
UNIVERSITY OF TECHNOLOGY SYDNEY

Faculty of Engineering and Information Technology

Network Function Virtualization for 5G Network
Slicing

by

Da Xiao

A Thesis Submitted
in Partial Fulfillment of the
Requirements for the Degree

Doctor of Philosophy

Sydney, Australia

2023

Certificate of Authorship/Originality

I, Da Xiao, declare that this thesis is submitted in fulfillment of the requirements for

the award of Doctor of Philosophy, in the Faculty of Engineering and Information

Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In

addition, I certify that all information sources and literature used are indicated in

the thesis.

This document has not been submitted for qualifications at any other academic

institution.

This research is supported by the Australian Government Research Training Pro-

gram.

Signature: Da Xiao

Date: 14/06/2023

Production Note:

Signature removed prior to publication.

ABSTRACT

Network Function Virtualization for 5G Network Slicing

by

Da Xiao

Network slicing is a core technique of the 5G system and beyond. To meet

the varied industrial demands, the International Telecommunication Union (ITU)

has classified the current-generation mobile networks (5G) into three main cate-

gories: Ultra-Reliable Low Latency Communications (URLLC), enhanced Mobile

broadband (eMBB), and massive Machine-Type Communications (mMTC). Pack-

ets belonging to the same category will be aggregated and then travel through

the corresponding network slice, which comprises one or more network services. A

network service can be symbolized as a service function chain (SFC) or a virtual

network functions forwarding graph (VNF-FG), which is composed of a sequence of

Virtual Network Functions (VNFs) and Virtual Links (VLs) connecting them. To

accommodate as many network slices as possible with limited hardware resources,

service providers need to refrain from over-provisioning resources, which may hinder

them from cutting capital expenditures (CAPEX)/operating expenses (OPEX) for

5G infrastructure. Therefore, efficient and automatic placement of VNFs and VLs

becomes one of the most critical technologies for meeting such requirements. This

thesis aims to develop SFC placement algorithms in three scenarios: single data

center (DC), multiple DCs (MDC) and Fog networks.

In the first scenario, we aim to improve cost efficiency while giving priority

to higher-priority latency-sensitive services and maximizing the acceptance ratio

of service requests in a single DC. To effectively progress towards our goal, we

thoroughly investigated the current SFC embedding algorithms and developed two

algorithms. In the first proposed algorithm, under the classical virtual network em-

bedding (VNE) model, we first used the DQN algorithm to maximize the acceptance

ratio of service requests while ensuring prior allocation for higher-priority latency-

sensitive services in a base environment. Then, we designed a binary search assisted

transfer learning algorithm to realize this service in an ever-changing environment

to minimize the cost. In the second proposed algorithm, we designed an algorithm

under a new model where we can flexibly allocate resources to each virtual element.

We used the Double DQN to choose the VNF placement (main action), employed

the Dijkstra algorithm (first-phase sub-action) to derive the shortest path for each

pair of adjacent VNFs in the given VNF chain, and devised a binary search assisted

gradient descent algorithm (second-phase sub-action) to realize this service with the

minimum cost. The simulation results show superior performance compared to the

current SFC placement algorithms for latency-sensitive services in a single DC.

The dynamics and diversity of SFC requests in MDC networks, which might

be neglected by most existing literature, pose a significant challenge in embedding

SFCs. To overcome this challenge, in the second scenario, we proposed a two-stage

GCN-based deep reinforcement learning framework for the placement of SFC in an

MDC scenario, where the requests load may vary from DC to DC. In the first stage,

we proposed a GCN-based DRL algorithm as a coarse granularity solution to the

SFC embedding problem from the macro perspective. This solution outlines a local

observation scope (LOS) for each agent in the multi-agent system of the second stage,

where all agents simultaneously handle SFC requests from their respective DCs using

a multi-agent framework from the micro perspective. Numerical evaluations show

that, compared to state-of-the-art methods, the proposed scheme can improve the

overall acceptance ratio of SFC requests and cost-effectiveness.

Fog computing, which brings computing/storage resources closer to terminal

devices such as laptops, vehicles, and IoT devices, is an essential supplement to

cloud data centers for supporting low-latency applications. However, the diversity

of SFC request loads in different locations of a Fog network and the security issue of

SFC requests have not been researched deeply in the existing literature. Therefore,

in the third scenario, we designed a two-agent reinforcement learning algorithm for

SFC embedding in a Fog network. The SFC requests load may vary from location

to location, and some requests have ‘hard isolation’ requirements. The proposed

algorithm features a two-agent reinforcement learning model evolved from the multi-

agent proximal policy optimization (MAPPO) model. The new model uses one agent

(actor-network) to place VNFs and the other (actor-network) to chain the placed

VNFs. This innovative architecture, in which the first agent communicates with the

second, sufficiently explores the joint action space of the VNF placement and the

chaining given the placed VNFs. Thus, it achieves better long-term accumulated

rewards than existing schemes. Through experimental results, the proposed solution

manifests better performance than state-of-the-art algorithms regarding the overall

acceptance ratio of SFC requests and cost-effectiveness in the dynamic load scenario.

Dissertation directed by Prof. Ren Ping Liu and Prof. J. Andrew Zhang

School of Electrical and Data Engineering, University of Technology Sydney, Sydney,

Australia

Acknowledgements

The accomplishment of my PhD thesis is owed to the contributions and support of

many people. First of all, I would like to express my deepest thanks to my principal

supervisor Prof. Ren Ping Liu for his guidance and support throughout my PhD

study period at UTS. Professor Liu provided me with a precious opportunity to

participate in a joint-project with high-tech giant Ericsson. During my cooperation

with Ericsson, He taught me how to apply my research idea to industry projects,

communicate with our industry partner, and write a research paper to summarize

the results. His abundant experience, creative ideas, and rigorous attitude toward

technical details set a good example for me. Professor Liu is also a kind person.

During the covid-19 period, I had not met my family members for two years, and

thus I applied for a six-month leave of absence to visit my parents and my wife. He

understood my situation and approved my leave request quickly. The experience

with Ren has taught me how to progress into a good researcher.

I also want to thank my cosupervisor Prof. Andrew Zhang, who held regular

meetings fortnightly with me, for his great support to my work and life. Professor

Andrew is a considerate person who can put himself in others’ shoes. He always

devoted his time and effort to answering my questions in detail and with great

patience. He has polished all my research papers and suggested valuable suggestions

for each of them. I feel lucky to be his student and grateful to him for his help and

guidance.

I would like to express my gratitude to Prof. Wei Ni from CSIRO, who discussed

the details of my research papers with me and guided me forward very often. We

communicated in a relaxed atmosphere, which always brought new ideas. Whenever

I had an idea or a question, I felt free to contact him immediately, and he always

replied very quickly. He has extensive and abundant knowledge and a broad vision

vii

for research work. I admire professor Wei Ni very much and will consult him when

I encounter new problems in my research work in the future.

I also feel lucky to know three experienced researchers from world-famous uni-

versities, Prof. Xin Liu from UC davis and Prof. Jie Zhang and Dr. Shuo Chen

from NTU. I am grateful to them for guiding me in my research work.

I am also thankful to Yiwen Qu, who usually discussed the details of the rein-

forcement learning algorithms in my papers with me. Finally, I would like to thank

Dr. Shenghong Lee, Dr. Xu Wang, Dr. Ying He, Dr. Kai Wu, Dr. Zhipeng Lin,

Dr. Shuo He, Dr. Xin Yuan, and Baoling Shan. They were always generous when I

turned to them for help.

Finally, I want to thank CSC and UTS for their financial support during my

PhD period.

Da Xiao

Sydney, Australia, 2023.

List of Publications

Journal Papers

J-1. D. Xiao, S. Chen, W. Ni, J. Zhang, J. A. Zhang, R. P. Liu, “A sub-action aided

deep reinforcement learning framework for latency-sensitive network slicing,”

Computer Networks, vol. 217, pp. 109279, 2022.

J-2. D. Xiao, J. A. Zhang, X. Liu, Y. Qu, W. Ni, R. P. Liu, “A Two-Stage GCN-

Based Deep Reinforcement Learning Framework for SFC Embedding in Multi-

Datacenter Networks,” IEEE Transactions on Network and Service Manage-

ment (TNSM). Status: Accepted on June 4, 2023.

https://ieeexplore.ieee.org/document/10146517

J-3. D. Xiao, W. Ni, J. A. Zhang, Y. Qu, R. P. Liu, “A GCN-Based Two-Agent

Reinforcement Learning Framework for SFC Embedding in Fog Computing,”

IEEE Communications Letters. Status: Under the second review.

Conference Papers

C-1. D. Xiao, W. Ni, J. A. Zhang, R. Liu, S. Chen and Y. Qu, “AI-Enabled

Automated and Closed-Loop Optimization Algorithms for Delay-Aware Net-

work,” Proc. 2022 IEEE Wireless Communications and Networking Confer-

ence (WCNC), pp. 806-811, Apr. 10-13, 2022.

Contents

Certificate ii

Abstract iii

Acknowledgments vi

List of Publications viii

List of Figures xiv

Abbreviation xvi

Notation xvii

1 Introduction 1

1.1 Background . 1

1.2 Motivation and Objectives . 2

1.2.1 Prioritize Latency-sensitive Services and Allocate Resources

to VNF Flexibly for the Single DC Scenario 2

1.2.2 Unbalanced SFC Requests Load Scenario of the MDC Network 3

1.2.3 Unbalanced SFC Requests Load Scenario and Security Issue

of the Fog Networks . 3

1.3 Approach and Contribution . 4

1.3.1 The Single DC Scenario . 4

1.3.2 The MDC Scenario . 6

1.3.3 The Fog Networks . 9

1.4 Thesis Organization . 10

x

2 Literature Review 12

2.1 Heuristic-based Approaches . 12

2.2 Reinforcement Learning-Based Approaches 17

2.3 Summary . 20

3 SFC Embedding in an NFV-based Single DC under the

Classic VNE Model 21

3.1 System Model and Problem Formulation 21

3.1.1 System Architecture . 21

3.1.2 Characteristics of SFC Requests 22

3.1.3 Problem Formulation . 22

3.2 Our Proposed SFC Placement Scheme 24

3.2.1 Overview of the Proposed DQN 24

3.2.2 State . 26

3.2.3 Action . 27

3.2.4 Reward . 27

3.2.5 The Binary Search Assisted Transfer Learning Algorithm . . . 28

3.3 Simulation . 29

3.3.1 Simulation Setup . 29

3.3.2 Algorithms to Compare . 31

3.3.3 Simulation Results . 32

3.4 Summary . 36

4 SFC Embedding in an NFV-based Single DC under a

Flexible Resources Allocation Model 37

4.1 System Overview and Problem Formulation 37

xi

4.1.1 Network Infrastructure and SFC Requests 37

4.1.2 Traffic Model . 39

4.1.3 Delay Model . 40

4.1.4 Cost Model . 43

4.1.5 Problem Formulation . 44

4.2 Proposed SFC Placement and Resource Allocation Scheme 46

4.2.1 Overview of Our Proposed SADDQN Algorithm 46

4.2.2 State . 50

4.2.3 Action . 51

4.2.4 Reward . 55

4.3 Simulation . 56

4.3.1 Simulation Setup . 56

4.3.2 Algorithms to Compare . 58

4.3.3 Simulation Results . 59

4.4 Summary . 64

5 SFC Embedding Approach in an MDC Network 66

5.1 System Model and Problem Formulation 66

5.1.1 System Architecture . 66

5.1.2 NFV Infrastructure . 67

5.1.3 Characteristics of SFC Requests 68

5.1.4 Cost Model . 68

5.1.5 Problem Formulation . 69

5.2 Proposed Two-stage SFC Embedding Scheme 71

5.2.1 Background of the Proposed Algorithm 71

xii

5.2.2 The First Stage . 73

5.2.3 The Second Stage . 83

5.3 Simulation . 91

5.3.1 Simulation Setup . 91

5.3.2 Algorithms Used for Comparison 95

5.3.3 Simulation Results . 96

5.4 Summary . 101

6 SFC Embedding Algorithm in a Fog Network 103

6.1 System Model and Problem Formulation 103

6.1.1 NFV Infrastructure . 103

6.1.2 Characteristics of SFC Requests 105

6.1.3 Cost Model . 105

6.1.4 Delay Model . 105

6.1.5 Problem Formulation . 105

6.2 Proposed SFC Embedding Scheme . 107

6.2.1 Background of the Proposed Algorithm 107

6.2.2 The Components of the Two-agent MDP 108

6.2.3 The Proposed Framework . 111

6.3 Simulation . 114

6.3.1 Simulation Setup . 114

6.3.2 Algorithms Used for Comparison 117

6.3.3 Simulation Results . 117

6.4 Summary . 121

7 Conclusions and Future Work 123

xiii

7.1 Summary of Outcomes . 123

7.2 Recommendations & Future Work . 123

Bibliography 130

List of Figures

3.1 Network infrastructure considered in this paper. 22

3.2 Flowchart of the Deep Q learning network. 26

3.3 Workflow of the BSATL algorithm. 29

3.4 Accepted SFCs with different priorities. 33

3.5 DQN learning process of the initial task. 34

3.6 The binary search assisted transfer learning process. 35

3.7 Cost-utility comparison. 36

4.1 Network infrastructure considered in this chapter. 39

4.2 M/D/1 queuing model. 40

4.3 Flowchart of the SADDQN algorithm. 49

4.4 Acceptance ratio comparison. 60

4.5 Acceptance of different SFCs. 61

4.6 Average end-to-end delay comparison. 63

4.7 Joint traffic and CPU cost comparison. 64

4.8 Operational cost comparison. 65

5.1 Network infrastructure considered in this chapter. 67

5.2 A brief signal flow of our proposed PPO. 81

5.3 The local observation scope of agent 1. 83

xv

5.4 A brief signal flow of our proposed MAPPO. 89

5.5 Fourteen-node NSFNET (link length in KM). 93

5.6 Eleven-node COST239 (link length in KM). 94

5.7 The performance of our proposed GCN-based PPO with different

numbers of GCN layers. 97

5.8 The performance of our proposed GCN-based PPO with different

clipping ratio hyperparameters. 98

5.9 The learning curve of six algorithms in 14-node NSFNET. 99

5.10 The learning curve of six algorithms in 11-node COST239. 100

5.11 Performance evaluation in 14-node NSFNET. 102

5.12 Performance evaluation in 11-node COST239. 102

6.1 Fog/cloud network architecture. 104

6.2 Graph embedding process. 109

6.3 A brief signal flow of our proposed scheme. 112

6.4 The average cost comparison of three algorithms. 119

6.5 The acceptance ratio comparison of three algorithms. 120

6.6 The average delay comparison of three algorithms. 121

Abbreviation

NFV - Network functions virtualization

MANO - Management and Orchestration

VNF - Virtual Network Functions

VL - Virtual link

VNF-FG - Virtual Network Functions Forwarding Graph

SFC - Service Function Chaining

VM - Virtual Machine

DC - Data center

MDC - Multiple Data centers

MDP - Markov Decision Process

DRL - Deep reinforcement learning

DQN - Deep Q-Network

DDPG - Deep Deterministic Policy Gradient

PPO - Proximal Policy Optimization

MARL - Multi-agent reinforcement learning

LOS - Local Observation Scope

GCN - Graph Convolutional Network

AC: Actor Critic

Nomenclature and Notation

Boldface uppercase letters denote matrices.

Boldface lowercase letters denote vectors.

In is the identity matrix of dimension n× n.

0n is the zero matrix of dimension n× n.

R, R+ denote the field of real numbers, and the set of positive reals, respectively.

1

Chapter 1

Introduction

1.1 Background

Network Function Virtualization (NFV), which decouples network functions (NFs)

from hardware and transforms these NFs into Virtual Network Functions (VNFs), is

a crucial technology in 5G networks. The current 5G networks have been classified

into three main categories: URLLC, eMBB, and mMTC. A network slice from any

category can be symbolized by a Service Function Chain (SFC) or a VNF-Forwarding

Graph (VNF-FG). 5G imposes more stringent QoS (quality of service) requirements

on payload traffic than its predecessor, 4G systems, in support of 5G applications,

such as remote surgery, IoT applications, and self-driving vehicles [1]. Therefore,

efficient and automatic placement of VNFs and Virtual Links (VLs) becomes one of

the most critical technologies for meeting such requirements.

Datacenters (DCs) have become a typical infrastructure for realizing NFV since

we walked into the virtualization era. Over the years, many researchers have aimed

to address the SFCs (the predefined VNFs and the VLs) placement problem in a

single DC. Recently, to provide high-quality and non-disruptive network services to

end-users, large enterprises such as Google, IBM, and Amazon have created multiple

DCs in different geographic regions and built inter-DC networks to interconnect

them. Therefore, multiple DC (MDC) has become a new research focus. Some paid

close attention to Ethernet-based MDC; others focused on the SFC embedding issue

in an Elastic Optical Networks (EON) based MDC.

Today, we have an enormous amount of client terminal devices such as laptops,

2

vehicles, and IoT devices that require access to the Internet; if they try to send all

the generated data to a central cloud server in a DC for processing, there would be no

enough resources (computing, storage, and bandwidth) to meet the QoS requirement

of these applications, especially the latency-sensitive services. To resolve this issue,

fog computing, which moves resources closer to the user or IoT device where the

data needs processing, has been introduced to assist cloud computing. There are

only a handful of studies on SFC embedding in fog computing, where cloud nodes

and fog nodes cooperate to satisfy all SFC requests.

1.2 Motivation and Objectives

Existing SFC embedding algorithms fall into two main categories for all three

scenarios: single DC, MDC, and fog networks. Some of them are heuristic-based

methods that are good for stationary systems but could have degraded performance

for dynamic systems. Others are Deep Reinforcement Learning (DRL)-based ap-

proaches, which are efficient when properly designed but inefficient when their action

spaces become enormous. Considering the network dynamics such as the arrival rate

of SFC requests and the requested resources of VNFs and VLs, we aim to design

proper DRL-based algorithms, whose agents interact with the environment during

the training phase, to learn and adapt to environmental changes in all three scenar-

ios.

1.2.1 Prioritize Latency-sensitive Services and Allocate Resources to

VNF Flexibly for the Single DC Scenario

In terms of the single DC scenario, there are two main open issues in all the

existing works. First, only a few of them focus on the sub-slices issue, let alone

latency-sensitive sub-slices. Second, when deploying network slices, most works

adopt the classical Virtual Network Embedding (VNE) model, which assumes that

3

the required resources of VNFs are already specified in SFC requests, and thus do not

need to consider the resource allocation issue of VNFs. However, in some real cases,

customers might not be knowledgeable enough to configure VNFs. Hence, service

providers need to help to allocate resources to VNFs. We designed two algorithms

to tackle these issues step by step. In the first work, we focused on the sub-slices

issue. We adopted the classical VNE model and designed a binary search assisted

transfer learning algorithm to maximize the acceptance ratio while ensuring prior

placement of higher-priority services for latency-aware services with the minimum

cost. In the second work, we designed a sub-action-aided reinforcement learning

algorithm to resolve the aforementioned two issues together.

1.2.2 Unbalanced SFC Requests Load Scenario of the MDC Network

Research on this problem in MDC networks is limited. Most of such works

consider simple models by treating the MDC as a whole and assuming that the

arrival of SFC requests follows the Poisson traffic model; thus, the load diversity

of different DCs is generally neglected. In practice, the SFC requests load in an

MDC may vary from DC to DC; e.g., some DCs may suffer traffic congestion while

others are under-utilized. Hence, it is essential to design a load-balancing algorithm

to resolve the SFC requests load diversity issue in MDC networks. In our work, we

devised a Multi-Agent Reinforcement Learning (MARL) algorithm to maximize the

overall acceptance ratio of SFC requests while minimizing the total cost in an MDC

network.

1.2.3 Unbalanced SFC Requests Load Scenario and Security Issue of the

Fog Networks

The studies on SFC embedding in NFV-based fog computing are insufficient.

Two main open issues exist in most of such works. First, most of such works

assumed that the SFC requests are uniformly distributed across the terminal layer

4

and proposed SFC embedding approaches accordingly. Actually, the SFC requests

load may vary from location to location. They neglect this scenario in which their

approaches may degrade. Second, only a few works have considered the security

issue in SFC placement in fog networks. Some SFCs for cryptography services may

require being physically isolated from others. To resolve these issues, we came up

with a GCN-assisted two-agent DRL algorithm to maximize the acceptance ratio of

SFC requests while minimizing the total cost in a fog network.

1.3 Approach and Contribution

1.3.1 The Single DC Scenario

We have designed two approaches for this scenario. In the first work, we model

the VNF placement for all requests as a Markov Decision Process (MDP) and rep-

resent the MDP action space as the possible VNF placements of a single request.

We further prioritize those requests based on their latency requirements and define

the reward function of the MDP based on priority. For every incoming request,

the DQN chooses an MDP action to determine the VNF placement. In response

to the VNF placement, an MDP reward is returned from the environment to train

our DQN. Once trained, the DQN approximates the optimal solution of the MDP

that maximizes the acceptance ratio and ensures prior placement of higher-priority

services. Then, to minimize the cost, we propose a Binary Search Assisted Transfer

Learning algorithm (BSATL), in which the available hardware resources are scaled

down/up and the knowledge learned from the source task is transferred to the target

task in each iteration, to achieve automated and closed-loop optimization for a 6G

Event Defined URLLC (EDuRLLC) [2] application.

The main contributions of this work can be summarized as follows:

1. We formulate the VNF placement problem as an MDP with an appropriate

5

state set, by including the real incoming traffic into the state set, rather than

by using VNF capacity (CPU, memory, . . .) to symbolize incoming traffic as in

[3]. This is essential because, in some cases, VNF capacity could not accurately

reflect real network traffic, which is critical to latency-sensitive services.

2. We prioritize service requests based on latency requirements (the lower la-

tency threshold a service requests, the higher priority it gets) and propose a

DQN framework to maximize the service acceptance ratio while ensuring prior

placement of higher-priority requests.

3. We design an automated and closed-loop optimization algorithm (BSATL) for

a 6G EDuRLLC application.

In the second work, We model the network slicing for all requests as a Markov

Decision Process (MDP) and represent the MDP action space as the possible VNF

placements of a single request. We prioritize those requests based on their latency

requirements and define the reward function of the MDP based on priority and

resource cost. For every incoming request, the DDQN first chooses an MDP action

to determine the VNF placement. Given the VNF placement, the Dijkstra algorithm

is then employed to embed the VLs. Finally, based on the placement of VNFs and

VLs, the latency requirement, and the requested traffic of this service, we propose a

resource allocation algorithm – Binary Search Assisted Gradient Descent (BSAGD)

to provide the request with the minimum resource such that its latency requirement

is satisfied. In response to the joint action (SFC placement and resource allocation),

an MDP reward is returned to train our DDQN. Once trained, the SADDQN model

approximates the optimal solution of ensuring priority allocation for higher-priority

services and maximizing the acceptance ratio while minimizing the total cost.

The main contributions of our work can be summarized as follows:

6

1. Given a VNF placement (main action) and the optimal path traversing the

VNF chain (the first-phase sub-action), we propose a resource allocation algo-

rithm (the second-phase sub-action) to realize the network slice with the min-

imum cost. In other words, instead of assuming that the required resources of

VNFs are known in advance, we optimally allocate resources to all VNFs in

a given VNF chain based on the requested traffic and latency requirement of

this service. In this way, for any given VNF placement, we only need to take

the main action into the action space, because we find the optimal first-phase

and second-phase sub-action for the main action. Otherwise, we would have

to enumerate chaining and resource allocation options for each VNF place-

ment, and thus the action space would be too huge for the DDQN algorithm

to converge.

2. Most QoS-related works fail to slice a network slice into sub-slices. We priori-

tize services (the lower latency threshold a service requests, the higher priority

it gets), define a reward function based on priority and cost, and propose a

SADDQN framework to ensure priority allocation for higher-priority services

and maximize the acceptance ratio while minimizing the total cost.

1.3.2 The MDC Scenario

We propose a two-stage graph convolutional network (GCN)-based DRL frame-

work to maximize the overall acceptance ratio of SFC requests while minimizing the

total cost in an MDC network.

In the first stage, we propose a DRL algorithm – GCN-based Proximal Policy

Optimization (PPO) to derive a coarse granularity solution to SFC embedding from

the macro perspective. Specifically, in each DC, we treat the IT resources requested

by all SFCs in the waiting queue of this DC as a whole; thus, we can abstract the

placement of all the SFCs received by the MDC into a load balance problem. To

7

balance loads in the MDC, we transfer some SFCs accumulated in high-load DCs

to low-load DCs. We model the load transfer process as a Markov decision process

(MDP) and represent the features of the MDC network as the MDP states and

the possible DC-to-DC transfer options as the MDP actions. We use the reward

function to capture the success/failure of an SFC transfer and the cost of network

traffic caused by this transfer. At each time step of the MDP, the agent chooses an

action based on our GCN-based PPO model and performs the chosen action in the

MDC environment. In response to the action, an MDP reward, which will be used

to train our model, is returned to the agent. Once trained, the model approximates

the optimal solution for maximizing the overall acceptance ratio of SFC requests

while minimizing the total cost. This stage aims to set a local observation scope

(LOS) for each agent of the multi-agent framework in the second stage.

The second stage consists of two phases. During the first phase, to accommodate

as many SFC requests as possible with limited resources, each agent embeds SFCs in

its affiliated DC. The second phase commences once a high-load DC embeds SFCs in

low-load DCs. In this phase, multiple agents of high-load DCs handle SFC requests

simultaneously, with each embedding VNFs and VLs within its LOS step by step.

Thus, we model the SFC embedding problem in this phase as a multi-agent MDP [4]

and solve it using a MARL approach, GCN-based multi-agent PPO (MAPPO). A

multi-agent MDP is defined by a set of states S that describes the possible global en-

vironmental features as well as a set of actions Ai (i = 1, 2, . . . , N) and a set of local

observations Oi (i = 1, 2, . . . , N) for each agent. To choose actions, agent i feeds its

observation oi into the policy πθi and gets ai. The joint action of all agents generates

the next global state using the state transition function T(s; a1, a2, . . . , aN) → s′,

where N is the number of agents. Meanwhile, agent i obtains rewards based on

a function of the global state and the agent’s action Ri(s, ai) → ri and receives a

private observation correlated with the state s′ → oi. Each agent dedicates itself to

8

maximizing its own total expected return
∑T

t=0 γ
tri,t (i = 1, 2, . . . , N), where γ is a

discount factor and T is the time horizon. In our multi-agent MDP, for agent i, we

represent the features of the local network that agent i can sense, the position of

the VNF embedded at the previous time step, and the index of the agent’s affiliated

DC as the local observations. In addition, the possible placements of the current

VNF and the VL connecting this VNF and the previous constitute the action space.

The reward function Ri consists of an external part and an internal part. The for-

mer is designed to achieve the common goal of all agents – maximizing the overall

acceptance ratio of SFC requests while minimizing the total cost in an MDC envi-

ronment. The latter is designed to accelerate the training. With training, each agent

of the MAPPO model knows how to embed SFCs within its LOS to approximate

the optimal solution.

The main contributions can be summarized as follows:

1. We propose a two-stage GCN-based DRL framework to handle service requests

simultaneously from all DCs with the aim of maximizing the overall acceptance

ratio of SFC requests while minimizing the total cost in an MDC network. This

work effectively addresses the limitation in existing research on embedding

SFCs in MDC networks by considering SFC requests load diversity of different

DCs.

2. We abstract the placement of all SFCs within a time slot into a load balance

problem from the macro perspective in the first stage. To balance loads in the

MDC environment, we model the load transfer process as an MDP and develop

a coarse granularity solution to the placement of SFCs such that the accep-

tance ratio of SFC requests is maximized while the total cost is minimized.

The solution provides an appropriate LOS for each agent in the multi-agent

framework; thus, we can tailor the action space of each agent to a proper size,

9

which speeds up the convergence rate of the algorithm in the second stage.

3. In the second stage, all agents handle SFCs received by their respective DCs

simultaneously. In the initial phase, each agent places SFCs in its affiliated

DC. In the second phase, we model the SFC embedding problem as a multi-

agent MDP from the micro perspective and solve it using a MARL approach,

GCN-based MAPPO. This multi-agent framework achieves better efficiency

than single-agent RL algorithms in resolving the SFC requests load diversity

issue in MDC networks.

1.3.3 The Fog Networks

We propose a GCN-assisted two-agent PPO framework to maximize the accep-

tance ratio of SFC requests while minimizing the total cost in a fog network.

We model the embedding of all SFC requests as a two-agent MDP, in which

we accommodate SFC requests in sequence. These two agents both have their

respective action space and local observation scope. The N-agent, which can only

observe the node resources of each node in the fog network, is in charge of placing

VNFs. The R-agent, which can only observe the link resources and the topology of

the fog network, embeds the VLs between any two adjacent VNFs. For every SFC

request, with the state of the node resources, the N-agent first chooses the locations

for all VNFs based on its corresponding actor network. The locations of all VNFs,

which are indicated in the output of the N-agent’s actor network, will be fed to

the actor network of the R-agent. With the input from the first actor network and

the state of the link resources and the network topology symbolized by the graph

embedding, the R-agent embeds all VLs to chain all adjacent VNFs pairs. The joint

action, the placement of VNFs and VLs in the SFC request, generates the next

global state with the state-transition function T(s; a1, a2) → s′. In addition, each

agent obtains a reward based on a function of the global state and the agent’s action

10

Ri(s, ai) → ri (i = 1, 2), and receives a local observation correlated with the state

s′ → oi (i = 1, 2). The reward function is defined based on the success/failure of the

SFC request and resource cost. Both agents aim to maximize a shared total expected

return
∑T

t=0 γ
tri,t (i = 1, 2), where γ is a discount factor and T is the time horizon.

Once trained, the GCN-assisted two-agent PPO framework model approximates the

optimal solution of maximizing the acceptance ratio while minimizing the total cost

in the fog network.

The main contributions of our work are summarized as follows:

1. We propose a DRL-based framework for embedding SFCs, which resolves the

dynamic SFC requests load issue and provides physical isolation for the SFC

requests that require encryption computing.

2. We devise a two-agent reinforcement learning model based on the typical multi-

agent actor-critic model [5]. The new model detaches the SFC embedding

action into two actions, the VNFs placement and the VLs placement given the

placed VNFs. It uses one agent (actor-network) to place VNFs and the other

(actor-network) to chain the placed VNFs. This innovative architecture, in

which the first agent communicates with the second, sufficiently explores the

joint action space of the two agents. Meanwhile, it resolves the huge action-

space issue for SFC embedding.

3. We adopt GCN with the attention mechanism to capture the topology features

while excluding the node features for the R-agent.

1.4 Thesis Organization

This thesis is organized as follows:

11

• Chapter 2: This chapter is a survey of SFC embedding algorithms in all three

scenarios.

• Chapter 3: Designed for the classical VNE model, our innovative BSATL

algorithm, which ensures priority allocation for higher-priority services and

maximizes the acceptance ratio of service requests while minimizing the total

cost in a single DC, is described in this chapter.

• Chapter 4: Based on a more flexible model, our SADDQN algorithm achieves

the same objective as the BSATL. Details are provided in this chapter.

• Chapter 5: This chapter presents our two-stage GCN-based DRL framework

to maximize the overall acceptance ratio of SFC requests while minimizing the

total cost in an MDC network, where SFC requests load varies from DC to

DC.

• Chapter 6: This chapter presents our GCN-based two-agent PPO framework

to maximize the overall acceptance ratio of SFC requests while minimizing the

total cost in a fog network, where SFC requests load varies from location to

location, and some SFC requests have hard isolation requirements.

• Chapter 7: A summary of this thesis is provided in this chapter. Recommen-

dation for future works is also mentioned.

12

Chapter 2

Literature Review

NFV, with which we can build multiple virtual network services on top of a common

hardware platform, is a key technology in 5G networks. In [6], the authors illus-

trated research challenges and state-of-the-art of NFV comprehensively, and the

placement of network services is a critical aspect. In 5G networks, our objective

is to accommodate as many network services as possible with limited hardware re-

sources. Furthermore, the successful placement of a network service requires that

both the resources and the QoS constraints be satisfied. Hence, efficient network

services placement algorithms become essential. Many surveys have been devoted

to the placement of network services techniques [7, 8, 9, 10]. In this chapter, we pay

close attention to those works studying SFC embedding approaches in a single DC,

MDC, and fog networks. In general, they fall into the following two categories.

2.1 Heuristic-based Approaches

In a single DC scenario, most techniques were proposed to formulate and solve

optimization problems [11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. Some works [13] and

[14] are based on strong assumptions. For example, the authors in [13] assumed that

the delay of each link is 30ms. In [14], the authors used packet loss ratio to reflect

network congestion in simulation. But they assumed that the packet loss ratio is a

fixed number, like 0.02 or 0.03.

Some works first make predictions about network parameters and then determine

solutions for VNF. The authors in [15] first proposed a traffic forecasting method.

13

Then, they devised two VNF placement algorithms, which are based on the forecast

traffic, to guide online VNF scaling. While the forecast traffic curve is very close to

the real-time traffic curve in most cases, its variation trend is sometimes one time

step later than that of the real-time traffic curve. In our work, we aim to accommo-

date as many latency-sensitive services as possible with the minimum cost. For a

deployed service, if the predicted traffic rate is lower than the real-time traffic rate,

then the latency requirement of this service might not be satisfied. Hence, we cannot

tolerate prediction error and thus design our algorithms in an environment where

the traffic characteristics that we care about can be learned from traffic history.

Some works [16, 17], and [18] focus on the convergence rate of their algorithms.

The authors of [16] designed an eigendecomposition-based approach to deal with

VNF Forwarding Graph (VNF-FG) placement. This matrix-based method reduces

the complexity and speeds up the convergence. However, it does not explore the

immense space of possible actions. A novel approach that combines Markov approx-

imation with matching theory, Sampling-based Markov Approximation (SAMA),

was proposed in [17] to minimize the joint operational and traffic cost. In [18], the

authors formulated the VNF placement and flow routing problems as Integer Lin-

ear Programming (ILP) optimization problems and designed a set of heuristics to

find near-optimal solutions. Our first proposed approach for the single DC scenario

speeds up the convergence rate by combining binary search with transfer learn-

ing. The second proposed approach speeds up the convergence rate by compressing

the action space using our resource allocation algorithm (BSAGD). Although the

convergence rate is important, cost-effectiveness is more important regarding our

objective. Therefore, we focus more on the optimal acceptance ratio and cost-utility

than on the convergence rate.

Others [20, 12], and [19] are based on delay models. In [12], the authors proposed

a fine-grained delay model and extended the VNF placement optimization in [11]

14

with delay constraints. As another work, the authors in [19] formulated the problem

of finding the optimal number of VNFs and their locations as an ILP. Then they pro-

posed a cost-efficient proactive VNF placement and chaining algorithm to resolve it.

The algorithm aims at accepting each request with the minimum cost while meeting

its latency requirement. However, as in [12], it does not prioritize those value-added

services based on their latency requirements. In that case, an infrastructure with

insufficient resources might not ensure priority allocation of high-priority services.

Recently, the authors in[20] first formulated the delay-constrained and power-aware

joint VNF placement and routing problem as an ILP. Then they proposed a fast

heuristic algorithm – Holu to resolve it. The authors calculated the end-to-end delay

of a VNF chain by adding up the propagation delay of each link and the processing

delay of each VNF. However, queuing delay and propagation delay might also be

considered in some real cases. Therefore, creating or choosing a delay model that

achieves an accurate estimation is critical for the VNF placement of latency-sensitive

services. In our work, to ensure priority allocation of services with more strict la-

tency requirements, we prioritize requests based on their latency requirements. To

ensure an accurate estimation of the end-to-end delay, we design our frameworks

based on a mature 5G end-to-end delay model, whose accuracy has been verified in

[21].

In the MDC networks scenario, most techniques were proposed to formulate and

solve optimization problems [22, 23, 24, 25]. Some works, [22, 23], and [24], are

based on a strong assumption. In [22], the authors proposed a heuristic algorithm

named LBA (LCS Based Algorithm) to realize efficient VNF service chaining in

inter-DC elastic optical networks (EONs). Based on the Longest Common Subse-

quence (LCS) principle, this algorithm reuses the VNFs that have been deployed

previously in multiple DCs to save IT cost. To reduce the inter-DC traffic cost, it

places new instances of VNFs in DCs based on the nearby principle; thus, VNFs

15

may concentrate in some DCs, while others are under-utilized. Consequently, some

DCs might suffer traffic congestion or performance degradation. To resolve this is-

sue, the authors of [23] proposed a resource balancing algorithm (RBA) for joint

placement of service chains and routing/spectrum assignment (RSA) in inter-DC

EONs. Also, in [24], a joint-optimization selection (JOS) algorithm was designed

to select VNFs to achieve joint load balancing of IT and spectrum resources. In

[25], the authors formulated the VNF placement as a binary integer programming

model and proposed the Service Function Chains eMbedding APproach (SFC-MAP)

algorithm, in which the shortest path algorithm is iterated based on a multi-layer

cost graph, to acquire the optimal placement solution. In all these works, the VNF

reuse solution improves resource utilization. This solution is based on the assump-

tion that the capacity of a VNF is fixed, which is reasonable during the early stage

of virtualization [26]. Nevertheless, when we walk into the Kubernetes era, VNFs

are embedded in containers, for which CPU allocation can be as small as 1/1000 of

the total CPU resources of a server [27]. Hence, the resource allocation for a VNF

can be flexible, and we can initiate VNFs instances based on the number of virtual

resources requested in the corresponding service requests. Furthermore, for security

purposes, many customers are unwilling to share VNFs with others. Therefore, in

our work, we consider dynamic and unshared VNFs.

The study on SFC embedding in fog computing is limited. The authors in [28]

studied the SFC embedding issue in a two-layer fog network. They proposed a hybrid

algorithm in which Tabu searches locations for VNFs and a graph-based shortest-

path module embeds VLs. This approach designs “sub-regions” to partition the

search area and restricts the VNF mappings into a small scope close to a primary

node. It really places the SFC near the source and thus reduces latency and conserves

bandwidth. However, looking at the whole picture, this scheme would lead to a low

acceptance ratio of SFC requests once the SFC requests load varies from location to

16

location. In [29], for a latency-sensitive SFC, the authors first found several shortest

paths between the source and destination pair. Then, they used two heuristics,

delay minimum (DM) and load minimum (LM), to derive a VNF placement solution,

respectively. Unlike most existing SFC embedding approaches, this algorithm selects

several candidate paths for VL embedding, then obtains a VNF placement option

based on DM or LM principle, making it attractive. There exist two main drawbacks

to this work. First, for a latency-sensitive service, we do not need to realize it with

the minimum delay. Over-provisioning of resources may result in a low acceptance

ratio of SFC requests. In contrast, we just need to satisfy the delay requirement of

each service and try to accommodate all services. Second, the LM tries to balance

the load of all fog nodes across the network. Actually, when SFC requests loads

are different in different locations, this scheme might also unreasonably reject SFC

requests. These two issues also have not been addressed in [30], the authors of which

designed a hierarchy Descending SFC embedding scheme with load balancing. This

algorithm places VNFs on higher-layer nodes first. Then, they place SFC on the

lower layer with load balancing to maximize the acceptance ratio of SFC requests.

Nevertheless, they assume the bandwidth is abundant, and thus they only consider

the load balance of node resources but not bandwidth.

In summary, heuristics are efficient in stationary systems. Nevertheless, in sce-

narios where environmental characteristics, such as the arrival rate and the required

resources of service requests, change dynamically, these approaches must be fre-

quently re-triggered to obtain optimal solutions for new environments. In contrast,

our proposed algorithms, whose agent interacts with the environment during the

training phase, can learn the environment changes in all scenarios before it con-

verges.

17

2.2 Reinforcement Learning-Based Approaches

These years, techniques based on reinforcement learning (RL) were developed

[3, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42]. The valuable ability to learn from

past experiences makes these approaches noteworthy. The authors in [32] devised a

distributed reinforcement learning algorithm for SFC embedding, which speeds up

the convergence. But they did not consider whether they should design a dedicated

network for communication between the agents. In [33], the authors made VNF

placement decisions based on the end-to-end performance predictions. Although

the prediction algorithm performs very well in dynamic conditions, as in [15], it

would need to reserve resources for VNFs in case of prediction error. Therefore,

making prediction-based VNF placement solutions could not be very cost-efficient.

Instead of learning from scratch, the authors in [34] trained a DRL agent to learn

how to reduce the optimality gap of heuristic-based solutions. For the latency issue,

[3] is the first paper that proposes to extract latency in real time, making it very

attractive. Adopting the real-time model can greatly enhance the accuracy of the

latency. However, there exist several limits in [3]. First, they used VNF-FGs re-

quested by clients to symbolize traffic in the deep reinforcement learning state. It is

important to take VNF-FGs into the state, but it is equally important to include the

incoming traffic of each service, an indispensable feature of the environment. This is

because, for a given VNF-FG configuration, different incoming traffic may result in

different real latencies. Second, the authors assumed that the requested resources of

VNFs are normalized and uniformly distributed, which could be impractical in some

real cases. For instance, in an OpenStack (an open-source cloud computing infras-

tructure software project) supported cloud environment, there are several available

‘flavors’[26] for resources like VCPU, RAM, and Disk. Therefore, these required

resources are discrete random variables rather than continuous random variables.

18

As for MDC networks, the authors in [35] presented a DRL-based SFC em-

bedding algorithm in inter-DC EONs. To solve the problem that the size of the

state vector is not fixed because of the varied length of SFCs and the ever-changing

number of available DCs, a feature matrix-based encoding solution was put for-

ward. This innovation makes RL-based algorithms feasible in network environments

whose state sizes are prone to change. In [36], the authors proposed DeepRMSA,

a DRL-based routing, modulation, and spectrum assignment (RMSA) framework

for learning the optimal online RMSA policies in EONs. The authors in [37] de-

veloped a hybrid DRL-based framework for SFC embedding across geo-distributed

DCs. In [35, 36] and [37], the authors used deep neural networks (DNN) to extract

the features of the complex EON states. However, for an environment that can

be represented by a graph, Graph neural networks (GNN)-based encoding schemes

might be more efficient in extracting its features. The authors in [38] designed a

GNN-based hierarchical DRL algorithm for the VNF placement and RSA in EONs.

They proposed a GNN-based encoder to abstract the features of the EON network

states and the context of the pending VNFs. This GNN-based encoder advances

the VNF-FG placement in network topologies that a graph can normally represent.

However, as the authors in [37] and [39] did, they decoupled the placement of VNFs

and VLs and designed a routing module to select the optimal route given a VNF

placement. This scheme reduces the action-space size and speeds up the conver-

gence rate. Nevertheless, the greed for a high immediate reward might result in a

disappointing long-term cumulative reward.

For fog networks, the authors in [40] proposed a DRL for SFC allocation. The

DRL-agent learns the optimal resource allocation decisions to reduce costs from a

previously presented Mixed-integer linear programming (MILP) formulation. Based

on the IMPortance weighted Actor-Learner Architectures (IMPALA), the authors

in [41] proposed a distributed placement technique, which employs an adaptive off-

19

policy correction method for faster convergence. In [42], the authors proposed an

Intelligent Fog and Service Placement (IFSP) to perform instantaneous placement

decisions proactively. This algorithm considers dynamics in both the customers’

requests and the available infrastructure resources, which is a pioneering 6G tech-

nology.

For all scenarios, most works adopted the classical VNE model, which symbolizes

the characteristics of SFC requests. They directly treated the assumed values of

required resources as the input of their approaches. However, in some real cases,

customers are familiar with the QoS parameters but not the VNF size. Therefore,

we designed a resource allocation algorithm to allocate resources flexibly to an SFC

based on its incoming traffic and latency requirement in a single DC scenario. The

resources allocation module works as a sub-action of a given SFC placement in each

step of the reinforcement learning process.

Most works on the MDC issue [22, 23, 24, 35, 36, 37, 25, 38] treated the MDC

network as a whole and assumed that the arrival of SFC requests follows the Poisson

distribution. However, in some real cases, the diversity of SFC requests in an MDC

may pose an important challenge. Thus, we designed a two-stage GCN-based RL

algorithm for the SFC embedding problem in an MDC network, where the SFC

requests load varies from DC to DC.

As in the MDC scenario, the diversity of SFC request loads in different locations

of a fog network has not been researched deeply in the existing literature. Also,

the security issue in SFCs embedding is paid little attention to. Last but not least,

for the SFC embedding issue, to compress the action-space and thus accelerate

convergence, most DRL-based algorithms, including the one we designed for the

single DC scenario, only use the DRL-agent to explore the action-space of the VNFs

placement. Typically, they designed a routing module to embed VLs given the

20

embedded VNFs. In this way, a VNFs placement option has only one corresponding

VLs placement option. This scheme really can compress the action-space, but it

neglects the action-space of the VLs embedding. One-step greedy algorithms will

always lead to an unfavorable global optimum solution. Hence, we devised a two-

agent GCN-assisted DRL algorithm to resolve all these issues in a fog network.

2.3 Summary

In this chapter, we have analyzed existing SFC embedding approaches in different

scenarios (single DC, MDC, and fog networks) and summarized their strengths and

weaknesses. To resolve the issues that have been neglected in existing literature,

we have proposed SFC placement schemes for all scenarios. In the next chapter, we

will introduce our SFC embedding algorithms in a single DC.

21

Chapter 3

SFC Embedding in an NFV-based Single DC

under the Classic VNE Model

In this chapter, we will introduce a DQN-based algorithm to maximize the accep-

tance ratio of all SFC requests and ensure prior placement of higher-priority SFCs

in a single DC environment. In this algorithm, we first train a standard DQN model

in a base environment to get the optimal SFC placement solution. Then, we propose

a Binary Search Assisted Transfer Learning algorithm (BSATL), in which the avail-

able hardware resources are scaled down/up and the knowledge learned from the

source task is transferred to the target task in each iteration, to achieve automated

and closed-loop SFC placement optimization for the ever-changing infrastructure.

3.1 System Model and Problem Formulation

3.1.1 System Architecture

In the NFV architecture, Network Slice Management Function (NSMF) receives

SFC requests. Accordingly, it interfaces with Management and Orchestration (MANO)

to plan for SFC placement. In our work, the DQN-agent, which takes the role of

MANO, is responsible for choosing the location for VNFs in each SFC. As for the in-

frastructure, we adopt a widely used non-blocking fat-tree topology, depicted in Fig.

3.1. Let D denote the set of edge clouds and Ei denote the set of servers in the ith edge

cloud. For simplification, we assume that the number of servers in all edge clouds

are the same. Hence, the number of edge clouds is |D|, and the number of servers in

each edge cloud is |E|. Without loss of generality, we consider the following example.

22

Figure 3.1 : Network infrastructure considered in this paper.

When DQN-agent handles an SFC request VNF1→VNF2→VNF3, we suppose that

it chooses server1 to place VNF1 and VNF2, and server5 to place VNF3. After the

incoming traffic travels through VNF1→VNF2→edge switch1→core switch→edge

switch2→VNF3, the agent extracts the real latency to see whether the corresponding

latency requirement is satisfied.

3.1.2 Characteristics of SFC Requests

Let K represent the number of SFC requests. In addition, the number of VNFs

for a URLLC SFC is assumed to be V . Unlike the authors in [20], who assume that

all SFCs have the same latency requirement, we assume that, within the URLLC

category, each SFC has its distinctive latency requirement. Hence, we represent the

latency threshold of the ith SFC with Li.

3.1.3 Problem Formulation

In this part, we formulate the objective as an optimization problem. Our purpose

is to maximize the acceptance ratio while ensuring prior placement of higher-priority

23

SFCs, under the infrastructure resource constraints. Thus, the optimization problem

can be written as

(3.1a)

(3.1b)

In the objective function above,

(3.2)

(3.3)

ρi denotes the priority of SFC i, element ai,j in matrix AAA indicates on which server is

the jth VNF of the ith SFC located, and Li and li respectively symbolize the latency

requirement and the real latency of the ith SFC.

In the constraints above, the binary variable xni,j indicates whether the jth VNF

of the ith SFC nests on the nth server, ci,j and wi,j denote the required CPU and

bandwidth resources of the jth VNF of the ith SFC, and Ctot and Wtot denote the

CPU and bandwidth capacity of any server.

The constraints need to be modified if the infrastructure availability changes.

Learning-based techniques can be utilized to learn such network dynamics and solve

the problem. The mission of the learning technique is to learn a policy that generates

the optimal action under each environment state. In the next section, we propose a

DQN-based model for the SFC placement problem for latency-sensitive services.

(P1) : max
AAA

C(AAA) =
K∑
i=1

ρi × f(Li − li)

s.t.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

K∑
i=1

V∑
j=1

xn
i,j × ci,j ≤ Ctot, n = 1, 2, ..., |D| × |E|

K∑
i=1

V∑
j=1

xn
i,j × wi,j ≤ Wtot, n = 1, 2, ..., |D| × |E|.

f(x) =

⎧⎪⎨
⎪⎩

− x < 01

1 x ≥ 0,

ρi =
1
Li∑K
i=1

1
Li

, i = 1, 2, ..., K,

24

3.2 Our Proposed SFC Placement Scheme

We model the VNF placement for all SFCs as an MDP, which can be resolved

by a DQN framework, and represent the MDP action space as the possible VNF

placements of a single SFC request. A state can be defined as a vector consisting

of two parts: the available resources of the infrastructure and the characteristics of

an SFC request. Once the VNF placement action of the first request is decided,

the state is updated. Then the action for the second one will be determined, so

on and so forth. Since our aim is to maximize the acceptance ratio while ensuring

prior placement of higher-priority SFCs, we prioritize those requests based on their

latency requirements and define the reward function of the MDP based on SFC

priority. The details of the state, action, and reward function in the context of our

problem will be provided in Sections 3.2.2, 3.2.3, and 3.2.4.

We first propose a framework based on DQN [43] to maximize the acceptance

ratio and ensure prior placement of higher-priority SFCs. Then, to resolve the over-

provisioning of resources, we propose the BSATL algorithm, in which the minimum

number of online servers for maintaining the maximum acceptance ratio is iteratively

searched for, to achieve automated and closed-loop optimization for the 6G Event

Defined uRLLC (EDuRLLC) scenario. The details are presented below.

3.2.1 Overview of the Proposed DQN

A general overview of the DQN used in our scheme is shown in Fig. 3.2. The

state, indicated by a vector, is fed into the neural network, which outputs a vector

of Q-values, with each indicating the expected discounted cumulative reward of a

corresponding action (VNF placement). At time step t, the Q-value of taking an

action at in state st based on policy π is given by

(3.4)Qπ(st, at) = E(
K∑
i=t

γ(i−t)R(si, ai)|st, at).

25

The objective of the agent is to learn a policy that maximizes the expected return

Qπ(st, at). At the initial stage of the training, the weights of the evaluation neural

network are random, and thus the policy is poor. Given a state, the maximum Q-

value may not account for the optimal policy. Hence, we train the framework episode

by episode. When an episode starts, we re-initialize the state of the environment

and feed the agent K requests, which will be handled one by one in K time steps. In

each time step, the agent serves a request and updates the neural networks. When

the agent finishes the placement of K requests, this episode ends, and the next one

starts. The loop ends as the weights of the neural networks converge. Then, given a

state, the agent is able to select the best action by taking the largest Q-value from

the output vector. The workflow for each time step can be summarized as follows:

1. Step 1: The agent observes the state (st) of the environment.

2. Step 2: The agent performs an action (at), i.e., the VNF placement, randomly

with probability ε or according to the evaluation network with probability

1− ε, and thus gets a reward (rt).

3. Step 3: The experience tuple (st, at, rt, st+1) is stored into an experience

replay buffer.

4. Step 4: To train the DQN framework, a mini-batch of N tuples are uniformly

sampled from the experience replay buffer.

5. Step 5: For tuple i, si and ai are fed into the evaluation network (θ), while

si+1 is fed into the target network (θ−).

6. Step 6: The weights of the evaluation network are updated by minimizing a

loss function:

(3.5)L =
1

N

N∑
i=1

(yi −Q(si, ai|θ))2,

26

Figure 3.2 : Flowchart of the Deep Q learning network.

where

(3.6)

7. Step 7: The weights of the target network are updated by copying the weights

of the evaluation network every C time steps.

3.2.2 State

We define the state as a vector consisting of two parts: the remaining resources

of the infrastructure and the characteristics of an SFC request. Subsequently, the

yi = ri + γmaxa′Q
′(si+1, a

′|θ−).

27

state set of the environment can be given as

(3.7)

where cn and wn respectively represent the remaining CPU and bandwidth resources

of the nth server, ci,j and wi,j, which can be selected from VM ‘flavors’, denote the

required CPU and bandwidth resources of the jth VNF of the ith SFC, and Li and

λi respectively denote the latency requirement and the incoming traffic of the ith

SFC.

3.2.3 Action

We define the action as the possible placement for an incoming SFC i:

AAA = {ai,j} , j = 1, 2, ..., V, i ∈ {1, 2, ..., K}, (3.8)

where ai,j indicates on which server does the jth VNF of the ith SFC nest.

3.2.4 Reward

We leverage a simulation tool CloudSimSDN-NFV [44] to obtain the real latency

of an embedded SFC. If the SFC’s latency requirement is not satisfied, the agent

will receive a penalty. Otherwise, it will be granted a reward. For the ith SFC, the

reward function regarding delay is defined as

(3.9)

SSS = {cn, wn, ci,j, wi,j, Li, λi} ,

n = 1, 2, ..., |D| ∗ |E|, j = 1, 2, ..., V, i ∈ {1, 2, ..., K},

Rdelay(i) =

⎧⎪⎨
⎪⎩

1 li ≤ Li

−1 li > Li,

where li and Li denote the real latency and the latency requirement of the ith SFC.

We suppose that the jth VNF is planned to be placed on the nth server. If the

remaining bandwidth or CPU of server n is insufficient to accommodate VNF j,

then the placement for this VNF is a failure. When DQN-agent performs an action

28

for SFC i, the failure placement for any VNF can lead to a penalty for this action.

Therefore, the reward function regarding resources constraint is defined as

(3.10)

where ci,j and wi,j denote the required CPU and bandwidth resources of the jth

VNF of the ith SFC, and cn and wn respectively represent the remaining CPU and

bandwidth resources of the nth server.

We place VNFs for all SFCs such that a global utility function expressed below

is maximized.

(3.11)

where η1 and η2 are the weights of two reward functions and ρi indicates the pri-

ority of SFC i. For any SFC placement, satisfying the resources constraint is the

prerequisite for being measured the delay. Thus, η2 is greater than η1.

3.2.5 The Binary Search Assisted Transfer Learning Algorithm

Our BSATL algorithm is summarized in Algorithm 1. The main workflow is

shown in Fig. 3.3. The algorithm starts from a DQN learning process in an initial

environment with the maximum number of servers (Smax). Smax and 0 are consid-

ered the two ends of the binary search (BS). A new iteration of transfer learning is

triggered once the BS creates a new environment, indicated by the tentative maxi-

mum number of servers (tmax). In each iteration, the source task and target task [45]

share the same action space and reward function, and the only difference between

the two tasks is the DQN state. Hence, it is reasonable to reuse the neural network

model developed in the source task as the starting point of the target task. When

Rres(i) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−1

if ∃j ∈ [1, V], ci,j > cn or wi,j > wn

0 otherwise,

U = max
K∑
i=1

(η1 × ρi ×Rdelay(i) + η2 ×Rres(i)),

29

Figure 3.3 : Workflow of the BSATL algorithm.

the resource gap between the most recently verified environment and the current

tentative environment is less than the minimum resource unit (Cmin), the loop ends,

and the minimum number of servers (vmin) for maintaining the maximum acceptance

ratio is returned.

3.3 Simulation

3.3.1 Simulation Setup

In this section, we evaluate the performance of the proposed DQN algorithm

regarding the acceptance ratio in phase one and the cost-utility of the proposed

30

Algorithm 1 BSATL Algorithm
Input: Smax, Ctot, Cmin

Output: vmin

1: tmin = 0, tmax = Smax, vmin = 0

2: index = 1

3: while (vmin − tmax)Ctot > Cmin or index = 1 do

4: Substituting tmax into DQN state and training or

5: retraining the network to see whether the DQN converges

6: if the acceptance ratio converges to the optimal then

7: vmin = tmax, tmax = tmax+tmin

2

8: else

9: tmin = tmax, tmax = tmin+vmin

2

10: end if

11: index = index+ 1

12: end while

13: return vmin

31

BSATL algorithm in phase two. We use the CloudSimSDN-NFV as our simulation

framework. We can see that in CISCO’s typical data center infrastructures [46],

the bandwidth of a physical link is either 1 Gbps or 10 Gbps. Thus, we set the

bandwidth of each link to 1 Gbps for our infrastructure (Fig. 3.1), and the MIPS of

each server is 1000. In our experiment, we assume that there are five categories of

latency-sensitive SFCs, each of which consists of a chain of three VNFs and has a

distinctive latency threshold. In terms of priority, flow1>flow2>flow3>flow4>flow5.

For security purposes, we assume that they are isolated networks, and thus they do

not share VNFs.

The DQN network is designed with the following parameters. Adam is employed

to learn the neural network hyperparameters. The learning rate is 0.005, and the

discount factor is 0.99. The weights of the target network are updated every 100

episodes. The batch size is 64. We set two hidden layers for the fully connected

network; the number of units is 4096 for the first hidden layer and 1024 for the

second. We choose the Rectified Linear Unit (ReLU) activation for hidden layers.

Our proposed algorithms both consist of an offline training phase and an online

testing phase. In the training phase, we create SFC requests according to their

traffic and arrival pattern history and continuously train the framework until the

weights of neural networks converge. During the online testing phase, we compare

the performance of our proposed algorithms with two state-of-the-art algorithms.

3.3.2 Algorithms to Compare

Holu

The Holu algorithm [20] addresses the VNF placement and routing problem with

the objective of minimizing the number of online physical machines and network

switches, under the end-to-end delay and resource constraints. This fast heuris-

tic framework efficiently solves the delay-constrained and power-aware joint VNF

32

placement and routing (PD-VPR) problem in an online mode. In detail, the Holu

detaches the joint problem into two sub-problems and solves them in sequence: i)

mapping VNFs to PMs based on a centrality-based PM ranking strategy, and ii) ob-

taining a Delay-Constrained Least-Cost (DCLC) shortest path through the selected

PMs using the Lagrange Relaxation-based Aggregated Cost (LARAC) algorithm.

Best-Fit

The Best-Fit algorithm deploys VNFs one after another to the smallest free

partition that meets the resource requirements of the VNFs.

3.3.3 Simulation Results

In phase one, we compare our DQN algorithm with the Holu and the Best-Fit

regarding the acceptance ratio. From Fig. 3.4, we can see that when we restrict

the number of online servers to four, the DQN and the Holu accept four requests,

while the Best-Fit accepts three. Furthermore, only our DQN algorithm accepts

four higher-priority SFCs and discards the lowest-priority SFC. This is because we

assign greater reward/penalty values to the success/failure of higher-priority SFC

requests, and the DQN algorithm achieves the maximization of the total discounted

cumulative reward at the sacrifice of some instantaneous reward. However, the other

two algorithms, which do not consider the priority issue, handle requests based on

their arrival sequence. As a result, with the same number of online servers, our DQN

algorithm achieves the same acceptance ratio as the Holu. Meanwhile, it ensures

prior placement of higher-priority SFCs.

In phase two, to create an over-provisioning of resources scenario, we first turn

on all eight servers to pre-train a DQN framework that can accept all five requests.

From Fig. 3.5, we can see that, before episode 10000, DQN-agent explores the envi-

ronment. As the agent becomes smarter and smarter, the acceptance ratio increases

33

Figure 3.4 : Accepted SFCs with different priorities.

gradually. After we finish the training at episode 10000, our DQN algorithm always

achieves the maximum acceptance ratio.

Then, we run our BSATL algorithm to see whether the over-provisioning problem

can be resolved. From Fig. 3.6, we can see the transfer learning process during the

loop of Algorithm 1. To maintain the maximum acceptance ratio, the minimum

number of online servers should be five. The value 4.5 means we only utilize half

of its resources for the fifth server. Compared to the initial environment with 8

servers, we significantly improve the cost-utility while maintaining the acceptance

ratio. Regarding the common characteristics, we can see that all curves start from a

value no less than 40% and finally converge within 1200 episodes, much faster than

the rate of convergence in the initial task. This is because, in any new environment,

the DQN-agent benefits from the knowledge learned in the source task. Regarding

the differences, we can notice that, although the agent inherits knowledge from the

initial task for both the environment with 6 servers and that with 4 servers, the curve

of 6 servers starts from a higher acceptance ratio and converges faster than that of

34

Figure 3.5 : DQN learning process of the initial task.

4 servers. This is because the environment with 6 servers shares more similarities

with the initial environment. Another finding is that the acceptance ratio for the

environment with 5 servers falls to 80% and then climbs to 100% very soon. The

reason is that the environment of this task is highly similar to that of its source

task, the environment with 6 servers.

Finally, we compare our BSATL algorithm with the Holu and the Best-Fit in

terms of cost-utility under different network environments. From Fig. 3.7(a), we

can see that our BSATL and the Holu occupy the same number of servers, while

the Best-Fit requires more to accept all incoming requests. The reason is that the

Best-Fit, which places VNFs in the smallest free partition one by one but does not

consider the closeness between adjacent VNFs, needs more resources to meet the

35

Figure 3.6 : The binary search assisted transfer learning process.

delay requirement when adjacent VNFs are far away from each other. Unlike the

Best-Fit, the Holu takes the closeness between node pairs into consideration when

placing VNFs, and our BSATL optimizes the VNF placement during the learning

phase. From Fig. 3.7(b), we can see that the average CPU utilization of our BSATL

is lower than that of the Holu. That is, our BSATL requires fewer CPU resources to

accept the same number of requests. The first reason is that our BSATL flexibly re-

duces the VNFs size by selecting templates from ‘flavors’ to enhance the cost-utility.

In contrast, the Holu fixes the capacity of VNFs, inevitably falling into the over-

provisioning mire. The second reason is that the BSATL minimizes the cost from

a global perspective, while the Holu only minimizes the cost instantaneously rather

than farsightedly. In addition, the Best-Fit algorithm has the highest average CPU

36

Figure 3.7 : Cost-utility comparison.

utilization and thus consumes the most resources for the aforementioned reason. In

conclusion, our BSATL outperforms the other two in terms of cost-utility.

3.4 Summary

In this chapter, we leveraged the DQN algorithm to maximize the acceptance

ratio and ensure prior placement of higher-priority SFCs for latency-aware network

slices. We considered a multi-edge cloud scenario in which several SFC requests with

different priorities are fed into the DQN-agent, and developed an intelligent policy

to place SFCs. First, considering the objective, we defined our new state, action,

and reward function for the DQN framework. Using simulations, we showed that

DQN-agent is able to maximize the acceptance ratio and ensure prior placement

of higher-priority SFCs for latency-aware SFCs with different latency requirements.

Then, we proposed an algorithm – BSATL, which achieves automated and closed-

loop optimization for the placement of SFCs, to resolve the over-provisioning of

resources. Numerical results showed that our proposed scheme can improve cost-

utility while maintaining the acceptance ratio, as expected. We achieve our objective

under the classical VNE model, which assumes that the resources of each VNF and

VL are known in advance. In the next chapter, we will flexibly allocate resources to

each VNF and VL and realize our objective in a more complex model.

37

Chapter 4

SFC Embedding in an NFV-based Single DC

under a Flexible Resources Allocation Model

In this chapter, we will introduce a sub-action aided DDQN (SADDQN) algorithm

to place SFCs in a single DC. The most prominent innovation is that we not only

place SFCs, but also allocate resources to VNFs and VLs of each SFC. For every SFC

request, we first use the DDQN to choose a VNF placement (main action). Next,

we employ the Dijkstra algorithm (first-phase sub-action) to find the shortest path

for each pair of adjacent VNFs given the VNFs’ locations. Finally, we implement

the BSAGD (second-phase sub-action) to realize the SFC with the minimum cost.

The joint action results in a reward that can be utilized to train the DDQN. The

trained SADDQN model approximates the optimal SFC placement solution.

4.1 System Overview and Problem Formulation

4.1.1 Network Infrastructure and SFC Requests

According to the 3rd Generation Partnership Project (3GPP) view [47, 48], Net-

work Slice Management Function (NSMF) receives requests for the allocation of

network slices with certain characteristics. Accordingly, it interfaces with Man-

agement and Orchestration (MANO) to plan VNFs allocation using the Network

Function Virtualization (NFV) infrastructure. In this chapter, the DDQN-agent,

which takes the role of MANO, is responsible for choosing the location for VNFs

of an incoming SFC request. Once the VNF placement is decided, the decision will

be delivered to the SDN-controller, which accordingly derives the shortest path in

38

terms of hop count for any two adjacent VNFs in this VNF chain and replies the

hop count results back to the DDQN-agent. With the VNF location and the hop

count information, the agent assigns resources to each VNF in such a way that the

SFC is realized with the minimum cost.

NFV Infrastructure

As for the infrastructure, we consider a non-blocking architecture whereby each

tier is connected to the next with equal aggregate bandwidth [49]. It is realized by

a fat-tree topology. We adopt a widely used fat-tree topology, depicted in Fig. 4.1.

Let S denote the set of servers, as given by

S = {sn | n ∈ {1, 2, . . . , |S|}},

where |S| is the number of servers and sn indicates the nth server in the infrastructure.

SFC Requests

Let L denote the number of requests, each of which is composed of a sequence of

VNFs and has a distinctive delay requirement. We assume that, within the URLLC

category, there are T types of SFCs. Hence, we can prioritize the T types of SFCs

and give each of them a priority value. And we define SFC request i as follows:

ri = (DR
i , ρi, Fi, λi),

where DR
i is the end-to-end delay requirement, λi is the requested data rate, ρi is the

priority value, and Fi = {fi1, fi2, · · · , fiKi} indicates the components of the SFC, a

sequence of VNFs through which the traffic will travel.

Without loss of generality, we consider the following example shown in Fig. 4.1.

When an SFC request (ingress→VNF1→VNF2→VNF3→VNF4→VNF5→egress)

arrives, we suppose that the DDQN-agent chooses server1 to place VNF1 and VNF2,

server2 to place VNF3 and VNF4, and server3 to place VNF5. Once the incoming

39

Figure 4.1 : Network infrastructure considered in this chapter.

traffic stream finishes its journey from the ingress to the egress, we obtain the real

delay of this stream to see whether it meets the corresponding latency requirement.

4.1.2 Traffic Model

We model the packet arrivals of flow i at the first VNF (VNF1) as a Poisson

process with arrival rate λi. As in [50], we define the time profile for flow i traveling

through VNF1 as a two-dimensional time vector
[
τproi,1 , τ

tran
i,1

]
. τproi,1 denotes the CPU

processing time for a packet in flow i to move through VNF1, when all CPU resources

of the host server are allocated to this flow. τ trani,1 denotes the transmission time for a

packet in flow i to go through the outgoing link of VNF1, when the whole bandwidth

resources on the outgoing link of the host are allocated to flow i. Correspondingly,

the rate vector
[
Cpro
i,1 , C

tran
i,1

]
(in the unit of packets per second) for flow i traversing

VNF1 is the reciprocal of the time profile, Cpro
i,1 = 1/τproi,1 and Ctran

i,1 = 1/τ trani,1 . Let’s

consider flow i in the M/D/1 model in Fig. 4.2. If µtran
i,1 > µpro

i,1 , it may lead to

resource waste on link transmission; If µtran
i,1 < µpro

i,1 , packets will accumulate in the

40

Figure 4.2 : M/D/1 queuing model.

transmission queue, resulting in an increase of the queuing delay [21]. Hence, to

avoid the queuing delay of the transmission queue and bandwidth waste, we need

to have

1

µpro
i,1

=
1

µtran
i,1

=
1

µi,1
. (4.1)

To achieve Eq.(4.1), we have to allocate CPU and bandwidth resources to flow

i passing through VNF1 according to the percentage Ctran
i,1 /Cpro

i,1 or Cpro
i,1 /C

tran
i,1 . For

simplification, we define a resources package Ctot, as given by

Ctot =


{
Mtot,

Cpro
i,1

Ctran
i,1

Wtot

}
, Ctran

i,1 > Cpro
i,1{

Ctran
i,1

Cpro
i,1
Mtot,Wtot

}
, Ctran

i,1 ≤ Cpro
i,1 ,

(4.2)

where Mtot and Wtot respectively indicate the total MIPS and bandwidth of a server.

When we need to allocate MIPS and bandwidth resources to a VNF, we fetch a

percentage of Ctot for it.

4.1.3 Delay Model

When a traffic stream goes through an embedded VNF chain, the end-to-end

delay is composed of the queuing delay and the processing delay on all intermediate

VNFs, and the transmission delay on all links [21].

41

In [21], authors decoupled packet processing of all flows traveling through a VNF

and thus regarded the average packet processing rate of each flow as an approximated

rate. They also applied the theory to the transmission rate. Accordingly, they

developed an M/D/1 queuing model for each flow to estimate the packet delay at

the first VNF. Based on the analysis of packet inter-arrival time at the next VNF,

they further adopted an M/D/1 queuing model to compute the average packet delay

for each flow at the next VNF.

Due to the slice isolation requirements, in our work, we consider unshared VNFs

[17, 51], which means two or more chains cannot share a VNF. This solution logically

separates the traffic of all network sub-slices and decouples all flows. Therefore, it

is reasonable for us to apply the delay model in [21] to our system.

For the first VNF, the average packet delay of flow i is expressed as

Di,1 =
1

µpro
i,1

+
λi

2
(
µpro
i,1

)2
(1− ρi,1)

+
1

µtran
i,1

, (4.3)

where the first term is the average processing delay, the second indicates the average

queuing delay of the processing queue [21], and the third symbolizes the average

transmission delay. The utilization ρi,1 is given by

ρi,1 =
λi
µpro
i,1

, (4.4)

where λi is the packet arrival rate and µpro
i,1 is the processing rate.

For the jth (j > 1) VNF that flow i travels through, the average packet delay is

expressed as

Di,j =


1

µproi,j
+ λi

2(µproi,j)
2
(1−ρi,j)

+ 1
µtrani,j

, µtran
i,j−1 > µpro

i,j

1
µproi,j

+ 1
µtrani,j

, µtran
i,j−1 ≤ µpro

i,j ,

(4.5)

where 1/µpro
i,j is the average processing delay, λi/2

(
µpro
i,j

)2
(1− ρi,j) is the average

queuing delay of the processing queue, and 1/µtran
i,j is the transmission delay.

42

In Eq.(4.5), if the transmission rate of the (j − 1)th VNF is lower than or equal

to the processing rate of the jth VNF, then there will be no queuing delay of the

processing queue on the jth VNF, as given in the second segment. Otherwise, in the

first segment, we have the average queuing delay of the processing queue based on

M/D/1 queue theory [21].

As in Eq.(4.1), we let the processing rate equal the transmission rate to eliminate

the queuing delay of the transmission queue:

1

µpro
i,j

=
1

µtran
i,j

=
1

µi,j
, j > 1. (4.6)

If the jth and the (j + 1)th VNFs are located on the same server, traveling from

the jth VNF to the (j + 1)th VNF, the flow will suffer no forwarding delay caused

by switches. Otherwise, the flow may suffer delay from traveling through links and

switches. In our work, as in [21] and [52], to maximize resource utilization, we

assume that the resources allocated to flow i from these switches ensure that the

transmission rate of the jth VNF is equal to that of any switch. Therefore, the

queuing delay, either of the transmission queue or of the processing queue, does not

need to be considered on these switches. Consequently, to go from the jth VNF to

the (j + 1)th VNF, the total packet delay for flow i passing through nj switches is

given by

Df
i,j =

2nj
µtran
i,j

, 1 ≤ j ≤ Ki. (4.7)

In general, the average end-to-end delay of flow i traveling through a VNF chain,

which contains Ki intermediate VNFs, is the total of the average delay for packets

to move through Ki VNFs and the average delay caused by all links and switches

[21], as defined by

Di =

Ki∑
j=1

Di,j +

Ki∑
j=1

Df
i,j. (4.8)

43

4.1.4 Cost Model

Operational Cost

We define the operational cost as in [17], and it is expressed as follows:

cope =
L∑
i=1

cope,i =
L∑
i=1

α× 250×Ni, (4.9)

where α is the parameter that transfers the power to a monetary value, Ni is the

number of newly activated servers for accommodating SFC i, and 250 is the power

of each active server.

Traffic Cost

In an SFC, a VNF needs to send packets to the next one through the VL, which

is embedded in the physical links. So the hop count between two adjacent VNFs

depends on the network topology [53]. We use h (vj, vj+1) to indicate the hop count

between two adjacent VNFs.

We define the network traffic cost in the same way as in [32] and [53], calculating

the traffic cost of two adjacent VNFs according to the hop count between them and

the bandwidth of the VL. Thus, the total traffic cost can be defined as

ctran =
L∑
i=1

ctran,i

= β
L∑
i=1

Ki∑
j=1

µi,j
Ctran
i,j

×Wtot × h (vj, vj+1) ,

(4.10)

where

h (vj, vj+1) =

|S|∑
n=1

|S|∑
n′=1

xni,j × xn
′

i,j+1 × h (sn, sn′) . (4.11)

In Eq.(4.10), β is the parameter that transfers the traffic cost to a monetary value.

In Eq.(4.11), the binary variable xni,j indicates whether the jth VNF of the ith SFC

nests on the nth server, xn
′
i,j+1 denotes whether the (j+1)th VNF of the ith SFC nests

on the n′th server, and h (sn, sn′) is the hop count between server n and server n′.

44

Server Cost

Compared with memory and capacity, CPU’s computational power is much more

important for latency-sensitive SFCs. Therefore, as for server cost, we only consider

CPU resources in Million Instructions Per Second (MIPS), and the total server cost

can be written as

cser =
L∑
i=1

cser,i = γ

L∑
i=1

Ki∑
j=1

µi,j
Cpro
i,j

×Mtot, (4.12)

where γ is the parameter that transfers the server cost to a monetary value.

4.1.5 Problem Formulation

In this part, we formulate the objective as an optimization problem. The purpose

is to maximize the number of accepted higher-priority SFC requests while minimizing

the total cost, under infrastructure resources constraints.

The weighted sum of the accepted requests can be defined as:

u =
L∑
i=1

ui =
L∑
i=1

ρi × f(DR
i −Di). (4.13)

In the function above,

f(x) =

 0, x < 0

1, x ≥ 0,
(4.14)

DR
i and Di respectively denote the latency requirement and the real latency of the

ith SFC, and ρi indicates the priority of SFC i.

The total cost can be expressed as follows:

c =
L∑
i=1

ci =
L∑
i=1

(cser,i + ctran,i + cope,i). (4.15)

Hence, the optimization problem can be formulated as

(P1) : max
xni,j ,µi,j

η1u− η2c

45

s.t.



L∑
i=1

Ki∑
j=1

xni,j
µi,j
Cpro
i,j

≤ 1, n = 1, 2, . . . , |S| (4.16a)

L∑
i=1

Ki∑
j=1

xni,j
µi,j
Ctran
i,j

≤ 1, n = 1, 2, . . . , |S| (4.16b)

|S|∑
n=1

xni,j = 1, i = 1, 2, . . . , L, j = 1, 2, . . . , Ki (4.16c)

xni,j ∈ {0, 1},

i = 1, 2, . . . , L, j = 1, 2, . . . , Ki, n = 1, 2, . . . , |S|

µi,j ∈ N+, i = 1, 2, . . . , L, j = 1, 2, . . . , Ki.

In the objective function above, η1 and η2 are the weights of two objectives.

Since the objective of maximizing the number of accepted higher-priority SFCs is

more important, we assign a higher weight to it in our paper.

In the constraints above, the binary variable xni,j indicates whether the jth VNF

of the ith SFC nests on the nth server. For any server in the infrastructure, the total

of the MIPS allocated to the embedded VNFs cannot exceed the CPU capacity of

the server, so we have Eq.(4.16a), and the total of the bandwidth allocated to the

embedded VNFs cannot exceed the maximum bandwidth of the server’s outgoing

link, so we have Eq.(4.16b). Each VNF can be deployed at only one server, so we

have Eq.(4.16c).

It can be difficult to solve this optimization problem using heuristic approaches,

because heuristics can hardly trace the dynamics of the network. Alternatively,

learning-based techniques can be utilized to learn the network dynamics, such as

the arrival pattern of various SFCs and the changing topology of the infrastructure,

and solve such a problem. The goal of the learning technique is to learn a policy that

determines what action to take in each environment state. In the next section, we

46

will introduce a model derived from Double Deep Q-Network (DDQN) [43] for joint

SFC placement and resource allocation problem regarding the latency requirement.

4.2 Proposed SFC Placement and Resource Allocation Scheme

4.2.1 Overview of Our Proposed SADDQN Algorithm

For our SFC embedding problem, an agent handles the SFC requests one after

another. To achieve its objective, the agent learns how to behave in the environment,

the state of which consists of the available resources provided by the infrastructure

and the characteristics of the request to be processed, by performing actions and

seeing the results. Specifically, for a single SFC request, the agent sequentially fulfills

three tasks. First, it chooses a VNF placement (main action), the locations of all

the VNFs in this SFC. Second, it employs the Dijkstra algorithm (the first-phase

sub-action) to derive the optimal path traversing the VNFs placed by the first task.

Third, it utilizes our proposed resource allocation algorithm – BSAGD (the second-

phase sub-action) to allocate resources to all VNFs in such a way that the SFC

request is realized with the minimum cost.

Performing the joint action (VNF placement, its corresponding optimal path and

resource allocation solution) for the current request to the environment, the agent

will receive a reward, which will be utilized to improve its action (VNF placement)

for subsequent requests. Meanwhile, the state of the environment will be updated,

and the action for the next request will be determined. Hence, we can model the

SFC embedding for all requests as a Markov Decision Process (MDP). Because one

VNF placement has only one corresponding optimal path and resource allocation

solution, we represent the MDP action space as the possible VNF placements of

a single SFC request. Since we aim to maximize the number of accepted higher-

47

priority SFCs while minimizing the total cost, we prioritize those requests based

on their latency requirements and define the reward function of the MDP based on

priority and resource cost. The details of the state, action, and reward function in

the context of our problem will be provided in Sections 4.2.2, 4.2.3, and 4.2.4.

We propose an SADDQN algorithm to resolve our SFC embedding problem. A

general sketch of the SADDQN used in our scheme is shown in Fig. 4.3. The state,

indicated by a vector, is fed into the evaluation neural network, which outputs a vec-

tor of Q-values, with each indicating the expected discounted cumulative reward of

a corresponding action (VNF placement). At time step t, the Q-value of performing

action at under state st based on policy π is given by

Qπ(st, at) = E(
L∑
i=t

γ(i−t)R(si, ai)|st, at). (4.17)

The objective of the agent is to learn a policy that maximizes the expected return

Qπ(st, at). Once the optimal policy is achieved, given a state, the agent can find the

best action by taking the largest Q-value from the output vector. At the initial stage

of the training, the weights of the evaluation neural network are random, and thus

the policy is poor. For each given state, the maximum Q-value may not account for

the best VNF placement. Hence, we continuously feed the framework with requests,

and the agent iteratively optimizes the neural networks. Specifically, at time step

t, by performing the joint action (VNF placement and its corresponding optimal

sub-action) for a request to the environment, the agent receives a reward, which

will be used to conduct the back-propagation process and update the weights of

the evaluation network. When the next request comes, this training process will be

iterated in the next time step. The loop ends until the weights of neural networks

converge. Then, given a state, the agent can choose the optimal VNF placement

according to the output Q-values of the evaluation network. And the corresponding

optimal routing and resource allocation solution can be obtained from the Routing

and BSAGD modules, given the VNF placement. The iterative training process is

48

summarized in Algorithm 2.

Algorithm 2 Sub-action Aided DDQN Algorithm

Input: λ1, λ2, . . . , λL, D
R
1 , D

R
2 , . . . , D

R
L

1: Initializing replay memoryD to capacityN

2: Initializing estimation neural network with random weights θ

3: Initializing target neural network with weights θ−

4: θ− = θ

5: for e = 1, 2, . . . , I do

6: Initializing state of the environment

7: for t = 1, 2, . . . , L do

8: Workflow of each learning step

9: end for

10: end for

The workflow for each learning step can be summarized as follows:

1. Step 1: The agent observes the state (st) of the environment.

2. Step 2: The agent chooses a main action (at), i.e., the VNF placement, ran-

domly with probability ε or according to the evaluation network with proba-

bility 1 − ε. Next, it delivers at (the chosen VNF placement) to the Routing

module, which derives an optimal path (sa
′
t) traversing all the VNFs based on

the VNF sequence.

3. Step 3: at and sa
′
t (the chosen VNF placement and its corresponding optimal

path) are fed into the BSAGD module to obtain a resource allocation solution

(sa
′′
t) that realizes the SFC with the minimum cost.

49

Figure 4.3 : Flowchart of the SADDQN algorithm.

4. Step 4: at, sa
′
t and sa

′′
t (the chosen VNF placement, its corresponding op-

timal routing and resource allocation solution) are jointly performed to the

environment.

5. Step 5: The agent gets a reward (rt) from the environment, and the experience

tuple (st, at, rt, st+1) is stored into an experience replay buffer. Here, we only

need to add the main action (at) into the experience tuple, because we have

only one corresponding optimal sub-action for any main action.

6. Step 6: To train the DDQN framework, a mini-batch of N tuples are uniformly

sampled from the experience replay buffer.

7. Step 7: For tuple i, si and ai are fed into the evaluation network (θ), while

si+1 is fed into the target network (θ−).

8. Step 8,9: A loss function is created, and the weights of the evaluation network

50

are updated by minimizing the loss function:

L =
1

N

N∑
i=1

(yi −Q(si, ai|θ))2, (4.18)

where

yi = ri + γmaxa′Q
′(si+1, a

′|θ−). (4.19)

9. Step 10: The weights of the target network are updated by copying the weights

of the evaluation network every Z time steps.

4.2.2 State

We define the state as a vector, including the latency requirement, VNF chain,

requested traffic of an SFC request, and the remaining resources of each server.

In our environment, the number of intermediate VNFs in SFC i is Ki. Then the

characteristic vector of SFC i can be given by

rrri =

[
λi DR

i I1 I2 · · · IKi

]
,

where λi and DR
i denote the requested traffic and the delay requirement of the ith

SFC, and I1, I2, . . . , IKi indicate the ID of the first, the second, . . . , the Kth
i VNF

in the VNF chain. As for the network infrastructure, the characteristic vector of the

nth server can be expressed as

sssn =

[
mn wn

]
,

where mn and wn denote the remaining MIPS and bandwidth of the nth server.

As a result, the state vector of the environment is written as

SSS =

[
rrri sss1 · · · sss|S|

]
.

51

4.2.3 Action

Main Action (VNF Placement)

We use a Ki columns row vector aaai to symbolize a VNF placement for the

ith SFC request. Element ai,j symbolizes on which server the jth VNF of the ith

SFC nests. For the SFC request in Fig. 4.1, we use a 5 columns row vector,

aaa1 =

[
1 1 2 2 3

]
, to indicate its main action. This vector indicates that

the first and the second VNFs are located on server1, the third and fourth VNFs

are located on server2, and the fifth VNF is located on server3.

First-Phase Sub-Action

With a given VNF placement, to minimize the resource cost, we need to find the

shortest path traversing the VNF chain. Therefore, the Dijkstra algorithm, which

derives the shortest path in terms of hop count, is adopted to connect adjacent

VNFs. Specifically, we run the Dijkstra algorithm from the ingress node to the first

VNF, from the first VNF to the second one, and so on, until the egress node.

Second-Phase Sub-Action (Binary Search Assisted Gradient Descent

(BSAGD))

For an SFC, after determining the locations for all VNFs and the corresponding

optimal path traversing the VNF chain, we need to allocate resources to all VNFs

such that this SFC’s latency requirement is satisfied with the minimum cost. In

general, to find the minimum cost for realizing SFC i, there are two steps for us to

take. In the first step, we prove that the minimum delay Dmin
i (ci) is a monotone

decreasing function of variable ci. In the second step, we use our BSAGD algorithm,

a binary search algorithm in which gradient descent is iterated, to search for the

minimum cost and the corresponding resources of each VNF (µi,j) for meeting the

delay requirement of SFC i. Because µi,j is an integer number, we adopt the relax-

52

and-round mechanism to get the optimal integer solution (µ̃i,j, j = 1, . . . , Ki) for

realizing SFC i.

Based on Eq.(4.1), (4.2), (4.4), (4.5), (4.6), (4.7), and (4.8), the problem of

minimizing the average delay with limited cost ci can be formulated as follows:

(P2) : min
µµµi

Di(µµµi) =
λi

2 (µi,1)
2 (1− λi

µi,1
)

+

Ki∑
j=1

2

µi,j

+

Ki∑
j=1

2(h(vj, vj+1)− 1)

µi,j
g(h(vj, vj+1))

+

Ki∑
j=2

λi

2 (µi,j)
2 (1− λi

µi,j
)
g(µi,j−1 − µi,j)

s.t.



µi,j ≤ µi,j+1 or µi,j+1 ≤ µi,j, j = 1, . . . , Ki − 1 (4.20a)

γ

Ki∑
j=1

µi,j
Cpro
i,j

×Mtot + β

Ki∑
j=1

µi,j
Ctran
i,j

×Wtot

×h (vj, vj+1) + α× 250×Ni = ci (4.20b)
Ki∑
j=1

xni,j
µi,j
Cpro
i,j

×Mtot ≤ mn,

n = 1, . . . , |S| (4.20c)
Ki∑
j=1

xni,j
µi,j
Ctran
i,j

×Wtot ≤ wn,

n = 1, . . . , |S|. (4.20d)

In the objective function above,

g(x) =

 0, x ≤ 0

1, x > 0.
(4.21)

In the constraints above, Eq.(4.20a) is a possible condition of µi,j and µi,j+1, j =

1, . . . , Ki − 1. We provide VNF chain i with limited cost ci, so we have Eq.(4.20b).

In Eq.(4.20b), the first term is the total CPU cost of all VNFs. The second term

is the traffic cost, which depends on the hop count of each pair of adjacent VNFs.

The third term is the operational cost, a linear function of newly activated servers.

53

For any server in the infrastructure, the total of MIPS allocated to the embedded

VNFs cannot exceed the remaining CPU MIPS of the server, so we have Eq.(4.20c),

and the total of the bandwidth allocated to the embedded VNFs cannot exceed the

remaining bandwidth of the server’s outgoing link, so we have Eq.(4.20d).

Proposition 1. The minimum end-to-end delay expression in terms of variable

ci is a monotone decreasing function of ci.

Proof. The details can be seen in Appendix A.

Proposition 2. P2 is a convex optimization problem.

Proof. The details can be seen in Appendix B.

Since P2 is a convex optimization problem, given a constant cost Ci, we can

use gradient descent to find the minimum average delay Dmin
i (Ci). Furthermore,

Dmin
i (ci) is a monotone decreasing function of variable ci. Therefore, for realizing

SFC i, we can use a binary search algorithm in which gradient descent is iterated

to find the minimum cost and the corresponding optimal resource allocation for all

VNFs.

Our BSAGD algorithm is summarized in Algorithm 3.

Given a VNF placement and a condition of µi,j and µi,j+1, j = 1, . . . , Ki − 1,

we can obtain the unit cost Cunit, the maximum cost (Cmax
i), and the minimum

cost (Cmin
i). Cmax

i and Cmin
i are used as the initial two ends of the binary search

algorithm. Let tentative maximum cost tmax
i = Cmax

i and tentative minimum cost

tmin
i = Cmin

i . If Cmax
i cannot obtain a delay shorter than or equal to requirement

DR
i , there is no solution for this placement under this condition. Otherwise, we store

Cmax
i in verified minimum cost vmin

i and update the rate vector µµµi. Then, we go to

the middle point if Cmax
i has a delay shorter than DR

i . If the middle point cannot

obtain a delay shorter than or equal to DR
i , we update tmin

i and tmax
i accordingly and

continue searching in the upper half. Otherwise, we store this middle point in vmin
i

54

Algorithm 3 BSAGD Algorithm

Input: Cmin
i , Cmax

i , Cunit

Output: vmin
i , µµµi

1: tmin
i = Cmin

i , vmin
i = 0, tmax

i = Cmax
i

2: i = 1,µµµi = 000

3: while vmin
i − tmax

i > Cunit or i = 1 do

4: i = i+ 1

5: Substituting tmax
i into P2 and using gradient descent to find

6: the minimum delay and the correspondingµµµi

7: if Dmin
i (tmax

i) < DR
i then

8: vmin
i = tmax

i

9: tmax
i =

tmax
i +tmin

i

2

10: update µµµi

11: else if Dmin
i (tmax

i) > DR
i then

12: tmin
i = tmax

i

13: tmax
i =

tmin
i +vmin

i

2

14: else

15: vmin
i = tmax

i

16: update µµµi

17: end if

18: end while

19:

20: return vmin
i , µµµi

55

and update µµµi. If the delay of this middle point is shorter than DR
i , we update tmax

i

accordingly and continue searching in the lower half. When the difference between

vmin
i and tmax

i is less than the unit cost Cunit or the current vmin
i has a delay equal to

DR
i , there is no need to continue looping, and we return vmin

i and µµµi for realizing SFC

i. For any possible condition of µi,j and µi,j+1, j = 1, . . . , Ki − 1, we can obtain a

vmin
i and the corresponding µµµi. The minimum of these verified minimum cost values

is the minimum cost for realizing SFC i, given a VNF placement.

4.2.4 Reward

A performance model needs to be created to assess whether the latency require-

ment has been achieved with the given resources (MIPS, bandwidth) and the current

workload. In our work, we first leverage the simulation tool CloudSimSDN-NFV [44]

to obtain the latency of each SFC. Then, we issue a penalty for an SFC whose la-

tency requirement is not satisfied and a reward for a successful accommodation. For

the ith SFC, the reward function regarding delay is defined as

Rdelay,i =

 ρi, Di ≤ DR
i

0, Di > DR
i ,

(4.22)

where Di is the real delay of the ith SFC we obtain from CloudSimSDN-NFV.

Regarding the cost, we define reward functions for operational cost, server cost,

and traffic cost of SFC i as follows:

Rope,i = α× 250×Ni, (4.23)

Rser,i = γ

Ki∑
j=1

µi,j
Cpro
i,j

×Mtot, (4.24)

Rtran,i = β

Ki∑
j=1

µi,j
Ctran
i,j

×Wtot × h (vj, vj+1) . (4.25)

56

As in [17], α, β, and γ can be adjusted to change the impact factor of each category.

Since our goal is to maximize the number of accepted higher-priority SFCs while

minimizing the total cost, the reward function of SFC i is expressed as a weighted

sum of delay reward and cost reward functions

Ri = η1Rdelay,i − η2(Rope,i +Rser,i +Rtran,i). (4.26)

Maximizing the acceptance ratio is our top priority; therefore, we give a greater

weight to delay rewards.

4.3 Simulation

4.3.1 Simulation Setup

In this section, we evaluate the performance of the proposed SADDQN algo-

rithm regarding the admission ratio and cost efficiency under different network sizes.

We use CloudSimSDN-NFV, an NFV environment simulation tool extended from

CloudSimSDN [54] and CloudSim [55], as our simulation framework. To merge

the DDQN algorithm into CloudSimSDN-NFV, we import deeplearning4j and nd4j

written in JAVA. As for the infrastructure, we consider fat-tree, a widely used net-

work topology for data centers. Two scenarios, i.e., 8-Node Fat-Tree and 16-Node

Fat-Tree, are utilized to assess our algorithms. As in [46], we set the bandwidth of

each link to 1Gbps. The total MIPS of each server is 3000. As for the cost model,

we set α = 1 $/W, γ = 0.1 $/MIPS, β = 0.1 $/Mbps.

In our experiment, we assume that there are three types of latency-sensitive

SFCs. By referring to the characteristics of SFCs in [21], we provide the character-

istics of our SFCs in Table 4.1. Additionally, the rate vectors of all VNFs for three

different packet types are listed in Table 4.2.

The neural network is designed with the following parameters. Adam [56] is em-

ployed to learn the neural network hyperparameters. The learning rate is 0.005, and

57

Table 4.1 : Overview of three SFC types.

SFC

type

Delay

requirement
SFC

Packet size

(bits)

Data rate

(packets/s)

SFC1 20 ms VNF1→VNF2→VNF3 4000 [100-900]

SFC2 30 ms
VNF1→VNF2→VNF4

→VNF6
16000 [100-200]

SFC3 40 ms
VNF1→VNF2→VNF5

→VNF2→VNF1
20000 [1000-2000]

Table 4.2 : Rate vectors (packets/s) of all VNFs for three packet types.

VNF type

Packet size
4000 bits 16000 bits 20000 bits

VNF1 [125000,250000] [125000,62500] [80000,50000]

VNF2 [125000,250000] [125000,62500] [80000,50000]

VNF3 [125000,250000] – –

VNF4 – [125000,62500] –

VNF5 – – [80000,50000]

VNF6 – [125000,62500] –

the discount factor is 0.99. The parameters of the target network are updated every

100 episodes. The batch size is 64. We utilize a fully connected Deep Neural Net-

work (DNN), which adopts the Rectified Linear Unit (ReLu) [57] as the activation

function in hidden layers, while the output layer is connected to a linear activation

function [58].

Regarding the traffic, we assume that, for any SFC, the packet arrival process

can be modeled as a Poisson process, with parameter λ indicating the average arrival

rate. According to traffic history, λ of an SFC request is uniformly distributed in

the data rate interval of this SFC type in Table 4.1.

58

Our proposed SADDQN algorithm consists of an offline training phase and an

online testing phase. In the training phase, we randomly choose an SFC type and

its requested data rate from Table 4.1 to create an SFC request. We continuously

feed our SADDQN framework with the SFC requests until the weights of neural

networks converge.

During the online testing phase, we can run the trained SADDQN model online

to optimize the VNF placement, as well as its corresponding route and resource

allocation, for any given state.

4.3.2 Algorithms to Compare

Standard DDQN

For comparison purposes, we have designed a standard DDQN algorithm based

on a popular assumption: the required resources of each VNF have been specified in

SFC requests. The only difference between the standard DDQN and our proposed

SADDQN is that the standard one assumes that the capacity of each VNF has been

specified by customers, but our proposed SADDQN allocates resources to each VNF

for customers. For the sake of fairness, for any algorithm, we assume that VNFs are

embedded in containers, for which CPU requests can be as small as 1/1000 of the

total CPU resources. For the standard DDQN, according to the number of vCPUs

of those ‘flavors’, we have 1
64

, 1
32

, 1
16

, 1
8
, 1

4
, 1

2
, and the whole of the CPU resources of

a server for any container/VNF to choose in our simulation.

Holu

The Holu algorithm has been illustrated in the previous chapter. Although the

power consumption model of Holu is different from the cost model of our proposed

algorithm, the objectives of the two algorithms (saving the cost while satisfying

the delay constraint of each SFC) are the same. Therefore, it is reasonable to run

59

the Holu in our system model and compare it with our proposed SADDQN. In our

simulation, as in [20], we fix the CPU capacity for each VNF for the Holu algorithm.

Based on the composition of three SFCs, we set the CPU capacity of VNF1 and

VNF2 to 1
4

of a server’s CPU capacity and that of the other VNFs to 1
64

.

4.3.3 Simulation Results

We compare our proposed SADDQN, the standard DDQN and the Holu with

respect to the acceptance ratio, cost-utility and average end-to-end delay. To see

how granularity in resource allocation will impact the performance of the standard

DDQN, we set the CPU parameter of the minimum ‘flavor’ to 1
32

(DDQN1) and 1
64

(DDQN2). In other words, on a server, the minimum percentage of CPU resource

that DDQN1 can allocate to a VNF is 1
32

while it is 1
64

for DDQN2.

From Fig. 4.4, we can see that, with the increasing number of requests, SADDQN

always obtains the highest acceptance ratio among all algorithms in both topologies.

That is because our proposed SADDQN algorithm uses the resource optimization

algorithm (BSAGD) to allocate resources to VNFs, achieving finer granularity than

any other algorithm. The standard DDQN, which can only choose the CPU ca-

pacity for VNFs based on ‘flavors’, excessively provisions higher-priority SFCs and

thus does not have enough resources to accommodate lower-priority SFCs when we

increase the number of SFC requests. DDQN2 outperforms DDQN1 because of the

CPU parameter of the minimum ‘flavor’: the smaller it is, the more requests the

standard DDQN accepts. The Holu algorithm fixes the CPU capacity for each type

of VNF and allows different SFCs to share VNFs. To some extent, the sharing pol-

icy alleviates the over-provisioning issue. However, the problem still exists, and the

severity level depends on the sharing percentage of each VNF. For instance, if we

initiate a new instance of some VNF for an SFC request and no subsequent SFCs

share this VNF instance, its resource utility will degrade.

60

Figure 4.4 : Acceptance ratio comparison.

Fig. 4.5 indicates the accommodation results of different SFCs. It depicts the

situation of 8-node fat-tree topology with the number of requests being 150. We can

see that DDQN-based algorithms all ensure priority allocation for higher-priority

SFCs when the resource is insufficient to accept all requests. Of all the requests

accepted by SADDQN, 50 are of the highest priority, 50 are of the second highest

priority, and only 36 have the lowest priority. That is to say, 14 lowest-priority

requests are discarded because of a lack of resources. DDQN1 accepts 50 highest-

priority requests and 22 second-highest-priority requests, while DDQN2 does 50

for both priorities. Meanwhile, these two standard DDQN algorithms drop all the

lowest-priority requests. There are two reasons for the above results. First, we assign

greater reward values to the successful placement of higher-priority SFC requests.

61

Figure 4.5 : Acceptance of different SFCs.

Second, the learning-based algorithms can learn the arrival distribution of differ-

ent SFCs. With the object of maximizing the total discounted cumulative reward,

the DDQN-based models discard the lower-priority SFCs when there are insufficient

resources to accommodate all. However, the Holu algorithm, which does not con-

sider SFC priority, tries to accommodate SFCs in sequence and thus cannot ensure

priority allocation for higher-priority SFCs. Hence, it treats every request equally

and accommodates nearly the same number of requests for three categories. In

conclusion, our proposed SADDQN outperforms the other algorithms regarding the

acceptance ratio. Meanwhile, it ensures priority accommodation for higher-priority

SFCs.

We further compare our proposed SADDQN with the standard DDQN and the

Holu algorithm in terms of the average end-to-end delay. In Fig. 4.6, we can see

62

that, compared to the other algorithms, our proposed SADDQN obtains an average

end-to-end delay closer to the requirement for any type of SFC. The reason is that we

optimize the resource allocation for VNFs of each SFC. Specifically, we approach the

latency requirement of an SFC using the proposed BSAGD algorithm, which itera-

tively searches the minimum cost for realizing the SFC. On the contrary, without the

proposed sub-action concept or the resource optimization algorithm, the standard

DDQN always overly provisions these flows. The Holu algorithm first proposes a

Physical Machine (PM) ranking mechanism, which is based on power consumption,

to resolve the VNF placement. Then, it employs a DCLC shortest path algorithm to

obtain the optimal path between the selected VNFs. Although the Holu algorithm

aims to meet the end-to-end delay of each SFC with the minimum cost, it does not

take the over-provisioning of resources into consideration. Therefore, from the bar

chart for the standard DDQN and the Holu, we can see that each flow suffers a delay

shorter than the required delay by at least a few milliseconds. The results indicate

that the standard DDQN and the Holu consume extra resources to accommodate

SFCs, which can be observed in Figs. 4.7 and 4.8.

We can see that from both Figs. 4.8 and 4.7, of all the algorithms, our proposed

SADDQN achieves the highest cost-utility. This is because our BSAGD algorithm

flexibly allocates resources to VNFs and thus provides a finer granularity in re-

source allocation. In contrast, the others use fixed capacity VNFs, inevitably falling

into the over-provisioning mire. Furthermore, DDQN-based algorithms minimize

the cost from the global perspective, while the Holu minimizes the cost instanta-

neously rather than farsightedly. Nevertheless, one of the Holu’s advantages over the

standard DDQN is its VNF sharing policy, which mitigates the overconsumption of

resources. For this reason, in Figs. 4.7 and 4.8, with the increasing number of SFC

requests, the Holu algorithm is second only to SADDQN in cost-utility. In Fig. 4.7,

another finding is that the average cost per request does not change much for the

63

Figure 4.6 : Average end-to-end delay comparison.

SADDQN algorithm, while the cost for the Holu algorithm fluctuates. The reason

is that because of the VNF sharing policy, the curve of Holu may ascend when new

VNF instances need to be initiated and descend when the current running VNFs

can be utilized by new SFCs. The standard DDQN algorithm does not accept VNF

sharing for security reasons. Hence, the average cost per request of DDQN1 and

DDQN2 keeps stable when all requests can be accepted. However, as the number of

requests increases, the two curves start to descend because the lowest priority SFCs,

which have a higher cost than SFCs from the other two categories, are gradually

discarded. In conclusion, our proposed SADDQN is superior to all the others in

terms of cost-utility.

64

Figure 4.7 : Joint traffic and CPU cost comparison.

4.4 Summary

In this chapter, we proposed a Sub-action Aided DDQN algorithm to maxi-

mize the acceptance ratio and ensure priority allocation for higher-priority SFC

requests while minimizing the total cost for latency-aware services. We considered

a multi-edge cloud scenario where SFC requests with different priorities are fed into

the DDQN-agent, and developed an intelligent policy to place the SFCs and allo-

cate resources. Considering the objective, we defined our new state, main action

and sub-action, and reward function for the DDQN framework and proposed an

algorithm (sub-action) for allocating resources. Simulations showed that our pro-

posed SADDQN can maximize the acceptance ratio and ensure priority allocation

for higher-priority SFCs while minimizing the total cost for latency-aware SFCs

65

Figure 4.8 : Operational cost comparison.

with different latency requirements. Numerical results showed that, compared with

the other two popular algorithms, our proposed scheme performs better in min-

imizing the cost and maximizing the acceptance ratio; thus, it resolves the QoS

over-provisioning issue as expected. We have showcased two algorithms for SFC

embedding in a single DC so far. In the next chapter, we will propose an algorithm

for SFC embedding in an MDC scenario.

66

Chapter 5

SFC Embedding Approach in an MDC Network

In this chapter, we will introduce a two-stage GCN-based DRL algorithm to resolve

the unbalanced loads in an MDC environment. This framework aims to maximize

the overall acceptance ratio of SFC requests while minimizing the total cost in

an MDC network. In the first stage, we propose a GCN-based DRL algorithm

as a coarse granularity solution to the SFC embedding problem from the macro

perspective. This solution outlines a local observation scope (LOS) for each agent in

the multi-agent system of the second stage, where all agents simultaneously handle

SFC requests from their respective DCs using a multi-agent framework from the

micro perspective.

5.1 System Model and Problem Formulation

5.1.1 System Architecture

As we have mentioned in the previous chapter, the NFV framework receives

requests for allocating network services with specific characteristics. Accordingly,

at the core of the NFV architecture, the management and orchestration (MANO)

framework plans SFCs allocation using the NFV infrastructure.

Inspired by the multi-tier SDN-controller system proposed in [59], we design a

multi-tier MANO system depicted in Fig. 5.1. In the first stage, the upper-tier

MANO cooperates with all lower-tier MANOs in setting a LOS for each of them.

In the second stage, we consider a discrete time-slot system as in [3]. Once a time

slot starts, the resources occupied by expired SFCs are released, and all lower-tier

67

Figure 5.1 : Network infrastructure considered in this chapter.

MANOs start to embed SFCs simultaneously. For each DC, based on its current

state, the corresponding lower-tier MANO handles the SFCs received by this DC

one after another. Once a DC has insufficient resources to accommodate the SFCs

waiting in its queue, the lower-tier MANO in charge of this DC will place SFCs in

low-load DCs within its LOS.

5.1.2 NFV Infrastructure

We model the MDC network as an undirected graph G = (V , E), where V is

the set of DC nodes and E is the set of transmission links that interconnect these

DC nodes. Hence, the numbers of DC nodes and physical links are |V| and |E|,

respectively. Furthermore, the CPU capacity and the remaining CPU resources of

DC v are denoted by {Cv|Cv ≥ 0; v ∈ V} and {cv|cv ≥ 0; v ∈ V}, respectively.

The BW capacity and the remaining BW of link (v, u) are denoted by {Bv,u|Bv,u ≥

68

0, (v, u) ∈ E} and {bv,u|bv,u ≥ 0, (v, u) ∈ E}, respectively.

5.1.3 Characteristics of SFC Requests

We denote M as the number of SFC requests to be handled within a time slot.

SFC request i can be defined as SRi = {Fi, Ci, Bi}, where Bi indicates the BW

requested by SFC i, Fi = {Fi0, Fi1, Fi2, ..., FiKi , FiKi+1
} (Ki is the number of VNFs

in SFC i) denotes the ingress (Fi0), egress (FiKi+1
), and VNFs ({Fi1, Fi2, ..., FiKi})

that are used to compose SFC i, and Ci = {Ci1, Ci2, ..., CiKi} indicates the CPU

requested by each VNF in SFC i. The VL between the jth and (j + 1)th nodes of

SFC i is denoted by (Fij, Fi(j+1)).

5.1.4 Cost Model

Traffic Cost

In an SFC, one VNF must forward packets to the next through the VL connecting

them. The VL can be embedded in one or multiple physical links, each of which

might have a different hop distance depending on the network topology. As in [17],

we define the traffic cost caused by a VL connecting two adjacent VNFs as the

product of the overall distance between these two VNFs and the BW of the VL.

Since the distance between two DCs is far longer than that between two servers

within a DC, we only consider the traffic in the inter-DC network as in [35] and [38].

As a result, the total traffic cost can be written as

Ctr = β

M∑
i=1

Ki∑
j=0

∑
(v,u)∈E

zv,uFij ,Fi(j+1)
· Bi ·Dis (v, u) , (5.1)

where β is the price that transfers the traffic cost to a monetary value, binary

zv,uFij ,Fi(j+1)
indicates whether the VL connecting the jth and (j + 1)th nodes of SFC i

is embedded in physical link (v, u), and Dis (v, u) is the distance between DC v and

DC u.

69

Server Cost

Compared with memory and capacity, CPU’s computational power is much more

important. Therefore, as for server cost, we only consider CPU, and the extension

to multiple types of resources is simple. The total server cost can be written as

Cse = γ
M∑
i=1

Ki∑
j=1

∑
v∈V

xvi,j · Cij, (5.2)

where γ is the price that transfers the server cost to a monetary value, and binary

xvi,j indicates whether the jth VNF of SFC i nests in DC v.

5.1.5 Problem Formulation

In this part, we formulate the objective as an optimization problem. Our pur-

pose is to maximize the overall acceptance ratio of SFC requests while minimizing

the total cost regarding the infrastructure resource constraints. We first focus on

the constraints of the SFC embedding problem. For any DC node, the computing

resource constraint must be satisfied; thus, we have

M∑
i=1

Ki∑
j=1

xvi,j · Cij ≤ Cv, ∀v ∈ V . (5.3)

For any physical link, the BW constraint must be satisfied; therefore, we have

M∑
i=1

Bi

Ki∑
j=0

zv,uFij ,Fi(j+1)
≤ Bv,u, ∀(v, u) ∈ E . (5.4)

Each VNF can be placed on only one DC node; hence, we have∑
v∈V

xvi,j ≤ 1, (1 ≤ i ≤M, 1 ≤ j ≤ Ki). (5.5)

To ensure that the jth and (j+1)th nodes of SFC i are connected by a continuous

path, we have ∑
(v,u)∈O(v)

zv,uFij ,Fi(j+1)
−

∑
(u′,v)∈I(v)

zu
′,v
Fij ,Fi(j+1)

= xvi,j − xvi,j+1,

∀v ∈ V , 1 ≤ i ≤M, 0 ≤ j ≤ Ki,

(5.6)

70

where I(v) and O(v) denote the sets of incoming links and outgoing links of DC v,

respectively.

As in [60], we use a constraint to avoid a loop as follows:∑
(v,u)∈O(v)

zv,uFij ,Fi(j+1)
+

∑
(u′,v)∈I(v)

zu
′,v
Fij ,Fi(j+1)

≤ 1,

∀v ∈ V , 1 ≤ i ≤M, 0 ≤ j ≤ Ki.

(5.7)

An SFC request is accommodated if and only if all virtual elements in this SFC

are successfully deployed; hence, we can denote the number of accepted requests as

A =
M∑
i=1

f((

Ki∑
j=1

∑
v∈V

xvi,j −Ki)+

(

Ki∑
j=0

∑
(v,u)∈E

zv,uFij ,Fi(j+1)
−Ki+1)),

(5.8)

where

f(x) =

 0, x < 0

1, x ≥ 0.
(5.9)

Since our object is to maximize the overall acceptance ratio of SFC requests

while minimizing the total cost, the optimization problem can be written as

(P1) : max
xvi,j ,z

v,u
Fij ,Fi(j+1)

U(xvi,j, z
v,u
Fij ,Fi(j+1)

) =

α1 · A− α2 · (Ctr + Cse)

s.t.(5.3)(5.4)(5.5)(5.6)(5.7).

In the objective function above, α1 and α2 are the weights of two objectives.

Since the objective of maximizing the acceptance ratio of SFC requests is more

important, we assign a higher weight to it.

It can be challenging to solve this optimization problem using heuristic ap-

proaches because it is difficult to track the dynamics of the network. Alternatively,

71

learning-based techniques can be utilized to learn the network dynamics, such as the

arrival patterns and the resource requirements of various services, and solve such a

problem. The learning technique aims to learn a policy that determines what action

to take in each state. In the next section, we detail a two-stage GCN-based DRL

for the SFC embedding problem in our MDC environment.

5.2 Proposed Two-stage SFC Embedding Scheme

In this section, we present our proposed algorithm. First, the background of the

proposed algorithm is provided. Then, we detail our two-stage GCN-based DRL

algorithm for solving P1.

5.2.1 Background of the Proposed Algorithm

Model Our Environment as a Multi-agent MDP

The SFC embedding problem has been modeled as an MDP in many existing

works. In our MDC environment, if we model this problem as an MDP, the agent

needs to handle SFC requests received by all DCs; thus, the action space would be

too large for the DRL algorithm to converge, especially in a large-scale MDC. Alter-

natively, we study a multi-agent MDP [4]. The details of the state representation,

action space, and reward function for each agent in the context of our problem are

provided in Section 5.2.3.

Overview of Multi-agent DRL and Motivation for Using MAPPO

MARL algorithms have been widely adopted to solve the multi-agent MDP mod-

els. The authors in [5] proposed the Multi-Agent Deep Deterministic Policy Gradient

(MADDPG) algorithm for mixed cooperative-competitive environments. It is a sim-

ple extension of actor-critic policy gradient methods. In this model, the critic has

a global view to know the policies of other agents, while the actor can only acquire

72

local information. In the MADDPG algorithm, each agent learns a policy network

πi(ai|oi) and a centralized critic network Qπ
i (x, a1, . . . , aN), where x consists of the

observations of all agents: x = (o1, . . . , oN). This algorithm follows the framework

of centralized training with decentralized execution (CTDE). Although the DDPG,

which follows the policy gradient to find the optimal actions, is more efficient than

the value-based DRL algorithms, it does not consider the step size of each policy

update. To resolve this issue, OpenAI released the PPO [61] algorithm in 2017. Its

core idea is that the new policy should not be too far from the old one after an

update. To achieve that, it first uses a ratio to symbolize the difference between the

new policy and the old one. Then, it clips the ratio within [1 − ε, 1 + ε], where ε is

a hyperparameter. The authors in [62] investigated the MAPPO algorithm in three

popular multi-agent testbeds: the particle-world environments, the Starcraft multi-

agent challenge, and the Hanabi challenge. They found that the MAPPO achieves

surprisingly strong performance while exhibiting comparable sample efficiency with

the MADDPG.

Motivation for Using GCN

Our MDC network topology is modeled as a graph G = (V , E), where V and

E indicate the sets of DC nodes and links, respectively. Since we model our envi-

ronment as a multi-agent MDP, it is essential to design an MDP state space that

comprehensively represents the features of the environment. Feeding the traditional

DNN or Convolutional Neural Networks (CNN) with a flat feature vector containing

all the state information is the simplest option. Nevertheless, this approach cannot

scale well to complex topology structures, because it would be difficult for DNN

or CNN to symbolize the relations between every pair of nodes in a graph with

handcrafted feature engineering. Therefore, we design an encoder for analyzing G

based on GCN [63], which has been widely exploited in [64, 65, 66] to extract the

73

features of undirected graphs through aggregating the characteristics of nodes and

topologies.

Two-stage Design

In our MAPPO framework, each agent learns a local policy network and a cen-

tralized critic network. As in [5], for each agent, the critic has a global perspective to

obtain the policies of other agents, while the actor can only acquire local information.

Here comes a question: how shall we set an observation scope for each agent? Let’s

consider the state of the environment depicted in Fig. 5.1. If each agent (lower-tier

MANO) can observe the information of all DCs, the MAPPO could converge to the

optimum, but the convergence rate might be slow as each agent must cooperate and

compete with all the other agents during the training process; If we restrict the LOS

of each agent within its one-hop neighbors’ area, the MAPPO could converge much

faster but might not be able to find the global optimum because of the restricted

view of each agent. Therefore, to reach an ideal optimum as quickly as possible,

we must design an appropriate LOS for each agent before running our multi-agent

algorithm.

5.2.2 The First Stage

In this stage, we first model the load transfer process as an MDP. Then, we

propose a GCN-based PPO to solve the MDP.

Model the Load Transfer Process as an MDP

The authors in [59] proposed a multi-tier SDN-controller system for the space-

air-ground integrated network. Similarly, we propose a multi-tier MANO system

in which an upper-tier MANO assembles local network states from all lower-tier

MANOs and schedules resources for SFC requests globally. In this stage, the upper-

tier MANO balances the SFC requests loads of multiple DCs from a macro perspec-

74

tive, aiming to define a LOS for each lower-tier MANO. In that case, each agent of

the multi-agent framework in the second stage can only embed SFCs within its LOS;

thus, unnecessary competition among multiple agents will be avoided. As a result,

we speed up the convergence rate of the multi-agent algorithm in the second stage.

Specifically, we define a DC node that has insufficient CPU resources to accommo-

date the SFC requests received by this DC as a ‘poor’ DC, and a DC node that

has more CPU resources than those requested by all SFCs waiting in its queue as a

‘rich’ DC. During a data preprocessing phase, each lower-tier MANO fully exploits

the CPU resources of its affiliated DC to accommodate SFCs received by this DC.

When there are no SFCs in ‘rich’ DCs or resources in ‘poor’ DCs, the upper-level

MANO transfers the unhandled SFCs from ‘poor’ DCs to ‘rich’ DCs step by step to

maximize the overall acceptance ratio of SFC requests while minimizing the total

cost. Thus, it is reasonable for us to model the load transfer process, which follows

the data preprocessing phase, as an MDP, whose state representation, action space,

state transition dynamics, and reward function are defined below.

State Representation: The state is represented by graph G = (V , E). The

features of a DC node v ∈ V include four parts: (i) the available CPU resources

(cv), (ii) the sum of BW defined as the total available BW of links associated with DC

v, (iii) the requested CPU resources of each unhandled SFC, and (iv) the requested

BW resources of each unhandled SFC. Considering the MDC topology depicted in

Fig. 5.1, the initial state is shown in Table 5.1.

The features of the graph, including the nodes and the topology, need to be

represented by a complex data structure and thus cannot be directly fed into a fully

connected DNN. Hence, to feed the DNN with a real-valued vector, we apply the

encoding architecture proposed in [67], which involves two main steps shown below,

to the state encoding process of our problem.

75

Table 5.1 : Initial state.

DC

ID

Remaining

CPU

Sum of

BW

Req CPU

of the first

unhandled

SFC

Req BW

of the first

unhandled

SFC

Req CPU

of the second

unhandled

SFC

Req BW

of the second

unhandled

SFC

1 0
b1,2 + b1,5

+b1,6

18 60 20 65

2 200− 160
b2,1 + b2,3

+b2,4

0 0 0 0

3 200− 120 b3,2 + b3,4 0 0 0 0

4 200− 100
b4,2 + b4,3

+b4,5

0 0 0 0

5 0
b5,1 + b5,4

+b5,6

32 50 0 0

6 0 b6,1 + b6,5 24 40 0 0

• Node-level encoding using GCN: On the basis of the natural features of each

DC in graph G, we employ GCN to aggregate information from all neighbours

for each DC. Feeding the raw features of the graph into a GCN with l layers,

we create a matrix N ∈ R|V|×D. In matrix N, row vector nv (1 ≤ v ≤ |V|)

indicates the encoding of DC v and D is a hyperparameter symbolizing the

dimension of nv. We consider a multi-layer GCN with the typical layer-wise

propagation rule [63]:

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2 H(l)W(l)). (5.10)

Here, Ã = A + I|V| is the adjacency matrix of the undirected graph G with

added self-connections, where I|V| is the identity matrix. W(l) is a layer-specific

trainable weight matrix, and σ(·) denotes an activation function such as the

ReLU(·). H(l) is the matrix of activations in the lth layer; H(0) = X, where

76

X ∈ R|V|×Y is the natural feature matrix, with each row indicating the Y -

dimensional feature vector for a DC node. In our case, Y = 2+2 max(u(v), v =

1, . . . , |V|), where u(v) indicates the number of unhandled SFCs in the waiting

queue of DC v.

• Graph level encoding using attention layers: As in [67], we define the context

of the MDC network as follows:

ct = g((

∑|V|
v=1 nv
|V|

)W), (5.11)

where W is a learnable weight matrix, nv is the encoding of DC v, and g(·)

is a nonlinear function. Similarly, we define the encoding of the MDC as a

weighted sum of DC node encoding. As a consequence, the MDC network

encoding h, a real-valued vector, can be given by

h =

|V|∑
v=1

avnv, (5.12)

where av, the weight of DC v, equals the inner product of its node encoding

and the context:

av = nTv ct. (5.13)

Action Space: At time step t, the agent sequentially selects (i) a ‘poor’ DC

and a ‘rich’ DC (ii) and the route from the ‘poor’ DC to the ‘rich’ DC. Thus, the

action at time step t can be defined as follows:

aaat = (s, d, is,d), (5.14)

where s and d indicate the indexes of the ‘poor’ DC and the ‘rich’ DC, respectively,

and is,d indicates the index of the route from the ‘poor’ DC to the ‘rich’ DC. Con-

sidering the MDC topology depicted in Fig. 5.1, the action space for the ‘poor’ DC

(DC 1) and ‘rich’ DC (DC 2) pair is shown in Table 5.2.

77

Table 5.2 : Action space for pair (DC 1, DC 2).

Source Destination Route

1 2 1→2

1 2 1→5→4→2

1 2 1→6→5→4→2

1 2 1→6→5→4→3→2

We denote the sets of ‘poor’ DCs and ‘rich’ DCs by P and R, respectively.

Therefore, the numbers of ‘poor’ DCs and ‘rich’ DCs are |P| and |R|, respectively.

Besides, we denote the number of routes between DC p and DC r as Kp,r. As in

[36], rather than enumerating all possible candidate routes for each node pair, we

set a small value of K (e.g., K = 5) to limit the number of routes because the gain

from considering long-distance paths is limited. Consequently, the action-space size

is
∑
p∈P

∑
r∈R

min(Kp,r, K).

Action aaa0 = [1, 2, 1] indicates that at time step 1, the first unhandled SFC in the

waiting queue of DC 1 will be placed in DC 2, and the agent will choose the first

route between these two DCs (DC 1→ DC 2) to transfer this SFC.

State Transition Dynamics: At time step t, the agent observes the state st,

chooses an action aaat = (s, d, is,d), and performs the action in the MDC environment.

Then, the MDP transits to the next state st+1, with its node features updated as

follows:

• If neither the BW constraint of any link along the chosen route nor the CPU

constraint of the destination DC is violated, then the action is successful; thus,

several related fields need to be updated. First, the remaining CPU of DC d

is updated by subtracting the total requested CPU of the first unhandled SFC

78

in the waiting queue of DC s. Next, the BW of any link along route is,d is

updated by subtracting the requested BW of this SFC; thus, the BW feature

of any DC will be updated if the DC is associated with an updated link. Last,

for DC s, the first unhandled SFC has been settled, and the features of the

(n+ 1)th unhandled SFC will be moved to the corresponding fields of the nth

unhandled SFC.

• Otherwise, this is a bad action, and thus the state remains unchanged.

Considering the case depicted in Fig. 5.1. Under the initial state, the agent per-

forms aaa0 in the environment. Consequently, the MDP transits to s1, which can be

symbolized by Table 5.3.

Table 5.3 : State s1.

DC

ID

Remaining

CPU
Sum of BW

Req CPU

of the first

unhandled SFC

Req BW

of the first

unhandled SFC

1 0
b1,2 + b1,5 + b1,6

−60
20 65

2
200− 160

−18

b2,1 + b2,3 + b2,4

−60
0 0

3 200− 120 b3,2 + b3,4 0 0

4 200− 100 b4,2 + b4,3 + b4,5 0 0

5 0 b5,1 + b5,4 + b5,6 32 50

6 0 b6,1 + b6,5 24 40

Reward Design: We aim to maximize the overall acceptance ratio of SFC

requests while minimizing the total cost. For an SFC transfer, if no BW or CPU

79

constraints violation exists, the agent receives a reward consisting of two parts. The

first part indicates a successful SFC transfer, and the second is the network traffic

cost caused by the transferred SFC. Otherwise, it gets a penalty. Accordingly, the

reward function is given by

Rt =



1− δ · Bt ·Dis(aaat[0], aaat[1], aaat[2]),

if no BW or CPU constraints violation

−1, otherwise,

where Bt is the requested bandwidth of the SFC to be handled at time step t,

Dis(aaat[0], aaat[1], aaat[2]) is the distance of the (aaat[2])th route between aaat[0] and aaat[1],

and δ is the weight of the cost. Since maximizing the acceptance ratio of SFC

requests is our top priority, we assign a value to δ such that the second term in the

first segment is always smaller than 1.

GCN-based PPO

The PPO algorithm [61] is a policy gradient DRL algorithm that comprises two

components: (i) sampling data through interactions with the environment (ii) and

optimizing a ‘surrogate’ objective function using stochastic gradient ascent. Many

existing works have shown it to be much more straightforward to implement and

general than other policy-based DRL algorithms.

The policy gradient objective function of typical policy gradient algorithms is

defined as follows [68]:

LPG(θ) = Êt[log πθ(at|st)Ât], (5.15)

where Ât is an estimator of the advantage function at time step t and is given by

Ât =
∑
t′>t

γt
′−trt′ − Vφ(st). (5.16)

80

If Ât > 0, action at is better than the average of all the actions under state st.

Hence, by taking gradient ascent steps on the policy loss function LPG(θ), we can

teach the agent to choose better actions. However, it is challenging to select the

step size. An inadequate small step size will result in a too-slow training process,

while with too large a step size, the algorithm may go astray and converge to a

local maximum. Hence, OpenAI proposed the PPO algorithm, which optimizes the

actor training by clipping the policy update of each step. The clipped ‘surrogate’

objective of the PPO algorithm is the following [61]:

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)], (5.17)

where

rt(θ) =
πθ(at|st)
πθold(at|st)

. (5.18)

In Eq.(5.18), rt(θ) denotes the ratio between the probability of action at in state st

under the current policy and that under the previous policy. If rt(θ) > 1, in state

st, the action is more probable under the current policy than under the previous;

If 1 > rt(θ) > 0, in state st, the action is less probable under the current policy

than under the previous. In Eq.(5.17), we can see two ratios: one non-clipped and

the other clipped within [1 − ε, 1 + ε], where ε is a hyperparameter (set to 0.2 in

[62]) that defines the clip range. The minimum of these two ratios ensures a modest

policy update, as the new policy is not allowed to be too far away from the old one.

A general overview of our proposed GCN-based PPO algorithm is shown in Fig.

5.2. Its workflow is summarized below. The sample collection process is described

in steps 1-5. The training procedures for the policy network and the critic network

are described in steps 6-9 and step 10, respectively.

1. Step 1: The agent observes the current state (st) of the MDC network, repre-

sented by a graph.

81

Figure 5.2 : A brief signal flow of our proposed PPO.

2. Step 2: State st is fed into a GCN. Subsequently, a matrix Nt, which represents

the node-level encoding of the MDC network, is output after multiple layers

of convolution.

3. Step 3: An attention mechanism is utilized to learn the weight of each DC

node encoding, and the encoding of the MDC is defined as a weighted sum of

DC node encoding. In this way, we abstract the graph-structured features of

the environment into a real-valued vector state ht, which is then fed into the

current policy network.

4. Step 4: The outputs of the current policy network are fed into the SoftMax

function to generate a Categorical distribution. Then, the agent samples data

from the distribution to choose a corresponding action at, which will be per-

formed in the environment.

5. Step 5: In response to action at, a reward rt is returned to the agent. If

time step t is the last step of an episode, the discounted reward for each step

82

is calculated, and the batch of samples collected in this episode (st, drt, at)

(t = 1, 2, . . . , T) is stored into a buffer.

6. Step 6: Encoded st (t = 1, 2, . . . , T) is fed into the critic network Vφ(st). Then,

the value Vφ(st) (t = 1, 2, . . . , T) and drt (t = 1, 2, . . . , T) are used to calculate

the advantage Ât (t = 1, 2, . . . , T) based on Eq.(5.16).

7. Step 7: Encoded st (t = 1, 2, . . . , T) and at (t = 1, 2, . . . , T) are fed into

the current policy network and the old one to get πθ(at|st) and πθold(at|st),

respectively.

8. Step 8: The weights of the current policy network are updated by maximizing

the policy loss function given by Eq.(5.17).

9. Step 9: Copying the weights of the current policy network to the old one.

10. Step 10: The weights of the critic network are updated by minimizing the

value loss function given in line 14 of Algorithm 4.

The GCN-based PPO algorithm is summarized in Algorithm 4. At the beginning

of each episode, we need to fulfill two tasks: (i) releasing the resources occupied by

expired SFCs (line 3) (ii) and exploiting the resources thoroughly in all DCs to

accommodate the SFCs waiting in their respective queues until there are no SFCs

in ‘rich’ DCs or resources in ‘poor’ DCs (line 4). After that, the agent starts to

transfer unhandled SFCs step by step (line 5) from ‘poor’ DCs to ‘rich’ DCs, aiming

to maximize the overall acceptance ratio of SFC requests while minimizing the total

cost. When no SFCs left, the end of an episode is reached (line 6). Then, a batch

of samples (st, drt, at) (t = 1, 2, . . . , T), which will be used to train the critic and

the policy networks, is stored into a buffer. The batch of samples will be reused to

train the critic and the actor for L epochs (lines 9-16). We train the neural networks

episode by episode until their weights converge. Once the algorithm converges, for

83

Figure 5.3 : The local observation scope of agent 1.

each ‘poor’ DC, we know to which ‘rich’ DCs and via which routes shall we transfer

its unhandled SFCs; thus, we set an appropriate LOS for each agent in the multi-

agent framework of the next stage. For instance, in the LOS of agent 1 depicted in

Fig. 5.3, agent 1 has exhausted the IT resources in its affiliated (original) DC (DC

1); thus, it needs to take advantage of the IT resources of DC 2 and DC 3 to embed

its unhandled SFCs, and the data streams of these SFCs might travel through the

border router of DC 4 or DC 5. For the agent of each ‘rich’ DC, the LOS only

includes its affiliated DC.

5.2.3 The Second Stage

In the first stage, we set a LOS for each lower-tier MANO; thus, we can effi-

ciently design a multi-agent framework in this stage such that needless competition

among multiple agents can be prevented. The multi-agent framework is composed

of two phases. During the first phase, all agents simultaneously embed SFCs in their

84

Algorithm 4 GCN-based PPO Algorithm

1: Initialize neural network parameters θ and φ

2: for episode = 1, 2, . . . do

3: Release the resources occupied by expired SFCs

4: Preprocess SFCs received by each DC

5: Run policy πθ for T timesteps, collecting {st, at, drt}

6: Break the timesteps loop if no requests left

7: Estimate advantages Ât =
∑

t′>t γ
t′−trt′ − Vφ(st)

8: πθold ← πθ

9: for l = 1, . . . , L do

10: LCLIP (θ) =
T∑
t=1

min(πθ(at|st)
πθold (at|st)

Ât, clip(πθ(at|st)
πθold (at|st)

, 1− ε, 1 + ε)Ât)

11: Update θ via a gradient method w.r.t. LCLIP (θ)

12: end for

13: for l = 1, . . . , L do

14: LV L(φ) =
∑T

t=1(
∑

t′>t γ
t′−trt′ − Vφ(st))

2

15: Update φ via a gradient method w.r.t. LV L(φ)

16: end for

17: end for

85

respective DCs. The second phase is initiated once the agent of a ‘poor’ DC starts

to embed its unhandled SFCs in ‘rich’ DCs. We model the SFC embedding prob-

lem in phase two as a multi-agent MDP [4] and solve it using a MARL approach,

GCN-based MAPPO.

The Components of the Multi-agent MDP

First, we define the observation representation, action space, and reward function

for agent m at time step t as follows:

Observation Representation: The LOS of agent m can be modeled as a graph

Gm = (Vm, Em), a sub-graph of G. The observation of agent m at time step t (om,t)

consists of three parts: the graph-structured information of Gm, the location (DC

index) of the VNF embedded at the previous time step, and the index of the original

DC. In Gm, each DC node v ∈ Vm has four features: (i) the remaining CPU resources

(cv), (ii) the sum of BW defined as the total available BW of links associated with

v, (iii) the requested CPU of the current VNF to be processed (Cr,m,t), (iv) and the

requested BW of the VL to be processed (Br,m,t).

To feed the graph-structured information into the policy network of agent m, we

first reuse the two-step state encoding process as mentioned earlier to encode the

sub-graph into a real-valued vector. Then, we concatenate the location of the VNF

embedded at the previous time step, the index of the original DC, and the encoded

vector to form a new vector hhhm,t, which will be fed into the policy network.

Action Space: Designing an actor network for the SFC placement issue is

challenging because the dimension of the output layer of a neural network is fixed,

with each neuron symbolizing a possible action. Nevertheless, if we couple the

placement of a VNF and a VL, the number of possible placements changes as the

location of the previously embedded VNF changes. That is, the action-space size

is not a constant under different states. Most existing works avoided this tricky

86

problem by decoupling the placement of VNFs and VLs. They utilized the actor

network to choose a VNF placement and adopted the Dijkstra algorithm to select the

‘optimal’ route given the VNF placement. This method reduces the action-space

size and thus speeds up the convergence rate; however, given a VNF placement,

the Dijkstra algorithm chooses the ‘optimal’ route and thus neglects all the other

options. The greed for immediate rewards might result in unfavorable long-term

cumulative rewards. To resolve this issue, we use a 3-column row vector aaam,t to

symbolize the placement of the current VNF and the VL connecting it and its

previous VNF. In aaam,t, the first element indicates the source DC of the VL, the

second indicates in which DC will the current VNF be embedded, and the third

denotes the route index between the source DC and the DC that will accommodate

the current VNF. We do not require that the source DC accommodate the previous

VNF. Thus, the source DC can be any DC v ∈ Vm, and the action-space size is fixed.

We denote the number of routes between DC i and DC j by Ki,j. Because the benefit

from enumerating long-distance routes is limited, as in [36] and [35], we restrict the

number of routes between DC i and DC j and define it as Kr
i,j = min(K,Ki,j),

where K (e.g., K = 5) is the number of shortest routes between two DCs. Thus,

the action-space size is
∑|Vm|

i=1

∑|Vm|
j=1 K

r
i,j. Considering the sub-graph depicted in Fig.

5.3, a small part of the action space is shown in Table 5.4.

Action aaam,t = [1, 2, 1] indicates that the current VNF is placed in DC 2, the

source DC of the VL is DC 1, and the VL connecting DC 2 and DC 1 is embedded

in the first route (DC 1→ DC 2) between these two DCs.

Reward: The reward function consists of an internal function and two external

functions. The interval reward function, which only regulates the behavior of agent

87

Table 5.4 : Action space.

Source Destination Route

1 2 1→2

1 2 1→5→4→2

1 2 1→5→4→3→2

m and has no correlation with other agents, can be defined as

Rin(m, t) =



−1, if (aaam,t[0] 6= hhhm,t[0])

or (egress and aaam,t[1] 6= hhhm,t[1])

1, otherwise,

where aaam,t[0] and aaam,t[1] are the indexes of the source and destination DCs of the

VL, hhhm,t[0] is the index of the DC that the previous VNF is located in, and hhhm,t[1]

is the index of the original DC of agent m, at time step t. If the VL does not start

at the previous VNF or end at the original DC for the last pair of VNF (egress) and

VL in an SFC, the action is a bad action, and agent m receives a penalty.

The external reward functions guide all agents toward the common objective of

maximizing the overall acceptance ratio of SFC requests while minimizing the total

cost. The reward function regarding the overall acceptance ratio of SFC requests is

defined as

Rex
a (m, t) =



Na,t −Nc,t, if ∃v ∈ V , cv ≤
|P|∑
m=1

xvm,tCr,m,t

or ∃(v, u) ∈ E , bv,u ≤
|P|∑
m=1

zv,um,tBr,m,t

Na,t, otherwise,

where binary variable xvm,t indicates whether the VNF to be processed at time step

t by agent m nests in DC v, binary variable zv,um,t indicates whether the VL to be

88

processed at time step t by agent m is embedded in link (v, u), Na,t is the number

of agents that have SFCs to handle at time step t, and Nc,t is the number of agents

that fail to accommodate their VNFs or VLs at time step t.

We define the reward function for the total cost as

Rex
c (m, t) =θ1

∑
v∈V

∑
m∈P

xvm,t · Cr,m,t

+ θ2
∑

(v,u)∈E

∑
m∈P

zv,um,t · Br,m,t ·Dis (v, u) ,

where θ1 and θ2 are the weights of the CPU cost and the traffic cost, respectively.

Considering our objective, the reward function R(m, t) is expressed as a weighted

sum of the internal and external reward functions.

R(m, t) = η1 ·Rin(m, t) + η2 ·Rex
a (m, t)− η3 ·Rex

c (m, t).

Regulating the interval behavior of an agent is an essential prerequisite for achieving

the common objective; thus, η1 is the greatest of the three weights. Maximizing the

acceptance ratio is more important than minimizing the total cost; therefore, η2 is

greater than η3.

Then, we define the global state st and action at as follows:

State: State (st) is the union of the local observation of each agent: st =

{o1,t ∪ o2,t . . . ∪ o|P|,t}.

Joint Action: We concatenate the action of each agent to generate the joint

action: at = {a1,t, . . . , a|P|,t}.

The Proposed Multi-agent Framework

As in [5], the MAPPO used in our scheme is based on the framework of CTDE.

Its general overview is shown in Fig. 5.4, where we detail the workflow of agent

1, which is the same as that of all the other agents of ‘poor’ DCs. Agent m (1 ≤

89

Figure 5.4 : A brief signal flow of our proposed MAPPO.

m ≤ |P|) is equipped with a current policy network πθ(am,t|om,t), an old policy

network πθold(am,t|om,t), and a critic network Vφm(st), where st is composed of the

local observations of all agents: st = {o1,t∪o2,t . . .∪o|P|,t}. The workflow of MAPPO

from the perspective of agent m is summarized below.

1. Step 1: At time step t, agent m obtains its local observation om,t, which

consists of the graph-structured information, the position (DC index) of the

VNF embedded at time step t− 1, and the index of the agent’s original DC.

2. Steps 2-3: The graph-structured features of the environment are encoded into

a real-valued vector, which is concatenated with the position of the previous

embedded VNF and the index of the original DC to form a new vector hhhm,t.

Then, hhhm,t, which can be viewed as an encoded om,t, is fed into the policy

network πθm(am,t|om,t).

3. Step 4: An action am,t, the placement of the current VNF and the VL connect-

ing this VNF and the previous, is chosen and performed in the environment.

90

4. Step 5: In response to the joint action of all agents, a reward rm,t and the

global state st, which consists of the observations of all agents, are returned

to agent m. If time step t is the last step of an episode, the discounted reward

for each step is calculated and the batch of samples collected in this episode

(st, om,t, drm,t, am,t) (t = 1, 2, . . . , T) is stored into buffer m.

5. Step 6: Encoded st (t = 1, 2, . . . , T) is fed into the critic network Vφm(st).

Then, the value Vφm(st) (t = 1, 2, . . . , T) and drm,t (t = 1, 2, . . . , T) are used

to calculate the advantage Âm,t (t = 1, 2, . . . , T) based on the equation in line

15 of Algorithm 5.

6. Step 7: Encoded om,t (t = 1, 2, . . . , T) and am,t (t = 1, 2, . . . , T) are fed into the

current policy network and the old one to get πθ(am,t|om,t) and πθold(am,t|om,t),

respectively.

7. Steps 8-10: The same as the corresponding steps in PPO.

The proposed multi-agent algorithm is summarized in Algorithm 5. The agents

of ‘rich’ DCs embed SFCs in their respective original DCs; thus, they do not need to

optimize actions by training neural networks. In contrast, each agent of a ‘poor’ DC

needs to embed SFCs in other DCs within its LOS when it exhausts the resources

in its original DC; hence, each agent m ∈ P learns a local policy network and a

centralized critic network. At the beginning of each episode, we release the resources

occupied by expired SFCs (line 4). During the first phase (lines 5-9), all agents place

SFCs in their respective DCs. During the second phase, multiple agents of ‘poor’

DCs simultaneously place their VNFs and VLs in ‘rich’ DCs (line 11), creating a

multi-agent MDP environment. From the perspective of agent m, it embeds VNFs

and VLs step by step in ‘rich’ DCs, aiming to maximize the overall acceptance ratio

of SFC requests while minimizing the total cost. When no SFCs left, the end of an

episode is reached (line 14). Then, a batch of samples (sm,t, am,t, om,t, drm,t) (t =

91

1, 2, . . . , T), which will be used to train the critic network (Vφm(st)) and the policy

network (πθm(am,t|om,t)), is stored into buffer m. The batch of samples will be reused

to train the critic network and the policy network for L epochs (lines 17-24). We

train the neural networks episode by episode until their weights converge. Once the

algorithm converges, all agents of ‘poor’ DCs know how to cooperate and compete

with each other to maximize the overall acceptance ratio of SFC requests while

minimizing the total cost.

5.3 Simulation

5.3.1 Simulation Setup

In this Section, we evaluate the performance of the proposed two-stage GCN-

based DRL algorithm regarding the admission ratio and the cost-effectiveness under

different network sizes. Two scenarios, i.e., the 14-node NSFNET and the 11-node

COST239 topologies[36] depicted in Figs. 5.5 and 5.6, are utilized to assess our

algorithm. Cloud service providers such as Amazon, Facebook, and Microsoft are

now deploying 100 Gbps data centers. Furthermore, 100 Gbps data centers are

expected to become prevalent within the next two years [69] and then be upgraded

to 400 Gbps and 800 Gbps. Thus, in our infrastructure, to guarantee the allocation

for the vast majority of all SFCs, the BW between each DC pair is set to 1Tbps.

The capacity of each DC node is set to 600 units. For the cost model, we set

β = 0.1 $/Tbps · Km and γ = 0.1 $/unit. As for the weights of the two objectives,

α1 : α2 = 10 : 1.

In [70], the authors studied the workload collected by Google and standardized

the workload to decrease the fluctuation range. Then, they plotted a figure de-

scribing the aggregated task arrival rates of different types of service per minute

throughout 29 days. In our simulation, we care about the SFC requests arrival rate

of each DC in the MDC environment. Thus, we intercept 24 hours of data in [70]

92

Algorithm 5 The Proposed Multi-agent Algorithm

1: Create a thread for each agent

2: Initialize neural network parameters θm and φm for each

agent that manages a poor DC

3: for episode = 1, 2, . . . do

4: Release the resources occupied by expired SFCs

5: if A rich DC then

6: Embeds SFCs in this DC

7: else

8: if A poor DC with sufficient resources to handle the current SFC then

9: Embeds SFCs in this DC

10: else

11: Run policy πθm for T timesteps, embedding a pair

of VNF and VL in each step and collecting {sm,t, am,t, om,t, drm,t}

12: end if

13: end if

14: Break the timesteps loop if no requests left

15: Estimate advantages Âm,t =
∑
t′>t

γt
′−trm,t′ − Vφ(sm,t)

16: πθm,old ← πθm

17: for l = 1, . . . , L do

18: LCLIP (θm) =
∑T

t=1 min(πθ(am,t|om,t)
πθold (am,t|om,t)

Âm,t, clip(
πθm (am,t|om,t)

πθm,old (am,t|om,t)
, 1 − ε, 1 +

ε)Âm,t)

19: Update θm via a gradient method w.r.t. LCLIP (θm)

20: end for

21: for l = 1, . . . , L do

22: LV L(φm) =
∑T

t=1(
∑

t
′
>t γ

t′−trt′ − Vφ(sm,t))
2

23: Update φ via a gradient method w.r.t. LV L(φm)

24: end for

25: end for

93

Figure 5.5 : Fourteen-node NSFNET (link length in KM).

for each DC based on its time zone and pick out five typical combinations (seeds

in Figs. 5.11 and 5.12) of unbalanced traffic loads for the MDC network. We scale

down the numbers of SFC requests based on the capacity of our NFV environment.

As in [71] and [72], we assume that each SFC is composed of [2,4] VNFs, and its

lifetime follows an exponential distribution with an average of one time slot. The

requested CPU of a VNF is a discrete random variable uniformly distributed over

the interval [4, 8] units, while the requested BW of an SFC is a random variable

uniformly distributed over the interval [25, 100] Gbps.

Neural networks are set up with the following parameters. In the first stage, the

number of GCN layers is set to 3. In the second stage, for each agent that manages

a ‘poor’ DC, the number of GCN layers is determined by the scale of its LOS and

can be set to 1 or 2 for the policy network. For the critic network, it is set to 3. And

tanh(·) is used as the activation function. Two fully connected layers are created

to represent the policy network and the critic network, respectively. Adam [56] is

adopted to learn the neural network parameters. The learning rate is 10−4 for the

policy network and 2 × 10−4 for the critic network, and the discount factor is 0.99.

The Clipping ratio ε is set to 0.2, and the batch size is set to 100. Besides, each

94

Figure 5.6 : Eleven-node COST239 (link length in KM).

batch of samples will be reused for 10 epochs for training the policy and the critic

networks.

Our proposed algorithm consists of a training phase and an evaluation phase.

To improve the training efficiency, we first choose one traffic combination from the

five typical unbalanced loads to train a model in each scenario. Then, based on the

trained model, we perform transfer learning for all the other four traffic combina-

tions.

95

5.3.2 Algorithms Used for Comparison

MAPPO in a Partially Observable Environment (One-hop Neighbors)

Each agent has its own LOS and can only allocate resources within its one-hop

neighbors’ scope. This partially observable environment is an extreme case for the

LOS of each agent.

MAPPO in a Fully Observable Environment

All agents can observe the whole environment and may cooperate or compete

everywhere. This environment is another extreme case for the LOS of each agent.

Asynchronous Advantage Actor Critic (A3C)

A3C [73], one of the newest DRL algorithms, uses multiple agents, each of which

has its exclusive network parameters and a copy of the fully observable environment.

These agents interact with their respective environments asynchronously. Actor-

Critic, which combines the strengths of the policy-based and the value-based RL

algorithms, predicts both the value function V (s) and the optimal policy function

π(s). The learning agent uses the outputs of the value function to refine the policies

of the actor. The advantage metric is given by Eq.(5.16). Its value indicates the

extent to which an action is better or worse than the average of all actions under a

specific state. This approach adopts the A3C algorithm to choose VNF placement

actions and the Dijkstra algorithm to embed the VLs that connect adjacent VNFs.

Deep Q-Network (DQN)

The typical DQN algorithm [43] is adopted to select VNF placement actions, and

the Dijkstra algorithm is utilized to embed the VLs that connect adjacent VNFs.

96

First-Fit (FFT)

This approach employs the First-Fit algorithm to embed VNFs and the Dijkstra

(the shortest path in terms of distance) to determine the placement of VLs. FFT

allocates VNFs to a partition that is first sufficient from the top of the main memory

address. In our MDC environment, the higher index a DC has, the higher priority

it will be given to accommodate VNFs. Given a VNF placement, the Dijkstra

algorithm is utilized to determine the route between adjacent VNFs. The FFT has

been selected as one of the benchmarks to measure performance in [3] and [36].

5.3.3 Simulation Results

We compare our proposed two-stage GCN-based RL algorithm, MAPPO in a

partially observable environment (One-hop MAPPO), MAPPO in a fully observable

environment (Fully-observable MAPPO), A3C, DQN, and FFT with respect to the

convergence rate, overall acceptance ratio, total CPU cost, and average BW cost

per SFC request.

In the first stage, we need to use an M -layer GCN to extract the features of

the MDC network. A GCN with a large M means an extremely long training time,

while a GCN with a small M may not be able to efficiently extract all features from

the graph. To acquire the best value of M , we evaluate the performance of the

GCN-based PPO with different numbers of GCN layers. It is shown in Fig. 5.7 that

the GCN-based PPO with 3-layer GCN achieves a better result than that with 2

layers or 4 layers. Thus, we select the 3-layer GCN for our implementation.

The clipping ratio ε is a critical hyperparameter that we can tune to balance

training stability and fast convergence. From Fig. 5.8, we can see that the GCN-

based PPO with ε = 0.2 converges faster than that with ε = 0.15. Meanwhile, they

attain approximately the same long-term cumulative reward, which is better than

that obtained by the GCN-based PPO with ε = 0.25. Thus, we set ε = 0.2 for our

97

Figure 5.7 : The performance of our proposed GCN-based PPO with different num-

bers of GCN layers.

implementation.

In the second stage, for each agent in the MAPPO, the number of GCN layers

is set to 1 or 2 for the policy network according to the scale of the agent’s LOS.

For the critic network, the number of GCN layers is set to 3 as we need to feed the

encoded global state into it.

From Figs. 5.9 and 5.10, we can see that our proposed algorithm outperforms

other baselines. It achieves similar performance to the fully-observable MAPPO

while converging much faster. Our proposed algorithm sets an appropriate LOS

for each agent, making it converge faster than the fully-observable MAPPO, whose

agents can observe the whole environment. Specifically, each agent of the Fully-

98

Figure 5.8 : The performance of our proposed GCN-based PPO with different clip-

ping ratio hyperparameters.

observable MAPPO can place VNFs or VLs in every corner of the whole environ-

ment, leading to unnecessary competition that should have been avoided. In con-

trast, our proposed algorithm tailors an appropriate LOS for each agent, confining

the competition to the smallest scope. These two algorithms showcase better per-

formance than the others. The reason is that, given a VNF placement, they choose

a route for embedding a VL from K shortest candidates. In this way, they explore

the environment better and thus acquire better long-term cumulative rewards than

the algorithms that adopt the Dijkstra algorithm to select a short-sighted optimal

immediate reward in each time step. The One-hop MAPPO converges fastest be-

cause each agent of this algorithm can only exploit the resources within its one-hop

neighbors’ scope. However, it achieves an unfavorable long-term cumulative reward

99

Figure 5.9 : The learning curve of six algorithms in 14-node NSFNET.

because of the restricted view of each agent.

The other three algorithms, which adopt the Dijkstra algorithm to determine the

route option for a VL given a VNF placement, obtain worse accumulated rewards

than our proposed algorithm and the Fully-observable MAPPO because of the greed

for immediate rewards. The two DRL-based algorithms are better than the FFT.

The reason is that the FFT allocates VNFs to a partition that is first sufficient from

the top of the main memory address. In that case, the placement mode for VNFs

is fixed. Given a VNF placement, it adopts the Dijkstra algorithm to embed a VL;

thus, the placement mode for VLs is also fixed. In contrast, the A3C and DQN follow

their logic to explore the environment, although they only consider the exploration of

VNFs placement. Through interacting with the environment, they find the optimal

100

Figure 5.10 : The learning curve of six algorithms in 11-node COST239.

actions to place VNFs and VLs, obtaining better long-term cumulative rewards than

the FFT. Another finding is that, of the two DRL algorithms, the A3C converges

faster than the DQN. Two reasons can account for this result. First, the actor-

critic framework follows the policy gradient to find the optimal action given a state.

In comparison, the DQN assigns a score indicating the maximum expected future

reward to each possible action, drastically increasing the time complexity. Second,

the A3C asynchronously executes multiple agents in parallel on multiple instances

of the environment. All agents work on their respective networks and update the

global network asynchronously, accelerating the convergence rate.

During the evaluation phase, from Figs. 5.11(a) and 5.12(a), we can see that

our proposed algorithm achieves approximately the same acceptance ratio of SFC

101

requests as the Fully-observable MAPPO. These two algorithms outperform all the

other algorithms in terms of the acceptance ratio of SFC requests for the aforemen-

tioned reasons.

From Figs. 5.11(b) and 5.12(b), we can see that the outlines are similar to those

of the overall acceptance ratio. The reason is that, in our environment, the more

SFC requests an algorithm accepts, the more CPU resources it allocates to accom-

modate these SFC requests. Since the total CPU cost is proportional to the overall

acceptance ratio for each algorithm and the outlines for these two parameters are

approximately the same, the average CPU costs per SFC request for all algorithms

have no significant difference.

From Figs. 5.11(c) and 5.12(c), we can see that the One-hop MAPPO has the

least average traffic cost because each agent can only exploit resources within its

one-hop neighbors’ scope. Nevertheless, it consumes the least average BW per SFC

request at the sacrifice of the most important objective: the overall acceptance ratio

of the SFC requests. Thus, its great performance in saving BW cost is meaning-

less. Of all the other algorithms, our proposed algorithm and the Fully-observable

MAPPO use the minimum average traffic cost for accommodating an SFC request.

The aforementioned VLs embedding scheme plays a major role in accounting for

this result. Furthermore, PPO-based algorithms tune a clip ratio, which controls

the step size of policy updates, balancing training stability and fast convergence.

This innovation ensures that PPO-based algorithms have better long-term cumula-

tive rewards than the A3C and DQN.

5.4 Summary

In this chapter, we proposed a two-stage GCN-based DRL algorithm to maximize

the overall acceptance ratio of SFC requests while minimizing the total cost in an

MDC environment. We considered an MDC scenario where the arrival rates of SFC

102

Figure 5.11 : Performance evaluation in 14-node NSFNET.

Figure 5.12 : Performance evaluation in 11-node COST239.

requests vary from DC to DC and developed an intelligent policy to place the VNFs

and VLs requested by SFCs. To achieve the objective, we designed the GCN-based

PPO framework in the first stage and the multi-agent framework in the second

stage. Simulation results demonstrate that our proposed algorithm outperforms

other baselines. It achieves similar performance to the fully-observable MAPPO

while converging much faster. In summary, compared to state-of-the-art methods,

our proposed scheme improves the overall acceptance ratio of SFC requests and

cost-effectiveness. In the next chapter, we will propose an innovative approach for

accommodating SFC in a fog environment.

103

Chapter 6

SFC Embedding Algorithm in a Fog Network

In this chapter, we present a graph convolutional networks (GCN)-based two-agent

reinforcement learning (RL) SFC embedding scheme for a fog/cloud environment.

We detach the placement of SFCs into two sub-actions. The N-agent chooses the

locations for all VNFs, which will be notified to the R-agent. Then, the R-agent

connects adjacent VNFs using VLs. Based on the workflow of our algorithm, we

modify the typical multi-agent RL model. The new model can be applied to similar

scenarios where the action includes two steps and the second sub-action depends on

the first.

6.1 System Model and Problem Formulation

6.1.1 NFV Infrastructure

We consider a system architecture, as depicted in Fig. 6.1 and detailed in [28],

consisting of the terminal, fog and cloud layers.

Terminal Layer

This layer contains terminal users, such as vehicles, laptops, and IoT devices,

from which SFC requests are generated. The end devices in this layer connect fog

nodes over wireless access links.

Fog Layer

This layer consists of fog nodes with limited resources. They process SFC re-

quests from end-users at the network edge. Each fog node manages a group of

104

Figure 6.1 : Fog/cloud network architecture.

terminals and interconnects with its peers in this layer. Also, they connect cloud

nodes over a wired link system.

Cloud Layer

This layer comprises cloud data center nodes with abundant computation and

storage resources. These nodes are interconnected by high-bandwidth wide area

network (WAN) backbone links. Cloud datacenters can process and store data at

much lower costs than fog nodes. Nevertheless, this layer is located far from the

network edge.

We model the fog/cloud network as an undirected graph G = (V , E), where V is

the set of nodes from fog and cloud layer and E is the set of transmission links that

interconnect these nodes. Hence, the numbers of nodes and physical links are |V| and

|E|, respectively. Furthermore, the CPU capacity and the remaining CPU resources

of node v are denoted by {Cv|Cv ≥ 0; v ∈ V} and {cv|cv ≥ 0; v ∈ V}, respectively.

The storage capacity and the remaining storage resources of node v are denoted

105

by {Mv|Mv ≥ 0; v ∈ V} and {mv|mv ≥ 0; v ∈ V}, respectively. The BW capacity

and the remaining BW of link (v, u) are denoted by {Bv,u|Bv,u ≥ 0, (v, u) ∈ E} and

{bv,u|bv,u ≥ 0, (v, u) ∈ E}, respectively.

6.1.2 Characteristics of SFC Requests

SFC request i can be defined as SRi = {Fi, Ci,Mi, Bi, Di, hi}, where Bi sym-

bolizes the BW requested by SFC i, Fi = {Fi0, Fi1, Fi2, ..., FiKi , FiKi+1
} (Ki is the

number of VNFs in SFC i) denotes the source (Fi0), destination (FiKi+1
), and VNFs

{Fi1, Fi2, ..., FiKi} that are used to compose SFC i, Ci = {Ci1, Ci2, ..., CiKi} and

Mi = {Mi1,Mi2, ...,MiKi} indicate the CPU and storage resources requested by ev-

ery VNF in SFC i, Di is the delay requirement of SFC i, and hi indicates whether

SFC i requires physical isolation.

6.1.3 Cost Model

We adopt the typical cost model in [17] and [53] we have used in Chapter 5. As

for the server node, we consider both CPU and storage resources.

6.1.4 Delay Model

We adopt the delay model in [28, 29] and [30].

6.1.5 Problem Formulation

In this part, we formulate the objective as an optimization problem. The purpose

is to maximize the number of accepted SFC requests while minimizing the total cost,

under infrastructure resources constraints.

The weighted sum of the accepted requests can be defined as:

u =
L∑
i=1

ui =
L∑
i=1

f(DR
i −Di) ∗ g(hi, aaai). (6.1)

106

In the function above,

f(x) =

 0, x < 0

1, x ≥ 0,
(6.2)

DR
i and Di respectively denote the latency requirement and the real latency of the

ith SFC,

g(x,yyy) =


1, (x = 1 and y1 = · · · = yKi)

or (x = 0)

0, otherwise,

(6.3)

hi denotes whether SFC i requires hard isolation, aaai symbolizes the locations of all

VNFs in SFC i, and L is the number of SFC requests.

The total cost can be calculated as follows:

c =
L∑
i=1

ci =
L∑
i=1

(cser,i + ctran,i). (6.4)

Thus, the optimization problem can be written as

(P1) : max
xvi,j ,z

v,u
Fij ,Fi(j+1)

η1u− η2c

s.t.



L∑
i=1

Ki∑
j=1

xvi,jCi,j ≤ Cv, v = 1, 2, . . . , |V| (6.5a)

L∑
i=1

Ki∑
j=1

xvi,jMi,j ≤Mv, v = 1, 2, . . . , |V| (6.5b)

|V|∑
v=1

xvi,j = 1, i = 1, 2, . . . , L, j = 1, 2, . . . , Ki (6.5c)

L∑
i=1

Ki∑
j=1

zv,uFij ,Fi(j+1)
Bi ≤ Bv,u ∀(v, u) ∈ E (6.5d)

xvi,j, z
v,u
Fij ,Fi(j+1)

∈ {0, 1},

i = 1, 2, . . . , L, j = 1, 2, . . . , Ki, v = 1, 2, . . . , |V|

107

In the objective function above, η1 and η2 are the weights of two objectives.

Since the objective of maximizing the number of accepted SFCs is more important,

we assign a higher weight to it in our work.

In the constraints above, the binary variable xvi,j indicates whether the jth VNF of

the ith SFC nests on the vth node, and the binary variable zv,uFij ,Fi(j+1)
indicates whether

the VL between the jth and j + 1th VNF of the ith SFC nests on the physical link

(v, u). For any node in the infrastructure, the total of the required CPU resources

of the embedded VNFs on it cannot exceed its CPU capacity, so we have Eq.(6.5a),

and the total of the required storage of its embedded VNFs cannot exceed its storage

capacity, so we have Eq.(6.5b). Each VNF can be deployed at only one server, so

we have Eq.(6.5c). For any physical link, the total of the required bandwidth of its

embedded VLs cannot exceed its link capacity, so we have Eq.(6.5d).

6.2 Proposed SFC Embedding Scheme

In this Section, we present our proposed algorithm. First, the background of the

proposed algorithm is provided. Then, we detail our GCN-based two-agent PPO

algorithm.

6.2.1 Background of the Proposed Algorithm

Model Our Environment as a Two-agent MDP

We model the SFC embedding problem as a two-agent MDP, which has been

elaborated in Section 1.3.3 of Chapter 1. The details of the state representation,

action space, and reward function for each agent in the context of our problem are

provided in Section 6.2.2.

108

Overview of Multi-agent DRL and Motivation for Using two-agent PPO

The overview of MARL has been detailed in Section 5.2.1 of Chapter 5. For

the SFC embedding issue, to compress the action-space and thus accelerate the

convergence rate, most DRL-based algorithms use a single DRL-agent to explore

the action-space of the VNFs placement. Typically, they chose the locations for

all VNFs based on the neural network and designed a routing module to embed

VLs given the embedded VNFs. In this way, a VNF placement action has only

one corresponding VLs placement action. This scheme really compresses the action-

space, but it neglects the action-space of the VLs embedding. One-step greedy

algorithms for placing VLs may exhaust resources of some critical physical links and

will always lead to an unfavorable global optimum solution. Hence, we detached the

SFC embedding action into two sub-actions and devised a two-agent GCN-assisted

DRL algorithm to sufficiently explore the joint action space of the VNFs and VLs

placement.

Motivation for Using GCN

We have mentioned in Section 5.2.1 of Chapter 5.

6.2.2 The Components of the Two-agent MDP

Observation Representation

N-agent: The observation of N-agent (ooo1,t) includes three parts: (i) the re-

quested CPU and storage resources of all VNFs of the current SFC to be processed,

(ii) the physical isolation flag of the SFC, (iii) and the remaining CPU and storage

resources of all physical nodes in the topology.

R-agent: The observation of R-agent (ooo2,t) includes three parts: (i) the locations

of the VNFs embedded by the N-agent, (ii) the graph-structured information of G

109

Figure 6.2 : Graph embedding process.

(excluding the node features), (iii) and the required BW and delay of the current

SFC.

To feed the graph-structured information into the actor-network of the R-agent,

we employ the GCN [63] to perform node-level encoding and the attention mecha-

nism [67] to realize graph-level encoding. As a result, the graph-structured infor-

mation is transformed into a real-valued vector. This process is described in Fig.

6.2. The typical multi-layer GCN with the layer-wise propagation rule is expressed

as follows [63]:

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2 H(l)W(l)).

Here, Ã = A + I|V| is the adjacency matrix of the undirected graph G with added

self-connections, where I|V| is the identity matrix. W(l) is a layer-specific trainable

weight matrix, and σ(·) denotes an activation function such as the ReLU(·). H(l) is

the matrix of activations in the lth layer; H(0) = X, where X ∈ R|V|×Y is the natural

feature matrix, with each row indicating the Y -dimensional feature vector of a node.

In this work, the R-agent only extracts the features of the topology structure

but not the nodes; thus, we set X = I|V|. Each element in the adjacency matrix A

is weighted by the BW of the corresponding link.

110

Action Space

N-agent: N-agent is in charge of choosing locations for all VNFs of the current

SFC. Hence, the action for VNFs placement is a multi-dimensional discrete action.

Action aaa1,t = [1, 5, 6] indicates that the current SFC comprises three VNFs, the first

is placed on node 1, the second is on node 5, and the third is on node 6.

R-agent: R-agent is responsible for embedding VLs to connect all adjacent VNF

pairs of the current SFC. The action for VLs placement is also a multi-dimensional

discrete action. If action aaa2,t = [2, 7, 8], then the first element 2 indicates that the

VL between the first VNF and the second is embedded on the second route between

these two VNFs.

Reward

The reward function consists of two sub-functions. Two agents cooperate to

achieve a common goal; thus, they share a joint reward function.

The sub-function regarding the success/failure of an SFC request is defined as

Ra(t) =


g(ht, aaa1,t), Dt ≥ dt

0, Dt < dt

−1, violating any resources constraint.

In the function above,

g(ht, aaa1,t) =


1, (ht = 1 and a1,1,t = · · · = a1,Kt,t)

or (ht = 0)

0, otherwise,

aaa1,t symbolizes the locations of all VNFs, ht denotes whether the current SFC re-

quires physical isolation, and Dt and dt denote the delay requirement and the real

111

delay of the SFC, respectively. This sub-function resolves the physical isolation issue

for security-related SFCs.

The sub-function for the total cost is defined as

Rc(t) =θ1
∑
v∈V

Kt∑
j=1

xvt,j · (Ct,j +Mt,j)

+ θ2
∑

(v,u)∈E

Kt∑
j=1

zv,ut,j,j+1 · Bt ·Dis (v, u) ,

where xvt,j indicates whether the jth VNF of the current SFC is placed on node v,

zv,ut,j,j+1 indicates whether the VL between the jth and (j+1)th VNFs nests on physical

link (v, u), Dis (v, u) is the length of link (v, u), and θ1 and θ2 are the weights of the

node cost and the traffic cost, respectively.

Considering our objective, the reward function R(t) is expressed as a weighted

sum of the two sub-functions:

R(t) = η1 ·Ra(t)− η2 ·Rc(t).

Maximizing the acceptance ratio is a prerequisite for minimizing the total cost; thus,

η1 is greater than η2.

State

We concatenate local observations of both agents to generate the global state:

ssst = {ooo1,t, ooo2,t}.

Joint Action

We concatenate the actions of both agents to generate the joint action: aaat =

{aaa1,t, aaa2,t}.

6.2.3 The Proposed Framework

The RL algorithm – GCN-based two-agent proximal policy optimization (PPO)

is based on the framework of centralized training and decentralized execution (CTDE).

112

Figure 6.3 : A brief signal flow of our proposed scheme.

Its general overview is shown in Fig. 6.3. Each agent is equipped with a cur-

rent actor network πθ(aaam,t|ooom,t), an old actor network πθold(aaam,t|ooom,t), and a critic

network Vφm(ssst), where ssst is composed of the local observations of both agents:

ssst = {ooo1,t, ooo2,t}. Steps 5-10 are the same for both agents; thus, we only plot the

corresponding workflow for the first agent in the figure. The complete workflow for

time step t of our proposed framework is summarized below. For any variable t or

m in this framework, t = 1, 2, . . . , T , and m = 1, 2.

1. Step 1: At time step t, N-agent obtains its local observation ooo1,t and feeds it

into actor network πθ1(aaa1,t|ooo1,t).

2. Step 2: The output of actor network πθ1(aaa1,t|ooo1,t), action aaa1,t, which indicates

the placement of all VNFs, is performed in the environment.

3. Step 3: Action aaa1,t is also forwarded to the R-agent and then concatenated

113

with the graph-structured information of the topology and the VL-related

requirements of the current SFC to form ooo2,t, which is fed into actor network

πθ2(aaa2,t|ooo2,t).

4. Step 4: Action aaa2,t, the placement of all VLs connecting all adjacent VNFs

pairs, is chosen and performed in the environment.

5. Step 5: In response to the joint action of both agents, a reward rt and the

global state ssst, which consists of the observations of both agents, are returned

to them. If time step t is the last step of an episode, the discounted re-

ward for each step is calculated, the batch of samples collected in this episode

(s,om, drdrdrm, am) is stored into buffer m, and the flow proceeds to Step 6. Oth-

erwise, it goes back to Step 1.

6. Step 6: Vector ssst is fed into the critic network Vφm(ssst). Then, the output

of Vφm(ssst) and drm,t, are used to calculate the advantage Âm,t based on the

equation

Âm,t =
∑

t′>t
γt

′−trm,t′ − Vφm(ssst).

7. Step 7: Vectors ooom,t and aaam,t are fed into the current actor network and the

old one to get πθ(aaam,t|ooom,t) and πθold(aaam,t|ooom,t), respectively.

8. Step 8: The weights of the current actor network are updated by maximizing

the policy loss function

LCLIP(θm) =
T∑
t=1

min(
πθ(aaam,t|ooom,t)
πθold(aaam,t|ooom,t)

Âm,t,

clip(
πθm(aaam,t|ooom,t)
πθm,old(aaam,t|ooom,t)

, 1− ε, 1 + ε)Âm,t).

9. Step 9: Copying the weights of the current actor network to the old one.

114

10. Step 10: The weights of the critic network are updated by minimizing the

value loss function

LVL(φm) =
T∑
t=1

(
∑
t′>t

γt
′−trt′ − Vφm(ssst))

2.

The proposed multi-agent algorithm is summarized in Algorithm 6. At the be-

ginning of each episode, we release all the resources (line 4). At each time step,

the N-agent places all the VNFs for the current SFC. After acquiring the location

information of all VNFs from the N-agent, the R-agent embeds VLs to connect all

adjacent VNFs. With the common objective of maximizing the acceptance ratio of

SFC requests while minimizing the total cost, they cooperate with each other to

accommodate SFCs step by step, creating a two-agent MDP environment. When

no SFC comes, the end of an episode is reached (line 9). Then, a batch of sam-

ples (sm,t, am,t, om,t, drm,t) (t = 1, 2, . . . , T. m = 1, 2), which will be used to train the

critic network (Vφm(st)) and the policy network (πθm(am,t|om,t)), is stored into buffer

m for each of them. The batch of samples will be reused to train the critic network

and the policy network for L epochs (lines 13-20). We train the neural networks

episode by episode until their weights converge. Once the algorithm converges, both

agents know how to cooperate with each other to maximize the acceptance ratio of

SFC requests while minimizing the total cost.

6.3 Simulation

6.3.1 Simulation Setup

In this Section, we evaluate the performance of the proposed two-stage GCN-

based DRL algorithm regarding the admission ratio and the cost-effectiveness under

a multi-layer fog architecture in [28]. As in [28], the related node and link resource

levels are also shown in Table 6.1.

115

Algorithm 6 The Proposed GCN-based two-agent PPO Algorithm

1: Create a thread for each agent

2: Initialize neural network parameters θm and φm for each agent

3: for episode = 1, 2, . . . do

4: Release all the resources

5: for step = 1, 2, . . . do

6: The N-agent embeds VNFs of the current SFC

7: The R-agent embeds VLs to connect VNFs

8: Run policy πθm for T timesteps, and collecting {sm,t, am,t, om,t, drm,t}

9: Break the timesteps loop if no requests

10: end for

11: Estimate advantages Âm,t =
∑
t′>t

γt
′−trm,t′ − Vφ(sm,t)

12: πθm,old ← πθm

13: for l = 1, . . . , L do

14: LCLIP (θm) =
∑T

t=1 min(πθ(am,t|om,t)
πθold (am,t|om,t)

Âm,t, clip(
πθm (am,t|om,t)

πθm,old (am,t|om,t)
, 1 − ε, 1 +

ε)Âm,t)

15: Update θm via a gradient method w.r.t. LCLIP (θm)

16: end for

17: for l = 1, . . . , L do

18: LV L(φm) =
∑T

t=1(
∑

t′>t γ
t′−trt′ − Vφ(sm,t))

2

19: Update φ via a gradient method w.r.t. LV L(φm)

20: end for

21: end for

116

Table 6.1 : Network Parameters.

Parameter Value

Number of nodes (fog, cloud): (20,8)

Number of terminals: 23

Node CPU capacity (fog, cloud): (15,100)

Node storage capacity (GB) (fog, cloud): (32,128)

VNF required CPU, storage: Rand(1,3), Rand(1,5)

Request bandwidth: Rand(1,10) Mbps

Number of VNFs in a request: Rand(3,5)

Link bandwidth: fog-fog, cloud-fog,

cloud-cloud:
0.3,10,20 Gbps

Link delay(ms): terminal-fog, fog-fog,

fog-cloud, cloud-cloud

Rand [1− 2], [0.6, 2.1],

[4− 14], [14− 34]

VNF processing delay (ms): Fog, cloud Rand[0.03,1], [1.03,2.03]

Delay requirement: 10ms

Cost coefficient in fog layer(θ1, θ2): (0.5,0.5)

Cost coefficient in cloud layer(θ1, θ2): (0.1,0.1)

Different from [28, 30] and [29], who randomly choose a terminal node to generate

an SFC request. We set a probability for each node to generate an SFC. The

probability varies from node to node. Hence, the SFC requests load is not uniformly

distributed across the network.

Regarding the settings for neural networks, we adopt the common hyperparam-

eters for multi-agent PPO across all domains provided by [62].

117

6.3.2 Algorithms Used for Comparison

Hierarchy Descending SFC Embedding Scheme With Load Balancing

(HDWLB)

This algorithm consists of three phases. In the first phase, for the source node of

an SFC request, the closest node in the higher layer is allocated and treated as the

destination node for it. In the second phase, if there are sufficient resources in the

destination node, the algorithm implements group mapping to embed all the VNFs

of this SFC request onto the destination node. Otherwise, it adopts a single VNF

mapping procedure to map the VNFs one after another on the nodes in the lower

layer. The current VNF is placed on the closest node to its previous VNF. During

the third phase, load balancing is conducted across the low layer to complete node

saturation.

Single-agent PPO

The typical PPO algorithm [61] is adopted to select VNF placement actions, and

the Dijkstra algorithm is utilized to embed the VLs that connect adjacent VNFs.

6.3.3 Simulation Results

We compare our proposed algorithm, the HWDLB [30], and the Single-agent

PPO (SAPPO) with respect to the acceptance ratio of all SFC requests as well as

the average cost and delay per accepted SFC request.

From Fig. 6.4, we can see that our proposed scheme outperforms other baselines.

The HDWLB algorithm first chooses the closest cloud node and then implements

group mapping if the chosen cloud node has enough resources. Hence, when the

number of SFC requests is small, the HDWLB can map all SFC requests onto the

cloud layer and achieve a low average cost per accepted SFC. Nevertheless, the av-

erage cost increases drastically as the number of SFC requests increases. This is

118

because the SFC requests are not uniformly distributed in the considered scenario.

With the increasing number of SFC requests, some SFCs from ‘hot’ locations may

not be placed on the cloud layer under the group mapping scheme because their

corresponding closest cloud nodes are overloaded. Alternatively, the HDWLB con-

ducts single mapping to embed VNFs one after another onto fog nodes, which are

more expensive than cloud nodes. In comparison, the VNFs placement solutions of

the two PPO-based algorithms are much more flexible. For SFCs from ‘hot’ loca-

tions, they can place some VNFs on fog nodes and others on cloud nodes. In this

way, more cloud nodes, which are cheaper than fog nodes, can be exploited; thus,

the average cost per accepted SFC will be lower than that of the HDWLB. Our

proposed algorithm performs better than the SAPPO. The reason is that, given a

VNF placement of an SFC, the SAPPO algorithm adopts the Dijkstra algorithm to

choose an ‘optimal’ solution to embed VLs. Consequently, it neglects to explore the

action space of the VLs placement. In contrast, our proposed algorithm employs two

agents to explore the action space of both the VNFs placement and the VLs place-

ment. Therefore, it sufficiently explores the action space of the SFC embedding and

thus acquires a better global optimum than the SAPPO that adopts the Dijkstra

algorithm to greedily select a short-sighted immediate optimum in each time step.

From Fig. 6.5, we can see that our proposed algorithm is also superior to other

baselines. The HDWLB algorithm is designed under the assumption that SFC

requests are distributed uniformly. Therefore, its performance degrades in the un-

balanced loads scenario. Some cloud nodes far from the ‘hot’ locations cannot be

utilized even when some SFCs from ‘hot’ locations have to nest on the expensive fog

layer or be rejected. Furthermore, The HDWLB algorithm assumes that the BW is

abundant; thus, it only considers the load balancing of node resources but overlooks

the BW. Nevertheless, in the considered scenario, the BW is also limited. Hence, the

HDWLB obtains the lowest acceptance ratio. Two PPO-based algorithms perform

119

Figure 6.4 : The average cost comparison of three algorithms.

actions and acquire knowledge from the environment. The abilities to learn from

the dynamic environment make them adaptive. As the number of SFC requests in-

creases, our proposed algorithm achieves higher acceptance ratios than the SAPPO

because of more extensive action-space exploration.

For a delay-sensitive service, the most critical issue is to satisfy the delay re-

quirement. Thus, for an SFC, we are concerned about whether the real delay is

shorter than the delay requirement but not how short it is. From Fig. 6.6, we can

see that when the number of requests increases from 40 to 60, the average delay

of the HDWLB suffers a noticeable decline, while the delays of the other two are

still close to the requirement. The reason is that, with the increasing number of

requests, the HDWLB embeds newly arrived SFCs on the fog layer, while the two

120

Figure 6.5 : The acceptance ratio comparison of three algorithms.

PPO-based algorithms can still place a proportion of VNFs onto the cloud layer. As

the number of requests increases from 60 to 80, the figure of the HDWLB goes on

falling at a little bit lower rate than in the previous interval because the percentage

of short-delay SFCs increases. In comparison, the figure of the SAPPO decreases

more severely. The reason is that the SAPPO embeds as many VNFs on a fog node

as possible, achieving a delay much shorter than the requirement. Our proposed al-

gorithm, which outperforms the SAPPO in exploring the action space, can still rent

resources from the cloud layer to place SFCs. Thus, its average delay is still close to

the requirement. Within the [80,100] interval, the HDWLB cannot accept more SFC

requests; hence, its figure does not change. As for the SAPPO, the rate of descent is

slightly lower than in the previous interval since the percentage of short-delay SFCs

121

Figure 6.6 : The average delay comparison of three algorithms.

increases. Our proposed algorithm starts to embed SFCs on the fog layer, and thus

its average delay starts to drop.

6.4 Summary

In this chapter, we proposed a GCN-based two-agent PPO algorithm to max-

imize the acceptance ratio of SFC requests while minimizing the total cost in a

fog/cloud environment. We considered a fog/cloud architecture where the SFC re-

quest loads vary from location to location, and some security-related SFC requests

require physical isolation from others. Accordingly, we developed an intelligent

GCN-based two-agent PPO framework to place the VNFs and VLs requested by

SFCs, achieving notable improvements in the acceptance ratio of SFC requests and

122

cost-effectiveness. Simulation results demonstrate that our proposed algorithm out-

performs other state-of-the-art baselines in acceptance ratio, cost, and delay. In the

next chapter, we will summarize our contributions and discuss our future work.

123

Chapter 7

Conclusions and Future Work

7.1 Summary of Outcomes

Considering the problems and challenges in the SFC embedding issue, we de-

signed four DRL-based SFC embedding algorithms for three typical scenarios. With

theory analysis and simulation, we have justified our algorithms and made some con-

tributions to this field.

7.2 Recommendations & Future Work

As for future work, we will design a multi-agent DRL for the SFC embedding

issue in the inter-DC EONs. Since the spectrum assignment scheme of the lightpath

should comply with the spectrum contiguous, non-overlapping, and continuous con-

straints, the new algorithm could be different from the one we designed in Chapter

5. Another field of future interest could be the multi-agent DRL framework. We

will design a distributed training framework and compare it with the CTDE frame-

work used in this paper. Further, we plan to try to apply our MARL algorithms to

address the data transfer issue in MDC in an emergency.

124

Appendix

APPENDIX A. PROOF OF PROPOSITION 1

Based on Eq.(4.20b), we have

Ki∑
j=1

aj × µi,j = ci − α× 250×Ni (7.1a)

aj = γ
Mtot

Cpro
i,j

+ β
Wtot × h (vj, vj+1)

Ctran
i,j

,

j = 1, 2, . . . , Ki. (7.1b)

According to Eq.(7.1a), no matter what the optimal solution for P2 in Chapter 4

is, we can conclude that the optimal solution µ̃iµ̃iµ̃i satisfies

aj × µ̃i,j = qj × (ci − α× 250×Ni),

j = 1, 2, . . . , Ki (7.2a)
Ki∑
j=1

qj = 1 (7.2b)

0 < qj < 1, j = 1, 2, . . . , Ki. (7.2c)

125

Substituting the optimal solution µ̃iµ̃iµ̃i into P2, we have

Dmin
i (µ̃ĩµĩµi) =

λi

2 (µ̃i,1)
2 (1− λi

µ̃i,1
)

+

Ki∑
j=1

2

µ̃i,j

+

Ki∑
j=1

2(h(vj, vj+1)− 1)

µ̃i,j
g(h(vj, vj+1))

+

Ki∑
j=2

λi

2 (µ̃i,j)
2 (1− λi

µ̃i,j
)
g(µ̃i,j−1 − µ̃i,j)

=
1

2
(

1

µ̃i,1 − λi
− 1

µ̃i,1
) +

Ki∑
j=1

2

µ̃i,j

+

Ki∑
j=1

2(h(vj, vj+1)− 1)

µ̃i,j
g(h(vj, vj+1))

+

Ki∑
j=2

1

2
(

1

µ̃i,j − λi
− 1

µ̃i,j
)g(µ̃i,j−1 − µ̃i,j).

(7.3)

Let

Dmin
i1 (µ̃i,j) =

1

µ̃i,j − λi
− 1

µ̃i,j
, j = 1, 2, . . . , Ki, (7.4)

Dmin
i2 (µ̃i,j) =

2

µ̃i,j
, j = 1, 2, . . . , Ki. (7.5)

Then, we have

Dmin
i (µ̃ĩµĩµi) =

Dmin
i1 (µ̃i,j)

2
+

Ki∑
j=2

Dmin
i1 (µ̃i,j)

2
g(µ̃i,j−1 − µ̃i,j)

+

Ki∑
j=1

Dmin
i2 (µ̃i,j)(h(vj, vj+1)− 1)g(h(vj, vj+1))

+

Ki∑
j=1

Dmin
i2 (µ̃i,j), j = 1, 2, . . . , Ki.

(7.6)

Substituting Eq.(7.1b) and (7.2a) into Eq.(7.4) and (7.5) and then differentiating

Dmin
i1 and Dmin

i2 with respect to ci, we have

dDmin
i1 (ci)

dci
=
aj
qj

(
1

(ci − 250× α×Ni)2

− 1

(ci − 250× α×Ni − aj
qj
λi)2

),
(7.7)

126

dDmin
i2 (ci)

dci
=
aj
qj

−1

(ci − 250× α×Ni)2
. (7.8)

Based on Eq.(7.1b) and (7.2c), we know aj > 0 and qj > 0. So we can conclude

that
dDmini1 (ci)

dci
< 0 and

dDmini2 (ci)

dci
< 0. Furthermore, based on Eq.(4.21), we know

g(µi,j−1 − µi,j) = 1 or 0, and g(h(vj, vj+1)) = 1 or 0. At this stage, we can conclude

that
dDmini (ci)

dci
< 0, and thus Dmin

i (ci) is a monotone decreasing function of ci.

APPENDIX B. PROOF OF PROPOSITION 2

The standard form of an optimization problem can be expressed as [74]:

min f0(x)

s.t.


fi(x) ≤ 0, i = 1, 2, . . . ,m

hi(x) = 0, i = 1, 2, . . . , p.

(7.9)

The problem is to find an x that minimizes f0(x) among all x that satisfy the

conditions fi(x) ≤ 0, i = 1, . . . ,m, and hi(x) = 0, i = 1, . . . , p. To be a convex

optimization problem, it needs to satisfy three additional requirements [74]:

1. the objective function must be convex,

2. the inequality constraint functions must be convex,

3. the equality constraint functions must be affine.

Now let’s prove that our problem satisfies these three requirements and thus is a

convex optimization problem.

Objective function is convex

In our problem, the objective function shown below is twice differentiable; that

is to say, its Hessian or second derivative exists at each point in dom Di, which is

127

open. Then Di is convex if and only if dom Di is convex and its Hessian is positive

semidefinite [74].

Di(µiµiµi) =
λi

2 (µi,1)
2 (1− λi

µi,1
)

+

Ki∑
j=1

2

µi,j

+

Ki∑
j=1

2(h(vj, vj+1)− 1)

µi,j
g(h(vj, vj+1))

+

Ki∑
j=2

λi

2 (µi,j)
2 (1− λi

µi,j
)
g(µi,j−1 − µi,j).

The hessian matrix of Di can be expressed as

H(Di) =



∂2Di
∂µ2i,1

∂2Di
∂µi,1∂µi,2

· · · ∂2Di
∂µi,1∂µi,Ki

∂2Di
∂µi,2∂µi,1

∂2Di
∂µ2i,2

· · · ∂2Di
∂µi,2∂µi,Ki

...
...

. . .
...

∂2Di
∂µi,Ki∂µi,1

∂2Di
∂µi,Ki∂µi,2

· · · ∂2Di
∂µ2i,Ki


,

where

∂2Di

∂µ2
i,1

=
3 + 4(h (v1, v2)− 1)× g(h(v1, v2))

µ3
i,1

+
1

(µi,1 − λi)3
,

when 2 ≤ j ≤ Ki,

∂2Di

∂µ2
i,j

=



1
(µi,j−λi)3

+
3+4(h(vj ,vj+1)−1)×g(h(vj ,vj+1))

µ3i,j
,

µi,j < µi,j−1

4+4(h(vj ,vj+1)−1)×g(h(vj ,vj+1))

µ3i,j
, µi,j ≥ µi,j−1,

and

∂2Di

∂µi,j∂µi,j′
= 0, j 6= j′.

In the M/D/1 model, obviously, µi,j > λi is satisfied for any j. So dom Di =

{µiµiµi ∈ RKi |µi,j > λi, j = 1, . . . , Ki} is convex. Based on Eq.(4.21), we know

128

g(h(vj, vj+1)) = 1 or 0. So we have ∂2Di
∂µ2i,j

> 0, j = 1, . . . , Ki, and thus H(Di) is

a positive-definite matrix. At this stage, we can conclude that the objective func-

tion is convex.

Inequality constraint functions are convex

The standard form of inequality constraints in our problem can be expressed as

fj(µiµiµi) = µi,j − µi,j+1 ≤ 0, j = 1, 2, . . . , Ki − 1, or

fj(µiµiµi) = µi,j+1 − µi,j ≤ 0, j = 1, 2, . . . , Ki − 1,

fKi−1+n(µiµiµi) =

Ki∑
j=1

xni,j ×
µi,j
Cpro
i,j

×Mtot −mn ≤ 0,

n = 1, 2, . . . , |S|,

fKi+|S|−1+n(µiµiµi) =

Ki∑
j=1

xni,j ×
µi,j
Ctran
i,j

×Wtot − wn ≤ 0,

n = 1, 2, . . . , |S|.

Evidently, for any constraint function, dom fj = {µiµiµi ∈ R2|µi,j > λi, µi,j+1 >

λi}, j = 1, 2, . . . , Ki − 1 or dom fn = {µiµiµi ∈ RL|µi,1 > λi, . . . , µi,L > λi}, n ≥ Ki

(suppose that L VNFs nest on the nth server) is convex. Furthermore, its Hessian

is a zero matrix and thus positive semidefinite. Hence, inequality constraints are all

convex.

Equality constraint function is affine

When service i is provided with a constant cost Ci, the standard form of the

equality constraint in our problem can be expressed as

129

h1(µiµiµi) =γ

Ki∑
j=1

µi,j
Cpro
i,j

×Mtot + β

Ki∑
j=1

µi,j
Ctran
i,j

×Wtot

× h (vj, vj+1) + α× 250×Ni − Ci = 0.

According to the definition of affine: A set C is affine if the line through any two

distinct points in C lies in C[74], we know that any line or line segment is affine.

Therefore, the equality constraint in our problem is affine.

130

Bibliography

[1] M. Simsek, A. Aijaz, M. Dohler, J. Sachs, and G. Fettweis, “The 5g-enabled

tactile internet: Applications, requirements, and architecture,” in 2016 IEEE

Wireless Communication and Networking Conference Workshops (WCNCW),

Doha, Qatar, Apr. 2016, pp. 1–6.

[2] K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y. A. Zhang, “The roadmap

to 6g - ai empowered wireless networks,” Jul. 2019. [Online]. Available:

https://arxiv.org/pdf/1904.11686

[3] P. T. A. Quang, Y. Hadjadj-Aoul, and A. Outtagarts, “A deep reinforcement

learning approach for vnf forwarding graph embedding,” IEEE Transactions on

Network and Service Management, vol. 16, no. 4, pp. 1318–1331, Dec. 2019.

[4] Y. Yang and J. Wang, “An overview of multi-agent reinforcement

learning from game theoretical perspective,” Mar. 2021. [Online]. Available:

https://arxiv.org/abs/2011.00583

[5] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-agent

actor-critic for mixed cooperative-competitive environments,” Mar. 2020.

[Online]. Available: https://arxiv.org/abs/1706.02275

[6] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. D. Turck, and R. Boutaba,

“Network function virtualization: State-of-the-art and research challenges,”

IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 236–262, Mar.

2016.

https://arxiv.org/pdf/1904.11686
https://arxiv.org/abs/2011.00583
https://arxiv.org/abs/1706.02275

131

[7] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network slicing

and softwarization: A survey on principles, enabling technologies, and solu-

tions,” IEEE Communications Surveys & Tutorials, vol. 20, no. 3, pp. 2429–

2453, third quarter 2018.

[8] J. Gil Herrera and J. F. Botero, “Resource allocation in nfv: A comprehen-

sive survey,” IEEE Transactions on Network and Service Management, vol. 13,

no. 3, pp. 518–532, Sep. 2016.

[9] S. Mostafavi, V. Hakami, and M. Sanaei, “Quality of service provisioning in

network function virtualization: A survey,” Computing, vol. 103, pp. 917–991,

Mar. 2021.

[10] A. Laghrissi and T. Taleb, “A survey on the placement of virtual resources

and virtual network functions,” IEEE Communications Surveys & Tutorials,

vol. 21, no. 2, pp. 1409–1434, Mar. 2019.

[11] A. Baumgartner, V. S. Reddy, and T. Bauschert, “Combined virtual mo-

bile core network function placement and topology optimization with latency

bounds,” in 2015 Fourth European Workshop on Software Defined Networks,

Bilbao, Spain, Sep.-Oct. 2015, pp. 97–102.

[12] D. B. Oljira, K. Grinnemo, J. Taheri, and A. Brunstrom, “A model for qos-

aware vnf placement and provisioning,” in 2017 IEEE Conference on Network

Function Virtualization and Software Defined Networks (NFV-SDN), Berlin,

Germany, Nov. 2017, pp. 1–7.

[13] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and L. P. Gaspary,

“Piecing together the nfv provisioning puzzle: Efficient placement and chaining

of virtual network functions,” in 2015 IFIP/IEEE International Symposium on

132

Integrated Network Management (IM), Ottawa, ON, Canada, May 2015, pp.

98–106.

[14] Q. Zhang, Y. Xiao, F. Liu, J. C. S. Lui, J. Guo, and T. Wang, “Joint optimiza-

tion of chain placement and request scheduling for network function virtualiza-

tion,” in 2017 IEEE 37th International Conference on Distributed Computing

Systems (ICDCS), Atlanta, GA, USA, Jun. 2017, pp. 731–741.

[15] H. Tang, D. Zhou, and D. Chen, “Dynamic network function instance scaling

based on traffic forecasting and vnf placement in operator data centers,” IEEE

Transactions on Parallel and Distributed Systems, vol. 30, no. 3, pp. 530–543,

Mar. 2019.

[16] M. Mechtri, C. Ghribi, and D. Zeghlache, “A scalable algorithm for the place-

ment of service function chains,” IEEE Transactions on Network and Service

Management, vol. 13, no. 3, pp. 533–546, Sep. 2016.

[17] C. Pham, N. H. Tran, S. Ren, W. Saad, and C. S. Hong, “Traffic-aware and

energy-efficient vnf placement for service chaining: Joint sampling and match-

ing approach,” IEEE Transactions on Services Computing, vol. 13, no. 1, pp.

172–185, Jan.-Feb. 2020.

[18] M. M. Tajiki, S. Salsano, L. Chiaraviglio, M. Shojafar, and B. Akbari, “Joint

energy efficient and qos-aware path allocation and vnf placement for service

function chaining,” IEEE Transactions on Network and Service Management,

vol. 16, no. 1, pp. 374–388, Mar. 2019.

[19] M. Dieye et al., “Cpvnf: Cost-efficient proactive vnf placement and chaining

for value-added services in content delivery networks,” IEEE Transactions on

Network and Service Management, vol. 15, no. 2, pp. 774–786, Jun. 2018.

133

[20] A. Varasteh, B. Madiwalar, A. V. Bemten, W. Kellerer, and C. Mas-Machuca,

“Holu: Power-aware and delay-constrained vnf placement and chaining,” IEEE

Transactions on Network and Service Management, vol. 18, no. 2, pp. 1524–

1539, Jun. 2021.

[21] Q. Ye, W. Zhuang, X. Li, and J. Rao, “End-to-end delay modeling for embedded

vnf chains in 5g core networks,” IEEE Internet of Things Journal, vol. 6, no. 1,

pp. 692–704, Feb. 2019.

[22] W. Fang, M. Zeng, X. Liu, W. Lu, and Z. Zhu, “Joint spectrum and it resource

allocation for efficient vnf service chaining in inter-datacenter elastic optical

networks,” IEEE Communications Letters, vol. 20, no. 8, pp. 1539–1542, Aug.

2016.

[23] A. Khatiri and G. Mirjalily, “Resource balanced service chaining in nfv-enabled

inter-datacenter elastic optical networks,” in 2020 12th International Confer-

ence on Knowledge and Smart Technology (KST), Pattaya, Thailand, Jan.-Feb.

2020, pp. 168–171.

[24] Y. Li et al., “Joint balancing of it and spectrum resources for selecting virtual-

ized network function in inter-datacenter elastic optical networks,” Opt Express,

vol. 27, no. 11, pp. 15 116–15 128, May 2019.

[25] J. Pei, P. Hong, K. Xue, and D. Li, “Efficiently embedding service function

chains with dynamic virtual network function placement in geo-distributed

cloud system,” IEEE Transactions on Parallel and Distributed Systems, vol. 30,

no. 10, pp. 2179–2192, Oct. 2019.

[26] Open Science Data Cloud, “Virtual machines (vms),” 2014. [Online]. Available:

https://www.opensciencedatacloud.org/support/instances.html

https://www.opensciencedatacloud.org/support/instances.html

134

[27] Kubernetes Documentation, “Kubernetes: Resource management for pods

and containers,” Jun. 2022. [Online]. Available: https://kubernetes.io/docs/

concepts/configuration/manage-resources-containers/

[28] N. Siasi, A. Jaesim, and N. Ghani, “Tabu search for efficient service function

chain provisioning in fog networks,” in 2019 IEEE 5th International Conference

on Collaboration and Internet Computing (CIC), Los Angeles, CA, USA, Dec.

2019, pp. 145–150.

[29] N. Siasi, M. Jasim, and N. Ghani, “Service function chain mapping in fog

networks,” IEEE Communications Letters, vol. 25, no. 1, pp. 99–102, Jan.

2021.

[30] M. A. Jasim, N. Siasi, and N. Ghani, “Hierarchy descending sfc provisioning

scheme with load balancing in fog computing,” IEEE Communications Letters,

vol. 26, no. 9, pp. 2096–2100, Sep. 2022.

[31] P. T. A. Quang, Y. Hadjadj-Aoul, and A. Outtagarts, “Deep reinforcement

learning based qos-aware routing in knowledge-defined networking,” in Qshine

2018 - 14th EAI International Conference on Heterogeneous Networking for

Quality, Reliability, Security and Robustness, Ho Chi Minh City, Vietnam, Dec.

2018, pp. 1–13.

[32] R. Mijumbi, J. Gorricho, J. Serrat, M. Claeys, F. De Turck, and S. Latré,

“Design and evaluation of learning algorithms for dynamic resource manage-

ment in virtual networks,” in 2014 IEEE Network Operations and Management

Symposium (NOMS), Krakow, Poland, May 2014, pp. 1–9.

[33] M. Bunyakitanon, X. Vasilakos, R. Nejabati, and D. Simeonidou, “End-to-

end performance-based autonomous vnf placement with adopted reinforcement

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

135

learning,” IEEE Transactions on Cognitive Communications and Networking,

vol. 6, no. 2, pp. 534–547, Jun. 2020.

[34] A. Rkhami, Y. Hadjadj-Aoul, and A. Outtagarts, “Learn to improve: A novel

deep reinforcement learning approach for beyond 5g network slicing,” in IEEE

Consumer Communications & Networking Conference (CCNC), Las Vegas, NV,

USA, Jan. 2021, pp. 1–9.

[35] M. Zhu, Q. Chen, J. Gu, and P. Gu, “Deep reinforcement learning for provision-

ing virtualized network function in inter-datacenter elastic optical networks,”

in ieee transactions on network and service management,” IEEE Transactions

on Network and Service Management, May 2022, early access.

[36] X. Chen, B. Li, R. Proietti, Z. Z. H. Lu, and S. J. B. Yoo, “Deeprmsa: A deep

reinforcement learning framework for routing, modulation and spectrum as-

signment in elastic optical networks,” Journal of Lightwave Technology, vol. 37,

no. 16, pp. 4155–4163, Aug. 2019.

[37] T. Tang, B. Wu, and G. Hu, “A hybrid learning framework for service function

chaining across geo-distributed data centersa hybrid learning framework for

service function chaining across geo-distributed data centers,” IEEE Access,

vol. 8, pp. 170 225–170 236, Sep. 2020.

[38] B. Li and Z. Zhu, “Gnn-based hierarchical deep reinforcement learning for nfv-

oriented online resource orchestration in elastic optical dcis,” Journal of Light-

wave Technology, vol. 40, no. 4, pp. 935–946, Feb. 2022.

[39] Y. Xie et al., “Virtualized network function forwarding graph placing in sdn and

nfv-enabled iot networks: A graph neural network assisted deep reinforcement

learning method,” IEEE Transactions on Network and Service Management,

vol. 19, no. 1, pp. 524–537, Mar. 2022.

136

[40] B. V. J. Santos, T. Wauters and F. D. Turck, “Resource provisioning in fog

computing through deep reinforcement learning,” in 2021 IFIP/IEEE Interna-

tional Symposium on Integrated Network Management (IM), Bordeaux, France,

Jun. 2021, pp. 431–437.

[41] M. Goudarzi, M. Palaniswami, and R. Buyya, “A distributed deep

reinforcement learning technique for application placement in edge and

fog computing environments,” Oct. 2021. [Online]. Available: https:

//arxiv.org/abs/2110.12415

[42] H. Sami, A. Mourad, H. Otrok, and J. Bentahar, “Demand-driven deep rein-

forcement learning for scalable fog and service placement,” IEEE Transactions

on Services Computing, vol. 15, no. 5, pp. 2671–2684, Sep.-Oct. 2022.

[43] H. V. Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double

q-learning,” Sep. 2015. [Online]. Available: https://arxiv.org/abs/1509.06461

[44] J. SON, T. He, and R. Buyya, “CloudSimSDN-NFV: Modeling and simulation

of network function virtualization and service function chaining in edge com-

puting environments,” Software: Practice and Experience, vol. 49, no. 12, pp.

1748–1764, Dec. 2019.

[45] F. Zhuang et al., “A comprehensive survey on transfer learning,” Proceedings

of the IEEE, vol. 109, no. 1, pp. 43–76, Jan. 2021.

[46] CISCO, “Enterprise data center infrastructure,” 2023.

[Online]. Available: https://www.ccexpert.us/network-design/

enterprise-data-center-infrastructure.html

[47] T. Tovinger, “Management, orchestration and charging for 5g networks,” Mar.

2018. [Online]. Available: https://www.3gpp.org/news-events/1951-sa5 5g

https://arxiv.org/abs/2110.12415
https://arxiv.org/abs/2110.12415
https://arxiv.org/abs/1509.06461
https://www.ccexpert.us/network-design/enterprise-data-center-infrastructure.html
https://www.ccexpert.us/network-design/enterprise-data-center-infrastructure.html
https://www.3gpp.org/news-events/1951-sa5_5g

137

[48] 3GPP, “3gpp tr 28.801 v15.1.0,” Oct. 2018. [Online]. Available: https:

//www.3gpp.org/ftp/TSG SA/WG5 TM/TSGS5 116/SA 78/28801-f10.doc

[49] P. Goransson, C. Black, and T. Culver, Software Defined Networks:A Compre-

hensive Approach. Elsevier, 2016, ch. 7, p. 159.

[50] W. Wang, B. Liang, and B. Li, “Multi-resource generalized processor sharing

for packet processing,” in 2013 IEEE/ACM 21st International Symposium on

Quality of Service (IWQoS), Montreal, QC, Canada, Jun. 2013, pp. 1–10.

[51] S. Gu, Z. Li, C. Wu, and C. Huang, “An efficient auction mechanism for service

chains in the nfv market,” in IEEE INFOCOM 2016 - The 35th Annual IEEE

International Conference on Computer Communications, San Francisco, CA,

USA, Apr. 2016, pp. 1–9.

[52] S. Larsen, P. Sarangam, and R. Huggahalli, “Architectural breakdown of end-

to-end latency in a tcp/ip network,” in 19th International Symposium on Com-

puter Architecture and High Performance Computing (SBAC-PAD’07), Gra-

mado, Brazil, Oct. 2007, pp. 195–202.

[53] A. Greenberg, J. R. Hamilton, N. Jain et al., “Vl2: a scalable and flexible data

center network,” ACM SIGCOMM Computer Communication Review, vol. 39,

no. 4, pp. 51–62, Aug. 2009.

[54] J. Son, A. V. Dastjerdi, R. N. Calheiros, Y. Y. X. Ji, and R. Buyya,

“Cloudsimsdn: Modeling and simulation of software-defined cloud data cen-

ters,” in 2015 15th IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing, Shenzhen, China, May 2015, pp. 475–484.

[55] V. Mnih, K. Kavukcuoglu, D. Silver et al., “Cloudsim: a toolkit for modeling

and simulation of cloud computing environments and evaluation of resource

https://www.3gpp.org/ftp/TSG_SA/WG5_TM/TSGS5_116/SA_78/28801-f10.doc
https://www.3gpp.org/ftp/TSG_SA/WG5_TM/TSGS5_116/SA_78/28801-f10.doc

138

provisioning algorithms,” Software: Practice and Experience, vol. 41, no. 1, pp.

23–50, Jan. 2011.

[56] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” Jan.

2017. [Online]. Available: https://arxiv.org/abs/1412.6980v9

[57] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in

Proceedings of the Fourteenth International Conference on Artificial Intelligence

and Statistics, vol. 15, Fort Lauderdale, FL, USA, Apr. 2011, pp. 315–323.

[58] A. L. Maas, “Rectifier nonlinearities improve neural network acoustic mod-

els,” in in ICML Workshop on Deep Learning for Audio, Speech and Language

Processing, 2013.

[59] N. Zhang, S. Zhang, P. Yang, O. Alhussein, W. Zhuang, and X. S. Shen, “Soft-

ware defined space-air-ground integrated vehicular networks: Challenges and

solutions,” IEEE Communications Magazine, vol. 55, no. 7, pp. 101–109, Jul.

2017.

[60] M. M. Tajiki, S. Salsano, L. Chiaraviglio, M. Shojafar, and B. Akbari, “Joint

energy efficient and qos-aware path allocation and vnf placement for service

function chaining,” IEEE Transactions on Network and Service Management,

vol. 16, no. 1, pp. 374–388, Mar. 2019.

[61] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,

“Proximal policy optimization algorithms,” Aug. 2017. [Online]. Available:

https://arxiv.org/abs/1707.06347

[62] C. Yu, A. Velu, E. Vinitsky, Y. Wang, A. Bayen, and Y. Wu, “The surprising

effectiveness of ppo in cooperative, multi-agent games,” Jul. 2021. [Online].

Available: https://arxiv.org/abs/2103.01955

https://arxiv.org/abs/1412.6980v9
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2103.01955

139

[63] T. N. Kipf and M. Welling, “Semi-supervised classification with graph

convolutional networks,” Feb. 2017. [Online]. Available: https://arxiv.org/

abs/1609.02907

[64] P. Pan, Q. Fan, S. Wang, X. Li, J. Li, and W. Shi, “Gcn-td: A learning-based

approach for service function chain deployment on the fly,” in GLOBECOM

2020 - 2020 IEEE Global Communications Conference, Taipei, Taiwan, Dec.

2020, pp. 1–6.

[65] A. Rkhami, T. A. Q. Pham, Y. Hadjadj-Aoul, A. Outtagarts, and G. Rubino,

“On the use of graph neural networks for virtual network embedding,” in 2020

International Symposium on Networks, Computers and Communications (IS-

NCC), Montreal, QC, Canada, Oct. 2020, pp. 1–6.

[66] S. Qi, S. Li, S. Lin, M. Y. Saidi, and K. Chen, “Energy-efficient vnf deployment

for graph-structured sfc based on graph neural network and constrained deep

reinforcement learning,” in 2021 22nd Asia-Pacific Network Operations and

Management Symposium (APNOMS), Tainan, Taiwan, Sep. 2021, pp. 348–353.

[67] Y. Bai, H. Ding, S. Bian, T. Chen, Y. Sun, and W. Wang, “Simgnn: A neural

network approach to fast graph similarity computation,” Mar. 2020. [Online].

Available: https://arxiv.org/abs/1808.05689

[68] J. Achiam, “Openai spinning up: Vanilla policy gradient,” 2018. [Online].

Available: https://spinningup.openai.com/en/latest/algorithms/vpg.html

[69] Virginia, “How 400g has transformed data centers,” Jun. 2022. [Online]. Avail-

able: https://community.fs.com/blog/how-400g-has-transformed-data-centers.

html

[70] J. Bai, H. Yuan, L. Zhang, and J. Zhang, “Sgw-scn: An integrated machine

https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1808.05689
https://spinningup.openai.com/en/latest/algorithms/vpg.html
https://community.fs.com/blog/how-400g-has-transformed-data-centers.html
https://community.fs.com/blog/how-400g-has-transformed-data-centers.html

140

learning approach for workload forecasting in geo-distributed cloud data cen-

ters,” Information Sciences, vol. 481, pp. 57–68, May 2019.

[71] C. Hu, Y. Guo, Y. Deng, and L. Lang, “Improve the energy efficiency of dat-

acenters with the awareness of workload variability,” IEEE Transactions on

Network and Service Management, vol. 19, no. 2, pp. 1260–1273, Jun. 2022.

[72] N. Yang, Y. Ma, L. Suo, Y. Lu, S. Ren, and L. Lin, “Proximal virtual network

embedding based on multi-dimensional load balancing in data centers,” in 2021

IEEE/CIC International Conference on Communications in China (ICCC),

Xiamen, China, Jul. 2021, pp. 945–950.

[73] V. M. et al., “Asynchronous methods for deep reinforcement learning,” Jun.

2016. [Online]. Available: https://arxiv.org/abs/1602.01783

[74] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University

Press, 2004, ch. 4, pp. 129–138.

https://arxiv.org/abs/1602.01783

	Certificate
	Abstract
	Acknowledgments
	List of Publications
	List of Figures
	Abbreviation
	Notation
	Introduction
	Background
	Motivation and Objectives
	Prioritize Latency-sensitive Services and Allocate Resources to VNF Flexibly for the Single DC Scenario
	Unbalanced SFC Requests Load Scenario of the MDC Network
	Unbalanced SFC Requests Load Scenario and Security Issue of the Fog Networks

	Approach and Contribution
	The Single DC Scenario
	The MDC Scenario
	The Fog Networks

	Thesis Organization

	Literature Review
	Heuristic-based Approaches
	Reinforcement Learning-Based Approaches
	Summary

	SFC Embedding in an NFV-based Single DC under the Classic VNE Model
	System Model and Problem Formulation
	System Architecture
	Characteristics of SFC Requests
	Problem Formulation

	Our Proposed SFC Placement Scheme
	Overview of the Proposed DQN
	State
	Action
	Reward
	The Binary Search Assisted Transfer Learning Algorithm

	Simulation
	Simulation Setup
	Algorithms to Compare
	Simulation Results

	Summary

	SFC Embedding in an NFV-based Single DC under a Flexible Resources Allocation Model
	System Overview and Problem Formulation
	Network Infrastructure and SFC Requests
	Traffic Model
	Delay Model
	Cost Model
	Problem Formulation

	Proposed SFC Placement and Resource Allocation Scheme
	Overview of Our Proposed SADDQN Algorithm
	State
	Action
	Reward

	Simulation
	Simulation Setup
	Algorithms to Compare
	Simulation Results

	Summary

	SFC Embedding Approach in an MDC Network
	System Model and Problem Formulation
	System Architecture
	NFV Infrastructure
	Characteristics of SFC Requests
	Cost Model
	Problem Formulation

	Proposed Two-stage SFC Embedding Scheme
	Background of the Proposed Algorithm
	The First Stage
	The Second Stage

	Simulation
	Simulation Setup
	Algorithms Used for Comparison
	Simulation Results

	Summary

	SFC Embedding Algorithm in a Fog Network
	System Model and Problem Formulation
	NFV Infrastructure
	Characteristics of SFC Requests
	Cost Model
	Delay Model
	Problem Formulation

	Proposed SFC Embedding Scheme
	Background of the Proposed Algorithm
	The Components of the Two-agent MDP
	The Proposed Framework

	Simulation
	Simulation Setup
	Algorithms Used for Comparison
	Simulation Results

	Summary

	Conclusions and Future Work
	Summary of Outcomes
	Recommendations & Future Work

	Bibliography

