlying structure or computa-

tions [319].

• Comprehensibility: Comprehensibility is the ability of a model to determine whether

users understand the message conveyed by the model. Since this concept is difficult to

quantify, the assessment of a model’s complexity is related to its comprehensibility [321–

323].

• Interpretability: The ability of a model to determine the extent to which a cause and
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effect may be detected in a system is referred to as interpretability (also known as inter-

pretability index). In other words, it refers to the ability to forecast what will happen if

the input or computational parameters are altered [318].

• Explainability: This term describes how well the internal decision-making mechanisms

of an AI approach can be explained to humans in terms of understandability [318].

Explainability is a way to describe how a method gets to a result by doing a step-by-

step calculation of given parameters without making any assumptions.

• Transparency: Transparency is the ability of a model to determine whether a model is ex-

plainable and whether the message conveyed by that model is interpretable to users [324].

2.14.3 Objectives of explainable artificial intelligence

There are many reasons to pursue AI explainability as follows:

• Trustworthiness: Trustworthiness refers to the confidence in or reliability of a decision

made by an AI. Because of their simple and understandable analysis, XAI approaches

strive for trustworthiness. Although trustworthiness should be a component of any ex-

plainable model, this does not imply that every trustable model is explainable [325].

• Causality: Causality refers to cause and effect and helps to understand the actions of

an approach and the consequences of those actions within the data being studied. Prior

knowledge is required to prove that observable effects are causal. An XAI approach can

reflect causality by showing how an outcome is produced in terms of input data and their

associations [326, 327].

• Transferability: Transferability is the ability to transfer qualitative data into meaningful

associations [328].

• Confidence: Confidence is related to the reliability of a model. If the model produces

understandable outcomes, it is reliable. An XAI model leads to a decision by showing

how a decision was made, which increases user confidence [329, 330].

• Informativeness: The purpose of using machine learning models is to facilitate accurate

decision making from a large volume of data. An XAI approach provides a list of
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features or variables in its decision-making process that provides users with a wealth

of information about the data and processes [320].

• Fairness: Explainable AI approaches provide rationales for their decision-making pro-

cess in relation to given inputs, ensuring the intelligibility of decisions and outcomes [331–

334].

• Accessibility: It is easier for users to work with models when they understand them

better. In explainable AI approaches, the decision-making processes are transparent to

users, which can increase the accessibility of models [335].

2.14.4 Importance of explainable artificial intelligence

For legal, ethical, and security reasons, the requirement to declare the outcome of ML is critical

when AI algorithms are used in healthcare, credit scoring, lending, and more [336]. Although

there are many reasons why XAI is essential, the analysis shows that there are three concerns:

(1) reliability, (2) clarity, and (3) trustworthiness of AI algorithms. XAI methods improve

all three of the above concerns because some of the internal processes of ML use extremely

complex algorithms with thousands of factors. XAI improves the understandability and fairness

of judgments by creating humane reasoning and, when used correctly, can identify and eliminate

prejudicial cases.

XAI improves the intelligibility and fairness of judgments by creating reasonable, humane

reasoning and, when properly applied, can identify and eliminate prejudicial cases. The ac-

curacy of predictions and the prevention of adverse cases is critical to clarity. An adverse

case could prevent a classifier from making appropriate decisions if the classifier believes that

an incorrect image is true. As autonomous methods become increasingly necessary to assist

people in their daily lives, the quality of AI algorithms should be given the highest priority with

respect to model interpretation. The reliability of deep learning methods is important to end

users because it is a measure of confidence that a developed model will work in dynamic reality.

Decisions and judgments depend largely on the knowledge and explanations of circumstances

that people have access to and trust. Scientific or rational justifications for suboptimal decisions

are preferable to very safe decisions for which there is no explanation. When it comes to

building trust with end users, including professionals, developers, and scientists, it is critical to
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be able to answer why a specific decision was made.

On top of that, it is essential to build reliability on the path towards an AI-based socio-

economic sector, and this is something that stakeholders and government agencies need to focus

on. Bias in neural networks refers to the excessive weighting, bias, preference, or tendency of

the learned model over subsets of the data caused by intrinsic biases in data collection and errors

in the classification model. XAI improves fairness and helps mitigate biases caused by input

data sets or an inadequate neural network design in AI decision making. Using XAI approaches

to learn the model behaviour for different distributions of the input data could help us better

understand the biases and skewness in the data. This could lead to a strong AI model.

2.14.5 Taxonomy of XAI methods

Taxonomies of XAI have been constructed to classify explainable mechanisms, but there is no

generic taxonomy for XAI approaches. XAI methods have been classified into overlapping and

non-overlapping classes. The taxonomy of XAI methods is shown in Figure 2.20.

• Local Method: Local interpretable methods are designed to explain the results of a

prediction by focusing on a particular event and attempting to determine how the model

arrived at its prediction. This can be achieved by approximating the relevant features

in a black box system to use an interpretable model [337–339]. The prediction may

simply depend linearly or monotonically on certain characteristics rather than having a

complicated relationship. For example, the value of a house may not be proportional

to its size. However, if we consider only a 200 square foot house, the prediction of

the XAI model for this data may be linearly proportional to its size. To test this, it is

possible to simulate how the expected price changes when the size increases or decreases

by 30 square feet. As a result, local explanations may be more appropriate than global

explanations.

• Global method: The models that consider the entire analysis of data processing to arrive

at a decision are called global models [340–342]. The application of global models is an

attempt to describe the nature of the model. By evaluating the importance of features, it

is possible to determine which features are responsible for increasing the performance of

a proposed model.



80 Systematic literature reviews

• Model-specific. Model-specific interpretations were developed from the parameters of

specific models [337, 343]. Gradient-class activation mapping (Grad- CAM) allows

the visualization of features, e.g., in convolutional neural networks (CNNs), but this

method does not function with long short-term memory (LSTM). A model architecture

is frequently used in model-specific techniques, such as feature maps, created by graph

convolution. They are determined by the type and functionality of the particular model,

such as tree interpreters. Graph neural networks explainer (GNNExplainer) is a unique

feature of model-specific interpretability when complex metadata requires GNNs.

• Model Agnostic: Model agnostic methods are explanatory approaches that clarify how

a model reaches its decisions [344, 345]. These methods, typically employed in post

hoc analysis, can be applied to any model without relying on its internal details such as

weights or structure. Consequently, every machine learning model can benefit from these

methods for enhanced clarity. A typical way these methods function is by modifying

inputs and observing the resulting changes in output. This provides insight into the inputs

that have the most and least impact on the output. A notable example of such a method is

LIME (Local Interpretable Model-agnostic Explanations).

• Data modality-specific: The term data modality refers to variables that are exclusively

applicable to a particular type of information [346]. For instance, some approaches

work exclusively with magnetic resonance imaging, while others work exclusively with

tabulated clinical data. Grad- CAM applies only to images and not to other types of data

such as text or tabular data. [347]. Model-specific explanatory methods are often used

in conjunction with data-modality-specific explanatory methods. For instance, convolu-

tional feature maps can be used to calculate what information a model needs to make a

prediction in some explanatory procedures.

• Data modality agnostic: The approaches that are able to explain any data type are called

modality agnostic. A good example is LIME, which can explain images, tabular data,

and text [338]. These systems can handle a wide variety of data, making them valuable

for clinical use. Perturbation-based methods are commonly used to extend the current

approach to explaining models.

• Post hoc: Post hoc interpretability refers to an explanatory method used after a model

has been trained. In particular, there are post hoc approaches that can be used for models



2.14. EXPLAINABLE AI FOR GENE EXPRESSION DATA ANALYSIS 81

that are inherently interpretable, since post hoc methods are often detached from the

primary model [322]. Adding interpretability to the current approach through post hoc

explanatory methods means an increase in understandability and confidence. Since they

are model-independent, most post hoc XAI algorithms can be used in any network design.

For instance, a neural network result that has already been trained and tested can be

communicated without affecting the validity of the model.

• Surrogate methods: A specific example of supervised machine learning used in active

learning to expand training datasets as training progresses, increasing training accuracy

and effectiveness [348]. To evaluate alternative black-box models, surrogate techniques

use an ensemble of different models. The decisions of the surrogate model can be better

understood when compared to the decisions of the black box model. An example of the

use of surrogate methods is the decision tree.

• Visualization methods: By using visual approaches, such as activation maps, some

elements of the models can be easily understood. For example, patterns, lost information,

and outliers can be discovered in a large data set [349]. Once all related information are

available, data visualizations can be used to explain and display significant relationships

in charts and graphs in a way which is more intuitive.
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Figure 2.20: Taxonomy of the explainable artificial intelligence approaches.



82 Systematic literature reviews

2.14.6 Aims and research questions

The aim of this literature review is to describe the impact and importance of interpretable and

explainable methods in health systems, gene expression analysis and clinical decision support

systems. To achieve the goal, this thesis follow the following requirements.

Requirement 1 (R1): This thesis focuses to understand the impact of XAI methods in

explaining different methods for predicting diseases (cancer or acute diseases) in health sys-

tems. The main focus here is on how Explainable AI (XAI) methods assist in interpreting the

diagnoses of different diseases, notably cancer. In addition, this thesis focuses on how XAI

methods can explain the analysis of patient clusters.

Requirement 2 (R2): This thesis focuses to understand how XAI methods create an

understandable environment for clinical support systems. Here, XAI explains the properties

of disease predictors for analysing the impact of clinical support systems.

Requirement 3 (R3): This thesis is centered around demonstrating how Explainable AI

(XAI) methods can examine gene expression data to support disease prediction. Here, XAI

methods mainly work to clarify the often complex and not easily understood outcomes from

black box and graph-based disease forecasts.

This thesis propose the following research questions to understand the analysis of gene

expression data in terms of explainability, interpretability, and causality in XAI:

Ref review research questions
RRQ2.1. How can XAI help understand the importance of traits in predicting disease?
RRQ2.2. How can XAI explain black-box models and graph-based prediction results?

RRQ2.3.
How can XAI help understand biology when a predictive model makes a decision when analyzing
gene expression data?

RRQ2.4. How can XAI visualize model results so users can better understand them?

2.15 Literature search

It was necessary to search through academic databases to identify related research publications.

Several well-known academic databases, namely Scopus, IEEE Xplore, ACM digital library,

and Web of Science (WoS), were used to find relevant research papers, all of which are well

known in the field of computer science. A wide range of AI and machine learning topics are
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covered by these databases. They have a user-friendly interface and have few access restrictions.

Our search query for scholarly publications on explainability, interpretability, and causality in

artificial intelligence, health systems, and genetic information included the following words:

explainability, interpretability, and causality.

(AI or ML) (healthcare systems or genetic information) (XAI or explan* or inter*). From

the databases, this thesis obtained publication titles, abstracts, keywords and year of publication

using this query. During the initial search, the following records were discovered: WoS,

IEEE Xplore, and Scopus.? Duplicate records are removed as well as records with blank or

incomplete information. Finally, this thesis reduced search to three databases: IEEE Xplore,

Scopus, and WoS. Figure 2.21 shows the PRISMA flowchart of our strategy.
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Figure 2.21: Steps to identify articles or research papers related to explainable artificial
intelligence using the PRISMA model.

2.15.1 Keyword search

In this SLR, this thesis aim to gain a deeper understanding of explainability, interpretability,

and how current methods can help in this endeavour. To gain this insight, this thesis first looked

at the terms used in the research publications in response to our search query. Using the search

results from the IEEE, Scopus and WoS databases, this thesis identified the keywords in the
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titles, abstracts and main texts of the retrieved articles. Several keywords, including explainable

AI, interpretation, and causality, were used to further narrow the results.

Figure 2.22 shows keywords found in literature for both XAI approaches, XAI applications

and AI approaches. The arrow in the figure indicate keyword are related to an XAI approaches

or XAI applicaiton or AI approches. Most of the keywords were from XAI-based research, and

most had been recently published. This thesis also included terms from a variety of disciplines,

such as health systems, gene expression, cancer prediction, deep learning, and other related

topics. This thesis selected the research publications that primarily deal with XAI algorithms

and their applications.

Figure 2.22: Keywords included in literature of XAI approaches, application and AI
approaches.

2.15.2 Explainable artificial intelligence approaches

Several studies which examine the implications of explainable AI approaches in medical and bi-

ological data processing have been published. This thesis will now describe the XAI approaches

from the literature that have been used to explain the results of the black-box model.
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2.15.2.1 Local interpretable model-agnostic explanations (LIME)

LIME explains the predicted outcomes of a black-box model. First, a black-box model predicts

an outcome, and then LIME explains how the black-box model arrived at a decision.

LIME is a local explainer that analyzes the responsible aspects of the input data [350].

LIME explains the predictive process of each classifier and establishes the relationship between

the features that influence the process.

The word local refers only to those features that are strongly associated with a particular

prediction. For example, in an input dataset, there are 1000 features, but only 8 features are

closely related to the results predicted by the classifier. LIME explains these 8 features, which

is why it is called a local explainer.

Working principles of LIME

• First, LIME permutes all input data with a normal distribution and generates a new set of

features.

• These new data sets (features) are used by interpretable models (linear regression, logistic

regressions, XBoost, decision trees, naive Bayes, K-NN).

• Then, the deviation between the transformed features and the original features is mea-

sured.

• Finally, the best features are selected by measuring the important scores of the features or

using techniques such as Lasso [351].

LIME identifies the properties which are most strongly associated with a prediction when

an approach makes a judgement. LIME provides a trustworthy explanation using the following

formula (Equation 2.14).

Let P denote the space of features and p denote the instance of features in the dataset.

Explainer (e) and black-box model (b) are two important components of LIME. To explain the

process locally, LIME uses an interpretable function defined as follows.

exp(p) = argmineϵEθ(b, e, λp) + Ω(e) (2.14)
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From the above equation, it is seen that LIME measures over a feature p to show how it

comes to a decision for the feature where

b is a black box model, e is an interpretable model, λp is a distance between the permuted

features and the original feature, θ(b, e, λp) is a loss function, Ω measures the complexity of the

interpretable model. Since not every model is guaranteed to be interpretable, if the value of Ω

is high, the interpretable model is hard to understand.

Limitations

• LIME works better for small datasets and linear models. When datasets become large,

LIME suffers from higher feature extraction complexity.

• LIME is also not suitable for non-linear models.

2.15.2.2 Sub-modular pick local interpretable model-agonistic explanation (SP-LIME)

Although LIME gives the user some insight into the reliability of the classifier, it is not suf-

ficient to analyze and evaluate the overall trustworthiness. By explaining a group of specific

instances (SP-LIME) [352], a global understanding of the model is provided. This method is

also model independent, but explains the results in a coherent way. SP-LIME calculates the

overall importance of the features, C(V,W, I), using the following equation.

C (V,W, I) =
d′∑
j=1

[∃iϵV : Wij > 0] Ij (2.15)

and

Pick(W, I) = argmax
v,|V |≤B

c(V,W, I) (2.16)

where B is the budget, i.e., the number of explanations the user is willing to provide, Pick(W, I)

is the task of selecting an explanation from the total budget B. W = n∗d′, W is the explanation

matrix, n is the number of samples, and d′ are the human-understandable features. I(j) is the

global importance of features j in the explanation space.
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2.15.2.3 SHapley additive exPlanations (SHAP)

SHAP is an interpretable machine learning (IML) approach that analyses the predicted results

of a predictor or classifier using trustworthy explanations [353, 354]. The key parameter of this

approach is the Shapely value, which represents the average marginal value of a feature where

all feasible combinations among all features are considered [355].

The following details how the Shapely value of a feature x can be calculated.

• Permute all the features entered.

• For each iteration, compute the average feature values of all features except feature x.

• Calculate the average feature values of all features, including x.

• Subtract the average feature value without x from the average feature value with x.

• The resulting value is the Shapley value of feature x.

To illustrate a situation where calculating the Shapley value is useful, assume there is a

game consisting of n players who collectively receive a reward p that is to be distributed equally

among each of the n players, taking into account their individual contributions.

The mechanism of SHAP is as follows:

Let us assume that

N represents the total number of executions.

d represents the total number of data points.

f denotes the characteristics of the data index

D denotes the data matrix.

L denotes the black-box model.

SHAP first chooses a sample of interest s, a feature f, and the number of iterations N .

For each iteration, a random sample s is chosen from the data. Then, the feature order, ω(0),

is defined as follows: ω0 = (ω1, ...., ωf , ...., ωp), then order the sample s, defined as: s0 =

(s1, ...., sf , ...., ss).

Construct two new instances: i. With features f: ω+f = (ω1, ...., ωf−1, ωf , sf+1...., ss). ii.

Without features f: ω−f = (ω1, ...., ωf−1, ωf , ωf+1...., ss).
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Calculate the marginal contribution (Equation 2.17):

φn
f = f̂(d+f )− f̂(ω−f ) (2.17)

Calculate the Shapley value as an average (Equation 2.18):

φf (ω) =
1

N

N∑
n=1

φn
f (2.18)

To obtain all Shapley values, the technique was repeated for each of the features. To extract

relevant features from a large number of features, the following equation was used to obtain the

global significance values for each feature.

Is =
n∑

i=1

φi
f (2.19)

Features were ranked in order of importance from most important to least important.

2.15.2.4 Local Interpretation-Driven Abstract Bayesian Network (LINDA-BN)

LINDA-BN is a graphical XAI approach that displays the predicted results in a graph showing

the associations between features in reaching a prediction. The LINDABN structure consists of

three main steps: i) creation of permutations ii) computation of Bayesian network iii) f feature

selections using a Markov blanket. The framework of LINDABN is illustrated in Figure 2.23.

LINDA-BN applies permutations, or rearrangements, to the input feature vector, represented

as F =

{
F1, F2, ....., Fn

}
. This rearrangement is done using a uniform distribution, with

a permutation variance ϵ that falls between 0 and 1. The permutations take place within the

range

[
Fi − ϵ, Fi + ϵ

]
. By changing the arrangements of these features, the method assesses

how different permutations influence the predictions made by the black box, also known as the

classifier.

After rearranging the input features, LINDA-BN creates a graphical Bayesian network and

makes a prediction on a class variable [356].

As depicted in Figure 2.23, once the permutations are done, the method employs the Markov
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Figure 2.23: Schematic diagram showing the application LINDA-BN.

blanket and the Hill-climbing algorithm to make inferences and pinpoint the features responsi-

ble for a particular prediction. Here’s how the graphical Bayesian network operates:

Suppose G represents a BN graph encompassing features F1, F2, ...., Fn. The probability P

across a sample for graph G is described by the formula below [357]:

P (F1, F2, ..., Fn) =
n∏

i=1

P (Fi|SFi
) (2.20)

In this equation, SFi
symbolizes the variables for all samples pertaining to the features Fi. The

Bayesian network integrates all variables and makes use of the comprehensive joint probability

theory for deduction. For specific events referred to as E and a recognized variable v, the

inference of the Bayesian network can be computed through the following equation (equa-

tion 2.21) [357].

P (E|V = v) = αP (E, v) = α
∑
wεW

P (E, v, w), with α =
1∑

eεE P (e, v)
(2.21)
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In this equation, W stands for the set of random variables that aren’t part of either the events or

the evidence.

This Bayesian network can express conditional dependence through a graph, G, along with a

set of conditional probability parameters symbolized as π. Taking into consideration a dataset d

comprised of n observations, the equation P (G, π|d) involves a two-phase process: the learning

of the structure and the understanding of the parameters. Each of these stages is explored further

in Equation 2.22 [358].

P (G, π|d) = p(G|d).P (ϕ|G, d) (2.22)

In this equation, p(G|d) signifies the process of structure learning, while P (ϕ|G, d) denotes

parameter learning. The objective of structure learning is to discover the directed acyclic graph

(DAG), represented by G, with the goal of maximizing P (G|d). On the other hand, parameter

learning is concerned with the probability parameter, π, that comes out of the structure learn-

ing. If the parameter π is distributed independently, the learning process can be described as

follows [359, 360].

P (ϕ|G, d) =
∏
i

P (ϕFi
|
∏

Fi, d) (2.23)

However, the structure learning problem is described by the following equation:

P (G|d) ∝ P (G)P (d|G) (2.24)

P (d|G) can be decomposed into:

P (d|G) =

∫
P (d|G, ϕ)P (ϕ|G)dϕ

∏
i

∫
P (Fi|

∏
Fi, ϕFi

)P (ϕFi
|
∏

Fi)dϕFi
(2.25)

Maximum score in structure learning is determined by the Bayesian Information Criterion

(BIC). This can be articulated through the equation 2.26.

SCore(G, d) = BIC(G, ϕ|d) =
∑
i

logP (Fi|
∏

Fi, ϕFi
)− log(n)

2
|Fi| (2.26)

In this equation, the sum of the log probabilities of Fi, given the product of Fi and ϕFi
, is

reduced by half the log of n times the absolute value of Fi. This formula gives us the BIC score,
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which helps us find the best structure for learning.

Figure 2.24: Feature selection on LINDA-BN for (a) conditionally independent and (b)
conditionally dependent.

The reasoning for the Markov blanket is shown in Figure 2.24.

For example, in the prediction of a class label, F1, F2, ......, Fn are independent, which

means that knowing F1 does not provide any further information for a judgment or prediction

(Figure 2.24a). Figure 2.24b, on the other hand, shows the principle of linear regression, which

states that the features (F1, F2, ......, Fn) are conditionally independent of class only when the

class variable is known. These features have a direct impact on the decision process for a

target variable. A reliable interpretation of how a decision is made ensures that the user’s entire

reasoning is understood.

The relationship between the target variable (class variable) and the features can be inferred

by abductive reasoning, i.e. human inference based on previously collected data [361]. When it

comes to graphical structure, a user uses abductive reasoning to provide a reliable explanation.

Abductive reasoning helps fit the Markov ceiling [362]), a strategy for selecting features for a

given class. The union of conditionally independent features or variables of a target variable,

such as parent, child, and co-parent (parent of a child), is called a Markov ceiling. Four

conditions (high confidence, unreliable prediction, contrast effects, and uncertain prediction)

determine which characteristics of LINDA-BN are used for a given target variable.

2.15.2.5 Algorithmic population descriptions

A Bayesian directed acyclic graph (DAG) is constructed to generate algorithmic population

descriptors of given inputs (ALPODS) [363]. The decision network is constructed in a recursive
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manner as follows: first, a variable for the DAG’s current node O is selected. The Simpson index

is used to evaluate conditional dependencies in the selection of a variable (S). The estimated

joint probability that sample components correspond to a similar or separate category is denoted

by S. The S is a biologically inspired term that refers to predicted heterozygosity in population

genetics or the probability of an interspecific encounter.

Second, the edges of DAGs are generated and linked with conditional dependencies to child

nodes. Third, the generation of DAGs for all downstream nodes is stopped when the criterion is

fully satisfied. ALPODS select a pair of data (X ,Y ) and calculate the probability differences for

the pairs. For each pair of variables (X ,Y ), the probability differences of a class C are defined

as follows:

prob Diff(X, Y,C) = P (X, Y |C)− P (X, Y |notC) (2.27)

2.15.2.6 Partial dependency plot

Partial dependence plots are graphical representations that illustrate the relationship between

certain input features and the predicted outcomes - these are often used in linear regression

models [364, 365]. By calculating the partial dependence of the given input, it’s possible to

understand how a specific feature relates to a prediction. A partial dependence plot (PDP) lets

us explore how alterations in the inputs influence the prediction outcomes of a complex model.

The partial dependence on an input feature at a specific point in time can be measured using

the following formula:

pdpf (v) =
1

N

N∑
i

pred (xi) (2.28)

Here, pred is the function that generates a probability of an outcome from an input row, and

f represents the feature used to create the partial dependence representation. For each input row

xi, the formula computes an average result over all input rows, altering the value of the feature

f to the input value v, while keeping the original input data unchanged. This way, it becomes

possible to observe how the feature f influences the predicted probabilities.
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2.15.2.7 DeepLIFT

Deep learning important features (DeepLIFT) is another explainable approach that assigns rel-

evance values to input variables, similar to pixel-wise decomposition [358]. The basic premise

of DeepLIFT is that it detects important aspects by comparing them to a reference state, de-

termined based on the challenges. The reference input state is a neutral input with no special

features. It can be set as the reference input activation value for each neuron in the network.

The output of the network is calculated based on the reference input.

DeepLIFT tries to explain the difference between an output and a reference output by

comparing an input with a reference input. Evaluation the changes in the activations of neurons

in each intermediate layer with their reference state (i.e.,∆xi) when the output of a neuron for

a given input ∆t is different from its reference output.

n∑
i=1

C∆x∆t = ∆t (2.29)

where C is the contribution scores.

2.15.2.8 Skater

Skater is a model-independent framework that allows model interpretation for all kinds of

models so that one can develop an interpretable machine learning system for real-world use

cases [366] . It is a free, open-source Python module that aims to clearly explain the learned

structures of a black-box model both globally (based on an entire dataset) and locally (based on

a single dataset).

Skater is a branch of LIME but has since evolved into a stand-alone framework with a variety

of features and capabilities that enable the model-independent interpretation of any black-box

model. Skater was developed as part of a research initiative to find ways to improve the human

interpretability of predictive black boxes for both researchers and end users.

SKATER (Spatial ‘K’luster Analysis by Tree Edge Removal) is an algorithm [367]. Spe-

cially, Skater is a Python library designed for interpretating and explaining machine learning

models. While it shares its name with the spatial clustering algorithm, it is not directly related

to that algorithm. The Skater library provides a comprehensive set of tools to interpret and
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Figure 2.25: Skater Interpretive Overview.

explain the predictions of complex machine learning models. With Skater, it is possible to ex-

plore global feature importance, partial dependence plots, and local instance-level explanations.

Skater has the following key features.

Global feature importance: Skater helps to assess the importance of each feature in a model

by ranking them based on their contribution to the model’s predictions.

Partial dependence plots: these plots visualize the relationship between a feature and the

model’s predictions. They help to understand how a specific feature affects the model’s output

while accounting for the average effect of all other features.

Local explanations: Skater also enables the generation of local explanations for individual

predictions. Techniques such as LIME (Local Interpretable Model-Agnostic Explanations) and

SHAP (SHapley Additive exPlanations) can be used to understand the reasoning behind specific

predictions and provide insight into the model’s behavior for individual instances.

In the context of spatial analysis, the terms “an entire dataset” and “a single dataset” can

be used to describe different scopes of analysis. However, the distinction between“global”

and“local” approaches is more relevant here.

Global approaches: these methods focus on the entire dataset, analyzing and identifying

patterns or relationships in the data as a whole. Global methods can help uncover general

trends, structures, or features that are present throughout the entire dataset.
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Local approaches: in contrast, local methods focus on smaller subsets or specific areas

within the dataset. These techniques allow us to identify and analyze local patterns or variations

that may be unique to certain regions or neighborhoods within the data.

In conclusion, global approaches address overall patterns or trends throughout the dataset,

while local approaches focus on smaller areas or subsets within the dataset to identify localized

patterns or relationships.

2.15.2.9 Class activation mapping

Class activation mMapping (CAM) is a widely used approach [344] to explain predictive out-

comes in a trustworthy way. The CNN features responsible for image categorization decisions

can be obtained using CAM. CAM uses a global average pooling layer after the convolutional

layers and before the last fully concatenated layer.

Let fk(x, y) be the activation unit with weight wk
c for each unit k. Then the input of the

softmax layer for the corresponding class C is defined as follows:

Sc =
∑
x,y

∑
k

wk
c fk(x, y) (2.30)

The activation map Mc is computed for class c:

Mc(x, y) =
∑
k

wk
c fk(x, y) (2.31)

Mc(x, y) shows the role of activation at the spatial point (x,y) in classifying its class c.

2.15.2.10 Layer-wise relevance propagation

Layer-wise relevance propagation (LRP) is another visual explanation technique [368]. LRP

uses a decomposition technique that generates relevance values between the activation xi of

neuron i and its input. LRP generates the relevance values Rl
i of layer l with respect to layer

l + 1 as follows:

Rl(i) =
∑
j

x(i)w(i, j)∑
i x(i)w(i, j)

Rl+1(j) (2.32)

where w(i, j) is the weight between neuron i and neuron j.
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2.16 Interpretable and explainable methods in medical data analysis

Interpretable and explainable AI approaches increase trustworthiness by explaining the analyti-

cal decisions of AI approaches and explaining to the user how certain decisions were arrived at

from given inputs [369, 370]. The differences between traditional AI and XAI approaches are

illustrated in Figure 2.26. From the figure, it can be seen that XAI decisions are understandable

to the user as it explains in detail how the decisions are made based on given input data.

Traditional methods, on the other hand, only provide the results but no explanations, so the

user cannot understand the decisions. This section is divided into two subsections.

This section is split in two parts. The first part talks about how XAI methods can predict

diseases. The second part talks about how to explain data from genomics.

Figure 2.26: A framework showing how XAI adds value for users or clinicians.

2.16.1 Cancer Disease Prediction and Survival Analysis

Recently, XAI applications have been used to improve the understanding and confidence in the

classification of various cancers such as breast cancer, colon cancer, etc. Table 2.12 details the

studies on current XAI approaches to health care, preventive medicine, and disease prediction.

Chakraborty et al. investigated the data-driven relationship between features and the tumour

environment in breast cancer [371]. The authors developed a data-driven XAI model using

XBoost and SHAP to increase the explainability of breast cancer patient survival using RNA-

seq data. They used local SHAP analysis to identify the inflection points for the tumour
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microenvironment (TME). They applied SHAP to interpret the XBoost results and explain the

relationships between TME cell characteristics and cancer patients surviving more than five

years. The authors found that T and B cells were the leading elements for TME factors in

cancer patients surviving five years. XAI suggests that the number of T and B cells is the most

influential factor in increasing survival rates in breast cancer patients.

Arturo et al. used breast cancer data to examine which patient features are important for

patient survival [372]. The authors used publicly available data from the Netherlands Cancer

Registry (NCR), where patients’ tumour and treatment data are available. They used Cox

proportional hazards (CPH) and various machine learning methods to estimate breast cancer

survival.

CPH [373] is a semiparametric technique that calculates the influence of patient features on

the probability of a recurrent event. It has been used to predict survival in breast cancer patients

and to categorize them based on risk scores. Three machine learning techniques were also

used, including Support Vector Machines, Gradient Boosting Machines, and XBoost. These

methods were applied to further analyze and predict patient outcomes. The authors used SHAP

to understand how these models perform their prediction. SHAP computes the shapely values

for nine patient characteristics (i.e., age, tumour size, ratio of positive to removed lymph nodes,

etc.) for CPH and ML classifiers. SHAP interprets the impact of these nine characteristics to

predict cancer survival. Higher SHAP values of the patient indicate a higher risk than patients

whose SHAP value is lower.

Another study conducted with NCR data using used several ML methods: random forest,

extreme gradient boosting (XGB), k-nearest neighbours (K-NN), neural networks, naive Bayes,

and logistic regression to investigate breast cancer patient survival [374]. The authors used 10-

fold cross-validation to optimise the parameters of the ML models. LIME and SHAP explain

the model results in this paper, LIME and SHAP showed more than 98% and 74% consistency

in explaining patient characteristics, respectively. Both LIME and SHAP show that patients

between the ages of 65 and 68 have difficulty surviving after the onset of breast cancer.

Bichindaritz et al. present a transparent, optimal, case-based breast cancer survival frame-

work that predicts new cases to determine survival rates [375]. In this framework, they used

gene expression, DNA methylation, and a combination of both data sets. The authors con-

tributed to four topics: the optimal number of retrieved cases, elaboration of cases at multiple
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levels, adaptation of new cases, and explainability. To find the optimal case, the authors used

case-based reasoning with confidence (CBR-CONF) to determine the similarity for each test

case. High-order clustering was utilized in the multistage case processing to find the similarity

features using DNA methylation data. In a new case, the authors used a confidence matrix using

Euclidean distance to predict the survival of each test sample. Finally, to increase explanatory

power, multivariate Cox regression was used for feature selection. To find features for patients,

the authors proposed a prognostic score for DNA methylation and gene expression.

Amoroso et al. [376] proposed an XAI framework with adaptive dimension reduction (ADR)

to analyse breast cancer prediction results. Adaptive dimension reduction is an iterative ap-

proach that uses principal component analysis (PCA) and K-NN. These dimension reduction

methods reduce the dimension into two appropriate dimensions for XAI transparency and em-

bed the clinical features for XAI justification. ADR calculated the distance between molecular

subtypes and created a hierarchical clustering. This clustering showed how important the

molecular subtypes were to the characteristics. They evaluated the efficacy of current therapies

and the selected new therapeutic guidelines for cancer patients. For this experiment, the authors

used 267 breast cancers patients and ADR helps to explain the selection of important features.

Pellegrini et al. examined breast cancer survival after surgery [377]. It is important to choose

the right adjuvant therapy after breast tumour surgery to prevent tumour recurrence. In this

study, the author focused on guidelines for adjuvant therapy and applied a new machine learning

approach named coherent voting networks (CVN), which is suitable for nonlinear problem

solving. The CVN model is used for predicting the survival of breast cancer patients who

get extra treatment after surgery. This model is effective to predict whether patients will survive

more or less than five years after surgery. CVN is useful for personalising treatment therapy

with respect to a patient’s molecular prognosis. This method validates clinical outcomes and

explains how molecular functionalities affect cancer therapy. The proposed method uses gene

expression profiles from patient tumour biopsy samples and explains gene functionalities for

individual therapy selection. A knowledge diagram for cancer prediction (breast cancer) is

shown in Figure 2.28.
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Figure 2.27: An example of interpretable outcomes of XGBoost classifier using SHAP to
predict breast cancer survival.

Following the clustering method for predicting diseases, SHAP is also used to visualise the

relationship between the characteristics from the data and the risk factors for corresponding

diseases. SHAP is used to visualise the nonlinear interaction in predicting cancer survival

posterior [378].

In a work by Li et al. a gradient-boosted tree model and SHAP values were used for model

prediction. They used the national cancer database from America and considered the following

characteristics such as age, Gleason score, percentage of positive cores (PPC), and prostate

specific antigen (PSA). These characteristics have an impact on subsequent cancer risk and

survival rates. Gradient boosting can efficiently predict these risk factors. In addition, SHAP

helped visualise the nonlinear relationship between risk factors and patient survival rates. They

used nonlinear relationships instead of linear relationships because they claimed that the latter

were difficult to visualise and the results were not robust for different cut-off values. SHAP

plotted a relationship between age and risk of death (or mortality rate) using SHAP dependency

graphs. SHAP interpreted from this dependency diagram that patients over 70 years of age have

a higher risk of mortality than patients aged 50 years. The SHAP dependency graph explained

that patients have a high risk of developing cancer later in life if their PPC score is above 50%.

An AI-based software project called Dr Answer for Prostate Cancer [379] was conducted. This

tool explains the important variables for the tumour stage (T) of prostate cancer. The authors

applied the random forest method to predict the important variables. The random forest method

ranked the important variables based on characteristics with important scores. The authors
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also applied the synthetic minority oversampling technique (SMOTE) and the edited nearest

neighbour (ENN) to account for imbalanced data. For this project, authors used 7,128 patient

records after radical prostatectomy treatment.

Deep neural networks, both statistical and creative, are sometimes unable to extract features

and interpretable patterns from enormous amounts of biological data. Arianna et al. proposed

fuzzy logica with genetic algorithms to analyse the features of expression profiles in ovarian

cancer [380]. To ensure interpretability, the authors used fuzzy inference systems as a rule-based

method that uses if-then rules. These if-then rules extracted genes from gene expression values.

Then, the authors applied a genetic algorithm that made the extracted genes more interpretable

by human experts.

Figure 2.28: An example of interpretable outcomes of SHAP to predict prostate cancer
prognosis.

2.16.2 XAI approaches in patient clustering

XAI approaches were used to explain the analysis of clustered patients and interpret the cluster

results in relation to specific input data. A cluster-based explanatory approach for electronic

health records was proposed [381]. Clementino et al. developed a multilevel clustering ex-

plainer (MCE) that can provide explanatory information to medical professionals at both local

and global levels. The MCE approach is divided into three stages: preprocessing of data,

creation of an explainer for local and global perspectives, and visualization of data. In the

data preprocessing stage, the authors add patient identification numbers (ID) to their medical

records. In the next phase, local and global explainers are introduced. In the local explainers,

the authors describe the influence of clinical procedures. First, the importance scores were

calculated using the learning function to represent the clinical procedures and normalize the
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importance influence scores. After calculating the influence scores, the scores were then sorted

to rank the clinical procedures. This local procedure considers only a single cluster. From

a global perspective, the entire process is considered for the entire cluster by calculating the

average influence scores of each cluster, which represent the health data of the clustered patients

with explainable characteristics for different traits.

Schulz et al. proposed clustering techniques in the explanatory space to derive disease

subtypes [382]. The authors used two multiclass datasets: simple synthetic data for a proof-

of-concept and data from the Cancer Genome Atlas. In this work, each statement represents

how strongly and in which direction each feature contributes to prediction. PCA projected the

data and derived distinct clusters that are easy to interpret. The authors used standard clustering

quality indices (Davies-Bouldin index, Silhouette coefficient, and Calinski-Harabaz index) to

identify structural differences between clusters. Agglomerative clustering was applied to find

mutual information between subtypes clustering patients and actual outcomes.

Ultsch et al. [363] presented a new novel XAI method for disease classification based

on clusters using high-dimensional data. Their new method is called algorithmic population

descriptors (ALPODS) and is based on the Bayes decision network. ALPODS can explain

its results to human experts in a trustworthy way. First, the Bayes decision network selected

features and formed a directed acyclic graph (DAG). These features were selected based on

conditional dependence using Simpson’s index. The edges of DAG are created and assigned

based on the dependencies of the successor nodes. This process was applied recursively for all

successor nodes. They calculated the probability difference (ProbDiff) between the nodes. The

highest ProbDiff values of the nodes are plotted over the clusters. The authors claim that this

plot is easy to interpret and understand. ALPODS was applied to the iris dataset, peripheral

blood (PB) and bone marrow (BM) datasets.

2.16.3 XAI approaches on precision medicine

XAI approaches have been used to explain the predictive decisions of personalized medicine.

For example, SHAP is used in precision medicine for inflammatory bowel diseases (IBDs) using

demographic, multiatomic (genomic and transcriptomic), and medical data [383]. The authors

proposed the random forest (RF) and K-NN methods, which extracted features from genomic

and demographic data. The applied SHAP framework interpreted the prediction of the models
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in terms of the important features for drug responses. The authors selected five drugs/doses and

extracted the key features which are highly associated with drug responses from demographic,

medical, and single nucleotide polymorphism (SNP) data. SHAP presents a ranking of the

top twenty traits based on SHAP values for K-NN from demographic, SNP, and medical data.

SHAP presents the genes most sensitive to the five selected drugs.

Al-Taie et al. proposed an XAI approach to analyse drug response outcomes for specific

patient groups [384] by dividing patients into subgroups. Both genotypic and phenotypic data

are used as input for patient stratification and drug responses. The drug repositioning knowledge

base (DR-KB) is used to establish the relationship between genotype and phenotype infor-

mation. The framework proposed by the authors is divided into two modules: subpopulation

discovery and drug candidate evaluation. Subpopulation consists of three sub-modules. The first

sub-module uses the stratification of patients using a patient network graph with the pathway

expansion technique. The second sub-group is contrast to evaluate high contrast and significant

patients by adding or removing nodes (patients) from the patient network. The contrast value

is calculated to identify the network differentiation using the contrast pattern mining method

for each candidate subgroup. Subgroup prioritization is the next submodule that generates the

subpopulation contract score to rank the candidate subgroups. The final module is the candidate

drug scoring module. For each drug in each patient group, this module calculates an overall

drug score. This drug score can be used by clinicians to measure the efficacy of a medicine

based on its molecular profile and gene pattern. These explainable results motivate clinicians to

recommend drugs and analyze risk factors.

2.16.4 Clinical decision support systems

Recent developments in artificial intelligence (AI), XAI, have enabled the analysis of automated

decisions through machine learning in clinical decision support systems (CDSS) [387].

Antoniadi et al. [387] used two scoring methods: McGill Quality of Life (QoL) (MQoL)

and Single Item Score (SIS) to understand the factors that influence quality of life. The authors

used the Irish dataset collected on the neurodegenerative disease, amyotrophic lateral sclerosis

(ALS). The XBoost method was used to predict the QoL factors for this disease. Here, SHAP

applied MQoL5 and MQoL3 to explain the features that are highly responsible in the prediction.

Using the SHAP results, the authors found that the patient’s age at disease onset is the most
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Table 2.12: Literature review of the research publications on explainable and interpretable AI
approaches for disease prediction.

Techniques R1 R2 R3 R4
Data-driven XAI model using XBoost for breast
cancer survival rates [371]

✓ × ✓ ✓

Semi-parametric approach with SHAP to
identify features for cancer survival [372]

✓ × × ✓

Demographic feature extraction using LIME
and SHAP to affect breast cancer survival [374]

✓ × × ✓

Visualize non-linear relationship between risk factors
and survival rates using SHAP [378]

✓ × × ✓

SHAP framework for ranking genes for drug responses [383] × × ✓ ✓

Local and global XAI methods (LIME, SHAP) and
partial dependency plot for explaining critical features
for hepatitis patients [385]

✓ × × ✓

Bayesian rule lists (BRL) to explain the features of
classified schizophrenia patients [386]

✓ × × ✓

Case-based reasoning with confidence for breast cancer
patients [375]

✓ × × ✓

XAI framework based on an adaptive dimension for breast
cancer therapies [376]

✓ × × ✓

Coherent Voting Networks (CVN) for breast cancer
prediction [377]

✓ ✓ × ✓

A tool to explain the important variables for tumor (T)-stage
prostate cancer [379]

✓ × × ✓

A cluster-based explainability approach for health
care records [381]

✓ × × ✓

To explain mutual information between subtypes
clustering patients [382]

✓ × × ✓

A novel XAI method (ALPODS) to classify diseases from
clusters [363]

✓ ✓ ✓ ✓

XAI approach for patient stratification
and drug repositioning [384]

✓ × ✓ ×

XAI approach for patient stratification
and drug repositioning [384]

✓ × ✓ ×

XAI to develop a clinical decision support
system (CDSS) to alert clinicians to improve patients’
(QOL) [387]

✓ × ✓ ✓

XAI method using an early warning score (EWS)
system to predict acute critical illness from EHR [388]

✓ × × ✓

Combined fuzzy rule systems and genetic
algorithms to explain the features of ovarian cancer [380]

✓ × × ✓
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important characteristic for quality of life.

Peng et al. [385] used both LIME and SHAP to explain the predictive results and understand

the characteristics that determine the deterioration of quality of life in hepatitis patients. Using

the UCI database, the authors created a computer-aided design (CAD) for hepatitis patients.

In this CAD system, several ML algorithms were used to predict this liver disease: decision

tree, SVM, RF and XGBoost. Then the authors used LIME, SHAP and partial dependency

diagrams (PDP) for model interpretation. SHAP explains the contribution of features using

Shapely values as a global explainer. When Shapely values are greater than 0, it means a

positive contribution and Shapely values less than 0 mean a negative contribution. SHAP

outcome values are also plotted in the PDP to show the dependence of the characteristics

bilirubin and alkphosphate. This dependency plot describes the effects of the characteristics

bilirubin and alkphosphate for different bilirubin and alkphosphate values. In addition, LIME

uses a local explanation plot in this paper where LIME explains the individual prediction results

for hepatitis. LIME describes the critical characteristics responsible for survival and mortality

rates. Instead of SHAP and LIME, the researchers used a rule-based method to explain models

in health systems.

Mellem et al. [386] examined six weeks of data from a double-blind study for schizophrenia.

The Personalized Advantage Index (PAI) algorithm was used to flag patients for treatment or

nontreatment. PAI is a multiple linear regression approach that is more similar to the decision

tree. Next, the authors applied Bayesian rule lists (BRL) to explain the PAI prediction results

for those who were treated and those who were not treated. This BRL is the Boolean statement

of if-then-else rules that explain the characteristics of patients classified as treatment-indicated

and not treatment-indicated.

An XAI approach uses electronic health records (EHRs) to analyse early warning system

(EWS) results and predict acute critical illness [388]. This XAI approach explains why it made

the prediction it did. The authors examined secondary health data that included information

from EHRs. The data also included information from the CROSS-TRACK cohort on biochem-

istry, medicine, microbiology, and procedure codes. During the study period, 163,050 inpatient

admissions were available, of which 45.9% were male. Sepsis, AKI, and ALI were identified

in 2.44 percent, 0.75 percent, and 1.68 percent of these admissions, respectively. Eighty per-

cent of the data were training samples, the remaining twenty percent were test samples. The
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authors proposed temporal convolutional (TCN) to analyse the outcomes. The most common

application of TCN is predictive modules. The Deep Taylor Decomposition (DTD) explanation

module used for temporal explanations is another key module of the technique. The proposed

XAI-EWS provides two perspectives for explanatory models: individual-based and population-

based. The XAI-EWS module determines target variables related to clinical outcomes at a

given point of an individual. Since the current clinical system often follows the patient without

EWS parameters, knowing temporally precise clinical factors that are important for disease

surveillance is critical, and XAI-EWS provides this pinpoint explanation for an individual time

frame. Ultimately, XAI-EWS provides explanations for the model’s results in a way that does

not require deep knowledge of the model’s mechanics.

For univariate and bivariate tester explanations, Marcin et al. [389] proposed a hybrid

approach called Evolutionary Heterogeneous Decision Trees (EvoHDTree) in combination with

Relative eXpression Analysis (RXA). EvoHDTree analyses the weight relationship between

genes and searches the node structures for cancer and control samples. This evolutionary

method represents the relationship between two genes, namely control genes and cancer sam-

ples.

2.16.5 XAI approaches on gene expression data

Genetic information or gene expression analysis has a significant impact on predicting disease

survival, drug response, or gene prediction for clinical support. XAI approaches provide trust-

worthy explanations for the analysis of genes for various disease prediction and drug responses

(Figure 2.29). From Figure 2.29 and 2.30, it is seen that XAI interpretation helps human experts

understand disease-oriented genes or gene ontology by showing which genes are responsible for

a particular decision.

Karim et al. [390] proposed a CNN-based VGG16 network for gene selection from the

Pan-Cancer Atlas project data. They called the method OncoNetExplaine, which was used to

classify 33 cancer types. The authors analysed cancer data with a heat map to show related

genes. From all the cancer data, genes were ranked according to their values in the CNN and

VGG16 network. The prediction accuracy for CNN is 89.75% and for the VGG16 network,

the accuracy is 96.25%. They used gradient boosted trees and SHAP to identify top genes and

cancer-specific driver genes for comparison. SHAP identified the top 20 genes responsible for
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Figure 2.29: An example of explainable and interpretable features selection from gene
expression values.

all tumour types. Of the listed genes, three genes are highly responsible for all types of tumours.

For non-small cell lung cancer, Kirienko et al. [391] proposed a method for evaluating

radiological and genetic data to characterise the disease and predict outcomes. They selected

149 surgically treated patients who underwent fluorodeoxyglucose (FDG) positron emission

tomography (FDG-PET / CT). The data included 74 tumour samples subjected to molecular

analysis by the proposed method using a targeted RNAseq approach. They applied a logical

learning algorithm (LLM) with Rulex (RULe eXtractor) to the datasets with output variables:

squamous cell carcinoma, adenocarcinoma, or tumour recurrence. Rulex/LLM enables the role

of radiological parameters in tumour recurrence to be explained. Rulex/LLM identified the

distinguishing features from the images of PET and CT and determined the gene expression

patterns associated with lung cancer.

Augusto et al. [392] proposed a unique rule-based XAI technique to find meaningful

patterns from human gene expression data. They began by minimising the number of probes

in their proposed technique, which simplifies the experimental difficulties and reduces the size

of the input to the search for genes. Second, a new discretization technique converts the raw

gene expression values into three discrete values. This discretization is used as a secondary



2.16. INTERPRETABLE AND EXPLAINABLE METHODS IN MEDICAL DATA ANALYSIS107

dimension reduction of the data. The SRM method CMRules then generates sequence rules

and ranks the genes in the discretized dataset according to a specific pattern. In the knowledge

extraction stages, the authors recommend integrating the output gene rules with the functional

annotation. Finally, they visualised the data in a common hierarchical model of gene patterns

that allows them to quickly learn a lot about genes. Machine learning algorithms, which are

widely used to improve decision making in healthcare and play an essential role in cancer

diagnosis, are hampered by a number of problems, one of which is the black-box problem.

An alternative technique is proposed to understand lung cancer through gene expression

data analysis using the XAI approach [393]. The authors analysed a large data set matrix to

identify genes that play an important role [394]. They used publicly available data sets from the

NCBI Gene Expression Omnibus. To capture the interactions between mRNA and ncRNA, the

proposed mathematical model examined RNA functions in relation to gene expression values.

The authors presented three different models: mRNA activity, ncRNA activity, and reciprocal

activity of the species between cells in the tissue. Unless otherwise stated, this study uses a

combination of Gaussian initial states to calculate population abundance and structure.

Olatunji et al. [350] proposed an explicable way to understand multimodal tumour types

using multiplatform genetic data which increases trustworthiness for a black-box approach.

They used RNA-seq (RNA-seq) transcriptome expression profiling and transcriptome expres-

sion profiling as the input data sets. Gene subtypes were selected using differential expression

(DE) with Gaussian distribution and clustered gene filtering (CGF). Moreover, a deep neural

network is used to predict the genes. Finally, LIME explains the deep neural network outcomes.

Figure 2.30 shows the XAI analysis for gene selection using the XAI approach.
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Figure 2.30: Interpretable feature selection steps from gene ontology.

Kaiwen et al. [395] proposed a graphical approach to aggregate gene expression data across

sample and feature spaces by implementing a hierarchical graph convolutional network (HiGCN).

The HiGCN is used for evaluating gene expression data in high-dimensional low sample size

(HDLSS) environments. HiGCN was tested on four gene expression profiles in order to build

gene interaction graphs and evaluate its overall effectiveness. HiGCN was trained with the

Adam optimizer to reduce cross-entropy on labelled data. . AffinityNet and GEDFN as well

as three classical algorithms (AdaBoost, Random Forest and Decision Tree) were compared

with HiGCN for a more accurate comparison. HiGCN was able to produce more discriminating

plots of gene expression values, even when the data were weakly labelled, and was thus able

to improve classification accuracy. HiGCN also helps avoid over-smoothing by identifying

significant features from noise in minimal time.

2.16.6 XAI approaches for gene ontology or networks

Bourgeais et al. [396] proposed Deep GONet for predicting cancer and identifying the genes

responsible for cancer using gene ontology data sets. They used two data sets: the first is from

an experimental study and contains 22309 samples of which 14749 are cancer and 7650 are

non-cancer. The RNA-Seq dataset with 6464 samples is the second dataset. They preferred

biological process ontology (GO-BP) as the hidden layers. Layerwise relevance propagation

(LRP) was used in the Deep GONet approach to obtain average values for each neuron in the

cancer samples. The neurons are ranked according to the relevance values of each layer, and
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Table 2.13: Literature review of the research publications on explainable and interpretable AI
approaches for gene expression analysis.

Techniques R1 R2 R3 R4
SHAP methods on CNN-based VGG16 network to extract
genes [390]

✓ ✓ × ×

Logic learning machine (LLM) algorithm using Rulex
(RULe eXtractor) for expression patterns associated
with lung cancer. [391]

✓ × ✓ ✓

A novel rule-based XAI strategy for identifying relevant
sequential patterns from human gene expression data (GED).[392]

✓ × × ✓

An alternative technique based on a coupled reaction-diffusion
system for possible biomarkers signifying tumorigenesis [393]

✓ × × ✓

LIME to extract a meaningful subset of genes [350] ✓ × × ✓

A hierarchical graph convolution network for gene
expression data [395]

✓ ✓ × ✓

A self-explainable deep neural network (deep GONet) to
integrate gene ontology [396]

✓ ✓ × ✓

SHAP framework on CNN to predict tissue classification [397] ✓ × × ✓

A multi-layer personalized network for gene regulatory
tensor data [398]

✓ ✓ × ✓

the ranking can be used to explain significant GO phrases.

Melvyn et al. [397] used SHAP for RNA-seq data to reflect gene functions. The authors de-

signed a neural convolutional network to predict tissue classification based on genotype. SHAP

was applied to CNN and evaluated silent genes to discriminate 47 tissue types. SHAP also

identified protein-protein interactions. The gene ontology biological process (GO) described

for SHAP-listed genes is enriched for tissue classification.

Heewon et al. [398] proposed DeepTensor to analyse a large-scale personalized network for

the gene regulatory network. DeepTensor and Tensor Reconstruction-based Interpretable Pre-

diction (TRIP) are two explainable AI approaches that were used to decompose the multilayer

network. This individualized network was created for 762 cell lines under different settings of

epithelial-mesenchymal transition (EMT). The explicable TRIP technique examines important

genes to reveal the cognition process of the network.
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2.16.7 Interpretable graph-based mapping algorithm

Graph-based predictions provide better visualization and analysis for disease prediction and

data security. This section focuses on the explainable AI approaches of graph-based mapping

algorithm.

Efficient graph-based decision graph classifiers such as decision trees (DTs) or binary de-

cision graphs have been proposed [399]. The authors attempted to develop a polynomial-time

algorithm for computing the explanation of these graphs. Explanation graphs (XpGs) form the

basis for these novel algorithms. XpGs are a graph format that enables the efficient computation

of explanations for decision graphs both in theory and in practice.

The graph CNN approach should be able to explain uninterpretable black-box models of

contemporary deep learning methods [400]. Such a black-box model of machine learning is

not capable of providing interpretable insights about the model. Moreover, decisions made by

black-box approaches should undergo a trustable analysis before a conclusion is reached. The

authors attempted to explain these neural network outcomes by considering the input variables

in two sections: the first is a method of explaining the local analysis of a particular prediction

using LIME and SHAP, the second are explanations by walking backwards through a computer

network that outputs a prediction.

In other similar research [401], an attempt was made to explain GNN fidelity, stability, and

fairness, and the first axiomatic framework for analyzing, evaluating, and comparing state-of-

the-art GNN explanation techniques was proposed. These bounds only required knowledge of

the generic form of messaging of GNNs and made no assumptions about the architecture of

GNNs. The goal of this research was to show how these bounds can be applied to all current

GNN explanation methods. The proposed bounds are quick to compute and are therefore ideal

for empirical evaluations to determine which of several explanatory approaches provides the

most trustworthy explanations. Several theorems have been applied, such as Random Ex-

planations, GNN Gradients, Integrated Gradients, GraphLIME, PGMExplainer, GraphMASK,

GNNExplainer, PGExplainer, etc. These theorems have been combined in various ways to

identify the axes of fidelity, stability and fairness of GNNs.

Another XAI approach for multiple input modalities is multimodal causality with graph

neural networks [402]. In this study, the authors used four different types of inputs: time series,
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histopathological images, knowledge bases, and textual data from patients. These inputs were

linked by an interaction and correspondence graph (ICG) and positive/negative patterns were

generated for this graph based on network or similarity structures. These positive/negative

patterns are embedded in a low-dimensional space using the modality concept for interpretation.

Graph-based XAI systems were developed using a multi-scale convolutional neural network

to train graph potentials (MS-CNN) [403]. The authors used fifty-eight medical images with

hand rims to verify their results. MS-CNN showed better accuracy by successfully merging

local and global texture information from the images.

A fully automatic graph-based XAI system [403] was proposed, where graph potentials

were trained using a multiscale convolutional neural network (MS-CNN). For validation, the

authors used fifty-eight medical photographs with hand boundaries. By successfully combining

the local and global texture information of the images, MS-CNN showed that the segmentation

accuracy of the proposed graph-based technique can be improved.

2.17 Research gaps in XAI

In the literature above, XAI approaches were used to predict specific gene and gene set for a

wide range of diseases. A number of well-known XAI methods have been used in the literature,

including LIME, SHAP, anchor, and SP-LIME. However, all of these XAI approaches adhere

global learning (GL) mechanism. The GL techniques utilise the same feature values irrespective

of the number of test instances used to predict a condition of an instance. For example, there

were four test instances such as x, y, p, and q. For a test patient named x, GL will compare the

feature values of x to the predefined feature values of all training samples. And then repeats the

procedure for subsequent test patients such as y, p, and q. Predicting a condition of an instance

would be useful if it were possible to use only the most relevant knowledge from the training

data, which is incompatible with applying a predefined model to all test samples.

Instance-based learning (IBL) generates a separate set of knowledge for each test instance by

comparing the feature values of the test instance with all feature values of the training instances,

which is useful for predicting a condition of a patient. An IBL measures the distances between

the feature values of a test instance and the feature values of all training instances. Then, it

produces a matrix of values that approximate the feature values of the test instance. The IBL
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inference leads to putting a test instance to putting in the same group as its most common

neighbour. IBL differs from other supervised learning approaches because it does not construct

ambiguous abstractions like support vector machine, decision tree, and boosting. “Eager”

or global learning, which works on a fixed model, performs the opposite of Instance-based

Learning.

Moreover, an integrated approach of IBL and XAI would be useful to predict a patient med-

ical condition with respect to the variation of gene expression values in each gene set. Because

the prediction outcomes would allow individuals to identify genes or gene sets responsible for

a particular disease for an instance.

2.18 Research questions

Regarding explainable AI in predictive analysis, the GSEA literature review provides insights

into incorporating machine learning and AI models into gene expression data analysis. The re-

view reveals that various AI approaches have been successful in generating accurate predictions

while also highlighting their limitations with respect to explainability and interpretability. By

evaluating the performance of existing AI models used in GSEA and their suitability for cancer

research, this thesis applied suitable explainable AI approaches for prediction. This process

ensures that the explainable AI approaches used to generate predictions outcomes and allowing

for a clear understanding of the model’s decision-making process and promote confidence in

the model’s outcomes.

Based on the literature, this thesis propose the following research question.

Research question 1

How can an explainable and interpretable method predict a patient status (healthy or

cancerous or relapse or non-relapse) built on an individual instance in relation to variation

of gene expression values in each gene set?
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2.19 Conclusion

As machine learning techniques become more popular, the field of XAI is becoming increas-

ingly important, and there are ethical, trust, transparency, and security issues to be addressed.

In this review, this thesis explored existing literature on XAI in the context of machine learning

and classifiers. This thesis have shown that research in this area is still in its infancy, but it

is growing and has significant implications for explainable processes. Researchers are focus-

ing on significant feature explanation, visualisation techniques, query-based explanations, and

verification methods for disease and health system prediction, with a clear understanding and

interpretation.

This thesis shifts discussion to the concept of AI and machine learning prediction, including

transparency, fairness, and privacy. This thesis also talks about the application of XAI methods

in the context of gene expression analysis, health systems, and disease prediction analysis. Var-

ious XAI working principles were also graphically described to explain the prediction process.

The taxonomy and methods of XAI are also described in detail. The aim of this study is to

show how the interpretability of models needs to be addressed in terms of XAI standards such

as trustworthiness, fairness and transparency for various biological experiment analyses.



Chapter 3

Proposed method to understand variance in gene

expression values in cancer

“Nothing in life is to be feared, it is only to be understood. Now is the time to understand more,

so that we may fear less.” – Marie Curie

3.1 Introduction

The literature review performed for this thesis reveals that differences in gene expression values

could be the underlying cause of various life-threatening cancers, such as acute lymphoblastic

leukemia (ALL), acute myeloid leukemia (AML), colon cancer, breast cancer, and adrenal

cancer. It is possible that there is a close relationship between various diseases and shifts in

gene expression values. Therefore, identifying and explaining outliers in the normal distribution

of gene expression values in cancer patients could be useful. Measuring abnormalities in

gene expression values of cancer patients relative to biological functions or gene sets is one

potential solution to this problem. This research investigates the potential relationships between

patients and gene sets, especially with regard to variations in gene expression values. In

particular, a prime purpose of this investigation is to identify which parts of a patient’s biology

are responsible for the onset of cancer or the relapse of cancer in a patient.

When building a model to infer the details of an individual’s condition, either knowledge-

driven or data-driven approaches can be applied. A knowledge-driven process uses information

accumulated using the scientific method. A data-driven process uses labelled data, sampled

114
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from the domain, to build a model. Data-driven modelling ranges from simple techniques, like

a logistic regression model, to more complex machine learning techniques, like support vector

machines, Bayesian models, and artificial neural networks.

An approach in which a model is built based on sample data is referred to as a data-driven

approach. A data-driven approach can be useful when one’s understanding of the domain is

weak and a large amount of sample data is available from the domain [50]. A knowledge-

driven strategy involves developing one’s understanding of the domain matter. Knowledge-

driven modelling can be useful in situations where it is difficult to obtain sample data and

when an individual possesses a strong understanding of the domain [51]. A combined data

and knowledge-driven approach would be effective in handling small data sets [404]. Because

small data sets are prone to having imbalanced groups, which occurs when one group has a

disproportionately large number of observations compared to another group.

This thesis explores possibility of employing a data- and knowledge-driven approach to

analyse gene expression data of cancer patients with leukaemia, colon, breast, and adrenal

cancer. When using a model where each data point corresponds to a patient, there is a chance

that the model may need to work with limited amounts of data. This can present challenges in

accurately analyzing and drawing conclusions from the available information.

Ideally, a data analyst may like to combine both data and knowledge-driven ap- proaches to

obtain the best possible model. However, in the analysis of gene expression data, it is not clear

how to combine data analysis approaches with accumulating scientific knowledge.

In this thesis, knowledge is represented by the sets of genes identified within a specific

gene ontology. A gene set in an ontology is characterized by a combination of genes and their

products [405–407]. Gene sets are a collection of genes that share common properties and are

united either by (1) a particular biological process, e.g. cell cycle, (2) a location, e.g. nucleus,

(3) complications, e.g. leukaemia, or (4) a proximate in a pathway, e.g. genes associated in

cell cycle pathway of the KEGG (Kyoto Encyclopedia of Genes and Genomes) [408–412].

Gene sets are members of a gene ontology and present a coherent arrangement of biological

functions and genetic interconnections [413, 414]. Moreover, gene ontologies address which

gene sets exist, how gene sets may be arranged within a hierarchy, and what are distinctive

similarities/dissimilarities [415–419]. Additionally, gene ontologies indicate which biological

processes are distinctive across gene sets [420, 421].
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This thesis hypothesizes that carefully aggregating gene expression values into measures

over gene sets provides opportunities to gain insights from the data analysis of gene expression

profiles. In particular, it is posited that gene set anomaly scores increase the visibility and

detectability of patterns across different expression profiles compared to using expression values

directly. In this research, a family of methods is proposed for doing this and the approach is

demonstrated from multiple analytic perspectives, capitalising on both the knowledge-driven

analysis from using gene sets and a data-driven analysis from keeping profile data distinguish-

able.

In particular, the following questions are addressed:

1. How can gene expression variation be captured in gene sets, as anomaly scores, without

prior assumptions about profile classes?

2. How can gene set anomaly scores offer insights into the biology of a cancer patient’s

response to treatment?

3. How do the distributions of gene set anomaly scores vary across different groups of

patients?
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3.2 Data preparation

This thesis used four datasets of gene expression values to investigate the proposed method.

The first dataset is from patients with acute lymphoblastic leukaemia (ALL) with gene sets

obtained from the Molecular Signatures Database (MSigDB) [8]. Leukaemia data was generated

by The Children’s Hospital at Westmead (CHW), Sydney, Australia and consisted of Affymetrix

derived gene expression values identified in diagnostic bone marrow aspirates collected from

96 ALL patients, each patient provided more than twenty thousand gene subjects with gene

expression values. Each patient received treatment involving chemotherapy and possibly bone

marrow transplant based on their clinical risk stratification into standard, medium, high or very

high, groups [422]. The dataset records the treatment strategy (low, medium and high) and the

patient outcome (relapse or non-relapse). This dataset is publicly available [423].

The second dataset is from 54 colon cancer patients with 54676 genes measured [424, 425].

It also is in the public domain, available from National Centre for Biotechnology Information

(NCBI, reference GSE4183).

The third dataset is from 64 adrenal cancer patients also available from the NCBI, (reference

GSE4183). It covers the same 54676 genes [426, 427].

The fourth dataset focuses on breast cancer and comprises 189 patients’ data, which is pub-

licly accessible through NCBI (Reference GSE2990) [425]. This dataset includes microarray

data for breast cancer (breast carcinomas) to evaluate histologic grade. Histologic grade charac-

terizes the abnormal cancer tissues or cells within a tumor. Depending on cancer cell growth and

spread, histologic grades are classified into grade 1, grade 2, and grade 3. Notably, histologic

grade 2 tumors exhibited a high index of associated genes that were linked to recurrence.

For the colon and adrenal cancer dataset, we used six categories of gene sets: positional

gene sets (C1), curated gene sets (C2), regulatory gene sets (C3), computational gene sets (C4),

gene ontology gene sets (C5), oncogenic gene sets (C6), and immunological gene sets (C7) [8].

Additionally, the proposed approach could be applied to both RNA-Seq and microarray

genomics data. The proposed method would be applicable to RNA-sequence gene expression

data. The advancements in technology have allowed for high-throughput sequencing methods

such as RNA-sequencing, which generate a large amount of gene expression data. This data is
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typically expressed numerically, representing the expression level of each gene. These numeri-

cal gene expressions form a table of data that is amenable to analysis using proposed method in

this thesis.

The advantages of proposed approach in this thesis lies in its ability to analyze and interpret

this high-dimensional data effectively. Specifically, it can generate a anomaly scores by inte-

grating these gene expression values into gene sets. This approach provides an opportunity to

gain in-depth insights from the data analysis of gene expression profiles, and it is particularly

valuable when dealing with RNA-sequence gene expression data.
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3.3 Method

To generate gene set anomaly score, the method operates in two steps: (1) pre-processing gene

expression values, and (2) generating gene set anomaly score.

3.3.1 Pre-processing gene expression values and gene set

The data preparation step covers the collection, cleaning and organisation of the two input

data sources, namely gene expression profiles and gene sets. Gene expression profiles are a

collection of profiles where each has a gene expression value for a gene from the set of genes

covering the data. Each profile can be thought of as relating to a single patient, but profiles can

be more general than that. For example, each profile may be from the same patient but measured

at multiple times. Gene set data is a collection of gene sets, i.e., each gene set has a name and a

set of member genes. The number of gene sets may be quite large, for example all the gene sets

from one or more ontologies. Unlike GSEA where gene sets are selected based on a hypothesis,

the proposed method aims to identify important gene sets and exploit the knowledge inherent

in them.

Figure 3.1 shows the initial phase of data preparation where one table contains gene expres-

sion values with probe ids and patients, and the other table contains genes with probe ids. These

two tables are compared each other and the matched probe ids are identified, which results in

the final table of gene expression values with gene names and patients. For example, the table

contains the probe set name (e.g., 1007 s at, 1053 at, etc.) with the patients (e.g., P1, P2, etc.).

Another table contains same probe ids with gene names such as DDR1, RFC2, and etc. Finally,

the probe set ids are matched between both tables and a table containing gene expression values

with the gene names and patients is created, as shown in Figure 3.1.
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Figure 3.1: Pre-processing raw gene expressions values and probe IDs.
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3.3.2 Generating gene set anomaly score

Figure 3.2: Schematic diagram showing an application of the proposed method representing
genes (G), gene sets (S) and composite scores.

Proposed method (Figure 3.2) starts with gene expression profiles and gene sets. The

proposed method is designed to work with large numbers of gene sets, for example all the gene

sets from one or more ontologies. Figure 3.2 shows that generation of an anomaly score begins

with measuring variations in gene expression data. This may be considered as a normalisation

step that captures the researcher’s intuitions about what it means for a gene expression to vary

away from a typical value. In thesis thesis, z-scores were used but other measures are possible.

Next, the variation measures of a profile and genes are aggregated to produce an anomaly score.

This thesis reports on four methods: mean absolute score, root mean square score, cubic root

mean cube score, and range mid-point. Thus, there are at least four variations of the anomaly

score which we refer to as (1) z-absolute, (2) z-square, (3) z-cubic, and (4) z-mid-range. These

are defined more formally below. This thesis reports on each of these and demonstrates that the

proposed anomaly score method is a robust choice. The effect of the anomaly scoring phase is

to re-map each profile from a space of gene expression values to a space of gene set anomaly
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scores.

Figure 3.3 shows the computational steps for the anomaly score, which are detailed as

follows.

The proposed method generates an anomaly score for each gene set, for each gene ex-

pression profile. Thus, the entity for subsequent analysis are the profiles rather than the gene

sets. The gene set anomaly scores are a way of re-representing each profile. This creates an

opportunity for applying many data processing methods from statistical analytics and machine

learning. This brings the advantage of knowledge inherent in gene sets but retains the opportu-

nity for profile-based data analytics, including methods that do not require profiles to be placed

in two classes (i.e., no classes or more than two classes).

Figure 3.3: A data processing context for generating the anomaly score from raw gene
expression values and gene sets.

• The first step of the process is to measure the z-score, or z-square score, or z-cube score

for the raw gene expression values.

• The second step is to match the patient’s genes to the gene sets and count the total number

of matched genes from the gene sets.

• The third step is to divide the z-score values or the total z-squared values or the total

z-cube values by the total number of matched genes.

• The final average z-score or z-square or z-cube value is the anomaly score, which repre-

sents the degree of anomaly with respect to the gene sets for each patient.
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3.3.2.1 Z-score

The first step creates a measure of expression variation for each gene expression value. For

profile p and gene g, the data set provides expression value x(p, g). Z-score variation z(p, g) is

defined as

z(p, g) =
x(p, g)− µ(g)

σ(g)
(3.1)

where

µ(g) =
1

n

∑
p

x(p, g) (3.2)

σ(g) =

√√√√ 1

n

(∑
p

(x(p, g)− µ(g))2
)

(3.3)

where n is the number of profiles (i.e., patients).

3.3.2.2 Z-absolute score

A z-absolute score is the mean absolute z-score variation value for profile p and s. For profile

p and gene set s. Where s contains ms number of genes, an anomaly score a(p, s) defined on

z(p, g) as

a(p, s) =
1

ms

∑
g∈s

|z(p, g)| (3.4)

The intuition for this measure is to capture the average level of variation for a gene set,

while disregarding the sign of a variation. Genes of a gene set may collectively operate to

achieve some purpose, but when the gene set is not operating correctly, some genes may over

express and some may under express.
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3.3.2.3 Z-square score

The z-square score is the root mean square of z-score variation values for p and s. This is similar

to z-absolute score but is more sensitive to variation. This may be considered a more traditional

approach to aggregating anomalies.

In this case, an anomaly score a(p, s) defined on z(p, g) as

a(p, s) =

√
1

ms

∑
g∈s

z(p, g)2 (3.5)

3.3.2.4 Z-cubic score

The z-cubic score is the cubic root mean cube of z-score variation values for p and s. Im-

portantly, it is sensitive to the sign of variation. The cubic formulation also has the effect of

emphasizing variation within a gene set when only a small number of genes show variation.

The intuition is that many genes in a set may be operating normally, but if only a small number

of genes are not operating normally, then the function of the whole gene set suffers.

The z-cubic score is defined as a(p, s) on z(p, g) as

a(p, s) = 3

√
1

ms

∑
g∈s

z(p, g)3 (3.6)

3.3.2.5 Z-mid-range score

The z-mid-range score is the min-max normalization of the z-score variation values for p and s.

This is similar to the z-absolute score in that both approaches follow a certain scale of variation.

z-absolute score considers unsigned variation, while z-mid-range considers the sign of variation.

In the mid-range formulation, all genes are equally important in the calculation of the anomaly

score. The intuitive goal of this measure is to capture the average level of variation present in

a collection of genes in a gene set, considering the sign of a variation. All genes in a gene set

may function together to make a desired effect. However, if the gene set is dysfunctional, some

genes may be over expressed while others are under expressed.



3.3. METHOD 125

The z-mid-range score is defined as a(p, s) on z(p, g) as

a(p, s) =
1

ms

∑
gϵs

z(p, g)−max(x)
xϵz(p,g)

max(x)
xϵz(p,g)

−min(x)
xϵz(p,g)

(3.7)
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3.3.3 Synthesizing anomaly score

An expression anomaly score of a gene set reflects the combined degree of deviation of the

expression values from the expected values for a given patient. Gene expression data relates to

96 leukaemia patients in two categories, relapse and non-relapse. Expression anomaly scores

were used to derive the similarities and dissimilarities between relapse and non-relapse patients.

Gene sets reflect the biological functionalities (e.g., molecular functions, cell cycle, cellular

locations, and biological processes) of a disease. A primary purpose is to map the patients

by associating the anomaly score for each gene set with these biological functionalities to

investigate the impact of the gene sets on a given disease.

This thesis contributes to the data processing context, as shown in Figure 3.4. The analysis

and usage phases will explore how anomaly scores can provide insights into biology related to

patients and diseases. In these phases, the re-mapped profiles are processed using standard data

analytics. Figure 3.4 shows three analysis steps: (1) dimensional reduction to extract important

gene sets or features, (2) analysis of anomaly score distribution to identify statistical variations,

and (3) machine learning for classifiers.

Figure 3.4: Architectural view of the proposed approach.
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3.3.3.1 Dimension reduction

Different dimensional reduction approaches are explored. In fact, re-mapping to anomaly scores

already provides significant dimensional reduction (from tens of thousands of genes to thou-

sands of gene sets).

The re-mapped profiles still have a high dimension since there are a large number of gene

sets. Not all gene sets are strongly associated with an identified class of profiles. Using principal

component analysis (PCA) [428, 429], this work investigates how to reduce the large number of

gene sets and identifies two or three strongly discriminating components (section 3.3.3.1).Max-

imum Relevance Minimum Redundancy (MRMR) [430] and Random Forest [431] are used as

the feature selection techniques to identify the high-priority gene sets.

Twenty-seven thousand gene sets were collected to investigate the relationships between

gene expression values and biological functions. Of these, 10,185 gene sets are linked to gene

ontology (GO), which are divided into biological processes (BP, 7081), cellular components

(CC, 996), and molecular functions (MF, 2108). The proposed approach provides a gene set

anomaly score for gene sets with molecular functions (MF) by associating 22,000 patient genes

and identifying 1644 gene sets that match the patient genes. Thus, each profile is represented

in a 1644-dimensional space, which is already smaller than the 22000 dimensions of the input

expression data. The dimensionality can be further reduced using standard techniques. This

thesis considers PCA and MRMR as exemplar approaches.
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3.3.3.2 Principal component analysis (PCA)

PCA is an unsupervised dimension reduction technique that reduces dimensions by transform-

ing a large number of gene sets into a few principal components which capture most of the

variation in the gene set anomaly scores [428, 429]. In this work, two principal components are

chosen as being suitable for a scatter plot.

In short, PCA finds a transformation matrix U , such that U ∧ U ′ = C, where C is the

covariance matrix of gene sets, i.e., covariance of a(p, s) over p. The columns of U are ordered

by descending eigenvalue so that the earlier columns transform data into principal components.

3.3.3.3 Maximum relevance minimum redundancy (MRMR)

MRMR is considered an alternative to PCA as it maintains the ability to identify gene sets after

dimensional reduction. MRMR ranks gene sets by measuring mutual information, which is a

measure of commonality in gene expression data [430]. The two highest-ranking gene sets were

used to plot patients considering relapse, non-relapse, cancer, healthy patients outcomes.

MRMR is a feature selection technique that measures the reduction of uncertainty between

features by considering associations of one given another [430]. Mutual information is used to

identify the dependence between two or more features and calculate the resulting information

gain. The value of mutual information can be zero or greater. If the mutual information is zero,

it means that the variables are independent. MRMR is used to treat each gene set as a feature.

MRMR ranks the gene sets and the top two are chosen to display in the scatter plots.

3.3.3.4 t-Stochastic neighbour embedding

T-SNE [432] simplifies high-dimensional data sets by converting them into low-dimensional

data representations. This technique works by calculating the Euclidean distance between data

points and using conditional probabilities to determine the relationships between them. By

transforming complex data into a more manageable form, T-SNE enables easier analysis and

visualization of the relationships within the data.
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3.4 Evaluation methodologies and demonstrations

In this section, an evaluation of the proposed method is provided to comprehend values and

implications of the anomaly score . This thesis explored three distinct methodologies to evaluate

the proposed method, including (1) embedding patient profiles, (2) anomaly distributions, and

(3) clustering patient profiles.

3.4.1 Methodology for embedding patients profiles

Patient embedding is an association between patients and gene sets with anomaly scores shown

in Figure 3.5. The figure shows that a few patients were embedded over anomaly scores within

two patient biology shown in x and y axis.

Figure 3.5: A schematic diagram for patient embedding with associated patients’ biology.

After anomaly score calculation and dimension reduction, each profile (patient) is repre-

sented by two numbers, embedding the profiles in a 2D space. The results of these analyses

are summarised in the embedding of patients in 2D and 3D plots in terms of PCA, MRMR, and

t-SNE.
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3.4.1.1 3D and 2D plots for leukaemia patient embedding with PCA

This section describes the embedding of leukaemia patients in 3D and 2D plots using z-absolute

anomaly score for different groups of leukaemia patients in relation to their risk status and

treatment plan. Of the 96 leukaemia patients, 13 were classified as high risk, 13 standard risk,

60 medium risk, and 10 low risk. Regarding treatment plans, 18 patients received chemotherapy

and BMT, 68 patients received chemotherapy, and 10 healthy patients received no treatment

plan. Of all the patients, 24 suffered a cancer relapse and 72 patients had no relapse.

Experimental setup

1. Technology: PCA, MRMR, random forest, t-SNE, and k-means clustering.

2. Python packages: NumPy, pandas, matplotlib , pyplot, math and matplotlib.patches.

3. Input data: Anomaly scores for leukaemia, colon, breast, adrenal cancer and scores for

all state-of-the-art methodologies.

Figure 3.6 shows the leukaemia patients in a 3D plot, where each dimension represents a

principal component from the z-absolute anomaly score. The figure shows four clusters that

are in relatively similar locations for all patients. The figure 3.6 shows the data for all patients

without distinguishing between those who relapsed and those who did not. This means that the

visualization combines the outcomes for both groups, providing an overall view of the patient

population rather than showing the differences between the relapse and non-relapse groups.

Drawing from this result, the thesis postulates that clusters are associated with biologically

significant differences, rooted in gene expression values.

Figure 3.7a shows leukaemia patients in a 2D plot in relation to treatment planning, where

each dimension is a principal component from the z-absolute anomaly score. The treatment

plans are chemotherapy and bone marrow transplantation (BMT). These two groups were di-

vided into patients with and without relapse. The figure shows three clusters because both

the patients with relapse and those without relapse tend to be in relatively similar locations.

One cluster exclusively comprises non-relapse patients, while the other two clusters represent

a mixture of patients with and without relapse. Similarly, figure 3.7b shows leukaemia patients

in a 2D plot in terms of risk groups, where each dimension is a principal component from

the z-absolute anomaly scores. The risk groups are BFM95 and Study 8, which are treatment
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Figure 3.6: 3D projecting using a z-absolute anomaly score for leukaemia patients.

protocols, and these two groups are again divided into patients with relapse and patients without

relapse. The figure shows three clusters because both patients with relapse and those without

relapse tend to be in relatively similar locations. One cluster is exclusively comprised of patients

without relapse, while the other two clusters represent a mixture of patients with and without

relapse. Moreover, figure 3.7c shows leukaemia patients in a 2D plot relative to BFM95 for

high-risk and medium-risk patients, where each dimension is a principal component of z-

absolute anomaly score. The patient groups were divided into recurrences and non-recurrences

for high and medium risk patients. The figure shows two clusters because both patients with

relapse and patients without relapse tend to be in relatively similar locations. One cluster is

exclusively comprised of patients with non-relapse, while the other cluster is a mixture of

patients with and without relapse. Finally, figure 3.7d shows leukaemia patients in a 2D diagram

for high-risk and standard-risk patients, where each dimension is a principal component from

the z-absolute anomaly score. The patient groups were divided into relapse and non-relapse for
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Figure 3.7: Leukaemia patient embedding with z-absolute anomaly scores (a) with respect to
treatment planning, (b) all medium patients with respect to BFM95 and study8, (c) for high and
medium patients with respect to BFM95, and (d) high and standard risk patients.

both high-risk and standard-risk patients. The figure shows three clusters because both patients

with relapse and patients without relapse tend to be in relatively similar locations. One cluster

consists entirely of patients without relapse, while the other clusters are a mixture of patients

with and without relapse. Drawing from these findings, the proposed hypothesis of this thesis

implies that there is a relationship between the clusters and biologically meaningful differences,

originate from gene expression measurements.
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(a) (b)

Figure 3.8: Leukaemia patient embedding using z-absolute anomaly score (a) for high-risk
patients and (b) standard-risk patients.

3.4.1.2 Relapse and non-relapse patients embedding with PCA

The results consist of all four types of anomaly scores (z-absolute anomaly score, z-square

anomaly score, z-cube anomaly score, and z-mid-range anomaly score) when embedding pa-

tients in relation to patient strains, namely relapse, non-relapse, high risk, and medium-risk

patients. Different cancer data, namely breast cancer, colorectal cancer, adrenal cancer and

leukaemia, were used for the experiments.

Figure 3.8a shows high-risk leukaemia patients in a 2D plot where each dimension repre-

sents a principal component from the z-absolute score for abnormalities. The figure shows three

clusters (labelled A, B, and C). Cluster A consists entirely of non-relapsed patients with four

patients 6, 7, 8, and 9. Clusters B and C contain a mixture of relapsed and non-relapsed patients,

but again it can be seen that the relapsed patients tend to be in relatively similar locations.

Cluster B contains 3 patients who have relapsed, namely 1, 2, and 3. These three patients form

a similar cohort to patients 4 and 5 who have not relapsed. Figure 3.8b shows standard-risk

leukaemia patients in a 2D plot where each dimension rep- resents a principal component from

the z-absolute anomaly score. The figure shows three clusters (labelled A, B, and C). Cluster A

consists of only one patient who has not relapsed. Clusters B and C contain a mixture of relapsed

and non-relapsed patients, but again it can be seen that the relapsed patients tend to be in

relatively similar locations. Cluster B contains two patients who have relapsed, 1 and 2. These
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Figure 3.9: Leukaemia patient embedding using z-absolute anomaly score (a) for medium-risk
with BFM95 and (b) medium-risk with study8.

patients form a similar cohort to patient 3, who has not relapsed. Based on these outcomes, the

proposed hypothesis of this thesis suggests that there is a correlation between the clusters and

biologically significant variances, which originate from gene expression measurements.

Figure 3.9a shows medium-risk leukaemia patients in a 2D plot in relation to BFM95 treat-

ment planning, where each dimension represents a principal component from the z-absolute

anomaly score. The figure shows three clusters for patients with and without recurrence. One

cluster consists entirely of patients without relapse. The other cluster contains a mixture of

patients with and without relapse, but again it can be seen that the patients with relapse tend

to reside in relatively similar locations. Again, figure 3.9b shows medium-risk leukaemia

patients in a 2D plot in relation to study8 treatment planning, where each dimension represents

a principal component from the z-absolute anomaly score. The figure shows three clusters for

patients with and without recurrence. One cluster consists entirely of patients without relapse.

The other clusters contain a mixture of patients with and without relapse, but again it can be seen

that the patients with relapse tend to reside in relatively similar locations. The observation of

the z-absolute anomaly score and PCA-based patient embedding results in this thesis indicates

that the identified clusters are likely driven by notable dissimilarities in gene expression values.

This suggests that the patient groupings are not just random or due to the method used, but have

a relationship to biology.
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(a) (b)

Figure 3.10: Leukaemia patient embedding using z-square anomaly score (a) for high-risk
patients and (b) standard-risk patients.

Additional experiments were conducted using three alternative anomaly scores: the z-square

anomaly score, the z-cube anomaly score, and the z-mid-range anomaly score. The outcomes

for various patient groups are shown in Figures 3.10a, 3.10b, 3.11a, 3.11b, 3.12a, 3.12b, 3.13a,

3.13b, 3.14a, and 3.14b. These results demonstrate that the clusters generated by the z-square,

z-cube and z-mid-range anomaly scores exhibit biologically meaningful differences concerning

gene expression values. This finding suggests that the clusters are not merely random groupings,

but instead represent significant differences between patient groups. Moreover, these results

reinforce the application of multiple anomaly detection methods for identifying biologically

relevant patterns across diverse patient groups.

Figure 3.10a shows high-risk leukaemia patients in a 2D plot, where each dimension repre-

sents a principal component from the z-square anomaly score. The figure shows three clusters

(labelled A, B, and C) for patients with and without relapse. One cluster (cluster A) consists

entirely of patients without relapse. The other clusters contain a mixture of patients with and

without relapse, but again it can be seen that the patients with relapse tend to reside in relatively

similar locations.

Figure 3.10b shows standard-risk leukaemia patients in a 2D plot, where each dimension

represents a principal component from the z-square anomaly score. The figure shows three

clusters (labelled A, B, and C) for patients with and without relapse. One cluster consists of
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Figure 3.11: Leukaemia patient embedding using z-square anomaly score for (a) medium-risk
patients with BFM95 and (b) medium-risk patients with study8.

only one patient (cluster A) without relapse. The other clusters contain a mixture of patients

with and without relapse, but again it can be seen that the patients with relapse tend to reside in

relatively similar locations.

Figure 3.11a shows medium-risk leukaemia patients in a 2D plot in relation to BFM95

treatment planning, where each dimension represents a principal component from the z-square

anomaly score. The figure shows three clusters for patients with and without relapse. One

cluster consists entirely of patients without relapse. The other cluster contains a mixture of

patients with and without relapse, but again it can be seen that hypothesizes the patients with

relapse tend to reside in relatively similar locations.

Figure 3.11b shows medium-risk leukaemia patients in a 2D plot in relation to study8

treatment planning, where each dimension represents a principal component from the z-square

anomaly score. The figure shows three clusters for patients with and without relapse. Two

clusters consist entirely of patients without relapse except for one relapse patient. The other

cluster contains a mixture of patients with and without relapse, but again it can be seen that the

patients with relapse tend to reside in relatively similar locations.

Figure 3.12a shows high-risk leukaemia patients in a 2D plot, where each dimension repre-

sents a principal component from the z-cube anomaly score. The figure shows three clusters for

patients with and without relapse. One cluster consists entirely of patients without relapse. The
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(a) (b)

Figure 3.12: Leukaemia patient embedding using z-cube anomaly score (a) for high-risk
patients and (b) standard-risk patients.

other cluster contains a mixture of patients with and without relapse, but again it can be seen

that the patients with relapse tend to reside in relatively similar locations.

Figure 3.12b shows standard-risk leukaemia patients in a 2D plot, where each dimension

represents a principal component from the z-cube anomaly score. The figure shows three

clusters for patients with and without relapse. One cluster consists of only one patient without

relapse. The other clusters contain a mixture of patients with and without relapse, but again it

can be seen that the patients with relapse tend to reside in relatively similar locations.

Figure 3.13a shows medium-risk leukaemia patients in a 2D plot in relation to BFM95

treatment planning, where each dimension represents a principal component from the z-cube

anomaly score. The figure shows three clusters for patients with and without relapse. Two

clusters consist entirely of patients without relapse. The other cluster contains a mixture of

patients with and without relapse, but again it can be seen that the patients with relapse tend to

reside in relatively similar locations.

Figure 3.13b shows medium-risk leukaemia patients in a 2D plot in relation to study8

treat- ment planning, where each dimension represents a principal component from the z-cube

anomaly score. The figure shows three clusters for patients with and without relapse. Two

clusters consist entirely of patients without relapse except for one relapse patient. The other

cluster contains a mixture of patients with and without relapse, but again it can be seen that the
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Figure 3.13: Leukaemia patient embedding using z-cube anomaly score for (a) medium-risk
patients with BFM95 and (b) medium-risk patients with study8.

patients with relapse tend to reside in relatively similar locations.

Figure 3.14a shows high-risk leukaemia patients in a 2D plot, where each dimension repre-

sents a principal component from the z-mid-range anomaly score. The figure shows three

clusters for patients with and without relapse. One cluster consists entirely of patients without

relapse. The other clusters contain a mixture of patients with and without relapse, but again it

can be seen that the patients with relapse tend to reside in relatively similar locations.

Figure 3.14b shows standard-risk leukaemia patients in a 2D plot, where each dimension

represents a principal component from the z-mid-range anomaly score. The figure shows three

clusters for patients with and without recurrence. One cluster consists of only one patient

without relapse except. The other clusters contain a mixture of patients with and without

relapse, but again it can be seen that the patients with relapse tend to reside in relatively similar

locations.
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(a) (b)

Figure 3.14: Leukaemia patient embedding using z-mid-range anomaly score for (a) high-risk
patients and (b) standard risk-risk patients.
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3.4.1.3 Comparative analysis between raw gene expression and anomaly score with PCA

In this thesis, a comparative analysis has been carried out between raw gene expression values

and anomaly score patient embeddings. The aim of this analysis is to assess the effectiveness

of anomaly score patient embeddings in supporting the hypothesis put forth in this thesis.

Two sets of visual representations have been generated for this comparison. The first set,

comprising Figures 3.15a and 3.16a, illustrates the results derived from the anomaly score

patient embeddings. The second set, consisting of Figures 3.15b and 3.16b, presents the data

obtained from the raw gene expression values.

Upon careful evaluation of the outcomes derived from both sets of figures, it becomes

evident that the anomaly score patient embeddings indeed provide substantial evidence in favor

of the thesis hypothesis. The comparative analysis highlights the effectiveness of anomaly score

patient embeddings over raw gene expression values, reinforcing the argument presented in the

study.
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Figure 3.15: Leukaemia patient embedding (a) using z-absolute anomaly score and (b) raw
gene expression values.

Figure 3.15a shows high-risk leukaemia patients in a 2D plot, where each dimension repre-

sents a principal component from the z-absolute anomaly score. The figure shows three clusters

(labelled A, B, and C) for patients with and without relapse. Cluster A consist entirely of

patients without relapse. The other clusters (cluster B and C) contain a mixture of patients with
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and without relapse, but again it can be seen that the patients with relapse tend to reside in

relatively similar locations.

Figure 3.15b shows high-risk leukaemia patients in a 2D plot, where each dimension repre-

sents a principal component from the raw gene expression values. The figure shows that three

patients are scattered in contrast with the anomaly score patient embedding.
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Figure 3.16: Leukaemia patient embedding in a 3D plot (a) using z-absolute anomaly scores
and (b) raw gene expression values.

Figure 3.16a shows high-risk leukaemia patients in a 3D plot where each dimension repre-

sents a principal component from the z-absolute anomaly score. The figure shows three clusters

for patients with and without relapse. Two clusters consist entirely of patients without relapse.

The other cluster contains a mixture of patients with and without relapse, but again it can be

seen that the patients with relapse tend to reside in relatively similar locations.

Figure 3.16b shows high-risk leukaemia patients in a 3D plot where each dimension rep-

resents a principal component from the raw gene expression values. The figure shows four

clusters for patients with and without relapse. It can be seen that the patients were scattered in

contrast with the anomaly score patient embedding for the raw gene expression embedding.
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3.4.1.4 MRMR patient embedding

In the previous section, patient embedding results were discussed in relation to the principal

components derived from PCA. Although PCA effectively identifies principal components,

it does not revealing the specific gene sets involved as it does not provide gene set names.

Capturing gene set names, rather than relying on principal components, could improve patient

embedding and provide a more comprehensive understanding of the underlying biological pro-

cesses.

This thesis presents an overview of patient embedding, focusing on gene sets that have a

strong association with patients based on their anomaly scores. To effectively identify these

gene sets, the thesis applies the MRMR, a feature selection approach. By measuring the

mutual information of the gene sets, MRMR allows ranking these gene sets in terms of their

associations.

By identifying and applying specific gene sets to patient groups, it may helps to determine

which biological functions are closely associated with those groups. This improves patients

embedding process and allows for a better understanding of the gene sets that play a role in

different patient populations.
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Figure 3.17: MRMR high-risk leukaemia patient embedding (a) using z-absolute anomaly
scores and (b) using raw gene expression values.

Figure 3.17a, 3.18a, and 3.18b demonstrate the MRMR patient embeddings with respect to
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z-absolute, z-square, and z-cube anomaly scores. In contrast, Figure 3.17b shows the MRMR

patients’ embedding using raw gene expression values. These visualizations support the thesis

hypothesis, suggesting that utilizing MRMR anomaly scores for patient embeddings can pro-

vide relationship between the identified clusters and biologically significant distinctions. The

clustering patterns observed when applying anomaly scores appear to be more meaningful than

those based solely on raw gene expression values.

Figure 3.17a shows leukaemia patients at high risk in a 2D representation. Each dimension

is a gene set ordered by MRMR based on z-absolute anomaly score. The figure shows two

clusters (labelled A and B). Cluster B consists entirely of non-recurrent patients. Cluster A

contains a mixture of relapsed and non-relapsed patients, but again we see that the relapsed

patients tend to be in relatively similar locations.

Figure 3.17b shows the embedding of high-risk leukaemia patients with respect to raw gene

expression values considering ranked genes using MRMR. Examining the raw gene expression

data, the figure shows that the patients are scattered and there is no evidence of clustering.

(a) (b)

Figure 3.18: MRMR high-risk patient embedding (a) using z-square anomaly score and (b)
using z-cube anomaly score.

Figure 3.18a shows leukaemia patients at high risk in a 2D representation. Each dimension is

a gene set ordered by MRMR based on z-square anomaly score. The figure shows two clusters

(labelled A and B). Cluster B consists entirely of non-relapse patients. Cluster A contains a

mixture of relapsed and non-relapsed patients, but again it can be seen that the relapsed patients
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tend to be in relatively similar locations.

Figure 3.18b shows the embedding of high-risk leukaemia patients with respect to z-cube

anomaly score considering gene sets ordered by MRMR. The figure shows two clusters (labelled

A and B). Cluster B consists entirely of non-relapse patients. Cluster A contains a mixture of

relapsed and non-relapsed patients, but again it can be seen that the relapsed patients tend to be

in relatively similar locations.
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3.4.1.5 Patient embedding with t-SNE

This section describes the results of patient mapping or embedding with t-SNE, which can

reduce the dimensions of large gene sets to highly diversified 2D gene sets. Figure 3.19a

and Figure 3.19b show patient embeddings using t-SNE based on anomaly scores. These

results suggest that there is a correlation between the observed clusters and biologically relevant

differences, which can be explained by meaningful variations in gene expression values.
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Figure 3.19: Leukaemia high-risk patient embedding for z-absolute anomaly score (a) with t-
SNE and (b) with PCA based t-SNE.

Figure 3.19a shows high-risk leukaemia patients in a 2D representation where each dimen-

sion represents a t-SNE from the z-absolute anomaly score. The figure shows three clusters for

patients with and without relapse. All clusters consist only of identical patients, i.e., there are

no mixed patients in any cluster.

Figure 3.19b shows high-risk leukaemia patients in a 2D plot where each dimension repre-

sents a PCA-based t-SNE from the z-absolute anomaly score. The figure shows three clusters

for patients with and without relapse. All clusters consist only of identical patients, i.e., there

are no mixed patients in any cluster.
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3.4.2 Comparative analysis of a proposed method and state-of-the-art methodologies

Different modified gene expression scores of the existing methods were implemented on leukaemia

gene expression data and the results of the proposed method were compared with these existing

methods. This section describes the comparative results of the proposed methods and the

existing different modified gene expression scores. The comparative analysis starts with the

Gene Fuzzy Scores (GFS) and the proposed method.
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3.4.2.1 Comparative analysis between anomaly score and gene fuzzy score

Figure 3.20a shows patient embedding for high-risk leukaemia patients with z-absolute anomaly

score using PCA. The figure shows that three different clusters were formed for both patients

with relapse and patients without relapse. Cluster A consists of four patients who did not

relapse, and clusters B and C show patients with their corresponding positions.

Figure 3.20b shows patient embedding for high-risk leukaemia patients with gene fuzzy

scores using PCA. From the figure, it can be seen that the patients are more scattered than in

Figure 3.20a.

Figure 3.21a shows patient embedding for high-risk leukemia patients with a z-score anomaly

using MRMR. The figure shows that two clusters A and B clearly show relapse and non-relapse

patients with respect to two strongly associated gene sets (SRC UP.V1 DN and ATF2 S

UP.V1 DN) in the MRMR ranking.

Figure 3.21b shows patient embedding for high-risk leukemia patients with the GFS using

MRMR in relation to gene ranking. Here, PPM1A and RAB6C are the top two genes from the

MRMR ranking. The figure shows that patients with and without relapse have a larger spread

than in figure 3.21a.
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Figure 3.20: Leukaemia patient embedding with PCA (a) using z-absolute anomaly score and
(b) gene fuzzy score.
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Figure 3.21: Leukaemia patient embedding with MRMR (a) using z-absolute anomaly score
and (b) gene fuzzy score.
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3.4.2.2 Anomaly score and feature regression and classification score

The following section compares the results between the anomaly scores of the proposed method

and the Feature Regression and Classification (FRaC) scores for leukaemia gene expression

data sets. The results show patient embedding with PCA and MRMR for high-risk leukaemia

patients.

Figure 3.22a shows patient embedding for high-risk leukaemia patients with z-absolute

anomaly score using PCA. The results are described in detail in Figure 3.20a.

Figure 3.22b shows embedding for high-risk leukaemia patients with feature regression

and classi- fication using PCA. The figure shows that the patients are more scattered than in

Figure 3.22a.

Figure 3.23a shows patient embedding for high-risk leukemia patients with z-absolute anomaly

score using MRMR. The results are described in detail in Figure 3.21a.

Figure 3.23b patient embedding for high-risk leukemia patients with feature regression and

classification using MRMR in relation to gene ranking. Here, SMAD4 and PES1 are the top

two genes from the MRMR ranking. The figure shows that the patients with and without relapse

have a larger spread than in Figure 3.23a.
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Figure 3.22: Leukaemia patient embedding with PCA (a) using z-absolute score anomaly and
(b) FRaC.
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Figure 3.23: Leukaemia patient embedding with MRMR (a) using z-absolute anomaly score
and (b) FRaC.
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3.4.2.3 Comparative analysis between anomaly score and CSAX

Patient embedding was performed using anomaly scores and CSAX gene expression scores

with PCA and MRMR. The results of this study are summarized in this section.

Figure 3.24a shows patient embedding for high-risk leukaemia patients with z-absolute

anomaly score anomaly using PCA. Figure 3.24b shows patient embedding for high-risk leukaemia

patients with CSAX using PCA. The figure shows that the patients are more scattered than in

Figure 3.24a.

Figure 3.25a shows patient embedding for high-risk leukaemia patients with z-absolute

anomaly scores using MRMR. The results are described in detail in Figure 3.21a.

Figure 3.25b shows patient embedding for high-risk leukemia patients with feature regres-

sion and classification using MRMR in relation to gene ranking. Here, SMAD4 and CDC25B

are the top two genes from the MRMR ranking. The figure shows that the patients with and

without relapse have a larger spread than in Figur 3.25a.
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Figure 3.24: Leukaemia patient embedding with PCA (a) using z-absolute anomaly score and
(b) CSAX.
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Figure 3.25: Leukaemia patient embedding with MRMR (a) using z-absolute anomaly score
and (b) CSAX.
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3.4.2.4 Comparative analysis between anomaly Score and TEMPO

This section describes an experimental evaluation between anomaly scores and TEMPO gene

expression scores. The evaluations were performed for patient embedding for high-risk leukemia

with PCA and MRMR.

Figure 3.26a shows patient embedding for high-risk leukaemia patients with z-absolute

anomaly score using PCA.

Figure 3.26b shows patient embedding for high-risk leukaemia patients with TEMPO using

PCA. The figure shows that the patients are more scattered than in Figure 3.26a.

Figure 3.27a shows patient embedding for high-risk leukemia patients with z-absolute anomaly

score using MRMR.

Figure 3.27b shows patient embedding for high-risk leukemia patients with TEMPO using

MRMR in relation to gene ranking. Here, JAK3 and THPO are the top two genes from the

MRMR ranking. The figure shows that patients with and without relapse have a larger spread

than in Figure 3.27a.
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Figure 3.26: Leukaemia patient embedding with PCA (a) using z-absolute anomaly score and
(b) TEMPO.
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Figure 3.27: Leukaemia patient embedding with MRMR (a) using z-absolute anomaly score
and (b) TEMPO.
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3.4.2.5 Comparative analysis between anomaly score and aTEMPO

This section compares the descriptions between anomaly scores and aTEMPO gene expression

scores for embedding for high-risk leukaemia patients with PCA and MRMR.

Figure 3.28a shows embedding for high-risk leukaemia patients with z-absolute anomaly

score using PCA. Figure 3.28b shows embedding for high-risk leukaemia patients using aTEMPO

gene expression scores with PCA. The figure shows that the patients are more scattered than in

Figure 3.28a.

Figure 3.29a shows embedding for high-risk leukemia patients using z-absolute anomaly

score anomaly with MRMR.

Figure 3.29b shows patient embedding for high-risk leukemia patients using aTEMPO gene

expression scores with MRMR in relation to gene ranking. Here, GO CYSTEINE and GO ACTIN

are the top two gene sets from the MRMR ranking. The figure shows that the patients with and

without relapse have a larger spread than in Figure 3.29a.
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Figure 3.28: Leukaemia patient embedding with PCA (a) using z-absolute anomaly score and
(b) aTEMPO.
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Figure 3.29: Leukaemia patient embedding with MRMR (a) using z-absolute anomaly score
and (b) aTEMPO.
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3.4.2.6 Comparative analysis between anomaly score and outlier analysis method

This section compares the descriptions between anomaly scores and outlier gene identification

scores for embedding for high-risk leukaemia patients with PCA and MRMR.

Figure 3.30a patient embedding for high-risk leukaemia patients with z-absolute anomaly

score using PCA.

Figure 3.30b shows patient embedding for high-risk leukaemia patients with outlier detec-

tion method using PCA. The figure shows that the patients are more scattered than in Fig-

ure 3.30a.

Figure 3.31a patient embedding for high-risk leukemia patients with z-absolute anomaly

score using MRMR.

Figure 3.31b patient embedding for high-risk leukemia patients with aTEMPO using MRMR

in relation to gene ranking. Here, UIMC1 and TMEM41B are the top two genes from the

MRMR ranking. The figure shows that the patients with and without relapse have a larger

spread than in Figure 3.31a.
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Figure 3.30: Leukaemia patient embedding with MRMR (a) using z-absolute anomaly score
and (b) Outliers detection approach.



158 Proposed method to understand variance in gene expression values in cancer

(a)

�����

��
��

��
�

�	�����
�
����
�

(b)

Figure 3.31: Leukaemia patient embedding with MRMR (a) using z-absolute anomaly score
and (b) Outliers detection approach.
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3.4.2.7 Comparative analysis between anomaly score and SNet

This section compares the analysis with SNet and the proposed method.

This section provides comparative descriptions between anomaly scores and SNet gene

expression scores for embedding for high-risk leukaemia patients using PCA and MRMR.

Figure 3.32a patient embedding for high-risk leukaemia patients with z-absolute anomaly

score using PCA.

Figure 3.32b shows patient embedding for high-risk leukaemia patients with SNet using

PCA. The figure shows that the patients are more scattered than in Figure 3.32a.

Figure 3.33a shows patient embedding for high-risk leukemia patients with z-absolute anomaly

score using MRMR.

Figure 3.33b shows patient embedding for high-risk leukemia patients with SNet using

MRMR in relation to gene ranking. KIAA0174 and UGT2B17 are the top two genes from

the MRMR ranking. The figure shows that the patients with and without relapse have a larger

spread than in Figure 3.33a.
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Figure 3.32: Leukaemia patient embedding with PCA (a) using z-absolute anomaly score and
(b) SNet.
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Figure 3.33: Leukaemia patient embedding with MRMR (a) using z-absolute anomaly score
and (b) SNet.
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3.4.2.8 Comparative analysis between anomaly score and PFSNet

This section summarises and discusses the main findings of patient embedding using anomaly

scores and PSFNet gene expression scores with PCA and MRMR.

Figure 3.34a shows patients embedding for high-risk leukaemia patients using z-absolute

anomaly score with principal component analysis. The results are described in detail in Fig-

ure 3.20a.

Figure 3.34b shows patients embedding for high-risk leukaemia patients with PFSNet using

PCA.

Figure 3.35a shows the patient embedding for high-risk leukemia patients using z-absolute

anomaly score with MRMR.

Figure 3.35b shows patient embedding for high-risk leukemia patients with PFSNet using

MRMR in relation to gene ranking. CNOT4 and BIN1 are the top two genes from the MRMR

ranking. The figure shows that the patients with and without relapse have no separate cluster in

contrast to Figure 3.35a.
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Figure 3.34: Leukaemia patient embedding with PCA (a) using z-absolute anomaly score and
(b) PFSNet.
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Figure 3.35: Leukaemia patient embedding with MRMR (a) using z-absolute anomaly score
and (b) PFSNet.
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3.4.2.9 Comparative analysis between anomaly score and qPSP

This section compares the descriptions between anomaly scores and qPSP gene expression

scores for embedding high-risk leukaemia patients with PCA and MRM

Figure 3.36a patient embedding for high-risk leukaemia patients with z-absolute anomaly

score using PCA.

Figure 3.36b shows patient embedding for high-risk leukaemia patients with qPSP using

PCA. The figure shows that the patients are more scattered than in Figure 3.36a.

Figure 3.37a patient embedding for high-risk leukemia patients with z-absolute anomaly

score using MRMR.

Figure 3.37b patient embedding for high-risk leukemia patients with qPSPt using MRMR

in relation to gene ranking. KRTAP1-3 and PSMC6 are the top two genes from the MRMR

ranking. The figure shows that the patients with and without relapse have no cluster.
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Figure 3.36: Leukaemia patient embedding with PCA (a) using z-absolute anomaly score and
(b) qPSP.
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Figure 3.37: Leukaemia patient embedding with MRMR (a) using z-absolute anomaly score
and (b) qPSP.
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3.4.2.10 Comparative analysis between anomaly score and Eigfusion

This section compares the descriptions between anomaly scores and Eigfusion gene expression

scores for embedding high-risk leukaemia patients with PCA and MRM

Figure 3.38a shows patients embedding for high-risk leukaemia patients with z-absolute

anomaly score using PCA.

Figure 3.38b shows patients embedding for high-risk leukaemia patients with Eigfusion

using PCA. The figure shows that the patients are more scattered than in Figure 3.38a.

Figure 3.39a shows patient embedding for high-risk leukemia patients with z-absolute anomaly

score using MRMR.

Figure 3.39b shows patient embedding for high-risk leukemia patients with Eigfusion using

MRMR in relation to gene ranking. PIAS2 and C19orf40 are the top two genes from the MRMR

ranking. The figure shows that the patients with and without relapse have no cluster.
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Figure 3.38: Leukaemia patient embedding with PCA (a) using z-absolute anomaly score and
(b) outlier detection approach for potential rearrangement.
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Figure 3.39: Leukaemia patient embedding with MRMR (a) using z-absolute anomaly score
and (b) outlier detection approach for potential rearrangement.

3.4.3 Summary of the comparative outcomes

The results derived from the anomaly score patient embeddings provide more insightful cluster-

ing patterns than those obtained using state-of- the-art scores patient embeddings. These results

reveal a relationship between the observed clusters and biologically significant changes that may

be explained by meaningful variations in gene expression levels. This highlights the importance

of the anomaly score approach in capturing the intricate relationships between patients. This

will improve our understanding of the underlying biological processes and contribute to the

progress of research in this area.



3.4. EVALUATION METHODOLOGIES AND DEMONSTRATIONS 167

3.4.3.1 Breast cancer patients embedding

Figure 3.42a shows breast cancer patients in a 2D plot where each dimension represents a prin-

cipal component from the z-absolute anomaly score. The figure shows three clusters including

cancer and healthy patients. Two clusters consist entirely of cancer patients where another

cluster includes both cancer and healthy patients.

Figure 3.40b shows the embedding of breast cancer patients, where each dimension is a

principal component of the raw gene expression values. The plot shows that fewer cancer

patients are included in the clusters when raw gene expression values are used, in contrast to

the plots based on the anomaly score (Figure 3.42a).

Figure 3.43a shows breast cancer patients in a 2D plot, and each dimension is a gene set

raked by MRMR from z-absolute anomaly score. The two highest-ranking gene sets were used

to plot patients considering cancer and healthy outcomes. The plot shows that most cancer

patients are included in two clusters, whereas others include both cancer and healthy patients.

MRMR is used on the breast cancer dataset and identified that HINATA NFKB IMMU INF

ddependent signaling pathways relate to transcriptome factors NF-kappa B showing selective

tissue effects. BCAT GDS748 DN reflects beta-catenin, which has a major impact on the

canonical Wnt signaling pathway [433, 434].

Figure 3.40b shows breast cancer patients in a 2D plot, and each dimension is a gene raked

by MRMR from raw gene expression values. The two highest-ranking genes were used to plot

patients considering cancer and healthy outcomes. The plot shows that fewer cancer patients

are included in two clusters, whereas others include both cancer and healthy patients.

Figure 3.42b shows embedding of breast cancer patients, where each dimension is a prin-

cipal component of the gene fuzzy score (GFS). The plot shows that both cancer and healthy

patients are scattered when the GFS is used, in contrast to the plots based on the anomaly

score (Figure 3.42a).

Figure 3.43b shows breast cancer patients in a 2D plot, and each dimension is a gene raked

by MRMR from GFS. The two highest-ranking genes were used to plot patients considering

cancer and healthy outcomes. The plot shows that both cancer and healthy patients are not

properly clustered when the GFS values are used, in contrast to the plots based on the anomaly

score (Figure 3.43a).
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Figure 3.40: Breast cancer patient embedding with PCA (a) for cancer and healthy patients
using z-absolute anomaly score and (b) using raw gene expression values.
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Figure 3.41: Breast cancer patient embedding with MRMR (a) for cancer and healthy patients
using z-absolute anomaly score and (b) raw gene expression values.

Breast cancer patient embedding for FRaC, CSAX, SNet, and PFSNet scores are shown in

figures 3.44a, 3.44b, 3.44c, and 3.44d, respectively. The plots based on the gene expression

scores for these approaches show that cancer and healthy patients are scattered in contrast to
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Figure 3.42: Breast cancer patient embedding with PCA (a) for cancer and healthy patients
using z-absolute anomaly score and (b) using GFS.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
HINATA_NFKB

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

BC
AT
_G

DS
74

8_
DN

normal
cancer

(a)

���� ���� ���� ���� ���� ���� ���� ����

�����

��		

��
�

��
�

��
�

��
�

��
	

����

��
�

�
��

������
�����

(b)

Figure 3.43: Breast cancer patient embedding with MRMR (a) for cancer and healthy patients
using z-absolute anomaly score and (b) gene fuzzy scores.

the plots based on the anomaly score (Figure 3.42a). Similarly, Figures 3.44e, 3.45a, and 3.45b

show the embedding of breast cancer patients for qPFS, outlier detection and EIgfusion. When

the adjusted gene expression data from these methods are applied, the distributions of cancer
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and healthy patients were more scattered.
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Figure 3.44: Breast cancer patient embedding for (a) FRaC, (b) CSAX, (c) SNet, (d) PFSNet, and (e) qPFS scores using PCA.
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(a) (b)

Figure 3.45: Breast cancer patient embedding for (a) outlier detection and (b) protein
rearrangement using PCA.
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3.4.3.2 Colon cancer patients embedding

Figure 3.48a shows colon cancer patients (CRC and IBD) in a 2D plot where each dimension

represents a principal component from the z-absolute anomaly score. The figure shows that

both IBD and CRC patients form relatively good clusters for anomaly scores.

Figure 3.46b shows colon cancer patients (CRC and IBD) in a 2D plot where each dimension

represents a principal component from the raw gene expression values. The figure shows that

both IBD and CRC patients form relatively poor clusters for raw gene expression values.

(a) (b)

Figure 3.46: Colon cancer patient embedding with PCA (a) for IBD and CRC patients using
z-absolute anomaly score and (b) raw gene expressions values.

Figure 3.49a shows colon cancer patients (CRC and IBD) in a 2D plot where each dimension

represents a gene set ranked by MRRM using the z-absolute anomaly score. The figure shows

that both IBD and CRC patients form relatively good clusters for anomaly scores.

Figure 3.47b shows colon cancer patients (CRC and IBD) in a 2D plot where each dimension

represents a gene set ranked by MRRM using the raw gene expression values. The figure shows

that both IBD and CRC patients form relatively poor clusters for raw gene expression values.

Figure 3.48b shows the embedding of colon cancer patients, where each dimension is a

principal component of the gene fuzzy score (GFS) values. The plot shows that both CRC and

IBD patients are scattered when raw gene expression values are used, in contrast to the plots
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Figure 3.47: Colon cancer patient embedding with MRMR (a) for IBD and CRC patients using
z-absolute anomaly score and (b) raw gene expressions values.

based on the anomaly score (Figure 3.48a).

Figure 3.49b shows colon cancer patients in a 2D plot, and each dimension is a gene raked by

MRMR from GFS values. The two highest-ranking genes are used to plot patients considering

IBD and CRC outcomes. The plot shows that both IBD and CRC patients are scattered when the

gene fuzzy scores are used, in contrast to the plots based on the anomaly score (Figure 3.49a).

Colon cancer patient embedding for FRaC, CSAX, SNet, PFSNet, qPFS, outlier detection

and EIgfusion scores are shown the figures 3.44a, 3.44b, 3.44c, 3.44d, 3.44e, 3.45a, and 3.45b

respectively. The plots based on the gene expression scores for these approaches show that

both the CRC and adenoma patients are scattered in contrast to the plots based on the anomaly

score(Figure 3.48a).
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Figure 3.48: Colon cancer patient embedding with PCA (a) for IBD and CRC patients using
z-absolute anomaly score and (b) using GFS.
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Figure 3.49: Colon cancer patient embedding with MRMR (a) for IBD and CRC patients using
z-absolute anomaly score and (b) using GFS.
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Figure 3.50: Colon cancer patient embedding for (a) FRaC, (b) CSAX, (c) SNet, (d) PFSNet, and (e) qPFS scores using PCA.



3.4. EVALUATION METHODOLOGIES AND DEMONSTRATIONS 177

(a) (b)

Figure 3.51: Colon cancer patient embedding for (a) outlier detection and (b) protein
rearrangement using PCA.
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3.4.3.3 Adrenal cancer patients embedding

Figure 3.54a shows adrenal cancer patients in a 2D plot where each dimension represents

a principal component from the z-absolute anomaly score. The figure shows two clusters

including adrenal carcinoma and adrenal adenoma patients. One cluster consists entirely of

adenoma patients whereas the other cluster includes carcinoma patients.

Figure 3.52b shows the embedding of adrenal cancer patients, where each dimension is a

principal component of the raw gene expression values. The plot shows that both adenoma and

carcinoma patients are scattered when the raw gene expression values are used, in contrast to

the plots based on the anomaly score (Figure 3.54a).

Figure 3.55a shows adrenal cancer patients in a 2D plot, and each dimension is a gene set

raked by MRMR from z-absolute anomaly score. The two highest-ranking gene sets are used

to plot patients considering adenoma and carcinoma outcomes. The plot shows that adenoma

and carcinoma patients are separated into two areas. This thesis hypothesizes that the clusters

relate to biologically relevant distinctions that can be derived from gene expression values.

MRMR is used on the adrenal cancer dataset and identified that CAHOY ASTROCYTIC de-

pendent signaling pathways relate to glial cells of the nervous system [435]. On the other hand,

human malignancies with KRAS mutations tend to be aggressive and resistant to traditional

therapies [436].

Figure 3.53b shows adrenal cancer patients in a 2D plot, and each dimension is a gene

raked by MRMR from raw gene expression values. The two highest-ranking genes were used

to plot patients considering cancer and healthy outcomes. The plot shows that both adenoma

and carcinoma patients are scattered when the raw gene expression values are used, in contrast

to the plots based on the anomaly score (Figure 3.55a).

Figure 3.54b shows the embedding of adrenal cancer patients, where each dimension is a

principal component of the GFS values. The plot shows that both adenoma and carcinoma

patients are scattered when the GFS is used, in contrast to the plots based on the anomaly

score (Figure 3.54a).

Figure 3.55b shows adrenal cancer patients in a 2D plot, and each dimension is a gene

raked by MRMR from GFS values. The two highest-ranking genes are used to plot patients

considering cancer and healthy outcomes. The plot shows that both adenoma and carcinoma
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Figure 3.52: PCA Adrenal cancer patient embedding (a) for adrenal carcinoma and adrenal
adenoma patients using z-absolute anomaly score (b) using raw gene expression values.
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Figure 3.53: MRMR Adrenal cancer patient embedding (a) for adrenal carcinoma and adrenal
adenoma patients using z-absolute anomaly score (b) using raw gene expression values.

patients are not clustered when the GFS values are used, in contrast to the plots based on the

anomaly score (Figure 3.55a).
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Figure 3.54: PCA Adrenal cancer patient embedding (a) for adrenal carcinoma and adrenal
adenoma patients using z-absolute anomaly score (b) GFS.
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Figure 3.55: MRMR Adrenal cancer patient embedding (a) for adrenal carcinoma and adrenal
adenoma patients using z-absolute anomaly score (b) using GFS.
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Figure 3.56: Adrenal cancer patient embedding for (a) FRaC, (b) CSAX, (c) SNet, (d) PFSNet, and (e) qPFS scores using PCA.
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(a) (b)

Figure 3.57: Adrenal cancer patient embedding for (a) outlier detection and (b) protein
rearrangement using PCA.

Adrenal cancer patient embedding for FRaC, CSAX, SNet, PFSNet, qPFS, outlier detec-

tion and EIgfusion scores are shown in figures3.56a, 3.56b, 3.56c, 3.56e, 3.57a, and 3.57b

respectively The plots based on the gene expression scores for these approaches show that both

adenoma and carcinoma patients are scattered in contrast to the plots based on the anomaly

score (Figure 3.54a).

3.4.3.4 Discussion for patients embedding

The thesis hypothesized that the patient clusters could be explained by differences in the levels

of gene expression that are biologically significant. The outcomes by gene set anomaly score

support that this thesis made proper alignment with its assumptions. The results that were

presented above on patient embedding tested a hypothesis. This hypothesis posited that careful

integration of gene expression values into gene set anomaly scores would make it possible to get

useful insights from an investigation of gene expression data. Comparative outcomes between

the proposed method and raw gene expression values and state-of-the-art methodologies show

that gene set anomaly scores performed distinct clustering than state-of-the-art methodologies.
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3.4.4 Expression anomaly distribution analysis

This thesis also used a histogram to evaluate anomaly distribution on various patient groups,

including high-risk relapse patients, high-risk non-relapse patients, medium-risk relapse pa-

tients, medium-risk non-relapse patients, standard-risk relapse patients, and standard-risk non-

relapse patients. Figure 3.58 shows data flow for anomaly distribution. The figure shows that

anomaly scores were applied to a histogram, resulting in different distributions for different

patient groups.

Anomaly scores Histogram plott ing

Comparative outcomes

Figure 3.58: A data flow diagram for patient groups anomaly distribution.

The distribution of anomaly scores conditioned on three classes of profiles, (1) healthy, (2)

relapse, and (3) non-relapse is investigated. The latter two classes relate to patients with an

ALL diagnosis and their response to treatment.

The aim is to test whether anomaly scores potentially provide discriminating information

using histogram plots.

Anomaly distribution analysis aims to determine if anomaly scores offer valuable insights

through histogram plots by examining the distribution of scores based on three profile classes:
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(1) healthy, (2) relapse, and (3) non-relapse. This stark difference between patients who had

different clinical outcomes highlights possible novel insights about childhood leukaemia. The

presence of a discrete gene sets and not a general transition for all gene sets to develop imbal-

anced gene expression activity indicated mechanisms are active in patients that may confer a

survival signal as they associate with any patient who does not relapse during therapy regard-

less of risk stratification. This may reflect the presence of a unique clonal sub-population in

these patients. Alternatively, these gene sets represent specific molecular mechanisms, such as

apoptosis pathways that promote leukaemic cell sensitivity, that remain active at diagnosis and

subsequently facilitate the effect of chemotherapy. This thesis considers that the examination of

anomaly scores had drawn out different relationships in the data not previously identified, the

prognostic significance of which warrants further exploration.
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3.4.4.1 Results for anomaly distributions

Experimental setup:

1. Technology: Histogram.

2. Python packages: NumPy, pandas, matplotlib , and seaborn.

3. Input: Anomaly scores for leukaemia data sets.

This thesis seeks to understand how anomaly scores may change, conditioned on whether a

cancer patient relapsed or not. Hence, a histogram of anomaly scores was plotted under the two

conditions (Figure 3.59a and Figure 3.59b).

In general, it can be seen that the distribution of anomaly scores for relapsed patients is

largely unimodal (Figure 3.59a), except for a much smaller secondary mode. Conditioning the

distri- bution on the patients’ risk stratification, it can be seen that the secondary mode comes

from medium risk patients (Figure 3.59e). In contrast, it can be seen that for non-relapsed

patients, the anomaly scores are distinctly bimodal.
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Figure 3.59: Anomaly distribution on (a) relapse patients, (b) non-relapse, (c) standard
relapse, (d) standard non-relapse, (e) medium relapse, (f) medium non-relapse, (g) high

relapse, and (h) high non-relapse.
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3.4.4.2 Discussion on anomaly distribution

This stark difference between patients who had different clinical outcomes suggests possi-

ble novel insights about childhood leukaemia. This thesis considers that the examination of

anomaly scores indicates relationships in the data not previously identified, the prognostic

significance of which warrants further exploration.

Multiple patient groups are evaluated in order to understand the variance of the anomaly

distribution between them. These patient groups are relapse, non-relapse, high-risk relapse,

high-risk non-relapse, medium-risk relapse, medium-risk non-relapse, standard-risk relapse,

and standard-risk non-relapse. It can be seen from the distributions that non-relapse patients

have two peaks in contrast to patients with relapse patients. This thesis hypothesises that more

gene sets try to survive in non-relapse patients than in relapse patients.
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3.4.5 k-means clustering

k-means [437] clustering algorithm is used to validate patient embedding, which is plotting

patients into a two-dimensional space with respect to gene sets or principal components. The

k-means algorithm works as follows.

1. Specify the number of clusters.

2. Initialise the centers from the patient’s anomaly score and randomly select the centers for

all patients.

3. Calculate the distance between the patient’s anomaly score and all centers.

4. Assign each patient to the nearest cluster.

k-means cluster applies an expectation maximisation method which has an E-step and M-step,

where the E-step assigns profiles to the nearest clusters and the M-step computes the centroid

for each cluster. The objective function (F ), which is the sum of squares of distances of each

data point optimized by the k-means cluster is as follows.

F =
m∑
i=1

n∑
j=1

wij

∥∥di − cj
∥∥2 (3.8)

where di = each patient profile, n is number of clusters, and wij is an indicator variable which

indicates whether a profile is exists in the cluster or not.

If profiles di belong to cluster n, then wij =1 else the value of wij is 0 and ck is the centroids

of di clusters.

The E-steps for selecting the closest clusters can be described by following equation.

∂F

∂wij

=
m∑
i=1

n∑
j=1

wij∥di−cj∥2 wij =


1 if k = argminj ∥di − cj∥

2

0 otherwise

(3.9)

Patients di were assigned to the closest cluster as judged by the sum of the distance from the

cluster’s centroid. M-step is described as:
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∂F

∂cj
= 2

m∑
i=1

wij∥di−cj∥=0 (3.10)

M-step selects the new centroid for each cluster to reflect the new cluster operation. M-step

helps to achieve a better cluster for all patients.
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3.4.5.1 Results of k-means clustering

Experimental setup

1. Technology: k-means clustering algorithm, confusion matrix,classification report.

2. Python packages: NumPy, pandas, sklearn.cluster, and sklearn.metrics.

3. Input data: Anomaly scores for all four cancer data sets and scores for all state-of-the-art

methodologies.

This section discusses the results of k-means clustering with anomaly scores and analyze

how these results compare to other state-of-the-art methodologies.

The k-means clustering algorithm is used to analyze the accuracy of patient embedding

provided by anomaly scores and state-of-the-art approaches for leukemia, colon, and adrenal

cancer patients, respectively. Results of the clustering performed on these four data sets are

presented in Table 3.1, together with the anomaly scores and state-of-the-art methods used.

The performance of clustering is evaluated using precision, recall, accuracy, and f-measure

evaluation metrics, as well as the following rates: true positive (TP), false positive (FP), true

negative (TN), and false negative. It is said to be a true positive rate if all patients who relapse

belong to the same cluster. Conversely, if patients who do not relapse are grouped together, this

is considered a true negative result. When a cluster has a combination of different classes, either

the rate of false positives or false negatives is increased.
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Table 3.1: k-means clustering performance evaluation for proposed method and state-of-the-art
approaches.

Methods Leukaemia Colon cancer Breast cancer Adrenal cancer
Anomaly
score

z-absolute 75.10% 54.72% 69.84% 92.31%
z-square 84.72% 98.89 % 88.37% 55.91%
z-cube 84.03% 97.92% 88.37% 55.91%

GFS score 43.75% 50.94% 69.84% 55.38%
FRaC score 48.84% 35.56% 58.14% 56.25%
CSAX score 48.84% 35.56% 58.14% 56.25%

TEMPO score 49.67% 36.73% 59.32% 57.10%
aTEMPO score 57.32% 39.35% 60.42% 61.23%
Outlier score 43.75% 49.06% 30.16% 46.20%
SNet score 43.75% 30.19% 30.16% 46.15%

PFSNet score 43.75% 30.19% 69.84% 50.77%
qPFS score 43.75% 30.19% 30.16% 46.15%

Eigfusion score 43.75% 30.19% 30.16% 46.20%
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3.4.5.2 Discussion on k-means clustering

According to the table, the clustering accuracy of the proposed method is 75.10% for leukaemia

data sets with z-absolute anomaly score, which is a higher percentage than state-of-the-art

methods. Accuracy is achieved by using state-of-the-art methods such as GFS (43.75%), FRaC

(48.84%), CSAX (48.84%), TEMPO (49.67%), aTEMPO (57.32%), outlier detection (43.75%),

SNet (43.75%), PFSNet (43.75%), qPSP (43.75%), and Eigfusion (43.75%). However, patient

embedding for these state-of-the-art approaches shows far weaker clustering than their numeri-

cal precision would suggest.

In the colon cancer dataset, z-absolute anomaly scores improved clustering accuracy by

54.72%. In addition, the accuracy of the z-square and z-cube anomaly scores is 98.89% and

97.92%, respectively. In contrast, state-of-the-art methods such as GFS, FRaC, CSAX, TEMPO,

aTEMPO, outlier detection, SNet, PFSNet, qPSP, and Eigfusion display comparatively lower

accuracies. Specifically, GFS achieves 50.94%, while FRaC and CSAX both register a 35.56%

accuracy. TEMPO delivers a slightly higher 36.73% accuracy, with aTEMPO at 39.35%.

Outlier detection reaches 49.06%, while SNet, PFSNet, qPSP, and Eigfusion all achieved a

30.19% accuracy.

For the breast cancer datasets, the proposed z-absolute anomaly scores show an improve-

ment in clustering accuracy and achieved a success rate of 69.84%, outperforming traditional

state-of-the-art methods. Moreover, the z-square and z-cube anomaly scores achieved even

higher accuracy, both reaching 88.37%. In comparison, state-of-the-art methods such as GFS,

FRaC, CSAX, TEMPO, aTEMPO, outlier detection, SNet, PFSNet, qPSP, and Eigfusion achieved

lower accuracy. GFS and PFSNet both achieved 69.84% accuracy, while FRaC and CSAX

achieve 58.14% accuracy. TEMPO achieved a slightly higher accuracy of 59.32%, while

aTEMPO achieved 60.42%. Outlier detection, SNet, qPSP and Eigfusion all had significantly

lower accuracy of 30.16%. In conclusion, the proposed z-absolute, z-square, and z-cube anomaly

scores represent an improvement in clustering accuracy for breast cancer datasets when com-

pared with existing state-of-the-art methods.

In the adrenal cancer dataset, the proposed z-absolute anomaly scores achieved a clustering

accuracy of 92.31%. However, the z-squared and z-cube anomaly scores have lower accuracy in

this case, both reaching 55.91%. In comparison, state-of-the-art methods such as GFS, FRaC,

CSAX, TEMPO, aTEMPO, outlier detection, SNet, PFSNet, qPSP, and Eigfusion achieved
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lower accuracy. GFS achieved 55.38% accuracy, while FRaC and CSAX both achieved 56.25%

accuracy. TEMPO provided slightly higher accuracy of 57.10%, while aTEMPO achieved

61.23%. Outlier detection and Eigfusion achieved 46.20% accuracy, while SNet and qPSP

both achieve 46.15% accuracy. PFSNet achieved an accuracy of 50.77%.
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3.5 Complexity analysis

Complexity analysis is an approach used to measure the performance of an algorithm. It exam-

ines the amount of time and memory (or space) an algorithm requires to solve a problem [438].

This approach provides an overview of how the algorithm works in three distinct scenarios

such as best, worst, and average cases [439]. Special symbols are used to express the time and

space complexity of an algorithm. These symbols are Big O (pronounced “big oh”), Big Ω

(pronounced “big omega”), and Big Θ (pronounced “big theta”). Big Ω (big omega) represents

the best-case scenario, which is the minimum time that an algorithm might take, Big Θ (big

Theta) represents the average case scenario, which indicates the average time required by an

algorithm. Big O (big O) represents the worst-case scenario, which is the maximum time

required by an algorithm [440]. Time complexity is measured with respect to processing time

an algorithm requires, while space complexity is determined by the quantity of memory the

algorithm needs [441].

Further more, run time refers to the time an algorithm takes to execute, usually measured by

the number of basic operations it performs [442].

• Big O: Big O notation is used to show the maximum growth rate of an algorithm’s time

or space complexity. The equation for Big O notation is:

f (n) = O (g (n)) (3.11)

Here f(n) describes the time or space complexity of the algorithm based on the input

size n. The g(n) represents the maximum growth rate of the algorithm as the input size

increases.

• Big Ω : Big Ω notation is used to show the minimum growth rate of an algorithm’s time

or space complexity. It is written as f(n) = Ω(g(n)). Here, f(n) describes the time

or space complexity of the algorithm based on the input size n. The g(n) represents the

minimum growth rate of the algorithm as the input size increases.

• Big Θ: Big Θ notation is used to show the tight bound of the growth rate of an algorithm’s

time or space complexity. It is written as f(n) = Θ(g(n)). This means that f(n) grows

at the same rate as g(n) as n becomes large, up to a constant factor.
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This thesis provides an overview of the time and space complexity of different approaches to

generate anomaly scores such as z-absolute score, z-square and z-cube. In addition, this thesis

analyzes the time and space complexity of PCA and MRMR for patient embedding.

3.5.1 Time complexity for z-absolute anomaly score

This thesis assesses the time and space complexity of the z-absolute score, z-square, and z-cube

anomaly approaches. Time complexity of the z-absolute anomaly score is shown in table 3.2.

The table shows a loop at the second step, line 2, that iterates over all patients (n) to calculate

their z-score values. A ‘loop’ refers to a process that repeats itself until a certain condition is

met. The time complexity of this loop is O(n). Lines 4 and 5 contain nested loops, which

are loops inside another loop. These nested loops iterate over the genes (r) and different gene

sets (m) for each patient, aligning the patient’s genes with the genes in the gene sets. The time

complexity for this part of the process is O(mr).

From the table it can be seen that the second step of the process, line 2, is a loop. A loop is

like a cycle, going over and over again until it is completed with respect to a condition. In this

case, it’s going over all patients (n) to determine their z-score value. The time complexity for

this loop is O(n). This means that the more patients we have, the longer it may take. In lines

4 and 5 of the process involve two loops inside each other, which is called nested loops. These

loops go through the genes (r) and the different gene sets (m) of each patient. These loops

match the genes of each patient with the genes in the gene sets. The time complexity for this

part is O(mr). This means it might take longer the more genes and gene sets we have. Finally,

line 8, is another loop that goes over each gene set (m) to calculate the anomaly score. The time

complexity for this step is O(m). So, the total time complexity the z-absolute anomaly score

evaluation is O(mnr +mn) = O(mnr) (Equation 3.12)
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∑n
1 (
∑m

1 O(r)) + O(r)

n ∗ (m ∗O(r)) + O(r)

n ∗ (O(mr) +O(r)

O (mnr) +O(nr)

O (mnr + nr)

O (mnr)

(3.12)

Table 3.2: Time and space complexity analysis for z-absolute anomaly score.

Statements Description Complexity
Overall

complexity
# Create a matrix of anomaly scores.
1. anomalies = np.zeros((num patients,
self.num of genesets),dtype=np.float)
2. for patient index, (patient, row) in enumerate
(z scores.iterrows()):
3. counts = np.zeros(self.num of genesets,
dtype=np.int)

Apply a loop on each patient to
access the z-score value. We
consider n number of patients over
the z-score values.

O(n)
O(nmr+nr)

4. for gene id, z score in zip(gene ids, row):
5. for geneset index in self.geneset map.get(gene id, ()):
6 .anomalies[patient index, geneset index] += z score
7. counts[geneset index] += 1

Apply nested two loops to match
the genes (m) with geneset’s (r) genes
to sum z-scores.

O(mr)

8. for geneset index in range(self.num of genesets):
9. count = counts[geneset index]
10. if count >0:
11. anomalies[patient index, geneset index] /= count

Apply a loop to calculate anomaly
scores for each genesets (r).

O(r)

3.5.2 Space complexity analysis for z-absolute anomaly score

The space complexity of z-absolute anomaly score is: O(r), because memory space depends

on the r-number of genes in micro-array data. If the number of genes in the micro-array data

then more bits occupied for the data.

The time complexity of z-square and z-cube are similar as z-score approach. Because total

number of nested loops of z-square and z-cube are similar as z-score. So the time and space

complexity of both z-square and z-cube are O(mnr +mn) and O(r) respectively.
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3.5.2.1 Time and space complexity for PCA patients embedding

The time complexity of PCA depends on the most common approach is to use a singular value

decomposition (SVD) of the data matrix [443]. This thesis includes a data matrix of size n

(number of patients) × d (number of gene sets). The time complexity of computing the SVD,

and hence the PCA, is typically O(n · d2) if n > d, or O(d · n2) if d > n. Table 3.3 represents

time complexity for PCA. Line 2, covariance matrix generated for the dimension (gene sets,

m) over the data points (patients, n). Since the covariance between gene sets is checked, the

time complexity is O(m2) for the gene sets. Thus, the time complexity is O(m2n). Line 4 uses

the calculation of eigenvalues from the covariance matrix for the gene sets (m), and the time

complexity is O(m3). Thus, the time complexity of the PCA is O(m2n+m3).

The space complexity is O(m). The PCA operation is performed on the anomaly scores

over the genesets and the memory requirement depends on the total number of genesets. In

different geneset families (e.g., C5, C6, etc.), there is a different number of genesets. When the

number of genesets increases, the memory required by the PCA method also increases.

Table 3.3: Time complexity for PCA.

Statements Description Complexity Overall

Complexity
1.dfmt=dfm.transpose().

2.co1=np.cov(dfmt).

3.np.shape(co1).

Covariance matrix gener-

ated on genesets (m) and

patients (n). Here m*m co-

variance matrix generated

on n-number of patients.

O(m2n)

4.eigen vals,

eigen vecs=np.linalg.eig(co1)

5.tot=float(sum(eigen vals)).

The PCA complexity also

depends on eigen value

generation for genesets

(m).

O(m3) O(m2n+m3)
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3.5.2.2 Time and space complexity for MRMR patients embedding

This thesis analyzes the time and memory requirements of the MRMR for patients embedding

with respect to their anomaly scores. The time complexity of MRMR is presented in Table 3.4.

Table 3.4 represents step by step descriptions to estimate the time required. First, the

entropy, which is a measure of disorder or randomness, is calculated for each patient. In line

1, this process is repeated for each patient. Thus, if there are n patients, the time required is

proportional to n (we call this O(n)).

in lines 4 and 6, there are two loops, one inside the other, that go through both the gene

sets (m) and the patients (n) and perform another entropy calculation for each combination of

gene set and patient. This part of the process takes time proportional to the product of m and n

(which we refer to as O(mn)). Equation 3.13 shows how we calculate the total time required

by MRMR.

In line 8, this thesis calculates the mutual information for each set of genes. This is done in

a loop that passes through each gene set so that the time required is proportional to the number

of gene sets, m (or O(m)).

Finally, in lines 10 and 12, nested loops are run to calculate the joint entropy, a kind of

combined measure of randomness, over m times the number of gene sets and n times the number

of patients. Again, the time required is proportional to m times n (or O(mn)).

When you add it all up, the total time required by MRMR is proportional to the product of

the number of gene sets and the number of patients (O(mn)), and the total memory required

is proportional to the number of gene sets (O(m)). This is because the memory required by

MRMR is directly dependent on the total number of gene sets.

TC = TC loop1 + TC loop2&TC loop3 + TC loop4 + TC loop5&TC loop6

= O(n) +O(mn) + O(m) +O(mn) + O(mn)

= O(mn)

(3.13)



3.5. COMPLEXITY ANALYSIS 199

Table 3.4: Time complexity analysis for MRMR.
Statements Description Complexity Overall complexity
1.for i in range(n[1]): Apply a loop to calcu-

late entropy for patient
(n) based on gene sets

O(n)

O(mn)

2.entr x by y = dft / py[i]
3.row sum = []
4.for i in range(n[0]): Apply nested two loops

to sum the entropy for
each genesets (m) with
corresponding all gene-
sets (n).

O(mn)

5.s = 0
6.for j in range(n[1]):
7.s = s + dft.iloc[i, j]
8.for i in range(n[0]): Apply a loop to H-value

for each genesests (m)
O(m)

9.e = -(row sum[i] *
math.log1p(abs(row sum[i])))
10.for i in range(n[0]): Apply two nested loops

to calculate joint en-
tropy of genesets (m)
over the all patients (n).

O(mn)

11.e = 0
12.for j in range(n[1]):
13.p x y = entr x by y.iloc[i,
j]
14.p = dft.iloc[i, j]
15.if p ¿ 0:
16.e += -(p *
math.log1p(abs(p x y)))

3.5.3 Run time memory usage

Run time memory usage refers to the amount of memory a computer program uses while it is

running. This includes the memory used by the program itself, as well as any data structures

and variables it creates and stores in memory during execution [444, 445].

Run time memory usage is a valuable consideration in the development of software applica-

tions, especially those that are memory-intensive or are intended to run on devices with limited

memory resources. Run time memory usage controls the following two computing factors:

• Performance: The amount of memory used by an application at run time can have a

significant impact on its performance. Applications that use too much memory may

become slow and unresponsive, while those that use too little memory may not be able

to handle large data sets efficiently. Optimizing run time memory usage can improve
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application performance and ensure that it runs smoothly.

• Resource management: Memory is a finite resource, and applications that use too much

memory can cause other applications to run slowly or crash. Optimizing runtime memory

usage helps to ensure that an application does not use more memory than it needs, freeing

up resources for other applications.

This thesis measures the run time memory usages for generating anomaly scores as well as

PCA and MRMR methods patients embedding. This thesis considers memory profiling, which

is the process of analyzing a program’s memory usage to identify any memory-related issues

such as memory leaks, excessive memory consumption, and inefficient memory usage [446].

Memory profiling involves measuring the memory usage of a program at different points in its

execution, and analyzing the data collected to identify potential problems.

The run time memory usage for z-score anomaly approach described in table 3.5, where it

can be seen that the occupied memory allocation in mebibyte (MiB) unit. A Mebibyte (MiB) is

a unit of digital information storage used to denote the size of data. It is equivalent to 1,048,576

bytes, or 1,024 Kibibytes (KiB) [447]. This term was defined by the International Electrotech-

nical Commission (IEC) to clarify the difference between the metric and binary interpretations

of the units kilobyte, megabyte, and gigabyte [448]. Previously, the term “megabyte” (MB) was

used ambiguously to refer to either 1,000,000 bytes (in accordance with the metric system) or

1,048,576 bytes (in accordance with the binary system), causing confusion.

Moreover, this thesis also represented the memory usages for PCA and MRMR patients

embedding in table 3.6 and table 3.7.
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Table 3.5: Run time memory usages for z-absolute anomaly anomaly.

Line Contents
Memory usage

(MiB)
Increment

(MiB)
self.mean = train data.mean() 252.1 MiB 1.8 MiB
self.std = train data.std() 252.5 MiB 0.4 MiB
num patients = train data.shape[0] 252.5 MiB 0.0 MiB
z scores = (abs(train data - self.mean) /
self.std)

268.8 MiB 16.4 MiB

gene ids = train data.columns 268.8 MiB 0.0 MiB
anomalies = np.zeros((num patients,
self.num of genesets), dtype=np.float)

269.0 MiB 0.1 MiB

for patient index, (patient, row) in
enumerate(z scores.iterrows()):

269.0 MiB 1.1 MiB

counts = np.zeros(self.num of genesets,
dtype=np.int)

269.0 MiB 1.1 MiB

for gene id, z score in zip(gene ids, row): 269.0 MiB 25016.1 MiB
for geneset index in self.geneset map.get
(gene id, ()):

269.0 MiB 71721.0 MiB

anomalies[patient index, geneset index] +
= z score

269.0 MiB 46706.0 MiB

· 1 Mebibyte (MiB) = 1,048,576 bytes
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Table 3.6: Run time memory usage for PCA.

Line Contents
Memory usage

(MiB)
Increment

(MiB)
l = np.shape(df input) 199.3 MiB 0.0 MiB
dfm = df input 199.3 MiB 0.0 MiB
for i in range(l[1]): 199.3 MiB 0.0 MiB
mean = df input.iloc[:, i].mean() 199.3 MiB 0.0 MiB
dfm.iloc[:, i] -= mean 199.3 MiB 0.0 MiB
dfmt = dfm.transpose() 199.3 MiB 0.0 MiB
co1 = np.cov(dfmt) 200.1 MiB 0.8 MiB
np.shape(co1) 200.1 MiB 0.0 MiB
eigen vals, eigen vecs = np.linalg.eig(co1) 200.1 MiB 1.5 MiB
tot = float(sum(eigen vals)) 200.1 MiB 0.0 MiB
var exp = [(float(i) / tot) * 100 for i in eigen vals] 200.1 MiB 0.0 MiB
cum var exp = np.cumsum(var exp) 200.1 MiB 0.0 MiB
eigen pairs = [(np.abs(eigen vals[i]),
eigen vecs[:, i])for i in range(len(eigen vals))]

200.1 MiB 0.0 MiB

eigen pairs.sort(key=lambda k: k[0],
reverse=True)

200.1 MiB 0.0 MiB

w = np.hstack((eigen pairs[0][1][:, np.newaxis],
eigen pairs[1][1][:, np.newaxis]))

200.1 MiB 0.0 MiB

emb = df input.dot(w) 202.1 MiB 0.5 MiB
return emb 202.1 MiB 0.0 MiB

1 Mebibyte (MiB) =1,048,576 bytes
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Table 3.7: Run time memory usage for MRMR.

Line Contents
Memory usage

(MiB)
Increment

(MiB)
dft = X.transpose() 235.7 MiB 0.0 MiB
n = dft.shape 235.7 MiB 0.0 MiB
px = dft.sum(axis=1, skipna=True) 235.7 MiB 0.0 MiB
py = dft.sum(axis=0, skipna=True) 235.7 MiB 0.0 MiB
for i in range(n[1]): 236.1 MiB 0.0 MiB
entr x by y = dft / py[i] 236.1 MiB 0.3 MiB
for j in range(n[1]): 236.1 MiB 0.0 MiB
s = s + dft.iloc[i, j] 236.1 MiB 0.1 MiB
for j in range(n[1]): 236.1 MiB 0.0 MiB
p x y = entr x by y.iloc[i, j] 236.1 MiB 0.0 MiB
for j in range(n[0]): 236.1 MiB 0.0 MiB
s = s + dft.iloc[j, i] 236.1 MiB 0.0 MiB
Mi h x s = h x s - joint entp mutual 236.1 MiB 0.0 MiB
avg mi xs = Mi h x s.mean() 236.1 MiB 0.0 MiB
mrmr = Mi h x - avg mi xs 236.1 MiB 0.0 MiB
gene frame = pd.concat([geneset, mrmr frame],
axis=1)

236.2 MiB 0.1 MiB

mrmr id = gene frame.index.values 236.3 MiB 0.1 MiB
GS1 = mrmr id[0] 236.3 MiB 0.0 MiB
GS2 = mrmr id[1] 236.3 MiB 0.0 MiB
return GS1,GS2 236.3 MiB 0.0 MiB
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3.6 Conclusion

This thesis hypothesized that the careful aggregation of gene expression values into gene set

anomaly scores would enable insights to be gleaned from the data analysis of gene expression

profiles. A number of techniques for this purpose have been described and it has been shown

that even simple methods such as using z-absolute anomaly score of gene expression values

to measure variation and finding the arithmetic mean of the variations for each gene set are

sufficient to provide an advantage over the direct processing of gene expression values.

The analysis of gene expression data from cancer patients was put through its paces using

the proposed method, which was applied across four separate data sets. In particular, anomaly

scores, followed by either PCA or MRMR, rendered clusters of cancer patient data visible in

scatter plots. These clusters appear to be grouped with similar patient cohorts. Additionally,

MRMR was able to identify prospective gene sets that have consequences that were important to

biology. On the other hand, when the raw gene expression values and state-of-the-art methods

were analyzed, biologically significant patterns could not be seen. The results of using k-means

clustering compared to all existing state-of-the-art methods and my proposed approach also

reflect the visualization of patient embedding.

When the patients who had relapsed were compared to those who had not, it was found that

there was a distinct difference in the distribution of anomaly scores. Distributions for patients

who had not experienced relapse displayed a substantial second mode. This raises the possibility

of a fascinating difference that can be utilised in the quest for improved treatment.

This idea leads this thesis to conclude that gene set anomaly scores offers to gain insights

from gene expression data. Utilising gene sets provides a tool that is knowledge-driven, which

may then be paired with an analysis that is data-driven. This thesis proposes a new method

of analysis as well as new directions for gaining an understanding of the genetic factors that

contribute to disease.



Chapter 4

Interpretation of machine learning outcomes on

disease analysis

“Negative results are just what I want. They’re just as valuable to me as positive results. I can

never find the thing that does the job best until I find the ones that don’t.” — Thomas A. Edison

4.1 Introduction

This chapter focuses on two goals. The first goal of this chapter is to explain how predictive

models and anomaly scores were used to investigate a patient’s health status. This thesis

is interested in capturing information about genes or gene sets associated with predicting a

medical condition of a patient. In general, a predictive model predicts a status of an instance

and produces accuracy. However, when it comes to making medical decisions, predicting a

medical status and being right about it may not be enough to give confidence to the user and

medical professionals.

In addition to the accuracy and prediction of medical status, this thesis focused on inter-

pretability and explainability to understand the prediction mechanisms and features associated

with a prediction.

Therefore, this thesis investigates how XAI approaches can be used to predict a patient’s

medical condition and learn more about it. XAI approaches provide interpretability and explain-

ability for the prediction decision process and identify the features associated with a prediction.

205
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The second goal of this chapter is to present that the proposed anomaly score identifies novel

gene sets in contrast to GSEA and state-of-the-art approaches.

4.2 Overview of the chapter

“Omics” data sets such as genomics, proteomics and metabolomics create large-scale gene

expressions that help researchers learn more about diseases like cancer. In data-driven analysis,

there has been growing interest in the use of predictive models and deep learning to enhance

the accuracy of decision making in healthcare and medical data analysis. In addition, exist-

ing artificial intelligence (AI) approaches to DNA sequencing, gene expression analysis, drug

prediction, personalised medicine, and next generation sequencing allow users to observe the

results with more precision. AI approaches are used to extract features to gain insights with

small assumptions and lots of processing capacity. Due to their higher processing capacities, AI

approaches are often used in genomic data mining, gene prediction, and disease prediction [307,

308]. AI enhances our perception of complex relationships in underlying gene expressions,

treatment planning, and patients biology [309].

Despite their usefulness and effectiveness, some AI approaches lacked certain characteris-

tics, most notably explainability, interpretability, and trustworthiness. Deep neural networks,

for example, consist of layers of interconnected variables that are adapted by training the

network on multiple instances [310]. As neural networks become more complex, it becomes

more difficult to understand how numbers of parameters interact to make decisions [311].

Inputs could go through hundreds of iterative nonlinear transformations involving a number

of features before a decision is made. The internal data processing of these AI approaches

is too complicated to be understood by humans without prior technical knowledge. Due to

the intricate nature of the data processing stages involved in AI techniques, these algorithms

are often referred to as black boxes. How can even the most accurate black-box approaches

improve the user’s understanding of biomedical data processing?

Explainable AI (XAI) works between AI and humans to interpret decision making process

of black-box AI approaches [312, 313]. For example, x is a medical condition of a patient

such as cancer relapse or cancer non-relapse. Predictions define what x is, while explainability
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specifies why x exists. Explainability thus brings value to making trustworthy and understand-

able decisions. The most recent version of the General Data Protection Regulation, adopted

by the European Union, focuses on need for citizens to know how AI systems arrive at their

conclusions [314]. In addition, the ethical standards for artificial intelligence have been broken

down into eight categories by the Federal Government of Australia. These standards include

criteria pertaining to explainability and transparency [315].

The instance-based local interpretation-driven abstract Bayesian network (LINDA-BN) was

utilized to determine an individual patient’s medical state by using the gene set anomaly score.

The purpose of this investigation is to identify which gene sets (patient biology) or genes are

associated with predicting the condition of an individual patient. This provided insight into the

biological factors related to a patient’s health status, such as the presence or absence of cancer

and the likelihood of a cancer relapse.

In addition, to specify the biological name of the gene set, gene ontology (GO) terms in

publicly available databases were explored. These terms represent the biology of the gene

set. In the end, a heatmap was used to represent the GO terms that were extracted using the

proposed anomaly scores and state-of-the-art approaches. The purpose of the heatmap is to

investigate whether or not the anomaly score could extract a new biology or similar biology that

is comparable to the state-of-the-art approaches.

This chapter focuses two issues. First issue is an application of anomaly score using XAI.

The objective of applying the XAI approach is to enable interpretable predictions of a patient’s

medical condition. A second issue involves the use of anomaly scores to identify cancer biology.

The following research question is addressed.

• How can an explainable and interpretable method predict a patient status (healthy or

cancerous or relapse or non-relapse) built on an individual instance in relation to anomaly

scores?
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4.3 Method

A method consisting of the following two-step process is proposed to evaluate the usefulness of

machine learning in disease analysis:

1. instance-based LINDA-BN.

2. representing new cancer biology.

4.3.1 Data sets

GSE14468 AML dataset The GSE14468 dataset comprises gene expression data from 524 acute

myeloid leukemia (AML) patients, aged 16 to 60 years old. It covers 54,675 genes and was

utilized by Warnat et al. [449] to identify CCAAT/enhancer binding protein alpha (CEBPA)

mutations, comparing double and single CEBPA mutations using the gene expression data.

GSE12417-GPL570 CN-AML dataset The GSE12417-GPL570 dataset contains gene ex-

pression data for 163 cytogenetically normal acute myeloid leukemia (CN-AML) patients,

covering 54,674 genes. Wang et al. [450] employed this data to develop a gene signature

predicting overall survival (OS) in CN-AML and to identify a CN-AML patient cohort using

supervised principal component analysis.

GSE24006 AML dataset The GSE24006 dataset includes gene expression data for 1,047

AML patients, encompassing 29,397 leukemia stem cell (LSC) genes. Gentles et al. [451] used

this data to identify leukemic stem cell genes and patient cohorts for overall survival (OS),

event-free survival (EFS), and relapse-free survival (RFS).

4.3.2 Instance-based learning (IBL)

Instance-based learning measures the distances between the attributes of a test instance and

the attributes of all training samples to determine how similar or different the test instance

is from the training samples [452]. The first step of IBL is to compare the feature values of

a test instance with all the features values of all training instances using equation 4.1. The

comparative results are stored in a matrix, which is a relevancy matrix or similarity matrix for a

test patient (Figure 4.4).
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IBLMatrix =



if |Training AS − TestAS| ⩽ 0.10, then, AS = Training AS

|Training AS − TestAS| = 0, then, AS = 1

otherwise, AS = 0

(4.1)

4.3.3 Local interpretation-driven abstract Bayesian network (LINDA-BN)

LINDA-BN is an XAI approach that graphically shows the data processing steps using the

Bayesian network. The objective of LINDA- BN is to provide an interpretation of black-box

predictions. LINDA-BN is capable of deriving an approximate Bayesian network, which serves

as a simplified representation of a black-box model. This network corresponds to a specific

prediction generated from any supplied input. For instance, LINDA-BN shows the relationships

between gene sets in a given prediction using graphical inference [453].

4.3.3.1 LINDA-BN for interpreting prediction outcomes

Probabilistic graphical models (PGMs) are graphical approaches to represent probability distri-

butions. Two useful PGMs are Bayesian networks (BNs) and hidden Markov models (HMMs).

BNs use directed acyclic graphs (DAGs) to show the relationships between multiple random

variables. They are typically used for processes that do not change over time. HMMs are used

for Markov processes, which are systems that change over time, space, or other sets. HMMs

have one hidden state variable and one observable variable that depends on the hidden state.

Dynamic Bayesian networks (DBNs) are a PGM that combines the features of BNs and HMMs.

DBNs can have multiple hidden random variables to represent processes that change over time.

The local interpretation-driven abstract Bayesian network (LINDA-BN) is a DBN that vi-

sually represents the relationships between different features. This thesis used LINDA-BN to

aid the interpretation of the predictive outcomes for patients who relapse and those who do not,

along with their associated gene sets. This approach provides an exaplainable decision-making

process for determining the relevance of specific features or groups of features. The LINDA-BN

process includes three distinct stages:
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1. permutations of gene set

2. a graphical Bayesian network

3. analysing Markov blankets for feature associations.

These three steps are briefly described below.

(1) Permutations of gene sets

From the figure 4.1, it can be seen that input feature vectors were permuted using uniform

distributions. For the gene set anomaly score, GS is an input vector as GS =

{
GS1, GS2, ....., GSn

}
,

the variance of the permutations is ϵ, where ϵ ε

[
0, 1

]
, and the permutation interval for each

gene set is

[
GSi − ϵ, GSi + ϵ

]
.

(2) Graphical Bayesian network

At this stage, LINDA-BN constructs a directed acyclic graph (DAG) as a Bayesian network

for each gene set. As seen in Figure 4.1, a DAG is constructed after the permutations, providing

structural graphical inference for gene sets regarding anomaly scores.

For the BN graphical inference from the DAG, let G be a BN graph over gene sets GS1, GS2, ..., GSn,

and the probability P of gene sets on G is defined as:

P (GS1, GS2, ..., GSn) =
n∏

i=1

P (GSi|PaGSi
) (4.2)

Here, PaGSi
denotes the set of parent variables for gene sets GSi. The joint probability of

gene sets for specific events E with random variable v is calculated as follows:

P (E|V = v) = αP (E, v) = α
∑
wεW

P (E, v, w), withα =
1∑

eεE P (e, v)
(4.3)

W represents the set of random gene sets not belonging to cancer prediction classes. To

identify relationships between gene sets, conditional dependence in the DAG for all gene sets

with respect to the anomaly scores. Let ϕ be the conditional dependence for gene set d with

n observations, measuring the conditional dependence P (G, ϕ|d) in two phases: structure

learning and parameter learning, represented by:
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Figure 4.1: A framework for LINDA-BN.

P (G, ϕ|d) = p(G|d)P (ϕ|G, d) (4.4)

In this context, p(G|d) represents structure learning and P (ϕ|G, d) denotes parameter learn-

ing. The goal of structure learning is to identify the Directed Acyclic Graph (DAG) G by

maximizing the value of p(G|d) using the following equation:
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P (ϕ|G, d) =
∏
i

P (ϕGSi
|
∏

GSi, d) (4.5)

Yet, it’s important to note that structure learning is a problem classified as both NP-hard and

NP-complete.

P (G|d) ∝ P (G)P (d|G) (4.6)

P (d|G) can be decomposed into:

P (d|G) =

∫
P (d|G, ϕ)P (ϕ|G)dϕ

∏
i

∫
P (GSi|

∏
GSi, ϕGSi

)P (ϕGSi
|
∏

GSi)dϕGSi

(4.7)

For structure learning, the optimal score is determined using the Bayesian information

criterion (BIC), which is defined as follows:

SCore(G, d) = BIC(G, ϕ|d) =
∑
i

logP (GSi|
∏

GSi, ϕGSi
)− log(n)

2
|GSi| (4.8)

LINDABN uses a hill-climbing algorithm to identify related features from the DAG.

(3) Applying Markov-Blanket for feature associations

Again from Figure 4.1, the Markov blanket is used on the DAG to identify features based on

the predicted Bayesian network outcomes. The LINDA-BN graphically represents the Bayesian

network and illustrates the relationships between the features and the predicted class (Fig-

ure 4.2a). According to the principle of the Naive Bayes classifier, the features are indepen-

dent and uncorrelated. For example, GL1UP , E2F1UP , and E2F1DN are independent in

predicting a class label, which means that knowing GL1UP does not provide any additional

information for inference or prediction. Conversely, Figure 4.2b represents the principle of

linear regression, meaning that features (GL1UP , E2F1UP , and E2F1DN) are conditionally

independent of a class only when the class variable is known. These features directly influence
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decision making for a target variable. A clear explanation of the decision-making process helps

the user to fully understand the basic elements that are important in the process.

Figure 4.2: Different graph structure for reasoning.

The relationship between the target variable (class variable) and the features can be under-

stood through an abductive reasoning process [361]. This involves human inference to draw

conclusions from known information. Users apply abductive inference to generate reliable

explanations related to the graphical structure. Abductive inference supports the target variable

Markov blanket [362], an approach to feature selection for a specific class.

A Markov blanket of a target variable includes conditionally independent characteristics

or variables that are parents, children, and co-parents (parents of a child) of that target vari-

able (Figure 4.3). From Figure 4.3, this thesis observed that the Markov blanket selected three

features: GLI1UP.V 1DN , EGFRUP.V 1DN , and EGFRUP.V 1UP

Figure 4.3: Features selection using Markov blanket.
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4.3.3.2 Instance-based LINDA-BN

Instance-based LINDA-BN is placed in the data processing context as shown in Figure 4.4.

The process begins by comparing a test instance with all the training samples and recording the

results of this comparison into a matrix, referred to as a relevance matrix. Only those values

that are comparable to the test instance with respect to a given condition are included in the

relevance matrix. Following this step, feature selection approaches, namely maximum relevance

and minimum redundancy (MRMR) and random forest (RF), are applied to the relevancy matrix

to rank the gene sets. This is done to identify the gene sets that are of the utmost significance.

In the final stage of the process, LINDA-BN [453] is applied to the ranked gene set list to

determine which gene sets are responsible for predicting medical conditions affecting a patient.

Figure 4.4: A schematic diagram showing processing steps of instance-based LINDA-BN.
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4.4 Results

This section summarises and discusses the findings from the instance-based LINDA-BN. LINDA-

BN identifies gene sets with respect to conditional dependence and independence. However,

only conditionally dependent gene sets are associated with a prediction. Experimental results

show that the method offers performance advantages in identifying gene sets or genes associated

with a prediction. The gene sets that are associated with a prediction have been highlighted in

blue in the figure in this chapter. The other gene sets are not associated with a prediction due to

their conditional independence.

4.4.1 Instance-based LINDA-BN using anomaly score for leukaemia datasets

LINDA-BN identifies the gene sets that are associated with a disease prediction of a partic-

ular patient. Figure 4.5 shows the gene sets that are associated with the prediction of acute

lymphoblastic leukemia in patient ALL10, based on the z-absolute anomaly score. The figure

shows that two gene sets, CTIP DN and PRC2 EED, are associated with the likelihood of cancer

relapse in patient ALL10. Based on the figure, this thesis hypothesizes that these gene sets

(biological functionalities) are responsible for a cancer prognosis for the ALL10 patient. The

CITP complex enhances the growth of breast tumors and the PRC2/EED complex is associated

with the increased expression of lymph node metastases in breast cancer [454, 455].
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Table 4.1: Gene set ranking for the ALL10 patient using z-absolute, z-square, and z-cubic
anomaly scores.

Z-absolute Z-square Z-cube

BCAT.100 UP.V1 DN BCAT.100 UP.V1 DN BCAT.100 UP.V1 DN

KRAS.50 UP.V1 DN KRAS.50 UP.V1 DN KRAS.50 UP.V1 DN

KRAS.KIDNEY UP.V1 DN HINATA NFKB IMMU INF HINATA NFKB IMMU INF

RELA DN.V1 DN HINATA NFKB MATRIX HINATA NFKB MATRIX

PDGF ERK DN.V1 DN GLI1 UP.V1 DN GLI1 UP.V1 UP

ALK DN.V1 UP GLI1 UP.V1 UP YAP1 DN

CTIP DN.V1 DN SINGH KRAS DEPENDENCY SIGNATURE GLI1 UP.V1 DN

SNF5 DN.V1 UP BCAT GDS748 UP SINGH KRAS DEPENDENCY SIGNATURE

PRC2 EED UP.V1 DN KRAS.50 UP.V1 UP YAP1 UP

PRC2 EZH2 UP.V1 DN YAP1 DN TBK1.DN.48HRS DN

BRCA1 DN.V1 DN BCAT BILD ET AL DN BCAT BILD ET AL UP

ESC V6.5 UP EARLY.V1 UP TBK1.DN.48HRS UP KRAS.50 UP.V1 UP

PRC2 EZH2 UP.V1 UP CAHOY NEURONAL TBK1.DN.48HRS UP

KRAS.PROSTATE UP.V1 DN CAHOY OLIGODENDROCUTIC BCAT GDS748 DN

PRC2 EED UP.V1 UP CAHOY ASTROCYTIC BCAT GDS748 UP

NOTCH DN.V1 UP YAP1 UP BCAT.100 UP.V1 UP

P53 DN.V1 UP BCAT.100 UP.V1 UP CAHOY NEURONAL

KRAS.BREAST UP.V1 DN EIF4E UP BCAT BILD ET AL DN

CYCLIN D1 KE .V1 DN CORDENONSI YAP CONSERVED SIGNATURE CORDENONSI YAP CONSERVED SIGNATURE

STK33 NOMO DN CAHOY ASTROGLIAL EIF4E DN

Figure 4.5: Gene sets associated with the disease prognosis in ALL10 patient using z-absolute
anomaly scores.

Similarly, Figure 4.6 shows that the gene sets KRAS.50 UP, and BACT.100 UP are associ-

ated with the disease prognosis of ALL10 using z-square anomaly scores. KRAS plays a role in
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Figure 4.6: Gene sets associated with the disease prognosis in ALL10 patient using z-square
anomaly scores.

Figure 4.7: Gene sets associated with the disease prognosis in ALL10 patient using z-cube
anomaly scores.

the development and progression of cancer, particularly in the colon, pancreas, lung, and blood

plasma [456].

Figure 4.7 shows that the gene sets KRAS.50 UP, and YAP1 DN are associated with the
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disease prognosis of patient ALL10 using z-cubic anomaly score. YAP plays a role in the

development of cell proliferation, apoptosis evasion, and stem cell proliferation by altering

gene expression [457].
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4.4.2 Instance-based LINDA-BN for ALL100 and ALL123 leukaemia relapse patients

Figure 4.8: Gene sets associated with a disease prediction in ALL100 patient using z-absolute
z-cube anomaly scores.

The gene sets KRAS, GLI, RELA, and NOTCH are correlated with a prediction of relapse

in ALL100, as shown in Figure 4.8. This association was found using the z-absolute anomaly

score. DNA sequence alterations in KRAS cause colorectal cancer [458].

Figure 4.9 shows the results of a prediction using the z-square anomaly score for ALL100

relapse patient. SING KRAS and GLI are associated with prediction of relapse. Changes in

GLI gene expression cause cell cancer, medulloblastoma and sarcoma [459].

Figure 4.10 shows outcomes of a prediction using the z-cube anomaly score for ALL100

relapse patient. BACT and YAP these two gene sets associated with relapse prediction.

GLI and KRAS gene sets are common among all three anomaly scores.

Figure 4.11 shows outcomes of a prediction using the z-absolute anomaly score for ALL123

relapse patient. BACT and YAP1 these two gene sets associated with relapse prediction and

BCAT gene set responsible for kidney disease [460].

SING, KRAS, and BCAT are associated with prediction of ALL123 relapse, as shown in

Figure 4.12 using z-square anomaly score. SING causes lung and pancreatic cancer [461].

Figure 4.13 shows the associated gene sets for predicting ALL123 patients using z-cube

anomaly scores. Here, SING, YAP, KRAS and GLI are associated gene sets for this relapse
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Figure 4.9: Gene sets associated with a disease prediction in ALL100 patient using z-square
anomaly score.

Figure 4.10: Gene sets associated with a disease prediction in ALL100 patient using z-cube
anomaly scores.

prediction.

From the prediction of ALL123 patient, GLI, YAP, KRAS and SING are common gene sets

for ALL123.
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Figure 4.11: Gene sets associated with a disease prognosis in ALL123 patient using z-absolute
anomaly scores.

Figure 4.12: Gene sets associated with the disease prognosis in ALL123 patient using z-square
anomaly scores.

4.4.3 Instance-based LINDA-BN using raw gene expression values

In this section, this thesis presents patient biology for disease prognosis using raw gene ex-

pression values. Table 4.2 the relevancy matrix for ALL10 patient with respect to raw gene

expression values. MRMR and LINDA-BN are applied on the relevancy matrix to show the

genes ranking and the genes associated with disease prognosis. Table 4.3 shows the MRMR

gene ranking and Figure 4.14 shows the associated genes (SLC6A19 and PREP) in disease

prognosis.
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Figure 4.13: Gene sets associated with a disease prognosis in ALL123 patient using z-cube
anomaly scores.

Figure 4.14: Gene associated with disease prognosis in ALL10 patient using raw gene
expression values.
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Table 4.2: Relevancy matrix for ALL10 patient using raw expression values.
Patient id CCDC62 CCDC64 HMCN2 KLHL9 RAG2 RBX1 ZNF385D ZNF385D.1 LOC284912
ALL10 1 8.593171 7.76254 1 1 9.136168 1 11.4839 1
ALL11 7.015256 8.881025 7.885409 9.691786 10.21017 0 0 0 7.56703
ALL123 0 8.700832 7.806368 9.872934 9.562384 8.550011 9.934019 11.27889 8.185629
ALL13 0 8.674912 0 9.757159 0 0 10.41809 0 8.531556
ALL143 0 8.585872 0 9.811864 10.21606 9.128788 10.15997 11.68882 8.031329
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ALL18 7.044321 8.83409 7.789628 0 10.03938 0 0 0 8.282644
ALL26 6.931048 8.470855 7.610796 0 0 8.505452 0 0 8.390844
Normal6 0 8.473055 7.895149 9.176048 9.935783 0 10.57319 11.58419 8.761325
Normal7 7.000854 8.491335 7.866489 9.016161 9.735301 0 10.43432 11.27442 0
Normal8 0 8.510356 7.715922 9.353065 0 0 0 11.05733 0

Table 4.3: MRMR top 20 genes for ALL10 patient using raw gene expression values.
KCNJ13,CHAC2,C16orf89.1,GLTP,COX8C,SLC6A19,
RFC2.1,CCDC64,LOC100129386, GPR21,SPAG1,PREP,
ZNF471, TBC1D23, KIAA1267, IRGQ.3, UBE2K, LOC388456,
CCDC101, MAPK8IP3, LOC391132, IP6K4, CHAC2.1, C19orf15.1
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4.4.4 Instance-based LINDA-BN for state-of-the-art approaches

This section presented outcomes of instance-based LINDA-BN using modified gene expression

scores from the state-of-the-art approaches. This is valuable for determining which genes are

retrieved by by state-of-art approaches. These experiments illustrated two things: (1) showing

genes and, (2) predicting a patient medical condition. The results of experiments show that

state-of-the-art approaches can be used to find genes that can be used to predict a patient’s med-

ical condition. However, statistical analysis for the state-of-the-art don’t support the hypothesis

that an gene expression values and gene set can be integrated together to understand patient

biology (gene set) responsible for anomalies in cancer. Overall, the outcomes of the state-of-

the-art approaches to identifying genes and predicting a patient’s condition are inconclusive.

4.4.4.1 Instance-based LINDA-BN using GFS

Figure 4.15: Instance-based LINDA-BN for leukaemia data sets using GFS scores.

Figure 4.15 shows an associated gene for predicting a medical condition of a test patient

using GFS scores on leukaemia datasets. The plot shows that only one gene ZNF75D (zinc

finger protein) is related for predicting cancer relapse in ALL10. This gene encodes a protein

that is likely to have the function of a transcription factor. In addition, this gene is associated

with GO annotations involving nucleic acid binding and DNA-binding transcription factor

activity [462].
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4.4.4.2 Instance-based LINDA-BN using FRaC

Figure 4.16: Instance-based LINDA-BN for leukaemia data sets using FRaC scores.

Figure 4.16 shows a gene called HSPA6 (heat shock protein family)) associated for predict-

ing a medical condition for ALL10 using FRaC scores on leukaemia datasets. This gene is a

protein coding gene and involved in cervical squamous cell carcinoma [463, 464].

4.4.4.3 Instance-based LINDA-BN using CSAX

Figure 4.17: Instance-based LINDA-BN for leukaemia data sets using CSAX scores.
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Figure 4.17 shows three associated genes (WBP2, SPAG1 and RHOQ) for predicting a

medical condition of a test patient using CSAX scores on leukaemia datasets. WBP2, SPAG1,

and RHOQ are all protein-encoding genes. WBP2 causes hearing loss, Dfnb, and autosomal

recessive 107. SPAG1 is associated with diseases such as primary ciliary dyskinesia-28 and

epilepsy. RHOQ influences colitis caused by clostridium difficile [465–470].

4.4.4.4 Instance-based LINDA-BN using TEMPO

Figure 4.18: Instance-based LINDA-BN for leukaemia data sets using TEMPO scores.

Figure 4.18 shows two associated genes (WBP2 and ARHGAP1) for predicting a medical

condition of a test patient using TEMPO’s modified gene expression scores on leukaemia

datasets. Both WBP2 and ARHGAP1 are protein-encoding genes. The gene ARHGAP1 is

associated with Lowe Oculocerebrorenal Syndrome [471, 472].

4.4.4.5 Instance-based LINDA-BN using PFSNet

Figure 4.19 shows two associated genes (FETUB and ALDOB) for predicting a medical con-

dition of a test patient using PFSNet’s modified gene expression scores on leukaemia datasets.

Both FETUB and ALDOB are protein-encoding genes. FETUB causes encephalitozoonosis and

Caffey’s disease [473, 474]. ALDOB is associated with diseases such as fructose intolerance,

hereditary and fructosuria, and essential fructose [475, 476].
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Figure 4.19: Instance-based LINDA-BN for leukaemia data sets using PFSNeT scores.

4.4.4.6 Instance-based LINDA-BN using SNets

Figure 4.20: Instance-based LINDA-BN for leukaemia data sets using SNet scores.

Figure 4.20 shows two associated genes (GRM5 and SLC6A2) for predicting a medical

condition of a test patient using SNets scores on leukaemia datasets. Both are protein-encoding

genes. GRM5 is related to fragile X syndrome and central nervous system disorders [477, 478].

SLC6A2 is related to orthostatic intolerance and syncope [479, 480].

4.4.4.7 Instance-based LINDA-BN using qpFS

Figure 4.21 shows a gene (RAD1) is associated for predicting a medical condition of a test

patient using qpFS scores on leukaemia datasets. The RAD1 gene is associated with mantle

cell lymphoma disease [481, 482].
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Figure 4.21: Instance-based LINDA-BN for leukaemia data sets using qpFS scores.

4.4.4.8 Instance-based LINDA-BN using outlier dection

Figure 4.22: Instance-based LINDA-BN for leukaemia data sets using outlier detection scores.

Figure 4.22 shows two associated genes (RFC2 and CCDC60) for predicting a medical

condition of a test patient using outlier scores on leukaemia datasets. Both are protein-encoding

genes. RFC2 causes Williams-Beuren and Seckel syndromes [483, 484]. CCDC60 is related to

both neuronitis and congenital muscular dystrophy-dystroglycanopathy type A6 disorder [485,

486].
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4.4.5 Comparative analysis on multiple acute myeloid leukaemia (AML) datasets

The goal of this experiment was to use MRMR and LINDA-BN to investigate patient biology

across multiple datasets. Specifically, this thesis investigated whether MRMR and LINDA- BN

can generate similar results from multiple datasets of acute myeloid leukemia. The results con-

firmed that MRMR and LINDA-BN exhibit similar patient biologies across multiple datasets.

Three separate gene expression datasets were used for acute myeloid leukemia (AML),

namely GSE14468, GSE12417-GPL570, and GSE24006. The GSE14468 gene expression

data was from AML cancer patients, GSE12417-GPLS570 gene expression data was from

healthy patients, and GSE24006 gene expression data was from both AML cancer patients

and healthy patients. Salunkhe et al. [487] used two microarray data sets by considering acute

myeloid leukaemia (AML) and healthy patients. These microarray data were publicly available

in NCBI [488, 489] and were used to find gene pairs between AML and normal patients. There

were 598 gene expression profiles for AML data (accession number GSE14468). Among the

598 samples, there are two mutations (CEBPAdouble-mut, CEBPAsingle-mut). There was

cytogenetically normal acute myeloid leukaemia (CN-AML) to identify the gene pairs with

AML data (accession number GSE12417-GPL570). These CN-AML microarray data had 163

gene expression profiles with gene expression values treated as healthy AML patients. The

patient biology (gene sets) was determined from all three data sets. This thesis considered the

top 5% gene sets.

Table 4.4 details the similar and dis-similar gene sets from the GSE14468 and GSE24006

data sets.
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Table 4.4: Top 5% of MRMR ranked similar and dis-similar gene sets from the GSE14468 and
GSE24006 data sets.

GSE14468 GSE24006
CAHOY OLIGODENDROCUTIC CAHOY OLIGODENDROCUTIC

PDGF ERK DN.V1 UP PDGF ERK DN.V1 UP
RB P130 DN.V1 UP RB P130 DN.V1 UP

RB DN.V1 UP RB DN.V1 UP
ALK DN.V1 DN ALK DN.V1 DN
IL21 UP.V1 DN IL21 UP.V1 DN
GLI1 UP.V1 DN MEL18 DN.V1 DN

RPS14 DN.V1 DN KRAS.600.LUNG.BREAST UP.V1 UP
RB DN.V1 UP CRX DN.V1 UP

GLI1 UP.V1 DN PRC2 EZH2 UP.V1 UP
PDGF ERK DN.V1 DN PRC2 SUZ12 UP.V1 UP

ESC J1 UP LATE.V1 UP KRAS.PROSTATE UP.V1 DN
PDGF UP.V1 DN CTIP DN.V1 DN
RB DN.V1 DN KRAS.600.LUNG.BREAST UP.V1 DN

NRL DN.V1 DN ATM DN.V1 DN
ALK DN.V1 DN P53 DN.V2 UP
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Table 4.5 details the similar and dis-similar gene sets from the GSE12417 and GSE24006

data sets.

Table 4.5: Top 5% of MRMR ranked similar and dis-similar gene sets from GSE12417 and
GSE24006 datasets.

GSE12417 GSE24006
KRAS.600.LUNG.BREAST UP.V1 UP KRAS.600.LUNG.BREAST UP.V1 UP

IL21 UP.V1 DN IL21 UP.V1 DN
PRC2 EZH2 UP.V1 UP PRC2 EZH2 UP.V1 UP

MEL18 DN.V1 DN MEL18 DN.V1 DN
KRAS.PROSTATE UP.V1 DN KRAS.PROSTATE UP.V1 DN

CTIP DN.V1 DN CTIP DN.V1 DN
KRAS.600.LUNG.BREAST UP.V1 DN KRAS.600.LUNG.BREAST UP.V1 DN

ATM DN.V1 DN ATM DN.V1 DN
P53 DN.V2 UP P53 DN.V2 UP

ATM DN.V1 DN CAHOY OLIGODENDROCUTIC
PTEN DN.V1 UP PDGF ERK DN.V1 UP
DCA UP.V1 DN RB P130 DN.V1 UP

KRAS.600 UP.V1 DN RB DN.V1 UP
PRC1 BMI UP.V1 UP ALK DN.V1 DN

WNT UP.V1 UP IL21 UP.V1 DN
NOTCH DN.V1 DN MEL18 DN.V1 DN

Figure 4.23 shows the associated gene sets for a test patient using the AML data sets.

The plot shows that two gene sets (RB DN.V1 DN and CAHOY OLIGODENDROCUTIC))

are responsible for an AML disease prognosis. The RB gene set plays a role in increased

proliferation and abnormal differentiation [490]. Oligodendroglioma is a type of primary tumor

that affects the central nervous system (CNS) [491].

Figure 4.23: Genes associated with the disease prognosis in a test of an acute myeloid leukemia
(AML) patient using the z-absolute anomaly score.
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Figure 4.24 shows the associated gene sets for test patients using the AML datasets. The

plot shows that two gene sets (RB P130 DN.V1 UP and RB DN.V1 UP) are responsible for a

healthy AML disease prognosis.

Figure 4.24: Genes associated with the disease prognosis in a test of a cytogenetically normal
acute myeloid leukemia (CN-AML) patient using the z-absolute anomaly score.
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4.4.6 Instance-based LINDA-BN for colon, adrenal and breast cancer

This section of the thesis provides a summary and discussion of the findings from the application

of instance-based LINDA-BN to the colon, breast, and adrenal cancer datasets. Careful inves-

tigation shows that LINDA-BN provides graphical relationships between gene sets to predict a

patient’s medical condition. The experimental findings demonstrate that the approach is useful

for identifying related gene sets for prediction goals. Only gene sets that are conditionally

dependent on each other are used for prediction in LINDA-BN. In this thesis, the gene sets

related to prediction have been highlighted with blue color. The remaining gene sets are not

relevant for prediction due to their conditional independence.

Table 4.6 for colon, breast, and adrenal cancer datasets for there different patients such as

GSM95473, GSM65316, and GSM277090

Table 4.6: MRMR gene set ranking for colon, breast and adrenal cancer for three test patients
(colon cancer: GSM95473, breast cancer: GSM65316 and adrenal cancer: GSM277090).

Colon Breast Adrenal
YAP1 UP YAP1 UP GLI1 UP.V1 UP
BCAT GDS748 DN BCAT GDS748 DN GCNP SHH UP EARLY.V1 DN
TBK1.DN.48HRS DN TBK1.DN.48HRS DN GCNP SHH UP LATE.V1 DN
YAP1 DN YAP1 DN RAPA EARLY UP.V1 UP
GCNP SHH UP LATE.V1 DN GLI1 UP.V1 UP HINATA NFKB MATRIX
CYCLIN D1 KE .V1 DN RAPA EARLY UP.V1 UP CYCLIN D1 KE .V1 DN
HINATA NFKB MATRIX GCNP SHH UP EARLY.V1 DN GCNP SHH UP LATE.V1 UP
AKT UP.V1 DN CAHOY NEURONAL RAPA EARLY UP.V1 DN
PKCA DN.V1 DN CRX NRL DN.V1 DN HINATA NFKB IMMU INF
CAHOY ASTROGLIAL KRAS.LUNG UP.V1 DN GCNP SHH UP EARLY.V1 UP
BRCA1 DN.V1 UP SIRNA EIF4GI UP GLI1 UP.V1 DN
CTIP DN.V1 UP CRX DN.V1 DN E2F1 UP.V1 DN
ESC V6.5 UP EARLY.V1 DN CAMP UP.V1 DN E2F1 UP.V1 UP
SIRNA EIF4GI DN CORDENONSI YAP CONSERVED EGFR UP.V1 DN
NRL DN.V1 DN NFE2L2.V2 EGFR UP.V1 UP
RB DN.V1 DN TBK1.DN.48HRS UP ERBB2 UP.V1 DN
CRX NRL DN.V1 UP IL2 UP.V1 DN ERBB2 UP.V1 UP
PTEN DN.V1 DN DCA UP.V1 DN CYCLIN D1 KE .V1 UP
AKT UP.V1 UP PRC2 SUZ12 UP.V1 UP CYCLIN D1 UP.V1 DN
MTOR UP.V1 DN ESC J1 UP LATE.V1 UP CYCLIN D1 UP.V1 UP
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4.4.6.1 Instance-based LINDA-BN for colon cancer

Figure 4.25: Gene sets associated with disease prognosis of colon cancer patient GSM95473
using z-absolute anomaly scores.

Figure 4.25 associated with the diagnosis of colon cancer in patient GSM95473 with re-

spect to z-absolute anomaly scores. The results from LINDA-BN suggest that two gene sets

(TBK1 DN, and CYCLIN D1 ) are associated with the likelihood of cancer in patient GSM95473.

Based on the figure, this thesis investigates the hypothesis that these gene sets (biological

functionalities) are responsible for the cancer prognosis of colon cancer patient GM95473 and

a similar analysis is conducted for each test patient.

4.4.6.2 Instance-based LINDA-BN for breast cancer

Figure 4.26 shows the gene sets associated with the breast cancer prognosis of patient GSM65316

with respect to z-absolute anomaly scores. The results from LINDA-BN suggest that three gene

sets (GLI1 UP, GCNP SHH and BACT GDS748) are associated with the likelihood of cancer in

patient GSM65316. Based on the figure, this thesis hypothesizes that these gene sets (biological

functionalities) are responsible for the cancer prognosis of breast cancer patient GSM65316and

a similar analysis is conducted for each test patient.
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Figure 4.26: Gene sets associated with the disease prognosis of breast cancer patient
GSM65316 using z-absolute anomaly scores.

Figure 4.27: Gene sets associated with the disease prognosis of adrenal cancer patient
GSM277090 using z-absolute anomaly scores.

4.4.6.3 Instance-based LINDA-BN for adrenal cancer

Figure 4.27 shows the gene sets associated with the prognosis of adrenal cancer for patient

GSM277090 with respect to z-absolute anomaly scores. The results from LINDA-BN suggest

that two gene sets (HINATA NFKB, GCNP SHH UP.EARLY and GCNP SHH UP.LATE) are

associated with the likelihood of cancer in patient GSM277090. Based on the figure, this

thesis hypothesizes that these gene sets (biological functionalities) are responsible for the cancer

prognosis of adrenal cancer patient GSM277090 and a similar analysis is conducted for each
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test patient.

4.4.7 Outcomes from AI approaches

Table 4.7 shows prediction accuracy of k-nearest neighbor (K-NN), support vector classifier

(SVC), random forest (RF), AdaBoost, and XGBoost. All of these approaches performed well

while predicting a test patient.

Table 4.7: Prediction accuracy of K-NN, SVC, RF, AdaBoost, and XGBoost.

Classifier Accuracy Precission Recall F-measure
K-NN 71% 37% 49% 42%
SVC 70% 57% 56% 57%
RF 72% 63% 54% 53%
AdaBoost 71% 67% 58% 58%
XGBoost 73% 63% 59% 60%
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4.5 Discussion

Instance-based LINDA-BN is a probabilistic graphical model which is a graphical represen-

tation of probabilistic distributions. Bayesian networks and Hidden Markov Models (HMMs)

are notable probabilistic graphical models. The structure of a Bayesian network, which is a

directed acyclic graph (DAG), shows the conditional independence of a set of random variables.

HMMs are used to represent Markov processes. Instance-based LINDA-BN is a combination

of Bayesian network and HMMs.

This thesis explores the use of instance-based LINDA-BN, an approach that improves in-

terpretability to understand the decision-making process behind predicting a patient’s medical

condition. The focus is on the method’s ability to analyze the implications of various outcomes

and provide a clear understanding of the process involved in making these predictions. The

overall aim is to streamline the decision- making process making it easier to foresee the predic-

tion of a patient’s medical condition

The primary objective of this research is to understand the role of patient biology, particu-

larly gene sets, in predicting a patient’s medical condition. This aspect is crucial as it allows

for the identification of specific gene sets that may be associated with a particular disease.

By focusing on these gene sets, it is hoped that the biological mechanisms driving disease

progression in individual patients, thereby improving the ability to predict and manage specific

medical conditions.

This thesis bulit on the hypothesis that a careful integration of gene expression values into

gene sets could facilitate understanding anomalies in cancer. In other words, the thesis argues

that thoughtful and calculated synthesis of these gene expression values could help unravel the

anomalies that characterize cancer. This process, guided by instance-based LINDA-BN, could

help to identify the biology of the patient in the context of a disease.

However, due to the lack of wet lab validation capabilities, this research had to rely on

analyzing the functions of these gene sets from the available literature. The results showed

that the associated gene sets are responsible for various forms of cancer. This expands the

understanding of the role of gene sets in disease prediction and provides valuable insight into

the biological factors that may influence a patient’s medical condition. This research therefore

has the potential to make a valuable contribution to personalized medicine and disease analysis.
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In contrast to the instance-based LINDA-BN, this thesis also experimented with existing

methods such as K-NN, SVC, RF, AdaBoost, and XGBoost for predicting medical conditions.

These methods are referred to as “black box” models due to their lack of interpretability and

explainability. While these models are often very good at making correct predictions, they are

inadequate when it comes to explaining the reasoning behind their decisions. In other words,

they can predict the likely outcome, but their decision-making processes are complex so a clear

explanation of the reasons or process that led to that particular outcome is difficult to understand.

This is a major limitation, especially in the medical field, where understanding the rationale

behind a diagnosis or prediction is as valuable as the prediction itself.

When we compare black-box models with our approach in this thesis, it becomes clear that

black-box models have some limitations. We use a method called instance-based LINDA-BN,

which not only gives us trustworthy predictions, but also allows to better understanding of the

decision-making process. This is possible because it identifies and shows how it reached the

decision to select gene sets associated with the medical condition.

If we put black-box models and instance-based LINDA-BN side by side, both might be able

to predict accurately, but black-box models cannot provide the same level of understanding that

LINDA-BN does. This makes LINDA-BN a better choice, especially in a medical field.

4.6 Conclusion

Black-box approaches predict medical condition of a patient with higher accuracy. However,

there is limited scope to know which gene sets or gene are associated with the prediction

process.

A patient could have thousands of genes. So, it would be more useful to know sets of

genes that are associated with a patient’s medical condition than to know just one or two

genes. Comparative outcomes between anomaly score and state-of-the-art approaches show

that instance-based LINDA-BN for proposed anomaly score shows gene sets for predicting a

medical condition. On the other hand, state-of-the-art approaches show only one or two genes.
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4.7 Presenting new cancer knowledge

Gene expression profiles can be analyzed by aggregating gene expression levels into gene sets.

Chapter 3 described that gene set anomaly scores make patterns across expression profiles more

visible and detectable than raw gene expression values alone. Gene set anomaly scores improve

the extraction of insights from gene expression data. Using gene sets brings a knowledge-driven

aspect that can be combined with data-driven analysis. In this research, multiple methods are

applied to investigate new cancer biology using anomaly scores.

4.7.1 Gene set selection

To rank the gene sets, MRMR and RF are applied to the relevance matrix for four anomaly

score variants, namely the z-absolute anomaly score, the z-square anomaly score, the z-cubic

anomaly score, and the mid-range anomaly score. Table 4.1 shows the ranking of the gene

sets for leukaemia patients in relation to z-absolute, z-square, and z-cubic anomaly scores. The

color blue indicates gene sets that are similar across all three anomaly scores.

4.7.2 Heatmap for analyzing gene ontology terms

A heatmap is a specific kind of data visualization in which the frequency of an occurrence

is shown as a color scale that extends over two dimensions [492]. A heatmap depicts the

associations between the gene ontology words (biological names) of gene sets that have been

found using the proposed methods as well as other state-of-the-art approaches.

The following considerations were taken into account when developing the heatmap for this

experiment:

1. MRMR uses anomaly scores to determine the ranking of gene sets for leukaemia data

sets in relation to cancer patients. MRMR is implemented by measuring the mutual

information of cancer gene sets for leukaemia patients.

2. GSEA is used to identify gene sets by including 4,800 genes for each of the state-of-the-

art approaches. Once the gene sets have been extracted using GSEA, the next step is to

select the top 10 gene sets based on their enrichment values.
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3. The GO terms are examined for both the proposed method and the current state-of-the-art

for each gene set. The heatmap shows the GO corresponding to each gene set for the

proposed method and the state-of-the-art.
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4.8 Synthesis

A data processing framework is developed to identify GO terms regarding cancer by utilising

anomaly scores, as shown in Figure 4.28. This process is broken down into three phases: the

first phase involves selecting the top gene sets based on anomaly scores using MRMR and

RF; the second phase involves generating the top gene sets using gene set enrichment analysis

(GSEA) and state-of-the-art approaches; and the final phase involves producing heat maps based

on anomaly scores and state-of-the-art approaches.

Figure 4.28: Schematic diagram showing methods representing new cancer biology.
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4.9 Results

4.9.1 Gene sets ranking

The effectiveness of the anomaly scores is measured by conducting an experiment with colon

cancer, breast cancer, and adrenal cancer data. Specifically, the gene sets are ranked for pre-

cancerous and cancerous colon cancer lesions using random forest and MRMR assessment of

anomaly scores and are compared to GSEA for selected genes.

Table 4.8 shows the top ten gene sets for the leukaemia datasets. The left column lists the

gene sets and the right column lists the associated genes for a given gene set. From the table, it

can be seen that gene sets identified by anomaly scores ranking are distinct from those generated

by applying GSEA.

Table 4.9 shows the top ten gene sets for colon cancer. From the table, it can be seen that

gene sets identified using anomaly scores ranking are different from those generated by GSEA.

Table 4.10 shows the top ten gene sets for breast cancer datasets. Again for this datasets, the

table shows that the anomaly scores ranking identified gene sets that are different from those

extracted using GSEA.

And finally, table 4.11 shows the top ten gene sets adrenal cancer datasets. From the table,

it can be seen that that anomaly scores ranking identified gene sets that are different from those

extracted using GSEA.
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Table 4.8: Top 10 gene sets identifying leukaemia patients who relapsed using random forest,
MRMR and GSEA.

(a) Gene set ranking using random forest
Gene Sets Gene Names
GOMF PROTEIN ARGININE OMEGA N MONOMETHYLTRANSFERASE
ACTIVITY URL

PRMT1, PRMT7, PRMT6, PRMT8, PRMT9

GOMF QUATERNARY AMMONIUM GROUP TRANSMEMBRANE
TRANSPORTER ACTIVITY URL

SLC25A29, SLC25A48, SLC25A45, SLC25A47,SLC22A1,
SLC22A3, SLC22A4, SLC22A5, SLC25A20,SLC22A16

GOMF G QUADRUPLEX RNA BINDING URL MCRS1, DHX36, DHX30, FMR1, AFF2, XRN1, LIN28A
GOMF HEPARAN SULFATE GLUCOSAMINE 3 SULFOTRANSFERASE 1
ACTIVITY URL

HS3ST5, HS3ST6, HS3ST4,HS3ST3B1, HS3ST3A1,HS3ST2,
HS3ST1

GOMF L LYSINE TRANSMEMBRANE TRANSPORTER ACTIVITY URL SLC25A29, PQLC2, SLC7A1, SLC7A2, SLC7A3
GOMF ARGININE TRANSMEMBRANE TRANSPORTER ACTIVITY URL SLC25A29, SLC38A9, PQLC2, SLC7A1, SLC7A2,SLC7A3
GOMF NAADP SENSITIVE CALCIUM RELEASE CHANNEL ACTIVITY URL TPCN2, MCOLN2, TPCN1, MCOLN3, MCOLN1

GOMF CROSSOVER JUNCTION ENDODEOXYRIBONUCLEASE ACTIVITY URL
EME1, EME2, GEN1, SLX1A, RAD51C, XRCC3, SLX1B,
MUS81, SLX4

GOMF LIPID KINASE ACTIVITY URL PIK3C2B, AGK, SPHK2, CERK, SPHK1

GOMF CERAMIDE 1 PHOSPHATE BINDING URL
COL4A3BP, GLTPD2, PLEKHA8P1, GLTP, PLEKHA3,CPTP,
PLEKHA8

(b) Gene set ranking using MRMR
Gene Sets Gene Names
GOMF ACYL CARNITINE TRANSMEMBRANE TRANSPORTER
ACTIVITY URL

SLC25A29, SLC25A48, SLC25A45, SLC25A47, SLC25A20

GOMF ALPHA AMYLASE ACTIVITY RELEASING MALTOHEXAOSE URL AMY1A, AMY1B, AMY1C,AMY2A, AMY2B
GOMF PROTON CHANNEL ACTIVITY URL OTOP1, OTOP3, ASIC5, NOX5, SLC4A11, HVCN1, OTOP2
GOMF PHEROMONE RECEPTOR ACTIVITY URL VN1R2, VN1R3, VN1R4, VN1R5, VN1R17P, VN1R1
GOMF HISTONE METHYLTRANSFERASE ACTIVITY H4 K20 SPECIFIC URL KMT5A, KMT5B, NSD1, NSD2, KMT5C
GOMF N ACETYLGALACTOSAMINE 4 O SULFOTRANSFERASE
ACTIVITY URL

CHST14, CHST13, CHST11, CHST8, CHST9

GOMF ALPHA N ACETYLGALACTOSAMINIDE ALPHA 2 6
SIALYLTRANSFERASE ACTIVITY URL

ST6GALNAC2, ST6GALNAC3, ST6GALNAC6,ST6GALNAC1,
ST6GALNAC5

GOMF TRACE AMINE RECEPTOR ACTIVITY URL TAAR9, TAAR1, TAAR6, TAAR8 TAAR5 TAAR2 TAAR3P
GOMF 2 ACYLGLYCEROL O ACYLTRANSFERASE ACTIVITY URL MOGAT1, AWAT2, MOGAT3, MOGAT2, DGAT2, DGAT1
GOMF PYRUVATE TRANSMEMBRANE TRANSPORTER ACTIVITY URL SLC16A11, MPC2, MPC1L, MPC1, SLC16A7

(c)Gene set ranking using GSEA
Gene Sets Gene Names
GOMF PHEROMONE RECEPTOR ACTIVITY URL VN1R2, VN1R3, VN1R4, VN1R5, VN1R17P, VN1R1
GOMF INORGANIC PHOSPHATE TRANSMEMBRANE
TRANSPORTER ACTIVITY URL

SLC25A3, ANKH, SLC17A7, SLC20A1, SLC20A2

GOMF BITTER TASTE RECEPTOR ACTIVITY URL

TAS2R39, TAS2R40, TAS2R43, TAS2R31,TAS2R45,
TAS2R46, TAS2R30,TAS2R19,TAS2R20, TAS2R50,
TAS2R60, TAS2R3, TAS2R4, TAS2R16, TAS2R1,
TAS2R9,TAS2R8, TAS2R7, TAS2R13, TAS2R10,
TAS2R14,TAS2R5,TAS2R38

GOMF G PROTEIN COUPLED NEUROTRANSMITTER RECEPTOR
ACTIVITY URL

HRH3, CHRM1, CHRM2, CHRM3, CHRM4, CHRM5,
OR10H4, OR10J5, ADRB1, GPR156, DRD4,
OR5T2,OR6T1,GABBR1, OR10H3,OR10H2, AC114267.1,
OR10H5, GRM1, HRH1,HRH2, HTR1A, HTR1B,
HTR1D, HTR1E,HTR1F, HTR2A,HTR2B, HTR2C,
HTR4, HTR5A, HTR6, HTR7, OR5T3,OR11H7,
OR11H4, OR10J6P, OPRM1, ZNF219, HRH4, GABBR2

GOMF KAINATE SELECTIVE GLUTAMATE RECEPTOR ACTIVITY URL GRIK1, GRIK2, GRIK3, GRIK4, GRIK5
GOMF ALKANE 1 MONOOXYGENASE ACTIVITY URL CYP4F8, CYP4A11, CYP4A22, CYP4F12, CYP4F2
GOMF DNA TOPOISOMERASE ACTIVITY URL TOP1MT, SPO11, TOP1, TOP2A, TOP2B, TOP3A, TOP3B
GOMF COPPER CHAPERONE ACTIVITY URL COX17, PARK7, ATOX1, ATP7A, CCS
GOMF CLASS I DNA APURINIC OR APYRIMIDINIC SITE
ENDONUCLEASE ACTIVITY URL

APLF, NEIL2, APEX2, APEX1, NTHL1,
OGG1, NEIL3, RPS3, NEIL1, ALKBH1

GOMF DOLICHYL DIPHOSPHOOLIGOSACCHARIDE PROTEIN
GLYCOTRANSFERASE ACTIVITY URL

STT3B, STT3A, OSTC, RPN1, RPN2

https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_PROTEIN_ARGININE_OMEGA_N_MONOMETHYLTRANSFERASE_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_QUATERNARY_AMMONIUM_GROUP_TRANSMEMBRANE_TRANSPORTER_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_G_QUADRUPLEX_RNA_BINDING.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_HEPARAN_SULFATE_GLUCOSAMINE_3_SULFOTRANSFERASE_1_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_L_LYSINE_TRANSMEMBRANE_TRANSPORTER_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_ARGININE_TRANSMEMBRANE_TRANSPORTER_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_NAADP_SENSITIVE_CALCIUM_RELEASE_CHANNEL_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_CROSSOVER_JUNCTION_ENDODEOXYRIBONUCLEASE_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_LIPID_KINASE_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_CERAMIDE_1_PHOSPHATE_BINDING.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_ACYL_CARNITINE_TRANSMEMBRANE_TRANSPORTER_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_ALPHA_AMYLASE_ACTIVITY_RELEASING_MALTOHEXAOSE_.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_PROTON_CHANNEL_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_PHEROMONE_RECEPTOR_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_HISTONE_METHYLTRANSFERASE_ACTIVITY_H4_K20_SPECIFIC_.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_N_ACETYLGALACTOSAMINE_4_O_SULFOTRANSFERASE_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_ALPHA_N_ACETYLGALACTOSAMINIDE_ALPHA_2_6 _SIALYLTRANSFERASE_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_TRACE_AMINE_RECEPTOR_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_2_ACYLGLYCEROL_O_ACYLTRANSFERASE_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_PYRUVATE_TRANSMEMBRANE_TRANSPORTER_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_PHEROMONE_RECEPTOR_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_INORGANIC_PHOSPHATE_TRANSMEMBRANE_ TRANSPORTER_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_BITTER_TASTE_RECEPTOR_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_G_PROTEIN_COUPLED_NEUROTRANSMITTER_RECEPTOR_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_KAINATE_SELECTIVE_GLUTAMATE_RECEPTOR_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_ALKANE_1_MONOOXYGENASE_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_DNA_TOPOISOMERASE_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_COPPER_CHAPERONE_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_CLASS_I_DNA_APURINIC_OR_APYRIMIDINIC_SITE _ENDONUCLEASE_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_DOLICHYL_DIPHOSPHOOLIGOSACCHARIDE_PROTEIN_ GLYCOTRANSFERASE_ACTIVITY.html
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Table 4.9: Top 10 gene sets identified as differentiating pre-cancerous and cancerous colon
cancer lesions using random forest, MRMR and GSEA.

(a) Gene set ranking using random forest
Gene Sets Gene Names

GOMF S ACYLTRANSFERASE ACTIVITY URL

YKT6, ZDHHC19, ZDHHC15, DLAT, DLST, FASN, ZDHHC17,
ZDHHC20, ZDHHC24, ZDHHC23, ZDHHC5, MCAT, GLUL,
ZDHHC22, ZDHHC1, ZDHHC8, ZDHHC21, GOLGA7B
,ZDHHC9, GOLGA7

GOMF COBALAMIN BINDING URL
MMACHC, CBLIF, MMAB, MTR, MMUT, CD320, LMBRD1,
TCN1, TCN2, CUBN

GOMF PROTON CHANNEL ACTIVITY URL OTOP1, OTOP3, ASIC5, NOX5, SLC4A11, HVCN1, OTOP2

GOMF REGULATORY RNA BINDING URL

TRIM71, FAM172BP, RC3H1, DHX9, AGO3, AGO4, ELAVL1,
C3H7B, TUT4, FMR1, PUM2, DICER1, ZNF346,
AGO1, AGO2, ZC3H7A,HNRNPA1, HNRNPA2B1, MECP2,
TLR7,SPOUT1

GOMF ORNITHINE DECARBOXYLASE REGULATOR ACTIVITY URL AZIN2, OAZ1, OAZ2, AZIN1, OAZ3, PRLR

GOMF PRE MRNA BINDING URL

RNU4ATAC, RNU6ATAC, RNVU1-8, RNVU1-4, RNVU1-14,
RNVU1-15, RNVU1-17, RNVU1-3, RNVU1-1, RNVU1-6,
RNVU1-19, U2AF1L5, LINC01715, SLU7, PRPF8,
CELF1, CELF2, CELF3, U2AF2, OVAAL,
DDX5, U2AF1L4, EP300, RBM24, RNU12

GOMF FATTY ACID DERIVATIVE BINDING URL

ECI2, ACOT7, ACOT12, DBI, OXER1, ALOX5AP, ACOT11,
GCDH, ACAD9, HADHA, HMGCL, ACADL, ACADVL, ACBD7,
ALDH6A1, PPARG, S100A8, S100A9, SCP2, ACBD3, SOAT1,
STX3, ACBD4

GOMF S METHYLTRANSFERASE ACTIVITY URL INMT, BHMT2, MGMT, ASMT, MTR, BHMT, TPMT

GOMF BILE ACID TRANSMEMBRANE TRANSPORTER
ACTIVITY URL

SLCO1B1, AKR1C4, SLCO2B1, SLC51B, SLC51A, SLC10A4,
SLCO1B3, SLCO1B7, SLC10A6, SLCO1C1, CEACAM1, SLC10A1,
SLC10A2, SLCO1A2,ABCB11, ABCC3

GOMF COMPLEMENT COMPONENT C1Q BINDING URL CRP, CD93, APCS, PTX3, C1QBP, C4A, CALR, MEGF10

(b) Gene set ranking using MRMR
Gene Sets Gene Names
GOMF SPHINGOSINE N ACYLTRANSFERASE ACTIVITY URL CERS1, CERS3, CERS6, CERS2, CERS4, FAM57B, CERS5

GOMF MRNA BINDING INVOLVED IN POSTTRANSCRIPTIONAL
GENE SILENCING URL

MIR675, MIR298, MIR509-2, MIR892B, MIR876, MIR877,
MIR665, MIR873, MIR301B, MIR543, MIR208B, MIR509-3,
MIR939, MIR365A, MIR365B, MIR1224, MIR1207, MIR548P

GOMF ALPHA AMYLASE ACTIVITY RELEASING
MALTOHEXAOSE URL

AMY1A, AMY1B, AMY1C, AMY2A, AMY2B

GOMF AMYLASE ACTIVITY URL AMY1A, AMY1B, AMY1C, AMY2A, AMY2B, MGAM
GOMF RNA ADENYLYLTRANSFERASE ACTIVITY URL TENT5B, TENT5D, TRNT1, TENT5C, TENT5A
GOMF RRNA GUANINE METHYLTRANSFERASE ACTIVITY URL BUD23, FTSJ3, TRMT112, MRM3, MRM1

GOMF PRE MRNA 5 SPLICE SITE BINDING URL

RNU4ATAC, RNU6ATAC, RNVU1-8, RNVU1-4, RNVU1-14,
RNVU1-15, RNVU1-17, RNVU1-3, RNVU1-1, RNVU1-6,
RNVU1-19, LINC01715, RNU11, RNVU1-18, RNVU1-7,
RNU1-3

GOMF FUCOSE BINDING URL FUOM, CLEC17A, ACR, SELP, COLEC11

GOMF UDP XYLOSYLTRANSFERASE ACTIVITY URL
RXYLT1, LARGE2, POGLUT3, XXYLT1, GXYLT1, POGLUT1,
XYLT1, XYLT2, GXYLT2, POGLUT2,LARGE1

GOMF PROTEIN XYLOSYLTRANSFERASE ACTIVITY URL POGLUT3, POGLUT1, XYLT1, XYLT2, POGLUT2

(c) Gene Set ranking using GSEA
Gene Sets Gene Names
GOMF 3 CHLOROALLYL ALDEHYDE DEHYDROGENASE ACTIVITY URL ALDH3A1, ALDH3B1, ALDH3B2, ALDH3A2, ALDH1A2

GOMF UBIQUITIN LIGASE INHIBITOR ACTIVITY URL FBXO5, RPL5, RPL11, RPS7, RPL23
GOMF ACROSIN BINDING URL POMZP3, SERPINA5, ZP4, ZP2, ZP3

GOMF GLUTATHIONE DISULFIDE OXIDOREDUCTASE ACTIVITY URL GLRX3, GSTO2, GLRX, GSR, GLRX2, GLRX5, GSTO1

GOMF EPOXIDE HYDROLASE ACTIVITY URL EPHX1, EPHX2, LTA4H, RNPEP, EPHX3, AKR7A2
GOMF MHC CLASS IB RECEPTOR ACTIVITY URL KLRC4-KLRK1, LILRB1, CD160, KLRK1, KIR2DL4

GOMF VASCULAR ENDOTHELIAL GROWTH FACTOR BINDING URL FLT1, FLT4, KDR, PDGFRA, PDGFRB, PTN, NRP1

GOMF TYPE 5 METABOTROPIC GLUTAMATE RECEPTOR BINDING URL ADORA2A, FYN, DNM3, NECAB2, PRNP

GOMF FIBRINOGEN BINDING URL CDH5, FBLN1, ITGA2B, ITGB3, THBS1

GOMF COLLAGEN BINDING INVOLVED IN CELL MATRIX ADHESION URL ITGA11, ITGA1, ITGA2, ITGB1, ITGA10

https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_S_ACYLTRANSFERASE_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_COBALAMIN_BINDING.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_PROTON_CHANNEL_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_REGULATORY_RNA_BINDING.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_ORNITHINE_DECARBOXYLASE_REGULATOR_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_PRE_MRNA_BINDING.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_FATTY_ACID_DERIVATIVE_BINDING.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_S_METHYLTRANSFERASE_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_BILE_ACID_TRANSMEMBRANE_TRANSPORTER _ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_COMPLEMENT_COMPONENT_C1Q_BINDING.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_SPHINGOSINE_N_ACYLTRANSFERASE_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_MRNA_BINDING_INVOLVED_IN_POSTTRANSCRIPTIONAL _GENE_SILENCING.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_ALPHA_AMYLASE_ACTIVITY_RELEASING _MALTOHEXAOSE_.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_AMYLASE_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_RNA_ADENYLYLTRANSFERASE_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_RRNA_GUANINE_METHYLTRANSFERASE_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_PRE_MRNA_5_SPLICE_SITE_BINDING.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_FUCOSE_BINDING.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_UDP_XYLOSYLTRANSFERASE_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_PROTEIN_XYLOSYLTRANSFERASE_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_3_CHLOROALLYL_ALDEHYDE_DEHYDROGENASE_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_UBIQUITIN_LIGASE_INHIBITOR_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_ACROSIN_BINDING.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_GLUTATHIONE_DISULFIDE_OXIDOREDUCTASE_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_EPOXIDE_HYDROLASE_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_MHC_CLASS_IB_RECEPTOR_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_VASCULAR_ENDOTHELIAL_GROWTH_FACTOR_BINDING.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_TYPE_5_METABOTROPIC_GLUTAMATE_RECEPTOR_BINDING.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_FIBRINOGEN_BINDING.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_COLLAGEN_BINDING_INVOLVED_IN_CELL_MATRIX_ADHESION.html
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Table 4.10: Top 10 gene sets identified as differentiating cancerous and non-cancerous breast
cancer patients using random forest, MRMR and GSEA.

(a) Gene set ranking for random forest
Gene Set Gene Names
GOMF TRACE AMINE RECEPTOR ACTIVITY URL TAAR9, TAAR1, TAAR6, TAAR8, TAAR5, TAAR2, TAAR3P
GOMF N ACETYLGLUCOSAMINE 6 O SULFOTRANSFERASE
ACTIVITY URL

CHST4, CHST5, CHST6, CHST7, CHST1, CHST2, CHST3

GOMF FUCOSE BINDING URL FUOM, CLEC17A, ACR, SELP, COLEC11

GOMF LOW DENSITY LIPOPROTEIN PARTICLE RECEPTOR
BINDING URL

LANCL1, APOA5, AP2M1, CLU, CLTC, CRP, AP2A1, DKK1,
MESD, PCSK9, LDLRAP1, DNAJA1, HSPG2, APOB, APOE,
LRPAP1, ANKRA2, SYT1, HSP90B1,PICALM, SNX17

GOMF ACYL CARNITINE TRANSMEMBRANE TRANSPORTER
ACTIVITY URL

SLC25A29, SLC25A48, SLC25A45, SLC25A47, SLC25A20

GOMF HISTONE SERINE KINASE ACTIVITY URL PRKAA1, PRKAA2, AURKA, AURKC, VRK1, AURKB

GOMF OXIDOREDUCTASE ACTIVITY ACTING ON SINGLE DONORS
WITH INCORPORATION OF MOLECULAR OXYGEN URL

ACOT7, ACOT12, DBI, OXER1, ALOX5AP, ACOT11, GCDH,
ACAD9, HADHA, HMGCL, ACADL, ACADVL, ACBD7,
ALDH6A1,PPARG, S100A8,S100A9,SCP2,ACBD3, SOAT1,
STX3,ACBD4,PNPLA3, ACBD6,SOAT2,ACBD5

GOMF CAMP DEPENDENT PROTEIN KINASE REGULATOR ACTIVITY URL

CDO1, IDO2, ETHE1, HAAO, ALOX12, ALOX5, ALOX12B,
ALOX15, ALOX15B, P4HA3,HGD, HPD, IDO1, P4HA1, BCO1,
TMLHE, ADI1,MIOX, PTGS2, ALOXE3,RPE65,TDO2, BCO2,
BBOX1, HPDL,ADO, PIR, P4HA2

GOMF PHOSPHOLIPASE D ACTIVITY URL PLD4, PLD3, GPLD1, HMOX1, PLD1, PLD2

GOMF GLUCOSE SODIUM SYMPORTER ACTIVITY URL
SLC5A11, SLC5A10, SLC5A9, SLC5A1, SLC5A2, SLC5A3,
SLC5A4

(b) Gene set ranking for MRMR
Gene Set Gene Names
GOMF ALPHA AMYLASE ACTIVITY RELEASING MALTOHEXAOSE URL AMY1A, AMY1B, AMY1C, AMY2A, AMY2B
GOMF PROTON CHANNEL ACTIVITY URL OTOP1, OTOP3, ASIC5, NOX5, SLC4A11, HVCN1, OTOP2
GOMF ACYL CARNITINE TRANSMEMBRANE TRANSPORTER
ACTIVITY URL

SLC25A29, SLC25A48, SLC25A45, SLC25A47, SLC25A20

GOMF PHEROMONE RECEPTOR ACTIVITY URL VN1R2, VN1R3, VN1R4, VN1R5, VN1R17P, VN1R1
GOMF HISTONE METHYLTRANSFERASE ACTIVITY H4 K20
SPECIFIC URL

KMT5A, KMT5B, NSD1, NSD2, KMT5C

GOMF FUCOSE BINDING GOMF HISTONE METHYLTRANSFERASE ACTIVITY H4 K20 SPECIFIC
URL

FUOM, CLEC17A, ACR, SELP, COLEC11

GOMF NOREPINEPHRINE BINDING URL ADRA2A, ADRB1, ADRB2, ADRB3, DRD4
GOMF N ACETYLGALACTOSAMINE 4 O SULFOTRANSFERASE
ACTIVITY URL

CHST14, CHST13, CHST11, CHST8, CHST9

GOMF TRACE AMINE RECEPTOR ACTIVITY URL TAAR9, TAAR1, TAAR6, TAAR8, TAAR5, TAAR2, TAAR3P
GOMF ATPASE INHIBITOR ACTIVITY URL PLN, FNIP2, TSC1, ATP5IF1, FNIP1

(c) Gene set ranking for GSEA
Gene Set Gene Names
GOMF SPHINGOSINE N ACYLTRANSFERASE ACTIVITY URL CERS1, CERS3, CERS6, CERS2, CERS4, FAM57B, CERS5
GOMF SULFATIDE BINDING URL TPP1, CLN3, CLN6, PPT1, MANF
GOMF AMINOACYLASE ACTIVITY URL DARS, ASPA, CAT, ACY3, ACY1
GOMF EPOXIDE HYDROLASE ACTIVITY URL EPHX1, EPHX2, LTA4H, RNPEP, EPHX3, AKR7A2
GOMF AMIDINE LYASE ACTIVITY URL ADSL, ASL, CHAC2, PAM, GGCT, CHAC1, GGACT
GOMF MHC CLASS IB RECEPTOR ACTIVITY URL KLRC4-KLRK1, LILRB1, CD160, KLRK1, KIR2DL4

GOMF G PROTEIN COUPLED ADENOSINE RECEPTOR ACTIVITY URL
ADORA1, ADORA2A, ADORA2B, ADORA3, P2RY1, P2RY11,
P2RY12

GOMF TYPE 5 METABOTROPIC GLUTAMATE RECEPTOR BINDING URL ADORA2A, FYN, DNM3, NECAB2, PRNP
GOMF CCR2 CHEMOKINE RECEPTOR BINDING URL DEFB106A, DEFB106B, CCL2, CCL7, CCR2
GOMF DNA TRANSLOCASE ACTIVITY URL RAD54B, ATRX, ERCC6L, PBRM1, FBH1

https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_TRACE_AMINE_RECEPTOR_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_N_ACETYLGLUCOSAMINE_6_O_SULFOTRANSFERASE _ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_FUCOSE_BINDING.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_LOW_DENSITY_LIPOPROTEIN_PARTICLE_RECEPTOR _BINDING.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_ACYL_CARNITINE_TRANSMEMBRANE_TRANSPORTER _ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_HISTONE_SERINE_KINASE_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_OXIDOREDUCTASE_ACTIVITY_ACTING_ON_SINGLE_DONORS _WITH_INCORPORATION_OF_MOLECULAR_OXYGE.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_CAMP_DEPENDENT_PROTEIN_KINASE_REGULATOR_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_PHOSPHOLIPASE_D_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_GLUCOSE_SODIUM_SYMPORTER_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_ALPHA_AMYLASE_ACTIVITY_RELEASING_MALTOHEXAOSE_.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_PROTON_CHANNEL_ACTIVITY
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_ACYL_CARNITINE_TRANSMEMBRANE_TRANSPORTER _ACTIVITY
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_PHEROMONE_RECEPTOR_ACTIVITY
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_HISTONE_METHYLTRANSFERASE_ACTIVITY_H4_K20_SPECIFIC_.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_FUCOSE_BINDING.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_FUCOSE_BINDING.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_N_ACETYLGALACTOSAMINE_4_O_SULFOTRANSFERASE _ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_TRACE_AMINE_RECEPTOR_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_ATPASE_INHIBITOR_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_SPHINGOSINE_N_ACYLTRANSFERASE_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_SULFATIDE_BINDINGY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_AMINOACYLASE_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_EPOXIDE_HYDROLASE_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_AMIDINE_LYASE_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_MHC_CLASS_IB_RECEPTOR_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_G_PROTEIN_COUPLED_ADENOSINE_RECEPTOR_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_TYPE_5_METABOTROPIC_GLUTAMATE_RECEPTOR_BINDING.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_CCR2_CHEMOKINE_RECEPTOR_BINDING.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_DNA_TRANSLOCASE_ACTIVITY.html
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Table 4.11: Top 10 Gene sets for adrenal cancer using random forest, MRMR and GSEA.
(a) Gene set ranking for random forest

Gene Sets Gene Names

GOMF STEROID HORMONE RECEPTOR BINDING URL
CDK7, CEBPB, KAT5, ARID5A, PPARGC1A, PADI2,
PARK7, PHB2, PPARGC1B, PARP1, SRARP, CTNNB1,
DNAAF4, DAXX, DDX5, ZNF366, NR0B1, EP300, ESR1

GOMF PHOSPHATIDYLINOSITOL 3 4 5 TRISPHOSPHATE BINDING URL
IQGAP2, FERMT2, ADAP1, ARAP2, ARAP1, COMMD1,
AKT1, PHLDA3, WASHC2C, DAPP1, RACGAP1, MYO1B,
MYO10, NRGN,ASAP1, ZFYVE1, PLEKHB2, KIF16B

GOMF RIBOSOME BINDING URL
PRMT3, RACK1, GCN1, CPEB2, LETM2, EIF5AL1, EEF2,
EIF2S1, EIF5A, ETF1, MTIF3, CPEB3, MRPS27, FMR1, MTOR,
RICTOR, YTHDF3, LETMD1, GEMIN5, EIF3K, OLA1, SEC61A1

GOMF PHOSPHATIDYLINOSITOL PHOSPHATE BINDING URL

COL4A3BP, IQGAP2, FERMT2, RAB35, ADAP1,
WDR45, SNX18, TWF2, TIRAP, OSBPL5,
OSBPL8, FCHO2, ARAP2, ARAP1, SNX20,
BBS5, CLVS2, AMER1, SYT9, COMMD1

GOMF TRANSLATION FACTOR ACTIVITY RNA BINDING URL

TSFM, EIF1, EIF1B, EIF3M, HBS1L,
GCN1, COPS5, CPEB2, EIF5AL1, EEF1A1P5,
EEF1A1, EEF1A2, EEF1B2, EEF1D, EEF1G,
EEF2, EIF2D, EIF1AX, EIF2S1, EIF2B1, EIF2S3

GOMF NUCLEOBASE CONTAINING COMPOUND TRANSMEMBRANE
TRANSPORTER ACTIVITY URL

SLC35B1, SLC25A17, SLC35A1, SLC35D2, SLC35A4,
SLC25A25, SLC29A1, ABCD1, HNRNPA3, SLC29A4,
SLC35D1, SLC35A3, SLC25A41, SLC25A42, SLC25A4,
SLC25A5, SLC25A6 ,SLC25A24, SLC29A2, SLC35E4

GOMF EXTRACELLULAR MATRIX STRUCTURAL CONSTITUENT
CONFERRING TENSILE STRENGTH URL

COL1A1, COL1A2, COL2A1, COL3A1, COL4A1,
COL4A2, COL4A3, COL4A4, COL4A5, COL4A6,
COL5A1, COL5A2, COL6A1, COL6A2, COL6A3,
COL7A1, COL8A1, COL8A2

GOMF L AMINO ACID TRANSMEMBRANE TRANSPORTER ACTIVITY URL

SLC25A13, SLC25A15, SLC38A3, SLC7A9, SLC36A4,
SLC15A4, SLC25A29, SLC43A2, SLC32A1, CTNS,
SLC38A9, SLC36A2, SLC7A13, SLC36A1, SLC7A8,
SLC7A11, SLC17A8

GOMF EXTRACELLULAR MATRIX STRUCTURAL CONSTITUENT URL

EDIL3, ENAM, PRG4, PRG3, SPON1, FBLN5, POSTN, FGL2,
EMILIN1, CHI3L1, CTHRC1, PODN, COL1A1, COL1A2,
COL2A1, COL3A1, COL4A1, COL4A2, COL4A3, COL4A4,
COL4A5, COL4A6, COL5A1, COL5A2, COL6A1, COL6A2

GOMF PHOSPHOLIPID BINDING URL
PLA2G4B, PIGK, RASA4B, COL4A3BP, RASGRP1, RASA4,
PEMT, CEACAM5, UNC13B, CETP, IQGAP2, FERMT2,
RAB35, ADAP1, WDR45, NISCH, ANXA10, PACSIN2

(b) Gene set ranking using MRMR
Gene Sets Gene Names
GOMF SPHINGOSINE N ACYLTRANSFERASE ACTIVITY URL CERS1, CERS3, CERS6, CERS2, CERS4, FAM57B, CERS5

GOMF MRNA BINDING INVOLVED IN POSTTRANSCRIPTIONAL
GENE SILENCING URL

MIR675, MIR298, MIR509-2, MIR892B, MIR876,
MIR877,MIR665, MIR939, MIR365A, MIR365B,
MIR1224, MIR1207, MIR548P, MIR2355

GOMF FUCOSE BINDING URL FUOM, CLEC17A, ACR, SELP, COLEC11

GOMF PRE MRNA 5 SPLICE SITE BINDING URL
RNU4ATAC, RNU6ATAC, RNVU1-8, RNVU1-4, RNVU1-14,
RNVU1-15, RNVU1-19, LINC01715, RNU11,
RNVU1-18, RNVU1-7, RNU1-3, RNU1-2

GOMF ALPHA AMYLASE ACTIVITY RELEASING MALTOHEXAOSE URL AMY1A, AMY1B, AMY1C, AMY2A, AMY2BG

GOMF RRNA GUANINE METHYLTRANSFERASE ACTIVITY URL BUD23, FTSJ3, TRMT112, MRM3, MRM1
GOMF AMYLASE ACTIVITY URL AMY1A, AMY1B, AMY1C, AMY2A, AMY2B, MGAM

GOMF UDP XYLOSYLTRANSFERASE ACTIVITY URL
RXYLT1, LARGE2, POGLUT3, XXYLT1, GXYLT1,
POGLUT1, XYLT1, XYLT2, GXYLT2, POGLUT2, LARGE1

GOMF PROTEIN XYLOSYLTRANSFERASE ACTIVITY URL POGLUT3, POGLUT1, XYLT1, XYLT2, POGLUT2
GOMF BENZODIAZEPINE RECEPTOR BINDING URL RIMBP3C, DBI, RIMBP3B, RIMBP3, TSPOAP1

(c) Gene set ranking using GSEA
Gene Sets Gene Names
GOMF PROSTAGLANDIN E RECEPTOR ACTIVITY URL HPGD, PTGER1, PTGER2, PTGER3, PTGER4
GOMF ATPASE INHIBITOR ACTIVITY URL PLN, FNIP2, TSC1, ATP5IF1, FNIP1
GOMF TRANSFORMING GROWTH FACTOR BETA RECEPTOR
ACTIVITY TYPE I URL

ACVR1C, BMPR1A, BMPR1B, TGFBR1, ACVR1,
ACVR1B, ACVRL1

GOMF LEUKOTRIENE C4 SYNTHASE ACTIVITY URL ALOX5AP, GSTM4, LTC4S, MGST2, MGST3

GOMF G PROTEIN COUPLED ADENOSINE RECEPTOR ACTIVITY URL
ADORA1, ADORA2A, ADORA2B, ADORA3, P2RY1,
P2RY11, P2RY12, RNU4ATAC, RNU6ATAC, RNVU1-8,
RNVU1-4, RNVU1-14, RNVU1-15

GOMF PRE MRNA 5 SPLICE SITE BINDING URL
RNVU1-3, RNVU1-1, RNVU1-6, RNVU1-19, LINC01715,
RNU11, RNVU1-7, RNU1-3, RNU1-2, RNU1-1,
WEE2-AS1, PRPF39, RNU1-4

GOMF BETA N ACETYLHEXOSAMINIDASE ACTIVITY URL OGA, GM2A, HEXD, HEXA, HEXB
GOMF 5 DEOXYRIBOSE 5 PHOSPHATE LYASE ACTIVITY URL POLQ, XRCC6, POLL, XRCC5, HMGA2
GOMF RNA DEPENDENT ATPASE ACTIVITY URL DDX17, DDX11, IGHMBP2, YTHDC2, DDX39B
GOMF STRUCTURAL CONSTITUENT OF POSTSYNAPTIC
ACTIN CYTOSKELETON URL

ACTBL2, POTEKP, ACTB, ACTG1, INA

https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_STEROID_HORMONE_RECEPTOR_BINDING.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_PHOSPHATIDYLINOSITOL_3_4_5_TRISPHOSPHATE_BINDING.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_RIBOSOME_BINDING.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_PHOSPHATIDYLINOSITOL_PHOSPHATE_BINDING.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_TRANSLATION_FACTOR_ACTIVITY_RNA_BINDING.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_NUCLEOBASE_CONTAINING_COMPOUND_TRANSMEMBRANE _TRANSPORTER_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_EXTRACELLULAR_MATRIX_STRUCTURAL_CONSTITUENT_ CONFERRING_TENSILE_STRENGTH.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_L_AMINO_ACID_TRANSMEMBRANE_TRANSPORTER_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_EXTRACELLULAR_MATRIX_STRUCTURAL_CONSTITUENT.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_PHOSPHOLIPID_BINDING.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_SPHINGOSINE_N_ACYLTRANSFERASE_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_MRNA_BINDING_INVOLVED_IN_POSTTRANSCRIPTIONAL _GENE_SILENCING.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_FUCOSE_BINDING.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_PRE_MRNA_5_SPLICE_SITE_BINDING.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_ALPHA_AMYLASE_ACTIVITY_RELEASING_MALTOHEXAOSE_.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_RRNA_GUANINE_METHYLTRANSFERASE_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_AMYLASE_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_UDP_XYLOSYLTRANSFERASE_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_PROTEIN_XYLOSYLTRANSFERASE_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_BENZODIAZEPINE_RECEPTOR_BINDING.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_PROSTAGLANDIN_E_RECEPTOR_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_ATPASE_INHIBITOR_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_TRANSFORMING_GROWTH_FACTOR_BETA_RECEPTOR_ACTIVITY_TYPE_I.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_LEUKOTRIENE_C4_SYNTHASE_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_G_PROTEIN_COUPLED_ADENOSINE_RECEPTOR_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_PRE_MRNA_5_SPLICE_SITE_BINDING.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_BETA_N_ACETYLHEXOSAMINIDASE_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_5_DEOXYRIBOSE_5_PHOSPHATE_LYASE_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_RNA_DEPENDENT_ATPASE_ACTIVITY.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/GOMF_STRUCTURAL_CONSTITUENT_OF_POSTSYNAPTIC_ACTIN_CYTOSKELETON.html


4.9. RESULTS 247

4.9.2 Heatmaps for leukaemia, colon, adrenal and breast cancer data sets

The heatmap shows comparative outcomes of the GO terms between the proposed anomaly

scores and the state-of-the-art approaches. The color coding of the heatmap reflects the range

of different values for the proposed anomaly scores and the enrichment scores for the state-of-

the-art approaches.

Experiment setup:

1. Technology: Heatmap.

2. Python packages: pandas, NumPy, matplotlib, pyplot, seaborn, and matplotlib.patches.

3. Input data: Anomaly scores for all four cancer data sets and scores for all state-of-the-art.

Figure 4.29 shows a heatmap for GO terms for the top 10 gene sets for leukaemia datasets

using the proposed method and state-of-the-art approaches. The names of the procedures appear

in the columns of the heatmap, while the GO terms appear in the rows. From the figure it can

be seen that, the proposed anomaly score identified new GO terms, in contrast to the state-of-

the-art approaches.

Figure 4.30 shows a heatmap for GO terms for the top 10 gene sets for colon cancer

(colorectal cancer (CRC) vs inflammatory bowel disease (IBD)) datasets using the proposed

method and state-of-the-art approaches. In contrast to state-of-the-art approaches, the proposed

anomaly score identified new GO terms (Figure 4.30).

Figure 4.31 shows a heatmap for GO terms for the top 10 gene sets for breast cancer (healthy

vs cancerous patients) datasets using the proposed method and state-of-the-art approaches.

From the figure it can be seen that the proposed anomaly scores identified new GO terms from

the breast cancer data set in contrast to the state-of-the-art approaches.

Figure 4.32 shows a heatmap for GO terms for the top 10 gene sets for adrenal cancer

(adrenal adenoma vs adrenal carcinoma) datasets using the proposed method and state-of-the-

art approaches. In contrast to the state-of-the-art approaches, the figure demonstrates that the

proposed anomaly score identified new GO terms.

Moreover, the proposed anomaly score and the CSAX, FRaC, and Eigfusion for leukaemia

datasets all had the same transmembrane signalling GO term. Amid binding, the same GO term
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was shared by anomaly score, FRaC, and outlier data for colon cancer. When it comes to breast

cancer, the anomaly score, GFS, FRaC, CSAX, PFSNet, and outlier all have the same ceramide

binding, protein binding, and lipase inhibitor activity. Choline transport and protein binding are

similar between the FRaC and the anomaly score.
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Figure 4.29: Gene ontology terms for the top 10 gene sets for the leukaemia data sets visualized
as a heatmap using the proposed method and state-of-the-art approaches.
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Figure 4.30: Gene ontology terms for the top 10 gene sets for colon cancer (IBD VS CRC)
datasets visualized as a heatmap using the proposed method and state-of-the-art approaches.
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Figure 4.31: Gene ontology terms for the top 10 gene sets for breast cancer (healthy vs
cancerous) datasets visualized as a heatmap using the proposed method and state-of-the-art
approaches.
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Figure 4.32: Gene ontology terms for the top 10 gene sets for adrenal cancer (adrenal adenoma
vs adrenal carcinoma) datasets visualized as a heatmap using the proposed method and state-
of-the-art approaches.
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4.10 Discussion

From the heatmap, it can be seen that the proposed anomaly scores provide different GO terms

than other state-of-the-art approaches. The hypothesis of this thesis, careful integration of all

genes of a patient into one gene set will allow measuring the variation in a gene set responsible

for the disease. The proposed anomaly score includes all genes to find the variation of each gene

set (gene ontology), whereas GSEA uses a small number of genes to find enrichment scores for

each gene set.

Most of the gene sets identified by the proposed anomaly scores differ from those identified

by state-of-the-art approaches. A few gene sets were consistent between the proposed anomaly

scores and the state-of-the-art approaches. Some gene sets differed from the state-of-the-art

approaches associated with the prediction of cancer recurrence in leukaemia, breast cancer,

colon cancer, and adrenal cancer.
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4.11 Conclusion

The ranking of gene sets from two different feature selection approaches showed that the

proposed anomaly scores identified new gene sets (biology) than the gene sets from GSEA

for leukaemia, breast, colon, and adrenal cancer. In this thesis, the functions of these gene sets

were explored in the available literature since there was no scope to validate them in wet labs.

From the literature, it appeared that the functions of these gene sets provided an understanding

of a disease such as cancer.

In addition, the comparison between heatmap and state-of-the-art approaches showed that

the proposed anomaly scores identified new gene sets for leukaemia, breast, colon, and adrenal

cancers than the gene sets of the state-of-the-art approaches. Thus, in this thesis, the gene set

ranking and the heatmap enabled an individual to understand newly identified gene sets for four

different cancers, including leukaemia, breast, colon, and adrenal cancers.

The results of the instance-based LINDA-BN revealed the gene sets associated with the

prediction of a patient’s medical condition. The functions of these gene sets were examined

using the existing literature and their effects on diseases such as cancer. Explainable AI (XAI)

provides alternative ways to analyse data that are more understandable and technically equiva-

lent to complex black-box AI approaches. In most cases, implementations of XAI approaches

could clarify, in a step-by-step fashion, how the features were interconnected to arrive at a

conclusion of predictions and analysis.

When analysing cancer data, the XAI approach achieved an improvement in understanding

and interpreting the underlying mechanism of an approach. Using anomaly scores, instance-

based LINDA-BN, which is an XAI approach, proved to be a trustworthy mechanism for iden-

tifying the gene sets which are responsible for predicting a medical condition of an individual

patient.

Consequently, the proposed anomaly scores were able to identify different GO terms com-

pared to the state-of-the-art approaches. The heatmap, a simple and easily interpreted repre-

sentation that reflects anomaly scores, showed new GO terms in contrast to the state-of-the-art

approaches.

In light of the results, it can be concluded that an instance-based LINDA-BN is a useful

technique for finding the biological components associated with specific medical conditions for
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a given patient.

However, a drug could potentially have an impact on the patient’s existing medical con-

dition. Looking only on the patient’s biology could sometimes leave out important details,

such as the drug’s effect on the patient’s condition. Instance-based LINDA-BN overlooked the

association with a drug when predicting a patient’s health condition.



Chapter 5

Conclusions and future work

”Imagination is more important than knowledge. Knowledge is limited. Imagination encircles

the world”. – Albert Einstein.

5.1 Conclusion

This thesis hypothesized that the careful aggregation of gene expression values into gene set

anomaly scores would provide opportunities to gain insights from the data analysis of gene

expression profiles. A family of techniques was described for this purpose in this thesis,

showing that even simple methods like using the z-scores of gene expression values to measure

variation and taking the arithmetic mean of variations for each gene set were sufficient to

provide a benefit over processing gene expression values directly.

The proposed approach was utilized in the analysis of gene expression data from cancer

patients across three datasets. In particular, anomaly scores followed by either PCA or MRMR

made clusters of cancer patients visible in scatter plots, clusters associated with treatment

outcomes. Also, MRMR identified candidate gene sets with biologically relevant implications.

In contrast, when raw gene expression values were analyzed, biologically relevant patterns

were not visible. When comparing the distribution of anomaly scores for relapsed and non-

relapse patients, a clear distinction was noted. Distributions for non-relapsed patients exhibited

a prominent second mode. This hints at an exciting difference that may be exploited to pursue

256
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better treatment.

In this thesis, the research hypothesis has been carefully tested based on the results that

demonstrate extensive research on this topic. The first contribution of this thesis is the devel-

opment of a method that generates anomaly scores for each patient with respect to all genes of

patient that match genes in gene sets. This is a novel contribution over previous research that

considered only a small number of genes from gene sets. This method helps to investigates the

relationships between patients and their biology with respect to the variations in gene expression

values. Thus, this method makes it possible to understand a patient’s genetic makeup and how

it relates to their condition, which is a valuable step in understanding the patient’s biology.

This thesis concludes that gene set anomaly scores improve the extraction of insights from

gene expression data. Using gene sets brings a knowledge-driven aspect that can then be

combined with data-driven analysis. This thesis proposed a new analysis tool and new directions

for understanding the genetic causes of diseases. In addition, the proposed anomaly scores

were able to differentiate between different GO terms when compared to existing methods. In

contrast to state-of-the-art approaches, the proposed anomaly scores identified new GO terms,

as shown by the heatmap outcomes.

Second finding focuses on patient clustering, with similar patients being grouped together

based on their anomaly gene expression values or scores. This strategy of stratifying patients

into cohorts based on genetic variations improves understanding of disease patterns and simi-

larities between patients.

In the third contribution, the results show distinct anomaly distributions in patients with

relapse, non-relapse, and a medium cancer. The observed differences in histogram distributions

for various gene sets suggest that some gene sets may play a distinct role in patients with

relapse versus patients without relapse. It indicates that some gene sets anomaly scores do

not change sufficiently in patients with relapse, whereas in patients without relapse, some gene

sets anomaly scores reflect significant changes in anomaly scores.

Explainable AI (XAI) is an alternative to complicated black-box AI systems that are both

more intelligible and technically equal. In the majority of instances, XAI implementations are

capable of explaining, step-by-step, how features are interconnected to arrive at a conclusion of

predictions and analyses.
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The XAI method improved the understanding and interpretation of the underlying mech-

anism of an approach when analyzing cancer data. Using anomaly scores, instance-based

LINDA-BN proved to be a reliable method for identifying the gene sets responsible for pre-

dicting the condition of an individual patient.

Finally, instance-based LINDA-BN provides an interpretable predictive outcomes, making

it easier to understand which gene sets are associated with relapse and which are not. LINDA-

BN assesses the conditional dependencies and independencies to identify the gene sets that are

most likely associated with a particular patient’s medical condition. This approach enhances

interpretability, provides valuable insight into the decision-making process, and potentially

improving disease prediction and feature selection. Based on the outcomes, it can be concluded

that an instance-based LINDA-BN is a useful approach for determining the patient biologies

associated with particular medical conditions for a given patient.

5.1.1 Impact of interpretable AI

LINDA-BN applies both Probabilistic graphical models (PGMs) and Markov blanket strategy

to identify assocaited features. PGMs map how different things relate to each other. Just as a

map shows us how different cities are connected by roads, PGMs show how different features,

in this case gene sets, might be connected or related. The strength of these connections shows

how much one gene set can influence another. PGMs show us how changes in one gene set can

lead to changes in another.

The Markov Blanket for a gene set includes all other gene sets that directly affect it. By

looking at the Markov Blanket for a particular gene set, it can be easily seen which other gene

sets might cause changes in that gene set.
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5.2 Limitations

As for practical applications, the integration of biological information in the form of gene sets

could greatly assist practitioners in identifying cancer patients for appropriate treatment inter-

ventions. However, it’s essential to remember that these findings should be further investigated

in a wet lab to gain a more precise understanding of the biology responsible for cancer or cancer

relapse. This would provide practitioners with a more concrete foundation for applying these

findings to their treatment strategies.

5.3 Future work

Anomaly scores are used to investigate associations between patients and their biological char-

acteristics through patient embedding. The embedding is shown in several clusters for different

patient groups such as relapse, non-relapse, cancer, healthy, adenoma, and carcinoma. This

thesis used four different cancer gene expression datasets, namely leukemia, breast cancer,

colorectal cancer, and adrenal cancer.

Although anomaly scores are used to investigate the relationship between patients and

patient biology, patient embedding did not take into account the influence of treatment planning.

As a result, some of the clusters overlapped with patient groups and were not separated into

different clusters. In addition, the embedding results showed that the breast cancer datasets

were not clustered in a better way than the other three datasets.

Patient embedding with treatment planning and anomaly scores can ensure a strong rela-

tionship between patients and patient biology. In addition, treatment planning may improve

the clustering among multiple patient groups. Moreover, machine learning techniques, such as

neural networks, could be helpful in separating groups of patients with respect to the anomaly

scores.

This thesis applied the XAI approach to explain patient biology associated with disease

prognosis. Although the XAI shows the patient biology associated with disease prognosis, a

major drawback is that aspects related to the patient’s medication were not considered. In the

absence of medication factors, merely examining gene sets associated with disease prognosis is

insufficient to understand a patient’s condition.
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This thesis did not test whether understanding a model or being able to explain a model leads

to better decision-making by physicians or medical experts. Further study is needed to uncover

the details of this phenomenon. Since several issues remain unaddressed, a future extension is

suggested to include drug factors with gene sets to explain patients’ disease prognosis.

It is expected that further improvements will determine whether a better understanding of a

model or an explainable model can improve decision-making by practitioners or medical experts

through conducting surveys and collecting data.
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[241] M. Reboiro-Jato, R. Laza, H. López-Fernández, D. Glez-Peña, F. Dı́az, F. Fdez-Riverola,

genEnsemble: A new model for the combination of classifiers and integration of

biological knowledge applied to genomic data, Expert Systems with Applications 40 (1)

(2013) 52–63.

URL https://www.sciencedirect.com/science/article/abs/pii/

S0957417412008585

[242] S. Seifert, S. Gundlach, O. Junge, S. Szymczak, Integrating biological knowledge and

gene expression data using pathway-guided random forests: a benchmarking study,

Bioinformatics 36 (15) (2020) 4301–4308.

URL https://academic.oup.com/bioinformatics/

article-abstract/36/15/4301/5836498

[243] M. E. Blazadonakis, M. E. Zervakis, D. Kafetzopoulos, Integration of gene signatures

using biological knowledge, Artificial Intelligence in Medicine 53 (1) (2011) 57–71.

https://www.hindawi.com/journals/ppar/2020/1892375/
https://www.hindawi.com/journals/ppar/2020/1892375/
https://www.hindawi.com/journals/ppar/2020/1892375/
https://www.hindawi.com/journals/ppar/2020/1892375/
https://link.springer.com/article/10.1186/1752-0509-6-101
https://link.springer.com/article/10.1186/1752-0509-6-101
https://link.springer.com/article/10.1186/1752-0509-6-101
https://link.springer.com/article/10.1186/1752-0509-6-101
https://www.liebertpub.com/doi/abs/10.1089/cmb.2008.12TT
https://www.liebertpub.com/doi/abs/10.1089/cmb.2008.12TT
https://www.liebertpub.com/doi/abs/10.1089/cmb.2008.12TT
https://www.liebertpub.com/doi/abs/10.1089/cmb.2008.12TT
https://downloads.hindawi.com/archive/2009/532989.pdf
https://downloads.hindawi.com/archive/2009/532989.pdf
https://downloads.hindawi.com/archive/2009/532989.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0957417412008585
https://www.sciencedirect.com/science/article/abs/pii/S0957417412008585
https://www.sciencedirect.com/science/article/abs/pii/S0957417412008585
https://www.sciencedirect.com/science/article/abs/pii/S0957417412008585
https://academic.oup.com/bioinformatics/article-abstract/36/15/4301/5836498
https://academic.oup.com/bioinformatics/article-abstract/36/15/4301/5836498
https://academic.oup.com/bioinformatics/article-abstract/36/15/4301/5836498
https://academic.oup.com/bioinformatics/article-abstract/36/15/4301/5836498
https://www.sciencedirect.com/science/article/pii/S093336571100073X
https://www.sciencedirect.com/science/article/pii/S093336571100073X


294 REFERENCES

URL https://www.sciencedirect.com/science/article/pii/

S093336571100073X

[244] P. Minguez, J. Dopazo, Assessing the Biological Significance of Gene Expression

Signatures and Co-Expression Modules by Studying Their Network Properties, PLoS

One 6 (3) (2011) e17474.

URL https://journals.plos.org/plosone/article?id=10.1371/

journal.pone.0017474

[245] R. Cao, Y. Dong, K. C. Kural, Integrating Literature-Based Knowledge Database and

Expression Data to Explore Molecular Pathways Connecting PPARG and Myocardial

Infarction, PPAR Research 2020 (2020) 1–6.

URL https://www.hindawi.com/journals/ppar/2020/1892375/

[246] J. A. Nepomuceno, A. Troncoso, I. A. Nepomuceno-Chamorro, J. S. Aguilar-Ruiz,

Integrating biological knowledge based on functional annotations for biclustering of gene

expression data, Computer Methods and Programs in Biomedicine 119 (3) (2015) 163–

180.

URL https://www.sciencedirect.com/science/article/abs/pii/

S0169260715000450

[247] K. Lo, A. E. Raftery, K. M. Dombek, J. Zhu, E. E. Schadt, R. E. Bumgarner, K. Yeung,

Integrating external biological knowledge in the construction of regulatory networks

from time-series expression data, BMC Systems Biology 6 (1) (2012) 101.

URL https://bmcsystbiol.biomedcentral.com/articles/10.1186/

1752-0509-6-101

[248] S. W. Kong, W. T. Pu, P. J. Park, A multivariate approach for integrating genome-wide

expression data and biological knowledge, Bioinformatics 22 (19) (2006) 2373–2380.

URL https://academic.oup.com/bioinformatics/

article-abstract/22/19/2373/241211

[249] J. Parraga-Alava, M. Dorn, M. Inostroza-Ponta, A multi-objective gene clustering

algorithm guided by apriori biological knowledge with intensification and diversification

strategies, BioData Mining 11 (1) (2018) 16.

https://www.sciencedirect.com/science/article/pii/S093336571100073X
https://www.sciencedirect.com/science/article/pii/S093336571100073X
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0017474
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0017474
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0017474
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0017474
https://www.hindawi.com/journals/ppar/2020/1892375/
https://www.hindawi.com/journals/ppar/2020/1892375/
https://www.hindawi.com/journals/ppar/2020/1892375/
https://www.hindawi.com/journals/ppar/2020/1892375/
https://www.sciencedirect.com/science/article/abs/pii/S0169260715000450
https://www.sciencedirect.com/science/article/abs/pii/S0169260715000450
https://www.sciencedirect.com/science/article/abs/pii/S0169260715000450
https://www.sciencedirect.com/science/article/abs/pii/S0169260715000450
https://bmcsystbiol.biomedcentral.com/articles/10.1186/1752-0509-6-101
https://bmcsystbiol.biomedcentral.com/articles/10.1186/1752-0509-6-101
https://bmcsystbiol.biomedcentral.com/articles/10.1186/1752-0509-6-101
https://bmcsystbiol.biomedcentral.com/articles/10.1186/1752-0509-6-101
https://academic.oup.com/bioinformatics/article-abstract/22/19/2373/241211
https://academic.oup.com/bioinformatics/article-abstract/22/19/2373/241211
https://academic.oup.com/bioinformatics/article-abstract/22/19/2373/241211
https://academic.oup.com/bioinformatics/article-abstract/22/19/2373/241211


REFERENCES 295

[250] H. Cui, C. Zhou, X. Dai, Y. Liang, R. Paffenroth, D. Korkin, Boosting Gene Expression

Clustering with System-Wide Biological Information: A Robust Autoencoder Approach,

preprint, Bioinformatics (Nov. 2017).

[251] M. P. S. Brown, W. N. Grundy, D. Lin, N. Cristianini, C. W. Sugnet, T. S. Furey, M. Ares,

D. Haussler, Knowledge-based analysis of microarray gene expression data by using

support vector machines, Proceedings of the National Academy of Sciences 97 (1) (2000)

262–267. doi:10.1073/pnas.97.1.262.

[252] K. Santosh, Ai-driven tools for coronavirus outbreak: need of active learning and

cross-population train/test models on multitudinal/multimodal data, Journal of Medical

Systems 44 (5) (2020) 1–5.

URL https://link.springer.com/article/10.1007/

s10916-020-01562-1

[253] P. Ma, C. I. Castillo-Davis, W. Zhong, J. S. Liu, A data-driven clustering method for time

course gene expression data, Nucleic Acids Research 34 (4) (2006) 1261–1269.

URL https://academic.oup.com/nar/article/34/4/1261/1337688

[254] Y. Li, K. Kang, J. M. Krahn, N. Croutwater, K. Lee, D. M. Umbach, L. Li, A

comprehensive genomic pan-cancer classification using the cancer genome atlas gene

expression data, BMC Genomics 18 (1) (2017) 1–13.

URL https://bmcgenomics.biomedcentral.com/articles/10.1186/

s12864-017-3906-0

[255] M. Daoud, M. Mayo, A survey of neural network-based cancer prediction models from

microarray data, Artificial Intelligence in Medicine 97 (2019) 204–214.

URL https://www.sciencedirect.com/science/article/pii/

S0933365717305067

[256] S. Zuo, X. Zhang, L. Wang, A rna sequencing-based six-gene signature for survival

prediction in patients with glioblastoma, Scientific Reports 9 (1) (2019) 1–10.

URL https://www.nature.com/articles/s41598-019-39273-4

[257] A. Ciaramella, D. Nardone, A. Staiano, Data integration by fuzzy similarity-based

hierarchical clustering, BMC Bioinformatics 21 (S10) (2020) 350.

https://doi.org/10.1073/pnas.97.1.262
https://link.springer.com/article/10.1007/s10916-020-01562-1
https://link.springer.com/article/10.1007/s10916-020-01562-1
https://link.springer.com/article/10.1007/s10916-020-01562-1
https://link.springer.com/article/10.1007/s10916-020-01562-1
https://academic.oup.com/nar/article/34/4/1261/1337688
https://academic.oup.com/nar/article/34/4/1261/1337688
https://academic.oup.com/nar/article/34/4/1261/1337688
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-017-3906-0
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-017-3906-0
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-017-3906-0
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-017-3906-0
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-017-3906-0
https://www.sciencedirect.com/science/article/pii/S0933365717305067
https://www.sciencedirect.com/science/article/pii/S0933365717305067
https://www.sciencedirect.com/science/article/pii/S0933365717305067
https://www.sciencedirect.com/science/article/pii/S0933365717305067
https://www.nature.com/articles/s41598-019-39273-4
https://www.nature.com/articles/s41598-019-39273-4
https://www.nature.com/articles/s41598-019-39273-4
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-020-03567-6
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-020-03567-6


296 REFERENCES

URL https://bmcbioinformatics.biomedcentral.com/articles/

10.1186/s12859-020-03567-6

[258] X. Dong, Y. Hao, X. Wang, W. Tian, LEGO: a novel method for gene set over-

representation analysis by incorporating network-based gene weights, Scientific Reports

6 (1) (2016) 18871.

URL https://www.nature.com/articles/srep18871

[259] S. Yoon, J. Kim, S.-K. Kim, B. Baik, S.-M. Chi, S.-Y. Kim, D. Nam, GScluster: network-

weighted gene-set clustering analysis, BMC Genomics 20 (1) (2019) 352.

URL https://bmcgenomics.biomedcentral.com/articles/10.1186/

s12864-019-5738-6

[260] S. Aibar, C. Fontanillo, C. Droste, J. De Las Rivas, Functional Gene Networks: R/Bioc

package to generate and analyse gene networks derived from functional enrichment and

clustering, Bioinformatics 31 (10) (2015) 1686–1688.

URL https://academic.oup.com/bioinformatics/

article-abstract/31/10/1686/176902

[261] J. Packer, C. Trapnell, Single-Cell Multi-omics: An Engine for New Quantitative Models

of Gene Regulation, Trends in Genetics 34 (9) (2018) 653–665.

URL https://www.biorxiv.org/content/10.1101/864389v2.

abstract

[262] F. Buettner, N. Pratanwanich, D. J. McCarthy, J. C. Marioni, O. Stegle, f-scLVM:

scalable and versatile factor analysis for single-cell RNA-seq, Genome Biology 18 (1)

(2017) 212.

URL https://genomebiology.biomedcentral.com/articles/10.

1186/s13059-017-1334-8

[263] J. Fan, N. Salathia, R. Liu, G. E. Kaeser, Y. C. Yung, J. L. Herman, F. Kaper, J.-B.

Fan, K. Zhang, J. Chun, P. V. Kharchenko, Characterizing transcriptional heterogeneity

through pathway and gene set overdispersion analysis, Nature Methods 13 (3) (2016)

241–244.

URL https://www.nature.com/articles/nmeth.3734

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-020-03567-6
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-020-03567-6
https://www.nature.com/articles/srep18871
https://www.nature.com/articles/srep18871
https://www.nature.com/articles/srep18871
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-5738-6
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-5738-6
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-5738-6
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-5738-6
https://academic.oup.com/bioinformatics/article-abstract/31/10/1686/176902
https://academic.oup.com/bioinformatics/article-abstract/31/10/1686/176902
https://academic.oup.com/bioinformatics/article-abstract/31/10/1686/176902
https://academic.oup.com/bioinformatics/article-abstract/31/10/1686/176902
https://academic.oup.com/bioinformatics/article-abstract/31/10/1686/176902
https://www.biorxiv.org/content/10.1101/864389v2.abstract
https://www.biorxiv.org/content/10.1101/864389v2.abstract
https://www.biorxiv.org/content/10.1101/864389v2.abstract
https://www.biorxiv.org/content/10.1101/864389v2.abstract
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-017-1334-8
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-017-1334-8
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-017-1334-8
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-017-1334-8
https://www.nature.com/articles/nmeth.3734
https://www.nature.com/articles/nmeth.3734
https://www.nature.com/articles/nmeth.3734


REFERENCES 297

[264] E. Gerrits, Y. Heng, E. W. G. M. Boddeke, B. J. L. Eggen, Transcriptional profiling of

microglia; current state of the art and future perspectives, Glia 68 (4) (2020) 740–755.

URL https://onlinelibrary.wiley.com/doi/full/10.1002/glia.

23767

[265] T. Tokar, C. Pastrello, I. Jurisica, GSOAP: a tool for visualization of gene set over-

representation analysis, Bioinformatics 36 (9) (2020) 2923–2925.

URL https://academic.oup.com/bioinformatics/

article-abstract/36/9/2923/5715574

[266] S. Rahmati, M. Abovsky, C. Pastrello, I. Jurisica, pathDIP: an annotated resource

for known and predicted human gene-pathway associations and pathway enrichment

analysis, Nucleic Acids Research 45 (D1) (2017) D419–D426.

URL https://academic.oup.com/nar/article/45/D1/D419/

2605696?login=true

[267] G. Yu, L.-G. Wang, Y. Han, Q.-Y. He, clusterProfiler: an R Package for Comparing

Biological Themes Among Gene Clusters, OMICS: A Journal of Integrative Biology

16 (5) (2012) 284–287.

URL https://www.liebertpub.com/doi/abs/10.1089/omi.2011.

0118

[268] J. R. Adrian Alexa, topGO (2017).

URL http://ftp.linux.duke.edu/bioconductor.org/dest/

packages/3.8/bioc/vignettes/topGO/inst/doc/topGO.pdf

[269] E. Y. Chen, C. M. Tan, Y. Kou, Q. Duan, Z. Wang, G. Meirelles, N. R. Clark, A. Ma’ayan,

Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool, BMC

Bioinformatics 14 (1) (2013) 128.

URL https://bmcbioinformatics.biomedcentral.com/articles/

10.1186/1471-2105-14-128

[270] R. A. Fisher, Statistical methods for research workers, in: Breakthroughs in Statistics,

Springer, 1992, pp. 66–70.

URL https://link.springer.com/chapter/10.1007/

978-1-4612-4380-9_6

https://onlinelibrary.wiley.com/doi/full/10.1002/glia.23767
https://onlinelibrary.wiley.com/doi/full/10.1002/glia.23767
https://onlinelibrary.wiley.com/doi/full/10.1002/glia.23767
https://onlinelibrary.wiley.com/doi/full/10.1002/glia.23767
https://academic.oup.com/bioinformatics/article-abstract/36/9/2923/5715574
https://academic.oup.com/bioinformatics/article-abstract/36/9/2923/5715574
https://academic.oup.com/bioinformatics/article-abstract/36/9/2923/5715574
https://academic.oup.com/bioinformatics/article-abstract/36/9/2923/5715574
https://academic.oup.com/nar/article/45/D1/D419/2605696?login=true
https://academic.oup.com/nar/article/45/D1/D419/2605696?login=true
https://academic.oup.com/nar/article/45/D1/D419/2605696?login=true
https://academic.oup.com/nar/article/45/D1/D419/2605696?login=true
https://academic.oup.com/nar/article/45/D1/D419/2605696?login=true
https://www.liebertpub.com/doi/abs/10.1089/omi.2011.0118
https://www.liebertpub.com/doi/abs/10.1089/omi.2011.0118
https://www.liebertpub.com/doi/abs/10.1089/omi.2011.0118
https://www.liebertpub.com/doi/abs/10.1089/omi.2011.0118
http://ftp.linux.duke.edu/bioconductor.org/dest/packages/3.8/bioc/vignettes/topGO/inst/doc/topGO.pdf
http://ftp.linux.duke.edu/bioconductor.org/dest/packages/3.8/bioc/vignettes/topGO/inst/doc/topGO.pdf
http://ftp.linux.duke.edu/bioconductor.org/dest/packages/3.8/bioc/vignettes/topGO/inst/doc/topGO.pdf
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-128
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-128
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-128
https://link.springer.com/chapter/10.1007/978-1-4612-4380-9_6
https://link.springer.com/chapter/10.1007/978-1-4612-4380-9_6
https://link.springer.com/chapter/10.1007/978-1-4612-4380-9_6


298 REFERENCES

[271] A. Agresti, Categorical Data Analysis, 3rd Edition, Wiley, 2018.

[272] D. Nishimura, Biocarta, Biotech Software & Internet Report: The Computer Software

Journal for Scient 2 (3) (2001) 117–120.

URL https://www.liebertpub.com/doi/abs/10.1089/

152791601750294344

[273] D. Zhang, Q. Hu, X. Liu, K. Zou, E. K. Sarkodie, X. Liu, F. Gao, AllEnricher: a

comprehensive gene set function enrichment tool for both model and non-model species,

BMC Bioinformatics 21 (1) (2020) 106.

URL https://bmcbioinformatics.biomedcentral.com/articles/

10.1186/s12859-020-3408-y

[274] L. Sun, S. Dong, Y. Ge, J. P. Fonseca, Z. T. Robinson, K. S. Mysore, P. Mehta, DiVenn:

An Interactive and Integrated Web-Based Visualization Tool for Comparing Gene Lists,

Frontiers in Genetics 10 (2019) 421.

URL https://www.frontiersin.org/articles/10.3389/fgene.

2019.00421/full

[275] M. L. Metzker, Sequencing technologies - the next generation, Nature reviews genetics

11 (1) (2010) 31–46.

[276] M. R. Stratton, P. J. Campbell, P. A. Futreal, The cancer genome, Nature 458 (7239)

(2009) 719–724.

[277] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Amin,

B. Schwikowski, T. Ideker, Cytoscape: a software environment for integrated models

of biomolecular interaction networks, Genome Research 13 (11) (2003) 2498–2504.

URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC403769/

[278] P. Zeng, X. Zhou, Non-parametric genetic prediction of complex traits with latent

Dirichlet process regression models, Nature Communications 8 (1) (2017) 456.

URL https://www.nature.com/articles/s41467-017-00470-2

[279] A. R. Martin, C. R. Gignoux, R. K. Walters, G. L. Wojcik, B. M. Neale, S. Gravel, M. J.

Daly, C. D. Bustamante, E. E. Kenny, Human Demographic History Impacts Genetic

Risk Prediction across Diverse Populations, The American Journal of Human Genetics

https://www.liebertpub.com/doi/abs/10.1089/152791601750294344
https://www.liebertpub.com/doi/abs/10.1089/152791601750294344
https://www.liebertpub.com/doi/abs/10.1089/152791601750294344
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-020-3408-y
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-020-3408-y
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-020-3408-y
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-020-3408-y
https://www.frontiersin.org/articles/10.3389/fgene.2019.00421/full
https://www.frontiersin.org/articles/10.3389/fgene.2019.00421/full
https://www.frontiersin.org/articles/10.3389/fgene.2019.00421/full
https://www.frontiersin.org/articles/10.3389/fgene.2019.00421/full
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC403769/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC403769/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC403769/
https://www.nature.com/articles/s41467-017-00470-2
https://www.nature.com/articles/s41467-017-00470-2
https://www.nature.com/articles/s41467-017-00470-2
https://www.sciencedirect.com/science/article/pii/S0002929717301076
https://www.sciencedirect.com/science/article/pii/S0002929717301076


REFERENCES 299

100 (4) (2017) 635–649.

URL https://www.sciencedirect.com/science/article/pii/

S0002929717301076

[280] L. S. Mogil, A. Andaleon, A. Badalamenti, S. P. Dickinson, X. Guo, J. I. Rotter, W. C.

Johnson, H. K. Im, Y. Liu, H. E. Wheeler, Genetic architecture of gene expression traits

across diverse populations, PLOS Genetics 14 (8) (2018) e1007586.

URL https://journals.plos.org/plosgenetics/article?id=10.

1371/journal.pgen.1007586&rev=2

[281] A. V. Mikhaylova, T. A. Thornton, Accuracy of Gene Expression Prediction From

Genotype Data With PrediXcan Varies Across and Within Continental Populations,

Frontiers in Genetics 10 (2019) 261.

URL https://www.frontiersin.org/articles/10.3389/fgene.

2019.00261/full

[282] K. L. Keys, A. C. Y. Mak, M. J. White, W. L. Eckalbar, A. W. Dahl, J. Mefford, A. V.

Mikhaylova, M. G. Contreras, J. R. Elhawary, C. Eng, D. Hu, S. Huntsman, S. S. Oh,

S. Salazar, M. A. Lenoir, J. C. Ye, T. A. Thornton, N. Zaitlen, E. G. Burchard, C. R.

Gignoux, On the cross-population generalizability of gene expression prediction models,

PLOS Genetics 16 (8) (2020) e1008927.

URL https://journals.plos.org/plosgenetics/article?rev=2&

id=10.1371/journal.pgen.1008927

[283] J. J. Fryett, A. P. Morris, H. J. Cordell, Investigation of prediction accuracy and the

impact of sample size, ancestry, and tissue in transcriptome-wide association studies,

Genetic Epidemiology 44 (5) (2020) 425–441.

URL https://onlinelibrary.wiley.com/doi/full/10.1002/gepi.

22290

[284] The 1000 Genomes Project Consortium, A global reference for human genetic variation,

Nature 526 (7571) (2015) 68–74.

URL https://www.nature.com/articles/nature15393

[285] S. Das, L. Forer, S. Schönherr, C. Sidore, A. E. Locke, A. Kwong, S. I. Vrieze,

E. Y. Chew, S. Levy, M. McGue, D. Schlessinger, D. Stambolian, P.-R. Loh, W. G.

https://www.sciencedirect.com/science/article/pii/S0002929717301076
https://www.sciencedirect.com/science/article/pii/S0002929717301076
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1007586&rev=2
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1007586&rev=2
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1007586&rev=2
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1007586&rev=2
https://www.frontiersin.org/articles/10.3389/fgene.2019.00261/full
https://www.frontiersin.org/articles/10.3389/fgene.2019.00261/full
https://www.frontiersin.org/articles/10.3389/fgene.2019.00261/full
https://www.frontiersin.org/articles/10.3389/fgene.2019.00261/full
https://journals.plos.org/plosgenetics/article?rev=2&id=10.1371/journal.pgen.1008927
https://journals.plos.org/plosgenetics/article?rev=2&id=10.1371/journal.pgen.1008927
https://journals.plos.org/plosgenetics/article?rev=2&id=10.1371/journal.pgen.1008927
https://onlinelibrary.wiley.com/doi/full/10.1002/gepi.22290
https://onlinelibrary.wiley.com/doi/full/10.1002/gepi.22290
https://onlinelibrary.wiley.com/doi/full/10.1002/gepi.22290
https://onlinelibrary.wiley.com/doi/full/10.1002/gepi.22290
https://www.nature.com/articles/nature15393
https://www.nature.com/articles/nature15393


300 REFERENCES

Iacono, A. Swaroop, L. J. Scott, F. Cucca, F. Kronenberg, M. Boehnke, G. R. Abecasis,

C. Fuchsberger, Next-generation genotype imputation service and methods, Nature

Genetics 48 (10) (2016) 1284–1287.

URL https://www.nature.com/articles/ng.3656

[286] P.-R. Loh, P. Danecek, P. F. Palamara, C. Fuchsberger, Y. A Reshef, H. K Finucane,

S. Schoenherr, L. Forer, S. McCarthy, G. R. Abecasis, R. Durbin, A. L Price, Reference-

based phasing using the Haplotype Reference Consortium panel, Nature Genetics 48 (11)

(2016) 1443–1448.

URL https://www.nature.com/articles/ng.3679

[287] D. Gola, J. Erdmann, B. Müller-Myhsok, H. Schunkert, I. R. König, Polygenic risk

scores outperform machine learning methods in predicting coronary artery disease status,

Genetic Epidemiology 44 (2) (2020) 125–138.

URL https://onlinelibrary.wiley.com/doi/full/10.1002/gepi.

22279

[288] A. Andaleon, L. S. Mogil, H. E. Wheeler, Genetically regulated gene expression

underlies lipid traits in Hispanic cohorts, PLOS One 14 (8) (2019) e0220827.

URL https://journals.plos.org/plosone/article?id=10.1371/

journal.pone.0220827

[289] A. R. Tall, D. J. Rader, Trials and Tribulations of CETP Inhibitors, Circulation Research

122 (1) (2018) 106–112.

URL https://www.ahajournals.org/doi/full/10.1161/

CIRCRESAHA.117.311978

[290] GTEx Consortium, A. N. Barbeira, S. P. Dickinson, R. Bonazzola, J. Zheng, H. E.

Wheeler, J. M. Torres, E. S. Torstenson, K. P. Shah, T. Garcia, T. L. Edwards, E. A.

Stahl, L. M. Huckins, D. L. Nicolae, N. J. Cox, H. K. Im, Exploring the phenotypic

consequences of tissue specific gene expression variation inferred from GWAS summary

statistics, Nature Communications 9 (1) (2018) 1825.

URL https://www.nature.com/articles/s41467-018-03621-1

[291] S. M. Urbut, G. Wang, P. Carbonetto, M. Stephens, Flexible statistical methods for

estimating and testing effects in genomic studies with multiple conditions, Nature

https://www.nature.com/articles/ng.3656
https://www.nature.com/articles/ng.3656
https://www.nature.com/articles/ng.3679
https://www.nature.com/articles/ng.3679
https://www.nature.com/articles/ng.3679
https://onlinelibrary.wiley.com/doi/full/10.1002/gepi.22279
https://onlinelibrary.wiley.com/doi/full/10.1002/gepi.22279
https://onlinelibrary.wiley.com/doi/full/10.1002/gepi.22279
https://onlinelibrary.wiley.com/doi/full/10.1002/gepi.22279
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220827
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220827
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220827
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220827
https://www.ahajournals.org/doi/full/10.1161/CIRCRESAHA.117.311978
https://www.ahajournals.org/doi/full/10.1161/CIRCRESAHA.117.311978
https://www.ahajournals.org/doi/full/10.1161/CIRCRESAHA.117.311978
https://www.nature.com/articles/s41467-018-03621-1
https://www.nature.com/articles/s41467-018-03621-1
https://www.nature.com/articles/s41467-018-03621-1
https://www.nature.com/articles/s41467-018-03621-1
https://www.nature.com/articles/s41588-018-0268-8
https://www.nature.com/articles/s41588-018-0268-8


REFERENCES 301

Genetics 51 (1) (2019) 187–195.

URL https://www.nature.com/articles/s41588-018-0268-8

[292] GTEx GWAS Working Group, GTEx Consortium, A. N. Barbeira, R. Bonazzola,

E. R. Gamazon, Y. Liang, Y. Park, S. Kim-Hellmuth, G. Wang, Z. Jiang, D. Zhou,

F. Hormozdiari, B. Liu, A. Rao, A. R. Hamel, M. D. Pividori, F. Aguet, L. Bastarache,

D. M. Jordan, M. Verbanck, R. Do, M. Stephens, K. Ardlie, M. McCarthy, S. B.
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[407] A. Liberzon, C. Birger, H. Thorvaldsdóttir, M. Ghandi, J. P. Mesirov, P. Tamayo, The

molecular signatures database hallmark gene set collection, Cell Systems 1 (6) (2015)

417–425.

[408] K. Akabe, T. Takeuchi, T. Aoki, K. Nishimura, Information retrieval on oncology

knowledge base using recursive paraphrase lattice, Journal of Biomedical Informatics

116 (2021) 103705.

[409] J. Somekh, Model-based pathway enrichment analysis applied to the tgf-beta regulation

of autophagy in autism, Journal of Biomedical Informatics 118 (2021) 103781.

[410] A. Kosvyra, E. Ntzioni, I. Chouvarda, Network analysis with biological data of cancer

patients: A scoping review, Journal of Biomedical Informatics (2021) 103873.

[411] M. Wong, P. Previde, J. Cole, B. Thomas, N. Laxmeshwar, E. Mallory, J. Lever,

D. Petkovic, R. B. Altman, A. Kulkarni, Search and visualization of gene-drug-disease

interactions for pharmacogenomics and precision medicine research using genedive,

Journal of Biomedical Informatics 117 (2021) 103732.

[412] S. Hänzelmann, R. Castelo, J. Guinney, Gsva: gene set variation analysis for microarray

and rna-seq data, BMC Bioinformatics 14 (1) (2013) 7.

[413] S. Carbon, A. Ireland, C. J. Mungall, S. Shu, B. Marshall, S. Lewis, A. Hub, W. P. W.

Group, Amigo: online access to ontology and annotation data, Bioinformatics 25 (2)

(2009) 288–289.

[414] J. Hastings, Primer on ontologies, in: The Gene Ontology Handbook, Humana Press,

New York, NY, 2017, pp. 3–13.

[415] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P. Davis,

K. Dolinski, S. S. Dwight, J. T. Eppig, et al., Gene ontology: tool for the unification of

biology, Nature Genetics 25 (1) (2000) 25–29.



314 REFERENCES

[416] S. Y. Rhee, V. Wood, K. Dolinski, S. Draghici, Use and misuse of the gene ontology

annotations, Nature Reviews Genetics 9 (7) (2008) 509–515.

[417] A. AlSaieedi, A. Salhi, F. Tifratene, A. B. Raies, A. Hungler, M. Uludag, C. Van Neste,

V. B. Bajic, T. Gojobori, M. Essack, Des-tcell is a knowledgebase for exploring

immunology-related literature, Scientific Reports 11 (1) (2021) 1–11.

[418] B. D. Fulcher, A. Arnatkeviciute, A. Fornito, Overcoming false-positive gene-category

enrichment in the analysis of spatially resolved transcriptomic brain atlas data, Nature

Communications 12 (1) (2021) 1–13.

[419] Z. Ahmed, E. G. Renart, S. Zeeshan, X. Dong, Advancing clinical genomics and

precision medicine with gvviz: Fair bioinformatics platform for variable gene-disease

annotation, visualization, and expression analysis, Human Genomics 15 (1) (2021) 1–9.

[420] S. Y. Rhee, V. Wood, K. Dolinski, S. Draghici, Use and misuse of the gene ontology

annotations, Nature Reviews Genetics 9 (7) (2008) 509–515.

[421] Y. Chen, F. J. Verbeek, K. Wolstencroft, Establishing a consensus for the hallmarks of

cancer based on gene ontology and pathway annotations, BMC Bioinformatics 22 (1)

(2021) 1–20.

[422] A. Anaissi, P. J. Kennedy, M. Goyal, D. R. Catchpoole, A balanced iterative random

forest for gene selection from microarray data, BMC Bioinformatics 14 (1) (2013) 1–10.

[423] Oncogenomics db national cancer institute, https://omics-oncogenomics.

ccr.cancer.gov/cgi-bin/JK, accessed: 22-08-2021.

[424] K. D. Pruitt, T. Tatusova, G. R. Brown, D. R. Maglott, Ncbi reference sequences (refseq):

current status, new features and genome annotation policy, Nucleic Acids Research

40 (D1) (2012) D130–D135.

[425] C. Sotiriou, P. Wirapati, S. Loi, A. Harris, S. Fox, J. Smeds, H. Nordgren, P. Farmer,

V. Praz, B. Haibe-Kains, C. Desmedt, D. Larsimont, F. Cardoso, H. Peterse, D. Nuyten,

M. Buyse, M. J. Van de Vijver, J. Bergh, M. Piccart, M. Delorenzi, Gene expression

profiling in breast cancer:understanding the molecular basis of histologic grade to

improve prognosis, JNCI: Journal of the National Cancer Institute 98 (4) (2006) 262–

272.

https://omics-oncogenomics.ccr.cancer.gov/cgi-bin/JK
https://omics-oncogenomics.ccr.cancer.gov/cgi-bin/JK


REFERENCES 315

[426] O. Galamb, B. Wichmann, F. Sipos, S. Spisák, T. Krenács, K. Tóth, K. Leiszter,
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