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ABSTRACT

The proliferation of smart devices and corresponding applications has resulted in a significant
increase in cellular network traffic. To mitigate this, device-to-device (D2D) communication has
been proposed as an efficient solution for reducing network congestion and increasing network
capacity. D2D was first introduced by the Third Generation Partnership Project (3GPP) as a key
enabling technology for the fifth-generation (5G) of cellular networks. However, the limitations
of D2D have led to the emergence of multi-hop D2D (MD2D) as a potential replacement and
an enabling technology for future generations of cellular networks, such as the sixth generation
(6G) and beyond.

The first objective of this thesis is to study the new network architecture known as knowledge-
defined networking (KDN) and the benefits of various MD2D routing protocols and frame-
works. We conducted a comprehensive literature review that revealed two key findings. First,
future network architecture should integrate automated techniques to enhance network perfor-
mance. Secondly, centralized controllers and virtualization technologies, such as software-
defined networking (SDN) and network function virtualization (NFV), are crucial for achieving
high performance in MD2D networks. As a result, we targeted to study centralized and auto-
mated MD2D routing frameworks and protocols.

The second objective of this thesis was to enhance the energy efficiency of MD2D routing pro-
tocols by introducing efficient and intelligent routing methods. We proposed two intelligent
routing protocols that leverage network knowledge to construct routing tables. The first method
employs a centralized participation mechanism that utilizes a fuzzy logic system to identify eli-
gible nodes for MD2D communication based on multiple network metrics. The second method
uses various utility functions to create an automated routing mechanism to alternate paths, thus
increasing network lifetime and throughput.

The final objective of this thesis is to enhance MD2D performance with regard to traffic of-
floading and end-to-end (E2E) delay. To achieve this, we employed virtualization techniques
in conjunction with WiFi network slicing to segment various nodes into distinct network slices
to optimize throughput and E2E delay. Additionally, we introduced a location-based routing
strategy to augment cellular traffic offloading. This MD2D routing protocol utilizes the lo-
cation of nodes in conjunction with network topology to determine efficient and dependable



routes, thereby reducing E2E delay and increasing throughput, ultimately enabling offloading
of a greater number of packets from the BS.

In conclusion, this thesis presents an in-depth examination of MD2D networks and proposes
intelligent and high-performance MD2D routing protocols and frameworks.

Keywords: MD2D, 5G, 6G, KDN, SDN, NFV, routing protocols and frameworks, network
automation.
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1
Introduction

This thesis aims to present efficient solutions for managing data traffic and increasing network
capacity in wireless cellular networks. Our investigation has led us to conclude that one of the
most significant challenges facing future wireless networks will be excessive network traffic
from heterogeneous users. To address this challenge, we propose using self-managed device-
to-device (D2D) communication as a promising solution. Self-managed D2D communication
involves utilizing automated techniques to create a self-organizing D2D network, thereby al-
lowing the network to dynamically update and adjust its parameters to optimize performance.
This thesis focuses on developing network intelligence and optimization algorithms for WiFi
channels to minimize cellular overhead and maximize network performance.

The proliferation of smart devices and corresponding applications has resulted in a significant
increase in cellular network traffic [1]. To mitigate this, D2D communication has been proposed
as an efficient solution for reducing network congestion and increasing network capacity [2].
However, D2D is limited to one neighboring communication, which decreases the coverage
area. To address this limitation and extend the coverage, multi-hop D2D (MD2D) has been
proposed as an alternative [3]. MD2D creates an independent secondary infrastructure to im-
prove service coverage and data capacity. To fully leverage the benefits of MD2D networks,
new routing protocols and frameworks must be designed and implemented. This thesis compre-
hensively studies MD2D in a cellular network and proposes new automated routing strategies
and frameworks to assist future wireless cellular communication.
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1.1 Background

The fifth-generation (5G) wireless network has yet to achieve full automation and intelligence
[4], despite offering several advantages over traditional networks, such as improved quality-of-
service (QoS), higher data rates, and integration and management of licensed and unlicensed
bands [4,5]. However, the current wireless cellular architecture lacks flexibility and intelligence,
requiring constant optimization and improvement through software or hardware updates. With
the advent of machine learning (ML) and network automation, future cellular networks can
provide self-management, self-optimization, and self-adaptation, thus reducing the need for hu-
man intervention and updates, thereby decreasing costs and complexity. The sixth-generation
(6G) cellular network aims to introduce intelligence and adaptability within the network archi-
tecture [6]. Several initiatives, such as Open Networking Foundation (ONF) and Open-Radio
Access Network (O-RAN), are currently underway to create intelligent radio networks, focus-
ing on different parts of the network, such as core or edge, with the goal of creating a fully open
and intelligent platform for future wireless networks [7].

Software-defined networking (SDN) and network function virtualization (NFV) are founda-
tional technologies to implement new intelligence and self-adaptive cellular network initia-
tives [8]. SDN is a networking paradigm that decouples the data and control planes [9]. De-
coupling these two planes enables SDN to operate as a centralized controller to manage the
network. The global view of the SDN controller provides advantages such as network flexi-
bility, programmability, and efficient management over the traditional network. On the other
hand, NFV leverages the recent advances in cloud computing to create virtualized services to
provide agility and scalability [10]. With the combination of SDN and NFV, a new network ar-
chitecture was created called knowledge-defined networking (KDN) [11]. KDN adds a layer on
top of SDN architecture’s control and management layers, called knowledge plane (KP) [12].
The KDN architecture gathers network information and creates network knowledge through
optimization and ML techniques. Many of the existing open radio access network ideas come
from KDN architecture. KDN was the first network paradigm to integrate intelligence for self-
management and self-tuning.

Network knowledge is harvested from user requirements, user applications, network functional-
ity and traffic. However, efficient knowledge is derived based on the outcome of an optimization
algorithm or an ML process for a specific application. For instance, a neural network (NN) in
conjunction with reinforcement learning (RL) can be used in wireless networks for dynamic
power allocation optimization [13]. The output of the RL/NN is taken as adequate knowledge
and can be used for future instant decision-making. Knowing about the network’s behavior in
various environments can be a breakthrough in network performance. First, in resource man-
agement, parameters such as bandwidth, QoS, and power can be obtained in different network
situations and stored as knowledge for network automation. Second, routing decisions can de-
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ploy knowledge in networking for better route discovery while the network is overpopulated.
Moreover, user information, including mobility patterns and their velocity, can be used as addi-
tional knowledge to improve the accuracy of localization and handover.

In order to accomplish the objectives outlined in this thesis, our focus is on utilizing network
knowledge and incorporating it into the design of future cellular network architectures (specif-
ically with MD2D networks) to reduce network congestion and alleviate traffic overload. Net-
work traffic management will continue to be a significant challenge in wireless cellular networks
with the constant growth of user devices [14]. Hence, a complementary network communica-
tion platform is needed to offload traffic or use it as a new standard for direct data exchange
between devices. In recent years, congestion in wireless communication has been growing sig-
nificantly. It is predicted that the traffic will rise hundreds of thousands of times every year [15].
The emergence of MD2D communication can assist cellular systems in reducing traffic to a sec-
ondary infrastructure that can provide similar or even better services [3]. MD2D is a promising
technology that can deliver flexibility and scalability to the network. However, new routing
algorithms with advanced and intelligent features must emerge to efficiently integrate MD2D in
future cellular networks.

The integration of MD2D communication into wireless networks marks a pivotal step in the
evolution towards intelligent and self-adaptive cellular systems [16]. To fully realize the poten-
tial of MD2D, it is essential to develop new routing protocols and design an intelligent network
infrastructure that incorporates knowledge for self-management and self-adaptability. This can
be achieved through the application of SDN, NFV, and KDN paradigms. For example, SDN
can be used to separate routing decisions from data forwarding, allowing the data plane to
solely transmit data instead of undergoing multi-hop flooding. NFV can facilitate advanced
optimizations by creating virtualized services as separate entities, while KDN can enable both
applications by the creation and implementation of intelligent policies through the gathering of
network information, optimization and virtualization.

1.2 Motivations and Objectives

The massive increase in data traffic and excessive load on the base station (BS) is causing perfor-
mance deterioration in cellular networks in terms of user and application demands. It is impor-
tant for cellular network providers to address this challenge and invest in new technologies and
solutions to upgrade their infrastructure and improve network performance. Moreover, the lack
of flexibility and intelligence in cellular networks can hinder their ability to effectively adapt to
changing network conditions and user demands. This can result in decreased network perfor-
mance, reduced reliability, and increased network congestion. The traditional cellular network
architecture was designed primarily to support voice communication and was not optimized for
the growing demand for data services and Internet of Things (IoT) devices. As a result, the net-
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work infrastructure can become overburdened, leading to a decline in network quality and user
experience. To address this challenge, cellular network providers and researchers are exploring
new technologies and solutions to improve the flexibility and intelligence of cellular networks.
This includes the implementation of self-management, self-optimization, and self-adaptation
networks. To address this challenge, researchers and network providers are exploring new solu-
tions, including creating optimized MD2D networks and providing automated routing protocols
and adaptive routing frameworks and policies. Based on the above motivations, several research
questions have arisen. These questions are as follows: how can traffic overheads in future wire-
less cellular networks be reduced? Second, what are the limitations and advantages of different
MD2D routing protocols? Third, how to design efficient MD2D routing protocols and frame-
works to improve cellular performance? And finally, How to create adaptive and intelligent
MD2D routing protocols?

These questions are the foundation of this thesis and provide direction for its development. As
a result, the objectives of this thesis can be summarized as follows:

• Objective 1: To evaluate the possible solutions for network congestion and traffic flow in
the cellular network.

• Objective 2: To reduce traffic congestion and increase coverage and capacity in future
cellular networks.

• Objective 3: To propose new multi-hop device-to-device (MD2D) routing algorithms and
frameworks.

• Objective 4: To make MD2D routing intelligent and adaptive based on user or application
requirements.

1.3 Thesis Contributions

The thesis contributions are summarized as follows:

1. A thorough investigation of current limitations and challenges of wireless cellular net-
works and the future direction is conducted. We explore solutions using KDN architec-
ture for different parts of the network. We investigate ML-based optimization algorithms
for various network applications in future cellular networks and summarize the most in-
fluential research studies.

2. A detailed study is performed to investigate the performance of proactive and reactive
MD2D routing protocols using hybrid SDN architecture for wireless distributed networks
(HSAW), SDN-based multi-hop D2D routing protocol (SMDRP), and virtual ad hoc rout-
ing protocol (VARP-S). Our results show that the proactive MD2D protocol (HSAW)
introduces the highest overhead in the cellular channel while consuming the highest en-
ergy compared to the other two reactive protocols (SMDRP and VARP-S). Conversely,
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HSAW provides the lowest end-to-end (E2E) delay and packet loss compared to reactive
protocols.

3. An intelligent joint topology control and multi-hop routing called fuzzy-based participa-
tion and routing protocol for MD2D (FPRM) to increase the network lifetime and packet
delivery ratio (PDR) is proposed. In our approach, a fuzzy-based participation mechanism
controls and manipulates the network’s topology.

4. A new joint utility-based routing protocol called application-driven cross-layer MD2D
routing protocol (ACMRP) is presented. ACMRP finds optimal route by incorporating
knowledge from the application and network layers. Our protocol creates network knowl-
edge and formulates multiple link-state databases (LSDBs) that can be used to adjust a
route by considering the user and application requirements.

5. The concept of virtual network slicing for WiFi channels and a mechanism to enable
multiple MD2D routing protocols deployed over each virtual slice was proposed. The
network slicing problem is interpreted as a swarm of particles, where UEs/particles rep-
resent a candidate solution. As a result, we deploy the improved self-adaptiv particle
swarm optimization (IDPSO) algorithm to dynamically identify the network slices and
deploy different routing protocols depending on the user application on the network slice.

6. Finally, a new MD2D position-based routing protocol is proposed and compared with a
link-state routing protocol. We jointly use the coordinates of nodes with zone-prescribed
neighbor discovery to provide fast and flexible routes. To preserve the location of nodes
and keep the routing protocol secure and reliable, a privacy-preserving scheme is used in
the WiFi channel during MD2D communication.

1.4 Research Methodology

This research endeavors to study the potential benefits of knowledge-defined routing strategies
for future wireless networks and to explore and recommend innovative solutions for MD2D
communication. To achieve this, we have extensively evaluated various optimization techniques
and strategies, selecting those that are computationally efficient and cost-effective. Our method-
ology incorporates optimization techniques, including fuzzy logic strategies, utility functions,
particle swarm optimization (PSO), learning automata (LA), and genetic algorithms (GA). By
leveraging a range of optimization techniques and strategies, this research aims to investigate
and recommend new solutions for future wireless cellular networks, specifically using MD2D
communication. Our proposed solutions have been thoroughly evaluated and validated using
open-source network simulation tools such as MATLAB and Network Simulator-3 (NS3). The
findings of this research will contribute to the advancement of future cellular network design
and deployment.
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1.5 Thesis Structure

This thesis is organized as follows:

• Chapter 2: This chapter presents an overview of cellular networks and provides enabling
technologies, challenges, limitations and possible solutions. We also introduce the new
RAN architecture and its capabilities. We thoroughly investigate heterogeneous ad hoc
networks and a detailed literature review of existing MD2D routing protocols.

• Chapter 3: A comprehensive study of proactive and reactive routing protocols for mobile
networks based on SDN is presented in this chapter. To this end, previously designed
routing protocols are investigated in depth, HSAW as a proactive protocol, VARP-S, and
SMDRP as reactive protocols. The routing protocols are compared in distinct environ-
ments with different node densities and mobility rates. In each setting, the weakness and
strengths of each protocol are analyzed in terms of E2E delay, dropped packets, energy
consumption, and routing overhead.

• Chapter 4: This chapter presents a fuzzy-based node participation and routing protocol
for MD2D networks. A sub-layer at the network layer that can determine nodes with the
highest participation probability in routing is utilized by utilizing a fuzzy logic system.

• Chapter 5: This chapter proposes a new utility-based routing protocol, known as
application-driven cross-layer MD2D routing protocol (ACMRP), to adjust a route by
considering the application requirements and packet-level information. Our protocol
creates network knowledge and formulates multiple LSDBs that can be used to evaluate
different route strategies.

• Chapter 6: This chapter introduces an adaptive slicing mechanism with a dynamic MD2D
routing protocol selection technique for future wireless cellular networks. A controller is
responsible for collecting the network data and utilizing the improved self-adaptive par-
ticle swarm optimization (IDPSO) algorithm to virtually slice WiFi channels into various
virtual sub-layers based on network traffic. In particular, our algorithm uses data request
from users to create virtual slices where users with similar content can share and down-
load data to or from other users. Moreover, the controller prescribes the most efficient
routing protocol using the genetic algorithm (GA) in conjunction with learning automata
(LA) for any virtual slices based on the content, mobility rate, throughput, number of
neighbors, and network density.

• Chapter 7: This chapter presents a new MD2D position-based routing protocol in con-
junction with zone-prescribed neighbor discovery. Our protocol acquires the position of
the nodes and identifies the the zones that need to perform neighbor discovery. The BS
prescribes reliable routes and the next hop based on the distance and number of hops to
the destination. The BS utilizes node positions to create geographical link-state databases
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(GLSDB). The GLSDB evaluates the paths to the destination by deploying a privacy-
preserving algorithm and an efficient cost function.

• Chapter 8: The final chapter concludes our research work. We summarize all the chapters
in the thesis and draw a conclusion based on our study. We further exploit the research
and provide insights into the future direction of this thesis and how one can continue and
contribute further in this field.
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2
Literature Survey

2.1 Overview

Part of the upcoming chapter is published in Elsevier Array 1. The main objective of this
chapter is to provide an overview of the current challenges faced by wireless cellular networks
and potential solutions. The challenges discussed include traffic congestion and future user
demands. The focus is then placed on device-to-device (D2D) communication as a promising
solution to address future cellular traffic congestion.

2.2 Introduction

The substantial increase in user and application demands has necessitated cellular network oper-
ators to explore innovative solutions for managing the exponential growth in data traffic. There
are several potential strategies that can provide relief, such as the deployment of smaller cells to
accommodate more users, but this approach reaches a point of diminishing returns and incurs
significant costs. Another alternative is to develop new algorithms to facilitate shared com-
munication channels, however, there are limits to the amount of bandwidth that can be shared
among users. Hence, it is imperative for new technological advancements to emerge, offering
more efficient and effective solutions.

1Ashtari, S., Zhou, I., Abolhasan, M., Shariati, N., Lipman, J., Ni, W. (2022). Knowledge-defined networking:
Applications, challenges and future work. Array, 100136.
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The future of wireless cellular systems demands innovative solutions to address the growing
demands of users and applications. To meet these demands, two promising approaches have
emerged. The first is the utilization of D2D communication, which enables adjacent nodes to
exchange data without the involvement of a base station (BS). The second approach is to en-
hance the intelligence and self-management capabilities of the network architecture. Despite
the advancements of 5G technology, it falls short in providing sufficient flexibility and intelli-
gence to handle the increasing demands for massive machine-type communication (mMTC),
low-latency, and enhanced mobile broadband (eMBB) services [17]. The next-generation,
sixth-generation (6G) cellular network holds the potential to overcome these challenges and
improve performance through terahertz frequencies, ultra-reliable low latency communications
(URLLC) and the implementation of advanced intelligence within the network architecture [18].
Thus, a transformation is necessary from the current 5G architecture to a more intelligent cel-
lular network.

For an architectural transformation, we need to look at the missing components in the current
cellular architecture. One critical component that is missing is intelligence. More specifically,
the intelligence that comes from knowledge. As shown in Figure 2.1 the knowledge resides
in the controller and uses network information to create intelligence. Knowledge is used for
recommendation and automation across wired and wireless network applications. For instance,
in resource management problems, parameters such as bandwidth, quality of service (QoS),
and power can be obtained and processed using an machine learning (ML) algorithm in dif-
ferent network situations [19]. The output of ML can be referred to as intelligence over the
network, which is used for automation purposes. Moreover, routing decisions can benefit from
knowledge in the networking applications for better route discovery while the network is con-
gested [20].

The remainder of this chapter delves into the examination of network architecture and the latest
developments in D2D technology. We begin with an exploration of the evolution of wireless
cellular communication, delving into the underlying enabling technologies and highlighting
the prevailing challenges faced by the current cellular network. Subsequently, we examine the
architecture of wireless networks and the advancements in D2D communication. This thesis
endeavors to present a novel network architecture that incorporates advanced network topolo-
gies and protocols, leveraging the capabilities of D2D communication to enhance the overall
network performance.

2.3 Wireless Cellular Network

In wireless cellular communication, users request and receive information from the BS. Nowa-
days, the majority of cellular traffic is consumed by smart devices. The growth in demand
for information and data among users has resulted in a rapid increase in the use of wireless
cellular communication. In recent years, the widespread adoption of smart devices has revolu-
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Figure 2.1: Integration of KDN into cellular architecture.

tionized the way people communicate and access information. Today, three out of four people
worldwide own smartphones and rely on cellular communication as their primary means of
communication. The increasing popularity of new applications such as internet-of-things (IoT)
and autonomous vehicles has also contributed to the growth of cellular traffic. To keep pace
with the growing demand, ongoing research and development efforts are focused on enhanc-
ing the capabilities of radio access networks (RANs) and cellular networks. In the following
sub-sections, we provide a brief overview of the recent cellular network innovations and the en-
abling technologies. Finally, we present the direction of this thesis using the current challenges
and possible solutions.
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2.3.1 Evolution of Wireless Cellular Networks

Since the first generation (1G) of cellular communication, increasing adoption, user expecta-
tions and new bandwidth-hungry applications have led to the steady advancement in the evo-
lution of cellular networks [21]. For instance, the upgrade from 1G to second generation (2G)
provided faster connectivity by enabling time-division multiple access (TDMA) and expanding
the communication bandwidth. Later advancements in modulation techniques and RAN en-
abled third-generation (3G) wireless networks, where low bit rate web traffic type applications
were enabled. There has always been a significant change in every evolution. However, the
fourth generation (4G) of wireless cellular networks was a significant leap forward in terms of
providing higher data rates and increasing network capacity.

The evolution of cellular networks has been driven by a combination of increasing demands,
rising user expectations, and bandwidth-intensive applications. Since the first generation (1G)
of cellular communication, steady advancements have been made, leading to faster connectivity
and initiation of new applications. For example, the transition from 1G to the second generation
(2G) involved the implementation of time-division multiple access (TDMA) and an increase
in communication bandwidth. Subsequent advancements in modulation techniques and radio
access networks (RANs) led to the introduction of third-generation (3G) wireless networks,
which enabled low-bitrate web traffic type applications. The fourth generation (4G) of wireless
cellular networks marked a significant leap forward in terms of providing higher data rates
and increased network capacity, and every subsequent evolution has brought about significant
changes as well.

Summary of current and future cellular technologies:

• 4G: 4G is still in use in various parts of the world. 4G provides fast connectivity and
high-resolution data content. 4G was introduced in the late 2000s but upgraded rapidly
throughout the 2010s [22]. New technological innovations such as multiple-input
multiple-output (MIMO) antennas helped 4G to attain a significant difference from the
other generation of cellular networks. 4G was the main evolution in wireless cellular
communication in Internet connectivity, multimedia service, voice, and online streaming.
The key advantages of 4G compared to its predecessors were faster connectivity,
capacity, security, and low cost of services. However, all around the world number of
smart devices is exponentially increasing. Consequently, more devices and applications
will require cellular connectivity, causing massive data traffic. Therefore, due to higher
user demands and the emergence of new applications, 4G was replaced by 5G [23].

• 5G: The fifth generation (5G) of wireless cellular networks was established in December
2017 by the 3rd generation partnership project (3GPP). 5G was in operation as of 2022
in most developed countries, and it’s now officially the latest cellular network technol-
ogy. 5G provides 100 times faster connectivity, 10 to 100 times increase in the number of
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connected devices, 5 times lower E2E delay, and 10 times extended battery life compared
to 4G. The enabling technologies in 5G are advanced access technology named beam
division multiple access (BDMA), non- and quasi-orthogonal or filter bank multi-carrier
(FBMC) multiple access, and millimeter waves (mmWaves). Millimeter waves provide
a high-band spectrum for high speed and low latency, enabling up to 10 Gbps data rate.
Ideally, a two-hour movie would take less than four seconds to be downloaded by 5G.
Although 5G provides massive advantages compared to the previous generation, the ex-
isting 5G architecture lacks the flexibility and intelligence to enable self-management,
self-optimization, and self-adaptation [6].

• 6G: The study on the sixth generation (6G) of wireless cellular networks started in Oc-
tober 2020 by next generation mobile networks (NGMN) [24]. They proposed a new
“6G Vision and Drivers” project to provide early direction for global 6G activities. Many
countries and universities across the world have started their research focusing on several
challenging areas, including reliable near-instant unlimited wireless connectivity, dis-
tributed computing, intelligence, and technological advancements in antennas, circuits,
and devices. Among the research community, many are concentrating on AI-enabled
technologies to facilitate ML/AI to make the network intelligent and self-drivable. 6G
is intended to make architectural changes to the existing cellular network and create an
open environment to provide flexibility and intelligent functionalities. Future networks
must be prepared for the massive number of services and applications that require ultra-
reliable and low-latency communication (uRLLC), massive machine type communication
(mMTC), and enhanced mobile broadband (eMBB) [25].

The evolution of cellular networks has always concentrated on data rate, user connectivity, and
E2E delay. However, the massive growth of applications and user demands for ultra-reliable
services with the highest QoE leads us to 6G and beyond.

2.3.2 Enabling Technologies for Future Wireless Networks

Several enabling technologies can assist the emergence of the next generation of wireless cel-
lular networks, where some of them are explained as follows:

• Network Function Virtualization (NFV): The growth and complexity of traditional net-
works have resulted in inefficiency in management and service provision. To address
these issues, network function virtualization (NFV) was introduced as a solution that de-
couples network functions from proprietary hardware and transforms them into software.
This decoupling improves service provision and reduces operational and capital expendi-
tures. NFV is a crucial enabler for improving network performance in mobile networks,
where it enables on-demand agile provisioning of mobile functions. When combined
with Software-Defined Networking (SDN), NFV offers a scalable and elastic ecosystem
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for automated network management and orchestration. The integration of NFV and SDN
is considered a key breakthrough in 5G and future wireless networks, such as cellular,
IoT, vehicular, and machine-type communication. The incorporation of NFV with wire-
less networks offers high flexibility in network orchestration and enables the optimization
of physical resources, reduction of costs, and decrease in network energy consumption. In
5G, most of the core network functions are virtualized, providing adaptability in various
network scenarios [26].

• Open-Radio Access Network: Open-radio access network (O-RAN) is an emerging
technology that enables service heterogeneity, on-demand service deployment, and si-
multaneous coordination of heterogeneous devices [27]. O-RAN was introduced in 2018
by merging the xRAN Forum and C-RAN alliance to create a new openness function-
ality that would support the evolution beyond 5G and 6G wireless. Over the past few
years, various efforts from the research industry have been made to enhance the radio
access network (RAN) [27,28]. Among them, cloud-RAN or centralized-RAN (C-RAN)
is a promising RAN architecture that helps to reduce baseband expenses. Further, a vir-
tualized radio access network (V-RAN) brings the benefit of cloud and virtualization to
increase the network’s agility, scalability, and flexibility. This architecture has helped
RAN with new opportunities for virtualization and cost reduction. V-RAN simplified the
management of RAN devices and deployment. Although C-RAN and V-RAN are both
cost-effective and readily available for any changes to service requirements, they lack the
openness to maximize the benefit of virtualization. To overcome the limitations associ-
ated with both C-RAN and V-RAN, O-RAN accommodates the baseband unit (BBU) and
remote radio unit (RRU) software and hardware from different vendors [29]. O-RAN is
open hardware with an operator-defined RAN architecture that provides intelligent radio
control for future cellular networks. The O-RAN intelligent controller (RIC) disaggre-
gates the control, and data planes of the RAN to provide flexibility and programmabil-
ity [30]. O-RAN standardizes the control plane using open infrastructure and provides
programmability by exploiting SDN and NFV principles. Intelligence is the fundamental
building block of wireless networks beyond 5G [31,32]. The main objective of O-RAN is
to incorporate open interfaces and intelligence in RAN through virtualized network ele-
ments to enhance the RAN performance. O-RAN has influenced the market by presenting
new opportunities for operators to achieve core network independence by manipulating
network protocols and topology [33]. This will allow operators to leverage their core ser-
vices by integrating the latest technological supports and next-generation communication
protocols and frameworks.

• Network Slicing: As a result of network softwarization (NFV/SDN), network slicing is
considered an ultimate solution to transform the existing wireless networks into software-
based network slicing that can operate on a physical network infrastructure [34]. Net-
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work slicing provides the dynamic creation of logically isolated networking and service-
customized solutions using a shared infrastructure. 3GPP defined the network slicing for
basic principles concerning RAN operations in [35]. SDN and NFV help in slicing the
RAN architecture, which is an emerging research direction towards virtualization, cloud-
ification and centralization of RAN resources beyond 5G mobile networks. Network
slicing is part of the 5G networks that allows multiple instances of pre-defined slices for
services, including eMBB, mMTC, vehicle-to-everything (V2X), etc. Currently, the most
popular network slicing in 5G cellular networks is scheduling the physical resource blocks
(PRBs) at RAN. Mobile operators can efficiently slice the entire infrastructure based on
user requirements and industry demands. Network slicing in future wireless networks is
essential, especially in open radio networks, where intelligence exists. The network slic-
ing in the intelligent controller enforces policy-based resource management with near-
real-time functions to achieve the desired performance gain. Therefore, network slic-
ing is one of the necessary enablers and performance indicators in future networks that
can monitor and manage the QoS of different services, including mission-critical, safety,
etc. [36].

• Artificial Intelligence orMachine Learning: Artificial intelligence (AI) is a progressive
branch of computer science that deals with automation across various fields, and ML is
an application of AI. ML is applied to developing systems to learn from patterns and
data without explicitly being programmed [37]. The 6G architecture requires adapting
an ML technique to optimize and create intelligence for the network. ML applications
have been successfully utilized for network analysis, online customer support, search
engines, computer vision, and signal processing applications [38]. As a result, research
studies based on ML on various aspects enable the network paradigm to access and adapt
a suitable ML algorithm for the appropriate task. Future wireless networks depend on AI
to simultaneously generate policies, detect network anomalies, traffic management, etc.
This new concept of an AI-enabled network is known as a self-driving network, which
helps adjust and tune the system. ML empowers machines to learn patterns and optimize
them as much as possible, which is an integral part of self-driving networks. ML is the
most critical enabler of 5G and beyond networks to allow intelligence into the network
architecture.

The enabling technologies provide insights and show the capability to create an intelligent net-
work. These technologies are geared towards the goal of constructing a highly advanced and
intelligent cellular network infrastructure. With their programmable and self-tunable capabili-
ties, these technologies provide a robust platform to achieve the desired network performance.
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2.3.3 Network Challenges

Despite the numerous advantages of SDN in 5G, several challenges need to be addressed to fully
leverage its potential in future generations of cellular communication networks. These chal-
lenges include optimal placement of the SDN controller [39, 40], efficient retrieval of network
topology and link-state information [41], traffic engineering and orchestration [42], ensuring
quality of service (QoS) requirements in heterogeneous networks [43], and exploring AI/ML
techniques for network automation and management [44].

Along with the many benefits NFV offers, network operators face several common challenges
when deploying network virtualization applications. Virtualization has shown abnormal latency
and significant throughput instability [45]. Therefore, making sure the NFV performance will
at least be as good as the network without virtualization is one of the main problems. Another
significant problem associated with network virtualization is how to smoothly migrate from the
existing network infrastructure to virtualized-based network functions. Moreover, NFV faces
some critical challenges in practice, including an increase in the number of virtual networks,
resource orchestration in shared infrastructure, management complexity, several requirements
from different tenants, and many more [46].

One of the main building blocks of 6G is intelligence, and as discussed before, intelligence
comes from AI/ML-enabled techniques. However, the integration of AI with edge networks
faces many challenges because the application services running in 6G must operate in real-time.
AI embedded systems in 6G must meet services and applications’ requirements. 6G is expected
to support self-driving vehicles, deployment of the fourth industrial revolution (Industry 4.0),
smart city/building services, augmented reality/virtual reality (AR/VR) services, and more [47,
48]. For 6G to support all these services, new technological advancements and software updates
are needed (e.g., O-RAN, SDN, NFV, ML/AI, etc.).

2.4 Wireless Network Architecture

Traditional cellular architecture suffer from complexity, lack of flexibility, proprietary and ex-
pensive equipment. However, the idea of running network applications in a logically cen-
tralized controller shows the potential to address these challenges. SDN architecture enables
programmability, more straightforward configurations, and network management. To go one
step further in software-defined cellular networks, KDN introduced intelligence in addition to
programmability and centralized control of SDN [49]. It is essential to understand the KDN
paradigm because it illustrates the main building blocks of future wireless cellular networks.
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Figure 2.2: Software-defined networking versus the traditional network architecture.

2.4.1 Software-Defined Networking

Traditionally, network upgrades or configurations were performed manually as packet forward-
ing and routing decisions were executed by network devices [50]. In contrast to traditional
networks shown in Figure 2.2, which have tightly coupled control and data plane equipment,
SDN logically separates the control functions from network devices and simplifies them as for-
warding elements. The forwarding instructions are determined by the centralized control plane,
which has a global view of the network. This enables the dynamic allocation of network re-
sources based on the application requirements. The control plane installs flow rules for the
forwarding devices, and its main applications include the management of routing algorithms,
load balancing, and access control. SDN is considered a critical enabler for current and future
generations of wireless cellular networks, and its paradigm was developed in 2008 to address
the problems associated with traditional networks. The programmability functionality of SDN
in the network simplifies network management and enables innovation [51]. SDN played an es-
sential role in 5G functionality and performance [52]. Based on its unique characteristics, it will
be indispensable for the evolution of beyond 5G and 6G mobile networks. The SDN controller
interacts between the switches via the application programming interface (API) protocol. The
two most recognized protocols are OpenFlow (OF) and the programming protocol-independent
packet processor language abbreviated as P4. SDN paradigm enables innovation and deploy-
ment of new services by simple software updates. SDN paradigm provided many advantages
across different networks, including wireless local-area networks (WLANs), mobile clouds, ve-
hicular ad hoc networks (VANETs), air-space-ground integration networks, satellite networks,
and unmanned aerial vehicle (UAV) networks [50, 53, 54].

The SDN platform has two main southbound protocols to communicate between network
planes, OF and P4. With the arrival of OF, the term SDN was officially operational and used
by the research community as early as 2009 [55]. However, it did not have much impact on
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networking vendors until 2011, when OF eliminated the configuration complexity and
automated network management. The development of OF started in 2011, and the latest
version was released in 2016. SDN operates with OF standards to manage large-scale
networks to provide more straightforward configuration options. OF applies a fixed set of
protocols to populate the rules in the data plane using the control plane. However, OF is
understandable by a fraction of available hardware routers and switches [56]. Moreover, the
OF does not control the switch’s behavior of the supported protocols. It only provides a way to
populate the tables in the switch. The current OF has specific and fixed protocol headers for
forwarding a packet. This increased the complexity of the specifications without providing any
flexibility for adding new headers. To solve the problems with OF, the programming
protocol-independent packet processor P4 language was developed. P4 is a tool that reduces
the complexity of OF. The necessity of P4 alongside (or operating separately without OF) OF
for improving network functionality is promising [57, 58]. P4 was first introduced in 2014 to
address the limitations of the data plane by providing flexibility in programming the data plane
in network switches that support OF standards [59, 60]. The P4 high-level language for
programmable protocol-independent packet processors was developed through the
collaboration of Barefoot Networks, Intel, Stanford University, Princeton University, Google,
and Microsoft [58]. P4 enables programmability of the data plane and allows switches to
process the packet. Hence, vendors and enterprises will be able to develop their
application-oriented software for a programmable switch chip, resulting in several benefits to
the network, such as reducing the packet processing time, modifiable packet headers, and
switch protocol independence. These programmable switch chips are based on a
protocol-independent switch architecture (PISA) [61].

2.4.2 Knowledge-Defined Networking

The concept of knowledge was introduced by Clark et al. [12], where the authors proposed a
new idea called knowledge plane (KP). As shown in Figure 2.3 KP is an additional plane over
a network with inbuilt ML capabilities. The incorporation of KP in the network architecture
can be referred to as knowledge-defined networking (KDN) [11], where knowledge is the pro-
cessed network information using an ML algorithm. The fundamental building blocks in KDN
are network telemetry, SDN, and ML. Network telemetry is network information, such as Net-
Flow data, sFlow data, queue occupancy, policy rules, and processing time. However, to fully
automate the network, information such as hop latency, link utilization, packet drop, and queue
congestion states are also required. This temporary data is available through in-band network
telemetry (INT) or packet-level network states. The packet-level network state information can
be collected using a new southbound domain-specific language called P4 [58], which allows the
collection of information directly from the data plane.

With the new advancements in data plane elements, routers and switches are capable of com-
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putation and storage, which makes network monitoring and network telemetry accessible [62].
Network telemetry provides flow information, real-time packet information, and other critical
packet-level data, as well as network state monitoring and organization with centralized network
analytics. Hence, network telemetry and network analytics present a richer view of network per-
formance metrics, providing an extra advantage over conventional network management tech-
niques. The incorporation of SDN and network analytics provides essential elements required
by the KP. However, the last piece of the puzzle to make the KDN fully functional is to integrate
ML. ML uses network telemetry and historical data to process and finds valuable information
about the network, where this information is stored as knowledge to improve network perfor-
mance.

ML algorithms are generally classified as supervised learning (SL), unsupervised learning (UL),
and reinforcement learning (RL) [63]. In SL, the learning agent learns using a dataset as an in-
put vector and maps the inputs to the outputs based on the previous inputs with their provided
outputs. The dataset is a collection of labeled samples, where each element is called a feature
vector. In UL, the dataset collects unlabeled samples, where the learning agent tries to catego-
rize the input. Finally, in RL, the machine continuously observes the environment to improve
decision-making. This technique constantly provides updated policies based on environmental
feedback. Each ML algorithm can assist in the different applications of wireless networks. For
instance, in SL, the KP learns the behavior of the network variables, such as network configura-
tion and traffic load, which will enable the system to increase the network performance once the
features are fed to the algorithm. UL assists the network operator by following the correlations
in the data. For example, ML may predict the user’s mobility effect on a communication link.
Moreover, in RL, the learning algorithm will discover the best action that leads to an optimal
configuration in a network. RL determines the target policy and adapts to the environment.
Based on the target strategy, RL can be integrated into the KDN architecture to perform op-
timal actions [64]. As a result of network softwarization, network telemetry, and integration
of ML in the KP, intivitatives such as O-RAN have emerged. KDN can overcome the draw-
backs associated with conventional resource management, mobility management, networking,
and localization [11].

2.4.3 Knowledge-Defined Networking Architecture

The concept of KDN is to add one more plane to the traditional two planes of SDN, which
incorporates SDN, data analytics, and ML. The KDN paradigm has several advantages: first, it
has a global view of the network, and second, it enables telemetry data to be collected by the
management plane to transform the data into knowledge via ML. The knowledge will later turn
into decisions by nodes to achieve efficient network operations [65, 66]. The benefit of having
the KDN over traditional networks is that it automatically operates based on the knowledge
obtained from the network. Figure 2.3 illustrates the KDN architecture, including the data
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Figure 2.3: Knowledge-defined networking architecture.

plane, control plane, management plane, and knowledge plane.

The data plane in KDN is responsible for forwarding, dropping, processing, and packet modifi-
cation. This layer works precisely like the data plane in SDN, where it consists of physical and
virtual device elements. This layer operates unaware of the rest of the network and relies on the
instructions and control rules coming from other planes.

The control plane exchanges information and updates the data plane processing and matching
strategy rules. The logically centralized controller exchanges data and updates policies using
a southbound application programming interface (API). The controller gathers the data and
network state from the data plane and updates the flow tables to perform actions. In KDN, the
data are also utilized to allow the KP to know which appropriate action is required. Then, the
controller receives an action from the KP and updates the flow tables accordingly. These actions
are usually used for forwarding and routing packets while the data plane is populated.

The management plane facilitates network topologies, support services, and configuration of
the network devices. This layer must ensure that the network operates fully with maximum per-
formance. This functionality of the network and the responsibility of monitoring the data plane
and network analytics is also the job of the management plane. KP can influence management
plane decisions when a new strategy or policy is available.

KP is the brain of the architecture and is responsible for modeling network behavior and
decision-making. The decisions are made for different network applications, including re-
source management, networking configurations, mobility management, and localization. ML
algorithms create knowledge in this layer, and new policies are established. For instance, data
layer information, such as routing policies and parameters, can be obtained and fed to an RL
algorithm for further processing to find the optimum Hello packet interval. ”Hello packet” - a

19



special packet transmitted and used to determine network adjacency. Therefore, using an ML
algorithm at the KP enables the operation of network protocols to be enhanced.

A number of studies have introduced the KDN architecture. For instance, the authors of [67]
restated the concept of the KP in the context of SDN architecture in addition to the two planes
of the SDN paradigm. As can be seen in their network architecture, the KP is located on top
of the control and management planes. The integration of the KP generates behavioral models
and reasoning processes for decision-making. This architecture enables the KP to have a full
view and control of the network through the control and management plane. Other research
studies [19, 68, 69] have a similar architecture for KDN. In [68], the same KP is utilized on top
of all the layers, but it uses a cross-layer management and monitoring plane with ML algorithms
to manage the rest of the planes. The proposed method utilizes an ML-based algorithm in both
separate orchestration layers and embedded in the management plane. Therefore, it is impor-
tant to investigate the architecture of KDN in wireless networks to identify the most suitable
architecture in terms of flexibility and performance.

The architecture of the KDN in wireless networks can be centralized, distributed, or hybrid. In
a centralized architecture, as shown in Figure 2.4a, the controller is located at the center of the
network and collects information from nodes. The information is processed through knowledge
plane, and then instructions and rules are transmitted to nodes. The new rules are updated using
both direct and indirect approaches. The direct approach uses the previously processed infor-
mation and sends new strategies immediately back to the user equipment (UE). The indirect
approach uses an ML algorithm to determine new rules before being sent to UEs. In the dis-
tributed architecture illustrated in Figure 2.4b, the individual devices maintain local knowledge.
Each node collects data from the environment and its surroundings and then independently ap-
plies a greedy-basedML strategy to acquire knowledge. The greedy strategy may be determined
from prior knowledge (such as transfer learning (TL)) or using new ML-based optimization al-
gorithms. For instance, in a routing scheme, a node can collect information from other nodes
and use ML-based approaches to find the best route. In the hybrid architecture, as depicted in
Figure 2.4c, knowledge is maintained at both the extreme edge and core with updated or syn-
chronized knowledge. Both the controller and devices act intelligently together based on the
information they collect. This information is processed by ML algorithms to acquire knowl-
edge and injects new rules into the system. The hybrid approach combines the greedy strategy
and centralized knowledge to increase the network performance. Further, there can also be a
switching strategy to switch between centralized and distributed according to the application.

2.5 Heterogeneous Device-to-Device networks

Due to the popularity of different applications, such as self-driving cars, IoT devices, smart-
phones, and recently unmanned aerial vehicles (UAVs), researchers and network providers be-
gan introducing new technique and solutions for network traffic management [70]. Network
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(a) Centralized architecture of KDN.

(b) Distributed architecture of KDN.

(c) Hybrid architecture of KDN.
Figure 2.4: Proposed KDN architectures.

21



providers started to increase the number of BS by deploying small cells (BSs with short cover-
age areas) [71]. However, this solution is costly and makes network management more difficult.
Consequently, a new feature was presented to distinguish various applications into different net-
works. This feature was called a wireless ad hoc network, a decentralized type of wireless net-
work [72]. In ad hoc networks, nodes request and receive information from neighboring nodes.
Although ad hoc networks can decrease cellular network congestion and traffic, they lack flex-
ibility and coverage. Moreover, they were not designed to be integrated into cellular networks.
For this reason, D2D communication was introduced [73]. In a D2D network, devices may
communicate directly with or without the aid of the cellular network.

2.5.1 Device-to-Device (D2D) Communication

Device-to-device (D2D) communication was first proposed to extend the coverage at the edge
network where nodes cannot communicate to the BS due to low signal strength [74]. In general,
D2D can expand the network coverage and capacity and offers less E2E delay, energy consump-
tion, and cellular overhead [75]. D2D communication is claimed to be an essential part of 5G
networks [76]. The 3GPP standardized D2D in public safety, emergency services, V2X com-
munication, autonomous ships, and IoT [77]. In these applications, the data must be exchanged
directly between nodes using D2D to avoid data loss and late data delivery. However, various
challenges, such as security protocols, mobility management, and resource management, need
to be addressed. One of the main challenges in D2D communication is identifying an optimal
route. Without an efficient routing framework or protocol, vital information can be delayed
or, in worst-case scenarios, lost. Several research studies in D2D communication have pro-
posed new practical algorithms to improve routing performance. Nevertheless, many believe
that future routing protocols must facilitate ML for adaptation and security reasons.

2.5.2 Multi-hop Device-to-Device (MD2D) Communication

D2D communication lacks flexibility and scalability because it can only communicate with
nodes in one hop neighbor. Therefore, to increase the network throughput and expand the D2D
coverage [78], MD2D communication was introduced [79]. MD2D is an ongoing investigation
by 3GPP because it carries many challenges [80]. Among the challenges, an adaptive and
intelligent routing protocol is essential for MD2D. In current wireless networks, devices work
with high-frequency signals to increase the data rate. However, the consequence of using high
signal frequency is the growth of signal attenuation. In the case of static networks, we can
predict the attenuation and prescribe a routing technique, but in mobile networks, attenuation
can cause a significant deterioration in performance. Therefore, an efficient routing protocol is
crucial for deploying MD2D in future cellular networks. If the routing protocol in MD2D is
designed carefully, it can have significant benefits in IoT, mobile, and vehicular applications.
For instance, in agriculture farms where IoT devices are scattered across a large area, instead of
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(a) (b)
Figure 2.5: a) Illustrate the decentralized MD2D framework, and b) shows the centralized framework.

deploying relay centers to collect data, MD2D can use devices as relay nodes to collect the data.
In mobile networks, where social media and the Internet are the primary cellular network traffic,
MD2D can be used to share social media content. Moreover, self-driving cars can receive road
information from other vehicles and roadside units to make safety and traffic decisions.

2.6 MD2D Routing Frameworks and Protocols

Routing protocols are used in heterogeneous ad hoc networks to enable communication between
two devices. Routing protocols discover the appropriate path from the source node to the des-
tination and maintain the route in the network. The performance of routing protocols depends
on various factors, including E2E delay, packet delivery ratio (PDR), power consumption, and
throughput. MD2D network is an integral part of future wireless networks to enable devices in
close proximity to communicate and acquire information without the intervention of a central-
ized controller. To benefit from the MD2D networks, the first thing that needs to be designed
carefully is the framework. MD2D frameworks are the architectural infrastructure or the spine
of the structure. Routing protocols are built on top of the framework. Three frameworks exists
for MD2D networks, as stated below:

• Decentralized Frameworks: As shown in Figure 2.5a, decentralized frameworks act
without the intervention of a BS or a centralized controller. In this framework, nodes act
distributedly and must manage the routing procedure and resource allocation by them-
selves. The advantage of decentralized frameworks is very low cellular overhead. The
disadvantages are lack of agility, difficulty of management, security and scalability.

• Centralized Frameworks: As illustrated in Figure 2.5b, a centralized controller like the
BS is responsible for managing the network. In this framework, the BS must provide
appropriate network information to the nodes. Nodes receive rules and policies from
the BS, and they act accordingly. The disadvantage of this framework is the additional
cellular overhead. The advantages are ease of management, optimal resource utilization,
improved security and adaptability of the framework to the network environment. In this
framework, the controller has up-to-date knowledge of the entire network and can make
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(a) (b)
Figure 2.6: a) Proactive routing protocol, and b) reactive routing protocol.

the right decisions in highly dynamic environments. Centralized frameworks proved to
perform better than decentralized [3].

• Hybrid Framework: The combination of the decentralized and centralized architecture
is a hybrid framework. In the hybrid framework, the controller provides the necessary
information to the nodes, where nodes are responsible for actively processing the data
in a decentralized manner and evaluating a route. For instance, frequent observation of
the controller is not needed in static and semi-static IoT networks. Therefore, nodes can
obtain new information and update their policies using decentralized protocols.

In order to develop an effective routing protocol, it is crucial to first design a comprehensive
framework. This framework serves as a guide for the architectural regulations of the network.
Upon the establishment of the framework, the next step is to introduce a routing protocol to
determine the optimal route. Routing protocols can be broadly categorized into proactive, re-
active, and hybrid. Detailed descriptions of these categories will be provided in the following
paragraphs. This thesis will concentrate on centralized and hybrid frameworks. There have
been several proposed routing protocols for MD2D communication, each with its own advan-
tages and disadvantages, as reported in the following studies [81, 82]. Some of the prominent
routing protocols for MD2D include:

• Proactive Routing Protocols: These protocols use a table-based approach, where a rout-
ing table is maintained at each device that contains information about the routes to other
devices. As shown in Figure 2.6a, nodes receive the complete network information in
proactive routing protocols [83]. Where this information helps them to find routes in a
distributive manner, there are various proactive routing protocols proposed for mobile

24



networks [84, 85]. These protocols use the proactive routing strategy but different meth-
ods and policies to collect data and update routing information. The advantages of the
proactive routing protocol are the fast response to the network dynamics (low E2E delay)
and low packet failure. The disadvantages are high cellular channel overhead and energy
consumption.

• Reactive Routing Protocols: These protocols use a request-reply approach, where a de-
vice sends a request for a route when it needs to communicate with another device. In
contrast to proactive, where the centralized controller provides the whole network topol-
ogy, here, nodes request a route on-demand [86]. Therefore, if a node has a packet to
transmit, it demands a route to the destination from the controller. Then, based on the
network criteria and optimization algorithms, the controller obtains the path to the desti-
nation and provides it to the network. As shown in Figure 2.6b, the source node sends a
flow request (FREQ), and the controller forwards a flow reply (FREP) to the source node
with routing information. The advantages are low cellular overhead and lower energy
consumption. Compared to the proactive routing protocols, the disadvantages are higher
chance of packet failure and E2E delay.

• Hybrid Routing Protocols: These protocols combine elements of proactive and reactive
routing protocols. The best feature of both proactive and reactive routing protocols is inte-
grated to achieve high levels of scalability [82]. The hybrid approaches are cluster-based,
zone-based, or tree-based. In cluster-based methods, nodes are divided into clusters with
a cluster head that collects the data proactively, and nodes in that cluster use reactive
techniques to acquire route information from the cluster head. In zone-based approaches,
the network is physically separated into multiple zones, where nodes in each zone are
connected proactively, and to access nodes in other zones, they request a route from the
BS. In tree-based techniques, the network is defined as a tree where nodes are connected
with branches to the trunk (the gateway). Each branch represents a zone, and nodes can
communicate in a proactive or reactive approach, depending on the application.

• Geographic Routing Protocols: Geographic routing protocols are a class of routing
protocols that use the geographic location of devices to determine routes for MD2D com-
munication [87]. These protocols are based on the assumption that devices have some
form of location awareness, such as GPS or a location service provided by the network. It
is important to note that Geographic Routing Protocols can suffer from limited reliability
in dynamic environments, where mobility and changes in network topology can affect
the accuracy of location information. However, geographic routing protocols can handle
large numbers of devices in a network, making them well-suited for dense deployment
scenarios. Moreover, geographic routing protocols can reduce energy consumption by
using the location of devices to minimize the number of control packets exchanged and
the distance that packets need to be transmitted.
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• Utility-based Routing Protocols: These protocols are routing protocols that use util-
ity functions to determine the best path for data transmission [88]. Utility-based routing
protocols use different metrics such as energy consumption, throughput, delay, and reli-
ability to evaluate the quality of the different paths and choose the one that maximizes
the overall utility. Utility-based MD2D routing protocols can be adapted to different net-
work scenarios and changing conditions by adjusting the weighting of different metrics.
These routing protocols can optimize multiple objectives at the same time, such as energy
efficiency, E2E delay, PDR and throughput.

We focus on improving various routing protocols to optimize MD2D networks. The approach
and framework selected for the implementation of the routing protocol will be contingent on
the specific application and performance requirements. The objective is to create an efficient
MD2D routing protocol for the next generation of wireless cellular networks. Subsequently,
this thesis delves into a thorough investigation of routing protocols in MD2D networks.

2.6.1 Review of MD2D Routing Protocols

The research study on routing protocols in MD2D networks has increased exponentially with
the emergence of 5G. It started with upgrading the conventional D2D routing protocols to
MD2D with higher performance. For instance, authors in [89] proposed a reactive MD2D
routing protocol for 5G networks to enable nodes to exchange data at the edge network. They
modify the conventional dynamic source routing (DSR) algorithm and use a hybrid framework
with 5G features to make faster routing decisions. The proposed protocol reduces the WiFi
overhead by decreasing the number of control messages exchanged between the devices. Al-
though the proposed protocol shows better PDR and energy consumption, DSR lacks scalability
in highly dynamic networks due to long route maintenance time. Similarly, other authors tried
to improve and extend the existing routing protocols into multi-hop routing [90, 91]. For in-
stance, authors in [90] used the quality of the links to improve the performance of optimized
link state routing (OLSR), and in [91], destination sequenced distance vector (DSDV) is mod-
ified to allow particular nodes create routing tables. Furthermore, authors in [92] proposed a
new restricted broadcasting mechanism of route requests for ad hoc on-demand distance vec-
tor (AODV) to improve the routing performance. They specifically restrict the problematic
nodes and links during the path identification process. However, modifying conventional rout-
ing protocols for D2D and ad hoc networks cannot advance beyond a certain point. Therefore,
new routing frameworks with advanced routing mechanisms must be developed to fulfill the
requirements of future wireless networks.

One of the main advantages of MD2D is caching strategies in 5G, where the user content, such
as popular videos and viral content, can be stored at the edge network and shared among sev-
eral neighboring devices. Mobile networks can fully use the catching strategies with appropriate
routing protocols to enable mobile nodes to share information and communicate in a decentral-
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ized manner. There are various routing protocols and frameworks proposed for mobile nodes.
For instance, authors in [86] proposed a centralized reactive routing protocol called virtual ad
hoc routing protocol (VARP) for mobile devices. An SDN controller is used to extend cellular
services by adapting MD2D routing. If a node has a packet to transmit, it requests a route from
the SDN controller. The SDN controller collects all the adequate network information before
the node’s request to process and obtain the most efficient path. Once the flow request (FREQ)
is received, the controller checks the packet criteria to see if the MD2D routing can deliver suf-
ficient QoS. Then it will authorize MD2D communication by giving the source node the route
information. The proposed protocol increases the network lifetime, PDR, and throughput. Au-
thors in [93] used a similar approach, but instead of only providing the source node with the
routing information, the involved relay nodes will also receive the routing information. They
present a new SDN-based MD2D routing protocol (SMDRP) to reduce the E2E delay and in-
crease the PDR in highly dynamic networks. For a routing protocol to be reliable, it must show
high performance even in situations with high mobility rates. In [83] used a hybrid routing
protocol with a centralized SDN controller. The SDN controller collects all the network infor-
mation and creates a link state database (LSDB). The network information consists of Hello
packets established by nodes to confirm adjacency relationships, including the list of neigh-
boring nodes with their link quality. The SDN controller uses this data to create a table that
includes all nodes with their neighbors and associated link qualities. This table is transmitted
to all nodes, where nodes independently find a route to any destination (by using the shortest
path first (SPF) or Dijkstra’s algorithm). The advantage of this table is when a relay node can
not relay the information, the source node can immediately find a new path to the destination.
Therefore, the proposed protocol provides low E2E delay and high PDR.

Another application of MD2D protocols can be in VANETs. VANETs are generally classified
into two types of communication, vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I).
Vehicular communication to roadside units (RSUs) and other vehicles enables diverse applica-
tions related to safety, traffic efficiency and management, autonomous driving, and emergency
services. To have these application work efficiently, routing protocols for VANETs must be
designed carefully to provide the highest performance. Authors in [94] proposed an intelligent
greedy position-based multi-hop routing using fuzzy logic techniques. The overall goal of the
proposed method is to provide efficient and reliable data transmission links in V2V communi-
cation. The best next-hop node routing of a packet is calculated using the fuzzy logic system in
a centralized framework. Simulation results show improvement in PDR compared to similar al-
gorithms. In [95], the authors presented an inter-vehicle distance-based location-aware MD2D
routing to enhance the vehicle’s connectivity. The proposed protocol uses a decentralized frame-
work with a reactive-based routing protocol. Their algorithm predicts the next location of the
nodes to identify the next best hop for forwarding a packet. A geometry-based localization
technique is used to obtain the inter-vehicle distance (the distance to the relay node) if the lo-
cation information of the nodes is not received from the global positioning system (GPS). This
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location-based system can handle the location information of vehicles even in highly congested
areas. The simulation results show the significance of the proposed protocol compared to the
existing VANET routing protocols. Authors in [96] used a centralized position-based routing
protocol to effectively analyze the geographical positions of the vehicles in the network and
provide updated routing information. A centralized RSU acts proactively and provides vehicles
with the next hop vehicle. For security preserving purposes, a secure identity validation is used
in messages for V2V and V2I communications. The simulation result shows that the introduced
routing protocol has better safety features and reduces the possibility of attacks in the network.

IoT networks are another application of MD2D protocols. IoT networks present a huge por-
tion of future networks due to the constant improvement of their applications. This application
can be seen in industry, agriculture, and smart cities. IoT enabled the emergence of smart
sensors, Internet technologies, radio-frequency identification (RFID), and communication pro-
tocols. Current IoT sensor nodes are treated as smart devices which are widely used to gather
and forward sensed information. As a result of the current advancements and improvements in
this field, there has been significant effort to find the most efficient routing protocol. In [97],
an energy-efficient multi-hop routing protocol is proposed. The proposed protocol shares the
body-sensing data from various sensors deployed on a human body to a sink node using dis-
tributed multi-hop flooding. They use a fuzzy logic system to choose the node with the highest
residual energy in the route. The advantages of the proposed protocol are shown in the simula-
tion results using the throughput and overall network energy consumption. In [98], the authors
used an energy-aware clustering-based multi-hop routing algorithm to guarantee balanced en-
ergy consumption throughout the network. They have proposed a dynamic clustering algorithm
to re-form clusters if required. The k-mean and open source development model algorithm
(ODMA) are utilized for clustering. A genetic algorithm is also employed for multi-hop route
identification. The proposed protocol shows significant improvement in PDR and energy con-
sumption. Similarly, in [99], the network is split into clusters, and each cluster has nodes with
different responsibilities. In every iteration of the network, every node undergoes a procedure to
decide on its responsibility. The responsibilities are being the cluster head, independent nodes,
and member nodes. Therefore, the energy load will be distributed among all the network nodes
and members. In IoT networks, energy consumption contributes significantly to network per-
formance, and most researchers concentrate on this aspect. However, security issues are as
important as energy. IoT sensors sense the data and share it with nearby sensors or transmit
it to a central hub. New secure routing protocols must be designed to preserve the data from
any threats. In [100], a new energy-aware and secure multi-hop routing (ESMR) protocol were
proposed. The algorithm uses a secret sharing technique to improve the security against mali-
cious actions while keeping energy consumption low. To create a secure routing protocol, they
have clustered the network into zones based on the node location. In each zone, a cluster head
is responsible for forwarding the data to the sink node using a secure sharing scheme. The
simulation presents a significant increase in network lifetime with a very low E2E delay.

28



2.6.2 Challenges of MD2D Routing Protocols

There are number of challenges in the current routing protocols and we intended to answer some
of them in this thesis to assist in the future deployment of MD2D networks. These challenges
are summarized as follows:

1. Lack of Intelligence: Networks typically use a routing protocol without considering cur-
rent or historical networking conditions. However, to fully capture the network dynamics,
recording general networking data during network operation hours is essential to create
an intelligent processing unit. Then, an ML algorithm can process the data and provide
optimized information. For instance, for every particular time (rush hours, night, etc.), an
ML algorithm can record and identify the most efficient routing protocol and keep track
of the network. Hence, different routing protocols can be prescribed based on the net-
work intelligence for MD2D networks to maximize performance. To solve this problem,
we proposed a new routing protocol using various LSDBs. The controller uses the appli-
cation and network layers information and creates a master LSDB (MLSDB) to keep the
network’s intelligence. Based on the user application, the network prescribes different
routing information.

2. Network Lifetime: In most of the proposed MD2D routing protocols, all nodes in the
network are actively participating in the network. Therefore, if a node has a low battery
or doesn’t want to participate in MD2D communication, it is forced to relay other nodes’
traffic. As a result, the network lifetime dramatically decreases, damaging the network
coverage and PDR. To solve this problem, we proposed joint mobile node participation
and the MD2D routing protocol to identify nodes in the network with low battery levels
and exclude them from routing.

3. Lack of Adaptation: The current MD2D routing protocols lack self-organization and
self-tuning. For instance, most routing protocols find a route using one particular network
metric, and that metric is usually the shortest distance. Suppose a node is regularly used
as a relay node due to the shortest path algorithm. This node might quickly deplete its
battery and be removed from the network. Therefore, the routing protocol unintentionally
causes battery depletion leading to packet drop and deterioration of network lifetime. As a
result, routing protocol should be designed in an adaptive manner to adjust to the network.
Another example could be the route parameter adjustment based on the user application
and requirements. To provide insights and deliver a solution, we have proposed a dynamic
virtual slicing mechanism to adapt the route based on the user application.

2.6.3 Integration of Machine Learning with MD2D

Owing to the exponential growth of data traffic, wireless networks will require advanced techni-
cal solutions in the near future. In particular, challenges, including the imbalanced distribution
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of traffic loads among BSs and wireless channel dynamics, need to be addressed. To over-
come some of the issues, the knowledge acquired by ML algorithms can assist networks in
building intelligence and automation. A summary of the automated routing techniques that can
potentially be used in MD2D routing protocols is presented. Table 2.1 summarizes the studies
surveyed in this section.

i) Knowledge derived from supervised learning: Sharma et al. [101] proposed a routing
protocol for efficient routing in opportunistic networks called MLProph, which uses a de-
cision tree and neural network (NN) algorithms to compute the node’s successful delivery
probability. The algorithm uses past network routing data to calculate the probability of
whether the data will be delivered to the destination by the relay nodes. The probability
value helps to decide on the next-hop selection. The ML method trains itself based on
network characteristics, such as node density, buffer capacity, hop count, node energy,
mobility rate, and the number of successful deliveries. Here, the NN is trained to deter-
mine whether the forwarded message has been delivered; it can have two outputs p=1 for
successful deliveries and p=0 otherwise. The NN is trained iteratively by setting initial
values, and subsequently, it provides optimal predictions for successful and unsuccessful
deliveries. The simulation results indicate that the proposed algorithm performs much
better than previous works in terms of overhead ratio, average latency, and packet deliv-
ery ratio. They also compared the two ML models and found that the NN performs better
than the decision tree in terms of overhead, delivery probabilities, and packet loss.

To improve the traditional routing strategies and increase the performance of the wire-
less backbone, the authors of [102] proposed an intelligent routing scheme using a deep
convolutional neural networks (CNN). The proposed method learns from the previous ex-
perience based on congestion and uses this information to train a two-phase procedure,
namely a cold start period and an intelligent running period. The cold start period is the
initialization of the training set, where the algorithm only defines a route with a mini-
mum hop path. After this period, the algorithm switches to the intelligent running period,
which performs real-time updating and routing judgments. More importantly, a CNN
is constructed for each routing decision, which takes the collected information based on
traffic patterns from routers, including traffic generation rate, to predict whether the se-
lected routing strategy can cause congestion in the network. This process is periodically
updated until it is predicted that the chosen route will cause no congestion. Simulation
results prove that the proposed algorithm performs much better in terms of E2E delay and
packet loss ratio than conventional routing strategies, where there is no intelligence. The
proposed method can provide real-time intelligence for traffic control.

In [103], a supervised deep neural network was proposed for routing optimization in
heterogeneous networks to predict the path from the source to the destination node. Each
router in the network uses a deep neural network (DNN) to predict the next hop; the
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DNN takes traffic patterns as inputs, and based on these inputs, it generates the desired
output. The output of the deep learning structure significantly improved the network
traffic management. There are three phases to obtaining a fully functional ML. The first
phase is the initial phase, where the traditional routing protocols, such as OSPF, provide
the network route, and the network starts to operate. At the same time the second phase is
the training phase to train the deep learning system from the collected information based
on the traditional operating system. Finally, the running phase is the stage in which the
machine is thoroughly trained and can provide real-time routing strategies. This method
has been proven to have higher throughput and less overhead than OSPF. The proposed
study suggests a greedy-based distributed architecture over a knowledge-based network
to increase the throughput.

ii) Knowledge derived from unsupervised learning: In [104], the authors focused on load
balance routing based on principal component analysis (PCA) and NN for dimension
reduction and prediction of the network load status. The algorithm integrates ML and
data analytics into the SDN architecture to obtain intelligence from the network. The
use of these algorithms has led to efficient and intelligent routing decisions. This article
aims to address the shortcomings associated with the next generation of wireless mobile
networks, such as video streaming and online gaming, to mitigate the delay caused by
traffic. The proposed routing strategy is based on an ML scheme, where PCA was used to
reduce the dimension of the vector-matrix by applying it to the original adjacency matrix
of the network topology. Based on the normalization, they designed a queue-utilization
routing algorithm for routing prediction. Moreover, routers were continuously updated
based on neighbors’ information to select the routers with more resources. In this vein,
authors explored the current SDN architecture and represented anML algorithm to predict
routes.

Owing to the fixed network architecture of some routing protocols and the massive vol-
ume of data traffic exchanged between devices, the authors of [105] introduced a context-
aware routing protocol named KROp. This protocol uses several network features to
make routing decisions based on the network conditions. KROp uses the K-mean clus-
tering algorithm and exploits network features to select the best next hop. This algorithm
is based on the knowledge acquired from the node’s behavior to identify a cluster of the
best forwarders. The numerical results show superior performance in KROp in terms of
dropped packets, overhead, and average hop count compared to other routing strategies,
such as history-based prediction routing (HBPR) [106], and probabilistic routing protocol
using the history of encounters and transitivity (PRoPHET) [107].

Tang et al. [108] proposed a centralized routing scheme with mobility prediction (CRS-
MP) for VANETs. The proposed method utilizes an SDN controller with an artificial
neural network (ANN) to gather information and predict the user’s arrival rate. Based
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on the arrival rate of each vehicle, RSUs or BSs can model statistical traffic patterns and
estimate traffic mobility. Intelligence was also used in this study by integrating the CRS-
MP model at the RSU/BS to predict the mobility patterns of vehicles and find vehicle
connections. The ANN takes input according to the number of arrival vehicles at dif-
ferent instances. Based on the initial random weights, predicts the vehicle arrival rates.
The numerical results of the CRS-MP scheme outperform other vehicular routing proto-
cols, such as V2I and V2V communication, in terms of overall vehicular service delay.
Furthermore, the proposed algorithm is independent of the mobility rate, making it more
robust to high mobility rates. The proposed routing protocol utilizes multi-hop routing in
vehicular systems using an SDN controller that solves the overload on the BS.

iii) Knowledge derived from reinforcement learning: With the massive growth of IoT devices
connected to the edge network, the design of routing strategies is complicated. In partic-
ular, in smart cities, routing is significantly more difficult owing to the distribution of
the crowd and network congestion. The authors of [109] designed a deep reinforcement
learning (DRL) algorithm for smart routing decisions for load balancing and mitigating
network congestion when massive crowds are moving around the city for daily activi-
ties. They adopted a DRL agent to use the NN and generate Q-values directly. First,
the SDN controller collects the network state information. Then, the DRL agent makes
an action (routing decisions) based on the current state, and finally, the agent receives a
reward. The objective of the reward function is to maximize the successful service access
rate, minimize the data transmission delay, and balance the network load. The algorithm
performance was better than the OSPF and enhanced- OSPF (EOSPF).

Cognitive radio network (CRN) has attracted considerable attention owing to their impor-
tance in future wireless communication systems. This technology overcomes the channel
spectrum’s scarcity by allowing secondary or unlicensed users to benefit from underuti-
lized licensed channels. However, the dynamic nature of CRNs makes routing a com-
plicated task. The authors of [110] proposed a clustering mechanism or cluster-based
routing to boost network scalability and functionality. Once the cluster heads are iden-
tified in the network, each cluster head estimates the Q-value of each neighboring node.
The routing table is constructed based on the Q-values, and the largest Q-value is the next
chosen node for the next hop. During the learning procedure, the state of the network
represents the destination node, and the decision to select the next hop is the action. Fi-
nally, the system’s reward is the throughput resulting from the chosen hop. In this study,
the knowledge is derived from each state and action pair, which provides an appropriate
action for the next instant.

In [111], the authors studied three route selection schemes in a real testbed environment
to improve the performance of multi-CR networks. One of the schemes is based on
spectrum leasing, and the other two are based on RL. Spectrum leasing is a new term

32



used for communication between unlicensed and licensed users in CR networks. The two
RL algorithms are based on Q-learning to predict the next-hop neighbor. Similar to other
studies [110], the next hop is selected based on the highest Q-value. The state action is
the destination node and the selected next-hop node for the source node to transmit the
data. The reward is the channel-state information. The proposed routing scheme was
compared with the highest-channel protocol in a multi-hop network and has shown better
performance.

To manage the network overheads in highly mobile scenarios, the authors of [112] pro-
posed the mobility, residual energy, and link quality-aware multipath (MRLAM) for rout-
ing decisions. To do this, they used a Q-learning algorithm to select the optimal route
with energy-efficient nodes. The proposed routing scheme aims to maintain a reliable and
stable network during a particular timeframe. They have successfully improved several
metrics, including energy cost, end-to-end latency, convergence time, and packet loss ra-
tio, when compared with other routing techniques, including the multipath optimized link
state routing (MP-OLSR) protocol [113] and the extension version of MP-OLSR known
as MP-OLSRv2 [114]. Both the proposed protocols in [112, 115] act as a distributed
network, where each node decides on the next hop.

The authors of [116] added intelligence to the network to mitigate the complexity of net-
work topologies. They integrated both centralized and distributed network functionality
to guarantee high QoS. The hybrid approach uses AI routers for distributed intelligence
and a processing unit for centralized intelligence. AI routers are responsible for hop-by-
hop Internet protocol (IP) routing to ease network overhead. The processing unit acts
as a global controller for connection-oriented tunneling-based routing protocols, includ-
ing segment routing and multiprotocol labeled switching. A DRL-based routing strategy
is deployed in the processing unit for tunneling-based routing to ensure QoS. The state
of the RL algorithm is represented by the network traffic characteristic information and
device information, and the action is the forwarding path. The reward it acquires is the
effectiveness of action to the delay requirements and optimization targets. The proposed
RL method converges to the global minimum, and the routing strategy performs better
than other routing strategies in congested areas. The proposed scheme has a centralized
architecture with an intelligent control plane. This plane controls and installs the rules in
the network. Stampa et al. proposed a DRL algorithm for optimizing routing in a cen-
tralized knowledge plane [117]. The actor-critic learning method is used, where the state
of the learning algorithm is calculated by the traffic matrix (defined by the bandwidth
request between source and destination pairs), and the action is the path taken to transmit
data (obtained using link weights). Finally, the reward of the algorithm is based on the
average network delay. The proposed method provides operational advantages compared
to traditional optimization algorithms for routing strategies.
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2.7 Thesis Aim and Focus

While 5G cellular networks currently offer fast and reliable communication for network users,
the rapid proliferation of smart devices and user applications has led to the need for an upgrade
to 6G. This next-generation network promises to enable intelligent and adaptive architecture
with capabilities for network application development. This means that new policies and pro-
tocols can be specifically designed to address the challenges presented by the high volume of
traffic and resultant network congestion. The high volume of traffic will cause the performance
to degrade. Integrating MD2D with 6G is a potential solution to decrease the network conges-
tion on the BS and provide satisfactory performance.

MD2D communication involves direct or indirect communication between two devices. When
two devices are within transmission range, a direct link is established to exchange data, while
relay nodes are used to relay traffic when devices are out of range. MD2D enables ad-hoc com-
munication without the need for a fixed infrastructure, creating a secondary or WiFi interface
for devices to communicate. However, ad-hoc networks can lack flexibility and scalability due
to distributed policy management and route establishment, which can lead to increased power
consumption and slower packet delivery. To address these limitations, integrating a centralized
controller is essential for MD2D networks. This controller can acquire network information and
prescribe routing strategies, while also maintaining the ad-hoc nature of MD2D during disasters
when the controller is unavailable. The controller’s role is to create the most efficient policies
and routing strategies when it is online, ensuring that MD2D performance is similar to or better
than cellular communication. This thesis aims to provide adaptable and efficient routing frame-
works and protocols for future wireless networks to assist in constructing the most efficient
routing protocol for MD2D networks.

In this thesis, we identified the key enabling technologies in future wireless cellular networks
and studied them carefully to introduce new routing protocols that suit the technologies. This
thesis explores the benefits of integrating MD2D communication with future wireless networks
and investigates how MD2D routing protocols could be developed to enable traffic offloading.
A routing protocol should be designed very carefully to maximize the efficiency of the MD2D
networks. We used SDN and NFV concepts to propose centralized routing protocols for MD2D
networks. Then, we exploited knowledge-based algorithms and proposed a routing protocol.
Later, we introduce new automated network slicing techniques to help self-manage and self-
tune the routing protocol in MD2D networks. The future open RAN-based networks allow us
to create a secondary infrastructure such as MD2D and deploy automated routing protocols to
enhance coverage and capacity.

34



2.8 Summary

All the generations of cellular networks have faced some common problems, including the
growing demands of user applications and the exponential increase of user devices. The latest
generation of cellular network, 5G lacks flexible architecture due to standardization and pro-
prietary hardware, protocols, and interfaces. As a result, dynamic network changes due to the
growth of user applications require network changes and the development of new services. The
literature has proposed to transfer the current network architecture to an open infrastructure
where MD2D can be a solution to increase the network performance. One of the main advan-
tages of MD2D is the ability to offload network traffic from the cellular BSs, which can help to
reduce congestion and improve overall network performance. Additionally, MD2D can enable
more efficient use of spectrum resources and support the development of new network applica-
tions, such as enhanced mobile broadband and the Internet of Things. When it comes to MD2D
protocols, there are several different approaches that have been proposed for enabling efficient
and effective MD2D communication in beyond 5G and 6G networks. Some examples include
geographic routing, utility-based and proactive routing protocols.

In conclusion, our literature review has highlighted the importance of MD2D routing proto-
cols in future wireless cellular networks. Section 2.3 presented an overview of future cel-
lular network generations and their enabling technologies. The focus of this thesis is then
introduced, which centers on addressing the challenges and opportunities presented by these
technologies. Section 2.4 introduced a new network paradigm that aims to bring intelligence
and self-management to the network architecture. In Section 2.5, we discussed heterogeneous
D2D networks and introduce MD2D as a potential solution to their limitations, and Section 2.6
demonstrated different routing protocols for MD2D networks. As such, the primary objective
of this thesis is to investigate and propose new routing frameworks and protocols for MD2D
networks in order to enhance the performance and capabilities of future cellular networks.
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Table 2.1: Knowledge-based strategies for MD2D routing.
Article Knowledge Objec-

tive
Architecture ML Algo-

rithm
Deliverable Limitations Conclusion

[101] Enabling efficient
route selection

Centralized Decision
tree and
neural
networks

Decreasing
average latency,
improving over-
head and packet
delivery ratio

Overfitting
of the
dataset

Highly efficient route
selection based on
various network pa-
rameters

[102] Real-time updat-
ing and routing
judgments in hetero-
geneous networks

Centralized Supervised
learning
and deep
CNN

Minimize the
average delay
and improves
packet loss ratio

Dependency
on labeled
data

Intelligent traffic
control

[103] Self-driving net-
works by learning
traffic control
mechanism in het-
erogeneous networks

Distributed Supervised
deep neural
networks

Better signaling
overhead, delay,
and throughput
compared to
OSPF

Need for
large train-
ing sets

Capable of learning
complex patterns and
functions to predict
the least cost path

[104] Efficient and intelli-
gent route decisions
in wireless mobile
networks based on
KDN architecture

Centralized Principle
component
analysis
and neural
network

Lower packet
loss ratio and
acceptable
throughput and
E2E delay

Lack of
continuity

Provides a
dimension-reduction
vector matrix to
reduce the algorithm
response time but it
must be verified over
larger networks

[105] Trained algorithm
can select next hop
with a least total
average hop count
and successful de-
livery probability in
wireless networks

Centralized K-mean
clustering

Less dropped
packets and net-
work overhead

highly
sensitive to
the initial
selection
of cluster
centroids

Simple, efficient
routing protocol but
needs improvement
in average message
latency and should
involve energy con-
sumption as a node
feature

[108] Optimal route selec-
tion and prediction
capability using
global information
for VANETs

Centralized Unsupervised
learning-
based
algorithm

Better transmis-
sion delay com-
pared to existing
VANET routing
protocols

Difficulty
handling
high-
dimensional
data

The proposed
scheme is robust
to varying mobility
rates

[109] Smart routing de-
cision in IoT-based
smart cities

Centralized Deep rein-
forcement
learning

Mitigating the
network con-
gestion and load
balancing

Challenging
to balance
between
exploring
new ac-
tions and
exploiting
the knowl-
edge

Simultaneous QoE
satisfaction and
crowd management

[110] Identifying stable
routes in cognitive
radio networks

Distributed Q-learning Minimizing the
interference
between SUs
and PUs and
less frequent
route discovery

Time and
memory re-
quirements

Boosting network
scalability and func-
tionality

[111] Route selection for
multi-hop cognitive
radio networks

Hybrid Reinforc-
ement
learning

Improves the
QoS

Difficult
to deal
with high-
dimensional
state and
action
spaces

Selecting the best
possible route in
terms of throughput
and packet delivery
ratio

[112] Intelligent QoS-
aware route selection

Distributed Q-learning Energy efficient,
QoS-aware and
mobility toler-
ance

Sensitive to
sparse and
delayed re-
wards

Reliable, stable and
extended lifetime
network

[116] Intelligent traffic
routing control with
KDN approach for
next generation of
wireless networks

Centralized
and
hybrid

Deep rein-
forcement
learning

Minimizing the
overhead

Requires
frequent
interactions
with the
environ-
ment

The proposed
paradigm combines
distributed and cen-
tralized intelligence
to achieve highest
performance

[117] Automatic adapta-
tion based on the
traffic conditions via
KDN paradigm

Centralized,
distributed,
or hybrid

Deep rein-
forcement
leaning

Traffic engi-
neering

Designing
appropriate
reward
functions is
crucial

Near optimal solu-
tion after one single
training step
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3
Performance Analysis of Multi-hop Routing
Protocols in SDN-based Wireless Networks

3.1 Overview

The upcoming research is published in the Elsevier Journal of Computers and Electrical Engi-
neering 1. This chapter’s main objective is to thoroughly investigate three different centralized
MD2D routing protocols. This will help us realize the advantages of each routing protocol
in environments with varying mobility rates and densities. Therefore, it provides insights into
how to efficiently design a routing framework and protocol for different networks with distinct
characteristics.

3.2 Introduction

Current 4G networks are no longer capable of providing users demands for better quality-
of-service (QoS) and high-speed access to various multi-media applications. This is due to
constraints, such as limited spectrum, limited scalability, proprietary interfaces, device-centric
architecture, complex protocols, expensive infrastructure and existence of heterogeneous net-
works [75]. 5G wireless networks have been proposed to address some of the above chal-

1Ashtari, S., Abdollahi, M., Abolhasan, M., Shariati, N., Lipman, J. (2022). Performance analysis of multi-hop
routing protocols in SDN-based wireless networks. Computers Electrical Engineering, 97, 107393.
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Figure 3.1: Multi-hop routing underlaying SDN-based cellular network.

lenges [118,119]. 5G networks are expected to provide anytime-anywhere network connectivity
with significant improvement in network performance compared to current 4G networks, such
as 1000 times more network capacity, 10-100 times higher data rates, more than 90% energy
saving, decreased end-to-end delay to less than 1ms and 99.999% service availability [120,121].
To meet the expectations and to fulfill the presumptions and challenges of 5G networks, new
technologies and solutions are being developed [122]. For instance, massive antenna config-
urations and millimeter wave technologies are two promising features of 5G. Utilizing mas-
sive antenna or multiple-input multiple-output (MIMO) technology provides robust, secure and
energy efficient communications. Additionally, millimeter waves (mmWaves) and higher fre-
quency range (3-300GHz) provide higher data rate to satisfy the 5G requirements. Although
these two technologies increase the capacity of 5G and quality-of-experience (QoE), there are
however other promising technologies, such as MD2D could be added to 5G and beyond to
meet the ambitious goals set for future wireless networks and growing demands from mobile
users [123].

Integrating MD2D communications with cellular networks has a number of benefits, such as
cellular coverage expansion, increased QoS and QoE, reduced communication delay, improved
load balancing by offloading cellular traffic, enhanced resource and power allocation, and im-
proved spectral efficiency [124]. Further, it is essential for disaster recovery applications when
cellular infrastructure is not available. To integrate MD2D communications with cellular net-
works, a number of different solutions have been proposed. One of the solutions is to establish
mobile ad-hoc networks (MANETs) in cell edges or congested areas to allow devices to form
one-hop or multi-hop connections to reach to the base station (BS) or other nodes in close
proximity [76].
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MANETs consist of a number of nodes or devices that are connected wirelessly in a self-
configured and self-organized manner without the help of any fixed infrastructure. Devices
in MANETs move freely in the network and form multi-hop links to provide network connec-
tivity. Each node acts as a router to forward traffic to one or more specific targets. However,
due to a lack of central management in MANETs, these networks are not scalable as the num-
ber of hops and participating nodes in the MANET grow. Hence, integrating the best features
of MANETs and cellular devices can improve the total performance and will eliminate their
limitations in the new hybrid structure.

Regardless of achieved improvements, MANETs under cellular networks are faced with a num-
ber of challenges: peer discovery techniques, selecting the communication mode (device-to-
device (D2D) or cellular) to get the maximum throughput, efficient radio resource allocations,
interference management in in-band communications where D2D and cellular communications
are within the same cellular spectrum, security concerns and pricing policies for relaying de-
vices [125]. Several techniques [126, 127] are proposed to minimize interference, optimize re-
source allocation and spectral usage in D2D underlaid cellular networks. Despite the proposed
solutions and techniques for cellular networks, there are still a number of constraints which
are worth mentioning, such as absence of virtualization, high cost of network upgrade, lack of
flexibility, complexity in service deployment, tight coupling between the control plane and data
plane, lack of fine-grained control over resources in cellular network and scalability issues due
to centralized data plane functions in the long-term evolution (LTE) core entity [128,129]. One
approach to address the above shortcomings is through the integration of software-defined net-
working (SDN) concept in cellular networks. Hence, SDN aims to address such challenges by
introducing a new programmable framework with open interfaces wherein control plane func-
tions are removed from forwarding devices and are logically centralized in one or more control
entities. Network functions are defined as applications run on top of the controller that make
the network upgrade and network innovation faster and more flexible via software update rather
than hardware or infrastructure upgrade that is costly and time consuming.

In SDN framework, control functions are taken from the forwarding devices and are logically
centralized in one or more control units called SDN controller. The network devices are simple
forwarding elements that receive instructions from the controller. Unlike traditional networks
that have distributed network management, in SDN, the controller has a global and real-time
knowledge of the network via periodic network status collection. Network functions such as
load balancing, resource management, traffic monitoring, security, routing and topology dis-
covery are applications running on top of the controller. Further, SDN provides open ap-
plication programming interfaces (APIs), namely southbound and northbound interfaces that
enable the controller to communicate with the forwarding devices and application layer, respec-
tively [130,131].

Employing SDN in cellular LTE networks has been studied by many researches [132–134]. The
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research covers two main components of cellular architecture, namely core and edge. These
studies aim to make the core or edge parts programmable by using the SDN paradigm. Our
study focuses specifically on the edge part of the network and investigates different SDN-based
solutions for multi-hop routing under cellular networks. Figure 3.1 depicts different applications
of MD2D in wireless networks.

Authors in [135] propose a fast and low-overhead routing protocol called low-overhead D2D
(LODR) for MD2D under SDN-based cellular system. Their architecture consists of a cellular
network with SDN capabilities and MD2D communication, which utilizes an OpenFlow con-
troller to manage the forwarding strategies. For each packet transmission between the nodes, the
controller installs flow rules on the associated nodes. The proposed technique decreases control
overhead and improves communication performance in MD2D communication. In [136], a hi-
erarchical D2D communication architecture to offload traffic from the BS is presented. In the
architecture proposed in [136], there is an SDN controller that manages MD2D communica-
tions. The authors believe that their proposed architecture could improve the overall energy and
spectral efficiency of the network that is suitable for disaster recovery scenarios. In [137], au-
thors introduce a communication layer for hybrid wireless networks called WASP2 to manage
mobile devices and to inform each device to handle their own traffic in heterogeneous net-
works. In [137], the proposed architecture consists of a centralized controller with OpenFlow
protocol that decides on communication protocols between the mobile nodes. The controller
calculates the route and updates each mobile device as required for data transmission between
devices. Furthermore, the controller is used for content transmission between the Internet and
mobile devices, which reduces overhead and offload traffic in cellular communication. This
study shows scalable and energy efficient communications compared to the existing ad-hoc
protocols, such as ad-hoc on-demand distance vector (AODV) and optimized link state routing
protocol (OLSR). Authors in [138], designed a framework for mobile devices in disaster zones
called FINDER (Finding Isolated Nodes using D2D for Emergency Response). In the proposed
framework, there is a global SDN controller that detects the failed BS and instructs other active
nearby BSs to extend the cellular coverage. In the case of disaster, the isolated nodes change
their operation mode from cellular to D2D and form a multi-hop connection to the mobile nodes
in the edge of nearby BSs or WiFi access points (APs). Ant Colony Optimization-based routing
is used for energy efficient routing in D2D communication. Simulation results indicate that the
proposed framework improves the network lifetime.

The conducted survey studies confirm that in SDN-based cellular networks, the scalability, en-
ergy and spectral efficiency are improved while network management is simplified. Further,
routing strategies compared to the traditional ad-hoc routing protocols achieve better perfor-
mance due to global knowledge of the controller and its immediate response to the network

2WASP is a prototype designed by authors in [137], which consists of Wi-Fi, Ad-Hoc, SDN, and Personal-
Mobile technologies.
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topology changes.

In our previous work, we designed an SDN-based cellular framework and proposed three dif-
ferent protocols, namely HSAW [83], SMDRP [93] and VARP-S [86]. The proposed protocols
use proactive and reactive approaches to discover the routes in the network and are detailed in
Section 3.3. The simulation results indicate that the proposed protocols significantly improve
the network overhead compared to the traditional ad-hoc networks. Further, the reactive ap-
proach performs much better in densely populated areas compared to the proactive approach in
terms of routing overhead and energy consumption. However, the performance of the proposed
protocols have not been thoroughly investigated for different routing metrics and various net-
work applications. To this end, a detailed performance comparison is performed by this study
and also network parameters, such as routing overhead, number of dropped packets, average
end-to-end delay, and overall power consumption are evaluated for these three routing proto-
cols. This performance analysis enables a comprehensive investigation to realize which routing
protocol is appropriate for which network condition. Therefore, the performance analysis pro-
vides us with oversight of possible options for the future integration of multi-hop routing in 5G
and beyond wireless networks. The contributions of this chapter are as follows:

• Two different SDN-based routing approaches are compared, namely reactive and proac-
tive. To this end, our previously designed routing protocols are thoroughly investigated,
HSAW as a proactive protocol, VARP-S and SMDRP as reactive protocols.

• A system model compatible with 5G networks is designed. The mmWave and MIMO
systems are deployed to model the cellular channel, to increase the channel capacity,
and to enable faster transmission over the network. Our channel model uses directional
antenna with beamforming approach to estimate and tune the channel for each user.

• The routing protocols are compared in distinct environments with different node densities
and mobility rates in the designed system model. In each environment, the weakness and
strength of each protocol is analyzed in terms of E2E delay, dropped packets, energy
consumption and routing overhead.

The rest of this chapter is organized as follows. Section 3.3 gives a brief overview of the
designed routing protocols. Section 3.4 describes the simulation tools and parameters modeled
for our analysis. Section 3.5 presents the results of our simulations. Our conclusion and future
research directions are drawn in Section 3.6.

3.3 Detailed Illustration of Routing Protocols

In this chapter, three SDN-based multi-hop routing protocols are analyzed and compared. In the
routing framework, a SDN-based BS manages multi-hop communications between the mobile
nodes under its coverage area. Two different frequency bands are utilized in the framework;

41



Figure 3.2: Multi-hop routing approaches in hybrid SDN-based cellular framework.

Figure 3.3: Demonstration of reactive and proactive routing approaches in hybrid SDN-based cellular
framework.

licensed frequency for cellular and unlicensed frequency for D2D communication. The con-
troller employs two different approaches to manage data forwarding as highlighted in Figure
3.2, namely proactive and reactive. In the proactive approach, the controller provides each node
with the link state data base (LSDB) of the whole network, while in the reactive approach,
the controller only provides forwarding information to active flows. The routing protocols for
the mentioned approaches are HSAW for proactive, and VARP-S and SMDRP for the reactive
approach. In all the mentioned protocols, the controller participates in the multi-hop routing.
However, the level of participation is different from one to another as explained in the following
subsections and also depicted in Figure 3.3.

3.3.1 Virtual Ad-hoc Routing Protocol-Source Based (VARP-S)

VARP-S is a source-based routing protocol in which the source node of the data packet requests
for a route from the controller to obtain the forwarding information. Once a source node tries
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to send a packet to a specific destination node, if it cannot find any route in its flow table, then
it sends a flow request to the controller. The controller decides which mode of communication
should be selected (cellular or D2D) and sends back the forwarding information to the source
node. The source node forwards data packets to the BS if the controller acknowledges the cel-
lular transmission is a better option for that data traffic. Otherwise, the source node attaches the
received multi-hop forwarding information, which is a complete source to destination address,
and sends the packets to the next hop. Relay nodes forward the received packets based on the
attached routing information in the packet header. In case of any link failure, the upstream node
of the broken link sends an error message to the controller. Subsequently, the controller informs
the source node about the failed link and updates routing information.

3.3.2 SDN-based Multi-hop Device-to-Device Routing Protocol (SMDRP)

SMDRP is hop-by-hop routing protocol, where the source node of a data packet forwards a
flow request to the controller to find a route to the target. If the controller decides that MD2D
is a better option compared to the cellular transmission for this data traffic, then the controller
assigns a unique flow ID to the flow and informs the source node and selected relay nodes about
the flow ID and the next hop address. Following that, the relay nodes store the flow ID and
next hop address in their flow table. Unlike VARP-S, in SMDRP, the source node only attaches
the flow ID to the data packets. Based on the attached flow ID, the relay nodes forward the
packet to the next hop. In case of any link failure, the upstream node of the broken link sends
an error message including the flow-ID to the controller. Then, the controller broadcasts the
flow-ID to inform about the error that occurred in the flow. Any relay node that has this flow-ID
in their flow table will change the status of the flow to invalid and wait for the updated routing
information.

3.3.3 Hybrid SDN Architecture for Wireless Distributed Networks
(HSAW)

In HSAW, each mobile node receives the LSDB of the whole network from the controller.
Consequently, each node can decide on the packet forwarding by building its own routing table
as they have a global knowledge of the network. If any link failure occurs in the flow, the
upstream node of the broken link runs the Dijkstra’s algorithm and finds the next available hop
to the target. It also informs the controller about the error, and following that, the controller
broadcasts the information of the failed links. Accordingly, all nodes in the network will update
their LSDB.
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Figure 3.4: A mmWave and MIMO cellular system model, where BSs and MSs communicate via direc-
tional beamforming.

3.4 System Model

The main components used to build our system model is detailed in the following sections,
including channel model, time delay model, energy consumption model, and network model.

3.4.1 Channel Model

In our system model, directional beamforming with a large array of antennas is adapted at both
transmitter and receiver. Due to the exponential increase of users and their demands for higher
data rate, utilizing directional precoding with large antenna arrays will increase the data rate
that result in sufficient received signal strength. Figure 3.4 represents the MIMO directional
beamforming in the cellular networks.

The BS and mobile nodes in the network are equipped with a MIMO-orthogonal frequency-
division multiplexing (OFDM) cellular system as depicted in Figure 3.5, where TX and RX
represent transmitter and receiver, respectively. For any single connection between the BS
and a mobile node, N number of antennas and M number of RF chains are utilized. In our
system model, the number of RF chains (NRF ) are less than the number of receiving (NRX) and
transmitting (NTX) antennas [139–141]. Moreover, the number of antennas in mobile station
(MS) (NMS) are less than or equal to the number of antennas in BS (NBS). Considering the fact
that the use of RF chains will lead to power consumption and hardware constraints in mobile
nodes, two different precoding algorithms is used, namely analog and digital, to address this
issue.

To establish a link between the BS and mobile nodes, the proposed algorithm in [142] is em-
ployed. Based on the algorithm, the precoding matrix at the transmitter, referred to as (FT ), is
made by the baseband precoder (FBP ) and analog phase shifters (FRF ). The transmitted signal
by BS is calculated as below:

FT = FRFFBP , (3.1)
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Figure 3.5: System diagram of BS-MS transceiver that uses baseband precoders, RF chains and precoders
for both ends.

x = FTp, (3.2)

where x is the combined BS or MS precoding matrix (depending on downlink or uplink) with
transmitted symbols, namely the discrete-time transmitted signal from a BS or MS. p is the
Np ⇥ 1 vector of transmitted packet symbols, and FT is the NBS ⇥Np precoding matrix.

Further, a narrowband block-fading channel model is adapted to our system model in which the
received signal r at the BS/MS will be observed as:

r = Hx+ n, (3.3)

where H is the channel matrix between the BS and mobile node and its size depend on the
number of antennas at the transmitter and the receiver (e.g., in downlink, the channel matrix
size is a dimension of NBS ⇥NMS), n is the noise attenuating the signal and is calculated from
Gaussian model as n ⇠ N(0, �2).

Upon receiving the signal in the receiver antenna, there is a combiner, referred to as WR, that
acts as a precoding matrix at the receiver to reduce the channel effect. The combiner consists
of two components, namely a phase shifter (WRF ) and a baseband combiner (WBP ) as shown
below:

WR = WRFWBP , (3.4)

The process of combining the received signal in the combiner is shown with y and indicated as
follows, where the notations AH , AT , A�1, I are Hermitian (conjugate transpose), transpose,
inverse and identity matrix throughout this chapter, respectively:

y = w
H

R
Hx+w

H

R
n, (3.5)

Keep in mind that for uplink (signals from MS to BS), the precoding and combiner matrices
will switch.

While it is assumed there are no interfering BSs, then, channel model can be formulated with L
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scattered signals, where each of them represents a single propagation path between the TX and
RX . Therefore, under these assumptions the channel H is expressed as:

H =

s
NTXNRX

⇢

LX

l=1

↵lkRX(✓l)k
H
TX(�l)w

H

R
HFTp+w

H

R
n, (3.6)

where ⇢ is the average path loss between the transceiver and receiver, and ↵l is the complex
gain of the lth scattered path, where each path amplitude is Rayleigh distributed. The variables
kRX and kTX are antenna array response vectors for the receiver and transmitter, respectively.
Moreover, for phase shifters, the azimuth angles of arrival or departure (AoAs/AoDs) for the lth

path varies between ✓l,�l ⇠ [0, 2⇡]. In this study, only the azimuth angles are examined which
implies that the BS and mobile nodes only use horizontal (2D) beamforming. Considering only
azimuth and eliminating elevation means that all the scattering takes place in azimuth. Finally,
assuming uniform array of antennas at both sides, antenna array response vectors is written as:

kRX(✓l) =
1p
NRX

[1, expj 2⇡
� dsin(✓l), ..., expj(NMS�1) 2⇡� dsin(✓l)]T , (3.7)

in the same fashion, the array response vector for TX is obtained, where � is the wavelength of
the transmitted signal, and d is the distance between antenna elements of BS and mobile nodes.

If we assume that both BS and MS have prior knowledge of the channel, it is possible to obtain
the capacity of our channel by using the singular value decomposition (SVD) of the MIMO
channel, as shown below:

H = USV
H , (3.8)

where U with dimensions ofNRX⇥NRX and V with dimensions ofNTX⇥NTX are the unitary
matrices, and S is the diagonal matrix with non-negative singular values of H. The resulted
matrices from SVD equation, V and U , are equivalent to the optimal values of precoding (FT )
and combiner matrices (WR), respectively. Using SVD enables us to obtain the channel capacity
or the channel rate R by:

R = log2 |INp +
P

Np
R

�1

n
W

H

R
HFTF

H

T
H

H
WR|, (3.9)

where INp is the unitary matrix, P is the total transmission power, Np is number of transmitted
symbols and P/Np is the normalized total transmitted power, and Rn is the noise covariance
matrix.

The data rate of MIMO channel between the transmitter and receiver can be obtained by con-
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sidering the achieved channel rates from (3.9), as follows:

DataRate = NTXBWR, (3.10)

where BW is the channel bandwidth in Hz.

Consequently, for each single node in the network, the transmission delay can be approximated
by using the obtained channel data rate from (3.10).

TransmissionDelay(s) =
DataSize(b)

DataRate(b/s)
, (3.11)

where the DataSize is the overall packet size that should be transmitted.

3.4.2 Time Delay Model

In this chapter, there are two types of packets being transmitted across the network, namely
data packets and control packets. Data packets consist of the information that a node requires
to send to the destination. The control packets include the Hello packets for neighbor discovery
and other routing information used by the routing protocols for their route discovery and route
maintenance. In our routing framework, the size of control packets is different from one routing
protocol to another. In HSAW, the control packets are overall LSDB of the network that is sent
by the controller to each node. In VARP-S and SMDRP, the control packets include: 1) the
route queries sent by the source node of the data packet to the controller 2) flow information
sent by the controller to the source node in VARP-S and to the relay nodes in SMDRP 3) the
routing information attached to the data packets, flow ID in SMDRP and full path in VARP-S.
For route maintenance procedure when a link failure occurs in the network, in HSAW, all the
nodes will be informed about the failure, while, in the two other protocols, only the source node
(VARP-S and SMDRP) and relay nodes (SMDRP) will be notified.

For our study, it is assumed that each node in the network is represented by a unique ID, referred
to as NID, and each request sent by source node of the flow to the controller is identified by a
unique ID denoted byReqID. Consequently, in both reactive protocols, the size of route request
(SRREQ) is calculated as follows:

SRREQ = ReqID +NID, (3.12)

After receiving the flow request, the BS will process the request and send back a flow reply con-
taining the information of relay nodes to the requested target. The time taken by the controller
to calculate the requested route is affected by the network traffic. This traffic depends on the
data packets that are being processed by the BS and also the number of nodes in the network.
Hence, for higher traffic, the process time of the request will be increased as each request has
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to wait in the queue for a longer time to be processed by the controller. This will lead to extra
delays, unintentional energy usage and packet loss in the network. In our study, all the effecting
parameters are taken into account. In VARP-S, the BS sends only the entire route to the source
node via 5G radio. If the length of the route is LR, then the size of flow reply in VARP-S,
referred to as SV ARP�S , is calculated by:

SV ARP�S = LR ⇥NID, (3.13)

For SMDRP protocol, when a node requests for a route, the controller calculates the path,
assigns a unique flow ID to the flow and forwards the forwarding information including the
next-hop address + flow ID (FID) to the relays in the active path (source node and all the relay
nodes between the source and target). Consequently, the overall size of flow reply transmitted
by the BS in SMDRP, referred to as SSMDRP , is calculated by:

SSMDRP = (LR � 1)⇥ (NID + FID), (3.14)

It should be noted that MIMO technology and directional beamforming is used to send the
forwarding information from the BS to the relay nodes. This will increase the data rate and
reduce the network congestion.

For HSAW, nodes find the route to the packet’s destination node by a different approach. In
this approach, the BS broadcasts the whole network’s LSDB to all nodes in the network via the
5G radio. Subsequently, each node builds its own LSDB. If a node has a packet to send, then
it checks its routing table to find a route. If no route is found, then it runs Dijkstra’s algorithm
to find the least-cost path to the target. The size of the LSDB packet, referred to as SLSDB,
depends on the number of nodes in the network and the neighboring nodes in their proximity
which is calculated by:

SLSDB =
NX

j=1

N�1X

i=1

(2⇥NID)⇥ Li,j, (3.15)

Li,j indicates the existence of a link between nodei and nodej if the following condition is met:

Li,j =

8
<

:
0, if dij � min(Ri, Rj) or i == j;

1, if dij < min(Ri, Rj);
(3.16)

where di,j is distance between nodei and nodej , and R is the transmission range of nodes.
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3.4.3 Energy Consumption Model

The initial power of nodes is represented as p0, and the power consumption model described
in [143] is used, where the power loss is assumed based on the free space power loss and
multipath propagation loss. Therefore, the consumed power for nodei to transmit or receive
a packet P TX is expressed below. The reason for choosing this energy model is to solely
showcase the impact of energy consumption in the WiFi channel while considering various
packet transmissions across different routing protocols. This approach enables us to conduct a
thorough analysis of the differences between routing protocols, which is the primary objective
of this chapter.

P TX
i2N =

8
<

:
Pe ⇥ Si + Pfm ⇥ Si ⇥ d4, if d > a;

Pe ⇥ Si + Pfs ⇥ Si ⇥ d2, if d < a;
(3.17)

whereas a =
q

pfs
Pfm

is a threshold distance that determines whether multipath or free space
model should be used to calculate transmit power, Pe is the power consumed by the electronic
devices, Pfm and Pfs are the power loss by multipath fading model and free space, respectively.
Si is the packet size that nodei (i 2 1, 2, ..., N ) tries to send or receive and d is the distance
between the sender and receiver. Moreover, the consumed power by electronic devices can be
expressed as:

Pe = Ps + Pda, (3.18)

where Ps and Pda are the sender and data aggregation power, respectively. The power consump-
tion of each node for receiving a signal PRX is calculated as follows:

PRX
i2N = Si ⇥ (Pe + Pda), (3.19)

The total consumed power of N number of nodes in the network, referred to as PT , is defined
as below:

PT = [
NX

i=1

P TX
i +

NX

i=1

PRX
i ], (3.20)

It is worth mentioning that the types of devices connecting to cellular networks has been chang-
ing to include more machine-to-machine (M2M) and the internet of things (IoT) based sensor
devices and would be more heterogeneous than the homogeneous nodes used in this chapter.
Consequently, the initial power and power specifications of those devices would be different
from one another.
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Table 3.1: Simulation parameters.
Parameters Value
Simulation tool MATLAB
Seeds 1000 times
Simulation area 500m ⇥500m
Packet size 50Mbits
Protocols HSAW, VARP-S and SMDRP
Number of nodes 100, 600, 1000
Network specification sparse, semi-dense, dense
Mobile node Transmission range 75m
Mobile node speed 3 m/s and 20 m/s
Mobile node movement model Random waypoint mobility
Max bandwidth 80MHz
Carrier frequency 30GHz
Pathloss constant 3
Max MS antennas 4
Max BS antennas 64
Wireless standard IEEE802.11g

3.4.4 Network Model

For our network model, two frequency bands are utilized, licensed (e.g., 5G) and unlicensed
(e.g., WiFi) frequencies. The former is used to exchange control packets and also data packets
between the BS and mobile nodes, downloading and uploading from or to the BS to connect
to networks that are not reachable by MD2D or MD2D cannot provide the required QoS. The
latter is used for multi-hop communications to exchange data traffic between devices and also
for uploading or downloading when one-hop connection to BS does not provide the quality
requirements.

The type of control packets exchanged between mobile devices differs from one protocol to
another. However, in all the proposed protocols, the mobile nodes inform their existence to their
one-hop neighbours by exchanging Hello packets. Further, a centralized controller, connected
to the BS, manages the whole network by collecting each mobile’s node information.

In this study, our previous three designed routing protocols are analyzed in three scenarios
– 500⇥500 (m2) – with various densities; sparse (<400 nodes), semi-dense (400⇠800), and
dense (>800) as illustrated in Figure 3.6. Node density gives us a very good insight into the
protocols scalability as the number of nodes change. The performance of each protocol is eval-
uated in each scenarios separately considering two different average mobility rates for mobile
nodes in each area, 3 m/s and 20 m/s, to model pedestrian and vehicular networks respectively.
Therefore, six different scenarios are evaluated in our simulation. For each scenario, the perfor-
mance of routing protocols are estimated in terms of the dropped packets, energy consumption,
E2E delay, cellular (vertical link) overhead and WiFi overhead (horizontal link). The main
parameters of our system model and implementation are illustrated in Table 3.1.
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Table 3.2: Simulation scenarios.
Scenarios Density No. of

Nodes
No. of
Active Flows

Mobility
(m/s)

1 sparse 100 25,50,100,150,200 3
2 sparse 100 25,50,100,150,200 20
3 semi-dense 600 150,300,600,900,1200 3
4 semi-dense 600 150,300,600,900,1200 20
5 dense 1000 250,500,1000,1500,2000 3
6 dense 1000 250,500,1000,1500,2000 20

(a) node’s density = 100 (b) node’s density = 600

(c) node’s density = 1000
Figure 3.6: Representation of the network with three different node density.

3.5 Simulation Results and Performance Analysis

All lifetime results are averaged over 1000 independent runs and reported with their 95% con-
fidence intervals. In this section, simulation results and performance analysis of three routing
protocols, namely HSAW, VARP-S and SMDRP, with different network densities and mobility
rates are evaluated. The SDN-based BS is located in the center of the network and all the nodes
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are placed under coverage of the BS. Each mobile device is randomly generated from the con-
tinuous uniform distributions and moves in the network based on Random Waypoint mobility
model. Further, each mobile node is equipped with two wireless interfaces; 5G interface for BS
communications and WiFi interface with transmission range of 75m for D2D communications
(WiFi communication) over IEEE 802.11g3 standards. The considered propagation models for
5G and WiFi interfaces are Log-distance path loss and Friis free space [144], respectively. In
the conducted simulations, different numbers of active flows are defined with randomly selected
source and targets. In our simulation, for all the defined scenarios illustrated in Table 3.2, the
performance of each routing protocol is studied.

Here is a brief explanation of the network performance metrics used by this study to evaluate
each routing protocol:

• Packet loss: When the network starts to operate, for reactive protocols, a random number
of nodes will request a route. Then, this request will be processed by the BS and a reply
will be sent in response. For proactive protocol, the controller broadcasts the LSDB of
the whole network. Due to the mobility of the nodes, the link between the relay nodes
in the active flows maybe be broken, which could lead to packet loss. In all the proto-
cols, the upstream node of the failed link will inform the controller about the failure and
following that, the controller broadcasts the information of the failed link to the network.
Subsequently, each node updates its routing table. For proactive protocols, each node run
the Dijkstra’s algorithm to find the new route, while in reactive protocols, the controller
informs the involved nodes on the updated forwarding information.

• E2E delay: To calculate the end-to-end delay, delays resulted from the route discovery
and route maintenance in both cellular and WiFi links are computed. In cellular commu-
nication, to calculate the time taken for a control packet to travel between the BS and the
mobile nodes, firstly, the data rate (3.10) for each user is calculated based on the channel
capacity (3.9) of each link. The channel capacity depends on the channel estimation (3.6)
that the BS performs in the network. Secondly, the transmission delay (3.11) for any con-
trol packet is calculated based on the obtained data rates. Delay in WiFi links is the time
taken by a data packet to travel from the source to destination. This delay time mostly
depends on the number of link failures that could occur in the path of data packets. This
failure will grow in accordance with the nodes’ mobility. Delay also depends on other
factors, such as number of nodes and data traffic density. The reason is that the load on
the BS for processing data packets will increase when the number of nodes grows in the
network. As a result, the response time of the controller to network changes, and also
route replies would be slower.

• Energy consumption: To calculate the energy consumption, nodes will start with an ini-

3The proposed architecture is not limited to using IEEE802.11g, as any other ISM/802.11-based radio could be
used. However, for the purpose of this study the 802.11g is chosen as a potential ISM-based radio technology.
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tial energy. As soon as they transmit or receive a packet, the energy will start to reduce
based on (3.20). The amount of consumed energy for sending or receiving the pack-
ets depends on the packet size; larger packets require more energy to be transmitted or
received. Further, based on (3.17) and (3.19), mobile nodes consume more energy for
packet transmission compared to packet reception.

• Overhead: For overhead, the cellular and WiFi overheads are calculated separately. Cel-
lular overhead is related to the control packets that are exchanged between the BS and
mobile nodes. WiFi overhead is related to the control packets that are attached to the data
packets in reactive protocols. For example, in VARP-S and SMDRP, the full path to the
destination and the FID will be attached to the data packets, respectively, which intro-
duces overheads on the network. Further, in all the protocols the amount of data that must
be resent due to link failure also will result in additional overhead in both cellular and
WiFi. To further illustrate the performance of proactive and reactive approach in terms of
cellular overhead, a theoretical cost calculation of the routing protocols is conducted in
Figure 3.7. If there are n number of nodes in the network, then the amount of information
required to differentiate one node from other nodes in the network is log2 n, denoted by
NID. Additionally, the amount of information needed to identify one flow from the other
flows is represented by FID. The size of FID depends on the number of flows in the
network. For this theoretical analysis, (3.13), (3.14) and (3.15) are used to compare the
cellular channel overhead of the proposed protocols.

Figures 3.8-3.17 represent the simulation results for mobility rate of 3m/s and 20m/s, which
are explained in the following subsections. Moreover, the representation of simulation results
of main performance parameters are shown in tabular form in Tables 3.3-3.7, where m, µ, K,
M, G, represent Milli, Micro, Kilo, Mega and Giga, respectively.

3.5.1 Simulation Analysis for Dropped Packets

Figure 3.8 and Table 3.3 depict the number of dropped packets for different number of flows
with various network densities. As it can be seen, HSAW has the least number of dropped
packets compared to the two other protocols when the number of active flows are low. However,
once the number of nodes increases in the network and the number of active flows rises, HSAW
performance degrades, because nodes run out of energy (i.e., in semi-dense networks when
number of flows is more than 600). In sparse networks, VARP-S experiences more dropped
packets compared to SMDRP, while the response time of the controller in SMDRP is quicker
as the size of the flow reply is smaller compared to VARP-S. Although, both protocols operate
almost the same in semi-dense and dense networks. This is because, in those networks the load
on the BS is much higher and packets must wait in the queue for a longer time resulting in
slower response time. In networks with mobility rate of 20m/s, the number of dropped packets
is significantly higher compared to 3m/s scenarios because nodes in the high mobile networks
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Figure 3.7: Theoretical performance analysis of the proposed routing protocols in terms of cellular over-
head.

Table 3.3: Number of dropped packet in Kbits.

Network
Size

Number of
Flows

Protocols
HSAW VARP-S SMDRP HSAW VARP-S SMDRP

Mobility 3 m/s Mobility 20 m/s
Dropped Packets Kbits

Sp
ar
se

0 0 0 0 0 0 0
25 0.0341 0.7448 0.2591 0.3035 6.6571 2.0302
50 0.0807 1.5842 0.4535 0.6792 11.7701 3.8335
100 0.1428 2.7732 0.8169 1.4173 23.0505 7.8406
150 0.3152 4.3184 1.3642 1.8742 36.0307 12.4482
200 0.5739 6.1731 1.7121 3.2168 48.4477 16.223

Se
m
i-d

en
se

0 0 0 0 0 0 0
150 0.912 1.5845 1.4577 1.6582 26.292 20.501
300 1.792 2.9294 2.689 3.206 48.942 40.347
600 3.713 6.0155 5.8953 6.479 98.757 97.536
900 45 9.2205 8.5693 450.8 147.44 149.91
1200 60 11.623 11.418 600.6 200.83 199.14

D
en
se

0 0 0 0 0 0 0
250 5.7215 9.6478 9.1274 14.334 178.03 161.45
500 11.937 18.933 17.336 28.472 318.22 308.02
1000 50 36.751 35.631 807 645.22 628.921
1500 75 54.854 53.487 1200 976.13 956.86
2000 105 73.979 73.696 1957 1297.8 1125.539
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Table 3.4: Energy consumption in %.

Network
Size

Number of
Flows

Protocols
HSAW VARP-S SMDRP HSAW VARP-S SMDRP

Mobility 3 m/s Mobility 20 m/s
Energy Consumption in %

Sp
ar
se

0 0 0 0 0 0 0
25 1.379 1.245 0.5251 1.427 1.4 0.917
50 1.897 1.573 1.23 1.913 1.601 1.51
100 3.34 2.146 1.444 3.37 2.223 1.895
150 3.754 2.78 2.74 3.924 2.858 2.53
200 4.78 3.426 3.4 4.837 3.615 3.445

Se
m
i-d

en
se

0 0 0 0 0 0 0
150 14.721 3.137 0.231 15.04 3.164 2.798
300 24.068 5.347 1.351 28.98 5.483 4.533
600 58.51 9.788 8.11 77.099 10.005 8.373
900 100 14.227 14.168 100 14.582 12.896
1200 100 18.683 18.664 100 19.162 19.133

D
en
se

0 0 0 0 0 0 0
250 38.715 6.244 3.482 40.622 6.32 5.122
500 79.233 11.577 10.015 87.174 11.643 10.346
1000 100 22.28 20.016 100 22.8 20.474
1500 100 37.98 37.566 100 40.844 40.899
2000 100 79.38 79.146 100 83.478 83.13

Table 3.5: End-to-end delay in s.

Network
Size

Number of
Flows

Protocols
HSAW VARP-S SMDRP HSAW VARP-S SMDRP

Mobility 3 m/s Mobility 20 m/s
E2E delay (s)

Sp
ar
se

0 0 0 0 0 0 0
25 83.4 0.441m 0.158m 0.3313m 0.0013 0.436m
50 85.4 0.404m 0.146m 0.3528m 0.0012 0.411m
100 86.9 0.415m 0.137m 0.3458m 0.0012 0.425m
150 84.9 0.4m 0.147m 0.3181m 0.0012 0.44m
200 86.7 0.455m 0.141m 0.3327m 0.0012 0.429m

Se
m
i-d

en
se

0 0 0 0 0 0 0
150 0.01578 0.1897 0.1705 0.0619 0.8583 0.8591
300 0.1589 0.1817 0.1724 0.63 0.8214 0.8391
600 0.1537 0.1837 0.1712 0.6281 0.8318 0.8189
900 inf 0.1861 0.1766 inf 0.8287 0.8368
1200 inf 0.188 0.1771 inf 0.841 0.834

D
en
se

0 0 0 0 0 0 0
250 0.07281 0.7069 0.6978 0.2893 3.1934 3.1289
500 0.6211 0.6989 0.6791 2.909 3.1988 3.1007
1000 inf 0.6815 0.6767 inf 3.214 3.1523
1500 inf 0.6925 0.6758 inf 3.4905 3.1726
2000 inf 0.6798 0.6339 inf 3.5258 3.423
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Table 3.6: Cellular overhead in bits/s.

Network
Size

Number of
Flows

Protocols
HSAW VARP-S SMDRP HSAW VARP-S SMDRP

Mobility 3 m/s Mobility 20 m/s
Cellular Overhead bits/s

Sp
ar
se

0 0 0 0 0 0 0
25 23K 6.5K 6.9K 113K 60K 69.9K
50 96K 13K 14K 282K 134K 147K
100 115K 27K 28K 824K 269K 299K
150 149K 40K 41K 1.1M 390K 404K
200 205K 53K 55K 3.2M 528K 535K

Se
m
i-d

en
se

0 0 0 0 0 0 0
150 4.4M 1.3M 1.4M 284M 13.5M 14.69M
300 35M 2.6M 2.7M 462M 27M 28.99M
600 69M 5.3M 5.4M 685M 54M 55.81M
900 104M 8M 8.1M 814M 81M 82.32M
1200 129M 10M 11.79M 899M 108M 119.44M

D
en
se

0 0 0 0 0 0 0
250 20M 6.19M 8M 834M 62M 69.3M
500 40M 12M 13M 1.3G 124M 145.61M
1000 120M 24M 25M 4.2G 249M 269.92M
1500 518M 36M 38M 6.5G 372M 391.56M
2000 1.9G 43M 44M 8.6G 447M 448.71M

Table 3.7: WiFi overhead in bits/s.

Network
Size

Number of
Flows

Protocols
HSAW VARP-S SMDRP HSAW VARP-S SMDRP

Mobility 3 m/s Mobility 20 m/s
WiFi Overhead bits/s

Sp
ar
se

0 0 0 0 0 0 0
25 0 19136 3920 0 24864 9800
50 0 40352 6000 0 109952 17400
100 0 76288 13520 0 148608 35560
150 0 100544 21040 0 254848 44720
200 0 127616 27320 0 325792 70920

Se
m
i-d

en
se

0 0 0 0 0 0 0
150 0 108128 20640 0 396576 54896
300 0 181120 39960 0 946560 194160
600 0 372064 79080 0 1723040 382040
900 0 563232 127640 0 2686304 560400
1200 0 746304 166720 0 3621920 743240

D
en
se

0 0 0 0 0 0 0
250 0 155840 69720 0 693952 147360
500 0 314080 66800 0 1360864 299840
1000 0 625600 132120 0 2866944 615120
1500 0 3390816 830256 0 5752448 1612600
2000 0 11024864 2181250 0 14774336 4852330
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experience more link failure. The same trend for 20m/s is observed for three protocols as
illustrated in Figure 3.13 and Table 3.3. Moreover, for all the scenarios, when the number of
flows increases, the number of dropped packets will increase accordingly.

3.5.2 Simulation Analysis for Energy Consumption

Figure 3.9 and Table 3.4 illustrate the energy consumption of nodes for various number of flows
in sparse, semi-dense and dense networks. As shown, nodes consume the most energy and the
least energy in HSAW and SMDRP, respectively. The consumed energy of nodes in HSAW
protocol is much higher in semi-dense and dense networks compared to sparse networks. This
is due to the large size of LSDB that must be received by each node in the network which
leads to more rapid depletion of their battery when number of flows are more than 600 and 500
for semi-dense and dense networks, respectively. In SMDRP, nodes use slightly less energy in
contrast with VARP-S. Because in VARP-S, the information of relay nodes are attached to the
data packets that will be received by each hop between source and target, while in SMDRP,
only flow ID is attached to the data packets. Consequently, nodes consume less energy as they
receive smaller packets. The consumed energy for three protocols will increase in accordance
with the number of flows and mobility rate in the network as depicted in Figure 3.9, Figure 3.14
and Table 3.4.

3.5.3 Simulation Analysis of E2E Delay

E2E delay between source and target of the flows in the network are indicated in Figure 3.10
and Figure 3.15 with Table 3.5. As it can be seen, nodes in HSAW experience the least delay
as response time to the link failures is much faster. The reason is that in HSAW, nodes do not
wait to receive the forwarding information from the controller. They simply run the Dijkstra’s
algorithm and find the new path to the target. In contrast, nodes in the other two protocols have
to wait for the controller updates that leads to more end-to-end delay. SMDRP has less delay
compared to VARP-S because of the smaller size of updated information sent by the controller,
since in BS, smaller packets are processed faster. Therefore, the updated information takes
less time to get to the relay nodes. However, when number of flows is more than 600 and 500
in semi-dense and dense networks, HSAW is not functional as nodes will run out of battery
and relay nodes are no longer available to deliver packets. Regardless of higher delay time in
mobility rate of 20m/s (Figure 3.15) compared to 3m/s (Figure 3.10), the trend of delay is the
same for three protocols. Further, E2E delay increases when the number of flows increases.

3.5.4 Simulation Analysis of Overhead

Figure 3.11 and Figure 3.16 with Table 3.6 represent the cellular overhead, when the mobility
rate of nodes is 3m/s and 20m/s, respectively. As expected, HSAW puts significant cellular
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overhead on the network compared with the two other protocols. This is due to the consumed
bandwidth by the controller for forwarding LSDB updates to the whole network. This overhead
will increase when the size of the network grows. In SMDRP and VARP-S, cellular channel is
utilized for sending and receiving forwarding information to and from the controller. However,
in SMDRP, more cellular bandwidth is required as all the relay nodes in one flow should receive
the forwarding information, while in VARP-S, only the source node of the flow will receive the
forwarding information.

The WiFi overhead for mobility rates 3m/s and 20m/s is analyzed in Figures 3.12 and 3.17,
and Tables 3.7 respectively. As shown, network experiences more overhead in WiFi channel in
VARP-S and SMDRP protocols, since the control packets attached by those protocols to data
packets cause the extra overhead on WiFi. On the other hand, HSAW has no overhead on WiFi
channel because it does not attach any control header to the data packets.

In all the defined scenarios, the total vertical and horizontal overhead will increase when the
number of nodes, number of flows and mobility rate increase in the network as depicted in
Figures 3.11, 3.12, 3.16, and 3.17.

3.6 Conclusion

A detailed study is performed to investigate the performance of proactive and reactive MD2D
routing frameworks, using HSAW, SMDRP and VARP-S protocols. Three network scenarios:
sparse, semi-dense and dense networks were modelled over different mobility rates. Our results
show that the proactive MD2D protocol, namely HSAW, introduces the highest overhead in
the cellular channel and while consuming the highest energy compared to the other two reactive
protocols. Conversely, HSAWprovides the least E2E delay and packet loss compared to reactive
protocols for lower network and traffic densities. Since, in HSAWwhen node and traffic density
is high, nodes will eventually run out of battery, leading to larger packet loss compared to
reactive protocols. Our results suggest further research is required to develop an adaptable
routing protocol, which can optimize its core routing functionality and parameters according to
networking conditions. This is the focus of the following chapters in this PhD.
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(a) Sparse (b) Semi-dense

(c) Dense
Figure 3.8: Number of dropped packets (bits) with node velocity 3m/s.

(a) Sparse (b) Semi-dense
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(c) Dense
Figure 3.9: Energy consumption of nodes (%) with node velocity 3m/s.

(a) Sparse (b) Semi-dense

(c) Dense
Figure 3.10: End-to-end delay (s) with node velocity 3m/s.
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(a) Sparse (b) Semi-dense

(c) Dense
Figure 3.11: Total routing overhead in cellular-band (bits/s) with node velocity 3m/s.

(a) Sparse (b) Semi-dense
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(c) Dense
Figure 3.12: Total routing overhead in WiFi-band (bits/s) with node velocity 3m/s.

(a) Sparse (b) Semi-dense

(c) Dense
Figure 3.13: Number of dropped packets (bits) with node velocity 20m/s.
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(a) Sparse (b) Semi-dense

(c) Dense
Figure 3.14: Energy consumption of nodes (%) with node velocity 20m/s.

(a) Sparse (b) Semi-dense
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(c) Dense
Figure 3.15: End-to-end delay (s) with node velocity 20m/s.

(a) Sparse (b) Semi-dense

(c) Dense
Figure 3.16: Total routing overhead in cellular-band (bits/s) with node velocity 20m/s.
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(a) Sparse (b) Semi-dense

(c) Dense
Figure 3.17: Total routing overhead in WiFi-band (bits/s) with node velocity 20m/s.
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4
Joint Mobile Node Participation and

Multi-Hop Routing for Emerging Open
Radio-Based Intelligent Transportation

System

4.1 Overview

The upcoming research is published in IEEE Access 1. This chapter’s main objective is to
propose an intelligent joint topology control and multi-hop routing protocol called FPRM. We
introduce a sub-layer at the network layer that can determine nodes with the highest participa-
tion probability in routing using a fuzzy logic system, thus building a framework to create more
stable routes. The proposed protocol shows superior performance compared to other routing
protocols.

1Abolhasan, M., Lipman, J., Shariati, N., Ni, W., Jamalipour, A. (2022). Joint Mobile Node Participation and
Multihop Routing for Emerging Open Radio-Based Intelligent Transportation System. IEEE Access, 10, 85228-
85242.
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4.2 Introduction

The widespread use of mobile devices, intelligent transportation systems, Internet-of-things
(IoT) networks, and machine-type communication has led to substantial data traffic growth.
This trend will most likely continue as the need for ubiquitous connectivity of people, devices,
and machines follow the same trajectory. In this trend, mobile devices have significantly con-
tributed due to advancements in new applications and services for smartphones. These appli-
cations require high data rates and perfect quality of experience (QoE) for users. The need for
a faster data rate was the primary reason for wireless network evolution and the manifestation
of fifth-generation (5G) cellular networks. However, with the emergence of smart applica-
tions [145], the Internet-of-everything (IoE) [146], user demands [147], and the connection of
millions of people, machines, and vehicles [148], the current network paradigm requires shifting
from rate-centric to ultra-reliable low latency communication. Therefore, creating an unprece-
dented dispute for existing 5G wireless networks. The sixth-generation (6G) cellular network
is expected to overcome many associated issues in 5G by utilizing intelligence and a new radio
access network (RAN) [149]. Although one can argue that available 5G systems in the market
can handle basic IoE and low latency services, it is disputable whether they can deliver the
scalability and reliability required for future heterogeneous networks.

Significant effort has been dedicated to enhancing the RAN architecture [150]. Most of the
focus of current research is on building an operator-defined RAN (commonly referred to as
Open RAN), that enables intelligent radio control and creates self-driving networks. In par-
ticular, the open-radio access network (O-RAN) allows openness in the RAN by merging the
xRAN forum and centralized-RAN alliance. O-RAN uses the concept of virtualization, cloud,
and intelligence to initiate agile service deliveries and enhance capabilities to end users [27].
Incorporating intelligence is one of the main reasons underlying the advantages of 6G over 5G.
6G establishes an automation and self-organization network, where most network applications
will be managed by a machine rather than human intervention. One of the main building blocks
in 6G is machine learning (ML) technology [151]. ML has significantly contributed to wire-
less network applications, such as quality-of-service (QoS), resource management, spectrum
allocation, and routing [152–155]. Moreover, software-defined networking (SDN) enables the
separation of control and data planes, allowing ML-based algorithms to perform optimization
and automation in a centralized controller and provide intelligent decisions to devices. SDN and
network functions virtualization (NFV) provide advanced features for the RAN intelligent con-
troller (RIC) to increase the performance of future wireless networks. Furthermore, O-RAN has
defined three control loops, effectively enabling NFV applications to be deployed at different
locations of the cellular network architecture. For example, at the core, where the non-real-time
control loop exists, non-real NFV applications could be deployed, whereas, in the near-real-time
control loop, NFVs aim to perform operations at near-real-time [156,157].
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Figure 4.1: Proposed framework for the designed routing protocol, where fuzzy-logic system is adapted
at edge controller.

4.2.1 Motivations

Multi-hop device-to-device (MD2D) communication is a promising technology to offload base
station (BS) traffic. In MD2D frameworks, routing algorithms play an essential role, and they
must be designed to provide the highest performance based on the criteria of the current and
future networks. Therefore, an MD2D routing protocol must be capable of adapting to any
dynamic topology changes in the network. Recent MD2D routing protocols mainly focus on
optimization algorithms to increase network performance. To the best of our knowledge, no
MD2D study has yet adapted a fuzzy-based topology control routing mechanism to identify the
participant nodes and dynamically create efficient routes for that specific network topology. One
of the advantages of our proposed framework is the intelligence of controller. The controller can
collect network telemetry and network application requirements and use them to generate link-
state databases (LSDBs). Moreover, the topology control mechanism enables a fuzzy system
to dynamically adapt to the network changes and identify the participating nodes. Our rout-
ing protocol can create network knowledge and prescribe optimal routes using the information
obtained from the topology control and acquired data from the network.
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4.2.2 Contributions

This chapter proposes an intelligent joint topology control and multi-hop routing called fuzzy-
based participation and routing protocol for MD2D (FPRM) to increase the network lifetime and
packet delivery ratio (PDR). In our approach, a fuzzy-based participation mechanism controls
and manipulates the network’s topology. The fuzzy system is located in the RIC controller. The
controller collects all the nodes’ information and decides whether a node should participate in
MD2D routing based on the fuzzy rules. Therefore, different network graphs can be obtained
by manipulating which node can participate in the network. Based on the topology graphs and
application requirements, network LSDBs are created. Figure 4.1 represents the fuzzy-based
participation and routing framework under the management and a control. In this framework,
every small BS (SBS) (e.g., picocell networks) is connected to a controller with a unique ID, and
every BS can communicate to other SBSs through backhaul channels. Each SBS is responsible
for providing service to every user equipment (UE) in their coverage area. The edge network is
connected to the core network for Internet access and other advance processing functionalities.
The controller creates a centralized fuzzy-based unit to process and store information to instruct
the SBSs. The embedded fuzzy system obtains the participating nodes and creates different
network LSDBs based on the network topology and application requirements. Later the LSDB
is shared with participating nodes to perform MD2D routing.

The contributions of this chapter are summarized as follows:

• Proposing joint topology control and MD2D routing using an adaptive fuzzy-based learn-
ing system.

• Presenting a new MD2D knowledge-based routing framework that adapts based on the
user requirements and fuzzy system to identify participating nodes and disregard nodes
that can cause potential damage to network performance.

• Utilizing an intelligent O-RAN controller to collect network information and build vari-
ous LSDBs for different network topologies.

• Introducing a three-step routing constraint to ensure the proposed MD2D routing can
provide a reliable communication link to the maximum number of users over a long time.

• A comprehensive analysis of the proposed routing protocol with a semi-centralized rout-
ing protocol, namely hybrid SDN architecture for wireless distributed networks (HSAW)
[83], and traditional distributed routing protocols, including ad hoc on-demand distance
vector (AODV) and optimized link state routing (OLSR), is presented. The results show
more than a 30% increase in average throughput, more than 30% reduction in end-to-end
(E2E) delay, almost 8% increase in PDR, and almost 2% decrease in energy consumption
compared to one of the leading MD2D routing protocols, HSAW.

The rest of this chapter is organized as follows. Section 4.3 provides a literature review of
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the current MD2D routing protocols. Section 4.4 briefly explains the routing framework and
system model. Section 4.5 describes the route discovery and maintenance strategy over an
intelligent fuzzy-based routing protocol. Section 4.6 provides a complete explanation of the
fuzzy logic algorithm used for node participation. Section 4.7 introduces the constraint used
after the fuzzy logic process to improve the scalability of the routing protocol. Section 4.8
evaluates the performance of the proposed routing framework using the NS-3 simulator. Finally,
our conclusion and future research directions are explained in Section 4.9.

4.3 Related Works

The O-RAN provides the opportunity to create a new generation of intelligent semi-centralized
routing protocols [158, 159]. This opportunity has opened the door toward developing a new
set of MD2D routing protocols for future intelligent transportation systems. In MD2D rout-
ing, a controller can instruct the devices in the network and install or remove routing entries
within the device’s routing tables. For instance, the authors in [160] proposed a routing pro-
tocol using the SDN framework in the wireless multi-hop paradigm to increase the life span
of the network. In their framework, nodes transmit their local information to the controller to
generate a global network view. The SDN controller can then provide a route to a destination
upon request from a source node. This is generally achieved by computing the shortest route
via the shortest path first (SPF) algorithm. The SDN controller applies energy constraints and
hops count limits to find the best path for each source node. Simulation results show that net-
work lifetime is extended compared to OLSR and AODV routing protocols. Authors of [86]
proposed an MD2D routing protocol for SDN-based cellular networks. The proposed method
builds the LSDB of the network at the controller, and once a node requests a route, the controller
uses the Dijkstra algorithm to find the shortest path to the destination. The proposed protocol
provides scalability and reliability in mobile ad hoc networks (MANETs). Furthermore, in ve-
hicular ad hoc networks (VANETs), the authors of [161] proposed a low delay and low routing
overhead framework to propagate messages. Their protocol finds multiple paths using multiple
network attributes, such as link stability and shortest travel time. Simulation results show that
the proposed protocol significantly outperforms the conventional routing protocols regarding
E2E delay and routing overhead. SDN-based routing frameworks provide scalable routing pro-
cedures among various wireless networks. However, the above strategies have not considered
the dynamic changes of the network causing deterioration of network performance. One of the
promising solutions to address this problem is using O-RAN near-real-time controller to make
routing decisions. Fuzzy-based routing protocols have shown promising solutions for optimiza-
tion of routing parameters in a self-organizing manner based on the network dynamics [162].

Recently, knowledge-based algorithms have gained widespread attention. The optimized data
acquired from SDN-enabled ML-based controller can create knowledge that enables networks
to adjust their parameters when necessary [163–165]. For instance, the authors of [166] used

70



reinforcement learning (RL) in routing problems to maximize the throughput and minimize
the communication delay for each source node. Their algorithm continuously predicts the
network’s future behavior and evaluates the most efficient path to the destination. An SDN
controller is utilized to collect network information and train an RL agent to manage the data
traffic among devices in the network. Simulation results illustrate that the proposed routing
protocol delivers large files faster than open shortest path first (OSPF) and least loaded (LL)
routing algorithms over different network scenarios. Moreover, the authors of [167] proposed
an intelligent-based fuzzy routing protocol to decrease power consumption. Specifically, they
solved the unbalanced distribution of cluster heads by the fuzzy c-means clustering algorithm,
which categorized nodes into balanced clusters. Then the cluster heads are assigned using the
Mamdani fuzzy interference system to route packets between the controller and other nodes.
Obtained simulation results show an increase in network lifetime and superiority over existing
clustering-based protocols. Other studies, such as [168], used fuzzy logic to improve the sta-
bility of the AODV routing protocol in MANETs. The most trusted relay nodes are selected
in their framework for route generation between the source and destination nodes. The fuzzy
logic method takes the node energy, mobility, and hop counts to determine the node trust level.
The simulation results illustrate the proposed framework’s advantages against AODV in terms
of control overhead, network throughput, packet delivery ratio, and E2E delay. In vehicular net-
works, fuzzy learning has provided unprecedented benefits. The authors of [169] introduced an
intelligent fuzzy-based routing scheme for software-defined vehicular networks (SDVNs) in ur-
ban areas. In this technique, a centralized controller maintains the routing table. These routing
tables are initially constructed based on the priorities of packets using fuzzy logic and later up-
dated based on the network changes. Then, a greedy strategy is used to obtain routing paths with
the highest link stability. Simulation results demonstrate significant performance improvement
in dense urban areas compared to the existing routing frameworks. As can be seen from the
literature review, the ability to learn and adjust the network parameters to increase the network
performance is a promising solution for future MD2D heterogeneous networks [104,108,170].

4.4 System Model

FPRM is a proactive routing protocol where a controller collects the network information and
broadcasts the required routing information for participant nodes to perform MD2D communi-
cation. In general, the controller is responsible for separating the control and data planes such
that the distributed devices only transmit the data messages, not the control messages. When
the controller is adapted in the network, devices are relieved from flooding algorithms to find
a route to the destination. The controller is responsible for creating paths separately and only
providing devices with routing entries. Proactive routing protocols use the capability of a cen-
tralized controller to build LSDBs. However, the generated LSDB is shared with the entire
network without knowing whether devices are participating in the MD2D routing or not. This
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can cause cellular channel overhead and reduction in the MD2D network lifetime. To mitigate
problems associated with proactive routing approaches and increase the network’s lifetime, we
introduce a sub-layer, which can determine nodes with the highest participation probability in
routing and thus build a framework to create more stable routes.

As shown in Figure 4.2 the BS collects every node’s data, such as energy, number of neighboring
nodes, and mobility rate, to obtain the most reliable nodes. The fuzzy system processes the
information and defines the participating nodes. Furthermore, the controller creates an LSDB
and broadcasts it to the participating nodes, where nodes will distributively calculate a path
using the LSDB. Once a node requires to transmit a packet, it will evaluate the path using
Dijkstra’s algorithm and adds the route to its routing table. If a link failure occurs while sending
the packet, the node can calculate a new route and delete the previous route from the routing
table. Additionally, the link failure is shared with the controller, where the controller updates
the fuzzy system and broadcasts the new information to nodes to update their LSDBs.

In our framework, every UE is equipped with at least two communication interfaces: cellular/li-
censed and WiFi/unlicensed frequencies for in-band and out-band communication. The in-band
communication consists of data messages exchanged between UEs (MD2D communication)
and the acknowledgment messages. Out-band communication includes Internet connectivity,
control messages, and connection to other networks. At the initial stage of the network, each
UE transmits a Hello message to its neighboring nodes (where neighboring nodes are nodes
within each UEs communication range) via the WiFi channel. Then, UEs transmit their link-
state information to the sub-controller via the cellular channel. Based on the received data, the
sub-controller processes the information and generates an LSDB. Then, fuzzy logic is applied
to find the participation policy in the network. The sub-controller uses defined fuzzy rules to
calculate each node’s eligibility index (EI). The lowest values of the EI correspond to nodes that
might fail to transmit a packet or have low energy levels. These nodes are excluded from par-
ticipation in routing. Moreover, once the eligible node is determined, the next step is applying
the following constraints: coverage and mobility. The introduced constraints in our proposed
routing framework ensure that the eligible/active nodes can support the entire network with the
least interruption. It is noteworthy that The LSDB is only transmitted to active nodes in the
network.

4.5 Routing Procedure in Fuzzy-Based MD2D Commu-
nication Framework

At the initial stage of our framework, nodes transmit their information, such as remaining en-
ergy, list of neighboring nodes, mobility rate, and throughput. Once the BS receives all this
information, it will run them through the fuzzy logic system to obtain nodes with the least EI.
These nodes are in critical conditions, and using them in the routing process may cause packet
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Figure 4.2: Proposed fuzzy framework, where nodes information including remaining energy, mobility
rate, and the number of neighboring nodes are collected by the controller to apply fuzzy system and
identify the participating nodes.

loss leading to an unstable network. After selecting eligible nodes, the next step is to compute
each node’s activation time duration. Then, we apply mobility and coverage constraints to en-
force two rules: first, least interrupted connectivity, and second, providing service to the entire
network. Then, the active nodes will receive the computed LSDB from the BS.

4.5.1 LSDB Calculation

The controller provides the entire network with link-state information, calculated in a cen-
tralized manner using the weight given to each node. The link-state information contains the
reported data of nodes, including a list of neighboring nodes, the traffic arrival rate, the queue
length of each node, and the channel condition between the node and the one-hop neighboring
nodes. To compute the LSDB, once a node joins a BS after the authentication process by the
sub-controller, it will be allowed for advance routing services. Then, each node will broadcast
its existence through Hello messages to its neighboring nodes via a WiFi channel. After the
adjacent nodes are identified and the link between them is established, each node will send its
link-state information via the cellular channel to the sub-controller. This information consists
of one-hop neighboring nodes associated with link-state, location, battery level, and through-
put and sent to the BS using a topology control (TC) message. The LSDB generated at the
sub-controller is also shared with the nearby sub-controllers and the main controller. Therefore,
each BS has a global network view, helping them with handover decisions, traffic management,
user allocation, and content caching.
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Figure 4.3: The proposed fuzzy system.

4.5.2 LSDB Update

Each sub-controller must update the generated LSDB after any changes to the network. If any
changes occur to the link-state information, a TC message will be sent to the sub-controller to
inform the status changes of the node. Based on the TC message, the sub-controller decides
whether to change the LSDB. The new information received at the BS is processed to update
the main LSDB and broadcast any link state changes. Moreover, if any node observes sudden
changes or link failures, the BS is notified, and new LSDB entries are generated based on
the information. The proposed algorithm only updates specific entries of the node’s LSDB.
However, the entire LSDB is usually updated at a constant rate.

4.5.3 Route Discovery

Our fuzzy-based routing framework is a hop-by-hop routing protocol, meaning that the data
packets only carry the node destination ID. Each intermediate node or active node between the
source and destination is the relay node. The relay nodes are the forwarding devices that check
the destination field ID and then apply Dijkstra’s algorithm to discover the next forwarding
node. Each forwarding device has the entire network LSDB enabling them to find the least-
cost path to the destination. After receiving LSDB, an active node performs distributed route
discovery using Dijkstra’s algorithm [171]. In particular, each node generates a routing table
that specifies a path to any other node in the network with minimum total cost. In this stage,
no further assistance is required from the controller. Nodes are now able to perform route
discovery purely in a distributed manner. Multiple routes can be established between any two
nodes as primary and backup routes based on the lowest cost in case of any link breakage. If
both paths are independent, the data traffic can be split between the two routes to deliver the
packet in parallel. In the case of heavily congested networks with a high number of nodes, route
discovery is more challenging, and split multipath routing helps distribute the load. On the other
hand, if multiple paths are stored in each node for any pairs of nodes, then node storage and
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Figure 4.4: Flowchart of the proposed fuzzy-based routing protocol.

network scalability will be another challenge. To further accomplish scalability, we can deploy
sub-controllers and divide the network into small cells similar to the idea in [172, 173]. Hence,
each node only needs to maintain the routing table of its own cluster. However, this is the point
of our future study to monitor the effect of split routing in congested networks.

4.5.4 Route Maintenance

Each relay node is responsible for forwarding packets to the next least-cost hop. After any
reception, relay nodes must acknowledge the packet delivery. If a node detects a failure or error
during transmission, it will initiate a flow error (FERR) message to the sub-controller containing
the error type. If the error type has the link broken message, the sub-controller broadcast a
FERR to notify other nodes about the broken link. Once nodes receive a FERR from the BS,
any transmission to that particular node will be canceled, and the node ID is removed from the
LSDB after the flow error waiting time (FERR-WT) period. FERR-WT is the associated time
for deleting any entry and updating the LSDB. This time duration is required if the node is only
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deactivated for a short period due to bad reception. After this time is passed and nodes have not
yet received an active route entry, a new route will be obtained, and the routing table will be
updated. At the same time, the previous node of the forwarding path uses the LSDB and applies
Dijkstra’s algorithm to find the alternative path and transmit the rest of the data packet using
the new route. During the route failure, nodes can find a new path due to the availability of the
LSDB. However, if a new path can not be found, then there are two possibilities:

• Destination is unreachable: If the node can not find a destination, the sub-controller will
receive a destination ID with the data packet.

• Low channel quality: In this case, the sender transmits a quality check message to the
receiver to check the possibility of transmission. If not, a new route will be established.

In parallel to LSDB computation, the BS is also responsible for obtaining the eligible nodes
through a fuzzy system. Figure 4.3 shows the overall process of the proposed protocol and
all the required steps to compute the participating nodes and the routes. A fuzzy system is
equipped with rules and can evaluate the eligible nodes. After the fuzzy system is applied, the
three-step constraint is performed to ensure the eligible nodes computed by the fuzzy system
are satisfactory if any specific condition occurs. The three constraints are further explained in
Section 4.7. Then, LSDB is shared among the eligible nodes, and the MD2D communication is
established between the active flows. The following section explains how nodes are segregated
into two groups: active and deactivated nodes—followed by applying constraints for the final
eligibility check.

4.6 Node Participation Mechanism Using Fuzzy-Based
Algorithm

The main idea of fuzzy logic is to manage a system with pre-defined rules. The results of fuzzy
logic consist of values ranging from 0 to 1. There are four main procedures in fuzzy logic:
fuzzification, fuzzy rules, fuzzy inference system, and defuzzification. The fuzzy logic in our
study aims to construct the initial stage for the participation of nodes. The fuzzy system captures
network information in our framework and computes each node’s EI. This index will identify
the probability of a node being able to participate in a route.

4.6.1 Fuzzification

The fuzzification process measures the node cost (NC) to estimate the node’s EI. The cost is
calculated using three decision parameters: remaining energy, mobility rate, and the number
of neighbors. These parameters are transformed into triangular fuzzy membership functions,
where each input value to the system is mapped to the associated membership function to reveal
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Table 4.1: The proposed fuzzy rules.
Rules Remaining Energy Mobility Rate Number of Neighbors Rule Cost Numerical

Representation of Cost
1 Very Low Very High Very Low Very Low 0
2 Very Low Very High Low Very Low 0
3 Very Low Very High Medium Very Low 0
4 Very Low High Very Low Low 0.25
5 Very Low High Low Low 0.25
6 Very Low High Medium Low 0.25
7 Very Low Medium Very Low Low 0.25
8 Very Low Medium Low Low 0.25
9 Very Low Medium Medium Low 0.25
10 Low Very High Very Low Very Low 0
11 Low Very High Low Very Low 0
12 Low Very High Medium Very Low 0
13 Low Medium Very Low Very Low 0
14 Low Medium Low Low 0.25
15 Low Medium Medium Low 0.25
16 Low High Very Low Very Low 0
17 Low High Low Very Low 0
18 Low High Medium Very Low 0
19 Medium Very High Very Low Low 0.25
20 Medium Very High Low Low 0.25
21 Medium Very High Medium Low 0.25
22 Medium High Very Low Low 0.25
23 Medium High Low Low 0.25
24 Medium High Medium Low 0.25
25 Medium Medium Very Low Low 0.25
26 Medium Medium Low Medium 0.5
27 Medium Medium Medium Medium 0.5

the fuzzy degree. Figure 4.4 presents the fuzzy logic flowchart.

Figure 4.5 illustrates the membership diagrams for obtaining the fuzzy value of remaining en-
ergy, mobility rate, and the number of neighboring nodes, respectively. The first input parameter
to the fuzzy system is the remaining energy of a node. As shown in Figure 4.5a the member-
ship function consists of five levels, including very low, low, medium, high, and very high.
We assume that the energy of nodes is randomly distributed with a maximum value of 300
Joules. The high remaining energy value represents a high-value node, which means that the
node with higher remaining energy has a low risk of packet transmission failure. The amount
of the remaining energy is converted to linguistic values in one or two possible levels.

As shown in Figure 4.5b the second input parameter is the mobility rate of the nodes. The
higher the nodes’ mobility, the larger the probability of packet failure is due to link failure or
signal fluctuations. Therefore, when the mobility rate of nodes is low, the node’s reliability is
high, which means there is a better chance of relaying packets to the destination with minimum
interruption and packet loss.

Finally, the third input parameter to the fuzzy system is the number of neighbors, as shown in
Figure 4.5c. A node with a higher number of neighbors has a higher connectivity degree and a
higher chance of participating in the routing.
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(a) The fuzzy membership function for remaining energy.

(b) The fuzzy membership function for mobility rate.

(c) The fuzzy membership function for number of neighbor-
ing nodes.

Figure 4.5: Proposed fuzzy diagrams for evaluating the potential candidate for participation.

4.6.2 Fuzzy Rules

Fuzzy rules are obtained using the degree of importance and representation of a value into a
meaningful explanation. As previously mentioned, the highest node energy is assumed to be
300 Joules, and if, for instance, a node reports an energy level of 270 Joules, the node is still at
a very high energy level. As a result, we can assign each input parameter to the fuzzy system
to the corresponding linguistic values in a reasonable belief. As illustrated in Figure 4.5 each
parameter, remaining energy, mobility rate, and the number of neighbors are divided into five
levels. Therefore, we have three fuzzy parameters leading to 53 states. However, there are only
27 rules counted in our system to distinguish the least qualified nodes and eligible nodes for
participating in the routing. These 27 rules are demonstrated in Table 4.1, where each rule is
associated with a cost. The associated cost values will be explained later in this section.
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4.6.3 Fuzzy Inference Engine

After the fuzzification process and converting input values to linguistic values, the values are
sent to the inference engine. Together with the rules and the input data, the inference engine
forms inferences and draws conclusions. The fuzzy inference system considers all the possible
states of the applied rules to evaluate the fuzzy inference output. The Mamdani fuzzy infer-
ence system [174] is used in this step to find the fuzzy matching rules and calculate the fuzzy
inference output. The system’s output is sent to the defuzzification module for final processing.

4.6.4 Defuzzification

In the defuzzification process, the output values of the fuzzy inference engine are used to calcu-
late the crisp value of the EI as a final crisp value of the fuzzy learning system. EI is calculated
using (4.1), where Rulei is computed via the corresponding values of the x-axis into the y-
axis. Rule cost, also known as the cost function, is represented by a triangular function. The
numerical representation of rule cost C is obtained using Figure 4.6.

EI(n) =

Pn
i=1 RuleiCiPn
i=1 Rulei

, (4.1)

Note that to calculate the y-values from the fuzzy functions, some values of the x-axis might
cross two points in the y-axis. For instance, for the mobility value of 15m/s, the corresponding
y-value is 0.5. On the other hand, for the mobility rate of 17m/s, the y-values intersect at two
points; the low-line at 0.4 and the medium-line at 0.6. This process increases the number of
states while calculating the EI.

Let us consider an example for node A reporting the remaining energy of 125 Joules, mobility
rate as 27m/s, and 4 neighboring nodes. Using fuzzy functions these values correspond to:
RE(low) = 0.3, RE(medium) = 0.7, MR(medium) = 0.4, MR(high) = 0.6, NN(verylow) = 0.1, and
NN(low) = 0.9. Each parameter corresponds to two values, meaning there are 23 � 1 states to
calculate rules. Table 4.2 illustrates the numerical values of rules for each of the states. All
three parameters of input (Remaining energy, mobility rate, and the number of neighbors) are
now multiplied together. Finally, to compute whether node A can participate, EI is calculated
as follows:

EIA =

Pn
i=1RuleiCiPn
i=1 Rulei

=
Rule13C13 +Rule14C14 +Rule16C16

Rule13 +Rule14 +Rule16

+
Rule17C17 +Rule25C25 +Rule26C26

Rule17 +Rule25 +Rule26

+
Rule22C22 +Rule23C23

Rule22 +Rule23
,

(4.2)
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Figure 4.6: Fuzzy diagram for calculating the rule cost of each combined rules from Table 4.1.

Table 4.2: Numerical representation of rules for provided example to calculate EI.
Rules Values Results
RE(low) ⇥MN(medium) ⇥NN(verylow) 0.3⇥0.4⇥ 0.1 0.012
RE(low) ⇥MN(medium) ⇥NN(low) 0.3⇥0.4⇥ 0.9 0.108
RE(low) ⇥MN(high) ⇥NN(verylow) 0.3⇥0.6⇥ 0.1 0.018
RE(low) ⇥MN(high) ⇥NN(low) 0.3⇥0.6⇥ 0.9 0.162
RE(medium) ⇥MN(medium) ⇥NN(verylow) 0.7⇥0.4⇥ 0.1 0.028
RE(medium) ⇥MN(medium) ⇥NN(low) 0.7⇥0.4⇥ 0.9 0.252
RE(medium) ⇥MN(high) ⇥NN(verylow) 0.7⇥0.6⇥ 0.1 0.042
RE(medium) ⇥MN(high) ⇥NN(low) 0.7⇥0.6⇥ 0.9 0.378

where logistic values shown in Table 4.2 represent the rules in Table 4.1. For instance, the first
row in Table 4.2 corresponds to rule 13 in Table 4.1. After substituting the values, the EI is 0.26.
Similarly, the network’s EI is evaluated, and the lowest values will represent the nodes with the
lowest probability of participating in a route. In contrast, the highest values of EI represent
nodes with a higher probability of participation. Network constraints will further process the
eligible or active nodes to ensure the network’s coverage area is not disturbed and find how long
an eligible node can stay active.

4.7 Applied Constraints for the Proposed Fuzzy-based
Routing Framework

In this section, the energy model is first presented, followed by the evaluated active time for the
eligible nodes. To ensure all active nodes are capable of providing service to the entire network,
a coverage constraint is adopted in our system. Finally, the mobility constraint maximizes
the active time and guarantees no transmission failure during activation. After applying the
regulations, the final decision on the eligible nodes for participation is made.

4.7.1 Proposed Time Frame for Node Participation

In our system, we assume a simple energy dissipation model of radio hardware [143], where the
transmitter dissipates energy to send k-bits of packets through a power amplifier and radio elec-
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Figure 4.7: Energy consumption model.

tronics, and the receiver dissipates energy to run the received k-bits of a data packet. Then, the
energy to transmit the k-bits message is ETX , and ERX is the consumed energy to capture the
message at the receiver. As shown in Figure 4.7 the energy expenditure is the energy consumed
by the network equipment (antennas, electronic components, etc.) to transmit k-bits packet over
a distance d is obtained as follows:

ETX
k =

8
<

:
Eek + Eampkd4, if d > d0;

Eek + Efskd2, if d < d0;
(4.3)

ERX
K = kEe, (4.4)

where d0 is the threshold distance computed by the
p

Efs/Eamp, Ee is the power consumed
by the electronic devices, Eamp and Efs are the amounts of energy per bit dissipated in the RF
amplifier.

Based on (4.3) and (4.4), we can approximate that the energy consumed to transmit a packet is
almost three times higher than receiving a packet. Considering this fact, let us only consider the
highest energy consumption a node can have every second. Assuming that the largest packet
size is equivalent to the data rate (R) and distance is less than the threshold, then the maximum
consumed energy in every second is equal to:

Emax = EeR + EfsRd2, (4.5)

Moreover, the total energy consumption ET of the network is evaluated using the number of the
packets K sent in every flow F 2 {1, ..., fn} as follows:

ET =
KX

k=1

FX

i=1

ETX
k,i + ERX

k,i , (4.6)

Having the maximum amount of energy a node might dissipate, we can calculate the maximum
time tmax a node can stay active. Once the participating nodes are discovered, the next step is to
evaluate the time they can remain active. We assume that the activation time duration must not
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exceed more than the ↵% threshold of the initial energy of a node. Based on this assumption,
the maximum time a node can stay active can be calculated as follows:

tmax =
ERM↵

Emax
, (4.7)

where ERM is the remaining energy of the node. For instance, if we assume the remaining
energy of a node is 200j, the data rate of a link is 10Mbps, ↵ is 25%, and assuming the worst
case scenario maximum range d = 100 (Constants: Ee = 50nj/bit, Efs = 10pj/bit/m2, and
Eamp = 0.0013pj/bit/m4), the maximum time the node can stay active is tmax = 33.33s.

4.7.2 Mobility Constraint

Once the node’s maximum activation time tmax is calculated, it is a question of whether the
node can remain active with minimum transmission failure considering the neighboring nodes
and its own mobility rate. Knowing how fast a node is moving and whether movement might
impact the initial coverage area and the number of neighbors is crucial for selecting the best
performing node to maximize coverage, capacity, and stability. Therefore, it is essential to
declare constraints to determine whether a node can still support its neighbors after a particular
movement.

This chapter considers a 2-D system with N number of heterogeneous
nodes located randomly at positions [xi, yi]T , and i, j 2 N . The
distance between each node is defined by their Euclidian distance:
dij =

p
(xi � xj)2 + (yi � yj)2. Each node’s maximum transmission area is considered a

fixed disk with a given range. All the nodes should be divided into two groups; the first group
contains the active nodes, and the second group keeps the temporarily deactivated nodes. Let
K = {(K1, wk1), . . . , (Km, wkm)} be the set of deactivated nodes, where Km represents the
node ID and wkm is the corresponding weight to the closest active node. Now let
A = {(A1, ta1), . . . , (An, tan)} be a set of active nodes with the corresponding active time
frame. Consequently, based on the maximum activation time, we can derive the final activation
time as follows:

LX

l=1

dAl,Al+L
< max(WAl

KAl
), (4.8)

where L is the number of steps a node will take during the activation time, and WAl
KAl

is the
weight of a set of deactivated KAl

nodes allocated to active node Al. Constraint (4.8) ensures
that the active node is capable of supporting its neighboring nodes or the deactivated nodes in
its neighbor (Km) during the activation time while it is moving.

Along with checking whether the active node movement does not interrupt the communication
with neighbors, the movement of Km must also be monitored for any possible link failures. Zk

is responsible for the movement of Km, whether the deactivated neighboring node is moving
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towards or away from the active node Al.

Zi
k =

dAi,Nj

Range
, i 2 n, j 2 m (4.9)

The movement of nodes directly depends on the mobility rate (v). As shown in Figure 4.8 once
nodes start to depart from the initial position, they will move to different indicated areas (shown
as rings). Each marked circular ring represents a 20% gap to the initial place, and different
transmission ranges represent a different radius. In our study, the transmission range of nodes is
limited to 100m. Hence every 20% gap represents a 20m deviation from the initial position. To
avoid link failure between neighboring nodes due to movement, the following constraints are
established:

0 < max(Z i
k) < 1, Ai : tactive = tmax �

tk
h
, i 2 n (4.10)

max(Zi
k) � 1, Ai : tactive = 0, i 2 n (4.11)

tk = max(Zi
k)100v

K
avg i 2 n (4.12)

h =

8
<

:
vmax(

vmax
100 )v, for 15 < v  30

�vmax
2 v2 + v2 + vmax

2 , for 0  v  15;
(4.13)

To obtain the activation time (4.10) is used, where h is evaluated from (4.13) and vmax equals to
the maximum mobility rate, assumed to be 30m/s. As shown in Figure 4.9 if the average node
mobility rate is between 0-15m/s, the probability of a node staying active is higher. Therefore, as
the average velocity of neighboring nodes (Km) decreases h-index increases faster to maximize
the activation time. However, if the average mobility rate of Km is greater than 15m/s, the
activation time of an active node will decrease dramatically. That means the Km has a higher
chance of leaving the active node’s coverage area. Hence, the activation time will be minimized
to ensure packet loss is minimized during any transmission. tk ensures the active time duration
provides the lowest communication link breakages by considering the weight of the furthest
Km and the average node velocity. (4.11) limits the activation time to ensure deactivated nodes
from set K are not out of the transmission range of A. This procedure is conducted at the RIC
before finalizing the list of active nodes and allocating the corresponding activation time.
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Figure 4.8: Five movement events based on the distance a node can travel over the activation period.

4.7.3 Coverage Constraint

Another essential constraint applied in our routing protocol is the coverage constraint to guar-
antee the initial network coverage by nodes remains almost the same after identifying the active
nodes. After active nodes are separated from deactivated nodes, deactivated nodes will not re-
ceive the whole LSDB. We can imply that the deactivated nodes are shut down. Hence, the
network’s coverage area by all the nodes might be affected when the deactivated nodes are shut
down. We introduce a coverage area constraint to solve this problem to keep the final coverage
area almost identical to the initial coverage area. In order to formulate the coverage constraint
problem a weight (q) is assigned to each node in the network N = {(ni, qi), ..., (ni, qi)}. This
weight represents the strength of the link between two nodes, which means how much overlap-
ping coverage area two nodes might have. The weight of each node is taken as the ratio of the
coverage area, a number between 0 and 1.

qij =
A(Ni \Nj)

A(Ni)
, (4.14)

If we assume the coverage area of each node follows a disk model with a fixed radius, A(Ni \
Nj) is the intersection area between the coverage areas of node i and j, where the intersection
is computed as follows:
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(a) h-index for mobility rate between 0-15m/s.

(b) h-index for mobility rate between 15-30m/s.
Figure 4.9: h-index for computing the activation time of a node.

A(Ni \Nj) =

1

2
r2i

"
2 cos�1

�
✓i
�
� sin
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2 cos�1

�
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+

1

2
r2j

"
2 cos�1

�
✓j
�
� sin

⇣
2 cos�1

�
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#
, (4.15)

where ✓i and ✓j are defined as follows:

✓i =
d2i,j + r2j � r2i

2di,jri
, (4.16)

✓j =
d2i,j + r2j � r2i

2di,jrj
, (4.17)
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Figure 4.10: A simple illustration of the coverage area of fourteen nodes with their intersections.

ri and rj are the transmission range of node i and j, respectively. In our simulation, di,j is
the distance between Ni and Nj defined by Euclidean distance. Finally, A(BSi) = ⇡r2i is the
coverage are of Ni.

Figure 4.10 provides an example to illustrate the described algorithm. This example presents
an area of 10m⇥ 10m with 14 randomly scattered nodes. To calculate the weight of the graph,
the weights for all nodes qi are added.

Qi =
X

j2N

qi,j, (4.18)

Based on the weights, nodes are separated into two groups, A0 and K 0, where A0 is the set of
nodes that must stay active, andK 0 is the set of nodes with highQ. That means the list of active
nodes found in the previous section must now match with set K 0. Then, the list of deactivated
nodes must match with online nodes A0 to check whether any deactivated node must remain
online due to the coverage area restriction. In both cases, the node’s action will be reversed if
there is any mismatch. This technique enforces the selected nodes during the fuzzy learning
process to be able to provide service to the entire network. In Figure 4.10 after the weights are
all computed, N2 will have the maximum weight and will be selected as the potential node in
setK. If this node is also listed in the fuzzy system deactivated nodes, this node will be selected
in the final list of deactivated nodes. Moreover, as observed from Figure 4.10 the overlapping
coverage area of N1, N3 and N7 supports the fact that these nodes are the substitutes in that
region, and by coverage constraint, N2 is part of K 0. Similarly, this technique is applied to the
entire network to ensure full connectivity.
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Table 4.3: Simulation parameters.
Parameters Value
Simulation environment 500m⇥500m
Number of UEs 50,100,150,200,250
Packet transmission size 15 kbits
Protocols FPRM, HSAW, AODV, OLSR
Propagation model Rayleigh fading
Mobile node transmission range 100m
Mobile node movement model Random waypoint mobility
Total simulation time 3000s

4.8 Simulation Results

This section presents our proposed routing protocol’s simulation setup and performance eval-
uation. First, the simulation environment with the parameters and assumptions are explained.
Second, the performance of the proposed routing protocol is thoroughly examined and com-
pared with other routing protocols.

4.8.1 Simulation Setup

The proposed FPRM protocol is implemented using the Network Simulator-3 (NS-3). NS-3
simulator supports both IP-based and non-IP-based networks, but we are adapting the IP-based
network in our simulation. IP-based simulation in NS-3 involves models for long-term evolution
(LTE)/5G, WiFi, worldwide interoperability for microwave access (WiMAX), etc., for layers 1
and 2. This simulator provides different testbeds and protocols for users to run and test their
proposed frameworks. For instance, routing problems in MANETs can use protocols such as
AODV, OLSR, and dynamic source routing (DSR). NS-3 supports several random mobility
generators and also SDN-based networks.

Figure 4.11 illustrates our simulation environment expanding over a 500m ⇥ 500m area. The
BS is located in the center of the network. For simplicity, only one network cell is considered
with randomly generated nodes between 50 and 250, with 50 nodes increment in every simula-
tion run. Heterogeneous nodes are considered in this simulation, including mobile nodes, IoT
devices, and vehicles. However, all the nodes are specified as UE with different mobility rates.
Two separate IP-based networks are set for cellular communication and WiFi communication.
The cellular communication band is set to apply the LTE/5G specifications using the NS-3 mod-
ules. At the same time, the WiFi band is IP-based with IEEE standards. Simulation parameters
are shown in Table 4.3. The simulation results were run for 3000s, and each simulation was
averaged over multiple simulations running. We use the Monte Carlo simulation technique un-
der 50 runs to validate our results, and the final results are averaged and data plotted with 95%
confidence intervals.

87



Figure 4.11: Simulation terrain setup.

4.8.2 Simulation Analysis

This section provides the simulation results of the proposed fuzzy-based node participation
routing using the NS-3 simulator. Three types of nodes with different mobility rates and power
are considered to evaluate our proposed routing protocol. First, we assumed that 40% of the
network is filled with mobile nodes, 40% with IoT devices, and 20% vehicles. Nodes’ power
is randomly distributed between 0-300 joules (the value of power can be changed based on the
standards; however, we chose this value to see the impact of depleted nodes). Nodes’ velocities
are randomly selected between 1-30 m/s. Two channels are considered for data communica-
tion, cellular and WiFi. For WiFi or MD2D communication, IEEE802.11n-5GHz is used, and
LTE/5G broadcast control channel (BCH) is utilized for cellular communication. We assume
that the link quality between nodes is updated every 1 second. In every scenario, the number of
active nodes is increased to analyze the performance of the proposed routing protocol. MD2D
routing has an average length of 4 hops between any source and destination. We compared our
proposed routing framework with our previously proposed routing protocol, HSAW, and two
conventional MANET routing protocols: AODV and OLSR. The signal propagation model is
Friis free space model [144]. The simulation analysis generates random source and destination
nodes. Finally, the assumptions taken during the simulation scenarios are introduced as follows:

• Assuming a random velocity rate from 1-30 m/s second is allocated to each node.

• The network consists of 40% pedestrian, 40% inner-city mobile nodes, and 20% outer-city
mobile nodes.

• We consider a simple energy model for our system, randomly distributed among nodes
between 0-300 joules per UE. This value is assigned to calculate the amount of consumed
energy during the packet transmission process and realize the effect of energy consump-
tion.

This study’s main objective is to introduce a new fuzzy-based routing participation protocol to
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increase network lifetime, PDR, and throughput. The aim is to use fuzzy logic to identify nodes
with the least capabilities to stay deactivated for a specific time. Network constraints are used to
check the participant nodes regarding activation time, network coverage, and mobility patterns.

Figures 4.12 and 4.13 illustrate the number of depleted nodes and the energy consumption,
respectively. FPRM shows small improvement over HSAW in network lifetime. There are
two reasons why FPRM has a longer lifetime than HSAW and two other conventional routing
protocols. First, in HSAW, the entire nodes in the network receive the LSDB, which causes
significant energy consumption compared to FPRM. Second, FPRM keeps track of nodes and
their energy consumption, and if the energy of nodes passes a certain threshold, the controller
stops the node from participating in the routing. FPRM prevents unintentional and unnecessary
energy consumption. Therefore, in long-term scenarios, more nodes will be active in the net-
work than in the HSAW. Furthermore, compared to the conventional ad hoc routing protocols,
such as AODV and OLSR, FPRM performs much better.

Figure 4.14 represents the average total throughput of the entire network, including the cellular
and MD2D communication channels. Our proposed routing protocol performs significantly
better than the three other routing protocols. This is because not all the nodes are active in the
network, making the controller use the maximum available throughput. Therefore, the average
network throughput increase compared to HSAW, AODV, and OLSR.

Figure 4.15 shows the E2E delay of FPRM, HSAW, AODV, and OLSR. FPRM and HSAW per-
form similarly at low network density, but FPRM accomplishes a better E2E delay once node
density increases. In FPRM, nodes have more reliable links because of the active nodes in the
network. As described in previous sections, active nodes have maximum energy, lowest mobil-
ity rate, and maximum throughput. Therefore, packets are transmitted over more reliable links
faster than HSAW. Compared to traditional ad hoc protocols, namely AODV and OLSR, both
HSAW and FPRM archive better results. However, FPRM has superior performance overall.

Figure 4.16 shows the PDR of the network, where FPRM achieves significantly higher PDR
compared to HSAW, OLSR, and AODV. FPRM has slightly better PDR performance than
OLSR and AODV in low-density networks but considerably higher in more congested net-
works. FPRM has the lowest packet failure due to the fuzzy participation algorithm. In the
participation technique, active nodes are selected based on their performance. Active nodes are
responsible for routing the packets, and as long as their performance stays high, the packet loss
will be minimum.

4.9 Conclusion

This chapter proposed a new joint participation and routing protocol using a fuzzy-based rout-
ing framework called FPRM with mobility, energy, and coverage constraints. A new topology
control mechanism was presented using the fuzzy-logic-based approach to identify participating
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Figure 4.12: Number of depleted nodes.

nodes and create different network graphs. Our routing protocol uses the information collected
from the network and application layers as knowledge. This knowledge is used to create an
LSDB. In our approach, an O-RAN intelligent controller can be used to separate the control
plane decision from the data plane. The controller is responsible for creating various LSDBs
based on the network information and application requirements. The data plane is only re-
sponsible for relaying the data from one end to another. The controller only shares the LSDB
with the participating nodes for MD2D routing to reduce cellular channel overhead and en-
ergy consumption. Any node with information to transmit is capable of processing the LSDB
and obtaining the most efficient route to the destination. The simulation results show that the
FPRM protocol is superior in network lifetime, E2E delay, PDR, and throughput than HSAW.
Moreover, our protocol significantly improved performance compared to the purely distributed
benchmark routing protocols, AODV and OLSR.

This study’s future direction is to explore the timing mechanism of how often the topology
control update is required to trigger and optimize this time. Moreover, LSDBs can be optimized
by machine learning algorithms to contain only a specific form of knowledge based on the
topology graphs.
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Figure 4.13: Nodes energy consumption.

Figure 4.14: Average network throughput.
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Figure 4.15: End-to-end delay.

Figure 4.16: Packet delivery ratio.
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5
A Cross-Layer Multi-Hop Device-to-Device
Routing Protocol for Future Heterogeneous

Wireless Cellular Networks

5.1 Overview

The upcoming research is submitted to IEEE Internet of Things Journal 1. This chapter’s main
objective is to propose a new joint utility-based routing protocol called application-driven cross-
layer MD2D routing protocol (ACMRP). We use the O-RAN paradigm to create network intel-
ligence by incorporating application and network layer knowledge. Our protocol finds the op-
timal route depending on the user application and requirements. The proposed protocol shows
superior performance compared to other routing protocols.

5.2 Introduction

Traffic congestion in cellular networks is a growing problem as the demand for data services
continues to increase. With more and more people using smart devices, the amount of data be-
ing transmitted over cellular networks is also increasing [1]. The rise of the Internet of Things

1Ashtari, S., Abolhasan, M., Lipman, J., Ni,W. (2023). A Cross-Layer Multi-Hop Deviceto-Device Routing
Protocol for Future Heterogeneous Wireless Cellular Networks. IEEE Internet of Things Journal.
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(IoT) has led to an increase in traffic congestion in cellular networks [175]. IoT devices, such as
smart home appliances and wearable devices, are constantly sending and receiving data, leading
to an increase in network traffic. This increase in traffic puts pressure on the existing cellular
network infrastructure and can lead to network congestion, resulting in slower data transfer
speeds and reduced network reliability. To help alleviate traffic congestion, cellular providers
may implement various strategies such as deploying more cell towers [176], upgrading exist-
ing infrastructure, and managing network resources more effectively [177]. Additionally, the
development of new technologies such as multi-hop device-to-device (MD2D) communication,
which is designed to increase network capacity and reduce latency, may also help to alleviate
traffic congestion in the future [178].

MD2D communication is a method of wireless communication in which devices communicate
directly with each other without the need for a central intermediary such as a router or a base
station [179]. This type of communication can be used to improve network efficiency, reduce
latency, and increase overall network capacity. Examples of MD2D communication include
peer-to-peer file sharing and direct mobile-to-mobile communication [3]. MD2D communica-
tion can also be used in a variety of other applications such as gaming, social networking, and
location-based services. Routing protocols are an important aspect of MD2D communication,
as they help to ensure that data is transmitted efficiently and reliably between devices. Routing
protocols for MD2D communication are responsible for determining the best path for data to
travel from one device to another.

5.2.1 Motivations

The motivation behind MD2D communication is to improve the overall efficiency and capac-
ity of wireless networks [180]. It is important for cellular network providers to address the
challenges associated with increasing demands from IoT devices. These devices are constantly
transmitting and receiving data, leading to a significant increase in network utilization. By
allowing devices to communicate directly with each other, MD2D communication enables de-
vices to communicate directly with each other, reducing the need for data to be routed through
a central BS. This can lead to several benefits, including increased network capacity, reduced
latency, improved energy efficiency and improved coverage [3]. In addition to these techni-
cal benefits, MD2D communication can also enable new and innovative applications such as
peer-to-peer file sharing, location-based services, and social networking.

There are several routing protocols that have been proposed for MD2D communication, each
with their own strengths and weaknesses [79]. Among them utility-based routing protocols are
used to determine the best route based on the current network conditions [181]. Utility-based
routing protocols can be used to optimize different network objectives, such as energy Utility
function are used to integrate the collected information. The use of utility functions in MD2D
routing protocol can enable several key novelties compared to traditional routing protocols.
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First, utility functions can be used to adapt the routing decisions to the current network condi-
tions, such as such as available bandwidth, E2E delay and energy level. This can lead to more
efficient use of network resources and improved network performance. Second, it can be used
to enable self-organization of the network, allowing devices to dynamically adapt to changes
in the network conditions and to form new routes as needed. This can lead to more robust
and resilient networks. Moreover, utility functions can be used to take into account the energy
constraints of devices when making routing decisions. This can lead to more energy-efficient
networks and extend the lifetime of devices. This paper uses a utility-based routing strategy to
a formulate multi-objective cost function by ensuring efficient, reliable, secure, scalable, and
energy-efficient communication between devices.

To the best of our knowledge, no MD2D routing protocols have been proposed to jointly con-
sider the application and network layer information. Existing MD2D routing protocols use net-
work layer information only to create stable routes. This paper proposes a routing protocol that
leverages cross-layer information to create multi-objective cost function using utility metrics.
The release of the open-radio access network (O-RAN) has created new opportunities to build
and generate new routing protocols with global knowledge and intelligence across the medium.
MD2D routing has not been given consideration in the literature of the emerging centralized-
based O-RAN paradigm, despite the commercially increasing popularity of O-RAN. The key
challenges are the heterogeneity of applications and the massive increase in heterogeneous de-
vices. Different applications, such as vehicular networks, IoT, and smart devices, require differ-
ent resources and management techniques. This paper is motivated to address these challenges
and allow MD2D routing to be driven by applications and cross-layer knowledge in an O-RAN
environment.

5.2.2 Contributions

This paper introduces a utility-based routing protocol called the Application-Driven Cross-
Layer MD2D Routing Protocol (ACMRP), which adjusts routes based on both application
requirements and packet-level information. ACMRP leverages application information and
historical network statistics to optimize energy consumption, latency, throughput, and packet
delivery ratio (PDR). As depicted in Figure 5.1, a Mobile Edge Computing-Enabled Base Sta-
tion (MECBS) collects information from various nodes, including vehicles, mobile phones, and
Internet of Things (IoT) devices. This information consists of remaining energy, mobility, lo-
cations, and data rates of nodes. The collected infromation is processed to create multiple link-
state databases (LSDBs). We use the concept of software-defined networking (SDN) and net-
work function virtualization (NFV) to create a centralized network function where it produces
multiple LSDBs that can be used to evaluate different route strategies. The knowledge-based
entity is responsible for creating the master LSDB (MLSDB) using utility functions and the col-
lected cross-layer information. The stored knowledge in MLSDB includes LSDB-E, LSDB-M,
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Figure 5.1: Modular design for Knowledge-based cross-layer routing framework for heterogeneous net-
works, where application requirements and network analytics are collected as a form of knowledge in
LSDBs.

LSDB-D, and LSDB-BW, corresponding to energy, mobility, distance, and bandwidth, respec-
tively. Using the utility function our proposed routing protocols can adapt to the current network
conditions and make dynamic routing decisions based on application requirements. A multi-
objective cost function selection-based algorithm is used to make efficient routing decisions.

Following are the key contributions of this chapter.

• We propose a cross-layer MD2D routing framework that leverages upper-layer informa-
tion and packet-level data to create intelligent LSDBs and determine the most efficient
route for various applications.

• We propose an adaptive routing algorithm, which utilizes utility-based functions with
multi-objective cost functions to provide dynamic route selection based on the application
and user requirements.
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• We present a three step cost function to maximize the network performance. For instance,
energy constraint is used to ensure the nodes’ energy levels are acceptable for MD2D
communication, channel constraint is deployed to guarantee the channel is ideal during
transmission and packet delivery constraint is provided to keep the PDR level consistent
in different network environments.

• We implement our algorithm in NS3 and conduct simulations to compare its performance
to existing SDN-based and distributed routing protocols. Our results indicate that our al-
gorithm outperforms the state-of-the-art HSAW protocol with a 10% increase in through-
put, 13% reduction in end-to-end delay, 5% reduction in energy consumption, and 7%
increase in packet delivery ratio.

The rest of this chapter is organized as follows. Section 5.3 provides a brief overview of current
studies in the literature. Section 5.4 introduces the architecture and topology discovery in our
proposed routing framework. In Section 5.5 detailed explanation of the proposed ACMRP is
provided. Finally, in Section 5.6 a comprehensive simulation analysis of the proposed routing
protocol is performed. Our conclusion and future research directions are clarified in Section
5.7.

5.3 Related Works

Several proposed MD2D routing protocols exist in both distributed and centralized frame-
works [79, 182–184], and centralized protocols have shown superior performance to the dis-
tributed protocols [3]. Distributed frameworks use flooding algorithms to establish a route from
source to destination. Centralized routing frameworks use a centralized controller such as an
SDN controller to assist routing packets. Centralized routing protocols increase scalability and
reliability by eliminating the need for multi-hop flooding in route discovery, thereby avoiding
broadcast storms [79]. This section investigates related work and summarizes existing MD2D
routing protocols’ advantages and challenges. Then, the benefits of utility-based routing proto-
cols are discussed.

By using the distributed MD2D routing protocol, all user equipment (UE) in the network can
construct routing tables without the help from a centralized controller. Authors in [185] outlined
the advantages of MD2D using a weighted sum of interference impact and signal to interfer-
ence and noise ratio (SINR) called MIIS (metric for interference impact and SINR). Distributed
routing algorithms are based on minimum SINR and interference to create the list of partici-
pants and generate MD2D routes. In [186] authors showed the significance of mmWave MD2D
routing by proposing a multi-hop relay probing scheme. In this scheme, nodes will collect the
received signal strengths (RSSs) and estimate the signal-to-noise ratio (SNR) while consider-
ing line-of-sight (LOS) and non-LOS (NLOS) signals. In [93], the authors demonstrated the
on-demand centralized routing as an enabler for flexible and efficient MD2D networks. Any
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request from a UE is forwarded to relaying nodes by the SDN-based BS. Source nodes then
transmit packets to destinations using next hop information. Similarly, authors in [86] provided
insights into the significance of a centralized MD2D routing protocol. This protocol decreases
the cellular channel overhead by only forwarding the routing information to the source node.
In [187], network layer information, such as link quality, the number of hops, throughput, and
route failure probability is used to demonstrate the advantages of MD2D routing in virtual mesh
clustering. Using a mesh routing algorithm, relaying nodes are assigned based on user mobil-
ity and link failures. In conclusion, centralized MD2D routing protocols enhance the network’s
performance. However, most of the current proposedMD2D routing protocols [79,86,188–190]
focus on the network telemetry information, but application requirements and historical data are
also equally critical for overall network performance maintenance.

In other heterogeneous networks, including IoT and vehicular, there has been similar research
interest in introducing new MD2D routing protocols with the coordination of a centralized con-
troller. In [191] authors investigate optimal routing based on the trusted connectivity probability
of IoT devices. A decoding messaging technique is designed to secure packages in a centralized
BS to manage the routing and communication between devices. The algorithm’s main challenge
is using channel state information (CSI) to identify the route and relay nodes. Channel infor-
mation is highly dynamic and can not be the only factor in routing decisions. There must be
an intelligent network application to capture channel information and prescribe efficient routing
policies. Authors in [192] used an unmanned aerial vehicle (UAVs) as a flying BS to provide
coverage for IoT devices. The algorithm uses shortest-path-routing to determine MD2D routes.
By considering only the shortest path to generate a route, their algorithm could adversely af-
fect network performance. The authors in [193] presented an MD2D routing protocol for a
vehicular network to maximize the data rate. Multiple clusters are established using a BS and
communication between vehicles to optimize resource utilization. While creating routing in
MD2D networks, most proposed protocols fail to take into account an essential factor. As the
environment is dynamic and network devices are versatile, it is essential to assign an intelligent
network application to monitor and adjust routes. O-RAN architecture offers enhanced features
for managing and building intelligence and storing refined data. Together with real-time data,
this non-real-time information can produce highly efficient outputs that can enhance overall
network performance.

One successful technique for generating routing protocol is utilizing utility functions. Utility
functions have long been used across different domains because they can provide knowledge
about the past and draw conclusions about the current state [194–199]. Authors of [200] used
the SDN paradigm to address energy efficiency issues. The proposed algorithm selects a ratio
for energy saving in SDN (RESDN) to distinguish the amount of energy each path consumes
using a link utility. The utility of each link is used to create a link utility-based energy efficiency
metric that continuously quantifies efficiency and performance in terms of energy consumption.
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Authors in [201] provided insights into the importance of utility-based routing protocol to cal-
culate the next hop utility score to decide the next forwarding hop. As a result, a new routing
protocol for delay tolerant network (DTN) is developed for nodes to exchange information over
multiple hops. Authors in [202] investigated the importance of geographical routing protocol
using the utility of traffic load in vehicular ad hoc networks (VANETs) to find one-hop neigh-
boring information. The routing algorithm facilitates the utility functions to acquire knowledge
of two-hop neighbor links using packet loss rate and residual bandwidth.

Hence, utility-based routing protocols are capable of improving network efficiency and flexibil-
ity. In utility-based routing protocols, historical and essential knowledge is provided to expand
the local view of the topology of the network. However, to the best of the authors’ knowledge,
most MD2D routing protocols only use network metrics for introducing a new routing strategy
without considering the application requirements and historical data (knowledge). A common-
ality among these routing strategies is using a predetermined routing technique to optimize
energy, throughput, E2E delay, or PDR. If only one or two network metrics are taken into con-
sideration when discovering routes, the performance of the network may deteriorate over time.
Paths must be able to be adjusted in accordance with traffic type, application requirements, and
network statics to enhance network performance.

5.4 Proposed Architecture

This section presents a detailed explanation of our proposed routing architecture for heteroge-
neous wireless networks. The ACMRP framework utilizes application requirements and net-
work telemetry to create MD2D routes. A set of cost functions translates the knowledge into
different LSDBs to provide various paths based on application requirements. As an example,
Figure 5.2 shows possible paths taken to forward a packet between the source node (A) and des-
tination node (I) using different utility functions. These paths are dynamically selected based
on the application requirements and network dynamics to provide maximum efficiency. In the
remainder of this section, we describe our proposed protocol and its architecture.

5.4.1 ACMRP Architecture

The most important factors that distinguish ACMRP from other MD2D or legacy routing pro-
tocols are as follows. First, our proposed protocol uses a centralized controller to manage the
network traffic and prescribe routing tables. Second, integration of the application requirements
and network telemetry together to create an MLSDB, and third mitigating the greedy-based
property of routing strategies by using four sub-LSDBs (as explored in the literature review,
many of the existing routing protocols rely on one or two optimization parameters, e.g., energy,
E2E delay, etc.). Finally, we identify the most suitable route based on the traffic type using the
MLSDB.
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Figure 5.2: An illustration of the route discovery operation based on different cost metrics from source
node A to destination node I .

Figure 5.3 illustrates the ACMRP architecture, where many nodes are scattered across a large
geographic area. A controller is at the edge of the network with the ability to collect network
information. This can have several advantages over distributed MD2D routing protocols, where
each device manages its own routing. Centralized MD2D routing protocols can support a larger
number of devices with better scalability. This is because a central entity can manage the rout-
ing of data for all devices, rather than each device having to manage its own routing. Moreover,
the centralized controller can make more informed routing decisions based on the global net-
work state, rather than each device having to make its own routing decisions based on local
information. In our protocol, the controller is responsible for processing network and applica-
tion layers information and evaluating the most efficient MLSDB. The generated MLSDB is
broadcast into the network, enabling nodes to discover their own route in a distributed manner.
Therefore, nodes can evaluate a new path without the controller’s intervention in case of link
failure.

In this chapter, traffic flows are classified into four different categories: mission-critical (MC)
data, non-critical (NC) data, high definition (HD) multimedia, and high definition real-time
(HDR) multimedia. MC traffic requires a fast and reliable link (hence, the shortest distance and
lowest mobility). NC data does not need a fast route or mobility constraints. Therefore, for this
type of data, we can increase the network’s lifetime. HD requires downloading a large amount
of data, which requires bandwidth and link reliability. HDR packets, such as online gaming and
online streaming, need a high QoS, which incorporates bandwidth, energy consumption, and
link reliability. In our framework, each node computes a route based on one of the above traffic
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Figure 5.3: Detailed illustration of the framework for the proposed ACMRP routing protocol.

types. Once the source node identifies the traffic type, the appropriate sub-LSDB is chosen, and
the route is obtained using that particular sub-LSDB.

Each node is equipped with licensed and unlicensed frequency bands for cellular and WiFi
communication, respectively. A licensed frequency band is employed in cellular communica-
tion to exchange data traffic and control information between users and sub-controllers. The
unlicensed WiFi frequency band is utilized for MD2D communication for forwarding data and
control information between distributed nodes. Each distributed node plays two main roles:
a forwarding element from the sub-controller point of view and an end-user from a cellular
perspective.

5.4.2 Route Discovery in ACMRP

Figure 5.3 also illustrates the routing discovery in the ACMRP protocol, where there are three
main stages; node condition reporting stage, the centralized route computation stage, and finally,
the distributed route configuration. The detail of each step is presented below.

• Node condition reporting (NCR): The node condition reporting is the stage where nodes
report their condition changes and network information to MBS. Network information
consists of the remaining energy, bandwidth, channel capacity, mobility, and location of
nodes. Other technical information is shared with the controller, including the number
of neighboring nodes, queue length, and traffic arrival rate. Two separate actions are
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performed after receiving node conditions. First, the controller calculates the MLSDB.
Second, the condition data is shared with the main controller for storage and advanced
processing.

• Centralized route computation (CRC): Once the controller receives the control informa-
tion from all the nodes, it will start computing the MLSDB (details provided in Section
IV). It is assumed that the controller has enough storage for storing and maintaining the
LSDB data. The final MLSDB in our protocol consists of four LSDBs: LSDB-MC,
LSDB-NC, LSDB-HD, and LSDB-HDR. Once the MLSDB is computed, it will be sent
to all the nodes in the cell.

• Distributed route configuration (DRC): Each node will perform a distributed active route
configuration after receiving the MLSDB. Specifically, each node generates a routing
table based on the minimum total weight of the traffic type from a node to any other node
in the network, with no further assistance from the controller. Once the table is completed,
nodes can transmit and receive data. For MD2D transmission IEEE 802.11 [203] WiFi
protocol will be used.

5.4.3 Exchanged Packets

Generally, there are two packet types: data and control packets. The data packets are the in-
formation or the data needed to be transmitted or received. The control packets are used to
maintain the structure of the network. There are three main control packets exchanged between
nodes and controllers:

• The neighbor discovery packet between nodes: This packet is broadcast by each node
and is only processed by the one-hop neighbors in the transmission range of a node.
The interface information is generated as a Hello packet in our protocol by each node
independently. As a result, each node will identify its neighbors, create a table, and share
it with the sub-controller.

• The neighbor discovery packet between controllers: This packet is only generated by
sub-controllers in the network. Each adjacent sub-controller generates a Hello-C packet
to exchange their ID (Controller-ID) and routing information to be used when handover
occurs.

• The topology control (TC) packet: Initially, when nodes come online, they must regis-
ter their IP with the MBS, which allows the MBS to maintain a list of authenticated and
authorized nodes in its network. This registration process is critical due to security con-
cerns and the potential presence of malicious nodes, which must be authenticated before
they can participate in MD2D communication. The authentication is performed through
the TC Packet, where every new node must receive authorization from the MBS. In the
ACMRP protocol, once nodes have been authorized to participate in MD2D, the sub-
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Figure 5.4: Illustration of four utility functions for remaining energy, distance, mobility rate, and
throughput.

controller sends a Topology Control Request (TCREQ) to the nodes and requests their
Node Information Base (IB). IBs are exchanges as unicast packets that also includes node
interface information, link quality, remaining power, link capacity, and mobility rate.

5.5 Proposed Routing Protocol

There are two main steps for route discovery in ACMRP: The first is to generate the MLSDB at
the controller using the metrics and utility functions. Second, is to broadcast MLSDB to nodes
for final route discover and route validation using network constraints. In the second step, nodes
apply the idea of generating a path to the destination based on the application requirements.

5.5.1 MLSDB Generation Phase I

Each controller keeps two different LSDBs: The intra-cell-LSDB and the inter-cell-LSDB. The
intra-cell-LSDB includes the local cell information and topology, while the inter-cell-LSDB
contains the details of adjacent cells. After Hello packets are exchanged between nodes and the
inter-cell-LSDBs are created at each controller, adjacent controllers will exchange their inter-
cell-LSDBs to update their intra-cell-LSDBs. Hence, a controller keeps the information of the
existing nodes of its cell and the adjacent cells. Another important parameter that controllers
and their neighbors share is the coverage area of the routing protocol, which allows the protocol
to limit the communication and the route between nodes in a cell or in-between cells.

To build the MLSDB, the controller calculates the utility of each node based on the IB data.
There are four IB metrics: energy, throughput, mobility, and distance. A utility function is cal-

103



culated using the reported IB value and the associated utility function. The utility functions for
each utility metric are depicted in Figure 5.4. The proposed utility functions are retrieved and
modeled from various sources [194, 196, 204]. The x-axis represents the reported normalized
IB values from a node, and the y-axis shows the associated utility value. Note that all the IB
values are normalized and scaled between 0-10. Normalizing the IB values can make it easier
to compare, combine, and visualize values that are measured using different units or scales, and
is a requirement for our protocol later when we combine the utility functions to create multi-
objective cost functions. To represent network metrics, different utility functions are utilized.
For instance, sigmoid functions are used for power and mobility metrics because this function
gives a flat starting point and ending point [205]. In the middle, it increases very quickly to
incentivize the power management in the active regions and slow it down when power is exces-
sively high or excessively low. Moreover, we use the linear function for a simple representation
of throughput, particularly for low signal-to-noise ratio and moderate to high data rates. Lin-
earity is a common property of many wireless communication systems and channels, making
linear functions a good representation of throughput. As the throughput of a system increases,
the system performance increases linearly [206]. The distance function takes a low utility for
long links and a sharp drop-off to encourage short-distance transmission. We represent our util-
ity functions with exponential functions for the following reasons: First, exponential functions
are monotonically increasing, which means that as the input (e.g., the power) increases, the
output (e.g., the utility) also increases. This is a natural behavior for a utility function, as it
represents the increase in the quality of service as the power level of a node increases. Expo-
nential functions are concave, which means that the second derivative is negative. This property
is useful for utility functions, as it means that the rate of increase of the utility function will
decrease as the input value increases. This is also a realistic behavior for a utility function,
as the increase in the quality of service will be more significant for lower values of the input,
and will decrease as the input value increases. Whereas, linear functions are a good choice to
represent throughput in wireless communication systems because they have several desirable
properties, such as linearity, simplicity, additivity, and a good approximation of many wireless
communication channels.

Power utility UP is represented as a sigmoid function with low utility and slow change at the
lower power, exponential change in the utility at medium and high, and slow change at high
power. The sigmoid function is commonly used to model the behavior of a system or process
that saturates over time. In the case of power consumption, a sigmoid function can capture the
fact that the power consumption of a device may reach a maximum level and then stabilize, even
if additional energy is supplied. The shape of the sigmoid function can be adjusted to fit the
specific characteristics of the power consumption behavior being modeled. Mobility utility UM

is shown as one minus sigmoid function with slow changes and high utility at low mobility rate,
sharp changes in utility at the medium mobility rate, and slow changes and low utility at high
mobility rate. Distance utility UD is maximum for up to 60% of the coverage area. However,
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it changes rapidly after 70% up until 100% of coverage due to signal attenuation. Throughput
utility UT has a constant rate of changes, and as the throughput increases, the utility increases
accordingly. The value of each function can be changed, and the functions’ values can vary
depending on the requirements. For instance, based on our observation in UD, 60% coverage
range is a reasonable threshold value. However, part of the future study can investigate the
impact of these values.

UP =
1

1 + e(�P+↵)
, (5.1)

UM =
1

e(M�↵) + 1
, (5.2)

UD = 1� (
D

�
)↵, (5.3)

UT = mT, (5.4)

where P is the remaining battery power, M is the mobility speed of devices, D is the distance
to the next-hop node within the transmission range, and T is the maximum throughput or band-
width to the one-hop neighbor. ↵ is specified as half the range of the metric scale to shift the
functions, � is the range of the metric scale, and m shows how fast the utility value changes.
In our experiment, we chose these constant values as above. However, these values can be
changed, and future studies might include adjusting those parameters. We chose these values
because they can show a simple but effective rate of changes in different IB values versus the
utility function.

Algorithm 1 provides the initial stage of generating the MLSDB or Phase I, mapping IB val-
ues into their corresponding utility values. The mapping process of node’s IB values is where
collected information by the controller is translated to the corresponding utility value using the
given utility equation. For instance, let’s consider a node’s IB value reported as 200 Joules
and go through the mapping process. The first step is to normalize the IB value between 0-10.
Normalizing a value between 0 and 10 is good because it can make the data more consistent,
simple, and easy to work with, which can help improve the accuracy of predictions, patterns
and trends identification and overall model performance when used with route prediction. To
normalize any IB value, the reported value is divided by the maximum assumed value of the
corresponding entity. The maximum energy value of UEs is assumed to be 300 Joules. There-
fore, the normalized value is 200 divided by 300 and the utility value or Up according to (5.1)
is Up = 1/(1 + e(�200/300+5) = 0.8410). Now the 200 Joules of power is mapped to the utility
value of 0.8410.

To have a clear understanding of howMLSDB is created, 8 nodes are scattered across a network
as shown in Figure 5.5. The red lines in the Figure represent the transmission range of each node
to the neighboring nodes. The source node is labeled as A, and the destination node is labeled
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Table 5.1: Master LSDB generation Phase I with randomly given node IBs.
Master LSDB LSDB-E LSDB-M LSDB-D LSDB-T

Root Node Neighbor Node Value (j) Utility Value (m/s) Utility Value (m) Utility Value (Mbps) Utility
A B 200 0.8411 25 0.2227 60 0.9222 15 0.5
A C 210 0.8807 3 0.9859 15 0.9999 20 0.6667
A D 90 0.1192 15 0.7772 30 0.9975 5 0.1667
B E 180 0.7310 3 0.9859 50 0.9657 10 0.3333
B F 280 0.9870 3 0.9859 70 0.8319 25 0.8334
C E 280 0.9870 3 0.9859 70 0.8319 25 0.8334
C F 150 0.5 25 0.2227 30 0.9975 3 0.1
C G 170 0.6607 15 0.7772 10 0.9999 22 0.7333
D F 150 0.5 25 0.2227 30 0.9975 3 0.1
D G 170 0.6607 15 0.7772 10 0.9999 22 0.7333
E H 50 0.0344 15 0.7772 40 0.9897 17 0.5667
F H 50 0.0344 15 0.7772 40 0.9897 17 0.5667
G H 200 0.8411 15 0.7772 50 0.9687 29 0.9667

by H. The rest of the nodes are the relay nodes. Table 5.1 is an example of how MLSDB
is created for the network in Figure 5.5. As shown in Table 5.1, each sub-LSDB consists of
two columns. The first column represents the reported value from the neighboring node and
the second column shows the utility of the corresponding value. The LSDB-x represents the
link state of the given IB values using the utility functions. For instance, LSDB-E shows the
IB values and the corresponding utility value using (5.1). Similarly, LSDB-M, LSDB-D, and
LSDB-T are computed using (5.2), (5.3), and (5.4), respectively. Using all the sub-LSDBs
together represents Phase I of generating the MLSDB. Overall, the proposed MLSDB keeps the
utility knowledge of the network at the sub-controller as shown in both Figures 5.1 and 5.3.

Algorithm 1:Master LSDB generation Phase I
Input : N and NIB

Output :Master LSDB
1 for all ni = (E, T,M,D, IDNeighbors) 2 NIB, i, j 2 N do
2 UP = 1

1+e�E+5 ,

3 UT = 0.1T,
4 UM = 1

eM�5+1 ,

5 UD = 1�
�
D
10

�5
,

6 LSDB = [i, IDneighborj, U j
p , U

j
T , U

j
M , U j

D],
7 end

5.5.2 MLSDB Generation Phase II

After the completion of Phase I, Phase II is to associate each utility with traffic types. To
complete Phase II, forwarding cost metrics are defined for each traffic type. Forwarding cost
metrics are formulated based on the packet type requirements introduced in Section 5.4. As a
result, four main forwarding cost metrics are introduced to select relay nodes.

CMC = UDUM , (5.5)
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Figure 5.5: An example of the two-dimensional view of a network with 8 nodes, where each circle and
line corresponds to the wireless node and the communication link, respectively.

CNC = UPUD, (5.6)

CHD = UTUM , (5.7)

CHDR = UTUPUM , (5.8)

where CMC represents the mission-critical packets with the requirements of selecting a relay
node using the closest node with the least mobility rate. CNC known as the non-critical data
packets, have the least important requirements, choosing the next relay node based on the high-
est battery level and closest distance. CHD are the packets that need the highest throughput,
but the least-mobile node, and finally, CHDR requirements of selecting the next relay node are
based on the maximum throughput, least mobility rate, and highest battery level.

In this study, we introduce four traffic types, and each one’s requirements depend on distance,
mobility rate, throughput, or power level. However, based on the user’s demand, each forward-
ing cost above can be changed accordingly, and this change can be based on the combination of
the four utility metrics introduced earlier. The general representation of the cost metric of any
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traffic type CTT is shown as follows:

Ck
TT =

8
>>>>>>>>>>><

>>>>>>>>>>>:

Y

i2N

UPiUTiUMiUDi , if k = 1

Y

i2N

UPiUTi/MiUMi/Ti , if k = 2

Y

i2N

UPi/Mi/DiUTi/Mi/Ti , if k = 3

Y

i2N

UPi/Mi/Di/Ti , if k = 4

(5.9)

There are four possible actions in computing the CTT , if k = 1 the automatic reply to all the
unknown traffic types. In situations when k = 1, k = 2 or k = 3 the controller orders to adjust
the cost function based on the network situation, usually happening in disasters and emergency
services. Finally, based on Algorithm 2, the controller generates the MLSDB. Upon completion
of Phase II, the MLSDB is shared with the entire network. At the reception, nodes will start
the MD2D communication by building a routing table. The complete MLSDB of the example
shown in Figure 5.5 is illustrated in Table 5.2.

Table 5.2 shows the link state of neighboring nodes in terms of the proposed cost metrics based
on the application requirements, which are introduced in (5.5), (5.6), (5.7), and (5.8). The
first column of the table represents the link between the two nodes. In the second column,
we compute the corresponding packet cost metric, specifically the cost of transmitting mission-
critical packets, calculated using the values computed in Table 5.1 and (5.5). In the third column,
the cost of the link to transmit non-critical messages is computed using the values in Table 5.1
and (5.6). In the fourth column, the link state for the high-definition packages is evaluated using
the values computed in Table 5.1 and (5.7). Finally, the fifth column represents the cost of a
link for real-time applications, computed using (5.8). Table 5.2 shows the completed MLSDB
obtained by the sub-controller. This table is sent across the network, and nodes with a packet
to transmit will check the application and compute the path to the destination using one of the
columns in the MLSDB table. For instance, if a node sends a high-definition packet, it will use
the fourth column and evaluate the path that maximizes the network performance (which means
choosing the next hop links that provide the maximum cumulative values).

Once theMLSDB is transmitted, a node can decide which forwarding cost metric to select based
on the traffic type. Then at any instance of time, nodes will distributively select a path. For
example, from Figure 5.5 if node A has an MC packet to transmit, the MLSDB table (Table 5.2)
is used to check and identify the path that maximizes the sum of utility values to the destination.
Therefore, the routing problem is generally formulated for any given flow and traffic type as:

Maximize
x1,2,3,42D,T,M,P

Ux1Ux2Ux3Ux4 , (5.10)
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subjected to the following constraints:

• 0 < UXi  1 for 8i 2 i = {D, T,M, P}

• Uxi 6= Uxi+1

The first condition ensures that the values of the utility functions fall within the normalization
range, while the second condition reflects the importance of using distinct utility functions.
The use of identical utility functions may reduce the optimization performance, and hence, it is
imperative to avoid such redundancy in the optimization problem.

In summary, our proposed framework and the route discovery procedure can be explained by
the following steps:

• ACMRP is a hybrid routing protocol (it uses a centralized controller and distributed route
discovery) in which each relay node distributively selects its route to the destination. To
this end, at the initial stage of the network, the sub-controller broadcasts a TCREQ to the
entire network. Nodes will reply by sending IB to the sub-controller.

• Using IBs, the sub-controller creates sub-LSDBs based on the utility metrics defined
earlier as; UP , UM , UD, and UT representing power utility, mobility rate utility, distance
utility, and throughput utility, respectively. Combining all four sub-LSDBs constructs
Phase I of the MLSDB. Next, using the defined cost metrics based on the different packet
types, the final MLSDB table (Phase II) is generated and broadcasted to all the nodes
under the coverage area.

• When a node needs to send data, it first checks if it has a valid route to the destination.
If so, it will transmit the data. If not, it will assess the type of traffic and determine the
most efficient route based on the corresponding forwarding cost metric. If the traffic type
does not match any of the metrics, it will calculate Phase I of CTT to evaluate a path. If
the node is unable to find a relay node, it will send a ”Destination-Unreachable” route
error (DRERR) message to the sub-controller, and redirect its traffic through the cellular
channel.

Bear in mind that data packets are exchanged through either the cellular or the WiFi channel
(MD2D). To determine the most appropriate channel for data exchange, a node continuously
assesses parameters such as the spent transmission time ⌧ 2, maximum allowed number of hops
MH and maximum physical distance MD. In ACMRP, route maintenance is a critical compo-
nent and consists of two processes: initiation of a DRERR packet and processing of the received
DRERR. Relay nodes between the source and destination node are responsible for relaying the
source node’s packet to the next relay node based on the traffic type requirements. If a node
encounters an error during transmission or reception, it will send a DRERR packet indicating
the error type (Unknown-Error, Link-Breakage, or Destination-Unreachable). The source node

2It is the time that makes a relay node realize how much time is spent to relay the data if this time is more than
a threshold � then it will switch to cellular transmission.
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Algorithm 2:Master LSDB generation Phase II
Input : N , Phase I, Range, Traffic Type
Output :Master LSDB Phase II

1 for each i,j2N do
2 if CTT = CMC , CNC , CHD, CHDR then
3 Find Euclidean distance (D) between i and j
4 if Di,j  Range then
5 Compute
6 C i,j

MC = U j
DU

j
M ,

7 C i,j
NC = U j

PU
j
D,

8 C i,j
HD = U j

TU
j
M ,

9 C i,j
HDR = U j

TU
j
PU

j
M ,

10 end
11 else
12 Compute
13 CTT ,
14 end
15 end

or relay node must then respond appropriately. If the error occurs at the source node, it will
notify the sub-controller, while if it is the relay node, the previous node will be notified. In
the case of ”Link-Breakage”, a new route must be found, and the data must be rerouted to the
destination.

5.6 Simulation Results and Performance Analysis

5.6.1 Simulation Setup

The ACMRP algorithm is implemented using the Network Simulator-3 (NS-3). The NS-3 sim-
ulator core supports simulation scenarios using both IP and non-IP-based platforms. The IP-
based models involve WiFi, worldwide interoperability for microwave access (WiMAX), or
LTE/5G for layers 1 and 2. There are inbuilt simulation modules for a variety of statics and
routing protocols, including ad hoc on-demand distance vector (AODV), OLSR, and destina-
tion sequenced distance vector (DSDV) for MANETs applications.

Our proposed protocol is compared with two different routing frameworks, distributed and
semi-centralized. To compare ACMRP with a similar routing protocol, HSAW was imple-
mented in NS3. In comparing our protocol with a centralized strategy, we benchmark our
protocol with distributed methods to investigate performance tradeoffs. AODV and OLSR are
used to represent the fully distributed routing protocols. NS3 has built-in modules for AODV
and OLSR, where one accounts for reactive and the other for proactive. The similarity between
HSAW and ACMRP lies within the centralized management of O-RAN. The MBS collects net-
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Table 5.2: Master LSDB generation Phase II.

Links
Cost Metrics CMC CNC CHD CHDR

A-B 0.2053 0.7757 0.1113 0.0936
A-C 0.9858 0.8807 0.6572 0.58
A-D 0.7754 0.1189 0.1295 0.0154
B-E 0.9520 0.706 0.3286 0.24
B-F 0.8202 0.8211 0.8216 0.811
C-E 0.8202 0.8211 0.8216 0.811
C-F 0.2221 0.4987 0.0222 0.011
C-G 0.7773 0.6607 0.57 0.3765
D-F 0.2221 0.4987 0.0222 0.011
D-G 0.7773 0.6607 0.57 0.3765
E-H 0.7693 0.0340 0.4404 0.0151
F-H 0.7693 0.0340 0.4404 0.0151
G-H 0.7693 0.8148 0.7513 0.6319

work layer data and processes the information to create routing tables. In the ACMRP protocol,
the MBS is responsible for authenticating nodes and continuously collects IB information to
update the MLSDB.

The simulation environment consists of uniformly distributed heterogeneous nodes, such as
mobile devices, IoT sensors, and vehicles. All the nodes are specified as user equipment (UE),
assuming that 40% pedestrian, 40% inner-city mobile nodes, and 20% outer-city mobile nodes.
The initial energy of UEs is 300 Joules. The MBS is located in the center of the network. Each
node has two interfaces for communication purposes: one interface for WiFi-band communi-
cations and one LTE/5G interface for cellular communication. Node’s transmission range is
limited to 100m and follows IEEE 802.11n-5GHz3. It is assumed that the mobility of nodes is
categorized into two main types; relatively stationary and mobile nodes with velocities of 1m/s,
15m/s, and 25 m/s.The total simulation time is 300s.

Two different networks are simulated to observe the scalability of the proposed protocol. The
first network expands over 500m ⇥ 500m area with nodes varying from 50 to 250. The sec-
ond network expands over 1000m ⇥ 1000m area with nodes varying from 100 to 500. The
motivation behind changing the network density is as follows. By changing the network den-
sity and size, the simulation tests the performance of the MD2D routing protocol in different
scenarios, including sparse and dense network environments. This assesses the scalability of
the network and its ability to handle varying levels of traffic. The network’s density can also
affect the energy consumption of the devices. For example, a high density of devices can lead to
increased energy consumption due to increased interference and collisions, while a low density
of devices can lead to decreased energy consumption due to reduced interference and colli-

3The proposed architecture is not limited to using IEEE802.11n, as some other ISM/802.11-based radio signals
can also be used. However, for this study, we chose 802.11n as a potential ISM-based radio technology.
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Table 5.3: Simulation parameters.
Parameters Value
Simulation environment 500m⇥500m/1000m⇥ 1000m
Initial power of UEs 300j

Number of UEs 50,100,150,200,250
100,200,300,400,500

Packet transmission size 15 kbits
Protocols ACMRP, HSAW, AODV, OLSR
Propagation model Rayleigh fading
Mobile node transmission range 100m
Mobile rate 1 m/s, 15 m/s, 25 m/s
Mobile node movement model Random waypoint mobility
Total simulation time 300s

sions. Moreover, varying the network density can provide a more realistic representation of
an MD2D network, which can be used to make more accurate predictions about the network’s
performance. For example, a network with a high density of devices can be more representative
of a crowded urban environment. In comparison, a network with a low density of devices can
be more representative of a rural environment.

As can be seen from the simulation results shown in Figures 5.6-5.10, two sets of line graphs
depict the simulation results, with one set for a 500m2 environment that starts from 50 nodes
and ends at 250, and another set for a 1000m2 environment that starts from 100 and ends
at 500. Both environments demonstrate the superior scalability of the proposed protocol. A
specific number of active flows are defined with randomly selected source and destination nodes.
Simulation parameters are shown in Table 5.3. The simulation was run for 300s, and each
simulation was averaged over multiple simulations running using different seed values. To
prove the effectiveness of the proposed protocol and validate our results, the results are validated
with the Monte Carlo simulation technique under 50 runs. The final results are averaged and
plotted with 95% confidence intervals.

5.6.2 Simulation Results

Figures 5.6 and 5.7 illustrate the network lifetime based on the number of depleted nodes and
energy consumption, respectively. To analyze the performance of our proposed protocol, we
have simulated HSAW, the closest routing protocol to our framework. In addition to investi-
gating our protocols against an existing MD2D protocol (Namely HSAW), we also explored
its performance with purely ad hoc protocols (AODV and OLSR) to trade-off the efficiency of
MD2D protocols with Ad hoc protocols. AODV and OLSR are still in use for comparison of ad
hoc based routing protocols [207,208]. The three comparison protocols always choose the next
hop without knowing the energy levels of the next hop, while in our protocol, nodes know the
next hop’s energy levels and can choose the node with the highest power. Figure 5.6 shows the

112



number of depleted nodes versus the number of nodes. We can observe that ACMRP has the
lowest number of depleted nodes in both networks. Figure 5.7 represents the network’s energy
consumption versus the number of nodes. When the number of nodes in the network is low, all
the protocols have similar energy consumption. However, once the number of nodes increases,
ACMRP performs better because in AODV and OLSR flooding process increases the node’s
power consumption due to acknowledgment, route maintenance, and route update. Moreover,
in HSAW, the size of the LSDB is larger than ACMRP, and every time nodes get the LSDB
update, they will consume more power than in ACMRP. ACMRP has an optimization mecha-
nism in both LSDB table creation and the route identification process, which reduces the overall
energy consumption of the network.

Figure 5.8 shows the E2E delay versus the number of nodes. In AODV and OLSR routing
protocols, nodes compute a route in a distributed manner.To compute a path in these two dis-
tributed routing protocols, nodes use Hello packets and flooding algorithms to populate their
routing tables, and only then can they transmit a packet. AODV uses a blind flood for route
discovery and OLSR uses MPF (multipoint flooding) to share neighbor tables with all nodes in
the network so that shortest path routing (Djikstra) can be performed. However, in centralized
protocols such as HSAW and ACMRP, the controller collects and stores refined information
about the entire network and can compute the route based on the proposed framework. HSAW
and ACMRP are both centralized routing protocols where nodes have the LSDB of the net-
work and can immediately find a route. Although HSAW and ACMRP performance is similar
in a low-density network, once node density increases, ACMRP accomplishes a better result
because nodes facilitate network intelligence to identify the most reliable and efficient path. In
HSAW, nodes select the next hop based on the shortest distance without knowing whether the
next relay node is reliable. Therefore, in some instances selecting the closest node for relaying
traffic may cause link failure due to mobility rate and QoS, which causes extra computation
time, resulting in extra time consumption.

Figure 5.9 represents the network throughput, including the cellular and WiFi communica-
tions. ACMRP has a significant advantage over other routing protocols because it has the
throughput utility of every node, where it will select the node with the highest throughput.
Our proposed routing protocol can identify the node’s behavior and select the node with the
best QoS. In HSAW, AODV and OLSR nodes will determine a path based on the shortest path
first (SPF) using hop counts. Therefore, they have no knowledge about the nodes and cannot
decide which next-hop has the maximum transmission capacity. Moreover, our proposed pro-
tocol is application-aware, improving the overall network throughput because nodes know the
route that maximizes the throughput. The other three comparison protocols cannot predict the
quality of the link. Hence, they have lower throughput.

Figure 5.10 depicts the PDR versus the number of nodes. The ratio of the delivered packets
and the total number of packets sent by the source node is obtained to simulate PDR. PDR is
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Figure 5.6: Number of depleted nodes for network sizes of 500m2 and 1000m2.

affected by several factors, including mobility, quality of the link, queue size, and distance to
the neighbor. These factors can cause link or packet failure and cause retransmission at any re-
lay node. Therefore, relay nodes may receive multiple copies of the same packet. ACMRP can
predict the next hop with the most reliable link, with the lowest mobility rate, high power lev-
els, and closer distance. Therefore, nodes have a higher probability of sending a packet without
retransmitting due to link breakages caused by these factors. On the other hand, other protocols
have no information about the next relay’s mobility, distance, or power. Hence, the probabil-
ity of choosing the wrong relay node is higher, making packet retransmission inevitable. As
shown in Figure 5.10, ACMRP has the highest PDR, which remains almost 80% as the net-
work density increases. The difference between all the routing protocols is not significant in
low-traffic networks. However, once the node density and network size increase, the difference
becomes significant, and ACMRP has the highest PDR compared to the rest. Next-hop selec-
tion in ACMRP depends on the lowest mobility rate, shortest distance, and highest bandwidth.
Therefore, a data packet will be exchanged faster with a more reliable link.

5.7 Conclusion

The proliferation of smart devices and the Internet of Things (IoT) has resulted in a substantial
increase in cellular network traffic. To address this challenge, we propose an application-driven
cross-layer MD2D routing protocol that integrates application layer requirements with network
analytics to obtain the most efficient path based on the application requirement. Our solution
improves network lifetime by a minimum of 25% compared to HSAW protocol and by over 40%
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Figure 5.7: Nodes energy consumption for network sizes of 500m2 and 1000m2.

compared to the AODV and OLSR protocols. Furthermore, our proposed solution enhances net-
work throughput by approximately 20% compared to HSAW and over 50% compared to AODV.
Finally, the PDR of our solution demonstrates a more stable and reliable delivery compared to
HSAW, OLSR, and AODV.

In the future, artificial intelligence (AI) or machine learning (ML) based algorithms can be used
to further optimize or introduce new protocols and frameworks to offload the BS traffic. For
instance, packet sizes and headers can be modified based on the network conditions and further
adjusted by AI/ML-based NFV modules.
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Figure 5.8: End-to-end delay for network sizes of 500m2 and 1000m2.

Figure 5.9: Average network throughput for network sizes of 500m2 and 1000m2.
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Figure 5.10: Packet delivery ratio for network sizes of 500m2 and 1000m2.
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6
An Adaptive Multi-hop Device-to-Device
Routing Framework for Future Cellular

Networks

6.1 Overview

The upcoming research is submitted to Elsevier Journal of Network and Computer Applications
1. This chapter’s main objective is to introduce the concept of virtual network slicing for WiFi
channels and proposes a mechanism to enable multiple MD2D routing protocols to be deployed
over each virtual slice. The improved self-adaptive particle swarm optimization (IDPSO) algo-
rithm is utilized to cluster data and form virtual slices. Our proposed framework, called ASDR,
enables network slicing in WiFi channel, which performs better than single-route frameworks.

6.2 Introduction

In a cellular network, communication between a user and a base station (BS) is established
through a direct link. This direct communication provides a low end-to-end (E2E) packet trans-

1Ashtari, S., Abolhasan, M., Lipman, J., Ni, W., Jamalipour, A. (2023). An Adaptive Multi-hop Device-to-
Device Routing Framework for Future Cellular Networks. Elsevier Journal of Network and Computer Applica-
tions.
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mission time, enhancing the user’s quality of experience (QoE). However, relying solely on this
direct communication results in excessive cellular traffic overhead, due to the limited availabil-
ity of spectrum resources [74, 209]. To address the issue of massive cellular traffic overhead,
various solutions have been proposed, including deploying additional base stations and divid-
ing the network into smaller cells, which is cost-prohibitive [210]. While other techniques such
as space division multiple access are available, they may impact network coverage due to low
transmission power. As a promising alternative, direct device-to-device (D2D) communication
has been introduced by the third-generation partnership project (3GPP) as a potential solution
to enhance network capacity and coverage [211,212].

In the 3GPP long-term evolution (LTE) release 12, two devices in close proximity can commu-
nicate with each other directly via a WiFi connection. This direct communication first enabled
devices out of the coverage area to communicate with a BS through another device [213]. D2D
can be between two devices in the coverage of the BS or out of the BS. This technique can
alleviate the network capacity and coverage problems and further assist in disaster scenarios
where the BS is not available [214]. Recently, 3GPP release 13-15 two-hop communication
has been approved, which can further increase the network capacity and coverage [215, 216].
As a result of the proliferation of D2D communication and the continuous evolution of D2D
in 3GPP releases, it can be predicted that multi-hop device-to-device (MD2D) will be a part of
the standard in future cellular networks. The advantages of D2D communication in the cellular
network can be fully realized when extended to multi-hop communication scenarios since the
single-hop is usually limited to a specific geographic area.

6.2.1 Motivation

The increasing number of applications and user demands create massive data traffic on the cel-
lular channel. Allocating such data to a secondary network (such as the MD2D network) can
alleviate traffic congestion and stress on the cellular network. For example, the work in [217]
proposed an MD2D-based routing protocol to support services in large geographic areas. Their
algorithm targets the areas that are out of the cell boundaries and provide services using MD2D.
The protocol decreases the cellular channel overhead while providing fast and reliable services
with no extra resource consumption. At the same time, other MD2D-proposed protocols and
frameworks focus on preserving the device energy, spectrum and coverage. To improve spec-
trum and energy efficiency, authors in [218] proposed an optimal adaptive forwarding strategy
(OAFS) for multi-hop D2D communications. This strategy adaptively chooses between the
best relay forwarding mode and the cooperative relay beamforming mode based on energy
efficiency metrics. Authors in [219] improved the cellular coverage quality by proposing an
enhanced MD2D scheme by jointly considering multiple quality-of-service (QoS) metrics. A
new power adjustment scheme based on a game decision algorithm performs spectrum sharing
and underlay D2D relaying links.
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The integration of cellular and MD2D networks provides various advantages. However, if the
routing frameworks and protocols are not designed carefully, they can perform even worse than
traditional cellular networks [3, 220]. Routing in MD2D is a critical issue because it must
take care of the node’s mobility, dynamic network topology, energy consumption and network
fragmentation. For instance, the work in [86] presented a routing framework to offload traffic
using a source-based routing protocol. Similarly, a routing framework is proposed in [221] to
identify the nodes with the highest resources to increase the network performance and improve
energy consumption. Current MD2D networks operate under one framework, which means only
one routing protocol is usually investigated and proposed. However, due to the heterogeneity
of future network devices and the versatility of applications, it is essential to allocate specific
routing protocols to different applications and create a multi-framework network architecture.
This can be done by network slicing and allocating dynamic MD2D routing protocols for each
slice. Such framework may be integrated into future cellular networks due to the emergence of
open-radio access networks, which facilitates software-defined networking (SDN) and network
function virtualization (NFV) to create an intelligent, open and programmable infrastructure.
Therefore, new network functions could be developed for a specific purpose, which allows
service providers to adjust their optimization techniques for network applications [7].

Another general issue in future wireless cellular networks will be data traffic management.
Nowadays, the data among user equipment (UE) usually shows high spatial and temporal cor-
relation, in which a significant amount of the data transferred between UE’s and BS are similar.
Such data is redundant and could be assigned to the MD2D network to get shared and down-
loaded by nodes. Therefore, instead of all the devices asking for and receiving the content from
the BS, they can request it from nearby devices. One of the promising solutions to manage the
data and resources is the dynamic partitioning of physical network infrastructure into logical
networks. Network slicing is a solution to distinguish nodes with similar content requests. For
instance, the BS can use clustering algorithms to identify and aggregate software updates or
viral content, allowing UEs with similar requests to share and exchange data.

6.2.2 Contributions

This chapter introduces the concept of virtual network slicing for WiFi channels and proposes
a mechanism to enable multiple MD2D routing protocols to be deployed over each virtual
slice (VS). As shown in Figure 6.1 network data is collected by the small-cell BSs (SBSs) and
then transmitted to the mobile edge computing (MEC) controller for further processing. The
controller uses improved self-adaptive particle swarm optimization (IDPSO) for data clustering
and genetic algorithm (GA) in conjunction with learning automata (LA) for dynamic route
selection. After the process, each V Si represents an independent sub-layer with UEs requesting
the same content. As can be seen from Figure 6.1 the entire network is sliced into n number
of sub-layers based on the node’s content request. Each VS receives different routing protocols
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Figure 6.1: Modular design for virtual slicing and dynamic route selection.

depending on the overall network performance in terms of end-to-end (E2E) delay, throughput,
remaining energy, and packet delivery ratio (PDR).

The contributions of this chapter are summarized as follows:

• We propose a new adaptive MD2D routing framework using virtual network slicing and
dynamic routing protocol selection for the WiFi channel.

• We introduce a data clustering algorithm to allocate nodes into different network slices
using the IDPSO algorithm. The technique is based on fitness function computations
using the data similarity requested by MD2D nodes.

• We present a routing selection mechanism for sub-MD2D network slices using the genetic
algorithm (GA) in conjunction with learning automata (LA). The combination of GA and
LA leads to dynamic routing protocol selection through a learning process.

An extensive experimental analysis is performed to evaluate our proposed approach. The results
show that dynamic virtual network slicing with a multi-routing protocol performs significantly
better than a non-sliced single-routing framework. Simulation results illustrate an average in-
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crease of 53% in throughput, a 50% decrease in the E2E delay, an almost 5% reduction in
energy consumption, and an 8% increase in PDR.

The rest of this chapter is organized as follows. Section 6.3 provides an extensive overview of
the current research studies. Section 6.4 presents a detailed description of the proposed routing
framework and problem formulation. Section 6.5 demonstrates the simulation results to validate
the significance and efficiency of our proposed framework. Finally, Section 6.6 concludes the
discussion and points to possible directions and future works.

6.3 Related Work

This section covers the related works on D2D and MD2D routing protocols and frameworks,
primarily on clustering nodes or geographical areas. To the best of our knowledge, no study has
performed data clustering and virtual network slicing with dynamically prescribed proactive or
reactive routing protocol for each slice to maximize the network throughput. Most of the pro-
posed protocols in the literature for MD2D and D2D networks are based on one framework and
one routing protocol, except the work in [179]. Authors geographically partition the network
into fixed areas and prescribe routing to each region based on the highest performance of the
routing protocol in that specific cluster. They proposed a joint clustering and dynamic selection
strategy for MD2D routing.

The majority of the related works for MD2D clustering are based on segregating the physi-
cal devices. For instance, the work in [222] clustered the devices and associated the MD2D
network into a collision-free cooperative graph to identify efficient routes. The clustering tech-
nique groups the devices into non-interfering devices. A decoding delay-sensitive problem is
formulated as a joint optimization over a set of transmitting nodes using graph theory to reduce
the broadcast decoding delay in MD2D communication. In [223], the authors aim to identify
the performance gain of cooperative MD2D communication. A macro BS (MBS) is responsible
for constructing suitable clusters using a large number of single-antenna relay nodes. The MBS
collects all the necessary information from the node and iteratively forms groups of nodes. The
MBS creates layers of clusters, and when a source node wants to transmit the data, it broad-
casts the information to the next nearest cluster toward the destination. Once the next cluster
receives the information, it will broadcast to the next cluster until it reaches the destination.
For privacy reasons and secure routing in MD2D communication, authors in [224] designed a
cluster-head centered fast secure routing (CCFSR) for MD2D networks to force authenticated
nodes to forward their packet to a secure cluster head. Cluster heads are formed based on the
position and energy and deploy or use one routing protocol throughout the network. The cluster
head identifies the fastest route to the destination using the breadth-first search algorithm. A
non-cooperative game theory called secure routing choose game (SRCG) helps the cluster head
to identify the malicious nodes.
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The Internet of things (IoT) has gained considerable attention over the past few years, and it
is expected that the number of connected IoT devices to the Internet will rise by billions every
year. With this massive growth, having individual nodes connected to the Internet will cause
serious scalability issues in cellular and wireless networks. One way to reduce the impact of
this problem is to cluster nodes and have a representative node to collect, distribute and fetch
data from the Internet on behalf of other nodes. Furthermore, the integration of MD2D with
IoT networks can increase network coverage and capacity. Authors in [225] proposed a multi-
hop clustering mechanism to minimize the number of nodes connected to the Internet. Their
objective is to reduce the number of cluster heads while minimizing the total distance between
nodes and the cluster heads. Nodes in the same cluster are allowed to go through each other
to reach the cluster head until the maximum number of hop constraints. By allowing MD2D
communication between nodes and between cluster heads, the proposed scheme reduces the
number of connected devices by more than 80%.

In disaster scenarios where part of the communication infrastructure is unavailable, D2D net-
works are highly desirable. For instance, authors in [226] proposed an energy-efficient D2D
scheme for disasters with clustering algorithms to ensure that devices can communicate for
a long time until they are rescued. Their proposed algorithm establishes clusters until every
node in the area of failed infrastructure can communicate with an available nearest BS. Can-
didate cluster heads are determined based on the location and residual energy. The modified
ant colony algorithm (MACA) is adapted to increase the routing efficiency. Similarly, the work
in [227] proposed an efficient multicast routing protocol for D2D communication to help im-
prove the transmission power efficiency and QoS. The cluster heads are dynamically changed
based on the packet transmission sequence and data demand factor (frequency of requests as a
transmitter). The cluster heads are chosen based on the power levels.

Apart from the proposed protocols in [179, 227], many existing MD2D or D2D clustering al-
gorithms are based on fixed frameworks. That means the clustering algorithms do not have
an adaptability mechanism based on the network condition. Moreover, most of the clustering
methods in D2D and MD2D networks operate to cluster devices or geographical areas. How-
ever, in our proposed framework, the data requests are clustered to construct virtual network
slices. The controller groups the devices based on similar content requests. Then, based on
the mobility rate and the number of nodes in every VS, the most efficient route is prescribed,
which makes our proposed technique intelligent and adaptable based on the network and user
requirements.

6.4 Proposed Routing Framework

In Figure 6.2, a multi-access edge server or controller processes and collects all the data from
the nodes N = {n1, n2, ..., ni} at the edge network. We only consider one edge server and the
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Figure 6.2: Proposed PSO network slicing and dynamic route selection.

nodes under its coverage for simplicity. However, our proposed framework can be extended
to multiple edge servers that are all synchronized with the main MBS to share and allocate a
pool of resources. The MEC-BS is responsible for dynamically changing the network slices
based on node data requests. At the initial stage, the MEC-BS receives all the requests from
the nodes and based on the requested contents, the PSO algorithm clusters the data. Then the
VSs are formed with nodes requesting the same content. In each VS, there are representative
nodes to share the data with the nodes in that slice using MD2D communication. The network
consists of n slices C = {c1, c2, ...cn}, and each one shares the same resources. Each network
slice is assigned a routing policy and strategy based on the number of nodes, mobility rate and
average remaining energy. In our framework, two routing protocols are prescribed for each VS,
AODV or OLSR, depending on which routing performs efficiently. These two routing proto-
cols represent proactive and reactive benchmark MD2D routings. Each slice receives routing
information, IP addresses, and the operated frequency band. This approach will provide neces-
sary slice isolation even in dynamic scenarios due to associated frequency and IP address. The
detail of our framework, including the problem formulation and the proposed constraints, are
presented in the following sub-sections.

6.4.1 Improved Particle Swarm Optimization

The PSO is a swarm intelligence-based stochastic algorithm modeled after the social behavior
of a swarm of birds. This algorithm mimics complex global swarm patterns and exploits them
to solve complex optimization problems. In PSO, each particle P = {p1, p2, ..., pn} of the
population follows the best position found by any individual (known as global best or Pgd) and
its local best position (known as local best or Pid). Each particle behaves like an intelligent
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agent in a highly decentralized environment. The PSO aims to find the particle position that
leads to efficient optimization of the fitness function. The advantage of the PSO is that its
accuracy is higher than some of the known clustering-based algorithms, such as the K-means
algorithm [228]. Each particle represents a position in N -dimensional (Nd) space, the velocity
of the particle is calculated in a multi-dimensional space and adjusted towards its individual
local best position, yi(t), and the global best position, ŷ(t), found so far in the neighborhood
of that particle. The particle’s position in the populated swarm G is adjusted based on the
following equations, where 1  i  P , 1  j  G:

vi,k(t+ 1) = wvi,k(t) + c1�1(yi,k(t)� xi,k(t)) + c2�2(ŷk(t)� xi,k(t)), (6.1)

xi(t+ 1) = xi(t) + vi(t+ 1), (6.2)

where vi(t) and xi(t) are the particle velocity and position, respectively. c1 and c2 represent
the acceleration constant, w is the inertia weight and �1, and �2 are random numbers �1,�2 ⇠
U(0, 1). In (6.1), the first part of the equation is the previous speed of particles. The second part
of the equation is cognition, which represents the particle’s own thinking. The last part of the
equation is known as the social component, which corresponds to the information exchanged
and cooperation between particles. The velocity of a particle is calculated by combining a
fraction of its previous velocity with the distances of the particle from its personal best position
and the global best position (i.e., the best among all personal bests). The new global best
position Ŷ (t+ 1) and the new local best position Yi(t+ 1) are adopted from [228] and defined
as follows:

Yi(t+ 1) =

8
<

:
yi(t), if f(xi(t+ 1)) � f(yi(t))

xi(t+ 1), if f(xi(t+ 1)) < f(yi(t));
(6.3)

Ŷ (t+ 1) = argbest{Yi(t+ 1)}, (6.4)

There are two approaches to solving a PSO problem. The first approach formulates the entire
network as the particle search area. In the second approach, the swarm is partitioned into smaller
areas to limit the particle’s search area. In the first approach, the social component remains the
same as in (6.1). However, in our framework, we use the second approach to change the social
part in (6.1) from searching the entire swarm to a neighborhood, as follows:

c2�2,k(t)(ŷj,k � xi,k(t)), (6.5)

where yj is the best particle in the neighborhood of the jth particle.

To improve the PSO and create a better balance between the local best and global best search,
we calculate the inertia weight using the proposed work in [229]. They proposed a generational
process with a detection function to calculate the inertia weight value. This process leads to
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an improved self-adaptive particle swarm optimization (IDPSO) technique, resulting in an in-
telligent and more accurate PSO. As a result, the original PSO values of c1, c2 and w are now
changed to c1i, c2i and wi and updated as follows:

wi(t) =
wini � wf

1 + e'i(t)(t�(1+ln('i(t))tmax)/µ)
+ wf , (6.6)

c1i(t) = c1i(t� 1)('i(t))
�1, (6.7)

c2i(t) = c2i(t� 1)'i(t), (6.8)

where wini and wf are the initial and final values allowed for the inertial weight, tmax is the
maximum number of generations, and µ is the adjustment factor to prevent wrong convergence
of w, wini and wf . The ' function is defined as follows:

'i(t) = d(Ŷ (t� 1), Xi(t� 1))/d(Yi(t� 1), Xi(t� 1)), (6.9)

As a result, the new velocity equation for IDPSO for particle Xi(t) is evaluated as follows:

Vi(t+ 1) = wi(t)vi(t) + (c1i(t)�1)(Yi(t)�Xi(t)) + (c2i(t)�2)(Ŷ (t)�Xi(t)), (6.10)

Some of the advantages of IDPSO over the conventional PSO are:

• Increased Convergence Rate: IDPSO has a higher convergence rate than the conventional
PSO algorithm. This means that the algorithm is able to reach the optimal solution faster
than the conventional PSO.

• Reduced Premature Convergence: IDPSO reduces the problem of premature conver-
gence, which is a common issue in the conventional PSO. Premature convergence occurs
when the algorithm gets trapped in a local minimum and is unable to explore the search
space to find the global optimum. IDPSO uses a population-based search mechanism to
reduce the effect of local minimums.

• Improved Diversity: IDPSO improves the diversity of the population by using a modified
search mechanism that allows particles to explore the search space more efficiently.

• Better Performance: IDPSO outperforms the conventional PSO in terms of both solution
quality and computational efficiency.

6.4.2 PSO Data Clustering

In the context of PSO for data clustering, each particle represents a cluster centroid with Nc

elements, and each particle xi is comprised of the following elements xi = mi,j,mi,l, ...,mi,Nc .
Wheremi,j corresponds to the jth cluster centroid of the ith particle in cluster Ci,j . Therefore, if
we execute the PSO algorithm, a swarm will represent different candidate clusters for a number
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of data sets S = {s1, s2, ..., sn}. The fitness of particles can be computed by the quantization
error as follows:

Je =

PNc

j=1[
P

8sp2Ci,j
d(sp,mj)/|Ci,j|]

Nc
, (6.11)

d(sp,mj) =

vuut
kX

l=1

|sp,l � xj,l|2, (6.12)

where d is the distance to the closest centroid for each data set sp, |Ci,j| is the number of data
vectors that belong to cluster Ci,j , and Nc represents the number of cluster centroids. As a
result, Algorithm 3 shows the data clustering using the standard global best IDPSO.

Algorithm 3: PSO Data Clustering Algorithm
Input : P particles, tmax maximum number of iterations
Output : Data Clustered C

1 Initialize each particle to contain Nc randomly selected centriods
2 for t=1 to tmax do
3 for particle i2Pn do
4 for data set sp 2S do
5 d(sp,mj) =

qPk
m=1 |sp,m � xj,m|2 Assign sp to cluster Ci,j

such that d(sp,mi,j) = min8C2NC
d(sp,mi,c)

Je =
PNc

j=1[
P

8sp2Ci,j
d(sp,mj)/|Ci,j |]

Nc
,

6 end
7 end
8 Update global best and local best positions Update the cluster centroids

Vi(t+ 1) = wi(t)vi(t) + (c1i(t)�1)(Yi(t)�Xi(t))+
9 (c2i(t)�2)(Ŷ (t)�Xi(t)) xi(t+ 1) = xi(t) + vi(t+ 1),

10 end

In the context of IDPSO for data clustering, each particle represents a cluster centroid with a
set of parameters. At the start of the algorithm, each particle is initialized with a random set
of parameters. During the iteration process, each particle utilizes its personal best and global
best position information to optimize its parameters and maximize the likelihood of reach-
ing the global optimum solution, thus improving its fitness. The IDPSO technique employs a
population-based search mechanism, which mitigates the impact of initial constraints and con-
ditions present in other techniques, such as K-mean clustering where the search process starts
from multiple positions simultaneously. The IDPSO algorithm can identify multiple optimum
solutions when they exist in a given problem space. Therefore, when the optimum individual
best fitness is found in every iteration of optimization, the value is used to update the candidate
solution accordingly. The summary of the advantages of PSO data clustering over K-means
data clustering is provided as follows [228,229]:

• Ability to find global optimum: PSO data clustering can find the global optimum for
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a given problem, while K-means clustering can only find local optima. This is because
PSO searches the entire search space to find the Moreover, best possible solution, whereas
K-means starts from random initial conditions and can get stuck in local optima.

• Robustness: PSO data clustering is less sensitive to the initial conditions than K-means
data clustering. This is because the PSO algorithm uses a population-based search mech-
anism, which ensures that the algorithm is less likely to get stuck in a local optima.

• Flexibility: PSO data clustering is more flexible than K-means data clustering as it can
be used to cluster data in a variety of spaces, including continuous, discrete and mixed
spaces. K-means data clustering can only be used in continuous spaces.

• No need for prior knowledge of cluster number: In PSO data clustering, the number of
clusters does not need to be predetermined. The algorithm can determine the optimal
number of clusters automatically based on the data.

6.4.3 Virtual Network Slicing

After IDPSO data clustering, virtual network slices must be established. Representation nodes
or cluster heads (CHs) should be defined to form a VS. In our proposed framework, nodes
join different slices in each round, or new slices are formed at the beginning of the phase.
Initially, the MEC-BS identifies nodes with a similar content request to obtain the number of
slices. Then, CHs are determined based on the candidate CH identification algorithm. In this
algorithm, nodes with the highest data similarity, energy and link capacity are identified as
potential CHs. Determining the optimum CHs and the associated nodes to a cluster forms a VS.
The optimal CHs are obtained using the following cost functions, given that N is the number
of particles and S is the matrix of transmitted data that each column is allocated to a particle
i, j 2 N :

minimize
Pi

1

n

X

i,j

1

�Pi�Pj

h
(Pi(x, y)� µPi) ⇤ (Pj(x, y)� µPj)

i
, (6.13)

Given that the below function is maximum

PK
l=1 E

l
PiPL

m=1 E(CHm
Pi
)
>

PK
l=1 E

l
PjPL

m=1 E(CHm
Pj
)
, i, j 2 N, K,L 2 S (6.14)

where f1 is the maximum correlation of particle Pi data content request and particle Pj data
content request. � and µ are the standard deviation and mean of the data. Pi ⇤ Pj indicates the
cross-correlation between two data vectors, which measures the similarity of the two data sets.
The function f2 represents the particles’ total energy over the CHs’ total energy. Finally, ↵ is
a constant that defines the importance of each function in every iteration. The defined fitness
functions can identify nodes with the potential to be the CH. Different nodes are selected as
CH in each iteration, acting as a local controller to coordinate the data transmission in the clus-
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Figure 6.3: Flowchart of the proposed adaptive MD2D routing framework.

ter. Nodes must obey the TDMA scheduling protocol enforced by the BS, reducing collisions
among the data messages. After VSs are ready and the CHs are identified, the network is ready
for MD2D communication. However, the next step is broadcasting the routing information to
each slice. The routing information includes IP addresses, WiFi channel frequency, and the
optimal MD2D routing protocol. Based on the performance of the routing protocols in each
slice, the most efficient one is prescribed for the VS. The process of finding the optimal route is
explained in the following subsection.
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Table 6.1: PSO and IDPSO algorithm parameters setup.
Algorithm Parameter Value
Number of Particles 150
w 0.75
w1 0.9
w2 0.4
r1 1.45
r2 1.45

6.4.4 PSO and IDPSO Clustering Comparison

PSO is a population-based optimization algorithm that seeks to find the optimal solution by
iteratively searching the problem space using a group of candidate solutions called particles.
Each particle represents a potential solution and moves through the problem space in search of
the best solution. PSO data clustering is a specific application of PSO algorithm that can cluster
a data set. Data clustering involves grouping similar data points together to discover underlying
patterns or structures in the data. PSO data clustering aims to automatically partition data points
into clusters based on their similarity.

Improved self-adaptive particle swarm optimization (IDPSO) is an extension of PSO that in-
troduces dynamic parameter adaptation, allowing for better exploration and exploitation of the
search space. This adaptability can potentially lead to faster convergence and improved solu-
tion quality compared to the original PSO algorithm. Some of the advancements of IDPSO
algorithm are as follows:

1. Velocity and Position Update:

• PSO: In PSO, the velocity and position updates are calculated using fixed parameters
for inertia weight, cognitive weight, and social weight.

• IDPSO: In IDPSO, the velocity and position updates are calculated based on dy-
namic parameters. The inertia weight, cognitive weight, and social weight are adap-
tively adjusted based on the performance of each particle and the overall swarm.

2. Convergence Speed:

• PSO: PSO has a relatively fast convergence speed, especially in simple optimization
problems. However, in complex or multimodal problems, it may struggle to quickly
converge to the global optimum.

• IDPSO: IDPSO aims to improve the convergence speed by dynamically adjusting
the parameters. By considering both local and global search information, IDPSO
can effectively guide the particles towards promising regions in the search space,
potentially leading to faster convergence.

At first we compared the convergence of both algorithm to find the ideal number of iteration.
Table 6.1 shows the PSO and IDPSO algorithm parameters setup.
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Figure 6.4: Normalized algorithms convergence for IDPSO and PSO.

Figure 6.4 illustrates the normalized convergence behavior of the algorithms. The IDPSO con-
verges to optimum position by almost 70 iterations, whereas PSO takes almost 110 iterations
to reach to the optimum convergence area. Both PSO and IDPSO balance exploration (search-
ing for new solutions) and exploitation (exploiting known good solutions). However, IDPSO’s
adaptive mechanisms provide a more refined balance between exploration and exploitation, en-
abling particles to effectively navigate the search space and converge faster. IDPSO introduces
improvements to enhance the convergence speed and performance compared to traditional PSO.
It incorporates adaptive mechanisms to dynamically adjust the parameters, such as the inertia
weight, cognitive weight, and social weight. These adjustments are based on the performance
of each particle and the overall swarm. By considering both local and global search information
simultaneously, IDPSO aims to guide particles more effectively towards promising regions in
the search space, potentially leading to faster convergence

To further compare the two algorithms during clustering a data set, we have introduced 4 ran-
domly distributed data sets. Each data set is a vector that represents a package in a wireless
network, where N1 size is 1⇥ 30, N2 size is 1⇥ 250, N3 size is 1⇥ 100 and N4 size is 1⇥ 500.
Algorithm 4 shows the steps of the complete process on how PSO and IDPSO cluster the nodes
into 4 different classes based on their packets. In this Algorithm particles in a swarm represent
potential cluster centroids or cluster assignments. The particles are iteratively updated based on
their personal best positions and the global best position found so far, guiding their movement
towards optimal clustering solutions. In each iteration, the particles’ velocities are adjusted
according to a combination of their previous velocities, the cognitive component (distance to
personal best), and the social component (distance to global best). The positions are updated ac-
cordingly, representing new cluster centroids. The fitness of each particle’s clustering solution
is evaluated using a fitness function that measures the quality of the clustering. Through re-
peated iterations, PSO and IDPSO dynamically explore and exploit the search space, aiming to
converge to an optimal clustering configuration where data points are grouped into meaningful
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clusters based on their similarity.

Figure 6.5 demonstrates the the running time of the PSO and IDPSO to cluster nodes’ data
cluster between 50 to 400. While the number nodes are low both protocols preform similar in
terms of convergence. However, as the number of nodes increases from 50 to 400, the compu-
tational complexity of clustering also grows. PSO, being a traditional optimization algorithm,
may require more time to converge and reach an acceptable clustering solution as the number of
nodes increases. On the other hand, IDPSO, with its improved convergence speed and adaptive
parameter adjustments, exhibits faster convergence and significantly outperforms PSO in terms
of clustering time for larger node populations.

6.4.5 Route Discovery Phase

The controller prescribes the most efficient routing protocol for network slices. At first, a
fixed set of number of flows F = {f1, f1, ..., fn} is generated for a random source SN =

{sn1, sn1, ..., snn} and destination nodes DN = {dn1, dn1, ..., dnn}, where Fi = {SNi, DNi}
consist of a source and a destination node. Then, based on the performance of network met-
rics, the most efficient route is discovered. The performance metrics are based on the network
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Figure 6.5: Effect of the number of nodes on the clustering time using four different dataset.

operator’s preferences: energy efficiency, maximum data rate, link reliability, least E2E delay
and PDR. In this chapter, the output of remaining energy (RE), link stability ratio (LZ), wire-
less channel traffic (TW ), and hop count (H) are considered to compare AODV and OLSR. The
genetic algorithm (GA) in conjunction with learning automata (LA) is used to identify which
routing protocol has the highest efficiency based on the network metrics. The LA is an adaptive
process that runs concurrent to the GA to initialize, optimize, and adjust its coefficients using
the network feedback. The LA is based on the reward/penalty algorithm that, together with GA,
defines the cost function based on the performance metrics. A fitness function is introduced
to formulate a mathematical model and select the best route. The fitness function is adopted
from [230, 231] and depends on the number of hops, average traffic rate T , remaining energy
E, and link stability ratio Z.

FAODV,OLSR =
Z + E

H + T
, (6.15)

where the routing protocol R is selected based on the value in (6.15).

R =

8
<

:
AODV, if FAODV > FOLSR

OLSR, if FAODV < FOLSR;
(6.16)

the optimal route must have high remaining energy and stability but with the lowest traffic
generation and fewer hops to decrease the E2E delay and wifi channel traffic. We now expand
the fitness function into the following equations:

Ei =

PNhops

i=1 REi

Hi
, i 2 F = {f1, f1, ..., fn} (6.17)

Ti =

PNhops

i=1 TWi

Hi
, i 2 F = {f1, f1, ..., fn} (6.18)
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Si =

PNhops

i=1 LZi

Hi
, i 2 F = {f1, f1, ..., fn} (6.19)

where E is the average remaining energy level of the nodes in flow i, T is the average traffic
rate of the same flow i, and Z is the average stability ratio. Also, TWi and LZi are evaluated as
follows:

TWi =
PTX

1 + PRX
, (6.20)

LZi = 1� nci

1 + nni

, (6.21)

where PTX and PRX are the number of transmitted and received packets, respectively. The
link stability directly relies on the mobility rate, which depends on the number of neighboring
nodes that have changed over time. nci and nni are the number of changed nodes and the initial
number of neighbors.

Figure 6.3 presents the flowchart of our proposed framework, which includes PSO data clus-
tering, VS and adaptive routing protocol selection. In this flowchart, S number of particles are
initialized, which contains C randomly selected data clusters based on (6.11). Then the cost
function of each particle is computed using (6.13), which contains the similarity of content be-
tween the CH and node i. Each particle’s personal and global best positions are updated with
their velocity using (6.4), (6.3) and (6.10). After the procedure, the swarm with the updated
positions and particles’ nearest coordinates to the corresponding CHs are recorded and set as a
new VS. Our strategy is performed iteratively during the network operation time.

6.5 Simulation results and performance analysis

6.5.1 Simulation Setup

The proposed adaptive network slicing and dynamic routing selection protocol is implemented
in the Network Simulator-3 (NS-3). The NS-3 IP-based module includes WiFi and LTE/5G
for layers 1 and 2. There are inbuilt routing protocols available for mobile networks. For
instance, AODV, OLSR, and destination sequenced distance vector (DSDV) are employed for
mobile ad hoc networks (MANETs). These protocols can be extended to work under the MD2D
framework to enable multi-hop routing.

Our framework is investigated under a partial section of an entire cellular network covered
by an MBS. We consider an MBS located in the center of a cell with randomly generated
heterogeneous nodes such as mobile devices, IoT sensors, and vehicles. All the nodes are
uniformly distributed and specified as user equipment (UE), following the Random Waypoint
mobility model. The simulation environment is expanded over a 500m ⇥ 500m area. The
channel throughput for cellular transmission is set to have LTE/5G specifications, and WiFi
channel bandwidth is determined by IEEE802.11n-5GHz. We assumed a simple energy model
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Table 6.2: Simulation parameters.
Parameters Value
Simulation environment 500m⇥ 500 m
Initial power of UEs 300 j
Number of UEs 50,100,150,200,250
Packet transmission size 10 kbits
Routing protocols AODV, OLSR
Propagation model Rayleigh fading
Mobile node transmission range 100 m
Mobile rate 10 m/s - 30 m/s
Mobile model Random waypoint mobility
Total simulation time 3000 s

[79] for each UE to see the effect of battery depletion. Node’s velocity varies between 10m/s
and 30 m/s. We analyzed our proposed protocol in two different scenarios. First, we assume a
fixed network density with a variable mobility rate. Second, variable network density with the
constant mobility rate. Simulation parameters are shown in Table 6.2.

Figures 6.6a-6.7a illustrate the simulation analysis of our proposed protocol with different mo-
bility rates. ASDR represents adaptive slicing and dynamic routing, and AODV/OLSR de-
scribes non-slicing and single routing. Figures 6.6b-6.7b investigate the significance of ASDR
in different network densities. A predefined set of active flows with randomly chosen source and
destination nodes are selected. The simulation results were run for 3000s, and each was aver-
aged over multiple simulations using different seed values. The simulation results are validated
with the Monte Carlo simulation technique under 50 runs, and the final results are averaged and
plotted with 95% confidence intervals.

6.5.2 Simulation Results

This section discusses simulation results and performance analysis of dynamic network slicing
and MD2D route selection. First, we analyze the network metrics against the mobility rate.
Then, we observe the network performance versus the network density. The objective of this
chapter is to introduce network slicing for WiFi channels, thereby opening up new possibilities
for a multi-protocol routing framework. In particular, two routing protocols, AODV and OLSR,
were employed to demonstrate the performance of our proposed framework. These protocols
serve as fundamental examples of proactive and reactive routing protocols, forming the basis
for the development of other routing protocols. The utilization of these protocols was driven by
the fact that they are widely employed by researchers in the field. Our analysis highlights that
the adoption of a multi-protocol routing framework yields superior performance compared to
single-protocol routing frameworks which is the main objective of the chapter. Notably, these
two classes of routing protocols continue to be extensively explored by researchers [232, 233].

Figure 6.6a presents the PDR versus different mobility rates. ASDR performs better than net-
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works that either use OLSR or AODV. The reason is that ASDR adapts based on the user ap-
plications and chooses the ideal routing protocol for each slice to increase the overall network
performance. One of the main advantages of adaptive virtual slicing is the reliability of links.
Link reliability is higher in ASDR because each VS is only responsible for one specific user
application. Therefore, traffic congestion for relaying nodes is less due to the independency of
VSs. For instance, mission-critical and non-critical applications must use a different routing
protocol. Mission-critical applications require a fast and responsive protocol. Whereas, the
non-critical application can use the route that increases the throughput and reduces the traffic
flow on a low battery-level node. The fastest routing protocol must be used if a node requires an
emergency broadcast to inform other nodes. ASDR recognizes the application and prescribes
the most efficient MD2D routing protocol for every application.

Figure 6.8a illustrates energy consumption versus the mobility rate. The graph shows the differ-
ence in energy consumption in slicing and dynamic route selection frameworks against a single
routing framework. Our proposed protocol consumes less energy due to the dynamic adaptation
of routing protocols. The reason is that ASDR chooses either AODV or OLSR as routing proto-
cols for different slices based on their performance. For instance, when the node’s mobility rate
is low, AODV performs better, and when the network is highly dynamic, OLSR is better than
AODV. Our framework can adjust the routing protocols for each of the VSs based on a multi-
objective fitness function involving energy consumption. The benefit of ASDR is it can identify
the most efficient routing protocol for each network slice in terms of energy consumption.

Figure 6.9a shows the E2E delay versus the mobility rate, where ASDR is superior to AOD-
V/OLSR. ASDR accomplishes a better result because the whole network is now virtually sliced.
Each slice facilitates the most efficient routing protocol based on the mobility rate to minimize
the E2E delay. Our proposed framework divides the network into smaller virtualized clusters
to split the network traffic from one slice to multiple. This will help to differentiate user ap-
plications and make MD2D transmission inherently faster. The application of ASDR will be
in heterogeneous networks consisting of mobile, vehicular, drones, etc. For example, vehicular
networks usually require similar traffic flows (e.g., incident reports, traffic congestion, network
updates, etc.). Therefore, the routing protocol that reduces the E2E delay in highly dynamic
environments will be deployed. In terms of E2E delay, OLSR routing performs much better
than AODV because OLSR is a proactive link-state routing protocol that keeps a routing table.
As a result, once failure occurs, a new route can be instantly identified. Whereas in AODV,
a new path must be constructed, which costs time. Hence, the E2E delay of ASDR is much
less than AODV for two reasons, adaptability and virtual slicing. Adaptability is identifying the
routing protocol that performs best (always choosing the protocol with the lowest E2E delay),
and virtual slicing is the clustering of the network into smaller size networks (decreasing the
network size and data transmission). ASDR has a lower E2E delay than OLSR due to network
virtualization, leading to smaller network densities and faster data transmission.
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Figure 6.7a presents the average throughput of the whole network versus different mobility
rates. ASDR has a significant advantage because each VS is allocated a frequency band with
a sharing pool of resources. Therefore, nodes can send a maximum amount of data over the
medium. In AODV/OLSR, the whole network uses the shared resources and frequency band,
and nodes can not use the maximum allocated throughput. No matter the mobility rate, the
benefit of ASDR is that for each VS, the controller uses our proposed algorithms to identify
the protocol that can provide the maximum throughput. Hence, network slices allow access to
maximum resources, which means nodes can use the highest throughput allocated to the slice.
As the mobility rate increases, packet loss rates rise due to wireless channel errors. Hence, in
highly mobile environments, the throughput decreases dramatically.

Now, we analyze the network performance in different network densities while the mobility
rate is constant. Figure 6.6b presents the PDR in different network densities. As the number of
nodes increases, the network PDR drops because as the number of traffic flows increases, there
is more chance of packet loss. ASDR performs better than the networks that either use OLSR or
AODV. The reason is that ASDR uses multi-objective route selection mechanisms that facilitate
learning automata and genetic algorithms to select the most efficient routing protocol. Link
reliability in ASDR is higher than AODV/OLSR in all the network densities because of two
main reasons. First, the ASDR divides the network into smaller sub-networks that enable nodes
to access more reliable links. Therefore, traffic congestion at relaying nodes is minimal, and
nodes transmit the packet to a more reliable node with more space in their queues. Second, we
maximize the link reliability based on (6.19). Whereas, if the entire network uses AODV/OLSR,
all the applications work under one network slice, and there will be a higher chance of losing a
packet.

Figure 6.8b illustrates energy consumption in different network densities while running ASDR,
AODV, and OLSR. Our proposed protocol shows better energy consumption than the other two
non-slicing and single-routing protocols due to the adaptive routing mechanism at the controller.
Based on the slice density, the most efficient routing protocol is identified at every iteration using
the multi-objective fitness function, which consists of energy, link reliability, and traffic rate.
Therefore, our proposed protocol’s routing selection mechanism adapts to the network density
and selects the protocol that consumes less energy. In contrast, running AODV or OLSR in the
entire network without network slicing makes both protocols perform worst. Once the network
and traffic flow increase, there will be more chance of packet failure and route reconstruction,
causing additional energy consumption.

Figure 6.9b shows the E2E delay versus the node density, where ASDR performs significantly
better than AODV/OLSR. ASDR accomplishes a consistent result in all the network densities.
The best routing protocol is prescribed based on the VS’s node population. As a result, the
routing protocol that provides the lowest latency is chosen for VSs for packet delivery. OLSR
performs much better than AODV in all the network densities because OLSR is a proactive link-
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state routing protocol that keeps a routing table and finds new routes immediately after packet
failure. However, in large densities and low traffic AODV would generally perform better. Ac-
cording to the protocol behavior and performance, the ASDR adopts the most reliable protocol
that provides the lowest E2E delay in that specific network density. Therefore, decreasing the
E2E delay of the overall network. Furthermore, the significant increase in End-to-End (E2E)
delay observed between 200 and 300 nodes, or at speeds ranging from 25m/s to 30m/s, can be
attributed to the performance differences between proactive and reactive routing frameworks.
While no notable performance degradation is observed in OLSR and ASDR, which are proac-
tive and hybrid frameworks, respectively, AODV exhibits a substantial increase in E2E delay
beyond a certain point. In reactive routing protocols, nodes need to acquire the route to the
destination node. Consequently, as the mobility rate and number of nodes increase, the route to
the destination undergoes continuous changes, resulting in frequent route requests and failures.
On the other hand, proactive routing protocols like ASDR and OLSR maintain a routing table,
enabling nodes to swiftly identify alternative paths when a neighboring node fails to transmit
the packet.

Figure 6.7b presents the average throughput of the whole network in different network densities.
ASDR has a significant benefit over the AODV/OLSR for its capability to associate independent
WiFi channel bands to each slice. The advantage of the ASDR in terms of network throughput
is in the network slicing that provides independent virtual sub-layers enabling access to more
WiFi channel capacity. Therefore, individual slices can use the maximum available resources
to increase the throughput. We allocate a pool of resources to the entire network where the
mission-critical services are given priority, then the rest of the resources are associated with
different slices. Once the transmission is finished, the slice resources can be allocated to other
slices. AODV/OLSR cannot perform network slicing and use the maximum network WiFi
throughput, which is why ASDR has superior performance.

6.6 Conclusions

This chapter presented an adaptive slicing mechanism for WiFi channels with a dynamic rout-
ing protocol selection technique for future MD2D and wireless cellular network integration.
We utilized the IDPSO algorithm for slicing the network into efficient VSs. Then for every
VS, the most efficient routing protocol was identified using LA/GA. Our proposed framework
illustrates the significance of the multi-framework MD2D routing protocol in terms of energy
efficiency, capacity and E2E delay. We compared our framework with non-slicing and single-
routing protocol-based frameworks. The simulation results showed significant advantages in
congested and highly mobile networks. According to the results, on average, E2E delay de-
creased by half, the energy consumption decreased by 8%, and PDR and throughput increased
by 5% and 53%, respectively.
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(a) Packet delivery ratio versus mobility rate.

(b) Packet delivery ratio versus number of nodes.
Figure 6.6: ASDR simulation results.
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(a) Average network throughput versus mobility rate.

(b) Average network throughput versus number of nodes.
Figure 6.7: ASDR simulation results.
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(a) Nodes energy consumption versus mobility rate.

(b) Nodes energy consumption versus number of nodes.
Figure 6.8: ASDR simulation results.
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(a) End-to-end delay versus mobility rate.

(b) End-to-end delay versus number of nodes.
Figure 6.9: ASDR simulation results.
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7
A Location-based Multi-hop Routing
Protocol for Future Wireless Cellular

Networks

7.1 Overview

The upcoming research is submitted to Elsevier Computer Networks 1. This chapter’s main ob-
jective is to present a newMD2D position-based routing (MPRR) protocol using the coordinates
of nodes with zone-prescribed neighbor discovery to make fast and reliable routing decisions.
The presented work uses an encrypted cluster-based algorithm for data privacy in multi-hop
routing. The proposed protocol was compared with a purely link-state routing protocol.

7.2 Introduction

Device-to-device (D2D) communication was introduced as one of the enabling technologies in
the fifth-generation (5G) cellular networks [73]. D2D consists of heterogeneous devices that can
communicate and exchange data without any fixed infrastructure or the base station (BS). D2D
networks allow cellular networks to allocate some of the data traffic to a secondary infrastructure

1Ashtari, S., Abolhasan, M., Lipman, J., Shariati, N., Ni, W. (2023). A Location-based Multi-hop Routing
Protocol for Future Wireless Cellular Networks. Elsevier Computer Networks.
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to reduce traffic congestion and increase network capacity and coverage. The 3rd generation
partnership project (3GPP) has been working on D2D standardization, and recently in release
15, two-hop D2D communication has been approved [211,234]. From the proliferation of D2D
and advancements in radio network architecture, multi-hop D2D (MD2D) communication will
soon be part of future wireless cellular networks.

As a result of the exponential growth of heterogeneous devices and applications, the radio access
network (RAN) is evolving to incorporate intelligence and openness into the network. The
open networking foundation (ONF) and open-radio access network (O-RAN) are among the
alliances that are working towards intelligent and self-adaptable radio platforms [7, 150]. O-
RAN is considered a promising solutions for future wireless cellular networks to allow vendors
to create intelligent virtualized applications [27]. O-RAN facilitates the concept of software-
defined networking (SDN) and network function virtualization (NFV) to make the network
flexible, self-manageable and programmable. The openness of network functions in future radio
networks allows the integration of MD2D into the network architecture.

MD2D is an essential technology for existing and future wireless cellular services such as self-
driving vehicles, unmanned aerial vehicles (UAVs), live data streaming, and video sharing.
Routing protocols play a crucial role in MD2D communication [3]. Without efficient routing,
the MD2D network can impact the overall network performance. In recent years, various rout-
ing protocols have been introduced to address the challenges of multi-hop routing [86,89,235].
In general, routing protocols are centralized, distributed or hybrid (a combination of central-
ized and distributed) frameworks. Centralized frameworks use a controller to coordinate and
instruct nodes on how to relay packets. Whereas distributed routing protocols use flooding
algorithms to obtain routing information. Centralized routing protocols have shown superior
performance compared to distributed [79]. As shown in Figure 7.1 in centralized frameworks,
two approaches could be used to obtain a route: topologic-based (link-state) or location-based.

7.2.1 Motivations

Topologic-based approaches use information from neighbor discovery to identify routes [3].
Nodes can locate and register neighboring nodes using link-quality or a signal-based metric.
The benefits of topologic-based/link-state routing are the reliability of the route and the lower
packet failure. The disadvantages of link-state routing are in highly dynamic networks, such
as vehicular. As the mobility rate increases, the probability of route failure or packet loss
rises. Location-based routing have been proposed to address such challenges associated with
the link-state approaches. Location-based routing are especially advantageous because, first, it
only requires the coordinates of the nodes, which is easy and fast to get; second, it reduces the
burden of obtaining the neighboring information on the WiFi channel [236]. However, location-
based routing can be inefficient in urban areas, where there are many obstacles causing signal
deterioration and link failures. This will cause repeated retransmission of packets, which can
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Figure 7.1: Abstract comparison of topology-based and location-based routing protocols.

lead to exposure to various security and privacy threats. Therefore, there is a requirement for a
high-performance, link-reliable and secure location-based routing protocol. Different privacy-
based routing protocols have been proposed for wireless networks [237–239], which require
some standard cryptography and authentication methods. However, they need extra capacity
with fast processing units, which leads to additional costs.

To the best of our knowledge, no previous study has introduced a privacy-preserving location-
based MD2D routing protocol along with a zone-prescribed neighbor discovery mechanism.
This combined approach aims to enhance the performance of location-based routing while safe-
guarding the confidentiality of nodes’ identities and locations during multi-hop communication.
Our proposed protocol offers two primary advantages. Firstly, by employing a zone-prescribed
neighbor discovery mechanism, we enhance link reliability while minimizing unnecessary pro-
cedure execution to specific areas only. Secondly, our privacy-preserving multi-hop routing
scheme ensures location privacy alongside agile service response during WiFi communication.
While existing WiFi standards, such as WiFi-Protected Access II (WPA2) or Advanced Encryp-
tion Standard (AES), address data privacy concerns, our protocol incorporates an additional en-
cryption method to ensure the security of both location and multi-hop routing. This ensures that
intermediate nodes cannot access the source node’s data or location information.

7.2.2 Contributions

This paper proposes a new MD2D position-based routing (MPBR) protocol using only the
GPS coordinates of the nodes. Our protocol uses network footprint and decides on the zones
that need to perform neighbor discovery. Then, a privacy-preserving scheme is used in the
WiFi channel to prevent MD2D users from being affected by data and location breaches. The
BS uses node locations to create geographical link-state databases (GLSDB). The GLSDB is
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Figure 7.2: Network architecture.

constructed at the controller attached to the mobile edge computing (MEC)-BS, as shown in
Figure 7.2. The controller identifies the zones required to perform neighbor discovery using the
network footprint and the obstacle density in the urban environment. With this information, the
controller completes its GLSDB. Then the GLSDB is transmitted to the nodes, where the nodes
calculate their path to the destination using the multi-objective shortest path (MOSP) algorithm.
The routing objectives include link reliability, distance, delay, and channel overhead to identify
the most efficient route. The nodes must obey two constraints to obtain the optimal next hop:
the distance and number of hops to the destination node.

The following are the key contributions of this chapter:

• We present a new location-based routing protocol for MD2D communication in future
cellular networks. The protocol utilizes network footprint to determine the zones for
performing neighbor discovery, and creates a GLSDB routing table.

• We introduce a privacy-preserving messaging framework to develop a reliable E2E con-
nection between MD2D nodes. An XOR-based privacy preservation scheme protects the
node’s location and data. The advantages of XOR scheme are fast and low in complexity.

• We present a multi-objective shortest path (MOSP) algorithm to identify routes with the
highest efficiency. MOSP uses the combination of different routing objectives, such as
link reliability, distance, delay, and channel overhead to identify the best route.

• We implemented our protocol in NS3 and conducted a comparative simulation analysis
to provide insights into the performance difference between the location-based and link-
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state MD2D routing protocol. The simulation results show, on average 15% reduction in
energy consumption, a 20% reduction in E2E delay, a 5% increase in PDR and almost
5% increase in throughput compared to fuzzy-based participation and routing protocol
for MD2D (FPRM) [240] and hybrid SDN architecture for wireless distributed networks
(HSAW) [83]. Moreover, MPBR performs significantly better than other investigated ad
hoc protocols in terms of PDR, E2E delay and energy consumption.

The rest of this chapter is organized as follows. Section 7.3 provides a brief overview of current
studies in the literature. In Section 7.4, the system model of MPBR is presented. Section 7.5
provides detailed explanation of route discovery procedure. Next, in Section 7.6, the details
of MPBR problem formulation and identification of routes are explained. This is followed by
Section 7.7, where simulation results of the proposed routing protocol are illustrated. Finally,
Section 7.8 summarizes the study.

7.3 Related Works

The main goal of this study is to create an MD2D location-based routing protocol that preserves
the location of users with higher performance compared to MD2D link-state-based routing.
Therefore, we present a brief overview of the current routing protocols proposed for the two
frameworks and summarize the advantages and challenges.

7.3.1 Link-state Routing Protocols

The primary distinction between location-based and link-based routing algorithms lies in their
approach to determining the next hop node. Location-based routing relies on the GPS coor-
dinates of nodes to make this decision, while link-state routing utilizes neighbor discovery to
identify the most suitable next hop candidate. However, it is important to note that two nodes
may be in close proximity geographically, yet face communication obstacles that disrupt the
link. In this regard, link-state routing frameworks enable nodes to establish a neighboring table,
which reveals the communication link status between nodes. Consequently, link-state rout-
ing protocols offer enhanced reliability for mobile-to-mobile (MD2D) communication. Within
link-state routing, two primary frameworks exist: centralized and distributed [79].

Authors of [86] a centralized on-demand Mobile-to-Mobile (MD2D) routing protocol with the
aim of minimizing routing overhead and improving network scalability. They propose a source-
based routing protocol that leverages a Software-Defined Networking (SDN) controller. Under
this protocol, each source node initiates a path request to the controller, which then identifies
the most optimal route and communicates it back to the source node. Similarly, the authors
of [93] introduced a semi-source-based routing protocol in their proposal. In this protocol, the
source node initiates a path request to a centralized controller, which subsequently provides
instructions regarding the packet and the next relay node to both the source node and the inter-
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mediate nodes along the route. A Software-Defined Networking (SDN) controller is responsible
for managing the network information and constructing a centralized routing table based on the
link-state information of the nodes. In [241], the authors used an adaptive load-balancing mech-
anism based on the predicted link-state of nodes to calculate optimal paths between source and
destination nodes. They use a neural network in the SDN controller to indicate the link-state and
enable load-balancing. Then, the predicted values are used as the Dijkstra weight to calculate
the optimal path and proactively add flow table entries.

While link-state routing protocols demonstrate efficient and reliable performance, their response
agility is limited by the neighbor discovery process. The evolving wireless cellular network
demands rapidity to accommodate diverse applications such as autonomous vehicles, smart
transportation, and more. In these specific use cases, the link-state routing protocol falls short in
terms of accident mitigation and response time optimization. To address this concern, location-
based routing protocols present a viable solution by providing swift service responses. In the
subsequent section, we delve into an exploration of several contemporary location-based routing
protocols.

7.3.2 Location-based Routing Protocols

Location-based routing protocols have the potential to address the limitations of link-state
Mobile-to-Mobile (MD2D) protocols, particularly in scenarios characterized by highly dynamic
network topologies and nodes with high mobility. Link-state routing protocols tend to exhibit
increased energy consumption due to the network overhead stemming from the neighbor dis-
covery process, as indicated by Kumar et al. in their survey [242]. This, in turn, leads to an
increase in end-to-end (E2E) delay, a critical factor in vehicular networks where timely up-
dates on safety and road hazards are essential and must be efficiently broadcasted throughout
the network. Consequently, location-based routing has emerged as a preferred choice in most
vehicular networks as it helps alleviate the challenges associated with link-state protocols.

Authors of [243] proposed a predictive geographic routing protocol (PGRP) to improve link
reliability and E2E delay in vehicular ad hoc networks (VANETs). In PGRP, every vehicle ex-
changes a weight with its neighbor nodes, including direction and the vehicle’s angle. Their
algorithm can predict the future location of cars according to the acceleration and location in-
formation. Once the location of nodes is obtained, a network graph is created, and nodes start
transmitting. Their algorithm shows higher PDR and lower E2E delay than other VANET rout-
ing protocols. Similarly, authors of [244] proposed an intersection-based geographic routing
with transmission quality (IGRTQ) guaranteed in Urban VANETs. They use historical and real-
time information to assign weight to each road segment to choose the best path. This weight is
based on the delay and data congestion at each road segment. The most efficient road segment
is dynamically selected using the allocated weight from segments, and the ideal next-hop nodes
are chosen accordingly. Their algorithm guarantees fast and efficient packet transmission in a
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highly dynamic environment.

Authors in [245] proposed a fuzzy-based routing protocol using geographical information.
Their algorithm considers several factors to select the most suitable next-hop for packet forward-
ing and route generation, such as the vehicle’s location, direction, link quality, and throughput.
The simulation result shows better PDR, E2E delay, and throughput than other location-based
routing protocols. To improve the network performance and overcome geographical routing
challenges in terms of network lifetime and resource optimization, some authors used ML tech-
niques in their protocols. For instance, authors in [246] proposed an efficient particle swarm op-
timization (PSO)-based resource optimization geographic routing (PS-ROGR). The PSO is ap-
plied to enhance the geographical routing by adding an optimization technique and considering
the location and velocity of each particle. According to the best fitness value in the update stage,
particles are selected for multi-hop routing. The PS-ROGR protocol shows the significance of
location-based routing in highly dynamic environments. There are other location-based MD2D
routing protocols in wireless communication networks, including IoT [247], MANET [248],
and wireless sensors [249].

7.4 System Model

The MPBR protocol consists of three main steps before MD2D is operational. First, the BS
identifies the zones where the neighbor discovery must happen based on the network footprint
and the node’s locations. Second, generating the GLSDB using the geographical location of
nodes together with the link state of nodes in the designated zones. Finally, the BS clusters the
nodes into groups to distribute the secure management keys for data and location privacy. The
following subsections describe the operation of each step in detail.

7.4.1 Zone-Prescribed Neighbor Discover

In our protocol, neighbor discovery is essential in areas characterized by high congestion due
to the presence of large buildings and other obstacles. Figure 7.3 illustrates a geographical area
where we recommend nodes in two distinct zones to conduct neighbor discovery based on their
respective locations. The determination of these zones relies directly on the network footprint
and the spatial distribution of buildings and nodes. Depending on the movement patterns of
the nodes, as discussed in Section 7.6.4 regarding location prediction, different nodes are as-
signed the task of performing neighbor discovery. In our protocol, we employ image processing
techniques to capture the coverage area under a single base station (BS) and extract information
about the buildings. This process can be achieved using edge computation or advanced machine
learning (ML) algorithms. Inspired by the approach presented in [250], we utilize the Canny
edge detection algorithm to identify the boundaries of the buildings. Typically, when observed
from a top-down perspective, buildings exhibit a rectangular shape or cover a rectangular area.
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Figure 7.3: Zone selection to perform neighbor discovery.

By employing the Canny edge detection algorithm, we outline the edges of the buildings and
subsequently utilize the Hough transform to vectorize the detected edges. The Hough trans-
form aids in identifying analytically defined shapes, such as circles, lines, and ellipses, within
the image. These procedures are executed prior to network setup, and once the network foot-
print is extracted, it is inputted into a network simulator to distribute the nodes accordingly.
Figure 7.4 shows our building extraction method and network footprint detection under a BS’s
coverage. This simple but effective method can be successfully used to detect buildings from a
noisy image to extract overlapping edges. Figure 7.4 shows the final network footprint, where
the controller initiates the configurations of MD2D communication.

7.4.2 GLSDB Calculation

In a designated area where a base station (BS) is operational, two distinct Geographic Location
Service Databases (GLSDBs) are maintained: the intra-cell GLSDB and the inter-cell GLSDB.
The intra-cell GLSDB includes local cell information, while the inter-cell GLSDB contains de-
tails pertaining to neighboring cells. Once the nodes share their respective locations with the
BS, the inter-cell GLSDBs are established. These GLSDBs are subsequently shared with adja-
cent cells to facilitate seamless handover procedures. To construct the GLSDB, the controller
assesses the cost associated with each node, utilizing the node information stored in the node
information base (IB). Four different cost metrics are employed to populate the GLSDB table,
namely: distance, number of hops, remaining energy, and link expiry time. The mathematical
intricacies of each metric are elaborated upon in Section 7.6. Next-hop candidates for each link
are identified using the MOSP, such as the device’s distance, cost, delay, load, reliability, and
transmission range. After populating the GLSDB, we check the link expiry time to ensure links
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Figure 7.4: Network footprint extraction from satellite image.

are reliable after a particular time due to the mobility of nodes.

7.4.3 Encryption Clustering Technique

The proposed encryption clustering technique is inspired by [251], where the BS groups the
authorized MD2D nodes into clusters to provide secure keys. In our framework, the clustering
algorithm is translated to consecutive rings formed by different values of the received signal
strength indicator (RSSI) received at the BS. As shown in Figure 7.5, each ring corresponds
to a cluster and a region. Each region is marked with a different encrypted key starting from
the first ring R1. If we assume the number of given rings is i, then the ring widths is R =

{R1, R2, ..., Ri}. The width of each ring can be represented by a range of received signal
strength (RSS) which can ultimately create a list of RSS = {RSS1, RSS2, ..., RSSn}, where
RSSn is between the initial and max threshold value of rings (↵R1  RSSn < �R1). Therefore,
the set of RSS decides the ring width while constructing the cluster structure. In this chapter, we
assume a fixed number of rings and that the width of each cluster ring is assumed to be given.

To distinguish the border nodes and associate them with a ring, the BS broadcasts a border
decision message (BDM). The BDM contains the identity of a newly-formed ring, the RSSR

for the ring and a threshold �. Nodes in the first region will receive the signal and measure the
RSS of received BMD (RSSI). If the difference between RSSI and RSSR is less than �, the
nodes will consider themselves members of the first ring. The threshold is a margin that helps
nodes during the ring association process and more importantly, decreases the overhead and
time of the node’s association process at the border of two rings. In cases where a node receives
multiple BDMs, the strongest correlation to the actual RSS is considered, identifying the ring
to which the node must associate. The ring creation and cluster formation process repeats until
the entire network under the BS coverage is clustered. During this process, nodes in the same
ring will receive a similar encrypted key to use during MD2D communication.

7.5 Route Discovery Procedure

This section explains the route discovery process in MPBR protocol. The details of network
policies and the exchanged packets are discussed. In the end, we briefly overview the FPRM
and HSAW routing protocols as high-performance routing protocols to serve as benchmarks for
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Figure 7.5: Geographical clustering for distribution of secure keys for MD2D communication.

Figure 7.6: An Illustration of the route discovery operations, where a single edge control is shown
for illustration convenience. However, the operations can be straightforwardly extended to multiple
controllers.

MPBR.

7.5.1 Route Discovery in MPBR

MPBR facilitates a centralized framework where a controller processes geographical locations
and creates a GLSDB. Nodes use the GLSDB to acquire a route to their intended destination.
Two separate frequency bands are assigned for data communication. 5G standards are used for
cellular channel communication, which allows forwarding control packets for routing informa-
tion, route maintenance, and packet failure. The IEEE 802.11 [203] WiFi frequency bands are
used for exchanging data packets in the WiFi channel.

Figure 7.6 provides insights into MPBR architecture, where various heterogeneous nodes are
scattered over a large geographic area. Figure 7.6a illustrates the interconnection between the
controller and the BS, where the link can be wired or wireless. Network information consists
of the mobility rate, remaining energy, bandwidth, and location of nodes. Other technical in-
formation, including the number of neighboring nodes, queue length, and traffic arrival rate, is
also shared with the controller. It is also assumed that the BS obtains the satellite image under
its coverage to extract the building and the area’s footprint. Two separate actions are performed
after receiving node coordinates. First, calculate the cost of each node to be selected as a for-
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warding relay. A table consisting of all the calculated cost corresponding to a particular path to
a neighboring node is created (GLSDB detail in Section 7.6). Second, the controller prescribes
zone-based neighbor discovery using the satellite image and nodes’ location.

Later, the controller generates N random virtual clusters and sends K encrypted keys to each
cluster, K = {k1, k2, ..., kN}. Therefore, each cluster member will receive a similar code but
different from the others. As shown in Figure 7.6b, nodes in the same cluster/ring have received
a unique key. Once a node has a packet to transmit, it will send a flow request (FREQ) message
to the controller. The controller sends a flow reply (FREP) message containing the routing
information to the source node. Then, the source node starts the transmission by attaching the
encrypted code to the packet.

Figure 7.6c shows MD2D communication after the routing information has been received. Re-
member that if a designated zone needs to perform a neighbor discovery and a relay node is
within that zone, then that node must have completed the prescribed zone-based neighbor dis-
covery. We are using the 802.11 MAC for the MD2D WiFi communication. Finally, each node
is responsible for acting as a forwarding element from the controller’s point of view and an
end-user from a cellular perspective.

7.5.2 FPRM Overview

This section and the following section explain the route discovery procedure of two routing
protocols compared to the MPBR. FPRM is an energy-efficient MD2D routing protocol that
uses neighbor discovery and the fuzzy logic system to obtain routes. In the FPRM protocol,
nodes use Hello packets to acquire information about the link state of their neighbors. Then,
each device reports its neighbor discovery table, remaining energy, mobility rate and the number
of neighbors. Then the fuzzy logic system identifies nodes with minimum eligibility index. The
eligibility index relies on the energy of nodes, the number of neighbors and the mobility rate.
For instance, if a node is highly mobile and has low battery levels, then this node might cause
performance deterioration to the network because it has a higher probability of losing a packet.
Once the eligible nodes are defined, the LSDB is created and broadcast to the whole network.
Then nodes use a cost function to find their route to the destination. Therefore, only a selected
number of nodes participating in the MD2D communication. The proposed protocol increases
the network lifetime and average throughput.

7.5.3 HSAW Overview

The HSAW protocol utilizes neighbor discovery, also known as Hello packets, to gather in-
formation about the link state of neighboring nodes. The devices in the network then share
this information with the central controller via topology control (TC) messages. The controller
compiles an LSDB of its coverage area and distributes it to all devices in the network, providing
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a comprehensive view of the network and enabling the creation of routing tables. The controller
also broadcasts traffic policies, which include the traffic type, a maximum cost based on the
data packet size, and metric allocation for each traffic type. The transmission process starts by
checking the routing table for a pre-existing route. If such a route exists, the packet is forwarded
to the next hop. If not, Dijkstra’s algorithm is employed to find the most efficient path to the
destination. If the found path meets quality requirements, it is added to the routing table. If it
does not, the packet is sent to the BS for transmission over the cellular network. If a node fails
to respond within a set threshold, other nodes will notify the BS, which will then send a delete
entry to update the LSDB for all devices in the network.

7.6 Problem Formulation

This section provides the mathematical modeling and constraints used to solve the routing prob-
lems and increase network performance. The main objectives of this paper are to minimize
energy consumption and E2E delay while providing secure and reliable MD2D communica-
tions. Our problem formulation stage is divided into five sections. At first, the energy model
is explained, followed by the route identification strategy and GLSDB population based on the
multi-objective shortest path algorithm. In the GLSDB creation process, once the links are
identified, they must continuously be monitored for validity through the use of a link expiry
time. If a connection between two nodes is no longer valid, the algorithm performs node lo-
cation prediction to facilitate node adoption when they move into the neighbor discovery zone.
Afterward, nodes initiate MD2D communication by attaching a distributed encrypted key to
their data packet. Algorithm 4 provides a comprehensive overview of the MPBR route protocol
selection process.

7.6.1 Energy Constraints

We use the remaining energy of nodes as a cost metric to identify the best candidate next hops.
A simple energy model is employed for radio hardware similar to work in [143]. We assume a
directed graph G(N,L) to model our wireless cellular network spread across anM1 ⇥M2 two-
dimensional area. A controller is responsible for N number of nodes distributed with Li,j links
between neighboring nodes (i, j) 2 N . Each node is assumed to have an initial energy value
Ein, where the transmitter dissipates energy (ETX) by sending k-bits of data packets through
radio link, and the receiver dissipates energy by demodulation and encoding the message (ERX).
Therefore, the total consumed energyET between node i and j is defined as transmittingK-bits
of data and receiving M -bits of data by:

ETi,j =
KX

l=1

MX

s=1

ETX
l,i + ERX

s,j (7.1)
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Algorithm 4: GLSDB calculation
Input : Number of iterations NI ,Number of UEs N , locations P , nodes energy E,

and destination di
Output : Geographic LSDB

1 for ni = 1 i 2 N do
2 Each UE broadcasts E,P, and d
3 end
4 while nodes join the network do
5 for ni = 1 i 2 N do
6 Compute the clusters
7 K = {k1, k2, ..., kn}
8 Allocate nodes to clusters
9 Compute zone neighbor discovery

10 end
11 broadcasts encryption key to clusters
12 for j = 1 j 2 NR do
13 Calculate Fitness function
14 Fi = w1

P
i2N Ē + w2

P
i,j2N L̄i,j + w3

P
i,j2N d̄i,j

15 Where
16 w1 + w2 + w3 2 [0 ⇠ 1]
17 end
18 Evaluate GLSDB table
19 end

For any specific source and destination node, the dissipated energy at the transmitter and re-
ceiver is calculated as follows:

ETX
k =

8
<

:
Eek + Eampkd4, if d > d0;

Eek + Efskd2, if d < d0;
(7.2)

ERX
K = kEe, (7.3)

where Ee is the consumed power by the electronic devices, Eamp and Efs is the energy per
bit used by the RF amplifier. d0 is the threshold distance computed by the

p
Efs/Eamp. The

remaining energy of a node (Ei
R) is calculated as follows:

Ei
R =

8
<

:
Ein � ETX

i , if transmitting;

Ein � ERX
i , if receiving;

(7.4)

A relay node is chosen based on the highest amount of energy to maximize the network lifetime.
Therefore, we need to identify the relaying nodes that maximize the network lifetime. The
problem formulation is interpreted from [252,253] and written as the minimum of traffic q sent
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for a given flow f :

Minimize
q

ETfX

j2Sj

ETX
j qj +

X

i2Di

ERX
i qi

(7.5)

where (7.5) represents the optimization of network lifetime for any given flow, where every flow
consists of a source node S with a destination D. To minimize the total transmitted traffic, the
following constraints must be met:

X

j2Sj

ETX
j tqj +

X

i2Di

eRX
i tqi  Ei (7.6)

where tqi,j is the amount of data transmitted for flow f from source node Sj to destination node
Di until time t. Variable t must be independent to satisfy the linearity property of the linear
programming algorithm. Solving (7.6) optimizes the transmission time of a node.

7.6.2 Next Hop Candidate

Several candidate nodes are selected for transmitting data to choose the next relay node. For
each node, at time t, the number of neighboring nodes will be N . Assuming at any time t there
are Fi, i 2 N fitness functions of nodes, then the following conditions should be met to choose
the best next hop:

F1(t) > F2(t) > ... > Fi(t) (7.7)

According to (7.7), the most efficient neighboring nodes are selected based on the appropriate
fitness function. That means candidate node 1 in the neighboring table has more fitness than the
other candidate nodes. The fitness function is based on MOSP, which depends on the remaining
energy (RE), the quality of the link (L), and the distance (D) to the relay node [254].

Fi = w1

X

i2N

Ē + w2

X

i,j2N

L̄i,j + w3

X

i,j2N

d̄i,j (7.8)

where Ē is the normalized remaining energy of node (i), L̄ is the normalized cost of link
between (i, j), and d̄ is the normalized distance of link (i, j). w1, w2 and w3 are the weight
factors. The fitness function is computed using three parameters distance to the target node,
remaining energy of the next hop node, and the link quality. The distance between node k and
the relaying node l is calculated as follows:

d =
p
(xk � xl)2 + (yk � yl)2 (7.9)

The link quality of nodes directly depends on the mobility rate of nodes, leading to the number
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of neighboring nodes that have changed over time:

Li = 1� nci

1 + nni

(7.10)

where nci and nni represent the number of changed nodes and the initial number of neighboring
nodes for node (i), respectively. The mobility prediction function enables the prediction of the
number of neighboring nodes nci a node might have in the future, which is explained in the
following section.

7.6.3 Link Expiry Time

A time expiry mechanism is required to remove a specific entry of GLSDB to save processing
time and energy. The communication link between the two nodes will expire at some point due
to the mobility of nodes. Therefore, data transmission through nodes that have lost connection
will increase the packet loss and E2E delay. To solve this issue, an expiry time mechanism
is introduced to measure and remove the candidate nodes from the GLSDB. The expiration
time in MD2D routing is the time to keep contact between two adjacent mobile nodes (two
neighboring nodes). This time depends on different parameters, such as location and mobility
rate. As a result, every link between any two nodes will be eliminated before their timers expire
and before the source node starts to transmit. Consequently, the PDR will increase, and link
reliability will be maximized.

To predict the expiry time, we assume that the radio range between any node in the network is
R and the distance between two nodes is denoted as di,j . Therefore, the link expiry time (Lt)
between two nodes i and j is predicted as follows:

Lti,j =
R + ↵di,j
|vi � vj|

(7.11)

where ↵ is predicted based on the direction of movement between two nodes. ↵ is either 1 or
-1. If nodes are moving toward each other, then ↵ is 1, and if nodes are moving far away, then
↵ is -1. For instance, for two nodes that are moving away with a distance of 50m and mobility
rates of 15m/s and 2m/s, with a communication range of 100, the predicted expiry time based
on (7.11) is almost 11.5s.

7.6.4 Location Prediction

The MPBR predicts the future node’s location based on a node’s speed, movement direction,
and current location. The advantages of location prediction are to reduce the route table update
and help to establish an optimal path from source Si to destination Dj , i, j 2 {1, 2, ..., n}. We
assume at time t0 the current location of a node is (xi, yi) and after a time interval t1 the location
is updated to (xi+1, yi+1). Then the node’s movement direction ✓ and velocity of the node V are
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obtained as follows:
✓ = tan�1(

xi+1 � xi

yi+1 � yi
) (7.12)

V =

q
(xi+1 � xi)

2 + (yi+1 � yi)
2

t1
(7.13)

We assume that at time t2 the location of the node is (x2, y2), then using velocity and the
direction of the movement, we can predict the next location of the node (x3, y3) at time t3 as
follows:

x3 = x2 + V cos(✓) (7.14)

y3 = y2 + V sin(✓) (7.15)

In this way, the controller knows the next location of nodes and can predict the node that must
perform the neighbor discovery. Moreover, by forecasting the next location of nodes, the con-
troller can predict when to update the routing tables based on the new neighbors of a node.
Therefore, the controller doesn’t require to make frequent GLSDB updates and retransmissions.
This will decrease cellular overhead and energy consumption.

7.6.5 XOR Privacy-Preserving Forwarding Method

The MD2D communication happens in the WiFi channel with WiFi standards, where WiFi
communication has already integrated a secure encryption mechanism to secure the data pack-
age from intruders. In MD2D communication, a packet can pass through various nodes until
it reaches the destination. This will open the door for malicious nodes to try and steal the
source node’s location or data. To mitigate this problem, we are using simple but effective
XoR privacy-preserving mechanisms to protect the source node’s location and data. Under the
BS coverage area, N number of nodes are dispersed randomly. Each node is recognized by a
unique identification number or IP address. The BS coverage is virtually clustered into fixed
RSSI rings. Every node within that area’s boundary is considered the cluster’s member. If
the total number of clusters around the BS is K, then the proposed XOR privacy-preserving
mechanism for multi-hop routing is written as follows (based on [100]):

1. The controller generatesK random secret keysK = {k1, k2, ..., kn}, and broadcasts each
key to separate clusters. For instance, if cluster 1 is given k1, then all the nodes in that
cluster will receive k1. The length of k1 must be the same as the data packet size l to
allow the matrix multiplication.

2. The cluster encryption key is changed every minute to reduce the possibility of any intru-
sion.

3. If we assume a node is transmitting a random data packetDi, then encrypted data Y with
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Table 7.1: Simulation parameters.
Parameters Value
Simulation environment 1000m⇥ 1000m
Initial power of UEs 300j
Number of UEs 50,100,150,200,250
Packet transmission size 10 kbits
Protocols MPBR, FPRM, HSAW, AODV, OLSR
Propagation model Rayleigh fading
Mobile node transmission range 100m
Mobile rate 1 m/s & 15 m/s
Mobile node movement model Random waypoint mobility
Total simulation time 300s

the cluster secret key Kn is written as follows:

Yi = Kn ⌦Di (7.16)

4. This encrypted data Yi from a node in cluster Kn is then forwarded to the next node. If
the next node is the destination, it knows the decryption code and can read the data. If the
next node is not the destination, the data will be forwarded to the next hop, which will be
in another cluster. Once the node receives the message, it will relay it to the destination.

5. The transmitted encrypted data message carries the identification (ID) of the source node.
Once the destination node receives the data, it will request a decryption code from the
controller using the source node ID.

6. Once the destination node receives the decryption code ↵, it can easily decrypt the data
by an XOR operation as follows:

Di = ↵�1 ⌦ Yi (7.17)

This simple XOR secret-sharing scheme can be further extended such that all the relay nodes
in each cluster apply their encryption code to increase the level of privacy. However, more
encryption will increase the system’s complexity and packet size. This can be further studied to
find the optimum number of applied encryption, which is out of the scope of this study.

7.7 Simulation Results and Performance Analysis

In this section, we first explain the simulation setup and then provide the obtained results. The
simulation results are averaged and scattered within a 95% confidence interval.
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Figure 7.7: Average network throughput versus number of nodes.

7.7.1 Simulation Setup

The proposed routing protocol was implemented in Network Simulator-3 (NS-3). NS3 is the
most common platform for network implementation and building routing protocols, which sup-
ports IP-based simulation. Our network environment spreads over a 1000m⇥ 1000m and con-
sists of uniformly distributed heterogeneous nodes, including vehicles and mobile devices. The
initial energy of users is assumed to be 300 Joules, and users are specified as user equipment
(UE). All the nodes are inside the coverage of the BS. Each node is equipped with two wireless
interfaces for cellular andWiFi communication. The LTE/5G interface is considered for cellular
communication, while for WiFi or MD2D communication, the IEEE 802.11n-5GHz standard is
implemented with a limited range of 100m. For every run, there is a specified number of flows
with randomly selected source and destination nodes. Each run time is 300s, and to validate
our results and improve the effectiveness of our simulation results, the Monte Carlo simulation
technique is under 50 consecutive runs. Simulation parameters are shown in Table 7.1.

7.7.2 Simulation Results

Figure 7.7 illustrates the network throughput, highlighting the significant advantage of FPRM
over HSAW, AODV, and OLSR in terms of faster data transmission and recovery processes.
FPRM achieves this by sharing the spectrum with fewer users, resulting in higher throughput.
However, as the number of nodes increases, the performance of MPBR becomes comparable
to or better than FPRM. Our proposed routing protocol aims to maximize link quality by se-
lecting nodes with the best Quality of Service (QoS). In contrast, FPRM, HSAW, AODV, and
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OLSR nodes determine paths based on the shortest path first (SPF) using hop counts, thus lack-
ing knowledge of the node’s link quality and the ability to select the next hop with the highest
link quality. On average, MPBR demonstrates an approximately 4% higher throughput than
FPRM and a 40% higher throughput than HSAW. Comparatively, our proposed routing proto-
cols achieve an average throughput increase of 55% compared to AODV and OLSR.

Figure 7.8 presents the average network energy consumption, allowing for a comparative anal-
ysis of our proposed routing framework against two link-state-based routing protocols, namely
HSAW and FPRM. To provide a comprehensive assessment, we also examine and compare our
protocols with two well-established purely ad hoc protocols, AODV and OLSR, which serve
as benchmark MD2D routing protocols [207, 208]. In the case of HSAW, nodes continuously
receive and update the entire network topology or Link-State Database (LSDB) table, result-
ing in significant battery drainage and depletion. On the other hand, AODV and OLSR rely
on constant flooding algorithms to acquire the link state of nodes and discover routes to the
destination. AODV, for instance, utilizes flow requests to initiate forwarding flooding mes-
sages towards the destination, with subsequent replies establishing a route that is then selected
for transmission. This process proves to be energy-intensive and exhibits suboptimal perfor-
mance in dynamic environments. Similarly, OLSR maintains both the network topology and
routing table to determine the most suitable path to the destination. In FPRM, nodes with low
energy consumption, high mobility rate and a low number of neighboring nodes will be ex-
cluded from MD2D communication. Therefore, many nodes will not participate in the routing,
making the network energy consumption low. However, nodes still receive the whole network
topology, which decreases the network lifetime. In our proposed protocol, only the location is
communicated between nodes and the BS, where HSAW and FPRM nodes must perform neigh-
bor discovery, which is time and energy-consuming. The simulation result shows that MPBR
performs better than AODV and OLSR due to the flooding process that increases the node’s
power consumption due to acknowledgment, route maintenance, and route update. Moreover,
in HSAW and FPRM, the size of the LSDB is significant, and every time nodes get the LSDB
update, they will consume more power than in MPBR. MPBR has an optimization mechanism
in both GLSDB table creation and the route identification process, which reduces the overall
energy consumption of the network.
Figure 7.9 shows the E2E delay versus the number of nodes. In FPRM, HSAW, AODV and
OLSR routing protocols, nodes use Hello packets and flooding algorithms to populate their
routing tables. FPRM and HSAW nodes use Hello packet to compute the neighbor discovery
table and report it to the BS. The BS creates the LSDB for the nodes and then provides routing
information and policies to them. In AODV and OLSR, nodes compute a route in a distributed
manner using flooding algorithms. Our proposed protocol uses only the location of nodes and
a zone-prescribed neighbor discovery process. Hence, the E2E delay will be reduced signifi-
cantly. MPBR and FPRM performance are similar when the number of nodes in the network
is low. Once node density increases, ACMRP achieves better results. In FPRM, several nodes
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Figure 7.8: Network energy consumption versus number of nodes.

are offline and do not participate in the MD2D. Therefore, fewer nodes must perform neighbor
discovery, and BS will create the LSDB quicker. That is why the performance of FPRM and
MPBR is almost the same in the low-density networks, but in higher densities, MPBR shows
almost 5% better than FPRM. Compared to HSAW and conventional routing protocols, MPBR
has a significantly lower E2E delay.
Figure 7.10 depicts the packet delivery ratio versus the number of nodes. The percentage of
the total number of delivered packets and the total number of packets sent by the source node
is obtained as PDR. The succession of packet delivery is affected by several factors, including
mobility, network density, link quality, queue size, and distance to the neighbor. Moreover, ob-
stacles in an urban area can cause signal deterioration and cause link or packet failure leading
to retransmission. Therefore, during an MD2D communication, relay nodes may receive mul-
tiple copies of the same packet. MPBR, FPRM and HSAW have similar PDR in low network
densities. As the network gets congested, more nodes are added with varying mobility rates, in-
creasing the probability of losing the packet. However, MPBR and FPRM keep the PDR higher
than the rest of the routing protocols. MPBR has almost 2% higher PDR than FPRM, and as
the number of nodes increases, the PDR will be almost 5% higher for MPBR, almost 5%. Our
protocol uses the multi-objective shortest path to predict the next hop with the most reliable
link, the lowest mobility rate, and high power levels. Therefore, nodes have a higher probability
of sending a packet without retransmitting.

Other protocols have to use the shortest path to the destination, which means nodes with a
higher probability of packet failure will still be chosen as the next relay node if they are close
enough to the destination. When the network density is low, the PDR difference between all the
routing protocols is insignificant; however, once the node density and network size increase, the
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Figure 7.9: End-to-end delay versus number of nodes.

difference becomes substantial. MPBR has the highest PDR compared to the routing protocols
that were tested (or used for comparison).

7.8 Conclusion

This chapter proposed a new MD2D privacy-preserving location-based routing protocol for fu-
ture wireless networks. We use the GPS coordinates of nodes to generate a GLSDB table,
where the introduced constraints optimize the GLSDB entries. The optimization is based on
a fitness function that identifies the most efficient relay node based on the remaining energy,
link quality, and mobility prediction. The proposed protocol employs a simple but effective
privacy-preserving forwarding scheme to preserve the node’s data privacy during MD2D com-
munication. The introduced protocol is compared with a high-performance centralized SDN-
based routing protocol, HSAW. As a result, we analyzed the advantages and disadvantages of
a centralized-based geographical routing protocol versus the link-state routing protocols. The
simulation results show an average of 15% reduction in energy consumption, a 5% reduction
in E2E delay and a 5% increase in PDR compared to one of the leading MD2D routing proto-
cols. In the future, we can study multi-framework routing using network application and user
demands, where an adaptive routing framework can be designed and implemented to prescribe
location-based or link-state routing protocols.
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Figure 7.10: Packet delivery ratio versus number of nodes.
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8
Conclusion and Future Direction

This thesis begins with a comprehensive review of the current and future challenges and limi-
tations of wireless cellular networks. One of the most pressing challenges of these networks is
excessive network traffic. Our research found that MD2D routing protocols will play a crucial
role in alleviating and improving network congestion. Despite numerous proposed routing pro-
tocols, we concluded that little attention has been paid to creating intelligent and self-adaptive
routing protocols in MD2D networks. In the coming years, networks must be equipped with
the capability to self-manage and self-optimize routing strategies and policies. To address this
issue, we proposed innovative solutions and intelligent algorithms that aim to enhance the per-
formance of MD2D networks.

In order to determine the most suitable routing protocol for various conditions, this thesis con-
ducted a comparative study of centralized MD2D routing protocols. Given their superior perfor-
mance compared to distributed protocols, the focus was on centralized routing protocols. Three
centralized MD2D routing protocols, namely HSAW, VARP-S, and SMDRP, were specifically
evaluated. HSAW is a proactive routing protocol where nodes acquire routes using the full
LSDB provided by the BS. On the other hand, VARP-S and SMDRP are reactive routing proto-
cols where paths are developed on demand. Simulation results illustrated the differences when
the network size and node’s mobility increase. HSAW demonstrated superior PDR and E2E de-
lay in sparse networks, whereas VARP-S and SMDRP were found to be more energy-efficient
and result in lower cellular overhead in congested networks. In conclusion, proactive routing
protocols are more effective in highly mobile networks, while reactive routing is a better option
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for networks that prioritize low energy consumption.

In Chapter four, a joint mobile node participation and routing protocol for MD2D communi-
cation in intelligent transportation systems was proposed, called fuzzy-based participation and
routing protocol for MD2D (FPRM). This proposed protocol is designed to operate over a vir-
tual application in future wireless cellular networks to alleviate network traffic and improve
network performance. A sub-layer at the network layer is introduced, which uses a fuzzy logic
system to determine the nodes with the highest participation probability in routing, thereby es-
tablishing a framework for the creation of stable routes. To guarantee the participating nodes’
capability to handle the data traffic, two constraints are proposed: mobility and coverage con-
straints. The former supports the establishment of sustainable communication links, while the
latter ensures complete coverage of the MD2D network by the communication service. Results
from simulations show that our protocol outperforms the benchmarked MD2D protocols and
other investigated ad-hoc protocols.

The creation of a new, flexible routing protocol for MD2D networks presents a challenge due to
the dynamic nature of the environment. However, the openness, intelligence, and programma-
bility of future wireless networks offer opportunities to design and develop new routing pro-
tocols with global knowledge and intelligence. As a result, Chapter Five presented a new
joint utility-based routing protocol called application-driven cross-layer MD2D routing pro-
tocol (ACMRP) to find the optimal route by incorporating knowledge from the application and
network layers. A utility-based master link-state database (MLSDB) is generated to determine
the optimal path. Four utility metrics are used: mobility rate, bandwidth, energy, and distance.
Based on the requirement of user applications, we introduced cost functions containing a differ-
ent combination of utility metrics. Simulation results demonstrated that ACMRP outperforms
HSAW, AODV and OLSR. There are several benefits to the proposed protocol: adaptability of
route based on the user application (to provide maximum QoE), utilization of network knowl-
edge, and removing distributed multi-hop flooding from routing decisions.

Network slicing can significantly assist cellular networks in managing traffic and providing
flexibility. In Chapter Six, to incorporate the advantages of network slicing, we proposed an
adaptive slicing mechanism with a dynamic MD2D routing protocol selection technique for
future cellular networks. In our framework, a controller is responsible for collecting the net-
work data and utilizing the particle swarm optimization (PSO) algorithm to virtually slice WiFi
channels into various virtual sub-layers based on network traffic. In particular, our algorithm
used viral content to create virtual slices where users with similar content can share and down-
load data to or from other users. Moreover, the controller prescribed the most efficient routing
protocol using the genetic algorithm (GA) in conjunction with learning automata (LA) for any
virtual slices based on the content, mobility rate, throughput, number of neighbors, and net-
work density. Each virtual sub-layer used AODV or OLSR protocol to route the packet. Hence,
they illustrated the performance of reactive and proactive routing frameworks in virtual slicing
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problems. The simulation results indicated that our proposed framework performs significantly
better than the non-sliced single-routing protocol-based frameworks. Other routing protocols
can also be used, but the primary purpose is to create an adaptive slicing mechanism with a
dynamic route selection method.

In Chapter Seven, we introduced a position-based routing protocol and provided insights into
the performance difference between position-based and link-state MD2D routing protocols.
Link-state routing protocols use the neighbor information obtained by the nodes to create rout-
ing tables. Position-based routing uses nodes’ location (GPS coordinates) to generate rout-
ing tables. Both methods are used in the current MD2D communication networks. However,
position-based methods proved to have fast and acceptable results in highly dynamic environ-
ments (especially VANETS) compared to link-state. Therefore, a new MD2D position-based
routing (MPRR) protocol was proposed. We jointly used the coordinates of nodes with zone-
prescribed neighbor discovery to make fast and reliable routing decisions. The presented work
uses an encrypted cluster-based algorithm for data privacy in multi-hop routing. Our proposed
routing protocol utilizes two constraints to increase the performance, link expiry time and node
location prediction. We compared the proposed routing protocol with a centralized link-state
MD2D routing protocol. The simulation results showed the differences and advantages of our
proposed position-based routing compared to a purely link-state routing protocol.

8.1 Future Direction

The growing traffic load on BS is rapidly deteriorating network performance. It is projected
that a significant portion of cellular traffic will stem from social media. To alleviate this is-
sue, MD2D networks offer a solution by enabling direct communication and traffic harvesting
among devices in the network. The routing protocol plays a crucial role in the functioning of
MD2D networks. To effectively incorporate MD2D into future cellular networks, the research
community must concentrate on addressing the open challenges and issues that remain to be
solved.

1. Self-organizing Networks: Self-organizing networks (SONs) provide self-optimization,
self-coordination, self-management, and self-correction for the next generation of wire-
less networks [255]. In particular, most researchers now consider ML techniques as an of-
ficial approach to achieving self-organization in the network, providing the future MD2D
network with the opportunity to self-tune the policies and routing protocols. 3GPP has
already started developing protocols and technologies to automate network configura-
tions [256]. In this context, RL is the most recognizable approach for optimizing network
parameters and topology based on the environment and experience. In particular, in load
balancing, handover management, routing, etc. SON is an evolution of self-driving net-
works, and most applications in wireless networks require intelligence to tune, correct,
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and decide on behalf of human operators. Therefore, future research should focus on ad-
vancing the capabilities of SONs in Open-RAN networks, particularly for MD2D routing
protocols to enable network adaptation to changing environments.

2. Lack of Network Knowledge and Intelligence: There are centralized algorithms and
optimization techniques that can achieve high-performance criteria of the current net-
works. However, future wireless networks require intelligence to respond efficiently to
user demands. Researchers have recognized the lack of global network knowledge and
intelligence [257,258]. For instance, the baseline technique to achieve load balancing and
backhaul management in [259–261] requires complete information about the traffic load
and content popularity of users before execution of cache content, which is challenging
to acquire precise information in advance. Therefore, we suggest prior knowledge for
decision-making. Using a transfer learning (TL) algorithm, the previous experience in
cache content can be utilized by BSs to guide cache management even without knowing
any current traffic information. Moreover, designing a routing policy in MD2D networks
faces various challenges when considering multiple factors that suggest a predetermined
knowledge or intelligence is inevitable. For instance, mobility pattern, power, channel
quality and signal attenuation all affect the future decision-making in optimal routing
policy. Deep reinforcement learning (DRL) can be used to make routing decisions by
integrating various information and formulating the long-term optimal decision-making
problem as a partial observable Markov decision process (POMDP), which generates
knowledge for future routing decisions. As a result, authors in [262] proposed a dis-
tributed multi-agent DRL to optimize the system routing policies to increase the overall
data delivery and energy consumption. Future cellular systems must adapt intelligence
and network knowledge to enable optimal decision-making.

3. Knowledge Validation, Uncertainty and Compromises: ML and intelligence have been
envisioned by many researchers as the most important feature in 6G, as ML algorithms
have been extensively used in complex scenarios. Therefore, it is evident that the O-RAN
architecture can be used to address the challenges of 6G. One of the main challenges
faced by all technologies is the validation of knowledge. If 6G targets an automatically
configures a cellular network, there must be a mechanism to verify the confidence and
certainty of knowledge. As a result, a certainty mechanism must be deployed to acknowl-
edge the level of certainty, whether knowledge is practical or compromised. The output
of the ML algorithm must be checked by the expected results to evaluate the degree of
uncertainty. A threshold barrier can be used to validate the usefulness of knowledge. If
the knowledge is authorized to deploy in the network, the ML output has been successful,
but if the compared strategy has revealed unauthorized knowledge, then the ML’s output
cannot pass the threshold value. In this case, a new ML technique must compute the
new knowledge and go through the same procedure, which causes a delay that affects the
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system performance. In the worst-case scenario, if the knowledge is rejected again, then
an extreme case must be considered. To mitigate the worst-case scenario, any proposed
algorithm must undergo various experimental analyses in a real testbed to find the pos-
sible ML substitutes in any given scenario. Therefore, ML algorithms must be tested in
the same environment with similar characteristics to provide insights into different ML
techniques.

4. Privacy: One open issue in the MD2D network is user and data privacy. In position-based
routing protocols, the user shares their GPS locations which might provide an opportunity
for intrusion. Moreover, some users might not even be happy to share their location in
the first place. Therefore, there must be a trustable privacy policy in MD2D networks
for users to authorize and share their locations. Moreover, the data exchanged between
users go through relaying nodes, which increase the chance of malicious node and data
hijacking. In this scenario, data should be perfectly secured while transmitted to the
destination.

5. Identifying Suitable ML Algorithm: The majority of routing problems in MD2D net-
works are solved within a few ML algorithms, including regression problems, classifica-
tion problems, clustering problems, and Markov decision process (MDP) problems. In
regression problems, the ML algorithm is required to predict a continuous value output
given an input. In classification problems, the ML algorithm needs to predict a discrete
value output, usually answered by a yes or no, and zero or one to essentially identify the
class to which the input belongs. The clustering problems are ML techniques, where the
data are grouped based on their type or value. Finally, MDP problems are ML techniques
that require taking action in the current system state based on the feedback reward result-
ing from the previous action. Therefore, it is important to consider the advantages and
disadvantages of each technique before applying them.
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[234] M. Höyhtyä, O. Apilo, and M. Lasanen, “Review of latest advances in 3gpp standard-
ization: D2d communication in 5g systems and its energy consumption models,” Future
Internet, vol. 10, no. 1, p. 3, 2018. 144

[235] S. Ashtari, M. Abolhasan, J. Lipman, N. Shariati, W. Ni, and A. Jamalipour, “Joint mo-
bile node participation and multi-hop routing for emerging open radio-based intelligent
transportation system,” IEEE Access, 2022. 144

[236] S. Kumar and A. K. Verma, “Position based routing protocols in vanet: a survey,” Wire-
less Personal Communications, vol. 83, no. 4, pp. 2747–2772, 2015. 144

[237] R. Dhanapal, V. Kalpana, R. Chiwariro, N. Thanagadurai, K. Sentamilselvan, and D. J.
Immanuel, “An energy efficient secure routing for mobile nodes for multi hop adhoc
network,” Journal of Computational and Theoretical Nano science, vol. 17, pp. 1–4,
2020. 145

[238] U. Srilakshmi, S. A. Alghamdi, V. A. Vuyyuru, N. Veeraiah, and Y. Alotaibi, “A secure
optimization routing algorithm for mobile ad hoc networks,” IEEE Access, vol. 10, pp.
14 260–14 269, 2022. 145

[239] N. Veeraiah, O. I. Khalaf, C. Prasad, Y. Alotaibi, A. Alsufyani, S. A. Alghamdi, and
N. Alsufyani, “Trust aware secure energy efficient hybrid protocol for manet,” IEEE
Access, vol. 9, pp. 120 996–121 005, 2021. 145

[240] S. ashtari, M. Abolhasan, J. Lipman, N. Shariati, W. Ni, and A. Jamalipour, “Joint mo-
bile node participation and multihop routing for emerging open radio-based intelligent
transportation system,” IEEE Access, vol. 10, pp. 85 228–85 242, 2022. 147

[241] J. Chen, Y. Wang, X. Huang, X. Xie, H. Zhang, and X. Lu, “Alblp: adaptive load-
balancing architecture based on link-state prediction in software-defined networking,”
Wireless Communications and Mobile Computing, vol. 2022, 2022. 148

[242] M. Kumar, A. K. Nigam, and T. Sivakumar, “A survey on topology and position based
routing protocols in vehicular ad hoc network (vanet),” International Journal on Future
Revolution in Computer Science & Communication Engineering, vol. 4, no. 2, pp. 432–
440, 2018. 148

[243] R. Karimi and S. Shokrollahi, “Pgrp: Predictive geographic routing protocol for vanets,”
Computer Networks, vol. 141, pp. 67–81, 2018. 148

[244] L. Liu, C. Chen, Z. Ren, and F. R. Yu, “An intersection-based geographic routing with
transmission quality guaranteed in urban vanets,” in 2018 IEEE international conference
on communications (ICC). IEEE, 2018, pp. 1–6. 148

190



[245] O. Alzamzami and I. Mahgoub, “Fuzzy logic-based geographic routing for urban vehic-
ular networks using link quality and achievable throughput estimations,” IEEE Transac-
tions on Intelligent Transportation Systems, vol. 20, no. 6, pp. 2289–2300, 2018. 149

[246] C. Nallusamy and A. Sabari, “Particle swarm based resource optimized geographic rout-
ing for improved network lifetime in manet,”Mobile Networks and Applications, vol. 24,
no. 2, pp. 375–385, 2019. 149

[247] A. R. Hameed, S. ul Islam, M. Raza, and H. A. Khattak, “Towards energy and
performance-aware geographic routing for iot-enabled sensor networks,” Computers &
Electrical Engineering, vol. 85, p. 106643, 2020. 149

[248] C.-L. Hu and C. Sosorburam, “Enhanced geographic routing with two-hop neighborhood
information in sparse manets,” Wireless Personal Communications, vol. 107, no. 1, pp.
417–436, 2019. 149

[249] M. Naghibi and H. Barati, “Egrpm: Energy efficient geographic routing protocol based
on mobile sink in wireless sensor networks,” Sustainable Computing: Informatics and
Systems, vol. 25, p. 100377, 2020. 149

[250] D. K. San andM. Turker, “Building extraction from high resolution satellite images using
hough transform,” 2010. 149

[251] S.-H. Moon, S. Park, and S.-j. Han, “Energy efficient data collection in sink-centric wire-
less sensor networks: A cluster-ring approach,” Computer Communications, vol. 101, pp.
12–25, 2017. 151

[252] C.-C. Hu, Y.-L. Kuo, C.-Y. Chiu, and Y.-M. Huang, “Maximum bandwidth routing and
maximum flow routing in wireless mesh networks,” Telecommunication Systems, vol. 44,
no. 1, pp. 125–134, 2010. 155

[253] K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu, “Impact of interference on multi-hop
wireless network performance,” Wireless networks, vol. 11, no. 4, pp. 471–487, 2005.
155

[254] D. Jinil Persis and T. Paul Robert, “Review of ad-hoc on-demand distance vector protocol
and its swarm intelligent variants for mobile ad-hoc network,” IET Networks, vol. 6, no. 5,
pp. 87–93, 2017. 156

[255] Y. Tan, J. Yang, and N. Gopalakrishnan, “Self-learning, adaptive approach for intelligent
analytics-assisted self-organizing-networks (sons),” Aug. 13 2019, uS Patent 10,382,979.
167

[256] J. Moysen and L. Giupponi, “From 4g to 5g: Self-organized network management meets
machine learning,” Computer Communications, vol. 129, pp. 248–268, 2018. 167

191



[257] N. Kato, B. Mao, F. Tang, Y. Kawamoto, and J. Liu, “Ten challenges in advancing ma-
chine learning technologies toward 6g,” IEEE Wireless Communications, vol. 27, no. 3,
pp. 96–103, 2020. 168

[258] C. Huang, S. Hu, G. C. Alexandropoulos, A. Zappone, C. Yuen, R. Zhang, M. Di Renzo,
and M. Debbah, “Holographic mimo surfaces for 6g wireless networks: Opportunities,
challenges, and trends,” IEEE Wireless Communications, vol. 27, no. 5, pp. 118–125,
2020. 168
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