
Computing Paths in

Massive Graphs

by

JUNHUA ZHANG

A THESIS SUBMITTED IN FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

Australian Artificial Intelligence Institute (AAII)

Faculty of Engineering and Information Technology (FEIT)

University of Technology Sydney (UTS)

June, 2023

CERTIFICATE OF ORIGINAL
AUTHORSHIP

I, Junhua Zhang declare that this thesis, is submitted in fulfilment of the re-

quirements for the award of Doctor of Philosophy, in the Faculty of Engineering

and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged.

In addition, I certify that all information sources and literature used are

indicated in the thesis.

This document has not been submitted for qualifications at any other academic

institution.

This research is supported by the Australian Government Research Training

Program.

Signature: Junhua Zhang

Date: 20/06/2023

ii

ACKNOWLEDGEMENTS

First of all, I would like to express my sincere gratitude and appreciation to

my advisor, Professor Lu Qin. His unwavering guidance and support have been

essential in shaping my research career. As my mentor, his dedication, patience,

and enlightened direction have guided me through the new terrain of research.

His intelligence and professionalism have inspired me, sparking fresh ideas and

perspectives each time we engaged in scientific discussion. Beyond a mentor-

student relationship, I am privileged to consider him a valued friend whose care

and willingness to support me in times of difficulty and failure has been a source

of comfort. Without his invaluable contribution, the completion of this disser-

tation would have been impossible.

Secondly, I would like to thank my co-supervisor, Professor Ying Zhang, for his

help and guidance. He has given me valuable advice and support for my research

projects, which is indispensable for my Ph.D. study. In addition, he shared his

valuable experience of research career with me and guided me for my future

research career, which is crucial for my future research career.

Thirdly, I would like to thank Dr. Wentao Li and Prof. Yuan Long for their

continuous guidance and support during my Ph.D. studies. Dr. Wentao Li

is an experienced and hardworking researcher who served as a mentor during

my Ph.D. studies. I have learned a lot from him, including research skills and

iii

presentation skills. In addition, he is a kind person and a good friend to me. He

has given me a lot of advice and help not only in my research but also in my life.

Prof. Long Yuan is also an experienced researcher who guided me in designing

experiments and writing papers. All my research work was done in collaboration

with them, and they played an important role in my research work.

Fourth, I would like to thank Prof. Xuemin Lin, Prof. Wenjie Zhang, Dr. Dong

Wen and A/Prof. Lijun Chang for their valuable support and advice for my

research work and research career. They are also my role models to become a

good researcher.

I would also like to thank Dr. Xin Cao, Dr. Xiaoyang Wang, Prof. Fan Zhang,

A/Prof. Yixiang Fang, A/Prof. Dian Ouyang, Dr. Cong Gai, Dr. You Peng,

Dr. Yuxuan Qiu, Dr. Kai Wang, Dr. Hanchen Wang, Dr. Zhengyi Yang, Dr.

Mingjie Li, Dr. Bohua Yang, Dr. Xiaoshuang Chen, Dr. Longbin Lai, Dr. Xubo

Wang, Prof. Shiyu Yang, Prof. Peng Cheng, Dr. Yuren Mao, Dr. Yixing Yang,

Dr. Yu Hao, Dr. Qingyuan Linghu, Dr. Michael Ruisi Yu, Dr. Chenji Huang,

Mr. Yilun Huang, Mr. Yuanhang Yu, Mr. Rong Hu, Mr. Kongzhang Hao, Mr.

Lantian Xu, Mr. Deming Chu, Mr. Jianwei Wang, Mr. Shiding Zhang, Mr.

Yizhang He, Mr. Qingqiang Sun, Mr. Shunyang Li, Mr. Gengda Zhao, Mr.

Qinghuai Feng, Ms. Yiqi Wang, Mr. Zhuo Ma, Ms. Yuting Zhang, Ms. Yanping

Wu, Mr. Guangxin Su, Mr. Yufan Sheng, Dr. Ming Li, for their support and

the good times we spent together.

Last but not least, I would like to thank my father, Mr Peigong Zhang, and

my mother, Mrs Xuju Xiong, for their selfless love and endless encouragement. I

would also like to thank my sister, Mrs Yu Zhang, and other relatives and friends

for their love and support.

iv

ABSTRACT

Graph is a widely used data structure for representing real-world entities and

their relationships. Graph queries play an important role in the processing of

graphs, and path queries are one of the most important types of query operations

on graphs. A path query attempts to retrieve the path from one vertex to

another, and has numerous real-world applications, including ontology reasoning,

geographic navigation, and link analysis. Given the importance of path queries

in real-world graphs, this thesis focuses on investigating efficient methods for

computing path-related queries in massive graphs.

First, we study how to efficiently process reachability queries on distributed

graphs, which check whether there is a path from one vertex to another. Real-

world massive graphs are typically distributed across multiple data centers due

to their size. When performing reachability queries on these distributed graphs,

reachability labeling methods ensure fast query processing through lightweight

indexes. One of the most well-known labeling methods is TOL; however, TOL

is a serial algorithm that cannot handle distributed graphs. For this reason,

we investigate the limitations of TOL and then propose a filtering-refinement

framework for index construction. In addition, we design distributed labeling

algorithms and batch-processing techniques to improve efficiency.

Second, we study shortest path queries on complex graphs, which return the

shortest path between two vertices. To handle shortest path queries, one option

is to use traversal-based methods (e.g., breadth-first search); another option

v

is to use extension-based methods, i.e., extending existing methods that use in-

dexes to handle shortest-distance queries to support shortest-path queries. These

two approaches make different trade-offs regarding query time and space cost,

but it lacks a comprehensive study of their performance on real-world graphs.

Moreover, extension-based approaches use additional attributes to extend the

index, resulting in high space costs after extension. To address these issues, we

thoroughly compare the two approaches and propose a new extension-based ap-

proach, Monotonic Landmark Labeling (MLL), to reduce the required space cost

while guaranteeing query time.

Third, we study label-constrained shortest path queries on road networks,

which request the shortest path between two vertices in labeled graphs such

that all edges on the path satisfy the label constraint. Computing the shortest

path between two vertices is a fundamental problem for road networks. Most

existing works assume that edges in the road networks do not have labels, but

in many real applications, the edges have labels, and label constraints may be

placed on the edges of a valid shortest path. Therefore, we study the label-

constrained shortest path queries. To process these queries efficiently, we adopt

an index-based approach and propose efficient algorithms for query processing

and index construction with good performance guarantees.

We conduct extensive experiments for evaluation. The results validate the

effectiveness and efficiency of our proposed methods.

vi

PUBLICATIONS

• Junhua Zhang, Wentao Li, Lu Qin, Ying Zhang, Dong Wen, Lizhen

Cui, Xuemin Lin. “Reachability Labeling for Distributed Graphs.” In 2022

IEEE 38th International Conference on Data Engineering (ICDE). IEEE,

2022. (Chapter 3)

• Junhua Zhang, Wentao Li, Long Yuan, Lu Qin, Ying Zhang, Lijun

Chang. “Shortest-Path Queries on Complex Networks: Experiments, Anal-

yses, and Improvement.” In Proceedings of the 48th International Confer-

ence on Very Large Databases. VLDB, 15, 2022. (Chapter 4)

• Junhua Zhang, Long Yuan, Wentao Li, Lu Qin, Ying Zhang. “Efcient

Label-Constrained Shortest Path Queries on Road Networks: A Tree De-

composition Approach.” In Proceedings of the 48th International Confer-

ence on Very Large Databases. VLDB, 15(3): 686-698, 2022. (Chapter

5)

• Junhua Zhang, Long Yuan, Wentao Li, Lu Qin, Ying Zhang. “Label-

Constrained Shortest Path Querying on Road Networks.”. In submission.

vii

TABLE OF CONTENT

CERTIFICATE OF AUTHORSHIP/ORGINALITY ii

ACKNOWLEDGEMENTS iii

ABSTRACT v

PUBLICATIONS vii

TABLE OF CONTENT viii

LIST OF FIGURES xi

LIST OF TABLES xii

Chapter 1 INTRODUCTION 1
1.1 Distributed Reachability Labeling 3
1.2 Shortest-Path Queries on Complex Graphs 6
1.3 Label Constrained Shortest Path on Road Networks 8
1.4 Roadmap . 13

Chapter 2 LITERATURE REVIEW 14
2.1 Reachability Queries . 14

2.1.1 Index-free Approaches . 15
2.1.2 Index-assisted Approaches 15
2.1.3 Index-only Approaches . 16

2.2 Shortest Distance and Path Queries 18
2.2.1 Search Based Methods . 18
2.2.2 Hierarchical Methods . 19
2.2.3 Labeling based Methods 20
2.2.4 Tree Decomposition based Methods 21

2.3 Label Constrained Path Queries 23
2.3.1 Label-Constrained Reachability Query 23
2.3.2 Label-constrained shortest path queries. 24

viii

TABLE OF CONTENT

Chapter 3 DISTRIBUTED REACHABILITY LABELING 26
3.1 Chapter Overview . 26
3.2 Preliminary . 26

3.2.1 Notations . 27
3.2.2 Total Order Labeling . 29
3.2.3 Problem Statement . 32

3.3 Distributed Reachability Labeling 33
3.3.1 TOL Revisited . 33
3.3.2 Filtering-and-refinement Framework 35
3.3.3 Two Labeling Methods . 37
3.3.4 Distributed Implementation 44

3.4 Batch Labeling Optimization . 47
3.5 Experiments . 52

3.5.1 Settings . 52
3.5.2 Comparison with Competitor Methods 55
3.5.3 Comparison Between Proposed Algorithms 58
3.5.4 Effect of Parameters on Index Time 61

3.6 Chapter Summary . 65

Chapter 4 SHORTEST-PATH QUERIES ON COMPLEX
GRAPHS 66

4.1 Chapter Overview . 66
4.2 Preliminary . 66
4.3 Distance Queries and Extensions 68

4.3.1 PLL and Its Extension . 69
4.3.2 CTL and Its Extension . 74

4.4 Monotonic Landmark Labeling 84
4.4.1 Index Structure . 85
4.4.2 Query Processing . 89
4.4.3 Index Construction . 93

4.5 Extension of MLL . 98
4.6 Experiments . 100
4.7 Chapter Summary . 113

Chapter 5 LABEL CONSTRAINED SHORTEST PATH ON
ROAD NETWORKS 114

5.1 Chapter Overview . 114
5.2 Preliminaries . 115
5.3 Existing Solution . 118
5.4 A Naive Indexing Approach . 120

5.4.1 Tree Decomposition . 121

ix

TABLE OF CONTENT

5.4.2 A Naive Indexing Approach 123
5.5 Our new indexing approach . 128

5.5.1 A New Index Structure . 128
5.5.2 Query Processing by LSD-Index 130
5.5.3 LSD-Index Construction 132
5.5.4 Shortest Path Restoration 138
5.5.5 Extension for Directed Road Networks 140
5.5.6 Handling Large Σ . 140

5.6 Parallel Index Construction . 141
5.7 Experiments . 144
5.8 Limitation of LSD-Index . 154
5.9 Chapter Summary . 154

Chapter 6 EPILOGUE 156

BIBLIOGRAPHY 158

x

LIST OF FIGURES

3.1 Graph G . 27
3.2 Inverse Graph G . 27
3.3 The v3-sourced Trimmed BFS . 39
3.4 The Illustration of Batch Labeling 50
3.5 The Comparison of Communication and Computation Time . . . 59
3.6 The Effect of # of Nodes on the Index Time 60
3.7 The Test of the Scalability on the Index Time 62
3.8 The Effect of Initial Batch Size b on the Index Time 63
3.9 The Effect of Factor k on the Index Time 64

4.1 The Example Graph G . 67
4.2 (Core-)Tree Decomposition of G 75
4.3 The Comparison of Different Methods 103
4.4 The Test of the Query Time at Different Distance Ranges 107
4.5 The Test of Scalability on the Query Time 109
4.6 The Test of Scalability on the Index Size 110
4.7 The Test of Scalability on the Indexing Time 111
4.8 The Performance of MLL on Directed Graphs 111

5.1 A Road Network and Label-induced Subgraph 116
5.2 Case Study . 117
5.3 EDP Indexing . 119
5.4 A Tree Decomposition TG of G 122
5.5 The Naive Indexing Approach . 126
5.6 The LSD-Index . 130
5.7 Procedure of Index Construction 137
5.8 Query Processing Time (Varying Query Distance) 147
5.9 Query Processing Time (Varying |L|) 148
5.10 Index Size (Varying |Σ|) . 151
5.11 Parallel Indexing Speedup (Varying #Thread) 152
5.12 Query Processing Time (Varying Dataset Size) 153

xi

LIST OF TABLES

3.1 Notations . 28
3.2 The Index L . 29
3.3 The Backward Label Sets . 34
3.4 The Comparison Between Labeling Methods 43
3.5 Datasets . 53
3.6 The Comparison with Competitor Methods 54

4.1 Comparison of Different Approaches 70
4.2 Dataset Description . 102

5.1 List of Notations . 115
5.2 Datasets used in Experiments . 145

xii

Chapter 1

INTRODUCTION

Graphs are widely used data structures that represent real-world entities and

their relationships [75]. Graph queries play an important role in processing

graphs. Path queries, one of the most important types of query operations on

graphs, involve finding the path from one vertex s to another vertex t in a graph

G. These queries have numerous real-world applications, including ontology

reasoning [97], geographic navigation, and link analysis. Furthermore, they serve

as building blocks for various fields such as social sciences, computational biology,

and software engineering [48].

In view of the importance of the paths in real-world graphs, this thesis iden-

tifies and studies three types of closely related path queries:

1. Reachability Query. Given two vertices, the reachability query asks if a

path exists from one vertex to another; it tests the existence of a path. It

has applications in areas like ontology reasoning and computational biol-

ogy. It is a more generalized and simpler type of path query.

2. Shortest Path Query. In some optimization problems, checking the ex-

istence of paths could be insufficient; the shortest path is instead preferred.

1

Chapter 1

For instance, in road navigation, one wants to find a shortest path to the

destination; in social networks, the shortest path can be used to measure

the closeness of two individuals. This query type is relatively more spe-

cialized and complex compared to the reachability query.

3. Label Constrained Shortest Path Query. In most cases, the shortest

path should be sufficient and ideal. However, in some real-world applica-

tions, the edges in graphs have labels and label constraints may be placed

on the edges. Consequently, a shortest path may not satisfy the label con-

straints. For example, the road network contains different types of roads,

including toll roads, which some travelers may want to avoid such toll

roads to save money. In such cases, the shortest path that doesn’t include

any toll roads is desired. This query type is more specialized and complex

compared to the previous ones.

The reasons to study these three query types in this thesis is multi-fold.

First, these three queries are all related to computing a path from one vertex

to another, ranging from the more general and simpler reachability query to the

more specialized and complex label constrained shortest path query. They are

closely related and collectively serve the central topic of path computation in this

thesis. Second, the techniques used to answer these path queries share similar-

ities. Methods such as hub labeling, contraction hierarchies, and index-assisted

traverse can all be applied to these path queries. The solution to one query

may also provide understandings and insights for other queries. Third, although

these path-related queries share many similarities, each of them presents unique

challenges in different settings. Therefore, the goal of this thesis is to propose

and devise algorithms and indexes to address these unique challenges faced by

each of the path queries.

2

1.1. DISTRIBUTED REACHABILITY LABELING Chapter 1

1.1 Distributed Reachability Labeling

As a common graph operation, reachability query q(s, t) asks whether there is

a path from vertex s to vertex t. Due to the importance of reachability query

processing, many approaches have been proposed. These approaches are usually

classified into three categories [97]: 1) index-free approaches that use the online

search [11] (e.g., breadth-first search or depth-first search) on graphs to determine

whether one vertex can reach another [80]; 2) index-assisted approaches that

accelerate the online search using auxiliary information [46, 96, 89, 79]; 3) index-

only approaches that avoid the online search using an offline index [29, 77, 27,

28, 101].

Most current approaches are centralized: they assume that graphs reside in

the main memory [99]. However, as the graph size increases, real-world graphs

are typically distributed in multiple data centers [34]. When performing reach-

ability queries on distributed graphs, the pioneer work [34, 99] implements the

online search in a distributed manner for query processing. However, the query

latency can be high due to the need to access distributed graphs during the query.

This makes methods that require the online search (i.e., index-free or index-

assisted approaches) undesirable, especially when a large number of queries need

to be processed.

To speed up query processing on distributed graphs, an alternative idea is

to use index-only approaches — the index created offline eliminates the depen-

dence on the original graph during querying [101]. Specifically, consider a graph

G(V,E) with vertex set V and edge set E, index-only approaches create an in-

dex that assigns an out-label set Lout(v) and an in-label set Lin(v) for each vertex

v ∈ V . The out-label set Lout(v) of v contains vertices that v can reach, while

the in-label set Lin(v) contains vertices that can reach v. To answer the query

q(s, t) between vertices s and t, we only need to check whether there exists a

3

Chapter 1 1.1. DISTRIBUTED REACHABILITY LABELING

common vertex w between Lout(s) and Lin(t): the existence of w means that s

can reach t via w.

The state-of-the-art index-only methods is Total Order Labeling (TOL) [101].

TOL assigns an order value to each vertex in a graph, and then selects vertices for

labeling in a decreasing sequence of order values. When labeling a vertex v, TOL

tries to add v to the in-label/out-label sets of other vertices, using a pruning

operation. When all vertices have finished labeling, the in-label/out-label sets

generated by TOL for each vertex are used as an index.

The pruning operation of TOL is a double-edged sword: TOL reduces the

index size by eliminating redundancy through the pruning operation; however,

each vertex v needs to wait for vertices whose order values are higher than v to

finish labeling, thus making the pruning operation of v feasible. This means that

the execution of TOL is inherently serial. In other words, TOL does not work

properly on distributed graphs.

On the other hand, for a distributed graph, the index created by TOL can

efficiently support queries. This is because the index of TOL is small enough

that we can put it on a single machine to achieve fast in-memory queries. For

example, the index size for graph SK (see Table 5.2 for graph’s details) with

billions of edges is bounded by 1 GB. The main purpose of our thesis is to design

new labeling methods to handle a distributed graph while obtaining the same

index as TOL.

For this purpose, we delve into the labeling process of TOL. We find that

when labeling a vertex v, v joins the label sets of some specific vertices. These

vertices are defined as the backward label set of v. The working process

of TOL can be equated to finding the backward label set for each vertex v. To

find v’s backward label set, we use a filtering-and-refinement framework, thereby

avoiding the pruning operation used by TOL. Specifically, we first generate a

4

1.1. DISTRIBUTED REACHABILITY LABELING Chapter 1

super-set of the backward label set of v as candidates, and then remove invalid

elements from candidates to obtain the actual backward label set. This novel

framework gets the same index as TOL while letting all vertices run in parallel.

Based on this framework, we design efficient labeling algorithms and provide dis-

tributed implementations. In addition, we split vertices into batches for labeling

to further improve efficiency.

The contributions are summarized as follows.

• Analysis of TOL’s limitation. We investigate TOL’s limitation, i.e., the pruning

operation of TOL makes parallel work challenging. This motivates the design

of new labeling methods.

• Novel labeling algorithms. We find that each vertex’s labeling process can be

replaced by finding the backward label set for that vertex. We use a filtering-

and-refinement framework to find the backward label set of each vertex in

parallel. Using this framework, we propose new labeling algorithms and pro-

vide implementations in a distributed system.

• Batch labeling optimization. To further improve the labeling algorithms’ effi-

ciency, we split vertices into batches and then construct the index in batches.

• Extensive empirical studies. We conduct numerous experiments to validate

the efficiency of the proposed labeling algorithms. On medium-sized graphs,

our algorithms can outperform TOL by nearly an order of magnitude. Fur-

thermore, on billion-sized graphs, we can create indexes in half an hour while

TOL cannot.

The details of this work are presented in Chapter 3.

5

Chapter 1 1.2. SHORTEST-PATH QUERIES ON COMPLEX GRAPHS

1.2 Shortest-Path Queries on Complex Graphs

Many real-world graphs, such as social networks, web graphs, and biological net-

works, are called complex networks because of their complex topology [31, 15].

These complex networks can have millions or even billions of vertices and

edges [60, 59], necessitating the development of efficient tools to support op-

erations on these graphs [7, 6].

In a graph G, the shortest-path query QP(s, t) returns the shortest path be-

tween two vertices s and t. One option to handle shortest-path queries is to use

traversal-based methods, such as breadth-first search (BFS, for unweighted

graphs) [11] or Dijkstra’s algorithm (for weighted graphs) [50]. However, traver-

sal on large graphs is slow because its runtime is proportional to the graph

size [62]. To speed up graph traversal, several preprocessing techniques [78, 91],

such as Highway Hierarchies [76], or Contraction Hierarchies [37], have been pro-

posed to limit the traversal scope. However, traversal-based methods still take a

long time to process a query, even with the preprocessing techniques [62]. More-

over, these preprocessing techniques often rely on the properties of road networks

(e.g., planarity and hierarchical structures [3]), rendering them inapplicable to

dealing with complex networks [62].

Another option is to use extension-based methods, i.e., extending meth-

ods designed for shortest-distance query processing to support shortest-path

queries. The shortest-distance query is an operation closely related to the

shortest-path query, which returns the length dist(s, t) of the shortest path be-

tween two vertices s and t [59]. In recent years, many approaches have been

proposed to build indexes for shortest-distance query processing in complex net-

works [62, 59, 60, 7, 6], and the well-known approaches are Pruned Landmark

Labeling (PLL [6]) and Core-Tree Labeling (CTL [60]). To extend these meth-

ods, we can add an extra attribute to each entry in the index for path recovery.

6

1.2. SHORTEST-PATH QUERIES ON COMPLEX GRAPHS Chapter 1

Although the extension-based methods can handle shortest-path queries rapidly,

the introduction of extra attributes makes the required space cost too high.

Motivations. Traversal and extension-based methods make different trade-offs

in query time and space cost: traversal-based methods do not require high space

cost but have no guarantee of query time; extension-based methods provide a

quick query response, but their space costs are high. Yet, comprehensive studies

of these two types of methods’ performance on real-world graphs are lacking.

This makes it hard for practitioners to select an appropriate method for applica-

tions that use shortest-path queries as a basic component. Also, extension-based

methods typically add extra attributes to the original index designed for shortest-

distance queries, thus allowing tracking of all vertices on the shortest path. Such

an extension often leads to a too large index to support shortest-path queries.

Our Solution. To address the aforementioned issues, we thoroughly compare

various methods for handling shortest-path queries. Also, we propose a new

extension-based approach, Monotonic Landmark Labeling (MLL), to enable the

index designed for shortest-distance queries to work for shortest-path queries.

MLL non-trivially creates an additional lightweight index as a plug-in to the

original index; instead of extending every index entry (which would result in an

extended index nearly twice the size of the original index). As a result, MLL can

still give rapid query responses but with a low (extra) space cost.

Contributions. The contributions are summarized as follows.

• Efficient extension of distance query processing methods. We extend the

shortest-distance query processing methods PLL [6] and CTL [60] to allow

them to efficiently handle shortest-path queries. Our idea is to add an extra

attribute to each index entry so that the path can be found by tracking each

vertex on the shortest path using the extra attribute. We discuss the cor-

rectness and time complexity of these extension-based methods in processing

7

Chapter 11.3. LABEL CONSTRAINED SHORTEST PATH ON ROAD NETWORKS

shortest-path queries.

• A new extension-based approach. We propose a new extension-based approach

MLL tailored for shortest-path queries. MLL non-trivially builds an extra

lightweight index on top of the index designed for shortest-distance queries.

MLL works by decomposing the shortest path between two vertices into several

subpaths, which are then indexed. At query time, the shortest path can be

found efficiently by finding and splicing subpaths. We verify MLL consumes

less space than extending each index entry with extra attributes while still

having a fast query speed.

• Extending MLL to handle weighted and directed graphs. We describe how

to adapt the proposed MLL approach to handle both weighted and directed

graphs. We thus enable MLL to work for more general graphs.

• Comprehensive experimental studies. We select four traversal-based and three

extension-based methods for experimental comparisons. We extensively eval-

uate the performance of various methods on ten real-world graphs. We also

examine the impact of directed graphs on the index size of MLL. To the best

of our knowledge, this is the first work to empirically compare shortest-path

query processing methods on complex networks.

The details of this work are presented in Chapter 4.

1.3 Label Constrained Shortest Path on Road

Networks

Computing the shortest path between two locations is one of the fundamental

problems in road networks [10, 58, 63, 92, 38, 51, 76, 37, 88, 102, 69]. In real road

8

1.3. LABEL CONSTRAINED SHORTEST PATH ON ROAD NETWORKSChapter 1

networks, not all roads are the same, for example, highways allow faster travel,

toll roads cost money, and the transport of hazardous goods is forbidden on

roads in water protection areas. Therefore, many applications place constraints

on the edges appearing on a valid shortest path when computing the shortest

path, which leads to the study of label-constrained shortest path queries [71, 41].

Formally, given a road network G where each edge has a label, a source vertex

s, a target vertex t, and an edge label set L, a label-constrained shortest path

query q = (s, t,L) aims to compute the shortest path from s to t such that the

labels of edges on the shortest path are contained in L.

Label-constrained shortest path queries can be used in many real applica-

tion scenarios such as personal routine planing [71] and emergency evacuation

navigation [61]. For example, the shortest path from Irvine, CA to Riverside,

CA travels along State Route 261, which is a local toll road through this area.

For a user who does not wish to pay the toll fee, we can find the shortest path

from Irvine to Riverside that actually avoids all toll roads by a label-constrained

shortest path query q = (”Irvine”, ”Riverside”,L) in which L does not con-

tains the label representing toll road [71]. In China, new drivers who get the

driver license in less than 12 months are not allowed to drive cars on expressway

alone for safety [90]. Therefore, the expressway should be avoided when planning

routines for these new drivers, which can be achieved by the label-constrained

shortest path queries where L does not contain the label representing express-

way. In emergency evacuation navigation, the recommended evacuation route

should avoid the roads in dangerous areas [61], which can be achieved by the

label-constrained shortest path queries where L does not contain the label rep-

resenting roads in dangerous areas.

Motivation. A straightforward approach for label-constrained shortest path

queries is to use Dijkstra’s algorithm [33] by only visiting the edges whose edge

9

Chapter 11.3. LABEL CONSTRAINED SHORTEST PATH ON ROAD NETWORKS

label is in L during the traversal. Although this approach can compute the

required shortest path, as the road network is large in real applications, it cannot

satisfy the real-time requirements for the label-constrained shortest path queries

as it may traverse the whole road network when s and t are far away from each

other. As a result, researchers resort to index-based techniques to accelerate the

label-constrained shortest path query processing [71, 41].

The state-of-the-art index-based approach is edge-disjoint partition (EDP)

[41]. Intuitively, EDP partitions the road network based on each edge label and

caches the computed shortest path information for processed queries in each par-

tition as the index structure. When a new query comes, the cached information

is used to accelerate the query processing. Obviously, the performance of EDP

heavily depends on the hit ratio of the index. However, there are no theoreti-

cal guarantees on the hit ratio of EDP, as it just caches the computed shortest

path in each partition for the processed queries, but the newly issued queries

may distribute diversely and the label-constrained shortest path for a specific

query maybe involve several partitions. Consequently, it is quite possible that

the hit ratio for a specific query is low and EDP degenerates into an online search

algorithm similar to direct using Dijikstra’s algorithm. Even worse, the perfor-

mance of EDP could be poorer than direct using Dijikstra’s algorithm as more

vertices may be visited due to the introduction of the index. Considering road

networks in real world are typically large and label-constrained shortest path

queries are issued frequently, EDP cannot satisfy the real-time requirements in

practical applications either.

Motivated by this, in this thesis, we re-investigate the label-constrained short-

est path queries on road networks and aim to design an efficient label-constrained

shortest path query processing algorithm with non-trivial theoretical perfor-

mance guarantees.

10

1.3. LABEL CONSTRAINED SHORTEST PATH ON ROAD NETWORKSChapter 1

Our approach. We also resort to index-based techniques to accomplish effi-

cient label-constrained shortest path query processing. As tree decomposition

can decompose a road network into a tree-like structure with small treeheight

and treewidth, it achieves great success in computing the shortest path on un-

labelled road networks recently [68, 60]. Inspired by this, we revisit the tree

decomposition based indexing techniques for shortest path problem.

We start from the shortest path queries on unlabelled road networks. Re-

garding this problem, the state-of-the-art tree decomposition based indexing

approach processes a query with time complexity O(h · ω2), where h, ω is the

treeheight, treewidth of the tree decomposition, respectively [88]. By carefully

analyzing the properties of the tree decomposition, we present an algorithm based

on the tree decomposition for the shortest path queries, and non-trivially prove

that the time complexity of the algorithm to process a query can be bounded

by O(h · ω), which reduces the time complexity of [88] by a factor ω (refer to

Theorem 13). Since h and ω are small for road networks, it means we can effi-

ciently process the shortest path queries on unlabelled road networks based on

tree decomposition with theoretical performance guarantees.

Based on the above findings, we explore the tree decomposition based in-

dexing solution for label-constrained shortest path queries. A direct indexing

solution is as follows: for each induced road network by one possible combina-

tion of the edge label set in Σ, where Σ is the finite alphabet used for the labels

of edges in G, we treat the induced road network as an unlabelled road network

and build the tree decomposition based index for it. Given a label-constrained

shortest path q = (s, t,L), we retrieve the corresponding index for the edge label

set L and compute the shortest path accordingly. Clearly, this approach fully

utilizes the efficiency of the tree decomposition based indexing technique for

shortest path queries on unlabelled road networks. However, the total number

11

Chapter 11.3. LABEL CONSTRAINED SHORTEST PATH ON ROAD NETWORKS

of indices constructed in this approach is 2|Σ|. It is prohibitive to construct and

maintain such a number of indices, which makes this approach unscalable to

handle large road networks in real applications.

Observing the indices constructed in the direct solution, we find that lots of

redundant information regarding label-constrained shortest path computation

are stored among different indices. Following this observation, we conceive of

reducing the redundant information among these 2|Σ| indices and integrating

them into a holistic compact index structure. To make our idea practically

applicable, the following issues need to be addressed: (1) how to design such an

index that the redundant information is reduced while the efficiency of query

processing is not compromised? (2) how to efficiently construct the index for a

road network, especially when the road network is large?

Contribution. In this thesis, we address the above issues and make the follow-

ing contributions:

• A new tighter bound on the shortest path query processing on unlabelled road

networks. We revisit the problem of tree decomposition based indexing for

shortest path queries on unlabelled road networks and present an algorithm for

this problem. We non-trivially prove the time complexity of the algorithm is

O(h·ω), while the state-of-the-art tree decomposition based indexing approach

for this problem is O(h · ω2).

• Efficient algorithms for label-constrained shortest path queries with theoretical

performance guarantees. We design a new tree decomposition based index for

the label-constrained shortest path queries. Based on the index, we propose

an algorithm to answer the queries. We also design an algorithm to construct

the index. Moreover, considering the road networks in real applications could

be very large, we exploit parallel computing techniques to further speed up

12

1.4. ROADMAP Chapter 1

the construction of the index. All these algorithms have bounded worst-case

time complexities and can handle large road networks efficiently.

• Extensive performance studies on real road networks. We conduct extensive

performance studies on eight real large road networks including the whole road

network of the USA. The experimental results demonstrate that: 1) our algo-

rithm can achieve up to 2 orders of magnitude speedup in query processing

compared to the state-of-the-art approach while consuming much less index

space. 2) our algorithms can efficiently construct the index for large road net-

works, especially the parallel index construct algorithm which completes the

index construction for the whole road network of USA within 1,000 seconds.

The details of this work are presented in Chapter 5.

1.4 Roadmap

The rest of this thesis is organized as follows. Chapter 2 discuss related works.

Chapter 3 introduce the distributed reachability labeling. Chapter 4 presents the

shortest-path queries on complex graphs. Chapter 5 discuss the label constrained

shortest path queries on road networks. Chapter 6 concludes the whole thesis.

13

Chapter 2

LITERATURE REVIEW

Due to the wide applications of path queries, efficient computation of paths has

drawn a lot of research work. In this chapter, we will first survey literature on

reachability queries, and then the research works on shortest path queries, and

finally the label constrained path queries.

Path queries are gaining importance due to their wide range of applications,

leading to significant attention from the research community on improve path

computation. This chapter delves into related works on path computation and

is structured as follows: We first examine the existing literature on reachability

queries, and then explore research work devoted to shortest distance and path

queries. Finally, we discuss works on label-constrained reachability and shortest

path queries.

2.1 Reachability Queries

There are three streams of techniques used in literature to study the reachability

queries: index-free, index-assisted and index-only approaches.

14

2.1.1 Index-free Approaches Chapter 2

2.1.1 Index-free Approaches

The most straightforward method to answer reachability queries is to perform

an online search on the graph [34]. This search can take the form of either a

breadth-first search (BFS) [19] or a depth-first search (DFS) [9]. In practice,

given a query examining if vertex u can reach vertex v, we can launch a BFS or

DFS from u. If vertex v is encountered during the search process, it indicates that

u can reach v. Conversely, if v is not found, it implies the opposite. However,

this approach has limitations due to the need to use the graph at the query time,

potentially leading to considerable query latency.

2.1.2 Index-assisted Approaches

Index-assisted methods speed up the online search by using auxiliary structures.

The auxiliary structures can be subgraphs [46], multiple intervals [96], indepen-

dent permutations [89], bloom filters [79], or partial label sets [99].

The state of the art approach in this category is BFL [79]. The basic idea of

BFL is that if vertex s can reach vertex t, then s can reach all descendants DES(t)

of t, i.e., DES(t) ⊆ DES(s). Through a Bloom filter, BFL maps the descendants

DES(v) of each vertex v to a subset as the out-label set of v [14]. At query time,

the labels alone can be used to determine that s cannot reach t: if t’s out-label

set is not fully contained in s’s out-label set, then DES(t) ̸⊆ DES(s) and thus

s ̸→ t. However, if s can reach t, then BFL needs to perform a graph search

to report the answer. Similarly, BFL uses the Bloom filter to map each vertex’s

ancestors to generate its in-label set. For BFL, as the index cannot answer all

queries, the graph needs to be loaded into memory at query time (whereas the

index-only approach eliminates the requirement of the original graph at query

time).

15

Chapter 2 2.1.3 Index-only Approaches

2.1.3 Index-only Approaches

Many techniques pre-compute an index and answer reachability queries by only

using the index. Most of them either compute and compress a transitive closure

or build a 2-hop index.

Transitive Closure Compression. One category of techniques pre-computes

and compresses the transitive closure (TC), which represents all vertices reach-

able by a given vertex. Given its large space consumption O(n2), various meth-

ods [67, 84, 4, 24, 49] have been proposed to compress the TC. To efficiently

represent the transitive closure, some methods, such as interval list [67], interval-

based [86] and optimal-tree[4], adopt a tree-based approach. The methods pro-

posed in [85, 81, 22] are extensions of these methods in this category. Some other

works [43, 24, 30] use chain-based methods to compresses the TC. In the chain-

based methods, a directed acyclic graph is decomposed into chains, preserving

the reachability backbone. Each chain and its vertices hold specific information

to answer reachability queries. The efficiency of these methods is highlighted by

the query time of O(logk) and a space consumption of O(nk), where n is the

number of vertices and k is the number of chains.

2-hop Labeling. Originally proposed by Cohen [29] as a solution for answer-

ing reachability and distance queries over large graphs, 2-hop labeling has been

further developed by many researchers using various methods [77, 27, 28, 26, 95,

101]. In 2-hop labeling, each vertex, denoted by u, in a graph is assigned two

label sets: an in-label set, Lin(u), and an out-label set, Lout(u), both of which

contain subsets of vertices. When a reachability query, i.e. Q(u, v), is posed,

the method checks for any common vertices between Lout(u) and Lin(v). If the

intersection of Lout(u) and Lin(v) is not empty, it indicates that vertex u can

reach v. If not, u cannot reach v.

Cohen et al.[29] were the first to present a 2-hop labeling approach for con-

16

2.1.3 Index-only Approaches Chapter 2

structing a 2-hop index. For a given vertex u in graph G, they identify two sets:

S, the set of vertices that can reach u, and D, the set of vertices that u can

reach. By the transitive property of reachability, for every s inS and d inD, s

can reach d. Thus, S, u, and D form a cluster (S, u,D), and u is then removed

from G. Repeating this process for all vertices in G produces a set of clusters

that cover the reachability property of the entire graph, resulting in a 2-hop

cover of G. However, Cohen et al .[29] show that computing a 2-hop cover with

minimum size is NP-hard. As a result, they rely on heuristic methods to com-

pute a small 2-hop cover. The core idea is to first identify the cluster (S, u,D)

with the maximum value of |S||D|(|S| + |D|), then insert u into the out-label

set of each s ∈ S and the in-label set of each d ∈ D. Then the vertex u and its

incident edges are removed from the original graph G to form a new graph Gn−1.

The above process is repeated with the new graph Gn−1 until all vertices are

removed from G, at which point the 2-hop labeling is complete. Despite the fact

that the proposed method can generate a 2-hop labeling with a very small index

size, the computation time of O(n3|TC|) is prohibitively high and unsuitable for

large graphs.

Several heuristic methods [77, 27, 28, 26, 95, 6, 101] have been proposed to

address the time-consuming nature of identifying the cluster with the maximum

value of |S||D|(|S| + |D|) in the 2-hop labeling method. These methods do not

compute the transitive closure for all vertices in each iteration. Instead, they

indirectly determine the order of the vertices to be labeled and compute only

the cluster of the current vertex.

One such approach, proposed by Cheng et al. [27], is based on a 2-dimensional

geometric map. This involves creating two spanning trees and constructing a 2-

dimensional reachability map.

Another method proposed by Cheng et al. [26] uses topology folding to order

17

Chapter 2 2.2. SHORTEST DISTANCE AND PATH QUERIES

vertices. This method compresses a graph G into a Directed Acyclic Graph

(DAG), sorts the vertices based on topological order, and then divides them into

several topological levels. The main advantage of this topological level-based

method is its ability to reduce the computational cost of transitive closure.

In contrast, Jin et al. [48] order vertices based on their degree, using the value

|Nin(v)+1|×|Nout(v)+1| to rank vertices. These heuristic ordering methods have

been unified by Zhu et al. [101] into a Total Order Labeling(TOL) framework.

2.2 Shortest Distance and Path Queries

Due to the importance of shortest distance and path queries in graphs, there

are plethora of works in the literature. In this section, we will first discuss the

works on shortest distance and path queries and then the constrained shortest

path queries.

2.2.1 Search Based Methods

The basic methods to compute shortest path queries are search based methods.

BFS and Dijkstra [33] are two classic methods for computing single source short-

est path tree on unweighted and weighted graphs in O(m+n) and O(m+n log n)

respectively. For point-to-point shortest path queries, a basic approach to im-

prove BFS and Dijkstra is to use bidirectional search. The bidirectional search

methods initiate two searches from the two query vertices. Once the two searches

meet, then a shortest path is found. The bidirectional search improve the basic

searches by reduce the number of vertices visited during the search. However,

these methods are not efficient and many heuristic methods [38, 39, 42, 47, 66, 35]

are proposed to accelerate the search procedure. ALT [38] pre-computes the

shortest between a set of landmark vertices and other vertices and use triangle

18

2.2.2 Hierarchical Methods Chapter 2

inequality to prune the search space of A*. Gutman [39] introduce a new con-

cept REACH to check if a vertex is on the shortest path during search. Hilger

et al. [42] use the concept of arg-flags to help remove unpromising edges during

search. Similar to ALT [38], Wang et al. [35] pre-compute the shortest path from

a set of landmark vertices to other vertices to accelerate the bidirectional BFS

on unweighted graphs.

2.2.2 Hierarchical Methods

Hierarchical strategies are often used to handle shortest distance/path queries

in road networks by exploiting the inherent hierarchy of these networks. The

principle behind these strategies is that longer shortest paths ultimately connect

to a condensed arterial network of major roads, such as highways [76, 37, 102, 51].

HiTi, proposed by Jung et al. [51], improves query processing speed by seg-

menting the graph and creating a hierarchical structure. Techniques such as

Highway Hierarchies [76] and Contraction Hierarchies [37] have proven effective

in reducing the search space. The Contraction Hierarchies technique constructs

a topological order of a graph by forming shortcuts from lower ranked vertices

to higher ranked ones, based on an overall order of vertices.

The Arterial Hierarchy (AH) approach, introduced by Zhu et al. [102], builds

on the principles of Contraction Hierarchies. However, it creates shortcuts by

superimposing 4×4 grids on the network, taking advantage of the 2-dimensional

spatial properties within the network. The query processing in AH mirrors

that of Contraction Hierarchies. It uses the bidirectional Dijkstra’s algorithm

and restricts the expansion direction to move only from lower to higher ranked

vertices.

19

Chapter 2 2.2.3 Labeling based Methods

2.2.3 Labeling based Methods

Labeling methods, highlighted in numerous studies [29, 2, 1, 6, 5, 68, 25, 44],

form a crucial category for shortest distance queries. They allow these queries

to be solved using only an index, thus negating the need for graph traversal.

These methods compute a label, L(u), for each graph vertex u, which contains

a set of vertices and their corresponding distances to u. A distinctive feature

of these labeling methods is that they guarantee a shortest path cover property.

This implies that for any two vertices s and t, the intersection of their labels,

L(s) ∩ L(t), contains a vertex w that exists on the shortest path from s to t.

Mathematically, this relation is expressed as d(s, t) = d(s, w) + d(w, t). This

coverage property is the basis for handling shortest path queries.

Cohen et al. [29] were the pioneers in proposing the 2-hop index for shortest

path and reachability queries. They also proved that constructing a minimum 2-

hop index is an NP-hard problem. As a result, they proposed heuristic methods

for constructing a minimum 2-hop index, although these methods come with a

significantly high computational cost.

Building on the concept of the 2-hop index, subsequent work by Abraham et

al.[2, 1] used vertices visited by the upward traversal of vertex u on Contraction

Hierarchies (CH) as hub vertices in u’s label. The Pruned Landmark Labeling

technique[6] computes a vertex order and then computes the labels of vertices

by pruning landmarks according to this order. In contrast, the Hop-Doubling

Labeling method [44] treats edges as the initial index and computes the 2-hop

labels by doubling the path length in each iteration.

Inspired by pruned landmark labeling [6], Akiba et al. [5] introduced pruned

highway labeling (PHL). Instead of using hubs as labels for each vertex, PHL

uses paths, with the goal of encoding more information in each label. During the

indexing phase, the algorithm decomposes the road network into disjoint shortest

20

2.2.4 Tree Decomposition based Methods Chapter 2

paths, and then computes a label for each vertex that contains the distance to

vertices in a small subset of the computed paths.

Given the high cost associated with constructing 2-hop indexes, numerous

techniques have also been proposed to parallelize the indexing process. Li et

al. [59] developed a parallel distance labeling algorithm for unweighted graphs

that builds indexes layer by layer. While Lakhotia et al.[55] provided a dis-

tributed distance labeling algorithm tailored for weighted graphs.

2.2.4 Tree Decomposition based Methods

Tree decomposition, first studied in [40] and further explored in [72], is a process

that maps a graph into a tree, where each tree node comprises a subset of the

vertices of the graph. This technique can be used to determine the treewidth of a

graph and, by using dynamic programming, can speed up the solution of certain

computational problems on the graph. It has been proved by [8] that determining

whether the treewidth of a graph exceeds a given value is an NP-complete task.

Various heuristics for tree decomposition are outlined in [93], one of which

is the widely used Minimum Degree Elimination (MDE) heuristic [13]. A no-

table feature of tree decomposition is its vertex-cut property, which makes it

particularly suitable for shortest path queries.

TEDI [88] is the pioneering work that uses tree decomposition for shortest

path queries. It first investigates the theoretical foundations of applying tree

decomposition to such queries. Based on these foundations, it then designs an

index, called TEDI, that relies on tree decomposition. For each tree node, TEDI

precomputes the shortest path between each pair of vertices within the node

and stores it in a hash table. This index takes up O(n · ω) space, where n is

the number of vertices and ω is the width of the tree. At query time, given two

vertices s and t, TEDI first identifies the two tree nodes that contains s and t,

21

Chapter 2 2.2.4 Tree Decomposition based Methods

respectively. It then finds the lowest common ancestor (LCA) of the two nodes

in the tree. Using the vertex cut property of tree decomposition, it computes

the shortest paths or distances from s (or t) to the vertices in their common

ancestor. Since the LCA is also a vertex cut of the graph, the shortest path

or distance can be determined using the previously computed shortest paths or

distances. The query time of TEDI is O(ω2 ·h), where h is the height of the tree.

H2H [68] is another method for handling shortest distance queries that uses

the concept of tree decomposition. Unlike TEDI, H2H computes not only the

shortest distance between vertices in each tree node, but also the shortest dis-

tance to all vertices in its ancestor nodes. The index size of H2H is O(n · h),

where n is the number of vertices and h is the height of the tree. Despite having

a larger index than TEDI, H2H processes shortest distance queries faster. Given

two vertices s and t, after identifying the LCA of the tree nodes containing s

and t, H2H directly uses the shortest distances from s (or t) to the vertices in

the LCA to determine the distance between s and t. This significantly reduces

the query time to O(ω), where ω is the tree width. Building on H2H, Chen et

al. in P2H [25] further improve query efficiency by using vertex projection to

identify a smaller vertex cut during query processing.

Many of the aforementioned studies either focus on road networks or conduct

experiments on smaller graphs, and the effectiveness of tree decomposition on

large, complex networks remains unproven. Research presented in [64, 68] sug-

gests that complex graphs, such as web graphs and social networks, have a large

dense core and tree-like fringe. These structures can have very large treewidth,

making tree decomposition potentially unsuitable for them. Despite these lim-

itations, efforts [60, 7, 64] have been made to use core-tree decomposition for

shortest distance indexing.

Akiba et al. [7] were the first to apply core-tree decomposition to complex

22

2.3. LABEL CONSTRAINED PATH QUERIES Chapter 2

graphs. They used a tree-decomposition-based distance index for the tree-like

fringe, while computing and storing pairwise shortest distances for vertices within

the dense core. Both the tree index and the core index are used to answer shortest

distance queries.

The recent work CTL [60] by Li et al. further improves the scalability of

shortest distance queries by combining the advantages of the two approaches:

Pruned Landmark Labeling (PLL) and Core-Tree Index. For the tree-like edge

part of the core-tree decomposition, they use tree decomposition to derive mul-

tiple trees and index the distances from each vertex to its ancestors (excluding

vertices only in the core part). For the core part, they use PLL to index the

shortest distance. Like the approach in [7], both the core index and the tree

index are used for shortest distance queries.

2.3 Label Constrained Path Queries

2.3.1 Label-Constrained Reachability Query

Label-constrained reachability queries have also been explored in the literature.

Such a query, denoted as q = (s, t,L), asks whether vertex s can reach vertex t

following edges with labels contained in L. The first approach for this problem is

presented by Jin et al. [45], where they introduce a tree-based index framework

that uses the directed maximal weighted spanning tree algorithm and sampling

techniques to compress the generalized transitive closure for labeled graphs.

Zou et al. [103] propose a method that decomposes the graph into strongly

connected components (SCCs), computes local transitive closures, and trans-

forms each SCC into a bipartite graph via in-portals and out-portals. The result

is an acyclic graph D. Using the topological order of D, they determine the la-

bel sets connecting the portals of different SCCs, and finally the internal vertices

23

Chapter 2 2.3.2 Label-constrained shortest path queries.

of each SCC. The generated index contains complete reachability information,

allowing easy query resolution via index lookup.

Valstar et al. [83] proposed the LI+ algorithm, which uses landmark-based in-

dexes and non-landmark index pruning to improve performance on large graphs.

Building on this, the recent work by Peng et al [70] proposes PH+, an improve-

ment over LI+ with more effective pruning rules and ordering strategies that can

handle billion-scale graphs. A study based on LI+ by Chen et al. [23] further

explores the problem of index maintenance on dynamic graphs.

2.3.2 Label-constrained shortest path queries.

In addition to label-constrained reachability, label-constrained shortest path

query has recently received considerable attention. Rice et al. [71] proposed a

method called CHLR, based on the Contraction Hierarchies (CH) approach [37],

to handle such queries. The principal idea of CHLR is closely related to CH,

but the main difference is that CHLR incorporates edge labels while contracting

nodes in the underlying graph. Specifically, when contracting a node v, and

there are shortcuts (e.g., (u,w)) added between neighbors of v (e.g., u and w),

each shortcut is assigned the labels of the corresponding two edges, i.e., (v, u)

and (v, w). Labeling the shortcuts allows CHLR to bypass these shortcuts if

they contain a restricted label.

The state-of-the-art algorithm for this problem is the Edge-Disjoint Parti-

tioning (EDP) method [41]. Given an edge-labeled graph, EDP partitions the

graph according to the edge labels. The EDP index caches the discovered sub-

paths within each partition during query processing. As processing more queries

causes the index size to exceed a certain threshold, EDP uses the Least Recently

Used (LRU) replacement strategy to replace older paths with newly discovered

shortest paths. During the query phase, EDP uses a greedy traversal paradigm

24

2.3.2 Label-constrained shortest path queries. Chapter 2

similar to the Dijkstra algorithm. During this greedy traversal, partitions that

do not satisfy the label constraints are skipped, and EDP’s cached shortest paths

are reused to speed up the query process.

25

Chapter 3

DISTRIBUTED REACHABILITY

LABELING

3.1 Chapter Overview

In this chapter, we study the reachability labeling for distributed graphs. This

chapter is structured as follows. Section 3.2 introduces the preliminaries of this

chapter, including notations, TOL labeling approach and problem statement.

Section 3.3 presents our proposed new labeling methods and the distributed

implementation of them. Section 3.4 propose the batch labeling technique to

accelerate the indexing process. Section 3.5 evaluates the proposed methods and

Section 3.6 concludes this chapter.

3.2 Preliminary

We first introduce some notations in Section 3.2.1, then give the labeling algo-

rithm TOL in Section 3.2.2, followed by the problem statement in Section 3.2.3.

For ease of understanding, Table 3.1 lists frequently used notations.

26

3.2.1 Notations Chapter 3

3.2.1 Notations

Given a directed graph G = (V,E) with n = |V | vertices and m = |E| edges, we

define the in-neighbor set NG
in(v) of a vertex v ∈ V as NG

in(v) = {u|(u, v) ∈ E};

the out-neighbor set NG
out(v) as NG

out(v) = {u|(v, u) ∈ E}. The in-degree dGin(v)

(resp. the out-degree dGout(v)) of v is the size of its in-neighbor set (resp. out-

neighbor set), i.e., dGin(v) = |NG
in(v)| (resp. dGout(v) = |NG

out(v)|). The path

between a vertex pair s, t ∈ V is defined as pG(s, t) = (v1 = s, v2, · · · , vl = t),

where (vi, vi+1) ∈ E, for ∀i ∈ [1, l − 1]. If there exists a path between s and t,

then s can reach t (denoted as s→ t).

Definition 1. The ancestors ANC(v) (resp. descendants DES(v)) of a vertex

v ∈ V contain all the vertices that can reach v (resp. that v can reach). Vertex

v is contained both in ANC(v) and DES(v).

If the context is obvious, we drop G from notations. The inverse graph

G = (V,E) of a graph G(V,E) contains the same vertices but with all edges

reversed in direction (i.e., E = {(v, u)|(u, v) ∈ E(G)}).

V8

V7

V6

V5

V3

V4
V2

V1

V9

V10
V11

Figure 3.1: Graph G

V8

V7

V6

V5

V3

V4
V2

V1

V9

V10
V11

Figure 3.2: Inverse Graph G

Example 1. Consider the graph G in Fig. 3.1, which has 11 vertices and 15

edges. For vertex v2, Nin(v2) = {v6} and din(v2) = 1; Nout(v2) = {v1, v3, v4, v5}

and dout(v2) = 4. The vertex v2 can reach vertex v7 since there exists

a path from v2 to v7. For v2, ANC(v2) = {v2, v3, v4, v6} and DES(v2) =

{v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11}. The inverse graph G of G is shown in

Fig. 3.2.

27

Chapter 3 3.2.1 Notations

Table 3.1: Notations

Notation Meaning
G(V,E) graph
G(V,E) inverse graph
din(v), dout(v) in-degree, out-degree of v
ANC(v),DES(v) ancestors, descendants of v
Lin(v), Lout(v) in-label, out-label sets of v
L−in(v), L

−
out(v) backward in-label, out-label sets of v

DEShig(v) high-order descendants of v
BFSlow(v),BFShig(v) low-order, high-order vertices in trimmed BFS
IBFSlow(v) inverted list of v
[V1, V2, . . . , Vg] batch sequence of G
LVi
in , L

Vi
out batch in-label, out-label sets regarding Vi

The in-label/out-label sets over all vertices form index L, which can be used

to answer reachability queries in graph G.

Definition 2. The in-label set Lin(v) of v contains vertices that can reach v,

i.e., Lin(v) ⊆ ANC(v); the out-label set Lout(v) of v contains vertices that v can

reach, i.e., Lout(v) ⊆ DES(v).

Given an index L, the largest label size, denoted as ∆, is defined as ∆ =

maxv∈V (max(|Lin(v)|, |Lout(v)|)). To answer the reachability query q(s, t) between

s, t, we check whether there are overlapping vertices between Lout(s) and Lin(t).

q(s, t) =

 true, if Lout(s) ∩ Lin(t) ̸= ∅;

false, otherwise.

If the vertices in Lout(s) and Lin(t) are sorted by IDs, answering q(s, t) takes

O(|Lout(s)| + |Lin(t)|) time [101]. To ensure that index L correctly answers all

reachability queries on G, L needs to satisfy the cover constraint.

Definition 3 (Cover Constraint). For ∀s, t ∈ V , Lout(s)∩Lin(t) ̸= ∅ if and only

if (⇔) s→ t.

28

3.2.2 Total Order Labeling Chapter 3

Table 3.2: The Index L

Vertex Lin Lout
v1 {v1} {v1}
v2 {v2} {v1, v2}
v3 {v2} {v1, v2}
v4 {v2} {v1, v2}
v5 {v1} {v1}
v6 {v2} {v1, v2}
v7 {v1} {v1}
v8 {v1, v8} {v8}
v9 {v1, v8, v9} {v9}
v10 {v2, v10} {v10}
v11 {v2, v11} {v11}

Example 2. Consider the graph G in Fig. 3.1, where Table 3.2 lists an index L

for G. For v2, Lout(v2) = {v1, v2} ⊆ DES(v2); for v3, Lin(v3) = {v2} ⊆ ANC(v3).

Since Lout(v2) ∩ Lin(v3) = {v2} ̸= ∅, the query q(v2, v3) returns “true”.

3.2.2 Total Order Labeling

Many labeling methods have been proposed to create reachability indexes for

graphs [97], and one of the best-known is Total Order Labeling (TOL). TOL

works for a total of n rounds, where one vertex is selected for labeling in each

round. TOL gives each vertex v an order ord(v) and selects the vertex with the

i-th largest order in round i. TOL uses degree to determine the order and vertex

IDs to break the tie: we can define ord(v) = (din(v)+1) · (dout(v)+1)+ ID(v)
n+1

for

a vertex v, where ID(v) is the ID of v. There are other ways to define ord(v),

but this way is cheap to calculate and works well in practice [95, 48].

Example 3. Consider the graph G in Fig. 3.1, which has n = 11 vertices. For

v1, ord(v1) = (din(v1) + 1) · (dout(v1) + 1) + 1
12

= 12.08; for v10, ord(v10) =

(din(v10)+1) · (dout(v10)+1)+ 10
12

= 2.83. Thus, ord(v1) > ord(v10), which means

that the order of v1 is higher than v10.

29

Chapter 3 3.2.2 Total Order Labeling

TOL Algorithm. Algorithm 1 shows how TOL creates an index L for graph G.

We first initialize the in-label set L1in(v) and out-label set L1in(v) of all vertices v

to an empty set (Line 1), and then copy G to G1 (Line 2). Here, Liin(v) (resp.

Liout) refers to the label sets created by vertices [v1, v2, · · · , vi−1] of order higher

than vi. The labeling process works in n rounds (Line 3). In round i, the vertex

vi with the i-th largest order starts labeling (Line 4).

Labeling vi (Line 5-11). First, the descendants DESGi(vi) and ancestors

ANCGi(vi) of vi are obtained using the vi-sourced BFS in Gi and Gi, respec-

tively (Line 5-6). Then, vi is added to in-label/out-label sets of other vertices

when it passes a pruning operation: for each vertex w ∈ DESGi(vi), when

Liout(vi) and Liin(w) have no overlapping, vi is appended to Liin(w) to form Li+1
in (w)

(Line 8); For each vertex w ∈ ANCGi(vi), when Liin(vi) and Liout(w) have no over-

lapping, vi is appended to Liout(w) to form Li+1
out (w) (Line 10). Then, vi and the

incident edges are removed from Gi (denoted as Gi \ vi) to form Gi+1 for the

next round (Line 11). After n rounds, the label sets of all vertices are returned

as index L (Line 12).

Example 4. Consider the graph G in Fig. 3.1. We show how to create in-

label sets for G, and out-label sets can be created similarly. In round 1, G

is copied to G1, and v1 (with the highest order) is inserted into the in-label

sets of its descendants DESG1(v1) = {v1, v5, v7, v8, v9} in G1, as no pruning oc-

curs. Then, v1 and its adjacent edges are removed from G1 to form G2. In

round 2, v2 (with the second highest order) finds its descendants DESG2(v2) =

{v2, v3, v4, v5, v6, v7, v10, v11} in G2. Then, v2 performs a pruning operation

(Line 8 of Algorithm 1) to test whether v2 is added to the in-label sets of vertices

in DESG2(v2). For example, since L2out(v2) ∩ L2in(v5) = {v1}, v2 is not inserted

into L3in(v5) — pruning occurs. After pruning, v2 is inserted into the in-label sets

of {v2, v3, v4, v6, v10, v11}. After processing v11, TOL ends.

30

3.2.2 Total Order Labeling Chapter 3

Algorithm 1: TOL
Input: Graph G(V,E)
Output: Index L

1 L1in(v)← ∅, L1out(v)← ∅, for each vertex v ∈ V ;
2 G1 ← G;
3 foreach i ∈ [1, n] do
4 vi ← the vertex whose order is the i-th largest;
5 DESGi(vi)← a vi-sourced BFS on Gi;
6 ANCGi(vi)← a vi-sourced BFS on Gi;
7 foreach w ∈ DESGi(vi) do

// pruning operation
8 if Liout(vi) ∩ Liin(w) = ∅ then
9 Li+1

in (w)← Liin(w) ∪ {vi};

10 foreach w ∈ ANCGi(vi) do
// pruning operation

11 if Liin(vi) ∩ Liout(w) = ∅ then
12 Li+1

out (w)← Liout(w) ∪ {vi};

13 Gi+1 ← Gi \ {vi};
14 return L = {Ln+1

in (v) ∪ Ln+1
out (v)|v ∈ V };

Limitation. TOL is a centralized algorithm [101], which means that the graph

needs to be stored on one machine for processing. To make matters worse, TOL

is non-trivial to be parallelized. To illustrate why, we focus on the process of

labeling vi. When labeling vi, each vertex w has an in-label set Liin(w) and an

out-label set Liout(w) created by vertices [v1, v2, · · · , vi−1] of order higher than vi.

We collect the label sets of all vertices w and get the index Li =
⋃

w∈V {Liin(w)∪

Liout(w)} generated by vertices of order higher than vi. The index Li is necessary

when labeling vi: Li determines whether or not vi is added to the label set of

another vertex w ∈ V .

Lemma 1. For ∀w ∈ V , whether or not vi is in the label set of w depends on

Li, specifically,

• vi ∈ Lin(w)⇔ vi → w, Liout(vi) ∩ Liin(w) = ∅;

31

Chapter 3 3.2.3 Problem Statement

• vi ∈ Lout(w)⇔ w → vi, Liout(w) ∩ Liin(v) = ∅.

Proof. We verify only the case vi ∈ Lin(w).

• ⇐: If Liout(vi) ∩ Liin(w) = ∅, then there is no vertex u with ord(u) > ord(vi)

such that vi → u→ w. Then, vi is the highest-order vertex on all paths from

vi to w. By Theorem 1, vi ∈ Lin(w).

• ⇒: If vi ∈ Lin(w) but Liout(vi) ∩ Liin(w) = S ̸= ∅, we choose s ∈ S whose order

is the highest in S. s ̸= vi since vi ̸∈ Liin(vi) by definition. Moreover, the fact

that s ∈ S yields vi → s→ u and ord(s) > ord(vi). By Theorem 1, vi ̸∈ Lin(w),

contradiction.

Lemma 1 shows that Li is essential for labeling vi. However, Li is gener-

ated only after vertices [v1, v2, · · · , vi−1] of order higher than vi have completed

labeling. This suggests that labeling vi cannot begin until those vertices with

higher orders have finished labeling. Such a strong order dependency prevents

TOL from being parallelized. Motivated by this, we aim to design novel labeling

methods that can work in parallel while obtaining the same indexes as TOL.

Remark. [101] maintains TOL’s index for dynamic graphs, but we try to gen-

erate the same indexes as TOL for distributed graphs. We consider maintaining

indexes on distributed dynamic graphs as future work.

3.2.3 Problem Statement

We plan to use a vertex-centric system [82] to implement the proposed la-

beling methods. The vertex-centric system performs the tasks in a super-step

fashion [36]. In each super-step, each active vertex v calls a user-defined func-

tion, compute(), to: 1) compute based on v’s current state and the messages

32

3.3. DISTRIBUTED REACHABILITY LABELING Chapter 3

it received in the previous super-step; 2) update v’s state; 3) send messages to

other vertices (for the next super-step); and 4) (optionally) vote v to make it

inactive. The whole computation terminates when there are no messages in the

system, or all vertices become inactive. To avoid ambiguity, we use the term

“vertex” to denote v as v ∈ V , and the term “node” to denote a computation

unit in a cluster.

The problem addressed in this chapter is:

Given a distributed graph G, design reachability labeling methods

and implement them using a vertex-centric system to create the index

as TOL.

Throughout this chapter, we do not assume that G is acyclic. This treatment

is also used in [34, 98]. We treat it this way for two reasons: 1) our methods are

general enough to handle both acyclic and non-acyclic graphs; 2) it is non-trivial

to obtain and merge strongly connected components to make graphs acyclic in

a distributed environment.

3.3 Distributed Reachability Labeling

We present the concept of backward label sets in Section 3.3.1, and then pro-

pose a filtering-and-refinement framework to find backward label sets in Sec-

tion 3.3.2. New labeling algorithms based on this framework are designed in

Section 3.3.3, followed by the algorithm implementation in a distributed system

in Section 3.3.4.

3.3.1 TOL Revisited

As shown in Algorithm 1, TOL works in n rounds, where a vertex v is selected for

labeling in each round. The process of labeling v is to use the pruning operation

33

Chapter 3 3.3.1 TOL Revisited

Table 3.3: The Backward Label Sets

Vertex L−in L−out
v1 {v1, v5, v7, v8, v9} {v1, v2, v3, v4, v5, v6, v7}
v2 {v2, v3, v4, v6, v10, v11} {v2, v3, v4, v6}
v3 ∅ ∅
v4 ∅ ∅
v5 ∅ ∅
v6 ∅ ∅
v7 ∅ ∅
v8 {v8, v9} {v8}
v9 {v9} {v9}
v10 {v10} {v10}
v11 {v11} {v11}

to determine some vertices (in v’s descendants/ancestors) such that v is added

to their label sets. We define these determined vertices as the backward label

set of v.

Definition 4. Given v ∈ V and index L of G, the backward in-label set of v

is L−in(v) = {w|v ∈ Lin(w)}; the backward out-label set of v is L−out(v) = {w|v ∈

Lout(w)}.

Example 5. Consider the graph G in Fig. 3.1, where Table 3.2 shows the index

L. In Table 3.3 we list the backward in-label/out-label sets for all vertices. For

v2, L−in(v2) = {v2, v3, v4, v6, v10, v11} since vertices {v2, v3, v4, v6, v10, v11} contain

v2 in their in-label sets; For v3, L−in(v3) = ∅ since no vertex contains v3 in its

in-label set. Also, labeling v2 is to add v2 to the in-label sets of vertices in L−in(v2)

and add v2 to the out-label sets of vertices in L−out(v2).

We re-describe the working process of TOL from the perspective of backward

label sets: TOL chooses a vertex v to label in each round. The process of

labeling v is to determine the vertices in backward in-label/out-label sets where

v joins their labels. Recall that TOL applies the pruning operation to determine

34

3.3.2 Filtering-and-refinement Framework Chapter 3

its backward label sets. According to the analysis in Section 3.2, the pruning

operation causes TOL not to work in parallel. Therefore, the main contribution of

this chapter is to replace the pruning operation of TOL but still get the backward

label sets of each vertex v ∈ V . This allows all vertices to work in parallel and

get the same index as TOL.

Remark. Label sets and backward label sets are symmetric concepts — v is in

Lin(w) (resp. Lout(w)) implies that w is in L−in(v) (resp. L−out(v)). For this reason,

we aim to find the backward label sets L−in(v) and L−out(v) of each vertex v to create

the index L. Also, since finding L−out(v) on G is similar to finding L−in(v) on G,

we only discuss how to obtain L−in(v) in the sequel. The discussions for L−in(v) can

be naturally extended to L−out(v).

3.3.2 Filtering-and-refinement Framework

To determine the backward label set L−in(v) for each vertex v without relying on

the pruning operation of TOL, we give the condition for a certain vertex w to lie

in L−in(v).

Theorem 1. For ∀v, w ∈ V , w ∈ L−in(v) ⇔ w ∈ DES(v) and v is the highest-

order vertex on all paths from v to w.

Proof. We prove w ∈ L−in(v), or equivalently v ∈ Lin(w).

• ⇐: If v is the highest-order vertex on all paths from v to w, then there is no

vertex u such that v → u → w and ord(u) > ord(v). Because TOL processes

vertices in a non-increasing sequence of vertex order, this means at the moment

v starts labeling: 1) w ∈ DESGi(v) since no vertex on a path from v to w can

be removed before labeling v; 2) Lout(v)∩Lin(w) = ∅ since no vertex on a path

from v to w finishes labeling. Therefore, by Line 8 of Algorithm 1, v ∈ Lin(w).

35

Chapter 3 3.3.2 Filtering-and-refinement Framework

With similar logic, we can prove that v ∈ Lout(w) if v is the highest-order

vertex on all paths from w to v.

• ⇒: If v ∈ Lin(w), let u ̸= v be the highest-order vertex on all paths from v

to w. This means that u’s order is the highest on all sub-paths from v to u

and from u to w. We reuse the proof in ⇐: 1) u’s order is the highest on all

u-w paths, then u ∈ Lin(w); 2) u’s order is the highest on all v-u paths, then

u ∈ Lout(v). Thus, u ∈ Lout(v) ∩ Lin(w) ̸= ∅ when labeling v. By Line 8 of

Algorithm 1, v ̸∈ Lin(w), contradiction. ✷

Example 6. Consider the graph G in Fig. 3.1. For vertex v2, v3 ∈ L−in(v2) since

v2 has the highest order on all paths from v2 to v3; v5 ̸∈ L−in(v2) because v1, with

order higher than v2, lies on a path from v2 to v5.

Theorem 1 paves the way for obtaining L−in(v) of each vertex v ∈ V in parallel.

Specifically, by Theorem 1, w ∈ DES(v) is a necessary condition for w ∈ L−in(v).

In other words, DES(v) is a super-set of L−in(v): L−in(v) ⊆ DES(v). To obtain

L−in(v), we need to remove invalid elements from DES(v). Thus, we define the

higher-order descendants of v.

Definition 5. The higher-order descendants of v, denoted as DEShig(v), are

vertices u ∈ DES(v) whose order is higher than v, that is, DEShig(v) = {u|u ∈

DES(v), ord(u) > ord(v)}.

Theorem 1 states that only when v is the highest-order vertex on all paths

from v to w, then w is in L−in(v). In other words, if there is a high-order vertex

u ∈ DEShig(v) to reach w, w must not be in L−in(v). Hence, we can use DEShig(v)

to refine the super-set DES(v) by removing invalid elements.

Based on this idea, we propose the filtering-and-refinement framework to

obtain L−in(v): the filtering phase generates the super-set DES(v), and then invalid

36

3.3.3 Two Labeling Methods Chapter 3

vertices that can be reached by vertices in DEShig(v) are removed for refinement.

The correctness of this framework is given in Theorem 2.

Theorem 2. L−in(v) = DES(v)−
⋃

u∈DEShig(v)
DES(u).

Proof. We denote the right-hand side of the equation by RHS and verify that

L−in(v) = RHS.

• L−in(v) ⊆ RHS: If w ∈ L−in(v) \ RHS, then there are two possibilities: 1) w ̸∈

DES(v), which contradicts w ∈ L−in(v) ⊆ DES(v); 2) w ∈
⋃

u∈DEShig(v)
DES(u),

but by Theorem 1, w ̸∈ L−in(v), contradiction.

• RHS ⊆ L−in(v): If w ∈ RHS, then there is no vertex u on any path from v to w

for which ord(u) > ord(v). By Theorem 1, w ∈ L−in(v). ✷

Example 7. Consider the graph G in Fig. 3.1. We show how to obtain

L−in(v3) of v3. We first find DES(v3) = {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11};

next we get DEShig(v3) = {v1, v2}, and
⋃

u∈DEShig(v3)
DES(u) =

{v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11}. Thus, L−in(v3) = DES(v3) −⋃
u∈DEShig(v3)

DES(u) = ∅.

3.3.3 Two Labeling Methods

C-1. Basic Labeling Method

If we apply Theorem 2 to obtain L−in(v) for each vertex v ∈ V , we need to

perform a v-sourced breadth-first search (BFS) to obtain DES(v) and DEShig(v)

in the filtering phase, and then perform |DEShig(v)| BFSs, one BFS for one

vertex in DEShig(v) in the refinement phase. The refinement phase requires a

large number of BFSs, rendering this solution inefficient. To improve efficiency,

we find that not all vertices in DEShig(v) are useful for refinement. For example,

37

Chapter 3 3.3.3 Two Labeling Methods

for vertices a, b ∈ DEShig(v), b is unnecessary when DES(b) is a subset of DES(a)

— vertex a can reach all descendants of b.

So, how to identify unnecessary vertices in DEShig(v)? A simple rule is that

it is safe to delete vertex b if vertex a ∈ DEShig(v) can reach b: a can reach all

descendants of b. Based on this rule, we propose to use a v-sourced BFS but

block the expansion branch upon meeting a vertex a ∈ DEShig(v), thus implicitly

deleting vertices b ∈ DEShig(v) that can be reached by a. We denote this BFS

as a trimmed BFS.

Algorithm 2: Trimmed BFS
Input: Graph G(V,E), v
Output: BFSlow(v), BFShig(v)

1 queue Q← ∅;
2 status(u)← ? , for all vertices u ∈ V ;
3 push v → Q and BFSlow(v);
4 status(v)← →;
5 while Q is not empty do
6 u← pop from Q;
7 foreach w ∈ Nout(u) do
8 if status(w) ̸= ? then continue;
9 if ord(w) < ord(v) then

10 status(w)← →, push w → Q and BFSlow(v);
11 else

// block the expansion via w
12 push w → BFShig(v);

13 return BFSlow(v),BFShig(v);

Trimmed BFS. Algorithm 2 describes the v-sourced trimmed BFS. We initialize

an empty queue Q and set the status of all vertices to unvisited (denoted as ?)

(Line 1-2). Then, v is inserted into Q and BFSlow(v), and the status of v is set

to visited (denoted as →) (Line 3-4). Afterward, we pop a vertex u from Q and

check each neighbor w of u (Line 6-7). If w is visited before, we do nothing

(Line 8). Otherwise, depending on the order of w, we have two cases: 1) if w is

38

3.3.3 Two Labeling Methods Chapter 3

V8

V7

V6

V5

V3

V4
V2

V1

V9

V10
V11

BFSlow(v3)

BFShig(v3)

Figure 3.3: The v3-sourced Trimmed BFS

lower in order than v, we continue expanding via w by setting the status of w

as visited and inserting w both in Q and BFSlow(v) (Line 9-10); 2) otherwise, we

block the expansion via w and insert w into BFShig(v) (Line 12). When the queue

Q is empty, the BFS terminates, and BFSlow(v) and BFShig(v) are returned.

Lemma 2. The time cost of Algorithm 2 is O(|E|+ |V |).

Example 8. Fig. 3.3 shows the v3-sourced trimmed BFS. First, v3 is inserted

into both Q and BFSlow(v3). Then, v3 is popped from Q, and for v3’s out-

neighbors {v1, v4, v10}: v4 and v10 are inserted into both BFSlow(v3) and Q be-

cause they are of lower order than v3; the expansion via v1 is pruned since

ord(v1) > ord(v3), and v1 is inserted into BFShig(v3). Then, v4 is popped from Q,

and v4’s out-neighbors {v6, v11} are examined. The BFS terminates when Q is

empty, and we get BFSlow(v3) = {v3, v4, v10, v6, v11}, BFShig(v3) = {v1, v2}.

Modified Framework. During the trimmed BFS sourced from v, we obtain

BFSlow(v) (vertices visited by BFS and of order lower than v) and BFShig(v)

(vertices with higher order that block the expansion). Using BFSlow(v) and

BFShig(v), we optimize the original filtering-and-refinement framework.

Refinement. We first show that in the refinement phase, BFShig(v) can replace

DEShig(v) since vertices in BFShig(v) reach all the descendants of vertices in

DEShig(v).

39

Chapter 3 3.3.3 Two Labeling Methods

Lemma 3.
⋃

u∈BFShig(v) DES(u) =
⋃

u∈DEShig(v)
DES(u).

Proof. Let LHS be
⋃

u∈BFShig(v) DES(u) and RHS be
⋃

u∈DEShig(v)
DES(u).

• LHS ⊆ RHS follows from the fact BFShig(v) ⊆ DEShig(v).

• RHS ⊆ LHS: If ∃s ∈ RHS \ LHS, s ∈ RHS implies there is a path from v

to s containing some vertex w ∈ DEShig(v). On all paths from v to s, we

collect the inner vertices in DEShig(v) and insert them in set S (S is not

empty as w ∈ DEShig(v) is such a vertex). We choose the vertex u ∈ S with

the smallest distance to v: there is no other higher-order vertex on the v-u

path. By Algorithm 2, u ∈ BFShig(v). Thus, s ∈
⋃

u∈BFShig(v) DES(u) = LHS,

contradiction. ✷

Example 9. Consider the graph G in Fig. 3.1. For v3, BFShig(v3) can re-

place DEShig(v3) for refinement since BFShig(v3) = {v1, v2} reaches all descen-

dants of vertices in DEShig(v3):
⋃

u∈BFShig(v3) DES(u) =
⋃

u∈DEShig(v3)
DES(u) =

{v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11}.

Filtering. Next, we show BFSlow(v) is a super-set of L−in(v), meaning that

BFSlow(v) can replace DES(v) for filtering.

Lemma 4. L−in(v) ⊆ BFSlow(v).

Proof. Suppose there is s ∈ L−in(v) \ BFSlow(v), then there must be a path from

v to s through a high-order vertex u ∈ BFShig(v). By Theorem 1, s ̸∈ L−in(v),

contradiction.

Example 10. Consider the graph G in Fig. 3.1. For v3, BFSlow(v3) can re-

place DES(v3) for filtering, because BFSlow(v3) = {v3, v4, v6, v10, v11} includes all

vertices in L−in(v3) = ∅.

40

3.3.3 Two Labeling Methods Chapter 3

Basic Labeling Method. Lemma 4 shows that BFSlow(v) is a super-set of

L−in(v), while Lemma 3 shows that BFShig(v) is sufficient to eliminate invalid

elements not in L−in(v). Thus, we give the basic labeling method for labeling

v ∈ V .

Step 1. In the filtering phase, we use a v-sourced BFS to find BFSlow(v) and

BFShig(v);

Step 2. In the refinement phase, we perform a BFS for each vertex in BFShig(v).

Step 3. Return BFSlow(v)−
⋃

u∈BFShig(v) DES(u) as L−in(v).

Combing Lemma 3, Lemma 4, and Theorem 2, the correctness of this method

is given in Theorem 3.

Theorem 3. L−in(v) = BFSlow(v)−
⋃

u∈BFShig(v) DES(u).

C-2. Improved Labeling Method

Compared with the framework given in Theorem 2, the basic method based

on Theorem 3 reduces the number of BFSs needed in the refinement phase from

|DEShig(v)| to |BFShig(v)|. But the number |BFShig(v)| may still be very large.

Therefore, can we avoid using a large number of BFSs in the refinement phase?

To answer this question, we revisit the refinement phase of the basic method

(i.e., Lemma 3): when labeling v, w is eliminated when a vertex in BFShig(v)

can reach w. We focus on a specific vertex u ∈ BFShig(v), which has the highest

order on paths from v to w: when performing a u-sourced trimmed BFS in G, u

can reach w, so w is in BFSlow(u)
1; when performing a u-sourced trimmed BFS

in the inverse graph G, u can reach v, so v is in BFSG
low(u). Thus, by examining

whether there exist vertices u of order higher than v such that w ∈ BFSlow(u)

1Without ambiguity, BFSlow(u) and BFSGlow(u) refers to the same thing.

41

Chapter 3 3.3.3 Two Labeling Methods

and v ∈ BFSG
low(u), we can eliminate w to complete the refinement without using

any BFSs: the existence of higher-order vertices u on the v-w paths implies that

w can be eliminated.

Example 11. Consider the graph G in Fig. 3.1. For v3 in G, v4 can be elim-

inated because ∃v2 ∈ BFShig(v3) s.t., 1) in G (Fig. 3.1), v2-sourced BFS visits

v4 and hence v4 ∈ BFSlow(v2); 2) in G (Fig. 3.2), v2-sourced BFS visits v3, and

hence v3 ∈ BFSG
low(v2).

Improved Refinement. Based on the above idea, in the refinement phase of

labeling v, to check whether some vertex w ∈ BFSlow(v) should be removed,

we need to check if there exists u ∈ BFShig(v) such that w ∈ BFSlow(u) and

v ∈ BFSG
low(u). Determining w ∈ BFSlow(u) can be done intuitively in G, since

BFSlow(u) is known; but determining v ∈ BFSG
low(u) is not so simple, since the

information on G needs to be used.

To make it feasible to determine v ∈ BFSG
low(u), we create an inverted list

IBFSlow(v) for vertex v ∈ V .

Definition 6. If v is visited by the u-sourced trimmed BFS in G, vertex u is in

the inverse list IBFSlow(v) of v, i.e., IBFSlow(v) = {u|v ∈ BFSG
low(u)}.

With IBFSlow(v), we can eliminate w by Lemma 5.

Lemma 5. For a vertex w ∈ BFSlow(v), w ̸∈ L−in(v) if ∃u ∈ IBFSlow(v), and

w ∈ BFSlow(u).

Proof. A vertex u ∈ IBFSlow(v) with w ∈ BFSlow(u) means there is a higher-order

vertex u on the path from v to w. Then, w ̸∈ L−in(v) by Theorem 1.

Improved Labeling Method. With the refinement given in Lemma 5, we give

an improved labeling method for labeling v.

42

3.3.3 Two Labeling Methods Chapter 3

Step 1. In the filtering phase, we use a v-sourced BFS in G to find BFSlow(v)

and BFShig(v), for ∀v ∈ V ;

Step 2. We use a v-sourced BFS in G to find BFSG
low(v), and then get IBFSlow(v)

by Definition 6, for ∀v ∈ V ;

Step 3. In the refinement phase, if ∃u ∈ IBFSlow(v), and w ∈ BFSlow(u), the

vertex w can be eliminated;

Step 4. Return the non-eliminated vertices as L−in(v).

Combing Lemma 5 and Theorem 3, the correctness of this method is given

below.

Theorem 4. L−in(v) = BFSlow(v) − S, where S = {w|w ∈ BFSlow(v), ∃u ∈

IBFSlow(v), w ∈ BFSlow(u)}.

Note that in Step 2 of the improved labeling method, we need a v-sourced

trimmed BFS on G to obtain L−in(v). This step does not introduce additional

costs because BFSG
low(v) is needed to obtain L−out(v). In other words, only trimmed

BFSs are required to obtain both L−in(v) and L−out(v).

So far, in addition to finding the backward label sets using the framework

given in Theorem 2, we have proposed a basic method based on Theorem 3 and

an improved method based on Theorem 4. We give in Table 3.4 the number of

BFSs required in the filtering and refinement phases for each method.

Table 3.4: The Comparison Between Labeling Methods

Method Filtering Refinement
Theorem 2 1 |DEShig(v)|
Theorem 3 (Basic) 1 |BFShig(v)| ≤ |DEShig(v)|
Theorem 4 (Improved) 1 1

43

Chapter 3 3.3.4 Distributed Implementation

3.3.4 Distributed Implementation

To handle distributed graphs, we implement the improved labeling method using

a vertex-centric system, which is denoted as DRL. We omit the distributed

implementation of the basic labeling method, as this can be implemented in a

similar way.

Algorithm 3: Compute() for DRL

1 Data: in-msgs← messages from in-neighbors;
2 out-msgs← messages to out-neighbors;
3 if super-step = 1 then

// w is vertex to perform computations
4 w = vertex_id();
5 w.status(z)← ? , for each vertex z ∈ V ;
6 w.status(w)← →;

// message format:{ID, order}
7 message ← {w, ord(w)};
8 send message to out-neighbors;

9 foreach message ∈ in-msgs do
// v is the source to do trimmed BFS

10 v ← message.ID;
11 ord(v)← messge.order;
12 if w.status(v) = → then continue;
13 if ord(v) > ord(w) then
14 if Check(v, w)=true then continue;
15 w.status(v)← →;
16 message ← {v, ord(v)};
17 send message to out-neighbors;

// works on G
18 insert v into IBFSlow(w);

// only run after the final super-step
19 foreach v, s.t., w.status(v) = → do
20 if Check(v, w)=true then w.status(v)← ? ;

21 Procedure Check(v, w)
22 foreach u ∈ IBFSlow(v) do
23 if w.status(u) = → then return true

24 return false

44

3.3.4 Distributed Implementation Chapter 3

Algorithm. Algorithm 3 describes DRL, where the compute() function is exe-

cuted on each vertex w ∈ V in super-steps. We record the visited status of w

using a status array2 w.status. Specifically, if the value of w.status(v) is ? , then

w is not visited by the vertex v; if the value is →, then w is visited by v. By

reading the values of status arrays, the backward in-label sets of all vertices can

be obtained.

In the first super-step (Line 3), vertex w initializes its status array by as-

signing the unvisited status ? to all vertices (Line 5), except for w itself, which

is assigned as → (Line 6). Then, w sends the message containing its vertex ID

(w) and vertex order (ord(w)) to out-neighbors (Line 7-8). In subsequent super-

steps, once vertex w receives the message from in-neighbors (Line 9), w extracts

vertex ID v (Line 10) and order ord(v) (Line 11) of the message. If w.status(v)

is →, we do nothing as v visited w before (Line 12).

If w.status(v) is ? and the order v is higher than w, we continue the v-

sourced trimmed BFS via w (Line 13). We mark the status of w.status(v) as →

(Line 15), and we send the message {v, ord(v)} to w’s out-neighbors to continue

the v-sourced BFS. Also, on the inverse graph G, if v can reach w, then v is

inserted in IBFSlow(w) (Line 18). Note that we will call the procedure Check(v, w)

(Line 21-24) for an expansion pruning (Line 14): if IBFSlow(v) contains a vertex

u that can reach w, it follows from Lemma 5 that w is not in L−in(v), and we

prune the expansion of v-sourced BFS via w.

In the final super-step, we check for w the vertices v for which w.status(v) is

→: if the procedure Check(v, w) returns true, we reset w.status(v) to ? (Line 19-

20). After this check, the vertices w for which w.status(v) is → form the back-

ward in-label set L−in(v) of v. Finally, we can collect the backward label sets

of each vertex on one machine to obtain an index the same as TOL to support

2In the implementation, the hash table can be used to replace the array because of the
sparsity of the array.

45

Chapter 3 3.3.4 Distributed Implementation

reachability queries.

Analysis. We give the correctness analysis of DRL, i.e., the vertices w whose

w.status(v) value is → form L−in(v) of v.

Theorem 5. Given a graph G and a vertex v, L−in(v) = {w|w.status(v) = →}

for Algorithm 3.

Proof. We denote RHS by {w|w.status(v) = →} and we prove L−in(v) = RHS.

• RHS ⊆ L−in(v): w.status(v) = → means that v can reach w and ord(w) < ord(v).

Then we verify that there are no higher-order vertices on any path from v to w,

thus deriving w ∈ L−in(v) by Theorem 1. Suppose there are high-order vertices

on paths from v to w, we choose the highest-order vertex u. Since u’s order is

the highest on all v-w paths, u can reach v in G, thus u ∈ IBFSlow(v); u can

reach w in G, thus w.status(u) = →. So the procedure Check(v,w) will set

w.status(v) = ? , contradiction.

• L−in(v) ⊆ RHS: Suppose there exists a vertex w ∈ L−in(v) and w.status(v) = ? ,

then there are two cases: 1) if v cannot reach w, then w ̸∈ L−in(v) by Theorem 1,

contradiction; 2) there exists a higher-order vertex u in IBFSlow(v) to block the

expansion branch from v to w to set w.status(v) to ? (Line 14) or to reset

w.status(v) to ? (Line 19-20), which contradicts with Theorem 1. ✷

We then analyze the computation and communication costs.

Lemma 6. The computation cost of labeling a vertex v ∈ V using Algorithm 3

is O(|E|+ |IBFSlow(v)| · |V |), where |IBFSlow(v)| is the inverted list size of v.

Proof. The time required to perform a v-sourced trimmed BFS is O(|E|). Also,

Algorithm 3 triggers at most |V | times of the Check() procedure for v, each

requiring |IBFSlow(v)| time.

46

3.4. BATCH LABELING OPTIMIZATION Chapter 3

Lemma 7. The communication cost of labeling a vertex v ∈ V using Algorithm 3

is O(|E|+ |IBFSlow(v)|).

Proof. Each vertex needs to send/read a message to its neighbors at most once

for labeling a certain vertex v. In addition, we need to share IBFSlow(v) to imple-

ment the Check() procedure. Hence, the communication cost is
∑

v∈V dout(v) +∑
v∈V din(v) + |IBFSlow(v)| = |E|+ |IBFSlow(v)|.

Remark. Although each vertex v needs to share its inverted list IBFSlow(v), the

size of IBFSlow(v) is pretty small (empirical studies show that the average size

of IBFSlow(v) of each vertex v is less than one), so the communication overhead

associated with sharing the inverted list is not significant. The efficiency of DRL

is validated in Section 3.5.

3.4 Batch Labeling Optimization

DRL creates backward label sets for all vertices in parallel. However, DRL misses

the opportunity provided by the serial execution of TOL — the already processed

high-order vertices strongly prune the search space when labeling the current

vertex. As a remedy, we further improve the labeling efficiency by splitting

vertices into batches to trade-off between pruning power and parallelization.

Batch Sequence. We split the vertices into a batch sequence for batch labeling :

we label all the vertices within a batch simultaneously, while vertices in different

batches perform the labeling process sequentially.

Definition 7. [V1, V2, . . . , Vg] is a batch sequence when

•
⋃

i∈[1,g] Vi = V and Vi ∩ Vj = ∅, for ∀i ̸= j;

• for vertex u ∈ Vi and vertex v ∈ Vj with i < j, it must be ensured that

ord(u) > ord(v).

47

Chapter 3 3.4. BATCH LABELING OPTIMIZATION

The batch sequence [V1, V2, . . . , Vg] is a graph partition since it disjointly

covers all vertices. Also, the vertices with high order are placed before the

vertices with low order in the sequence. When the batch size |Vi| (1 ≤ i ≤ g) is

fixed to one, we get |V | batches of vertices for labeling. This fully serial execution

is howTOL works. When the batch size is fixed to |V |, we get 1 batch of vertices

for labeling. This fully parallel execution is how DRL works. By setting the

batch size flexibly, we make a trade-off between TOL and DRL.

To obtain a valid batch sequence, we need two parameters: an initial batch

size variable b (ranging from 1 to |V |) and an increment factor k. The specific

procedure is given below.

Step 1. Sort vertices V in a non-increasing order of ord values, and then copy

sorted vertices into the set S;

Step 2. In iteration i, remove b vertices with the highest order from S to form

Vi (i.e., S ← S \Vi), and then multiply b by k for the next iteration (i.e.,

b← b · k);

Step 3. Stop at round g + 1 when S = ∅ and return [V1, V2, · · · , Vg]; otherwise,

increase i by 1 and go to Step 2.

The number of vertices in the last batch Vg may not exceed b. We set the

values of both b and k to 2. The effect of b and k on the labeling efficiency is

discussed in Section 5.

Example 12. Consider the graph G in Fig. 3.1. Suppose b = 2 and k = 2. In

the first round (b = 2), we get V1 = {v1, v2}; in the second round (b = 4), we get

V2 = {v3, v4, v5, v6}; in the third round (b = 8), we get V3 = {v7, v8, v9, v10, v11}.

[V1, V2, V3] is a batch sequence of G.

48

3.4. BATCH LABELING OPTIMIZATION Chapter 3

Batch Label Sets. Since we process vertices in batches, the vertices in previous

batches [V1, V2, · · · , Vi−1] completed labeling before the current batch Vi begins.

We define label sets generated by vertices in batches [V1, V2, · · · , Vi−1] as batch

label sets regarding Vi.

Definition 8. Given the batch Vi, the batch in-label set LVi
in (w) of a vertex w ∈

V is defined as LVi
in (w) = {u|u ∈ Lin(w), ord(u) > ord(Vi)}; the batch out-label

set LVi
out(w) of a vertex w ∈ V is defined as LVi

out(w) = {u|u ∈ Lout(w), ord(u) >

ord(Vi)}, where ord(Vi) = max{ord(v)|v ∈ Vi}.

Similar to TOL, we can use the batch label sets to perform the pruning

operation during the current batch, thereby optimizing the efficiency of DRL.

Example 13. Consider the graph G in Fig. 3.1. Suppose v1 and v2 finished

labeling in the previous batch V1 and only v3 is in current batch V2. Before

V2 starts labeling, the batch in-label set LV2
in (v9) of v9 is {v1}: v1 in Lin(v9) =

{v1, v8, v9} has a higher order than v3; the batch out-label set LV2
out(v9) of v9 is ∅:

Lout(v9) = {v9} has no vertex of higher order than v3.

Algorithm. We incorporate the idea of batch labeling into DRL and implement

it on a vertex-centric system to obtain algorithm DRLb (Algorithm 4). DRLb

resembles DRL (Algorithm 3), and we only list the differences. First, only vertices

in the current batch Vi are selected for labeling (Line 6); Also, if there is a higher-

order vertex on the path from w to w (LVi
out(w) ∩ LVi

in (w) ̸= ∅), w is pruned (note

that the graph is unnecessary to be acyclic) (Line 6). The batch label sets are

then sent to all computation nodes (Line 8). The batch label sets are also used for

pruning in Line 12. Then, at the end of batch Vi, vertices v with w.status(v) = →

form batch in-label set of w for the next round (Line 14).

Example 14. Fig. 3.4 shows how batch labeling works. When labeling v3 in

49

Chapter 3 3.4. BATCH LABELING OPTIMIZATION

Algorithm 4: Compute() for DRLb

1 Data: in-msgs← messages from in-neighbors;
2 out-msgs← messages to out-neighbors;
3 Input: Vi;
4 if super-step = 1 then

// w is vertex to perform computations
5 w = vertex_id();
6 if w /∈ Vi or LVi

out(w) ∩ LVi
in (w) ̸= ∅ then Return;

7 the same as Line 5-8 of Algorithm 3;
8 broadcast LVi

out(w) and LVi
in (w) to all computation nodes;

9 for each message ∈ in-msgs do
// v is source to do trimmed BFS

10 v ← message.ID;
11 ord(v)← messge.order;
12 if LVi

out(w) ∩ LVi
in (w) ̸= ∅ then Continue;

13 the same as Line 12-20 in Algorithm 3;

// only run after the final super-step

14 L
Vi+1

in (w)← {v|w.status(v) = →};

V8

V7

V6

V5

V3

V4
V2

V1

V9

V10
V11

Figure 3.4: The Illustration of Batch Labeling
the current batch Vi, as LVi

in (v3) = {v2} intersects with LVi
out(v3) = {v1, v2}, v3 is

pruned immediately — the search space for labeling v3 is dramatically reduced.

Analysis. We analyze the correctness of DRLb.

Theorem 6. Given a graph G and a vertex v, L−in(v) = {w|w.status(v) = →}

for Algorithm 4.

Proof. We denote {w|w.status(v) = →} by RHS and prove that L−in(v) = RHS.

• RHS ⊆ L−in(v): Suppose there is a vertex w with w.status(v) = → but w ̸∈

L−in(v), w ̸∈ L−in(v) implies 1) v ̸→ w, which shows that w.status(v) = ? , or 2)

50

3.4. BATCH LABELING OPTIMIZATION Chapter 3

there is a vertex with order higher than v on a path from v to w, so we select

the highest-order vertex s. If s is in the previous batches and the current

batch is denoted as Vi, since there are no vertices to prune s, s ∈ LVi
out(v) and

s ∈ LVi
in (w). Hence, w.status(v) = ? by Line 12 of Algorithm 4; or s is in the

current batch, then w.status(v) = ? by the correctness of DRL, contradiction.

• L−in(v) ⊆ RHS: We prove this by induction on the batch number. When

v ∈ V1, since no pruning occurs, then DRLb is correct by the correction of

DRL. Suppose Vi−1 finishes labeling and DRLb is correct, we prove DRLb is

correct for v ∈ Vi. Since w ∈ L−in(v), then v can reach w and no pruning

occurs at Line 12 of Algorithm 4. Therefore, by the correction of DRL, DRLb

is correct for v ∈ Vi. ✷

We then provide its computation and communication costs.

Lemma 8. The computation cost of labeling a vertex v ∈ V using Algorithm 4

is O(|E ′| + (|IBFSlow(v)| + ∆) · |V |), where E ′ ⊆ E, and ∆ is the largest label

size.

Proof. For each vertex v, Algorithm 4 needs to explore the reduced search space

(denoted as E ′, E ′ ⊆ E) due to the pruning operation. Moreover, Algorithm 4

requires at most |V | times of Check() procedure (each costing O(|IBFSlow(v)|))

and |V | label queries (each costing O(∆)).

Lemma 9. The communication cost of labeling a vertex v ∈ V using Algorithm 4

is O(|E ′|+ |IBFSlow(v)|+∆).

Proof. The cost comes from: 1) sharing label sets with other computation nodes,

which incurs O(∆) cost; 2) sending IBFSlow(v) for refinement; 3) reduced search

space E ′.

51

Chapter 3 3.5. EXPERIMENTS

Remark. Compared to DRL (Algorithm 3), DRLb (Algorithm 4) requires addi-

tional costs to share and query batch label sets. However, empirical studies in

Section 3.5 show that the benefit of reducing the search space from E to E ′ ⊆ E

outweighs the additional overhead.

3.5 Experiments

3.5.1 Settings

Algorithms. We aim to propose distributed labeling algorithms that produce

the same index as TOL. Our methods include:

• DRL (Algorithm 3), a distributed labeling algorithm based on Theorem 4.

• DRL−, a basic labeling algorithm based on Theorem 3. Since its distributed

implementation is similar to DRL, we omit its implementation details.

• DRLb (Algorithm 4), a distributed algorithm obtained by applying batch la-

beling to DRL.

Datasets. The experiments were conducted on 18 real-world directed graphs

that are widely used in recent work related to reachability queries [26, 48, 46].

The properties of the graphs are shown in Table 3.5. The largest graph has

more than 3.7 billion edges. All the datasets are from Stanford Large Network

Dataset Collection3 [57], Koblenz Network Collection4 [54], Laboratory for Web

Algorithms5 [17, 16], Network Data Repository6 [74], and the links in [100]. Note

that, to verify the generality of our algorithms for processing distributed graphs,

3http://snap.stanford.edu/data/
4http://konect.uni-koblenz.de/
5http://law.di.unimi.it
6http://networkrepository.com/

52

3.5.1 Settings Chapter 3

Table 3.5: Datasets

Name Dataset |V | |E| Type
WEBW Web-wikipedia 1,864,433 4,507,315 Web
DBPE Dbpedia 3,365,623 7,989,191 Knowledge
CITE Citeseerx 6,540,401 15,011,260 Citation
CITP Cit-patent 3,774,768 16,518,947 Citation
TW Twitter 18,121,168 18,359,487 Social
GO Go-uniprot 6967956 34,770,235 Biology
SINA Soc-sinaweibo 58,655,849 261,321,071 Social
LINK Wikipedia-link 13,593,032 437,217,424 Web
WEBB Webbase-2001 118,142,155 1,019,903,190 Web
GRPH Graph500 17,043,780 1,046,934,896 Synthetic
TWIT Twitter-2010 41,652,230 1,468,365,182 Social
HOST Host-linkage 57,383,985 1,643,624,227 Web
GSH Gsh-2015-host 68,660,142 1,802,747,600 Web
SK Sk-2005 50,636,154 1,949,412,601 Web
TWIM Twitter-mpi 52,579,682 1,963,263,821 Social
FRIE Friendster 68,349,466 2,586,147,869 Social
UK Uk-2006-05 77,741,046 2,965,197,340 Web
WEBS Webspam-uk 105,896,555 3,738,733,648 Web

we do not transform the graphs into acyclic graphs, but build the indexes directly

on the original graphs.

Environment. We implement all algorithms in C++ and compile them using

GNU GCC 4.8.5. We use MPICH to implement the distributed algorithms.

Our algorithms are executed on a cluster of 32 computation nodes — each node

contains an Intel Xeon 2.7 GHz CPU, 32 GB main memory, and runs Linux (Red

Hat Linux 4.8.5, 64 bits). In contrast, centralized algorithms such as TOL [101]

and BFL [79] are executed on only one node with the same settings. If not

explicitly stated, we only run one thread on each computation node. We set the

cut-off time to 2 hours. If the algorithm runs out of memory or cannot complete

the computation within the cut-off time, the execution time is marked as “INF”.

Graph Partition Strategy. For the distributed algorithms, we adopt a vertex-

centric paradigm and partition the vertices in the graph based on their hash

53

C
ha

pt
er

3
3.

5.
1

Se
tt

in
gs

T
ab

le
3.

6:
T

he
C

om
pa

ri
so

n
w

it
h

C
om

pe
ti
to

r
M

et
ho

ds

Index Time (sec) Index Size (MB) Query Time (sec)
Name BFLC BFLD TOL DRLb DRLMb BFLC BFLD TOL DRLb DRLMb BFLC BFLD TOL DRLb DRLMb
WEBW 1.51 59.21 61.84 9.08 7.31 85.35 85.35 432.06 432.06 432.06 8.58E-07 5.39E-05 2.09E-07 2.09E-07 2.09E-07
DBPE 2.10 110.17 2.21 0.92 0.64 154.07 154.07 63.91 63.91 63.91 2.25E-07 4.63E-05 1.51E-07 1.51E-07 1.51E-07
CITE 3.39 195.62 4.95 2.34 1.42 299.40 299.40 138.80 138.80 138.80 1.24E-07 4.52E-05 1.78E-07 1.78E-07 1.78E-07
CITP 5.10 138.30 125.21 13.36 11.17 172.80 172.80 622.04 622.04 622.04 5.68E-07 5.07E-05 3.12E-07 3.12E-07 3.12E-07
TW 3.74 469.34 7.27 1.13 1.40 829.52 829.52 271.60 271.60 271.60 1.95E-07 6.72E-05 1.84E-07 1.84E-07 1.84E-07
GO 3.56 365.38 7.40 1.76 2.03 318.97 318.97 274.43 274.43 274.43 1.11E-07 4.41E-05 2.02E-07 2.02E-07 2.02E-07
SINA 41.35 2,822.48 − 136.32 − 2,685.05 2,685.05 − 13,691.20 − 2.82E-06 8.64E-05 − 6.76E-07 −
LINK 16.29 213.43 55.16 15.64 9.38 622.24 622.24 239.76 239.76 239.76 2.29E-07 7.31E-05 1.35E-07 1.35E-07 1.35E-07
WEBB − 1,181.08 − 103.98 − − 5,408.12 − 2,578.85 − − 2.37E-04 − 1.84E-07 −
GRPH 46.30 6.36 76.31 24.00 16.44 780.20 780.20 325.01 325.01 325.01 9.61E-08 7.03E-05 8.71E-08 8.71E-08 8.71E-08
TWIT 57.44 304.55 134.87 62.82 35.79 1,906.69 1,906.69 766.17 766.17 766.17 1.55E-07 1.43E-04 1.06E-07 1.06E-07 1.06E-07
HOST − 1,655.19 − 66.87 − − 2,626.83 − 926.77 − − 5.30E-04 − 2.26E-07 −
GSH − 512.04 − 77.93 − − 3,143.01 − 1,266.78 − − 2.85E-04 − 1.37E-07 −
SK − 219.47 − 82.85 − − 2,317.94 − 975.83 − − 1.80E-04 − 1.01E-07 −
TWIM − 359.05 − 68.36 − − 2,406.91 − 958.17 − − 2.60E-04 − 2.76E-07 −
FRIE − 688.47 − 112.77 − − 3,128.79 − 1,240.01 − − 3.58E-04 − 4.38E-07 −
UK − 296.52 − 217.94 − − 3,558.70 − 1,567.59 − − 2.25E-04 − 2.81E-07 −
WEBS − 747.92 − 188.58 − − 4,847.56 − 2,063.97 − − 4.81E-04 − 4.15E-07 −

54

3.5.2 Comparison with Competitor Methods Chapter 3

values. This ensures that each partition has roughly the same number of vertices.

However, for the scale-free networks, there may be vertices with large degrees,

which can lead to imbalanced workloads and high communication costs. To

address these issues, we adopt the vertex mirroring technique introduced in [94].

This technique creates mirrors for the high-degree vertices in each partition.

The edges adjacent to these vertices are partitioned based on the location of the

other endpoints and are stored with the mirrors. The messages from the original

vertex are first sent to its mirrors and then relayed to its neighbors. For vertices

with small degrees, we do not create mirrors and store their adjacent edges with

them.

3.5.2 Comparison with Competitor Methods

Exp 1: Comparison with TOL. TOL is an index-only algorithm [101]. To

illustrate the necessity of the proposed methods, we compare our best method

DRLb with TOL. The results of the comparison are given in Table 3.6. When

a method cannot complete index creation because it exceeds the memory limit,

we mark its results with the notation “-” in the table.

On index time. The time of DRLb includes both computation time and commu-

nication time. On a medium-sized graph that can be accommodated by a single

computation node, DRLb’s index time can be at most 9.37 times faster than TOL.

Note that TOL is a centralized algorithm and cannot handle distributed graphs.

When a single computation node cannot accommodate a graph (e.g., WEBS),

TOL fails to work. In contrast, DRLb can index all graphs within half an hour.

This shows that our method can efficiently handle large-scale graphs that are

beyond the ability of TOL.

On index size. For DRLb, we aggregate the index distributed on different com-

putation nodes on one node. Hence, our algorithms have the same index size

55

Chapter 3 3.5.2 Comparison with Competitor Methods

as TOL. The index size of DRLb (and TOL) on all graphs is very small. For

example, the largest graph WEBS has an index size of 2.06 GB. This indicates

that although distributed graphs may be large, the generated index can be ac-

commodated on an ordinary machine to support in-memory queries. So, it is

feasible to create the index of TOL for a distributed graph because the index size

is not so large.

On query time. DRLb creates the same index as TOL, so the query time is the

same for TOL and DRLb. The query time of DRLb (and TOL) on all graphs

is less than one microsecond. This result reinforces our research motivation

that efficient reachability queries on a distributed graph can be supported by

proposing new labeling methods to obtain the same index as TOL.

Exp 2: Comparison with BFL. We compare our best method DRLb with

BFL, which is an index-assisted method [79]. BFL uses DFS to create the in-

dex and may also use the online search (e.g. DFS) at query time. We use the

code provided in [79] to implement the centralized BFL algorithm, which is de-

noted as BFLC, where all parameters are set by default. Also, we implemented

a distributed version of DFS (which is a core operation of BFL) to obtain the

distributed BFL algorithm, which is denoted as BFLD. BFLC runs on one compu-

tation node, while BFLD runs on 32 nodes. We compare DRLb, BFLC, and BFLD

and record the results in Table 3.6.

On index time. (1) First, we compare DRLb with the centralized algorithm BFLC.

On medium-sized graphs, the index time of BFLC is normally better than that

of DRLb. But the index time of DRLb is comparable to that of BFLC: the index

time of DRLb is within seven times that of BFLC. Moreover, DRLb can handle

large-scale graphs for which BFLC cannot create indexes. (2) Then, we compare

DRLb with the distributed algorithm BFLD. BFLD can process large-scale graphs

by partitioning them to different computation nodes. But because BFLD requires

56

3.5.2 Comparison with Competitor Methods Chapter 3

the distributed DFS to create indexes, its index time is very high: BFLD runs on

average 52.54 times slower than DRLb.

On index size. Since the index sizes of BFLC and BFLD are the same on all graphs,

we only compare the index sizes of BFLD and DRLb. It can be seen that the index

size of BFLD is small on all graphs (no larger than 6 GB), and the index of BFLD

is smaller than that of DRLb on WEBW, CITP, and SINA. However, the index

size of DRLb is smaller than that of BFLD on the other graphs: the index size of

DRLb is on average 2.38 times smaller than that of BFLD on these graphs.

On query time. (1) We first compare the query time of BFLC and DRLb. Both

BFLC and DRLb can answer queries in microseconds, but the performance of DRLb

is better than BFLC: on average, the query time of DRLb is 1.8 times faster than

that of BFLC on graphs that BFLC can process. (2) Then we compare the query

time of BFLD and DRLb. Because BFLD cannot avoid traversing the distributed

graph to answer queries, the performance of BFLD can be very bad: the query

time of BFLD is on average 867.6 times longer than that of DRLb.

Overall, BFL performs well only when index creation can be done on a sin-

gle node (see performance of BFLC); when dealing with large graphs, BFL has

high index time and query time due to the high cost of distributed DFS and

graph search (see performance of BFLD). This clarifies why we parallelize the

index-only method TOL instead of BFL. Note that the graphs we use are not

converted to be acyclic because of the high cost of performing such conversions

in a distributed environment using DFS. This partly explains why there are some

minor inconsistencies between our conclusions and [79].

Exp 3: Comparison with Multi-core Version. Our algorithm DRLb (see

Algorithm 4) achieves parallelism among multiple computation nodes in a dis-

tributed environment. Besides, we can also achieve parallelism among multiple

threads (instead of multiple nodes), resulting in a multi-core version of DRLb,

57

Chapter 3 3.5.3 Comparison Between Proposed Algorithms

which is denoted as DRLMb . For a fair comparison, we test DRLMb in a machine

configured similarly to the single computation node used by DRLb, and this ma-

chine contains 32 cores and has a memory size of 32 GB. OpenMP [32] is used

to implement DRLMb . Since DRLb and DRLMb have the same index size and query

time, we compare only the index time between them. We record the results in

Table 3.6 and have the following findings.

On medium-sized graphs. Because DRLMb can use shared memory for data ex-

change [20], it avoids the communication cost of DRLb. This leads to a better

index time for DRLMb than for DRLb in most cases: DRLMb is 1.34 times faster

than DRLb on graphs where DRLMb can create indexes. However, this speedup is

limited. One possible reason is that the communication cost of DRLb is relatively

small compared to the computation cost (see the communication time and the

computation time of DRLb in Exp 4 for details), leading to a less prominent

advantage of shared memory.

On large-scale graphs. Since DRLMb is a centralized algorithm, the usability of

DRLMb is limited by memory and therefore cannot build indexes for massive

graphs. For example, DRLMb ran out of memory when building the index for

WEBS. On the other hand, DRLb can allocate graphs to multiple computation

nodes and thus is more suitable for large graph processing.

3.5.3 Comparison Between Proposed Algorithms

Exp 4: Communication and Computation Time. We compare our pro-

posed labeling algorithms, DRL−, DRL, and DRLb. We divide the index time of

the proposed algorithms into computation time and communication time. If an

algorithm is unable to finish labeling within the cut-off time, we do not report

its time and mark the failure at the title of that graph. Due to space constraints,

we present in Fig. 3.5 the results on the first 6 graphs (WEBW, DBPE, CITE,

58

3.5.3 Comparison Between Proposed Algorithms Chapter 3

Computation Communication

 1

 10

 100

 1000

 10000

DRL
− DRL DRLb

Time Consumption (sec)

(a) WEBW

 0.1

 1

 10

DRL
− DRL DRLb

Time Consumption (sec)

(b) DBPE (DRL− Fails)

 0.1

 1

 10

DRL
− DRL DRLb

Time Consumption (sec)

(c) CITE (DRL− Fails)

 1

 10

 100

 1000

DRL
− DRL DRLb

Time Consumption (sec)

(d) CITP

 0.1

 1

 10

DRL
− DRL DRLb

Time Consumption (sec)

(e) TW (DRL− Fails)

 0.1

 1

 10

 100

DRL
− DRL DRLb

Time Consumption (sec)

(f) GO

Figure 3.5: The Comparison of Communication and Computation Time

CITP, TW, and GO) with the following findings.

Comparison of DRL− and DRL. Compared to DRL−, DRL uses the inverted list

to implement the refinement phase. We find that DRL can index on DBPE,

CITE and TW, while DRL− cannot. In addition, on the other three graphs, DRL

has an average of 88.2 times shorter index time than DRL−, thanks to the new

refinement technique used by DRL.

Comparison of DRL and DRLb. DRLb uses batch labeling to further optimize

DRL. We find that DRLb has an average of 3.5 times shorter index time over DRL.

Moreover, DRLb reduces the computation time while substantially reducing the

59

Chapter 3 3.5.3 Comparison Between Proposed Algorithms

communication cost of DRL, which validates the effectiveness of the optimization

strategy used by DRLb.

DRL
-

 DRL DRL
b

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

1 2 4 8 16 32

Speedup

(a) WEBW (DRL− Fails)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

1 2 4 8 16 32

Speedup

(b) DBPE (DRL− Fails)

 0

 1

 2

 3

 4

 5

 6

1 2 4 8 16 32

Speedup

(c) CITE (DRL− Fails)

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

1 2 4 8 16 32

Speedup

(d) CITP (DRL− Fails)

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 4 8 16 32

Speedup

(e) TW (DRL− Fails)

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

1 2 4 8 16 32

Speedup

(f) GO

Figure 3.6: The Effect of # of Nodes on the Index Time

Exp 5: Effect of Node Number. We used 32 computation nodes by default.

To test the impact of the number of computation nodes on the proposed algo-

rithms, we varied the number of nodes from 1, 2, 4, 8, 16 to 32 and recorded the

corresponding index time. We define the speedup as the ratio of the index time

on one node to the index time on x nodes, i.e., speedup = the index time on 1 node
the index time on x node . If

an algorithm fails to finish labeling within the cut-off time on 1 node, we do not

report its speedup ratio and mark the failure at the title of that graph. We show

60

3.5.4 Effect of Parameters on Index Time Chapter 3

the speedup ratios on the first six graphs in Fig. 3.6 with the following findings.

DRLb has a satisfying speedup ratio. The maximum speedup ratio for DRLb with

32 nodes is 17.93 (on CITP) compared to using a single node. Moreover, the

speedup ratio of DRLb shows an increasing trend as the number of nodes in-

creases.

The speedup of DRL− and DRL has limitations. Although the maximum

speedup ratio of DRL− is 12.54 (on GO), DRL− cannot finish labeling on other

five graphs using a single node within the cut-off time. On the other hand,

although the maximum speedup ratio of DRL is 18.69 (on WEBW), on TW,

the ratio of DRL is only 2.86 while that of DRLb is 17.2, which shows that

introducing the batch labeling optimization maintains a better speedup ratio.

Exp 6: Test of Scalability. In testing the scalability of the proposed algo-

rithms, we divide the edges of the graph into five disjoint groups, each group

consisting of 1
5

edges of the original graph. We generate five test graphs, where

the i-th test graph contains edges in the first i groups. The experiments are

conducted on five test graphs for each dataset. Since the index size and query

time are the same for all algorithms, we omit the discussion of them and only

provide the effect on the index time in Fig. 3.7. We have the following finding.

The proposed algorithms exhibit good scalability. The index time of all algo-

rithms improves as the graph size becomes larger. However, the increase of

all methods is smooth. For example, the index time of DRLb for the test graph

with 100% edges is 4.8 times longer than that of the test graph with 20% edges

on TW. This indicates the good scalability of the proposed algorithms.

3.5.4 Effect of Parameters on Index Time

In Exp-4, we verified that using the batch labeling optimization (forming DRLb)

can speed up the index time of DRL. For DRLb, two parameters need to be set to

61

Chapter 3 3.5.4 Effect of Parameters on Index Time

DRL
-

 DRL DRL
b

10
-1

10
0

10
1

10
2

10
3

10
4

20% 40% 60% 80% 100%

Time Consumption (sec)

(a) WEBW

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

INF

20% 40% 60% 80% 100%

Time Consumption (sec)

(b) DBPE

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

INF

20% 40% 60% 80% 100%

Time Consumption (sec)

(c) CITE

10
-1

10
0

10
1

10
2

10
3

20% 40% 60% 80% 100%

Time Consumption (sec)

(d) CITP

10
-1

10
0

10
1

10
2

10
3

INF

20% 40% 60% 80% 100%

Time Consumption (sec)

(e) TW

10
-1

10
0

10
1

10
2

20% 40% 60% 80% 100%

Time Consumption (sec)

(f) GO

Figure 3.7: The Test of the Scalability on the Index Time

generate the batch sequence: the initial batch size b and the incremental factor

k. We set both parameters to 2 by default, but we need to further test the effect

of these two parameters on the index performance (time) of DRLb.

Exp 7: Effect of Initial Batch Size b. We first analyze the effect of b. We

vary the value of b from 1, 2, 4, 8, 16, 32, 64, to 128. We record the index time

of DRLb for different values of b and present the results of DRLb on the first 6

graphs in Fig 3.8. We have the following findings.

b has little effect on the index time. As the value of b varies, the difference be-

tween the maximum index time and the minimum index time on all used graphs

62

3.5.4 Effect of Parameters on Index Time Chapter 3

 0

 2

 4

 6

 8

 10

 12

 14

1 2 4 8 16 32 64 128

Time Consumption (sec)

(a) WEBW

 0

 1

 2

 3

 4

 5

1 2 4 8 16 32 64 128

Time Consumption (sec)

(b) DBPE

 0

 1

 2

 3

 4

 5

1 2 4 8 16 32 64 128

Time Consumption (sec)

(c) CITE

 0

 5

 10

 15

 20

 25

 30

1 2 4 8 16 32 64 128

Time Consumption (sec)

(d) CITP

 0

 1

 2

 3

 4

 5

1 2 4 8 16 32 64 128

Time Consumption (sec)

(e) TW

 0

 1

 2

 3

 4

 5

1 2 4 8 16 32 64 128

Time Consumption (sec)

(f) GO

Figure 3.8: The Effect of Initial Batch Size b on the Index Time

is no more than 1.5 times. This indicates that DRLb is not sensitive to the

parameter b.

The default value of 2 is a good choice. On some graphs (e.g., WEBW and

DBPE), setting b to 2 leads to a local minimum index time. This explains

why 2 is used as the default value.

Exp 8: Effect of Factor k. We analyze the effect of another parameter k on

the index time. We vary the value of k from 1, 1.5, 2, 2.5, 3, 3.5, to 4. We

report the index time of DRLb for different k in Fig. 3.9 and obtain the following

findings.

When k is not 1. When k is taken other than 1, the index time does not vary

63

Chapter 3 3.5.4 Effect of Parameters on Index Time

much: the difference between the maximum and minimum index time on all

graphs does not exceed 1.4. Also, on some graphs (e.g., DBPE and CITE), the

index time reaches a local minimum when k is 2, so 2 is used as the default value.

When k is 1. The index time becomes very slow when k is taken as 1: the index

time is up to 812 times slower when k is 1 than when k is taken as other. This

further explains why k needs to be set to 2 as the default value.

10
0

10
1

10
2

10
3

1 1.5 2 2.5 3 3.5 4

Time Consumption (sec)

(a) WEBW

10
-1

10
0

10
1

10
2

10
3

1 1.5 2 2.5 3 3.5 4

Time Consumption (sec)

(b) DBPE

10
0

10
1

10
2

10
3

1 1.5 2 2.5 3 3.5 4

Time Consumption (sec)

(c) CITE

10
1

10
2

10
3

1 1.5 2 2.5 3 3.5 4

Time Consumption (sec)

(d) CITP

10
0

10
1

10
2

10
3

10
4

1 1.5 2 2.5 3 3.5 4

Time Consumption (sec)

(e) TW

10
0

10
1

10
2

10
3

1 1.5 2 2.5 3 3.5 4

Time Consumption (sec)

(f) GO

Figure 3.9: The Effect of Factor k on the Index Time

64

3.6. CHAPTER SUMMARY Chapter 3

3.6 Chapter Summary

We develop novel labeling methods to produce the same indexes as TOL on

distributed graphs. To overcome the limitation that TOL cannot be executed in

parallel, we resort to finding the backward label set of each vertex. We propose to

use a filtering-and-refinement framework to find backward label sets. Using this

framework, we design new labeling algorithms and further improve the efficiency

by batch labeling optimization. Experimental results show that our algorithms

can efficiently handle distributed graphs.

For future work, there could be three directions: 1) maintaining the indexes

for distributed dynamic graphs, 2) further exploring the features of distributed

and multi-core systems to accelerate the construction of indexes and 3) design-

ing distributed algorithms for label constrained reachability. Label constrained

reachability presents additional challenges. But we can adopt a similar approach

to parallelizing the indexing procedure, to reduce the number of vertices being

explored during the Bread-First Searches, we can exploit the dominance rela-

tionship between paths and prune the paths dominated by others.

Label-constrained reachability presents additional challenges. However, we

can adopt a similar approach used for the parallelization of the indexing proce-

dure, i.e.„ issue parallel Bread-First Searches (BFSs) to index multiple vertices

in a batch. By exploiting the dominance relationship between paths, we can first

explore the paths that are less likely to be dominated by others and use them to

prune other paths. This could effectively reduce the number of vertices explored,

making the process more efficient.

65

Chapter 4

SHORTEST-PATH QUERIES ON

COMPLEX GRAPHS

4.1 Chapter Overview

In this chapter, we study the shortest-path query on complex graphs. This

chapter is structured as follows. Section 4.2 introduces the preliminaries of this

chapter. Section 4.3 introduces the index-based approaches PLL and CTL for

shortest-distance queries and extends presents them to answer shortest path

queries. Section 4.4 presents our proposed new shortest path extension MLL

based on CTL. Section 4.5 evaluates the proposed methods and Section 4.6

concludes this chapter.

4.2 Preliminary

Let G(V,E) be an undirected unweighted graph with n = |V (G)| vertices and

m = |E(G)| edges. The neighbors N(v,G) of each vertex v ∈ V (G) are defined

as N(v,G) = {u|(u, v) ∈ E(G)}. The size of N(v,G) is the degree deg(v,G) of

66

4.2. PRELIMINARY Chapter 4

v10
v11

v1

v2 v3

v4

v8
v6

v7

v5v12

v9

Figure 4.1: The Example Graph G

v, i.e., deg(v,G) = |N(v,G)|. The length of each edge (u, v) ∈ E(G) is a positive

value δ(u, v,G). In an unweighted graph, the length of all edges is 1.

The path p(s, t, G) between two vertices s, t ∈ V (G) is a sequence of vertices,

i.e., p(s, t, G) = {s = v0, v1, · · · , t = vl}. The inner vertices of p(s, t, G) are

vertices vi, where vi ̸= s, vi ̸= t, and i ∈ [1, l − 1]. The precursor prev(vi) of a

vertex vi on the path p(s, t, G) is vi−1, where i ∈ [1, l]; the successor succ(vi) of a

vertex vi on the path p(s, t, G) is vi+1, where i ∈ [0, l− 1]. Given two paths p1 =

{v0, v1, · · · , va} and p2 = {w0, w1, · · · , wb}, when (va, w0) ∈ E(G), then the splic-

ing operation on p1 and p2 is defined as p1+p2 = {v0, v1, · · · , va, w0, w1, · · · , wb};

or va = w0, then p1 + p2 = {v0, v1, · · · , va = w0, w1, · · · , wb}.

The length of p(s, t, G) is defined as |p(s, t, G)| = Σ(vi,vi+1)δ(vi, vi+1, G), where

i ∈ [0, l − 1]. The shortest path between s and t is the one with the minimum

length among all s-t paths, and the shortest distance dist(s, t, G) is the length

of the s-t shortest path. Without loss of generality, we assume that graph G is

connected since otherwise, we can work on each connected component separately

(as the shortest distance between the vertices of different connected components

is positive infinity). If the context is obvious, we remove G from notations for

simplicity.

Example 15. Fig. 4.1 gives the example graph G, which contains n = 12 ver-

tices and m = 16 edges. For the vertex v5, N(v5) = {v6, v7}, so deg(v5) = 2.

67

Chapter 4 4.3. DISTANCE QUERIES AND EXTENSIONS

p(v5, v3) = {v5, v6, v8, v3} is a v5-v3 path. The inner vertices of p(v5, v3)

are v6 and v8. The precursor (resp. successor) of v6 is v5 (resp. v8) on

p(v5, v3). p(v5, v3) is the shortest path between v5 and v3, thus dist(v5, v3) = 3.

p(v4, v2) = {v4, v2} is a v4-v2 path. As (v3, v4) ∈ E, we use the splicing operation

to get p(v5, v3) + p(v4, v2) = {v5, v6, v8, v3, v4, v2}, which is a v5-v2 path.

Complex Graphs. Complex graphs are a specific category of graphs distin-

guished by their non-trivial topological properties, which are neither completely

regular nor completely random. They are characterized by three core properties:

a scale-free degree distribution, a high clustering coefficient, and small-world

phenomena [52]. The scale-free property indicates a power-law distribution in

the number of connections per node. A high clustering coefficient denotes the

presence of well-connected subgroups within the graph. The small-world prop-

erty illustrates that most nodes can be reached from others through a small

number of steps. Despite their unweighted and undirected nature, these com-

plex topological properties pose significant computational challenges in the study

of graph problems such as the shortest path problem. The focus of this chapter

is on these complex graphs.

Problem Definition. Given an undirected unweighted graph G(V,E), a

shortest-path query is defined as QP(s, t), where s, t ∈ V . The answer to query

QP(s, t) is an s-t shortest path p(s, t). If multiple s-t shortest paths exist, an

arbitrary one can be returned. The studied problem is how to process query

QP(s, t) efficiently on G.

4.3 Distance Queries and Extensions

The shortest-distance query is an operation closely related to the shortest-path

query, which returns the shortest path length of two vertices. Many methods

68

4.3.1 PLL and Its Extension Chapter 4

have been proposed to create indexes to process shortest-distance queries on

complex networks; the well-known methods are PLL [6] and CTL [59]. This

section describes how to extend PLL and CTL to support shortest-path queries.

4.3.1 PLL and Its Extension

Pruned landmark labeling (PLL) is a classical method for processing shortest-

distance queries. PLL supports queries by creating an index LPLL offline. The

index assigns a label LPLL(u) = {(v, dist(u, v))} to each vertex u ∈ V in the graph

G. LPLL(u) contains some selected landmarks v and the corresponding shortest

distance dist(u, v) for u. The number of landmarks contained in the label of u is

defined as the label size |LPLL(u)|. The maximum label size ∆PLL of PLL is defined

as the value of the largest label size among all vertices. The index size |LPLL| is

the sum of the label size over each vertex u ∈ V , i.e., |LPLL| = Σu∈V |LPLL(u)|.

Distance Query Processing. To report the shortest distance dist(s, t) be-

tween vertices s and t in G, we only need to use the labels of s and t, as given

in Equation 4.1.

dist(s, t) = min
w∈LPLL(s)∩LPLL(t)

dist(s, w) + dist(w, t). (4.1)

We find common landmarks w in the labels of s and t, and select the smallest

distance dist(s, w) + dist(w, t) through w as a result. The time cost to compute

dist(s, t) is O(|LPLL(s)|+ |LPLL(t)|).

Example 16. Consider the graph G in Fig. 4.1. The PLL column of Table 4.1

shows LPLL (ignore the third attribute marked blue in each entry) of G. For v2, its

label LPLL(v2) = {(v1, 1), (v2, 0)} has two landmarks, v1 and v2, so |LPLL(v2)| = 2.

The index size is |LPLL| = 44. To compute dist(v2, v3), we use the labels of v2

and v3 and get the common landmarks {v1, v2}. As dist(v2, v1) + dist(v3, v1) =

69

C
ha

pt
er

4
4.

3.
1

P
L
L

an
d

It
s

E
xt

en
si

on

T
ab

le
4.

1:
C

om
pa

ri
so

n
of

D
iff

er
en

t
A

pp
ro

ac
he

s

PLL CTL MLL
v1 (v1, 0,−) (v1, 0,−)
v2 (v1, 1,−), (v2, 0,−) (v1, 1,−), (v2, 0,−) (v1,−)
v3 (v1, 1,−), (v2, 1,−), (v3, 0,−) (v1, 1,−), (v2, 1,−), (v3, 0,−) (v1,−), (v2,−)
v4 (v1, 1,−), (v2, 1,−), (v3, 1,−), (v4, 0,−) (v1, 1,−), (v2, 1,−), (v3, 1,−), (v4, 0,−) (v1,−), (v2,−), (v3,−)
v5 (v1, 4, v6), (v2, 4, v6), (v3, 3, v6), (v5, 0,−) (v3, 3, v6) (v3, v6)
v6 (v1, 3, v8), (v2, 3, v8), (v3, 2, v8), (v5, 1,−), (v6, 0,−) (v3, 2, v8), (v5, 1,−) (v3, v8), (v5,−)
v7 (v1, 3, v9), (v2, 3, v9), (v3, 2, v9), (v5, 1,−), (v7, 0,−) (v3, 2, v9), (v5, 1,−) (v3, v9), (v5,−)
v8 (v1, 2, v3), (v2, 2, v3), (v3, 1,−), (v5, 2, v6), (v6, 1,−), (v8, 0,−) (v3, 1,−), (v5, 2, v6), (v6, 1,−) (v3,−), (v6,−)
v9 (v1, 2, v3), (v2, 2, v3), (v3, 1,−), (v5, 2, v7), (v7, 1,−), (v9, 0,−) (v3, 1,−), (v5, 2, v7), (v7, 1,−) (v3,−), (v7,−)
v10 (v1, 1,−), (v2, 1,−), (v10, 0,−) (v1, 1,−), (v2, 1,−) (v1,−), (v2,−)
v11 (v1, 1,−), (v11, 0,−) (v1, 1,−) (v1,−)
v12 (v1, 2, v2), (v2, 1,−), (v12, 0,−) (v2, 1,−) (v2,−)

70

4.3.1 PLL and Its Extension Chapter 4

1 + 1 = 2 and dist(v2, v2) + dist(v2, v3) = 0 + 1 = 1, by Equation 4.1, we know

that dist(v2, v3) = 1 and v2 is the landmark on v2-v3 shortest path.

PLL Index Construction. PLL constructs the index LPLL for the graph G(V,E)

using the following steps.

1. Give each vertex v ∈ V an order r(v). PLL sets the order1 by degree and

breaks tie by vertex IDs, i.e., r(v) = deg(v) + n−ID(v)
n

. Without loss of

generality, let r(v1) > r(v2) > · · · > r(vn).

2. Select each vi ∈ V sequentially according to the vertex order (v1 is the first,

vn is the last) to do vi-sourced pruned BFS.

When doing vi-sourced pruned BFS, there are two cases if a vertex u is

encountered while vi is performing BFS. (1) If the shortest distance dist(vi, u)

between vi and u can be answered correctly by Equation 4.1 using the existing

labels, then the expansion branch from u is pruned. (2) Otherwise, vi is added

to the label LPLL(u) of u, and the BFS continues. When vn finishes pruned BFS,

we obtain the index LPLL for return.

Theorem 7 presents the condition for determining whether vertex v will join

the label of u as a landmark.

Theorem 7 ([59]). The entry (v, dist(u, v)) is in LPLL(u) iff r(v) ≥ r(w) for ∀w

on all v-u shortest paths.

Example 17. Consider the graph G in Fig. 4.1. (v2, 2) ∈ LPLL(v8) since v2 has

the highest order among vertices on all v2-v8 shortest paths. (v2, 2) ̸∈ LPLL(v11)

as v1, whose order is higher than v2, is on the v2-v11 shortest path.

1PLL can use other methods to order the vertices. For example, PLL can set the order of
vertices in a similar way to the minimum degree elimination used by CTL.

71

Chapter 4 4.3.1 PLL and Its Extension

Algorithm 5: Processing QP(s, t) Based on LPLLE

Input: QP(s, t), index LPLLE

Output: The shortest path p(s, t)
1 w, dist(s, t)← Equation 4.1;
2 if dist(s, t) = 0 then p(s, t)← {s}; return p(s, t);
3 if dist(s, t) = 1 then p(s, t)← {s, t}; return p(s, t);
4 p1 ← {s}, p2 ← {t};
5 while dist(s, w) > 1 do
6 s← succ(s), where (w, dist(s, w), succ(s)) ∈ LPLLE (s);
7 p1 ← p1 + {s};
8 while dist(w, t) > 1 do
9 t← succ(t), where (w, dist(t, w), succ(t)) ∈ LPLLE (t);

10 p2 ← {t}+ p2;

11 return p(s, t) = p1 + {w}+ p2

Extension to Path Queries. We next extend the PLL index to support

shortest-path queries. The extended index LPLLE assigns a label LPLLE (u) =

{(v, dist(u, v), succ(u))} to each vertex u. We add an extra attribute succ(u),

the successor of u on the shortest path {v0 = u, v1 = succ(u), · · · , vl−1, vl = v}

from u to v, in the label LPLLE (u) of u. If dist(u, v) < 2, then the successor succ(u)

is meaningless, and we store “−” instead. The successor can be used to track all

vertices on the shortest path and thus recover this path.

Example 18. Consider the graph G in Fig. 4.1, where Table 4.1 lists the ex-

tended index LPLLE . For v6, (v3, 2, v8) ∈ LPLLE (v6), where v3 is the landmark and

v8 is the successor of v6 on v6-v3 shortest path.

Path Query Processing. We describe how to answer QP(s, t) using index LPLLE

in Algorithm 5. First, we use Equation 4.1 to get dist(s, t) and the landmark

w in the labels of s and t, s.t., dist(s, t) = dist(s, w) + dist(w, t) (Line 1). If

dist(s, t) is 0, then s = t and we return {s} as a path (Line 2); if dist(s, t) is 1,

then {s, t} is an edge and we return this edge as a path (Line 3). Otherwise, w

is used to decompose the s-t shortest path into two subpaths p1 and p2. p1 is

first initialized to contain only vertex s (Line 4), then we use LPLLE (s) to get the

72

4.3.1 PLL and Its Extension Chapter 4

successor succ(s) of s on the s-w subpath and iteratively add the vertices on the

s-w subpath to p1 by assigning succ(s) to s (Line 5-7); similarly, we use LPLLE (t)

to iteratively add the vertices on the t-w subpath to p2 (Line 8-10). Finally, p1

and p2 are spliced with w to produce the answer (Line 11).

Example 19. Consider the graph G in Fig. 4.1. Given QP(v6, v3), we use Equa-

tion 4.1 to get dist(v6, v3) = 2 and the landmark v3 on the v6-v3 shortest path

p(v6, v3). The shortest path is divided into two subpaths p1, p2 by the landmark v3.

We initialize p1 = {v6} and inquire LPLLE (v6) to obtain the successor succ(v6) = v8

of the starting vertex v6 on the v6-v3 subpath. We add v8 to p1 and use v8 as

the new starting vertex for the next round of iterations. The iteration stops here

because dist(v8, v3) = 1. We then initialize p2 = {v3}, but the iteration ends be-

cause dist(v3, v3) = 0. Finally, we return the answer p1+{v3}+p2 = {v6, v8, v3}.

Lemma 10. Algorithm 5 correctly answers the query QP(s, t).

Proof. If dist(s, t) ≤ 1, then the s-t shortest path p(s, t) can be returned correctly

by Line 2-3 of Algorithm 5. Otherwise, locate the landmark w on the path p(s, t)

and divide p(s, t) into two subpaths p1 = p(s, prev(w)) and p2 = p(succ(w), t),

where p(s, t) = p1 + {w} + p2. We show how to find p(s, x = prev(w)), and a

similar proof can be used for p(succ(w), t). We use induction on the shortest

distance: if dist(s, x) < 1, then p(s, x) = {s} is found correctly according to

Line 4 of Algorithm 5. Assume that the shortest path with distance < dist(s, x)

can be found correctly.

Theorem 7 shows that (w, dist(u,w), succ(u)) ∈ LPLLE (u) for ∀u ∈ p(s, x),

since w is the highest-order vertex on all s-x shortest paths. By the induction

hypothesis, p(s, prev(x) = y) can be found, and the edge {y, x} can be found

correctly since (w, dist(w, y), succ(y) = x) ∈ LPLLE (y), thus p(s, x) = p(x, y) +

{y, x} can be found correctly.

73

Chapter 4 4.3.2 CTL and Its Extension

Lemma 11. Algorithm 5 requires2 O(dist(s, t)×log∆PLL) to find the s-t shortest

path, where ∆PLL is PLL’s maximum label size.

Proof. In the worse case, Algorithm 5 requires one label lookup for each vertex

on the path (to determine the successor), and the complexity of each lookup via

binary search is log∆PLL.

4.3.2 CTL and Its Extension

CTL is proposed to avoid the oversized indexes of PLL [59, 60] for shortest-

distance queries. CTL relies on the concept of core-tree decomposition, which is

a special kind of tree decomposition.

Definition 9 (Tree Decomposition). The tree decomposition of a graph G(V,E),

denoted as TG, is a rooted tree, where every node X ∈ V (TG) in the tree is a

subset of vertices of the graph G, i.e., X ⊆ V (G). TG meets the following three

conditions.

(1)
⋃

X∈V (TG) X = V (G);

(2) For every edge (u, v) ∈ E(G) in the graph G, there exists a node X in V (TG)

such that u ∈ X and v ∈ X;

(3) For every vertex v ∈ V (G) in the graph G, the set T (v) = {X ∈ V (TG)|v ∈

X} is a connected subtree.

The root of subtree T (v) is X(v), for ∀v ∈ V (G). The treewidth of TG is defined

as tw(TG) = maxX∈V (TG) |X| − 1.

2If additional data structures such as hash tables or pointers are used to store the labels
for the quick label lookup, the complexity can be reduced to O(dist(s, t)). We disregard this
optimization due to the oversized PLL index.

74

4.3.2 CTL and Its Extension Chapter 4

v7v9 v3

v10 v1 v2v1v11v12 v2

v2 v3 v4v1

v8 v6 v3

v7 v3 v5v6 v3 v5

v5 v3

C

X(v5)

X(v7)

Figure 4.2: (Core-)Tree Decomposition of G

We refer to each v ∈ V (G) as a vertex and each X ∈ V (TG) as a node.

The ancestor nodes ANC(X) of node X are all the nodes on the shortest path

from X to the root in TG; the parent node PAR(X) of X is the ancestor node

connecting to X.

Example 20. Fig. 4.2 is the tree decomposition TG of G in Fig. 4.1. We verify

three conditions for TG. (1) Each vertex of G (say v1) appears in some node

(say C = {v1, v2, v3, v4}) of TG. (2) For each edge of G, say (v1, v2), we find

a node C containing both endpoints v1, v2. (3) For vertex v5 of G, all (marked

in red) nodes in TG containing v5 form a connected subtree T (v5). The root of

subtree T (v5) is X(v5). Similarly, X(v7) is the root of the subtree consisting of

the nodes containing v7. On TG, the ancestor nodes of X(v7) are ANC(X(v7)) =

{X(v7), X(v5), C}, and the parent node of X(v7) is PAR(X(v7)) = X(v5). The

treewidth of TG is tw(TG) = |C| − 1 = 3.

Definition 10 (Core-Tree Decomposition). Given a parameter d, the core-tree

decomposition TG of graph G is a tree decomposition with the fourth condition:

there is a special node (defined as the core part) C ∈ V (TG), s.t., |C| > d + 1;

for the other nodes (defined as the tree part) X ∈ V (TG) \ C, |X| ≤ d+ 1.

Example 21. Consider the graph G in Fig. 4.1 and given d = 2, the tree

decomposition TG in Fig. 4.2 is also the core-tree decomposition of G. We verify

75

Chapter 4 4.3.2 CTL and Its Extension

the fourth condition: for V (TG), only the root C has size |C| > 3, while all other

nodes in V (TG) \ C have size ≤ 3.

Decomposing a Graph. To obtain a core-tree decomposition TG (with param-

eter d) of graph G, we can use minimum degree elimination (MDE) [13]. MDE

creates nodes and then edges of TG.

Node elimination. MDE selects the smallest degree vertex for elimination each

time. When the degree of the vertex selected at some time is ≥ d+1, elimination

stops. We initialize G1 = G, and then every time i, we eliminate vertex v with

the smallest degree in Gi.

1. v: the vertex with the smallest degree in the graph Gi (or any of them if

there is a tie), and the order of v is set to r(v) = i.

2. For v’s neighbors N(v,Gi) in Gi, we add extra edges to make N(v,Gi) form

a clique (i.e., complete graph).

(a) If u,w ∈ N(v,Gi) is not an edge in Gi, we add edge (u,w) whose length

equals the length of the path {u, v, w}, i.e., δ(u, v,Gi) + δ(w, v,Gi). To

record that (u,w) is made by removing v, we set v as the elimination

vertex of (u,w).

(b) Otherwise (u,w) is an edge of Gi, then we set its length to the small-

est of the current length and the length of the path {u, v, w}, i.e.

min{δ(u, v,Gi), δ(u, v,Gi) + δ(w, v,Gi)}. If the edge length is updated

with a smaller value, we set v as the elimination vertex of (u,w).

3. Form a node X(v) = v ∪N(v,Gi).

4. Delete v from Gi to form Gi+1 for the next round (i← i+ 1).

76

4.3.2 CTL and Its Extension Chapter 4

Example 22. Given d = 2, we use MDE on G of Fig. 4.1. First, we delete

v12 from G1 = G to get G2, and obtain X(v12) = {v12, v2}, r(v12) = 1. Then,

we delete v11 from G2 to get G3. Next, we delete v10 from G3 to get G4. Here,

for v10’s neighbors {v1, v2} in G3, since (v1, v2) is an edge, its length is set to

min{δ(v1, v2), δ(v1, v10) + δ(v2, v10)} = 1. We also get X(v10) = {v10, v1, v2},

r(v10) = 3. We continue deleting v9, v8, v7, v6, until v5 to get G9. At this point,

the degree of vertices in Gλ = G9 = {v1, v2, v3, v4} is ≥ 3, and we stop.

Edge generation. We next describe how to generate edges by imposing parent

relations for the nodes in TG. When the vertex elimination stops, suppose the

value of i is λ, then we get a graph Gλ. We get all the nodes X(v) in the tree

part of TG, where r(v) ∈ [1, λ− 1].

1. Take all vertices V (Gλ) in Gλ as the core part C of TG.

2. For each node X(v) in the tree part,

(a) if the vertices of X(v) \ {v} all belong to C, then make C the parent of

X(v);

(b) otherwise, find the vertex u ̸∈ C with the lowest order r(u) in X(v)\{v},

and make X(u) the parent of X(v).

After the whole process, we get the core-tree decomposition TG.

Example 23. We describe how to create E(TG). We first take vertices

{v1, v2, v3, v4} in Gλ = G9 as C. Then for each node X(v) ∈ V (TG) \C, we find

its parent in TG. For example, for X(v12) = {v12, v2}, since X(v12) \ {v12} ⊆ C,

PAR(X(v12)) = C. For X(v7) = {v7, v3, v5}, the vertex (not in C) with the

lowest order in X(v7) \ {v7} is v5, then PAR(X(v7)) = X(v5).

77

Chapter 4 4.3.2 CTL and Its Extension

CTL Index. Given a core-tree decomposition TG of G, we create separate indexes

for the core part C and the tree part V (TG) \C. For vertices v in the tree part,

the order r(v) is set to the moment i when v is eliminated; For vertices v in the

core part, the order r(v) is set according to the degree (as in PLL). The order of

vertices in the core part is forced to be set higher than the vertices in the tree

part. The indexes of the two parts together form the index LCTL.

Core index. For the core part C, we create the index in the graph Gλ using PLL,

thus assigning a core label for each vertex in C.

Tree index. For each node X(v) ∈ V (TG) \ C in the tree part, we assign a tree

label for the corresponding vertex v of X(v). The label of v contains the distances

between v and its landmarks u where u ∈
⋃

X∈ANC(X(v))\C X, and u ̸= v.

When using the index LCTL to obtain the distance dist(s, t) between two

vertices s and t, if both s and t are in the core part, then we can just use the

core index to complete the distance query according to Equation 4.1; otherwise,

if one of the vertices is not in the core part, then we need to use both the core

index and the tree index to complete the distance query3. The time cost of

shortest-distance queries using LCTL is O(d · log |C| · tw(TG)), where tw(TG) is

the treewidth of TG.

Example 24. Consider the graph G in Fig. 4.1, and the CTL column of Table 4.1

shows LCTL (ignore the third attribute marked blue in each entry, which is used

for extension). (1) Core index. For vertices in C, we build the core index using

PLL in Gλ = G9. (2) Tree index. For vertex v ∈ V (VG) \ C, we build the tree

index. For example, for v9, ANC(X(v9))\C = {X(v9), X(v7), X(v5)}, so its tree

label contains landmarks in X(v9) ∪X(v7) ∪X(v5) \ {v9} = {v3, v5, v7}.

3For a more detailed distance query process, please refer to the literature [60].

78

4.3.2 CTL and Its Extension Chapter 4

Extension to Path Queries.

To handle shortest-distance queries, CTL assigns a (core or tree) label LCTL(u) =

{(v, dist(u, v))} to each vertex u ∈ V in the graph, where v is the landmark of

u. To make CTL support shortest-path queries, like PLL, we need to add an

extra attribute auxi(u) to the label entry (v, dist(u, v)) of each vertex u, thus

obtaining the extended label LCTLE (u) = {(v, dist(u, v), auxi(u))}. The extra

attribute auxi(u) is an inner vertex on the u-v shortest path; it is used to help

find the shortest path between two vertices. If dist(u, v) ≤ 1, then auxi(u) is

unnecessary, and we store “-” instead. Because CTL separates the vertices into

two parts, we discuss two different extended labels.

Extended Core Label. For a vertex u ∈ C in the core part, we extend the

label of u in a similar way as we extend PLL, i.e., for any landmark v of u, we set

auxi(u) to succ(u), the successor of u on the u-v shortest path in Gλ. The only

difference is that for an edge (u, v) in Gλ, its weight δ(u, v,Gλ) may be greater

than 1. In this case, we need to further find the corresponding u-v shortest path

in G for this edge (u, v) in Gλ. To do so, instead of assigning auxi(u) the value

“-”, we assign the elimination vertex w of (u, v) — eliminating w forms the edge

(u, v) — to auxi(u).

Extended Tree Label. For each node X(u) ∈ V (TG) \ C in the tree part, we

extend the tree label of the vertex u corresponding to that node. Specifically, for

each landmark v of u, if dist(u, v) < 2, auxi(u) is set to “-”; otherwise, we choose

some vertex on the u-v shortest path to be assigned to auxi(u). (1) If v ̸∈ X(u),

an inner vertex on the u-v shortest path can be picked from X(u) as auxi(u) —

According to Lemma 3 of [21], X(u) \ u is the cut that separates u and v, so

X(u) must contain some inner vertex on the u-v shortest path; (2) Otherwise,

an inner vertex on the u-v shortest path can be found from either X(u) or the

elimination vertex w of (u, v) as auxi(u) — Lemma 3 of [21] does not necessarily

79

Chapter 4 4.3.2 CTL and Its Extension

apply to this case, and the u-v shortest path may contain the elimination vertex

w, since w must be on the (local) u-v shortest path whose inner vertices all do

not belong to X(u) [60].

Example 25. Consider the core-tree decomposition in Fig. 4.2 and the extended

CTL index LCTLE in Table 4.1. Given the vertex v8 in the tree part, for landmark

v5 of v8, as v5 ̸∈ X(v8), we pick an inner vertex v6 ∈ X(v8) on the v8-v5 shortest

path from X(v8) = {v8, v6, v3} as auxi(v8) to extend the label entry. Given the

vertex v6 in the tree part, for landmark v3 of v6, as v3 ∈ X(v6), we find an inner

vertex v8 on the v6-v3 shortest path as auxi(v6) to extend the label entry, where

v8 is the elimination vertex of the edge (v6, v3).

Path Query Processing

We use the extended CTL index LCTLE to process the path query QP(s, t), thus

getting the s-t shortest path p(s, t). There is some complexity in using the

extended CTL index for path queries. For the sake of convenience, we first discuss

two special cases of queries, and then introduce how to handle the general case

of path queries based on these two special cases.

Special Cases. We first give two special cases (sp1-sp2) of queries.

sp1: p(s, t) contains only the vertices of the tree part. We find the s-t shortest

path p(s, t) using the following steps.

1. We first use tree index4 and a similar function to Equation 4.1 to find

dist(s, t) as well as the landmark vertex w on p(s, t); we divide the path

p(s, t) into two parts by landmark w: s-w subpath p1 and w-t subpath p2.

The following steps only explain how to find p1, and the process of finding

p2 is similar.
4Note that each vertex u of the tree part uses itself as landmark during query processing,

i.e., generate a new label entry (u, 0, “−′′).

80

4.3.2 CTL and Its Extension Chapter 4

2. If dist(s, w) = 0, we return p1 = {s}; if dist(s, w) = 1, return p1 = {s, w}.

Otherwise, we find (w, dist(w, s), auxi(s)) ∈ LCTLE (s). We use attribute

auxi(w) to decompose p1 into s-auxi(s) and auxi(s)-w subpaths. We re-

cursively call Step (2) to find them. Finally, they are spliced together as p1

to return.

3. Return p1 + {w}+ p2 as the s-t shortest path.

sp2: p(s, t) contains vertices of both parts, s ̸∈ C, t ∈ LCTLE (s) ∩ C. If

dist(s, t) = 1, then p(s, t) = {s, t}. Otherwise, since t ∈ LCTLE (s), we

can obtain the label entry (t, dist(s, t), auxi(s)) to get the extra attribute

w = auxi(s). We then use w to find the path p(s, t) recursively (similar to Step

(2) of sp1).

Example 26. Consider the extended CTL index in Table 4.1. For the query

QP(v9, v5), since the shortest path p(v9, v5) does not pass through the vertices of

the core part, it belongs to sp1. To process QP(v9, v5), we use the tree index to

find a landmark v5 on the v9-v5 path to divide the path into subpath p1(v9, v5)

and the trivial subpath p2(v5, v5). (Step (1)). Then, to find p1(v9, v5), we query

LCTLE (v9) to get (v5, 2, auxi(v5) = v7), and then use the extra attribute v7 to query

and splice paths recursively until p1(v9, v5) = {v9, v7, v5} is found (Step (2)).

For the query QP(v5, v3), since v5 ̸∈ C and v3 ∈ LCTLE (v5) ∩ C, it belongs to

sp2. To process QP(v5, v3), we first query LCTLE (v5) to get (v3, 3, auxi(v5) = v6),

and then use the extra attribute v6 to query and spice paths recursively until

p(v5, v3) = {v5, v6, v8, v3} is returned.

General Cases. Based on sp1 and sp2, we are now ready to give query pro-

cessing in general.

Case 1: s, t ∈ C. First, we use a similar method to Algorithm 5 to get the short-

est path p(s, t, Gλ) between s and t in Gλ. For each edge (u, v) on the path, if

81

Chapter 4 4.3.2 CTL and Its Extension

dist(u, v) = 1, then the edge (u, v) is returned directly; otherwise, the edge (u, v)

needs to be unfolded to the u-v shortest path on the original graph — suppose

r(u) > r(v), then (u, dist(u, v), auxi(v) = w) ∈ LCTLE (v), we divide p(u, v) into

u-w subpath p1 and w-v subpath p2. Since eliminating w ̸∈ C produces the edge

(u, v) in Gλ, then u, v ∈ X(w) by the core-tree decomposition process and thus

u and v are the landmarks of w. Therefore, the subpaths p1 and p2 can be both

found using sp2, which can be spliced to produce p(u, v). The s-t shortest path

in G is obtained by applying the above process to all edges in p(s, t, Gλ).

Case 2: s ̸∈ C, t ∈ C (or vice versa). Using the distance query of CTL, we can

get the vertex c on p(s, t), where c ∈ LCTLE (s) ∩ C (c is the interface [60]). We

divide the s-t shortest path p(s, t) into two segments, p(s, c) and p(c, t), where

the subpath p(s, c) can be found by sp2 and the subpath p(c, t) can be processed

by Case 1. Finally, p(s, c) and p(c, t) can be spliced to obtain p(s, t).

Case 3: s, t ̸∈ C. Using the distance query of CTL, we can get the vertex c (resp.

d) on p(s, t), where c ∈ LCTLE (s) ∩ C (resp. d ∈ LCTLE (s) ∩ C). If both c and

d do not exist, this indicates that s and t do not pass through the core part,

then p(s, t) is obtained directly using sp1; otherwise, since c ∈ C, the subpath

p(s, c) can be handled by Case 2; since both c, d ∈ C, the subpath p(c, d) can be

handled by Case 1; since d ∈ C, the subpath p(d, t) can be processed by Case 2.

p(s, t) can be obtained by splicing p(s, c), p(c, d), and p(d, t).

Example 27. Consider the extended index LCTLE in Table 1. We show how to

process the query QP(v5, v10) (Case 3). (1) We first find c = v3 ∈ LCTLE (v5) on the

v5-v10 path using the distance query of CTL. We can find the subpath p(v5, v3) =

{v5, v6, v8, v3} (Case 2). (2) We then find d = v1 ∈ LCTLE (v10) on the v5-v10 path

by querying the CTL index. We can find the subpath p(v1, v10) = {v1, v10} (Case

2). (3) We find the subpath p(v3, v1) = {v3, v1} via the extended core index (Case

1). Hence, p(v5, v10) = p(v5, v3) + p(v3, v1) + p(v1, v10) = {v5, v6, v8, v3, v1, v10}.

82

4.3.2 CTL and Its Extension Chapter 4

Lemma 12. Using LCTLE can correctly answer the query QP(s, t).

Proof. We first prove that the two special cases are correct.

(1) sp1: For p(s, t), we can correctly find a landmark w and thus split p(s, t)

into s-w subpath p(s, w) and w-t subpath p(w, t) by Step (1) of sp1. In the

following, we prove by induction that Step (2) of sp1 can correctly return p(s, w)

(and similarly p(w, t)), so that p(s, t) = p(s, w) + {w}+ p(w, t) can be correctly

found.

When d(s, w) ≤ 1, Step (2) can correctly return {s = w} (when dist(s, w) =

0) or {s, w} (when dist(s, w) = 1) as p(s, w). Assuming that Step (2) can return

paths of length < dist(s, w), we prove that paths of length dist(s, w) can also be

returned. Without loss of generality, suppose (w, dist(w, s), auxi(s)) ∈ LCTLE (s),

we first prove the correctness of the claim that s (resp. w) is a landmark of

auxi(s) or auxi(s) is a landmark of s (resp. w). This is because w is a landmark

of s, then by the definition of tree labels, X(w) must be an ancestor of X(s). 1)

If auxi(s) is an eliminating vertex, then X(s) is an ancestor of X(auxi(s)) and

both w and s are landmarks of auxi(s). 2) Or auxi(s) ∈ X(s), then X(auxi(s))

is an ancestor of X(s), so auxi(s) is a landmark of s. In this case, a) either X(w)

is an ancestor of X(auxi(s)), and w is a landmark of auxi(s); b) or X(auxi(s))

is an ancestor of X(w), and auxi(s) is a landmark of w.

If s (resp. w) is a landmark of x = auxi(s), then (s, dist(s, x), auxi(x)) ∈

LCTLE (x) (resp. (w, dist(w, x), auxi(x)) ∈ LCTLE (x)), and thus the s-auxi(s) sub-

path p(s, auxi(s)) and the auxi(s)-w subpath p(auxi(s), w) can be found recur-

sively using Step (2). Under the induction hypothesis, subpaths p(s, auxi(s))

and p(auxi(s), w) can be correctly returned by Step (2), and it follows that

p(s, w) = p(s, auxi(s)) + p(auxi(s), w); If auxi(s) is a landmark of s (resp. w),

the correctness can be proved similarly.

(2) sp2: similar to the proof of sp1.

83

Chapter 4 4.4. MONOTONIC LANDMARK LABELING

We then prove three cases are correct. (1) Case 1: It is correct by the

correctness of Algorithm 5, and sp2. (2) Case 2: It is correct by the correctness

of Case 1, and sp2. (3) Case 3: It is correct by the correctness of Case 1, Case

2, and sp1.

Lemma 13. Using LCTLE requires O(dist(s, t) × log∆CTL) to answer the query

QP(s, t), where ∆CTL is CTL’s maximum label size.

Proof. In the worse case, we require one label lookup for each vertex on the path

(to determine the extra attribute), and the complexity of each lookup via binary

search is log∆CTL.

4.4 Monotonic Landmark Labeling

Section 4.3 describes how to extend PLL and CTL to support shortest-path

queries. Implementing the extensions requires adding an extra attribute to each

index entry to enable fast pathfinding. However, adding the extra attributes

makes the extended PLL and CTL indexes too large: both the extended PLL and

CTL indexes occupy about twice the size of the original index. On the other

hand, although using the traversal-based approach does not require high space

cost, there is no way to guarantee query time.

In this section, we propose a new extension-based approach, Monotonic Land-

mark Labeling (MLL), to further balance the space cost and query time. Con-

sidering that CTL can handle large graphs that PLL cannot [60], we choose to

extend CTL. Instead of adding extra attributes to each entry of the CTL index,

our approach MLL is to non-trivially create an additional lightweight index (i.e.,

the MLL index LMLL) on top of the CTL index as a plug-in to facilitate shortest-

path queries. This lightweight index not only avoids the excessive space cost

84

4.4.1 Index Structure Chapter 4

caused by the extra attributes but also guarantees query time. We will intro-

duce the new MLL index in Section 4.4.1, followed by a description of how to use

both the CTL index and the MLL index to support queries in Section 4.4.2, and

finally, we will introduce how to create the MLL index in Section 4.4.3.

4.4.1 Index Structure

The concept of the monotonic shortest path underpins our method MLL. We set

the vertex order of MLL using the same order as CTL.

Definition 11 (Monotonic Shortest Path). Given two vertices s, t of G, the

s-t shortest path p(s, t) = {v0 = s, v1, · · · , vl = t} is monotonic iff r(vi) <

min{r(s), r(t)} for ∀vi ∈ p(s, t), i ∈ [1, l − 1].

The shortest path p(s, t) is monotonic if the order of inner vertices (i.e.,

vertices excluding s and t) is lower than both s and t. Any edge in the graph is

a trivial monotonic shortest path. We show any shortest path can be split into

several monotonic shortest paths.

Lemma 14. The shortest path p(s, t) between any two vertices s and t can be split

into a set of monotonic shortest paths {p̃1, p̃2, · · · , p̃l}, s.t., p(s, t) = p̃1+ p̃2 · · · p̃l.

Proof. The proof holds if s = t or p(s, t) is monotonic. Assume r(s) < r(t);

we prove by construction. We start with s = v0 and find the first vertex vi of

order higher than s, forming a monotonic shortest path p̃1. We start from vi and

repeat the process until t is met. So we decompose p(s, t) into {p̃i}.

Example 28. Consider the graph G in Fig. 4.1. We assume that r(v1) >

r(v2) > · · · > r(v12). The v3-v5 shortest path p(v3, v5) = {v3, v9, v7, v5} is

monotonic as the order of inner vertices {v9, v7} is lower than v3 and v5. The

v5-v4 shortest path p(v5, v4) = {v5, v7, v9, v3, v4} is not monotonic as the or-

der of the inner vertex v3 is higher than v5. We describe how to decompose

85

Chapter 4 4.4.1 Index Structure

p(v5, v4) into several monotonic shortest paths. First, starting from v5, we

find a vertex v3 of order higher than v4 and stop, forming the first mono-

tonic path p̃1(v5, v3) = {v5, v7, v9, v3}. Then starting from v4 until meeting

v3, we get the second monotonic path p̃2(v3, v4) = {v3, v4}. It follows that

p(v5, v4) = p̃1(v5, v3) + p̃2(v3, v4).

MLL Index. Lemma 14 shows that any shortest path can be split into several

monotonic shortest paths. Our basic idea is to index monotonic shortest paths,

and these indexed shortest paths can be stitched together to answer any shortest-

path query. Based on this, we create a new kind of index LMLL. The index LMLL

assigns a label LMLL(u) to each vertex u ∈ V in the graph, which includes some

landmark v selected for u and the auxiliary vertex h(u).

Definition 12. The entry (v, h(u)) is in LMLL(u) iff

1. r(v) ≥ r(w) for ∀w on all u-v shortest paths, and v ̸= u;

2. All u-v shortest paths are monotonic.

h(u) is the highest-order inner vertex on all u-v shortest paths.

For MLL, if v is a landmark of u, then v needs to satisfy two conditions. The

first condition is that r(v) is the highest over all vertices in u-v shortest paths.

Note that PLL only requires this condition to add v as the landmark of u (see

Theorem 7). Also, we require v ̸= u to forbid v to become its own landmark.

The second condition is that all u-v shortest paths must be monotonic. Without

this condition, MLL will index the shortest paths (between any two vertices) as

in PLL. Because of this condition, MLL only indexes the monotonic shortest

paths, causing MLL to have a significantly smaller index size than PLL.

Also, we record the inner vertex h(u) that has the highest order among all

u-v shortest paths. If dist(u, v) < 2, then there is no inner vertex on the u-v

86

4.4.1 Index Structure Chapter 4

shortest path, so we store “-” instead. The role of h(u) is similar to that of the

precursor used to extend PLL for shortest-path queries (see Algorithm 5), i.e.,

using h(u), we can track all vertices on a shortest path and thus recover the

path.

Example 29. Consider the graph G in Fig. 4.1, where the MLL column of Ta-

ble 4.1 gives the MLL index. For vertex v6, (v3, v8) ∈ LMLL(v6) because all v3-v6

shortest paths are monotonic and v3 has the highest order on all paths; h(v6) = v8

as v8 is the inner vertex with the highest order on all v3-v6 paths. Similarly, for

v2, (v1,−) ∈ LMLL(v2) because all v1-v2 shortest paths are monotonic and v1 has

the highest order; h(v2) = − because dist(v1, v2) = 1.

A careful reading of Definition 12 reveals redundancy. The second condition

(all u-v shortest paths are monotonic) implies that all inner vertices w on u-v

shortest paths are of a lower order than v, i.e., r(v) > r(w). We give a more

intuitive condition to decide if v is a landmark of u.

Theorem 8. The entry (v, h(u)) is in LMLL(u) iff all u-v shortest paths are

monotonic, and r(v) > r(u).

Index Size. MLL supports path queries by building an additional MLL index

on top of the CTL index, so the total index size of MLL includes the CTL index

size and the MLL index size (as the extra space cost). On the other hand,

extending CTL (and PLL) by extra attributes also introduces an extra space

cost. According to empirical results, the extra space required for the extended

CTL (and PLL) method occupies almost the same size as the original index. To

intuitively compare the extra space cost required by MLL and the extended CTL

(and PLL) method, we compare the MLL index size with the original CTL (and

PLL) index size.

87

Chapter 4 4.4.1 Index Structure

We define the label size |LMLL(u)| of u as the number of landmarks contained

in LMLL(u). Then the MLL index size is defined as |LMLL| = Σu∈V |LMLL(u)|. We

show the PLL index size exceeds the MLL index size (suppose PLL and MLL use

the same vertex order.).

Theorem 9. |LMLL| < |LPLL|, where LMLL is the index of MLL created on top of

CTL.

Proof. To complete the proof, we show that for any vertex u, if landmark v

belongs to LMLL(u), then v belongs to LPLL(u). According to Definition 12, v is

the vertex with the highest order in all (monotonic) shortest paths from v to u.

By Theorem 7, v is also in LPLL(u). The inequality strictly holds because u will

act as its own landmark in PLL, but not in MLL (as v ̸= u is required).

We show that the CTL index size exceeds the MLL index size. We define the

label size of each vertex u as the number of u’s landmarks in u’s label for CTL.

So the CTL index size |LCTL| is the total label size of all vertices.

Theorem 10. |LMLL| < |LCTL|, where LMLL is the index of MLL created on top of

CTL.

Proof. We first analyze the core index of CTL. The core index is created on Gλ

with vertices in the core part C. The edges of Gλ consist of edges {(u, v) ∈

E(G)|u, v ∈ C} in E(G) and extra edges formed by eliminating (lower order)

vertices not in C. Since we use PLL to create the core-index on Gλ, Theorem 7

continues to hold. Then by Theorem 9, the size of the core index for CTL exceeds

the total size of labels assigned to vertices in C for MLL.

Then we analyze the tree index of LCTL. For any vertex u ∈ V (G) \ C, we

prove that if v is a landmark of LMLL(u), then it must be a landmark of v by

CTL. By Definition 12, all v-u shortest paths must be monotonic, i.e., the order

88

4.4.2 Query Processing Chapter 4

of inner vertices w on all v-u shortest paths is lower than both v and u. All inner

vertices w are eliminated before v and u for CTL, so there is an edge between u

and v when eliminating u. As a result, v ∈ X(u) and v is a landmark for u. The

inequality strictly holds as long as C is not empty.

Example 30. Table 4.1 compares the three different indexes. |LMLL| < |LPLL|:

the index of MLL contains 19 landmarks while PLL contains 44. |LMLL| < |LCTL|:

the index of MLL contains 19 landmarks while CTL contains 25.

Remark. If the graph G with n vertices is a star graph, and the center vertex

has the highest order, then the MLL index size reaches the lower bound value

O(n); if the graph G is a clique, then the MLL index size reaches the upper

bound value O(n2). In practice, the MLL index size is small. According to the

experimental results in Section 4.6, the MLL index size on all graphs does not

exceed 23 GB. Compared to the index sizes of PLL and CTL, the size of the

MLL index is on average 22 times and 5.19 times smaller than that of the PLL

and CTL indexes (before the extension). Considering that extending CTL (and

PLL) using extra attributes requires extra space cost close to the index size itself,

building a lightweight MLL index on top of the CTL index consumes less extra

space cost.

4.4.2 Query Processing

We first describe how to process queries using LMLL (and LCTL) if all shortest paths

between two vertices are monotonic, and then show how to process queries in

general. The entire query process is given in Algorithm 6.

Case 1: All Paths Are Monotonic. For MLL, by Definition 12, if v is a

landmark of u, i.e., (v, x = h(u)) ∈ LMLL(u), then all v-u shortest paths are

monotonic. To find the v-u shortest path p(u, v) in this case, we use an idea

89

Chapter 4 4.4.2 Query Processing

similar to the one used in the PLL extension, i.e., to employ an auxiliary vertex

h(u) (similar to succ(u) in Algorithm 5) to track all vertices on a shortest path.

Specifically, we define Procedure Unfold(u, v, x) in Algorithm 6 (Line 12-18).

We use x = h(u) to decompose p(u, v) into subpaths p(u, x) and p(x, v) to

find them separately. For p(u, x), if dist(u, x) = 1, then (u, x) is an edge and

is returned as p(u, x) (Line 14). Otherwise, we take out (u, h(x)) from LMLL(x),

and call Unfold(u, x, h(x)) recursively to find p(u, x) (Line 15). Similarly, we find

p(x, v) (Line 16-17) and return p(u, x) + p(x, v) as a result (Line 18).

Example 31. Consider the graph G in Fig. 4.1. v3 is a landmark of

v5: (v3, v6) ∈ LMLL(v5). To find the v3-v5 shortest path, we call Procedure

Unfold(v3, v5, v6). (1) Since dist(v3, v6) > 1 and (v3, v8) ∈ LMLL(v6), we re-

cursively call Unfold(v3, v6, v8) to get path p(v3, v6) = {v3, v8, v6}. (2) Since

dist(v6, v5) = 1, we directly return {v6, v5} as the v6-v5 shortest path p(v6, v5).

p(v3, v6) + p(v6, v5) = {v3, v8, v6, v5} is returned as p(v3, v5).

Lemma 15. Procedure Unfold(u, v, x = h(u)) correctly returns the u-v shortest

path p(u, v) when (v, h(u)) ∈ LMLL(u).

Proof. On the p(u, v) path, x is the inner vertex with the highest order. We split

p(u, v) into subpaths p(u, x) and p(x, v), and p(u, v) = p(u, x)+p(x, v). We show

that the subpath p(u, x) can be answered correctly, and a similar proof can be

used for p(x, v). We use the induction on the shortest distance: if dist(u, x) = 1,

then (u, x) is an edge that p(u, x) is found correctly. Assume that shortest paths

with length < dist(u, x) can be found correctly.

We next prove that (u, h(x)) ∈ LMLL(x) since otherwise there is vertex w ̸= x

on the u-x shortest path of order higher than x. Since the u-x shortest path

is a subpath of the u-v shortest path, w is also an inner vertex of u-v shortest

path. This contradicts the fact that x is the inner vertex with the highest

90

4.4.2 Query Processing Chapter 4

Algorithm 6: Processing QP(s, t) for MLL

Input: QP(s, t), index LCTL, index LMLL

Output: The shortest path p(s, t)
1 if r(s) > r(t) then swap s and t;
2 dist(s, t)← query by LCTL;
3 if dist(s, t) = 0 then p(s, t)← {s}, return p(s, t);
4 if dist(s, t) = 1 then p(s, t)← {s, t}, return p(s, t);
5 for (w, h(s)) ∈ LMLL(s) do
6 dist(s, w), dist(t, w)← query by LCTL;
7 if dist(s, w) + dist(t, w) = dist(s, t) then break;

8 if dist(s, w) = 1 then p(s, w)← {s, w};
9 else p(s, w)← Unfold(s, w, h(s));

10 p(w, t)← Algorithm 6(w, t);
11 return p(s, w) + p(w, t)

12 Procedure Unfold(u, v, x)
13 dist(u, x), dist(x, v)← query by LCTL;
14 if dist(u, x) = 1 then p(u, x)← {u, x};
15 else p(u, x)← Unfold(u, x, h(x)), where (u, h(x)) ∈ LMLL(x);
16 if dist(x, v) = 1 then p(x, v)← {x, v};
17 else p(x, v)← Unfold(x, v, h(x)), where (v, h(x)) ∈ LMLL(x);

18 return p(u, x) + p(x, v)

order. Then, by h(x), p(u, x) is decomposed into p(u, h(x)) and p(h(x), x). By

the induction hypothesis, p(u, h(x)) and p(h(x), x) can be found, and p(u, x) =

p(u, h(x)) + p(h(x), x) can also be found correctly.

Lemma 16. Procedure Unfold(u, v, x = h(u)) requires O(dist(u, v)) shortest-

distance queries to return the u-v shortest path p(u, v) when (v, h(u)) ∈ LMLL(u).

Proof. To return p(u, v), Unfold(u, v, x) is called O(dist(u, v)) times; each call

incurs a constant number of distance queries.

Case 2: General Case. If not all shortest paths between two vertices s and t

are monotonic, then we cannot use Procedure Unfold to find the s-t shortest path

p(s, t): t is not a landmark of s (assume r(s) ≤ r(t)). To handle this case, we

resort to Lemma 14, which states that any shortest path can be decomposed into

several monotonic shortest (sub)paths. When p(s, t) is broken down into mono-

91

Chapter 4 4.4.2 Query Processing

tonic shortest subpaths, Procedure Unfold can find each of them. By splicing

these subpaths, we can find out p(s, t).

Algorithm 6 describes how to answer QP(s, t) in a general case. We swap s

and t to make r(s) ≤ r(t) (Line 1). Then we run a distance query using LCTL to

get dist(s, t) (Line 2). If dist(s, t) is 0 or 1, we can return the path p(s, t) directly

(Line 3-4). Otherwise, we enumerate all landmarks in LMLL(s) and find the one

w that is on p(s, t) (Line 5-7). If dist(s, w) = 1, we set the edge {s, w} as p(s, w)

directly (Line 8); otherwise, since w is a landmark of s, the s-w shortest path

p(s, w) can be discovered by Procedure Unfold (because all s-w shortest paths

are monotonic) (Line 9). Here, p(s, w) is the first monotonic shortest subpath

of p(s, t), we then set w as s to continue with Algorithm 6, until all monotonic

shortest subpaths of p(s, t) are found (Line 10-11).

Example 32. Consider the graph G in Fig. 4.1. When answering QP(v6, v4)

that finds the v6-v4 shortest path p(v6, v4), we first find the landmark v3 from

the label of s = v6, which is on p(v6, v4). Since dist(v6, v3) > 1, we call

Unfold(v6, v3, h(v6) = v8) to find the v6-v3 shortest path p(v6, v3) = {v6, v8, v3}.

Then we set s = v3 and since dist(v3, v4) = 1, we find p(v3, v4) = {v3, v4}

directly. Splicing p(v6, v3) with p(v3, v4) yields p(v6, v4) = {v6, v8, v3, v4}.

Theorem 11. Algorithm 6 correctly answers the query QP(s, t).

Proof. We use induction on the number of monotonic shortest subpaths con-

tained in p(s, t). If all s-t shortest paths are monotonic, t ∈ LMLL(s) by Defini-

tion 6, p(s, t) is found correctly by Lemma 15. Assume Algorithm 6 correctly

answers the shortest-path query for vertices s, v containing k − 1 monotonic

shortest subpaths. If p(s, t) contains k monotonic shortest subpaths, we denote

the last monotonic subpath of p(s, t) as p̃(v, t). As all v-t shortest paths are

monotonic, t ∈ LMLL(v) and p̃(v, t) is found correctly by Lemma 15. Splicing

p(s, v) and p̃(v, t) yields p(s, t).

92

4.4.3 Index Construction Chapter 4

Lemma 17. Algorithm 6 requires O(Σv∈p(s,t)|LMLL(v)|) shortest-distance queries

to answer the query QP(s, t).

Proof. The worst time occurs when each vertex in p(s, t) requires checking its la-

bel to find landmark w on p(s, t), incurring O(Σv∈p(s,t)|LMLL(v)|) shortest-distance

queries.

Lemma 18. LMLL is minimal for correct query processing.

Proof. Suppose we remove a landmark v from an arbitrary vertex u, then

QP(u, v) cannot be answered. Otherwise, if Algorithm 6 can answer QP(u, v),

there is a landmark w ̸= v of u on u-v shortest paths, and r(w) > r(u). But

v is the landmark of u implies that all u-v shortest paths are monotonic, i.e.,

all inner vertices (including w) on u-v shortest paths are lower in order than u,

contradiction.

Remark. The best-case scenario for MLL’s query time is similar to extending

PLL and CTL using extra attributes, so MLL’s query speed will be slightly inferior.

However, MLL’s sacrifices in query time allow us to use less space cost to support

queries. Moreover, the query time of MLL (Algorithm 6) is related to the length

of the shortest path (bounded by the graph diameter D) and the label size of

MLL. For complex networks (used in this chapter), since both the diameter D

(mostly under 50) and the average label size (all less than 150) are small, the

query time for MLL is still fast in practice — shortest-path queries using MLL

on all graphs can be completed in less than 2 milliseconds.

4.4.3 Index Construction

We create the MLL index LMLL based on the label condition given by Theorem 8,

which states that vertex v is added to the label of vertex u as the landmark if

93

Chapter 4 4.4.3 Index Construction

Algorithm 7: MLL Index Construction
Input: Graph G(V,E), Index LCTL

Output: The index LMLL

1 for each vertex v ∈ V in parallel do
2 Q← a queue with only vertex v;
3 dist(v, v)← 0 and dist(v, u)←∞, ∀u ∈ V \ {v};
4 h(u)← −, ∀u ∈ V ;
5 while Q ̸= ∅ do
6 u← Q.pop();
7 if r(u) > r(v) then continue;

// Check if all u-v shortest paths are monotonic
8 if Check(u, v, dist(v,u)) then
9 Insert (v, h(u)) into LMLL(u);

10 for w ∈ N(u) do
11 if dist(v, w) =∞ then
12 dist(v, w)← dist(v, u) + 1; Q.push(w);

13 if dist(v, w) = dist(v, u) + 1 and dist(v, w) > 1 then
14 h(w)← argmaxx∈{u,h(u),h(w)}r(x);

15 return LMLL

16 Procedure Check(u, v, d)
17 if u ∈ C then L(u)← the core label of x from the CTL index;
18 if u ̸∈ C then L(u)← X(u);
19 if v ̸∈ L(u) then return False;
20 for w ∈ L(u) \ {u, v} do
21 dist(u,w), dist(w, v)← query by LCTL;
22 if d = dist(u,w) + dist(w, v) return False;

23 return True;

all v-u shortest paths are monotonic and r(v) > r(u). If we can check whether

all v-u shortest paths are monotonic, then indexing vertex v becomes a process

of adding v to lower-order vertices u. This process can be completed using

a v-sourced BFS. Since there is no dependency between the BFSs of different

vertices, the indexing process of all vertices can be executed in parallel. Once

all vertices complete BFS for the indexing process, LMLL is created.

Indexing Algorithm. Algorithm 7 describes how to create LMLL in parallel for

each vertex v. First, each vertex v is inserted into the queue Q, and a v-sourced

94

4.4.3 Index Construction Chapter 4

BFS begins (Line 2). We initialize the distances from v to all vertices, and set

the highest-order inner vertex h(u) on all v-u shortest paths as nil (denoted by

“−”) (Line 3-4). Then, we pop an element u from Q (Line 6). If the order of

u is higher than v, then the expansion from u is pruned (Line 7). Otherwise,

we need to check if all v-u shortest paths are monotonic. We use Procedure

Check(u, v, dist(v, u)) for this purpose, which will be described later. If True, v

is added as a landmark to the label of u (Line 8-9). For each unvisited neighbor

vertex w ∈ N(u) of u, we update dist(v, w) and add w to Q (Line 11-12). If

dist(v, w) + 1 = dist(v, u), we set h(w) to the one x with the highest order in u,

h(u), and h(w), i.e., argmaxx∈{u,h(u),h(w)}r(x) (Line 15-16).

Example 33. Consider the graph G in Fig. 4.1. We run in parallel to index

each vertex in G. Taking v3 as an example. v3 first adds itself to Q. Then, v3

is popped from Q and we push v3’s neighbors N(v3) = {v1, v2, v4, v8, v9} into Q.

Next, v1 and v2 is popped and pruned. Then, v4 is popped, and v3 is added as a

landmark of v4 since r(v4) < r(v3) and all v4-v3 shortest paths are monotonic.

Next, v8 is popped, and v3 is added as a landmark of v8; meanwhile, we insert

v6 ∈ N(v8) to Q and update h(v6) = argmaxx∈{v8,h(v8)=−,h(v6)=−}r(x) = v8. After

Q becomes empty, we stop.

Procedure Check(u, v, d). Next, we introduce Procedure Check(u, v, d) (Line 16-

23), where r(v) > r(u), d = dist(v, u). The purpose is to examine if all v-u

shortest paths are monotonic. A simple way is to enumerate all u-v shortest

paths, and then compare the order of each inner vertex with u. However, this

approach is inefficient, and we instead use the CTL index to speed up the check-

ing. Given the core-tree decomposition TG (under parameter d) of graph G, CTL

uses PLL to assign a core label to each vertex of the core part C to form the core

index.

The CTL index is sufficient to check if all v-u shortest paths are monotonic.

95

Chapter 4 4.4.3 Index Construction

We first determine whether vertex u belongs to the core part C, and if so, we set

L(u) as the core label of u from the CTL index (Line 17). If u does not belong

to C, we find the corresponding tree node X(u) in TG and assign X(u) to L(u)

(Line 18). If v is not in L(u), we return False, i.e., not all v-u shortest paths

are monotonic (Line 19). Otherwise, we enumerate the vertices w in L(u), where

w ̸= u,w ̸= v, and obtain distances dist(u,w) and dist(w, v) by querying the

CTL index (Line 20-21). If there is a vertex w ∈ L(u)\{u, v} on the u-v shortest

path (i.e., dist(u,w) + dist(w, v) = dist(u, v)), then False is returned (Line 22);

otherwise True is returned (Line 23).

Example 34. Consider the graph G in Fig. 4.1, where the core-tree decomposi-

tion (d = 2) is in Fig. 4.2. For Check(v8, v4, 2), since v8 ̸∈ C, X(v8) = {v6, v3}

is assigned to L(v8). As v4 ̸∈ L(v8), we return False. For Check(v2, v1, 1), since

v2 ∈ C, the label {(v1, 0), (v2, 0)} of v2 from the core index is assigned to L(v2).

As v1 ∈ L(v2) and ̸ ∃w ∈ L(v2) \ {v1, v2} on the v1-v2 shortest path, True is

returned.

Lemma 19. Check(u, v, d) correctly checks if all u-v shortest paths are mono-

tonic (r(v) > r(u)).

Proof. If u ∈ C, then L(u) is the core label assigned to u (by PLL). If v ̸∈ L(u),

by Theorem 7, there exists a landmark w ∈ L(u) ∩ L(v) on the u-v shortest

path as an inner vertex and r(w) > r(v) > r(u). So u-v shortest paths are not

monotonic. If v ∈ L(u) and there exists an inner vertex on the u-v shortest path

as a landmark w in L(u), then by Theorem 7, r(u) < r(w), so the u-v shortest

path is not monotonic. If v ∈ L(u) but there is no landmark w ∈ L(u)\{u, v} on

the u-v shortest path, we show that all v-u shortest paths are monotonic, since

otherwise we can always find the closest inner vertex w to u on the v-u shortest

path with r(w) > r(u). By Theorem 7, w ∈ L(u), contradiction.

96

4.4.3 Index Construction Chapter 4

If u ̸∈ C, then L(u) = X(u). If v ̸∈ X(u), X(u) \ u is a cut of u and

v [21], i.e., it contains an inner vertex w on the u-v shortest path. The fact

w ∈ X(u) implies r(w) > r(u) [13]. So not all v-u shortest paths are monotonic.

If v ∈ X(u) and there exists an inner vertex w ∈ X(u) on the u-v shortest path,

then the v-u shortest path is not monotonic (as r(w) > r(u)). If v ∈ X(u) but

there is no inner vertices w ∈ X(u) on the u-v shortest path, we show that all

v-u shortest paths are monotonic, since otherwise we can find the closest inner

vertex w to u on the v-u shortest path with r(w) > r(u). w ∈ X(u) when we

use MDE [13], contradiction.

Lemma 20. Algorithm 7 correctly creates the MLL index.

Proof. If the index created by Algorithm 7 is L1 and the index defined in Defi-

nition 12 is L2, we prove L1(u) = L2(u), for ∀u ∈ V .

We first prove that L1(u) ⊆ L2(u). Otherwise, suppose there is a landmark

v, v ∈ L1(u) but v ̸∈ L2(u). v ̸∈ L2(u) implies that (1) there is an inner vertex

w = h(u) on the v-u shortest path, which is of order higher than v, then by

Line 7 of Algorithm 7, v ̸∈ L1(u), contradiction; (2) not all v-u shortest paths

are monotonic (by Lemma 19, we can correctly identify this case), then by Line 8

of Algorithm 7, v ̸∈ L1(u), contradiction.

We next prove that L2(u) ⊆ L1(u). Otherwise, suppose there is a landmark

v, v ∈ L2(u) but v ̸∈ L1(u). v ̸∈ L1(u) implies that (1) there is an inner vertex

h(u) of order higher than v, then v is not the highest-order vertex on all u-v

paths, and by Definition 12, v ̸∈ L2(u), contradiction. (2) not all v-u shortest

paths are monotonic, and by Definition 12, v ̸∈ L2(u), contradiction.

Lemma 21. Algorithm 7 requires O(∆CTL × |LCTL|) shortest-distance queries,

where ∆CTL is CTL’s maximum label size.

Proof. Each time v visits a vertex u, we need to call Check once. If v ∈ L(u)

97

Chapter 4 4.5. EXTENSION OF MLL

(L(u) is u’s core label or X(u)), we need to check if there is a vertex in L(u) on

the shortest path from u to v, this needs at most ∆CTL shortest-distance queries.

Due to the if condition of Line 19, Algorithm 7 will reach Line 20 |LCTL| times.

Hence, Algorithm 7 requires O(∆CTL × |LCTL|) shortest-distance queries.

4.5 Extension of MLL

In this section, we generalize our method MLL to weighted and directed graphs.

Extension for Weighted Graphs. MLL relies on the CTL index, and both the

tree index (refer to the tree decomposition algorithm on the weighted graph [68])

and the core index (refer to the PLL algorithm on the weighted graph [7]) of CTL

can be extended to the weighted graph. Then, we only need to discuss how to

modify the MLL index construction and its query process for weighted graphs.

Index construction. In constructing MLL, Algorithm 7 uses the BFS algorithm,

thus trying to add each vertex v ∈ V to the vertices in the graph as labels. To

generalize to weighted graphs, we use a similar algorithm to Algorithm 7; the

main difference is that we use Dijkstra’s algorithm instead of the BFS algorithm

to complete the indexing process of each vertex v.

Query processing. The query algorithm for MLL (Algorithm 6) can be naturally

generalized to weighted graphs. Specifically, we firstly remove Line 4 because for

weighted graphs, a length equal to 1 does not mean the shortest path contains

only one edge. Then for the conditions checking (i.e., “if dist(·) = 1”) in Line 8,

14, and 16, we use “if h(·) = −” instead, which means that the monotonic path

cannot be further unfolded (i.e., we find an edge in the graph).

Performance Analysis. Our method is based on CTL. For unweighted graphs,

CTL uses the parallel BFSs to build index entries for each distance level by level,

i.e., it builds the index entries with distance d + 1 after it finishes building the

98

4.5. EXTENSION OF MLL Chapter 4

ones with distance d, and the index entries with distance d+ 1 rely on the ones

with distance less than d+1. However, for weighted graphs, we cannot build the

index in a similar way because the number of possible distances is large, and we

do not know which distance of indexes to build. Therefore, there is no efficient

way to parallelize CTL for weighted graphs. As a result, the performance of CTL

for weighted graphs will be slightly slower than the single-threaded version of

CTL for unweighted graphs because it requires the Dijkstra’s algorithm instead

of the BFS algorithm.

As for the MLL index entries, it does not have similar limitations as CTL.

Therefore, it can be parallelized in a similar way as for unweighted graphs.

Extension for Directed Graphs. In Section 4.4, we assumed that the complex

network is undirected for MLL. MLL can also be extended to support shortest-

path queries on directed graphs. Given a directed graph G(V,E), if (u, v) ∈ E,

then u is an in-neighbor of v and v is an out-neighbor of u.

Index construction. MLL relies on the CTL index, but building the CTL index

on directed graphs is challenging due to performing core-tree decomposition on

directed graphs. There are two differences when decomposing a directed graph

compared to an undirected graph. (1) We perform the decomposition using min-

imum degree elimination (MDE) [13], which iteratively finds the vertex v with

the smallest degree (the total number of in-/out-neighbors) in a graph. In elim-

inating the vertex v, we connect any two neighbors u,w of v by directed edges,

set the edge weight, and remove v using similar methods to that of undirected

graphs; the other parts are the same. (2) For each vertex u in the tree node

X(v), we need to store two shortest distances: the forward distance dist+(u, v)

from u to v and the backward distance dist−(u, v) from v to u.

When the graph is decomposed, we get a directed graph Gλ, and we can use

PLL to create a forward label LCTL+ (u) for each vertex u ∈ C. Then, the direction

99

Chapter 4 4.6. EXPERIMENTS

of the edges of Gλ is reversed to get a reverse graph, and we create a backward

label LCTL− (u) for each u ∈ C by using PLL on the reverse graph of Gλ. As for

the tree index, for each landmark v of u, we calculate the distance from v to u

as a forward label and the distance from u to v as a backward label. Similarly,

for our MLL index, we use Algorithm 7 to create a forward label LMLL
+ (u) for

each vertex u ∈ V on the original graph G and a backward label LMLL
− (u) on the

reverse graph of G.

Query processing. To perform shortest-path queries on directed graphs, we can

use a similar way as on undirected graphs (by Algorithm 6). One thing to note

is that we need to consider whether to use forward or backward labels for each

vertex. For example, when we need to obtain the shortest path from s to t, we

should use the forward label LMLL
+ (s) for s and the backward label LMLL

− (t) for

t. Algorithm 6 also needs the support of shortest-distance queries using CTL,

which can be adapted similarly on directed graphs.

4.6 Experiments

Algorithms. We intend to conduct thorough experimental comparisons of

traversal-based and extension-based approaches for dealing with shortest-path

queries on complex networks.

• Traversal-based: we select and implement four representative methods, all

of which need graph traversal to process queries.

– BFS. We start a BFS from s until t is met to process QP(s, t).

– BiBFS. Bidirectional BFS, i.e., search the path from both the s and t

sides to process QP(s, t). We use an implementation similar to [87] to

incorporate some heuristics for speedup.

100

4.6. EXPERIMENTS Chapter 4

– PLLB. This method uses both the index and graph traversal. To reduce

the PLL index size, we construct a partial PLL by only constructing labels

within a specific distance (≤ 5 in this chapter) and ignoring others with

larger distance values. This partial PLL index is extended to support

shortest-path queries. When dealing with QP(s, t), if the partial PLL

index finds dist(s, t) ≤ 5, then the s-t shortest path can be returned

using Algorithm 5; otherwise, the query is handled by BiBFS.

– CTLB. We use CTL as preprocessing to speed up BFS, that is, when

processing QP(s, t), the CTL index can provide distance information to

determine whether a vertex w is on the s-t shortest path, i.e., whether

dist(s, t) = dist(s, w) + dist(w, t). Vertices not on the s-t shortest path

can be pruned directly.

• Extension-based: we select the extended PLL and CTL introduced in Sec-

tion 4.3 and MLL introduced in Section 4.4, all of which use only indexes to

process queries.

– PLLE. We use the extended PLL index, i.e., add an extra attribute to each

index entry, for query processing. The query method is in Algorithm 5.

We use the parallel version of PLL to speed up index creation, whose

source code is provided by the authors of [59].

– CTLE. We use the extended CTL index, i.e., add an extra attribute to

each index entry, for query processing. The query processing method

is introduced in Section 4.3.2. The index construction of CTL can be

accelerated using multiple cores. The source code of CTL is provided by

the authors of [60].

– MLL. MLL uses both the CTL index and the MLL index for query process-

ing (see Algorithm 6). The index of MLL can be constructed in parallel,

101

Chapter 4 4.6. EXPERIMENTS

Table 4.2: Dataset Description
Datasets n m Type Diameter distavg Degavg

DELI Delicious5 536,109 1,365,961 Social 14 5.16 5.10
DIGT DIGT5 4,000,151 8,649,016 Social 15 7.81 4.32
FRIE Friendster5 8,658,745 55,170,227 Social 25 5.37 12.74
STAC Stack5 6,024,271 63,497,050 Interaction 11 3.86 21.08
LIVE LiveJournal6 5,363,260 79,023,142 Social 20 5.45 29.47
FACE Facebook5 58,790,783 92,208,195 Social 24 7.25 3.14
TWIT Soc-Twitter5 21,297,772 265,025,809 Social 26 4.87 24.89
SK05 SK-20056 50,636,154 1,949,412,601 Web 40 5.20 77.00
UK06 UK-20066 77,741,046 2,965,197,340 Web 42 6.16 76.28
UK07 UK-20076 133,633,040 5,507,679,822 Web 257 6.22 82.43

and the construction algorithm is presented in Algorithm 7.

We implemented all the algorithms using C++ and compiled them using

GNU GCC 4.8.5 and -O3 level optimizations. We use OpenMP to support the

implementation of the parallel algorithms. All experiments were conducted on a

machine with 64 CPU cores and 500 GB main memory running Linux (Red Hat

Linux 4.8.5, 64bit). Each CPU core is Intel Xeon 2.4GHz.

Datasets. We ran experiments on 10 real-world graphs, whose details are given

in Table 4.2. The largest graph has over 5.5 billion edges. These graphs are small-

world graphs, most of which have diameters (longest shortest distances) less than

50, and the average distance between two vertices of all graphs, i.e., distavg, is

less than 10. The average degree of these graphs, Degavg, varies between 3.14

and 82.43. The dataset comes from various complex networks, including social

networks, web graphs, and interaction networks. All graphs were downloaded

from Network Repository5[74] and Laboratory for Web Algorithms6[18].

Summary of Findings. For traversal-based methods (i.e., BFS, BiBFS, PLLB,

and CTLB), BFS and BiBFS can process queries without building indexes, but

their query speed is slow. CTLB tries to use the CTL index to accelerate BFS,

but it cannot guarantee query time. PLLB can speed up the query process by

5https://networkrepository.com/networks.php
6https://vigna.di.unimi.it

102

4.6. EXPERIMENTS Chapter 4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

INF

DELI
DIGT

FRIE
STAC

LIVE
FACE

TW
IT

SK05
UK06

UK07

Time (sec)

BFS
BiBFS
PLLB
CTLB
PLLE
CTLE
MLL

(a) Query Time

10
1

10
2

10
3

10
4

10
5

10
6

10
7

INF

DELI
DIGT

FRIE
STAC

LIVE
FACE

TW
IT

SK05
UK06

UK07

Space (MB)

 PLLB
 CTLB
 PLLE
 CTLE
 MLL

(b) Index Size

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

INF

DELI
DIGT

FRIE
STAC

LIVE
FACE

TW
IT

SK05
UK06

UK07

Time (sec)

 PLLB
 CTLB
 PLLE
 CTLE
 MLL

(c) Indexing Time

Figure 4.3: The Comparison of Different Methods

103

Chapter 4 4.6. EXPERIMENTS

creating a partial PLL index, but it still cannot guarantee query time for shortest-

path queries with long distances. Thus, the traversal-based approaches are only

applicable when the query speed is not so demanding while the space budget is

low.

On the other hand, extension-based methods (i.e., PLLE, CTLE, and MLL)

use the pre-computed index for query processing, and their query speed is much

faster than traversal-based methods since they avoid graph traversal at query

time. Moreover, the three extension-based methods make a different trade-off

between query time and space cost: among them, MLL has the smallest index size

and PLLE has the largest index size, while the index size of MLL is in between;

MLL has the slowest query speed and PLLE has the fastest query speed, while

the query speed of CTL is in between.

Ex-1: Query Time Comparison. We compare the query time of all methods.

For the approach using indexes for query processing, we set the query time to

“INF” if the index cannot be built. We generated 1000 random queries and

obtained the average query processing time. We show the results in Fig. 4.3(a).

Comparison among extension-based methods. Since the extension-based methods

(i.e., PLLE, CTLE, and MLL) do not rely on graph traversal, they can process

queries very quickly: all of them handle shortest-path queries within two mil-

liseconds. Among them, PLLE has the fastest query speed, and the query time

of PLLE is on average 10.53 times shorter than that of MLL. The query speed of

MLL is comparable to that of CTLE, and the query time of CTLE is on average

1.94 times shorter than that of MLL. Considering the performance of extension-

based methods in query processing, they are suitable for applications requiring

high query speed.

Comparison with traversal-based methods. Due to the inevitable need for graph

traversal, the query speed of traversal-based methods (i.e., BFS, BiBFS, PLLB,

104

4.6. EXPERIMENTS Chapter 4

and CTLB) is much slower than that of extension-based methods. We take MLL

as a representative to compare extension-based methods with traversal-based

methods.

(1) Comparison with BFS and BiBFS. The query time of BFS is, on average,

3265.86 times longer than MLL and up to four orders of magnitude longer than

MLL. BiBFS uses bi-directional search to reduce the overhead of graph traversal

compared to BFS, but BiBFS still takes a long time to process queries: BiBFS

is on average 254 times and up to three orders of magnitude slower than MLL.

(2) Comparison with PLLB. When processing a query, if the distance between

two vertices is short, PLLB can use the index to avoid traversing the graph.

However, PLLB cannot totally avoid graph traversal, which leads to the query

time of PLLB being 102.46 times longer than that of MLL on average.

(3) Comparison with CTLB. CTLB narrows the search space of BFS by distance

queries, so CTLB is faster than BFS on some graphs; for example, on DELI, the

query time of CTLB is 0.14 times that of BFS. But distance queries used by

CTLB are not free; for example, on UK07, CTLB takes 1.25 times longer than

BFS. CTLB is also much slower than MLL: MLL is on average 3027.45 times and

at most four orders of magnitude faster than CTLB.

Ex-2: Index Size Comparison. There are five methods that require the use

of indexes (including PLLB, CTLB, PLLE, CTLE, and MLL) for query processing.

We compare the index size of these five methods and present the results in

Fig. 4.3(b).

Index Size of PLLE, CTLE, and MLL. Among extension-based methods, PLLE

has the largest index, while MLL has the smallest index.

(1) The total size of the indexes (including the CTL and the MLL indexes) used

by MLL is 6.9 times smaller than the size of indexes used by PLLE. Because of

the oversized indexes, PLLE cannot handle large graphs such as FACE, TWIT,

105

Chapter 4 4.6. EXPERIMENTS

and UK07.

(2) Both MLL and CTLE are extended based on CTL to support path queries. For

CTLE, the extra space brought by the extension is 0.96 times that of the original

CTL index, while the size of the extra space (i.e., the MLL index) required by

MLL is 0.2 times that of the original CTL index. Also, due to the difference in

the extra space used, CTLE cannot handle graph UK07 while MLL can.

Index Size of PLLB. By limiting the distance in the labels, PLLB constructs a

partial PLL index. Thus, the index size of PLLB is 0.82 times that of PLLE.

However, the index size of PLLB is on average 8.05 times7 that of MLL, and

PLLB cannot handle large graphs such as FACE and UK07. This shows that even

building a partial PLL index still requires a much larger index size than MLL.

Index Size of CTLB. Instead of extending the CTL index, CTLB uses the original

CTL index for distance queries to reduce the search range of BFS. CTLB has

a smaller index size than the extension-based approaches. However, the total

index size of MLL is only 1.2 times that of CTLB, indicating that MLL does not

add significantly extra space to the original CTL index.

Ex-3: Indexing Time Comparison. We compare the indexing time of five

methods (including PLLB, CTLB, PLLE, CTLE, and MLL) that require the use of

indexes for query processing. We show the results in Fig. 4.3(c).

Indexing Time of PLLE, CTLE, and MLL. Among three extension-based meth-

ods, MLL has the shortest indexing time: the total indexing time of MLL (in-

cluding the time to build the CTL index and the MLL index) is on average 4.06

times shorter than that of PLLE, and also on average 2.15 times shorter than

that of CTLE.

Indexing Time of PLLB. On the graphs that PLLE can index, PLLB is 2.44 times

faster than PLLE: PLLB only needs to build a partial PLL index while PLLE needs

7There is no conflict with former results as PLLB can index FACE while PLLE cannot.

106

4.6. EXPERIMENTS Chapter 4

BFS BiBFS PLLB CTLB PLLE CTLE MLL

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Q1 Q2 Q3 Q4 Q5

Time (sec)

(a) FRIE

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Q1 Q2 Q3 Q4 Q5

Time (sec)

(b) STAC

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Q1 Q2 Q3 Q4 Q5

Time (sec)

(c) LIVE

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Q1 Q2 Q3 Q4 Q5

Time (sec)

(d) SK05

Figure 4.4: The Test of the Query Time at Different Distance Ranges

a complete one. However, the indexing time of PLLB is on average 1.72 times

and 3.6 times longer than that of CTLE and MLL, respectively.

Indexing Time of CTLB. CTLB only needs to build the CTL index, while CTLE

needs to add an extra attribute to each entry of the CTL index, which causes

the indexing time of CTLE to be 2.41 times longer than that of CTLB. MLL also

needs to create the CTL index first. Still, the additional building of lightweight

indexes results in the indexing time of MLL being only 1.12 times that of CTLB,

indicating that MLL does not incur much additional indexing time cost to support

shortest-path queries.

Ex-4: Test of Query Time at Different Distance Ranges. We test the

performance of all methods in handling queries in different distance ranges. We

randomly generate five sets of queries Q = {Q1, Q2, Q3, Q4, Q5}, where each set

Qi ∈ Q, i ∈ [1, 5], consists of 1000 random queries. For each query QP(s, t) ∈ Qi,

107

Chapter 4 4.6. EXPERIMENTS

we control the shortest distance between s and t located in the range between
D
5
× (i − 1) and D

5
× i, where D is the diameter of the graph. We report the

average time for answering queries in each set Qi. Since various graphs have

similar conclusions, we only show the results for FRIE, STAC, LIVE, and SK05 in

Fig. 4.4.

Effect of distance on query time. For all methods, the time to answer queries in

Q1 tends to be shorter, while the time to answer queries in Q5 tends to be longer.

For example, on graph FRIE, MLL takes 1.48 times longer to process queries in

Q5 than in Q1; BFS takes 433.77 times longer to process queries in Q5 than in

Q1. One reason for this trend is that a longer path always means examining more

labels or visiting more graph vertices to find the path. It is worth noting that

the query time for PLLB increases dramatically as the query distance increases.

This is because PLLB can use indexes to answer queries when the distance is

less than a certain value (we set it to 5), whereas graph traversal is required for

larger distances.

Comparison of traversal-based and extension-based Methods. The extension-

based methods are faster than the traversal-based methods in processing queries

in any Qi on all graphs. Taking MLL as an example, MLL is on average 1511.34,

44.95, 44.95 and 91.75 times faster than BFS, BiBFS, PLLB and CTLB in

processing queries in Q4 of LIVE.

Ex-5: Scalability Test on Query Time. We test the scalability of all meth-

ods. To do this, we randomly divide the edges E of graph G(V,E) into five

groups with equal size and then generate five test graphs such that the i-th test

graph contains the first i groups of edges. Thus, the five test graphs include

20%, 40%, 60%, 80%, 100% of the edges in G, respectively. We conduct experi-

ments on each of the five test graphs.

We first evaluate the graph size against the query time of all methods. Since

108

4.6. EXPERIMENTS Chapter 4

BFS BiBFS PLLB CTLB PLLE CTLE MLL

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

20% 40% 60% 80% 100%

Time (sec)

(a) FRIE

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

20% 40% 60% 80% 100%

Time (sec)

(b) STAC

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

20% 40% 60% 80% 100%

Time (sec)

(c) LIVE

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

20% 40% 60% 80% 100%

Time (sec)

(d) SK05

Figure 4.5: The Test of Scalability on the Query Time

various graphs have similar conclusions, we only present the results for FRIE,

STAC, LIVE, and SK05 in Fig. 4.5. We find that, as the graph size increases,

the query time of some methods shows an increasing trend. For example, on

STAC, for CTLB, the query time on the test graphs containing 40%, 60%, 80%

and 100% edges is 2.2, 4.94, 5.33 and 16.77 times longer than the query time on

the test graph with 20% edges. Yet, there is not just an upward trend observed;

for example, on STAC, for MLL, the query time on the test graph containing 60%

edges is 1.76 times longer than that on the test graph with 80% edges.

The reasons for the query time fluctuations are manifold. First, most of

the query complexity is related to the graph scale, and a large graph generally

implies an increase in complexity; however, query processing is also related to

other factors, such as graph density and graph diameter. According to [56], the

graph diameter decreases as the number of edges increases. Thus, the query time

109

Chapter 4 4.6. EXPERIMENTS

PLL
B

 CTL
B

 PLL
E

 CTL
E MLL

10
3

10
4

10
5

10
6

20% 40% 60% 80% 100%

Space (MB)

(a) FRIE

10
2

10
3

10
4

10
5

20% 40% 60% 80% 100%

Space (MB)

(b) STAC

10
2

10
3

10
4

10
5

10
6

20% 40% 60% 80% 100%

Space (MB)

(c) LIVE

10
3

10
4

10
5

10
6

20% 40% 60% 80% 100%

Space (MB)

(d) SK05

Figure 4.6: The Test of Scalability on the Index Size

shows a fluctuating trend under the interaction of various factors.

Ex-6: Scalability Test on Index Size. We investigate the effect of the graph

size on the index size. We use the same experimental setup as Ex-5 and compare

the index size of the five methods (including PLLB, CTLB, PLLE, CTLE, and MLL)

that use indexes for query processing. The results are given in Fig. 4.5.

We find that the index size of all the five methods increases as the graph

size grows. For example, on FRIE, the index built by MLL on the test graph

containing 40% edges is 1.75 times larger than the index built on the test graph

containing 20% edges, while the index built by MLL on the test graph with 100%

edges is 3.23 times larger than the index built on the test graph with 20% edges.

Ex-7: Scalability Test on Indexing Time. We next study the effect of the

graph size on the indexing time of the five methods (including PLLB, CTLB, PLLE,

CTLE, and MLL) that rely on indexes for query processing. The experiments use

110

4.6. EXPERIMENTS Chapter 4

PLL
B

 CTL
B

 PLL
E

 CTL
E MLL

10
2

10
3

10
4

10
5

20% 40% 60% 80% 100%

Time (sec)

(a) FRIE

10
0

10
1

10
2

10
3

20% 40% 60% 80% 100%

Time (sec)

(b) STAC

10
1

10
2

10
3

10
4

20% 40% 60% 80% 100%

Time (sec)

(c) LIVE

10
2

10
3

10
4

20% 40% 60% 80% 100%

Time (sec)

(d) SK05

Figure 4.7: The Test of Scalability on the Indexing Time

the same settings as Ex-5, and we report the results in Fig. 4.7.

It can be found from Fig. 4.7 that the indexing time of all the five methods

increases as the graph size increases. Taking MLL as an example, on graph FRIE,

the indexing time of MLL is 1.92, 2.77, 3.41, and 4.02 times longer on test graphs

containing 40%, 60%, 80%, and 100% edges, respectively, than on the test graph

containing 20% edges. Similar phenomena can be observed in other methods.

10
−5

10
−4

10
−3

10
−2

DIGT STAC LIVE SK05

Time (sec)

MLLU MLLD

(a) Query Time

10
2

10
3

10
4

10
5

10
6

DIGT STAC LIVE SK05

Space (MB)

MLLU MLLD

(b) Index Size

10
1

10
2

10
3

10
4

10
5

DIGT STAC LIVE SK05

Time (sec)

MLLU MLLD

(c) Indexing Time

Figure 4.8: The Performance of MLL on Directed Graphs

Ex-8: Test of MLL on Directed Graphs. Section 4.5 introduces how to

111

Chapter 4 4.6. EXPERIMENTS

extend MLL to directed graphs. To test the effectiveness of the extension, we

run experiments on four real datasets (DIGT, STAC, LIVE, and SK05). Note that

these graphs used are directed, while in the previous experiments, we ignored

edge directions to create undirected graphs. The original MLL method is called

MLLU since it works with undirected graphs; the extended MLL method is called

MLLD since it works with directed graphs. The results are in Fig. 4.8.

Query time. The query time of MLLD is normally faster than MLLU, for example,

on DIGT, the average query time of MLLD is 4.13 times shorter than that of

MLLU. One reason could be that when querying on directed graphs, we only

use the labels in one direction (and ignore the labels in the opposite direction).

However, due to the randomness of queries and the larger index size, MLLD may

be slower than MLLU in some cases; for example, on LIVE, the average query

time of MLLD is 1.66 times longer than MLLU.

Index size. The index size of MLLD is generally larger than that of MLLU: the

average index size of MLLD is 1.98 times larger than that of MLLU. One possible

explanation for this result is that forming a path in a directed graph is more

difficult (a path in a directed graph must be a path in the corresponding version

of an undirected graph, and the reverse does not hold). When indexing a di-

rected graph, pruning the index using existing path information is more difficult,

resulting in a large index size.

Indexing time. The indexing time for MLLD is generally longer than that for

MLLU: on the four graphs used, the indexing time of MLLD is on average 2.87

times longer than that of MLLU.

112

4.7. CHAPTER SUMMARY Chapter 4

4.7 Chapter Summary

This chapter studies shortest-path queries on complex networks. The distance

query processing methods PLL and CTL are extended to support shortest-path

queries. To reduce the space cost required for extensions, MLL is proposed.

MLL is also adapted for weighted and directed graphs. Extensive experiments

are conducted to investigate the performance of various methods in answering

shortest-path queries. The experimental results can help practitioners choose

the appropriate method for a specific application.

113

Chapter 5

LABEL CONSTRAINED

SHORTEST PATH ON ROAD

NETWORKS

5.1 Chapter Overview

In this chapter, we study the label-constrained shortest-path query on road net-

works. This chapter is structured as follows. Section 5.2 provides the problem

definition. Section 5.3 introduces the state-of-the-art algorithm. Section 5.4

shows a naive index-based approach. Section 5.5 further improves index struc-

ture. Section 5.6 optimizes the index construction procedure through paralleliza-

tion. Section 5.7 evaluates the proposed algorithms and Section 5.9 concludes

this chapter.

114

5.2. PRELIMINARIES Chapter 5

Table 5.1: List of Notations
Notation Description

G = (V,E) graph G with vertex set V and edge set E
ϕ(·), ℓ(·) weight and label of an edge/path

Σ alphabet of edge labels
G[Σs] Σs-induced subgraph of G

distLG(s, t) label-constrained shortest distance
TG tree decomposition of G

X, X(v) tree node
ω(TG)/ω, h(TG)/h treewidth and treeheight of TG

S, S(u, v) label-constrained shortest distance set(LSDS)
ρ the maximum size of LSDS
Gi label-constrained distance preserved graph

5.2 Preliminaries

Let G = (V,E, ϕ, ℓ,Σ) be a labelled road network, where V (G) is a set of vertices,

E(G) is a set of edges, ϕ : E(G) → R+ is a function that assigns each edge

e ∈ E(G) a positive number ϕ(e,G) as its weight, Σ is a finite alphabet of

edge labels, and ℓ : E(G) → Σ is a function assigns each edge e ∈ E(G) a

label ℓ(e,G) ∈ Σ. We use n = |V (G)| (resp. m = |E(G)|) to denote the

number of vertices (resp. edges) in G. For each vertex v ∈ V (G), the neighbors

of v, denoted by nbr(v,G), is defined as nbr(v,G) = {u|(u, v) ∈ E(G)}. The

degree of a vertex v is the number of neighbors of v. Given a subset of labels

Σs ⊆ Σ, the Σs-induced subgraph of G, denoted by G[Σs], is the subgraph that

contains all edges in G with labels in Σs. A path p in G is a sequence of vertices

p = (v0, v1, v2...vk), where (vi, vi+1) ∈ E(G) for each 0 ≤ i ≤ k − 1. We use

P (s, t, G) to denote all paths from s to t. The weight of the path, denoted by

ϕ(p,G), is defined as ϕ(p,G) =
∑

0≤i≤k−1 ϕ(vi, vi+1). Given two vertices s and

t, the shortest path from s to t is the path with minimum weight in P (s, t, G).

The shortest distance, denoted by distG(s, t), is the weight of the shortest path

115

Chapter 5 5.2. PRELIMINARIES

3, g

3
, r

2, r

3
, g

1, r

2
, b

2
, g

5, g 2, b

4
, b

3
, b

6
, b

(a) Road network G (b) G[r]

v1 v2

v3v4v5 v6

v9 v8 v11 v7

v12v10

3
, r

2, r

1, r
v1 v2

v3v4 v6

Figure 5.1: A Road Network and Label-induced Subgraph

between s and t. For a given path p in G, the label of p, denoted by ℓ(p,G),

is the union of edge labels in p, i.e., ℓ(p,G) =
⋃

e∈p ℓ(e,G). For simplicity, we

omit G in the notations if the context is self-evident. For ease of reference, we

summarize the frequently used notations in Table 5.1.

Definition 13. (Label-Constrained Path) Given two vertices s, t in a road

network G = (V,E, ϕ, ℓ,Σ) and a set of edge labels L ⊆ Σ, a path from s to t is

a label-constrained path regarding L if ℓ(p) ⊆ L.

Definition 14. (Label-Constrained Shortest Path) Given two vertices s, t

in a road network G = (V,E, ϕ, ℓ,Σ) and a set of edge labels L ⊆ Σ, the label-

constrained shortest path from s to t is the path with the minimum weight among

the label-constrained paths from s to t regarding L.

Problem statement. Given a road network G = (V,E, ϕ, ℓ,Σ), a label-

constrained shortest path query is defined as q = (s, t,L), where s, t ∈ V (G),

L ⊆ Σ, and the answer is the label-constrained shortest path from s to t regard-

ing L. In this chapter, we aim to develop effective indexing techniques to answer

q efficiently.

For ease of explanation, we first consider that G is undirected, and discuss

how to extend the techniques to handle directed road networks in a separate

section (Section 5.5.5).

Example 35. Consider the road network G in Figure 5.1 (a), the weight and

the label of each edge is shown beside the corresponding edges. For example,

116

5.2. PRELIMINARIES Chapter 5

t

s

Toll Roads

Urban Local
Roads

Figure 5.2: Case Study

ϕ((v1, v2)) = 1 and ℓ((v1, v2)) = r. For an edge label set {r}, the {r}-induced

subgraph G[r] is shown in Figure 5.1 (b), which consists of edges with label r.

Given vertices v5, v6 and a label set {b, g}, there are two label-constrained paths

between v5 and v6: {(v5, v1, v4, v8, v11, v7, v6), (v5, v9, v8, v11, v7, v6)} and the sec-

ond one is the label-constrained shortest path with weight 16.

Case Study. Figure 5.2 demonstrates a real-world example of label-constrained

shortest path queries. In Sydney, we can briefly divide the roads into three

categories: toll road (T), main road (M), and local road (L). Assume that the

students from UNSW plan to go to Tarango Zoo by car at weekends. If they

only want to get to the zoo as fast as possible, then, they can obtain their route

by the query q = ("UNSW", "Tarango Zoo", ”TML”), which returns p1 with

15.52km. On the other hand, if they also want to get to the zoo as fast as

possible, but are not willing to pass the toll road or local road, they can obtain

their route by the query q = ("UNSW", "Tarango Zoo", ”M”), which return p2

117

Chapter 5 5.3. EXISTING SOLUTION

with 16.43km. From this example, we can see that different label-constrained

shortest path queries can satisfy different users’ requirements in route planning.

5.3 Existing Solution

Edge-disjoint partitioning (EDP) [41] is the state-of-the-art solution for the label-

constrained shortest path queries. EDP is an index-based approach consisting of

two components:

EDP indexing. Given a road network G, EDP first partitions G by the labels

of edges. For each label l ∈ Σ, the partition Partl contains the edges with

label l, i.e., Partl = G[l]. It is clear that each edge label uniquely corresponds

to a partition, we use them interchangeably when the context is self-evident.

Based on the partitions, a vertex v in a partition Partli is a bridge vertex if

there exists an edge (v, u) ∈ Partlj , and li ̸= lj. For a bridge vertex v ∈ Partli ,

its OtherHosts is other partitions containing v. When processing queries, it

computes the shortest paths in each partition. These computed paths are all

cached in the EDP index. As more queries are processed, which leads to the

index size exceeds a specified threshold, EDP uses the least recently used (LRU)

replacement strategy to replace the old paths with new computed shortest paths.

Query processing. For a query q = (s, t,L), EDP adopts a greedy traver-

sal paradigm similar to Dijkstra′s algorithm to compute the label-constrained

shortest path. During the traversal, it maintains a min-priority queue Q, each

element of Q has three attributes: (1) Part: the identifier of a partition, (2) v:

a vertex id, and (3) d: currently observed distance from s to v. Q is keyed by

(Part, v) and ordered by d. EDP initially inserts (Partls , s, 0) into Q, where Partls

is the partition in which s resides. Then, EDP iteratively extracts elements e′

from Q, expands the traversal, and inserts frontier discovered vertex into Q until

118

5.3. EXISTING SOLUTION Chapter 5

3

4

v1 v2

v3v4 v6

Partr

v1

v5 v6

v9 v11 v7

2

2

4

v12v10

3 6

Partb

3

3

v1

v4

v9 v8 v11

2

5

Partg

{b, g}

{g} {b}
{r, g}

{g} {g}

{r}
{r, b}

{r}
{b} {b}

Figure 5.3: EDP Indexing

t is reached or Q becomes empty. During the expansion, EDP first computes

the shortest distances d from e′.v to bridge vertices v′ in e′.Part, then, for each

Part ∈ {L′ ∩ L}, where L′ represents the labels of v′.OtherHosts in e′.Part, it

inserts (Part, v′, d+ e′.d) to Q (if t is in e′.Part, the same procedure is applied to

t as well). When computing the distances from e′.v to a bridge vertices v′ in a

partition, EDP directly obtains it if it is already cached in the index; Otherwise,

it performs Dijkstra′s algorithm and caches the result in the index.

Example 36. Consider G shown in Figure 5.1 (a), Figure 5.3 demonstrates

the edge-disjoint partitioning of G. The vertices with dashed circle are bridge

vertices, and the label sets near the bridge vertices are the OtherHosts List.

For example, v1 in Partr is a bridge vertex because it has two adjacent edges

with labels b and g, and its otherHosts list is {Partb,Partg}. Given a query q =

(v5, v6, {g, b}). As v5 is located at Partb as shown in Figure 5.3, EDP first pushes

(Partb, v5, 0) into the Q. Then, it pops out (Partb, v5, 0) from Q and computes the

distances from v5 to bridge vertices v1 and v9. Because the otherHosts of v1 and v9

has a common label g with the constraint labels {g, b}, EDP pushes (Partg, v1, 5)

and (Partg, v9, 2) into Q. Then, (Partg, v9, 2) is popped out and EDP finds the

distance from v9 to bridge vertices in Partg, and (Partb, v11, 10) is pushed into Q.

At this time, there are only two elements in Q: (Partg, v1, 5) and (Partb, v11, 10).

(Partg, v1, 5) is popped out and processed, and no new element is pushed into Q.

119

Chapter 5 5.4. A NAIVE INDEXING APPROACH

Finally, (Partb, v11, 10) is popped out. EDP computes the shortest distance from

v11 to v6. As v6 is the target vertex, EDP obtains the label-constrained shortest

path between v5 and v6, namely (v5, v9, v8, v11, v7, v6) with weight 16.

During processing the query, the sub-paths between v5 and v1/v9, between v9

and v11, etc., are cached in the index. When a new query is processed and needed

to compute, for instance, the shortest distance from v9 to bridge vertices in Partg,

EDP directly uses the cached result instead of computing it from scratch.

Drawbacks of EDP. EDP processes the label-constrained shortest path queries

correctly, but it has the following two drawbacks in efficiency: (1) theoretically,

there is no non-trivial tight bound on its query processing time. The worst-case

time complexity of EDP is not better than the online search following Dijkstra’s

algorithm, which limits the ability of EDP to handle adversarial queries. (2)

practically, EDP just caches the computed shortest paths in each partition for

the processed queries, but the newly issued queries may distribute diversely and

the label-constrained shortest path for the query may involve several partitions,

it is quite possible that most of the needed information for a specific query is not

cached. In this case, EDP degenerates into an online traversal based algorithm

similar to the Dijikstra’s algorithm, which implies the processing time could be

very large when s and t are far apart in G.

5.4 A Naive Indexing Approach

As analyzed in Section 5.3, EDP is unable to provide efficient query processing

regarding label-constrained shortest path queries. In this section, we first in-

troduce the tree decomposition and present a naive tree decomposition based

indexing approach, which paves the way to our new index presented in the next

section.

120

5.4.1 Tree Decomposition Chapter 5

5.4.1 Tree Decomposition

Tree decomposition [72] decomposes a graph into a tree-like structure to speed

up solving graph problems, it is defined as:

Definition 15. (Tree Decomposition) Given a graph G, a tree decomposition

TG of G is a rooted tree with nodes {X1, · · · , Xn}, where each node is a subset

of V (G) (i.e., Xi ⊆ V (G)), such that:

1.
⋃

X∈V (TG) X = V (G);

2. for each edge (u, v) ∈ E(G), there is a node X ∈ TG such that u ∈ X and

v ∈ X;

3. for each v ∈ V (G), the nodes containing v (i.e., {X|v ∈ X}) form a connected

subtree of TG.

Definition 16. (Treewidth and Treeheight) Given a tree decomposition TG

of G, the treewidth of TG, denoted by ω(TG) is one less than the maximum size of

all nodes in TG, i.e., ω(TG) = maxX∈V (TG)|X|−1. The treeheight of TG, denoted

by h(TG), is the maximum depth (the depth of a node in TG is the distance from

the node to the root node of TG) of all nodes in TG.

For ease of presentation, we refer to v ∈ V (G) in G as a vertex and refer to

X ∈ V (TG) in TG as a node. We use ω and h to denote the treewidth and tree-

height of the tree decomposition TG if the context is self-evident. The treewidth

of a graph G is the minimum treewidth over all possible tree decompositions of

G.

It has been proved that to determine whether a given graph G has treewidth

at most a given variable is NP-Complete [8]. Existing techniques to compute the

optimal tree decomposition with the minimum treewidth can only handle small

121

Chapter 5 5.4.1 Tree Decomposition

graphs [53]. Therefore, in this thesis, we adopt a suboptimal but practically

effective algorithm, MDE, to conduct the tree decomposition [93].

Minimum degree elimination based tree decomposition. MDE conducts

the tree decomposition in two steps: (1) it iteratively eliminates a vertex v with

the minimum degree in G, and then adds edges between all neighbors of v, v’s

neighbors form a clique in G. Clearly, after the elimination of v, v’s neighbors

become its neighbor’s neighbor. It proceeds the elimination until G becomes

empty. For each elimination, the eliminated vertex v and its neighbors nbr(v)

form a node X(v) in TG. (2) After all the vertices are eliminated, for each node

X(v), X(u) is set as the parent of X(v) in TG, where X(u) is the node created

by the first eliminated vertex u in X(v)\{v}.

Sub-tree(v8)

X(v9)

X(v1)

v4

v3 v4

v8 v3 v4

v10 v5X(v5)

v11 v7 v8v6 v3 v7v9 v1 v8v2 v1 v3

v12 v6v5 v1 v9

v7 v3 v8v1 v3 v4 v8

Figure 5.4: A Tree Decomposition TG of G

Example 37. Figure 5.4 shows the tree decomposition TG of G in Figure 5.1

(a) generated by MDE. TG has 12 nodes. The vertex elimination order is v10,

v12, v5, v2, v6, v11, v7, v9, v1, v8, v3, v4. The elimination of a vertex v leads

to a unique node X(v) in TG. For example, the elimination of v5 creates node

X(v5) = {v5, v1, v9}. The nodes that contains v8 form a connected subtree of TG

(the green area). Since the nodes in TG contain at most 4 vertices, the treewidth

ω = 3, and treeheight h = 6.

122

5.4.2 A Naive Indexing Approach Chapter 5

5.4.2 A Naive Indexing Approach

Given G = (V,E, ϕ, ℓ,Σ), there are 2|Σ| possible edge label combinations. There-

fore, we can build 2|Σ| indices and each index is built upon the induced subgraph

by one possible combination of the edge label in Σ. As all the possible edge

label combinations are considered, for each index, we only need to treat the

corresponding induced subgraph as unlabelled and build the index following the

shortest path indexing technique for the unlabelled road networks. To answer

a query q = (s, t,L), the index for L is utilized to retrieve the shortest path.

Following this idea, we present a naive indexing approach based on tree decom-

position.

Before presenting the naive indexing approach, we first introduce the vertex

cut property of the tree decomposition, this property is the key to apply tree

decomposition to shortest path queries.

Definition 17. (Vertex Cut) Given a graph G, a subset of vertices C ⊂ V (G)

is a vertex cut of G if the deletion of C from G splits G into multiple connected

components. Given two vertices s and t in G, the vertex cut C is a s-t cut if the

deletion of C from G disconnects s and t, and we say C separates s and t.

Lemma 22. [73] Given a tree decomposition TG of G, for any non-root node Xc

and its parent Xp, if there exist s ∈ Xc \Xp and t ∈ Xp \Xc, then Xc ∩Xp is a

vertex cut of G and it separates s and t.

Lemma 23. [21] Given a tree decomposition TG of G, for any two vertices s

and t in V (G), suppose X(s) is not an ancestor/decedent of X(t) in TG, let Xlca

be the lowest common ancestor (LCA) of X(s) and X(t) in TG, then Xlca is a

vertex cut of G and it separates s and t.

Given a s-t cut C, it is obvious that every path from s to t passes at least

one vertex in C. Accordingly, we have:

123

Chapter 5 5.4.2 A Naive Indexing Approach

Algorithm 8: NaiveQuery (s, t,L, T)
1 Xlca ← find LCA of X(s) and X(t) in TG[L];
// compute shortest distance from s to vertices in Xlca

2 ds(·)←∞, ds(s)← 0 ;
3 foreach w ∈ X(s)\{s} do
4 ds(w)← distG[L](s, w);

5 X ′
s ← X(s);

6 while Xlca ̸= X ′
s do

7 Xp ← parent of X ′
s in TG[L];

8 for u ∈ Xp \X ′
s do

9 for v ∈ Xp ∩X ′
s do

10 ds(u) = min{ds(u), ds(v) + distG[L](v, u)};

11 X ′
s ← Xp;

12 Repeat line 2-11 by replacing s with t;
13 return minw∈Xlca

{ds(w) + dt(w)};

Lemma 24. [68] Given two vertices s and t in G, let C be a s-t cut, then

dist(s, t) = minv∈C{dist(s, v) + dist(v, t)}.

Example 38. Consider the tree decomposition TG of G shown in Figure 5.4. For

X(v9) and its parent node X(v1), X(v9)∩X(v1) = {v1, v8} is a vertex cut of G,

which separates v9 and v3. As shown in Figure 5.4, for X(v10) and X(v12), their

LCA is X(v8), we know dist(v10, v3) = 12, dist(v10, v4) = 10, dist(v10, v8) = 8;

dist(v12, v3) = 8, dist(v12, v4) = 12 and dist(v12, v8) = 14, the shortest distance

from v10 to v12 is dist(v10, v12) = min(12 + 8, 10 + 12, 8 + 14) = 20.

Since the label-constrained shortest path between two vertices can be easily

obtained if their label-constrained shortest distance is determined with our al-

gorithms, we focus on the computation of the label-constrained shortest distance

between two vertices hereafter for clearness and discuss how to obtain the cor-

responding shortest path in Section 5.5.4. For brevity, given two vertices u, v,

and an edge label set L ⊆ Σ, we use distLG(u, v) to denote the label-constrained

shortest distance from u to v regarding L in G.

The naive indexing approach. Based on the above lemmas, we can devise

124

5.4.2 A Naive Indexing Approach Chapter 5

a straightforward indexing approach to compute label-constrained shortest dis-

tance between two vertices as follows:

• Indexing. For each possible edge label set Σs ⊆ Σ, we first retrieve the Σs-

induced subgraph G[Σs]. Based on G[Σs], we compute the tree decomposi-

tion TG[Σs] with MDE. After that, for each X(v) ∈ TG[Σs], we compute the

distG[Σs](v, u) for any u ∈ X(v) \ {v} and store them in node X(v) using hash

table. Note that we also maintain the mapping from vertex v to node X(v) in

the index for ease of query processing.

• Query Processing. Given a query q = (s, t,L), we can compute distLG(s, t) based

on the index TG[L] built on G[L]. The detailed procedure is shown in Algorithm 8.

It first computes the lowest common ancestor Xlca of X(s) and X(t) in TG[L] (line

1). After that, it computes the distance from s to vertices in Xlca. Based on

Lemma 22, for a node X ′
s and its parent Xp, where X ′

s is an ancestor node of

X(s), and assume that the shortest distances from s to all vertices in X ′
s are

already computed, then the shortest distances from s to vertices in u ∈ Xp \X ′
s

can be calculated as distG[L](s, u) = minw∈X′
s∩Xp{distG[L](s, w) + distG[L](w, u)},

where distG[L](w, u)} can be accessed by looking up the hash table in X(w) or

X(u). Hence, we can iteratively compute the shortest distances from s to vertices

in Xlca along the tree path from Xs to Xlca (line 3-11). The distances from t

to vertices in Xlca can be computed similarly (line 12). Finally, distLG(s, t) is

obtained via the vertices in Xlca based on Lemma 23 and Lemma 24 (line 13).

Example 39. Reconsider the road network shown in Figure 5.1 (a). Figure 5.5

(a) shows the {g, r}-induced subgraph G[{g, r}]. Figure 5.5 (b) shows the cor-

responding index TG[{g,r}] built on G[{g, r}]. For the node in TG[{g,r}], such as

X(v1) = {v1, v2, v4}, we store distG[{g,r}](v1, v2) = 1 and distG[{g,r}](v1, v4) = 3

in it. For a query q = (v9, v6, {g, r}), the arrows in Figure 5.5 (b) demonstrate

the query processing procedure. The LCA of X(v9) and X(v6) is X(v4). It it-

125

Chapter 5 5.4.2 A Naive Indexing Approach

3, g

3
, r

2, r

3
, g

4, r

1, r
v1 v2

v3v4 v6

v9 v8 v11
5, g

(a) G[{g, r}] (b) The Index of G[{g, r}]

v4

v1 v2 v4

1 3
v3 v2 v4

3 4

v8 v4

2

v9 v8

3
v11 v8

5

v6 v3

2

v2 v4

4

Figure 5.5: The Naive Indexing Approach

eratively computes the shortest distance from v9 and v6 to the vertices in X(v4)

following the arrows. For example, when computing the shortest distances from

v9 to v4 ∈ X(v8), as X(v9)∩X(v8) = v8, distG[{g,r}](v9, v4) = distG[{g,r}](v9, v8) +

distG[{g,r}](v8, v4) = 5. Similarly, it computes distG[{g,r}](v6, v4) = 6. Hence,

distG[{g,r}](v9, v6) = distG[{g,r}](v9, v4) + distG[{g,r}](v6, v4) = 11.

Theorem 12. Given a query q = (s, t,L), Algorithm 8 computes distLG(s, t)

correctly.

Proof. This theorem can be directly proved based on Lemma 22, Lemma 23 and

Lemma 24.

Lemma 25. Given a tree decomposition TG of G generated by MDE, for a node

X of TG, |X
⋃

Xa∈A(X) Xa| ≤ h, where A(X) represents the ancestors of X in

TG.

Proof. According to step (2) of MDE, given a non-root node X(v) ∈ TG,

for u ∈ X(v) \ {v}, X(u) must be an ancestor node of X(v), i.e., X(u) ∈

A(X(v)). Suppose the tree path from X to root node Xr in TG is (X(v1) =

X,X(v2), · · · , X(vk) = Xr), then
⋃k

i=1 X(vi) = {v1, v2, · · · , vk}. Therefore,

|X
⋃

Xa∈A(X) Xa| = |
⋃k

i=1 X(vi)| = k ≤ h. Thus, the lemma holds.

126

5.4.2 A Naive Indexing Approach Chapter 5

Lemma 26. Given a tree decomposition TG of G, for a node X(v) and a non-

root ancestor node X(u) of X(v), let Xp(v) (resp. Xp(u)) be the parent node of

X(v) (resp. X(u)), then {Xp(v) \X(v)} ∩ {Xp(u) \X(u)} = ∅.

Proof. We prove this by contradiction. Suppose there exists a vertex w ∈

{Xp(v) \ X(v)} ∩ {Xp(u) \ X(u)}, then w ∈ Xp(v), w ∈ Xp(u) and w /∈ X(u).

Meanwhile, the possible relationships between X(u) and X(v) are: (1) X(u)

is the parent node of X(v). It means X(u) = Xp(v). This contradicts with

w /∈ X(u) and w ∈ Xp(v). (2) X(u) is not the parent node of X(v). Then X(u)

must be the ancestor node of Xp(v). Thus, we can derive that Xp(v) and Xp(u)

that contain w are split by X(u) which doesn’t contain w. This contradicts with

Definition 15 in which the nodes contains w form a connected-subtree in TG.

Thus, the lemma holds.

Theorem 13. Given a query q = (s, t,L), Algorithm 8 computes distLG(s, t) in

O(h · ω).

Proof. In Algorithm 8, the computation of LCA of X(s) and X(t) in line 1

can be finished in O(1) time [12]. Suppose the tree path from X(s) to Xlca is

(X(s) = X1, X2, · · · , Xlca = Xk), where Xi is the parent of Xi−1. According

to Lemma 25 and Lemma 26, Σk
i=2|Xi \ Xi−1| < h. Thus, the total number

of vertices u visited in line 8 of Algorithm 8 is less than h. For line 9-10, the

distance computation of ds(u) can be finished in O(ω). Therefore, the overall

time complexity of Algorithm 8 is O(h · ω).

Remark. TEDI [88], the state-of-the-art tree decomposition based indexing

approach for the shortest path queries on unlabelled road networks, presents

a query processing algorithm using a similar idea as Algorithm 8 with time

complexity O(h · ω2). As shown in Theorem 13, our presented algorithm has a

time complexity of O(h · ω), which reduces that of TEDI by a factor ω.

127

Chapter 5 5.5. OUR NEW INDEXING APPROACH

5.5 Our new indexing approach

As shown in our experiments (Table 5.2), MDE generally generates a tree decom-

position with small treeheight h and treewidth ω for road networks. For example,

h and ω for the whole USA road network is 2, 886 and 579, respectively. Hence,

Algorithm 8 permits an efficient query processing regarding a label-constrained

query. However, the naive approach needs to construct 2|Σ| separate indices.

Obviously, it is prohibitive to construct and maintain such 2|Σ| separate indices.

In this section, we exploit the dominance relationships between edge-labelled

paths and present a new index based on the tree decomposition. The new index

can overcome the problem of the naive index with little additional cost for the

query processing.

5.5.1 A New Index Structure

Reconsider the road network G in Figure 5.1, due to the existence of path

{v1, v2, v3, v6}, the shortest distance between v1 and v6 in {b, g, r}-induced sub-

graph is 5. Meanwhile, in {b, r}, {g, r} and {r} induced subgraphs, the shortest

distance between v1 to v6 is 5 as well. In this case, if we have already stored the

shortest distance 5 between v1 and v6 in the index constructed on G[{r}], it is

redundant to store the same information in the indices constructed on G[{b, r}],

G[{g, r}], and G[{b, g, r}]. Based on this observation, instead of considering all

the possible edge label sets regarding Σ separately, we can treat these possible

edge label sets as a whole and design a holistic compact index that covers all

the shortest distance information without storing any redundant information.

Following this idea, we have the following lemma:

Lemma 27. Given two vertices u, v in G, let p be a path between u and v in G,

then u can reach v in distance d regarding a label set L if ℓ(p) ⊆ L, ϕ(p) ≤ d.

128

5.5.1 A New Index Structure Chapter 5

Proof. This lemma can be proved directly based on Definition 13.

Following Lemma 27, we define the label-constrained shortest distance set

between two vertices as follows:

Definition 18. (Label-constrained Shortest Distance Set) Given a road

network G and two vertices u and v in G, the label-constrained shortest dis-

tance set (LSDS) of u, v, denoted by S(u, v), is a set of label-distance pairs

{(L1, d1), (L2, d2), . . . } such that:

1. For each (Li, di) ∈ S(u, v), there exists a path p from u to v with Li = ℓ(p)

and di = ϕ(p).

2. For any path p from u to v, there exists a (Li, di) ∈ S(u, v), Li ⊆ ℓ(p) and

di ≤ ϕ(p);

3. For any path p from u to v and (Li, di) ∈ S(u, v), if ℓ(p) ⊂ Li, then di < ϕ(p);

if ℓ(p) = Li, then di ≤ ϕ(p).

Condition (1) ensures that each label-distance pair corresponds to a path in

G. Condition (2) guarantees that S(u, v) covers all possible label-constrained

shortest distances between u and v. Condition (3) ensures that the set is mini-

mum and there is no redundancy label-distance pair regarding label-constrained

shortest distance according to Lemma 27. Based on Definition 18, for a given

G and its tree decomposition TG, we construct the label-constrained shortest

distance index as follows:

Definition 19. (Label-constrained Shortest Distance Index) Given a road

network G, let TG be its tree decomposition, the label-constrained shortest distance

index of G, denoted by LSD-Index, is built on TG. For each node X(v) ∈ V (TG),

the label-constrained shortest distance set between v to other vertices u ∈ X(v) \

{v} are precomputed and stored.

129

Chapter 5 5.5.2 Query Processing by LSD-Index

v2 :(r,3)v3

:(r,1)v1 v9 :(g,3)v8

:(b,7),(g,8)v1

v7 :({b,g},7)v8

:({b,r},6)v3

v6 :(b,4)v7

:(r,2)v3

v12 :(b,6)v6

v11 :(g,5)v8

:(b,2)v7

v5 :(b,2)v9

:(b,5)v1

v10 :(b,3)v5

v1

:(r,4)v3

:(g,5)v8

:(g,3),(r,8)v4

v8 :(g,2)v4

:({g,r},6)v3

v3 :(r,4)v4

v4

Figure 5.6: The LSD-Index

Example 40. Figure 5.6 shows the LSD-Index of G in Figure 5.1 (a). Each

node stores the corresponding LSDS. Take S(v1, v4) as an example. S(v1, v4) =

{(g, 3), (r, 8)} because (1) (g, 3) and (r, 8) correspond to path (v1, v4) and path

(v1, v2, v3, v4) between v1 and v4, respectively, (2) any other paths between v1 and

v4, such as (v1, v5, v9, v8, v4), can be covered by these two paths, and (3) there is

no redundancy in {(g, 3), (r, 8)}.

5.5.2 Query Processing by LSD-Index

With LSD-Index, we can easily obtain a query processing algorithm similar to

Algorithm 8. The details are shown in Algorithm 9. Given a query q = (s, t,L),

Algorithm 9 first computes the lowest common ancestor Xlca of X(s) and X(t)

(line 1). Then, it computes the label-constrained distance from s (resp. t) to the

vertices in Xlca along the tree path similarly to Algorithm 8 (line 3-11). Finally,

it computes the label-constrained shortest distance by iterating over vertices in

Xlca (line 13). Procedure dist computes the label-constrained shortest distance

between u and v regarding an edge label set L, it iterates the label-distance pair

(L′, d′) in S(u, v) (line 15) and returns the shortest distance d′ such that L′ ⊆ L

130

5.5.2 Query Processing by LSD-Index Chapter 5

(line 16-17).

Example 41. Reconsider the query q = (v9, v6, {g, r}), the arrows in Figure 5.6

demonstrate the query process. The LCA of X(v9) and X(v6) is X(v8). For v9,

dist
{g,r}
G (v9, v1) = 8, as S(v9, v1) contains (g, 8). Similarly, dist

{g,r}
G (v9, v8) = 3.

Following the arrow, X(v9) ∩ X(v1) = {v1, v8} and X(v1) \ X(v9) = {v3, v4}.

Hence dist
{g,r}
G (v9, v3) = min{dist{g,r}G (v9, v1) + dist

{g,r}
G (v1, v3), dist

{g,r}
G (v9, v8) +

dist
{g,r}
G (v8, v3)} = 9. Similarly, dist{g,r}G (v9, v4) = 5. For v6, dist

{g,r}
G (v6, v3) = 2,

dist
{g,r}
G (v6, v4) = 6, and dist

{g,r}
G (v6, v8) = 8 can be computed similarly. Then,

dist
{g,r}
G (v9, v6) = minw∈{v3,v4,v8}{dist

{g,r}
G (v9, w) + dist

{g,r}
G (w, v6)} = 11.

Theorem 14. Given a query q = (s, t,L), Algorithm 9 correctly computes

distLG(s, t).

Proof. This theorem can be proved similarly to Theorem 12 based on Defini-

tion 18 and Definition 19.

Theorem 15. Given a road network G, the size of the LSD-Index is O(n ·ω · ρ),

where ρ represents the maximum size of LSDS stored in LSD-Index.

Proof. There are n tree nodes in TG, and each tree node X(v) has at most ω

vertices in X(v) \ {x}. For each u ∈ X(v) \ {x}, we store the S(v, u) whose size

is at most ρ in LSD-Index. Therefore, the size of the LSD-Index is O(n ·ω ·ρ).

Theorem 16. Given a query q = (s, t,L), Algorithm 9 computes distLG(s, t) in

O(h · ω · ρ).

Proof. This theorem can be proved similarly to Theorem 13. The only difference

is that dist(v, u,L) is invoked in line 10. The time complexity of dist(v, u,L) is

bounded by O(ρ). Therefore, the time complexity of Algorithm 9 for answering

a query is O(h · ω · ρ).

131

Chapter 5 5.5.3 LSD-Index Construction

Algorithm 9: LSD-Index-Query (s, t,L, LSD-Index T)
1 Xlca ← find LCA of X(s) and X(t) in T ;
// compute LSD from s to vertices in Xlca

2 dLs (·)←∞, dLs (s)← 0;
3 foreach w ∈ X(s)\{s} do
4 dLs (w)← dist(s, w,L);
5 X ′

s ← X(s);
6 while Xlca ̸= X ′

s do
7 Xp ← parent of X ′

s in T ;
8 for u ∈ Xp \X ′

s do
9 for v ∈ Xp ∩X ′

s do
10 dLs (u)← min(dLs (u), ds(v) + dist(v, u,L));

11 X ′
s ← Xp;

12 Repeat line 2-11 by replacing s with t;
13 return minw∈Xlca

(dLs (w) + dLt (w));

14 Procedure dist(u, v, L)
// assume S(u, v) is ordered by distance

15 for (L′, d′) ∈ S(u, v) do
16 if L′ ⊆ L then
17 return d′;

Remark. Compared with the naive approach, an additional factor ρ is in-

troduced in the time complexity of Algorithm 9. However, as shown in our

experiments (Table 5.2), ρ is very small in practice. On the other hand, due

to LSD-Index, our approach avoids constructing and maintaining 2|Σ| separate

indices in the naive approach.

5.5.3 LSD-Index Construction

To construct the LSD-Index, a direct solution is based on Definition 19 as follows:

we first conduct the tree decomposition on G, and then compute the LSDS for

the vertices in each node according to Definition 18. In this approach, the time

complexity for the LSDS computation is O(n · ω · ((2|Σ|)2 + 2|Σ| · (m+ n log n))).

132

5.5.3 LSD-Index Construction Chapter 5

Algorithm 10: LSDS Operators
1 Procedure LSDSJoin(S ′p, S ′′p)
2 Sp ← ∅;
3 foreach (L′, d′) ∈ S ′p do
4 foreach (L′′, d′′) ∈ S ′′p do
5 Sp ← Sp ∪ {(L′ ∪ L′′, d′ + d′′)};

6 return Sp;

7 Procedure LSDSPrune(Sp)
8 foreach (L, d) ∈ Sp do
9 foreach (L′, d′) ∈ Sp do

10 if L ⊆ L′ and d ≤ d′ then
11 Sp ← Sp \ {(L′

c, d
′
c)};

12 return Sp;

Obviously, the cost of this part is prohibitive, which consequently makes this

approach impractical.

To address this problem, we propose a new index construction algorithm.

Instead of dividing the construction into two independent procedures, the new

algorithm progressively maintains partial LSDS by coordinating the procedures

of the tree decomposition and LSDS computation. Based on the partial LSDS,

the new algorithm computes the complete LSDS in a top-down manner in which

the computed complete LSDS can be re-used to accelerate the computation for

those not-yet-computed complete LSDS. Before presenting the algorithm, we

first introduce two operators on LSDS that are used in the index construction

algorithm:

Definition 20. (Operator LSDSJoin) Given two LSDS S ′
p and S ′′

p , operator

LSDSJoin generates a new LSDS by joining the entities in S ′
p and S ′′

p , i.e.,

LSDSJoin(S ′
p,S ′′

p) = {(L′ ∪ L′′, d′ + d′′) | ∀(L′, d′) ∈ S ′
p ∧ (L′′, d′′) ∈ S ′′

p}

Definition 21. (Operator LSDSPrune) Given a LSDS Sp, operator LSDSPrune

removes (Li, di) from Sp, if ∃ (Lj, dj) ∈ Sp such that Lj ⊆ Li ∧ dj ≤ di, where

133

Chapter 5 5.5.3 LSD-Index Construction

i ̸= j.

The procedures of these operators are shown in Algorithm 10.

Algorithm. With the above operators, our new index construction algorithm

is shown in Algorithm 11. It contains two phases: in phase 1, it conducts tree

decomposition in which partial LSDS are computed for vertex pairs incident to

the involved edges (line 1-18); in phase 2, it computes the complete LSDS in a

top-down manner based on the partial LSDS of phase 1 (line 19-24).

• Phase 1: Partial LSDS maintained tree decomposition. In phase 1, it conducts

the tree decomposition following MDE and maintains the partial LSDS for the

vertex pairs incident to edges involved in the decomposition. Specifically, it

first initializes G0 as G and T as an empty tree (line 1). For each edge (u, v),

Sp(u, v) is initialized as {(ℓ((u, v)), ϕ((u, v)))}, where Sp(u, v) is used to store

the partial LSDS (line 2-3). After that, it performs vertex elimination iteratively

following the procedure of MDE (line 4-14). In the ith iteration, it eliminates

the vertex v with minimum degree from Gi−1 and assigns its π(·) as i, where

π(·) records the elimination order (line 5-6). Then, for each vertex pair u,w in

the nbr(v,Gi−1), it first joins Sp(v, u) and Sp(v, w) by LSDSJoin and obtains S ′

(line 8). If Gi−1 does not contain an edge (u,w), it adds an edge (u,w) into

Gi and assigns Sp(v, w) as the result of LSDSPrune on S ′ (line 9-11); Otherwise,

the Sp(u,w) is updated as the result of LSDSPrune on Sp(u,w) ∪ S ′ (line 13).

In Algorithm 11, we assume π(u) < π(w) for the clearness of the presentation.

After the elimination of v, it adds a node X(v) containing v and its neighbors

nbr(v,Gi−1) into T (line 14). After all vertices are eliminated, the parent-child

relationships between nodes are generated (line 15-18). For a non-root vertex v,

it selects the vertex u ∈ X(v) \ {v} with smallest π(·) value (line 17) and sets

X(u) as the parent node of X(v) (line 18).

Before presenting phase 2, we first introduce the label-constrained shortest

134

5.5.3 LSD-Index Construction Chapter 5

distance (LSD) preserved graph Gi, it’s properties serve the theoretical bases of

phase 2 and are also used for the proof of Algorithm 11.

Definition 22. (LSD Preserved Graph) Given a graph Gi generated in phase

1, the LSD preserved graph of Gi, denoted by Gi, is a labelled multigraph such

that (1) V (Gi) = V (Gi); (2) if there is an edge e = (u, v) in Gi, then, for each

entity (L, d) ∈ Sp(u, v), there is an edge e′ = (u, v) with ℓ(e′) = L and ϕ(e′) = d

in Gi.

Lemma 28. Given two vertices u, v in Gi, for any edge label set L, distLGi
(u, v) =

distLG(u, v).

Proof. This lemma can be directly proved based on Definition 20, Definition 21,

and Definition 22.

According to Lemma 28, the label-constrained shortest distance between any

two vertices in Gi is preserved in Gi. Moreover, we have the following lemma:

Lemma 29. Given a vertex v ∈ V (Gπ(v)−1), for any edge label set L, the label-

constrained shortest path from v to u ∈ X(v) \ {v} regarding L in Gπ(v)−1 only

contains v and u, or passes a vertex in X(v) \ {v, u}.

Proof. According to the phase 1 of Algorithm 11, X(v) \ {v} is the neighbors of

v in Gπ(v)−1. Thus, the label-constrained shortest path regarding L from v to u

either only contains v, u, or passes a vertex in X(v) \ {v, u}.

Therefore, for a vertex v, if we have already known the complete LSDS S(u,w)

for any two vertices u,w ∈ X(v) \ {v}, to compute the complete LSDS S(v, u),

according to Definition 18, Lemma 28 and Lemma 29, we only need to join the

partial LSDS Sp(v, w) with the complete S(u,w) for each w ∈ X(v)\{v, u} with

LSDSJoin, add the result to Sp(v, u) and remove redundant label-distance pair

135

Chapter 5 5.5.3 LSD-Index Construction

Algorithm 11: LSD-Index-Cons(G)

// phase 1
1 G0 ← G; T ← ∅ ;
2 foreach (u, v) ∈ G do
3 Sp(u, v)← {(ℓ((u, v)), ϕ((u, v)))};
4 for i← 1 to n do
5 v ← vertex in Gi−1 with minimum degree;
6 π(v)← i; Gi ← Gi−1 \ v;
7 foreach u,w ∈ nbr(v,Gi−1) do
8 S ′ ← LSDSJoin(Sp(v, u),Sp(v, w));
9 if (u,w) /∈ Gi−1 then

10 add an edge (u,w) into Gi;
11 Sp(u,w)← LSDSPrune(S ′);
12 else
13 Sp(u,w)← LSDSPrune(Sp(u,w) ∪ S ′);

14 X(v)← {v} ∪ nbr(v,Gi−1);

15 foreach X(v) ∈ T do
16 if π(v) < n then
17 u← the vertex in X(v)\{v} with smallest π(·) ;
18 add X(v) as the child of X(u);

// phase 2
19 for i← n− 1 to 1 do
20 v ← vertex with π(·) = i ;
21 for u ∈ X(v) \ {v} do
22 for w ∈ X(v) \ {v, u} do
23 S ′ ← LSDSJoin(Sp(v, w),Sp(u,w));
24 Sp(v, u)← LSDSPrune(Sp(v, u) ∪ S ′);

with LSDSPrune. Moreover, we can apply the above procedure recursively to

compute the complete LSDS S(u,w). Following this idea, we can compute the

complete LSDS in a top-down manner based on tree decomposition and use the

computed complete LSDS to accelerate the computation of not-yet-computed

complete LSDS.

• Phase 2: Top-down complete LSDS computation. The phase 2 of the construc-

tion algorithm is shown in line 19-24 of Algorithm 11. It processes the vertices in

136

5.5.3 LSD-Index Construction Chapter 5

X(v1)

update LSDS
ajacent to v1

G8G7

X(v1)

G9

eliminate v9 eliminate v1

g,
 2

v4

v8

r, 4
v3

g,
 2

g, 3

v4

{b
,g

},
10

v1

v8

r, 4
v3

g,
 2

g, 3

g, 3

v4

v8

v1

v9

v3

g,
 2

(g,3)(r,8)
v4g,

 5
v1

v8

r, 4 v3

g,
 2

g, 3

v4

{b
,g

},
10

v1

v8

r, 4 v3

Figure 5.7: Procedure of Index Construction
the decreasing order of their π(·) value (line 19). For each vertex v, to compute

the complete LSDS of v and u, where u ∈ X(v) \ {v}, it iterates the vertices

w ∈ X(v) \ {v, u}, computes S ′ by LSDSJoin on Sp(v, w) and Sp(u,w), and

removes the redundancy in Sp(v, u) ∪ S ′) with LSDSPrune (line 22-24). The

construction finishes when all the vertices are processed.

Example 42. In Figure 5.7, the upper (resp. lower) part illustrate some of

key steps of phase 1 (resp. phase 2) during the construction of LSD-Index for

G in Figure 5.1 (a), where the LSDS is shown near each edge. For example,

in phase 1, when eliminating v9 from G7, a new edge (v1, v8) is added, and

Sp(v1, v8) = {({b, g}, 10)} is obtained by joining Sp(v9, v8) and Sp(v9, v1)). In

phase 2, for S(v1, v8), since LSDSJoin(Sp(v1, v4),S(v8, v4)) = {({g}, 5), ({g, r},

10)}, ({g, r}, 10) and ({b, g}, 10) ∈ Sp(v1, v8) are redundant because of ({g}, 5),

thus, Sp(v1, v8) is updated to {({g}, 5)}. Similarly, S(v1, v4) is updated to

{({g}, 3), ({r}, 8)}.

Theorem 17. Given a road network G, Algorithm 11 constructs LSD-Index cor-

rectly.

Proof. It is clear that the tree decomposition is correctly conducted. Then, we

prove all the complete LSDS are correctly computed by induction. Obviously,

137

Chapter 5 5.5.4 Shortest Path Restoration

Gn−2 contains only two vertices vn−1 and vn with π(vn−1) = n−1 and π(vn) = n.

According to Definition 22 and Lemma 28, after phase 1 finishes, Sp(vn−1, vn) is

a complete LSDS. In the phase 2, for a vertex v with π(v) < n− 2, suppose for

any u,w ∈ X(v) \ {v} such that u ̸= w, Sp(w, u) is a complete LSDS. According

to Lemma 29, by checking all possible label-constrained shortest distances from

v to u ∈ X(v) \ {v} in line 21-24, the final Sp(v, u) is a complete LSDS. Thus,

all the complete LSDS are correctly computed when phase 2 finishes. Therefore,

the theorem holds.

Theorem 18. Given a road network G, the time complexity of Algorithm 11 to

construct the index is O(n · ω2 · ρ2).

Proof. The time complexity of two operators LSDSJoin and LSDSPrune can be

bounded by O(ρ2). In phase 1, n vertices are eliminated. For each eliminated

vertex, at most O(ω2) edges are generated. For each edge, two operators are

invoked once. Hence, the time complexity of phase 1 is O(n · ω2 · ρ2). In phase

2, for each node, we have to compute O(ω) LSDS and each needs to invoke two

operators O(ω) times, phase 2 can be done in O(n · ω2 · ρ2). Thus, the overall

time complexity of Algorithm 11 is O(n · ω2 · ρ2).

5.5.4 Shortest Path Restoration

The algorithms described in the previous section focus on computing the label-

constrained shortest distance. By slightly modifying the index structure and

query processing algorithm, we can easily retrieve the corresponding label-

constrained shortest path.

Augmented LSD-Index. According to Definition 18, each entity (L, d) ∈ S(u, v)

in LSD-Index corresponds to a path p(u, v) in G. To restore the shortest path

for a query, we first need to restore the path represented by (L, d). Revisiting

138

5.5.4 Shortest Path Restoration Chapter 5

the construction procedures of LSD-Index shown in Algorithm 11, there are two

cases in which (L, d) ∈ S(u, v) is generated: (1) the original edge (u, v) in G;

(2) operator LSDSJoin is applied on Sp(w, u) and Sp(w, v) (line 8 or line 23).

For case (1), we do not store any additional information in S(u, v). For case

(2), we store (w, idu, idv) besides (L, d) in S(u, v), where idu (resp. idv) is the

identification of (Lu, du) (resp. (Lv, dv)) in S(w, u) (resp. S(w, v)) that leads to

the generation of (L, d). With this additional information, we can restore the

path p(u, v) represented by (L, d) in S(u, v) as follows: (1) p(u, v) is the original

edge (u, v) in G; or (2) p(u, v) can be obtained by concatenating p(u,w) and

p(w, v) represented by (Lu, du) in S(w, u) and (Lv, dv) in S(w, v), respectively,

while p(u,w) and p(w, v) can be obtained recursively in the same way. Clearly,

as the size of added information for each entity is constant, the space complex-

ity of the augmented LSD-Index and the time complexity of the corresponding

construction algorithm keep the same as that for LSD-Index.

Query processing. For query processing, the general framework is similar to

Algorithm 9 but with additional path information. Specifically, we keep the

shortest paths p (resp. p′) from s (resp. t) to the vertices in Xlca by storing the

vertex v and the corresponding (L, d) ∈ S(v, u) leading to the final dLs (u) in line

4 and line 10 of Algorithm 9, and concatenate p and p′ through w ∈ Xlca which

leads to the final shortest distance in line 11 of Algorithm 9. For the edges in p

(resp. p′) that are not the original edges of G (represents by (L, d) ∈ S(v, u)),

they can be restored by the method as discussed above. Given a q = (s, t,L),

if the returned shortest path p has τ edges, then, the extra time complexity to

restore the path can be bounded by O(τ). Since the lower bound to answer q is

Ω(τ) and τ is generally very small compared with h · ω · ρ, the time complexity

of the query processing is the same as that of Algorithm 9.

139

Chapter 5 5.5.5 Extension for Directed Road Networks

5.5.5 Extension for Directed Road Networks

In previous sections, we assume the road networks are undirected . Our tech-

niques can be extended to support directed road networks.

Indexing. For the index structure, the LSD-Index for directed road networks

is similar to that for undirected road network with two differences: (1) for the

tree decomposition, we extend MDE for the directed road networks as follows:

it iteratively eliminates the vertex v with the minimum degree and connects any

pair u,w of v’s neighbors with directed edges after the elimination of v, and

the other parts are the same. (2) for LSDS stored in each node TG, we trivially

extend the label-constrained distances defined in Definition 18 for directed road

networks by using the paths with direction. And for each node X(v), we pre-

compute and store S<v, u> and S<u, v> for any u ∈ X(v) \ {v}. Here, we use

S<v, u> to represent the LSDS from v to u extended for directed road networks

for distinction. For the index construction algorithm, the whole framework is the

same as Algorithm 11 except the directions of edges/paths need to be considered.

Query processing. The query processing procedure for directed road networks

is similar to Algorithm 9. Given a query q = (s, t,L), we first compute the

lowest common ancestor Xlca of X(s) and X(t). After that, we compute the

label-constrained shortest distances from s to vertices in Xlca and from these

vertices to t. Finally, we can obtain the label-constrained shortest distance from

s to t and consequently restore the label-constrained shortest path from s to t

in the same way as discussed for the undirected road networks.

5.5.6 Handling Large Σ

Although our indexing techniques can significantly reduce the index size, Σ might

be very large in some scenarios, which makes the index size still very large. In

140

5.6. PARALLEL INDEX CONSTRUCTION Chapter 5

this section, we introduce how to extend our techniques to address this issue.

It has been widely observed that the labels in real-life graphs usually follows

the power-law distribution [70]. Therefore, we treat the high frequent labels and

low frequent labels in different ways. Let Σf be the set of high frequent labels

in G. We create a set of virtual labels Σv by evenly partitioning the labels in

Σ\Σf into |Σv| groups and each virtual label represents the labels in each group,

where |Σf | + |Σv|≪ |Σ|. In G, we replace the real label for each edge with the

corresponding virtual label and construct the LSD-Index regarding Σf ∪ Σv.

Given a query q = (s, t,L), if L ⊆ Σf , we use Algorithm 9 to answer the query

directly. Otherwise, let Lf be the label set L∩Σf and Lv be the virtual label set

representing L ∩ {Σ \ Σf}. We compute dist
Lf

G (s, t) and dist
Lf∪Lv

G (s, t) following

Algorithm 9 based on the LSD-Index. Obviously, dist
Lf

G (s, t) ≥ distLG(s, t) and

distLG(s, t) ≥ dist
Lf∪Lv

G (s, t). Therefore, if distLf

G (s, t) = dist
Lf∪Lv

G (s, t), we obtain

distLG(s, t). Otherwise, the shortest path may involve some edges with virtual

labels in Lv but real labels not in L. In this case, for index entries (Lv, dv) ∈

S(u, v) that are used for obtaining dist
Lf∪Lv

G (s, t) and contain virtual labels, we

need to further check whether dv = distLG(u, v), this can be achieved by exploring

the neighbors w of u connected with labels in L and recursively computing

distLG(w, v). If dv ̸= distLG(u, v), we use the refined distLG(u, v) instead and the

correct final result can be obtained.

5.6 Parallel Index Construction

Although Algorithm 11 significantly reduces the time cost to construct LSD-

Index compared with building the index directly based on the definition, it is still

expensive for large road networks due to the inevitable LSDSJoin and LSDSPrune

operations during the LSDS computation. In this section, we further improve

141

Chapter 5 5.6. PARALLEL INDEX CONSTRUCTION

the construction efficiency by parallelizing the LSDS computation.

Recall that the computation of LSDS contains the partial LSDS maintenance

in phase 1 and top-down complete LSDS computation in phase 2. For the partial

LSDS maintenance in phase 1, the computation of Sp(v, u) in X(v) only depends

on Sp(w, v) and Sp(w, u) in X(w), where X(w) is a descendant of X(v) in the

tree decomposition. For the top-down complete LSDS computation in phase 2,

the computation of Sp(v, u) in X(v) only depends on Sp(v, w) and Sp(w, u) in

X(w), where X(w) is an ancestor of X(v) in the tree decomposition. Hence, we

define:

Definition 23. (Tree Decomposition Level) Given a tree decomposition T

of G, for a node X(v), the tree decomposition level of X(v), denoted by l(X(v)),

is defined as l(X(v)) =

min{l(X(u))|X(u) ∈ X(v).children}+ 1, X(v).children ̸= ∅

1, X(v).children = ∅

where X(v).children represents the children of X(v) in T .

As discussed above, if we compute the LSDS level by level based on Def-

inition 23 (from bottom level to top level in phase 1 while from top level to

bottom level in phase 2), then the LSDS computations related to the nodes at

the same level has no dependence with each other, which means we can process

the computations related to these nodes simultaneously with any extra costs.

Algorithm. Following the above idea, the parallel construction algorithm, LSD-

Index-ParCons, is shown in Algorithm 12. LSD-Index-ParCons follows a similar

framework to Algorithm 11. It first conducts the tree decomposition following

MDE (line 1-8). During the decomposition, instead of maintaining the partial

LSDS, it only records the vertex v leading to the update of Sp(u,w) in D(u,w)

142

5.6. PARALLEL INDEX CONSTRUCTION Chapter 5

Algorithm 12: LSD-Index-ParCons(G)

1 G0 ← G; T ← ∅;
2 for i← 1 to n do
3 line 5-6 of Algorithm 11;
4 foreach u,w ∈ nbr(v,Gi−1) do
5 insert v into D(u,w);
6 line 9-10 of Algorithm 11;

7 X(v)← {v} ∪ nbr(v,Gi−1);

8 line 15-18 of Algorithm 11;
9 for i← 1 to n do

10 v ←vertex with π(·) = i;
11 if X(v).children = ∅ then l(X(v))← 1;
12 else l(X(v))← minX(u)∈X(v).children l(X(u)) + 1 ;

13 lmax ← maxX(v)∈T l(X(v));
// Partial LSDS computation

14 for i← 1 to lmax do
15 for X(v) ∈ T with l(X(v)) = i in parallel do
16 for u ∈ X(v) in parallel do
17 if (v, u) ∈ G then
18 Sp(v, u)← {(ℓ((v, u)), ϕ((v, u)))};
19 else Sp(v, u)← ∅ ;
20 for w ∈ D(v, u) do
21 S ′ ← LSDSJoin(Sp(w, v),Sp(w, u));
22 Sp(v, u)← LSDSPrune(Sp(v, u) ∪ S ′);

// Complete LSDS computation
23 for i← lmax to 1 do
24 for X(v) ∈ T with l(X(v)) = i in parallel do
25 for u ∈ X(v) \ {v} in parallel do
26 for w ∈ X(v) \ {v, u} do
27 S ′ ← LSDSJoin(Sp(v, w),Sp(w, u));
28 Sp(v, u)← LSDSPrune(S ′ ∪ Sp(v, u));

(line 5). After finishing the tree decomposition, it computes the tree decompo-

sition level for each nodes following Definition 23 (line 9-13). Then, it conducts

partial LSDS computation in a bottom-up manner (line 14-22) and the com-

plete LSDS computation in a top-down manner (line 23-28). For the nodes at a

143

Chapter 5 5.7. EXPERIMENTS

specific level, they are processed simultaneously (line 15-16, line 24-25). When

the algorithm finishes, LSD-Index is correctly constructed, which can be proved

similar to Algorithm 11.

5.7 Experiments

In this section, we compare our algorithms with the state-of-the-art methods

for label-constrained shortest path queries. All experiments are conducted on a

machine with an Intel Xeon 2.5GHz CPU (40 cores) and 256 GB main memory

running Linux.

Datasets. We use eight publicly available real road networks from DIMACS
1. In each road network, vertices represent intersections between roads, edges

correspond to roads or road segments, the weight of an edge is the physical dis-

tance between two vertices, and the label of an edge represents its road types.

The road types of these road netowrks can be divided into four main categories:

(1) A1, Primary Highway With Limited Access; (2) A2, Primary Road Without

Limited Access; (3) A3, Secondary and Connecting Road; (4) A4, Local, Neigh-

borhood, and Rural Road. The road types follows the power-law distribution.

Since different datasets contain different number of labels (from 18 ∼ 32), in our

experiments (except Exp-6), for the purpose of controlling variables and keeping

the distribution of labels as same as possible, we refine the labels of each dataset

and make each dataset contain 10 labels using the following method: for the

labels in each main category, we sort the labels in the increasing order of their

frequency and merge two labels with similar frequency as one, we continue this

process until only 10 labels remains. Table 5.2 provides the details about these

datasets. Table 5.2 shows the value of h and ω of the tree decomposition for

1http://users.diag.uniroma1.it/challenge9/download.shtml

144

5.
7.

E
X

P
E

R
IM

E
N

T
S

C
ha

pt
er

5

T
ab

le
5.

2:
D

at
as

et
s

us
ed

in
E

xp
er

im
en

ts

Dataset Description n m |Σ| h ω ρ ρavg Indexing Time (S) Indexing Time (P) Index Size

NY New York City 264,346 733,846 10 717 126 28 1.29 36.74s 6.97s 34.52 MB
COL Colorado 435,666 1,057,066 10 477 133 32 1.12 24.27s 4.81s 36.45 MB
FLA Florida 1,070,376 2,712,798 10 643 82 38 1.19 34.03s 5.76s 95.91 MB
CAL California 1,890,815 4,657,742 10 834 177 31 1.11 92.04s 15.93s 161.21 MB
EST Eastern USA 3,598,623 8,778,114 10 1,366 240 28 1.17 258.63s 39.79s 327.17 MB
WST Western USA 6,262,104 15,248,146 10 1,450 299 35 1.11 343.51s 45.18s 546.95 MB
CTR Central USA 14,081,816 34,292,496 10 2,342 540 94 1.31 5,959.00s 741.12s 1.45 GB
USA Full USA 23,947,347 58,333,344 10 2,886 570 136 1.27 7,152.18s 903.94s 2.37 GB

14
5

Chapter 5 5.7. EXPERIMENTS

each road network and it is clear that h and ω are small in practice. Table 5.2

also shows the value of ρ and ρavg of LSD-Index for each road network, where ρavg

represents the average size of LCDS in LSD-Index. It is clear that ρ and ρavg are

much smaller than h and ω in practice.

Algorithms. We implement and compare tne following algorithms. All the

algorithms are implemented in C++ and compiled in GCC 8.3.1 with -O3 flag.

We adopt OpenMP to implement our parallel algorithm.

• Dijkstra: direct online search algorithm using the Dijkstra’s algorithm following

the edges with labels in given L.

• EDP: The state-of-the-art algorithm for label-constrained shortest path

queries, which is introduced in Section 5.3.

• LSD-Index: Our proposed algorithms include query processing algorithm (Al-

gorithm 9), index construction algorithm (Algorithm 11), and parallel index

construction algorithm (Algorithm 12).

For EDP, we implement all the optimization techniques mentioned in [41].

Since EDP builds its index gradually during the query processing, for fairness,

we generate random queries to warm up EDP as [41] until its cache size becomes

stable or reaches the memory limit (20GB) before our experiments.

Exp-1: Efficiency when varying query distance. In this experiment, we

evaluate the query efficiency of the algorithms by varying the label-constrained

shortest distance between the source vertex and target vertex in the query. We

randomly generate 10 groups of queries Q1, . . . , Q10 and each group contains 1000

queries. For each query q = (s, t,L) in group i, the label-constrained distance

between s and t regarding L ranging from (δ
1 km)

i−1
10 to (δ

1 km)
i
10 kilometers, where

δ is the longest distance between any two vertices in the road network. And L

146

5.7. EXPERIMENTS Chapter 5

 Dijkstra EDP LSD-Index

10-1

100

101

102

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Query Time (ms)

(a) NY

10-1

100

101

102

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Query Time (ms)

(b) COL

10-1

100

101

102

103

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Query Time (ms)

(c) FLA

10-1

100

101

102

103

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Query Time (ms)

(d) CAL

10-1

100

101

102

103

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Query Time (ms)

(e) EST

10-1

100

101

102

103

104

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Query Time (ms)

(f) WST

10-1

100

101

102

103

104

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Query Time (ms)

(g) CTR

10-1

100

101

102

103

104

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Query Time (ms)

(h) USA
Figure 5.8: Query Processing Time (Varying Query Distance) 147

Chapter 5 5.7. EXPERIMENTS

 Dijkstra EDP LSD-Index

10-1

100

101

102

103

1 2 3 4 5 6 7 8 9 10

Query Time (ms)

(a) EST

10-1

100

101

102

103

104

1 2 3 4 5 6 7 8 9 10

Query Time (ms)

(b) WST

10-1

100

101

102

103

104

1 2 3 4 5 6 7 8 9 10

Query Time (ms)

(c) CTR

10-1

100

101

102

103

104

1 2 3 4 5 6 7 8 9 10

Query Time (ms)

(d) USA
Figure 5.9: Query Processing Time (Varying |L|)

is set as minimum edge label set which can make the label-constrained distance

between s and t satisfy the above condition. Figure 5.8 shows the average query

processing time for queries in each group on the eight datasets.

As shown in Figure 5.8, the query processing time of all the algorithms in-

creases when the distance increases. This is because as the distance between

s and t increases, more vertices or nodes have to be explored. Moreover, EDP

is always faster than Dijkstra while LSD-Index is much faster than EDP and the

performance gap enlarges as the distance increases. For example, on dataset

FLA (Figure 5.8 (c)), the query processing times for Q1 of all three methods

are within 1ms, while for Q10, the query processing time of Dijkstra, EDP and

our algorithm are 223.6ms, 74.94ms and 0.74ms, respectively, which means LSD-

Index achieves 2 order of magnitude speedup compared with EDP. The reasons

148

5.7. EXPERIMENTS Chapter 5

are Dijkstra and EDP have to explore many vertices in the road networks while

LSD-Index only needs to visit vertices in the nodes along the tree decomposition,

which is much less than that of Dijkstra and EDP.

Exp-2: Efficiency when varying |L|. In this experiment, we evaluate the

query efficiency of the algorithms by varying |L| of the queries. To do this, we

randomly generate 10 groups of queries and each group contains 1, 000 queries.

For each query q = (s, t,L) in group i, L is set as an edge label set with |L| = i

such that s can reach t following the edges with edge label in L. We record the

average query processing time for queries in each group and the results for the

four large datasets is demonstrated in Figure 5.9, the results on the remaining

datasets show similar trends.

Based on the results, we can observe that: (1) LSD-Index always outperforms

Dijkstra and EDP by at least an order of magnitude. The reasons are the same as

discussed in Exp-1. (2) the average processing time of all the algorithms keeps

stable when we vary |L|. For Dijkstra and EDP, when |L| is small, the label-

constrained shortest distance between s and t regarding L is large generally,

which implies that the traversal on the road network is long. As |L| increases,

the label-constrained shortest distance between s and t regarding L becomes

small, but the number of edges with edge label in L increases as well. As a

result, the number of explored vertices and edges during the query processing

keep similar, which explains why the query processing time keep the stable for

Dijkstra and EDP. For LSD-Index, because LSD-Index processes the queries based

on the tree decomposition, the whole processing is nearly independent with L.

Therefore, the query processing time of LSD-Index keeps stable when we vary |L|

as well.

Exp-3: Indexing time. Table 5.2 presents the time to construct LSD-Index

for each dataset, including the sequential construction algorithm and the par-

149

Chapter 5 5.7. EXPERIMENTS

allel construction algorithm (running with 32 threads). For the first six road

networks, the index can be constructed within 6 minutes even for the sequential

construction algorithm. However, the sequential construction algorithm needs

1.5–2 hours to complete the index construction for CTR and USA. Considering

the size of these two datasets, the indexing time is acceptable but not highly

satisfactory. On the other hand, for the parallel construction algorithm, it takes

less than 60 seconds to construct the index for the first six datasets and less

than 1, 000 seconds to construct the index for the USA dataset. As shown in the

results, our proposed algorithms can efficiently construct LSD-Index in practice,

especially the parallel construction algorithm.

Exp-4: Index size. The size of LSD-Index for each road network is shown in

Table 5.2. As shown in Table 5.2, the index sizes of the first six road networks

are within 1 GB, and even for the whole USA road network, the index size is

only 2.37 GB. Considering USA dataset is around 0.8 GB in size, 2.37 GB is still

small. We omit the index size of EDP because its index size varies by different

cache strategies. In our experimental setting, we set the index size limit for

EDP to 20 GB and the index sizes for most of the large road networks (WST,

CTR, USA) in our setting are beyond 10 GB. From the results, it is clear that

LSD-Index is a compact index structure.

Exp-5: Index size when varying |Σ|. In this experiments, we evaluate the

index size when varying |Σ|. For each datasets, we set the number of labels from

⌈ |Σ|
5
⌉ to |Σ|. For the smaller label set, we generate them using the similar method

mentioned before: we sort the original labels in each main category according to

their frequency and merge label labels with similar frequency until the number

of labels reach the required size.

As shown in Figure 5.10, as |Σ| increases, the index sizes increases as well.

This is because that the larger |Σ| is, the more information needs to be stored

150

5.7. EXPERIMENTS Chapter 5

 0

 10

 20

 30

 40

 50

 60

 70

 80

4 7 11 14 18

Index Size (MB)

(a) NY

 0

 20

 40

 60

 80

 100

5 9 14 18 23

Index Size (MB)

(b) COL

 0

 50

 100

 150

 200

5 10 15 20 25

Index Size (MB)

(c) FLA

 0

 50

 100

 150

 200

 250

 300

 350

 400

6 12 17 23 29

Index Size (MB)

(d) CAL

 0

 100

 200

 300

 400

 500

 600

 700

6 13 19 26 32

Index Size (MB)

(e) EST

 0

 200

 400

 600

 800

 1000

 1200

6 12 19 25 31

Index Size (MB)

(f) WST

 0

 1000

 2000

 3000

 4000

 5000

 6000

6 12 18 24 30

Index Size (MB)

(g) CTR

 0

 2000

 4000

 6000

 8000

 10000

6 13 19 26 32

Index Size (MB)

(h) USA

Figure 5.10: Index Size (Varying |Σ|) 151

Chapter 5 5.7. EXPERIMENTS

 1

 2

 3

 4

 5

 6

 7

1 2 4 8 16 32

Speedup

NY
COL
FLA
CAL

(a) #thread

 1
 2
 3
 4
 5
 6
 7
 8
 9

1 2 4 8 16 32

Speedup

EST
WST
CTR
USA

(b) #thread

Figure 5.11: Parallel Indexing Speedup (Varying #Thread)

in the index. However, even for the largest road network USA, the largest index

size is 8.6GB when |Σ| = 32, which is only 10 times the size of the dataset

(around 0.8GB). The experimental results confirm that LSD-Index is a compact

index structure.

Exp-6: Scalability of parallel indexing algorithm. In this experiment,

we evaluate the scalability of the parallel index construction algorithm (Algo-

rithm 12) by varying the number of available threads from 1 to 32. The results

are shown in Figure 5.11. As shown in Figure 5.11, the speedup increases nearly

linearly as the number of available threads increases. For the small road net-

works, the algorithm achieves 5x-7x speedup when #thread is 32 (Figure 5.11

(a)). For the large road networks, it achieves 6x-8x speedup when #thread is 32

(Figure 5.11 (b)). The results demonstrate that our parallel index construction

algorithm scales well in practice.

Exp-7: Scalability when varying dataset size. In this experiment, we

evaluate the scalability of the three algorithms. To achieve this goal, we divide

the USA dataset into 10 × 10 grids and generate 10 sub road networks G1 ⊆

G2 ⊆ ... ⊆ G10 by choosing the 1× 1, 2× 2,...,10× 10 grids in the middle of the

USA dataset. For each sub road network, we generate 10 groups of queries and

each group contains 1,000 queries using the same method used in Exp-1. We

152

5.7. EXPERIMENTS Chapter 5

 Dijkstra EDP LSD-Index

100

101

102

103

 0

 5
×10

6

 1
×10

7

 1
.5×

10
7

 2
×10

7

 2
.5×

10
7

Query Time (ms)

(a) Q7

100

101

102

103

104

 0

 5
×10

6

 1
×10

7

 1
.5×

10
7

 2
×10

7

 2
.5×

10
7

Query Time (ms)

(b) Q8

100

101

102

103

104

 0

 5
×10

6

 1
×10

7

 1
.5×

10
7

 2
×10

7

 2
.5×

10
7

Query Time (ms)

(c) Q9

100

101

102

103

104

 0

 5
×10

6

 1
×10

7

 1
.5×

10
7

 2
×10

7

 2
.5×

10
7

Query Time (ms)

(d) Q10

Figure 5.12: Query Processing Time (Varying Dataset Size)

report the average query processing time for the queries in each group and show

the results of Q7–Q10 when varying the dataset size in Figure 5.12. The results

of Q1 – Q6 show similar trends but are omitted. The x-axis for each figure is the

number of vertices for each dataset.

Figure 5.12 shows that EDP is more efficient than Dijkstra while LSD-Index

is much faster than EDP when varying the dataset size, which is consistent with

the results shown in Exp-1 and Exp-2. Moreover, as the dataset size increases,

the query processing time for Dijkstra and EDP has an obviously increasing

trend while the query processing time for LSD-Index is relatively more scale-

independent to the data size. This is because Dijkstra and EDP have to traverse

the road network to answer a query. As the dataset size increases, more vertices

153

Chapter 5 5.8. LIMITATION OF LSD-Index

and edges have to be explored generally. On the other hand, LSD-Index processes

the queries based on the tree decomposition and the processing involves only a

few nodes.

5.8 Limitation of LSD-Index

Since the LSD-Index is based on tree decomposition, its size is linearly propor-

tional to the treewidth ω and treeheight ρ according to Theorem 15. For the

road networks studied in this chapter, their treewidth and treeheight are typically

small. However, for some other types of graphs, the treewidth and treeheight

could be very large. Maniu et al. [65] have done an experimental study on the

real-world graph datasets. From their study, infrastructure networks, includ-

ing road networks, public transportation networks, and power grids, have small

treewidth values, with upper bounds smaller than 600. Conversely, other types

of graphs may have large tree width. For example, scale free networks like social

networks and web graphs are known to have a large dense core and a sparse

tree-like fringe [64]. The core part is hard to decompose. LSD-Index may not be

suitable for these graphs.

5.9 Chapter Summary

In this Chapter, we study the label-constrained shortest path query problem on

road networks. We devise a novel index structure named LSD-Index based on the

tree decomposition. With LSD-Index, we propose an efficient query processing

algorithm to answer the queries. Moreover, we also present efficient index con-

struction algorithms. The experimental results demonstrate the efficiency of our

proposed algorithms. For future work, we are interested in extending our work

154

5.9. CHAPTER SUMMARY Chapter 5

to dynamic graphs by devising efficient index maintenance algorithm for graph

label/vertex/edge updates.

155

Chapter 6

EPILOGUE

In this thesis we study the efficient computation of paths in massive graphs. The

main contributions of this thesis are

• Scalable Indexing Schema. We develop novel labeling methods to pro-

duce the same indexes as TOL on distributed graphs. To overcome the

limitation that TOL cannot be executed in parallel, we resort to finding

the backward label set of each vertex. We propose to use a filtering-and-

refinement framework to find backward label sets. Using this framework,

we design new labeling algorithms and further improve the efficiency with

batch labeling optimization.

• Extensive Studies on Shortest-Path Queries. We conduct extensive studies

on shortest-path queries on complex networks. To support shortest-path

queries, we extend the distance query processing methods PLL and CTL for

shortest-distance queries. To reduce the space cost required for extensions,

we propose MLL and extend it for weighted and directed graphs.

• Compact Index. We study the label-constrained shortest path query prob-

lem on road networks. We devise a novel index structure LSD-Index based

156

Chapter 6

on the tree decomposition. With LSD-Index, we propose an efficient query

processing algorithm to answer the queries. Moreover, we also present

efficient index construction algorithms.

The following are the problems that need further studies and are the focus

of our future research.

• Maintain Index for Dynamic Graphs. Real-world graphs are typically dy-

namic. An important yet well-studied problem is how to efficiently main-

tain the index when the graph changes. Hence, one future research direc-

tion is to study the properties of the index approaches and design efficient

index maintenance algorithms for path computation.

• Exploit Multi-Core and Distributed System. In this thesis, we use dis-

tributed and multi-core systems to accelerate index construction. The

computation nodes in modern distributed systems usually contain multi-

ples core. Utilizing the characteristics of both distributed and multi-core

systems to accelerate index construction is still an open problem.

• Exploit Heuristic Methods for Path Computation. The index-based meth-

ods incur high indexing costs for some query problems, e.g., label-

constrained shortest path queries on complex networks. As the size of

real-world graphs grows, heuristic methods, like the pruned landmark, bi-

directional traversal and A*, could be more suitable and is a promising

future research direction.

157

BIBLIOGRAPHY

[1] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck. Hierarchical

hub labelings for shortest paths. In European Symposium on Algorithms,

pages 24–35. Springer, 2012.

[2] I. Abraham, D. Delling, A. V. Goldberg, and R. F. F. Werneck. A hub-

based labeling algorithm for shortest paths in road networks. In Proceedings

of SEA, volume 6630 of Lecture Notes in Computer Science, pages 230–241.

Springer, 2011.

[3] I. Abraham, A. Fiat, A. V. Goldberg, and R. F. Werneck. Highway di-

mension, shortest paths, and provably efficient algorithms. In Proceedings

of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms,

pages 782–793. SIAM, 2010.

[4] R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient management of tran-

sitive relationships in large data and knowledge bases. In ACM SIGMOD

Record, volume 18, pages 253–262. ACM, 1989.

[5] T. Akiba, Y. Iwata, K.-i. Kawarabayashi, and Y. Kawata. Fast shortest-

path distance queries on road networks by pruned highway labeling. In

Proceedings ALENEX, pages 147–154. SIAM, 2014.

[6] T. Akiba, Y. Iwata, and Y. Yoshida. Fast exact shortest-path distance

158

BIBLIOGRAPHY Chapter 7

queries on large networks by pruned landmark labeling. In Proceedings

of the 2013 ACM SIGMOD International Conference on Management of

Data, pages 349–360. ACM, 2013.

[7] T. Akiba, C. Sommer, and K.-i. Kawarabayashi. Shortest-path queries for

complex networks: exploiting low tree-width outside the core. In Proceed-

ings of the 15th International Conference on Extending Database Technol-

ogy, pages 144–155, 2012.

[8] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of find-

ing embeddings in ak-tree. SIAM Journal on Algebraic Discrete Methods,

8(2):277–284, 1987.

[9] B. Awerbuch. A new distributed depth-first-search algorithm. Information

Processing Letters, 20(3):147–150, 1985.

[10] H. Bast, D. Delling, A. V. Goldberg, M. Müller-Hannemann, T. Pajor,

P. Sanders, D. Wagner, and R. F. Werneck. Route planning in transporta-

tion networks. In Algorithm Engineering - Selected Results and Surveys,

volume 9220 of Lecture Notes in Computer Science, pages 19–80. 2016.

[11] S. Beamer, K. Asanovic, and D. Patterson. Direction-optimizing breadth-

first search. In SC’12: Proceedings of the International Conference on High

Performance Computing, Networking, Storage and Analysis, pages 1–10.

IEEE, 2012.

[12] M. A. Bender and M. Farach-Colton. The LCA problem revisited. In

G. H. Gonnet, D. Panario, and A. Viola, editors, LATIN 2000: Theoretical

Informatics, 4th Latin American Symposium, Punta del Este, Uruguay,

April 10-14, 2000, Proceedings, volume 1776 of Lecture Notes in Computer

Science, pages 88–94. Springer, 2000.

159

Chapter 7 BIBLIOGRAPHY

[13] A. Berry, P. Heggernes, and G. Simonet. The minimum degree heuris-

tic and the minimal triangulation process. In International Workshop on

Graph-Theoretic Concepts in Computer Science, pages 58–70. Springer,

2003.

[14] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.

Communications of the ACM, 13(7):422–426, 1970.

[15] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang. Com-

plex networks: Structure and dynamics. Physics reports, 424(4-5):175–308,

2006.

[16] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered label propagation: A

multiresolution coordinate-free ordering for compressing social networks.

In S. Srinivasan, K. Ramamritham, A. Kumar, M. P. Ravindra, E. Bertino,

and R. Kumar, editors, Proceedings of the 20th international conference on

World Wide Web, pages 587–596. ACM Press, 2011.

[17] P. Boldi and S. Vigna. The WebGraph framework I: Compression tech-

niques. In Proc. of the Thirteenth International World Wide Web Confer-

ence (WWW 2004), pages 595–601, Manhattan, USA, 2004. ACM Press.

[18] P. Boldi and S. Vigna. The webgraph framework i: compression techniques.

In Proceedings of the 13th international conference on World Wide Web,

pages 595–602, 2004.

[19] A. Buluç and K. Madduri. Parallel breadth-first search on distributed

memory systems. In Proceedings of 2011 International Conference for High

Performance Computing, Networking, Storage and Analysis, pages 1–12,

2011.

160

BIBLIOGRAPHY Chapter 7

[20] R. Chandra, L. Dagum, D. Kohr, R. Menon, D. Maydan, and J. McDonald.

Parallel programming in OpenMP. Morgan kaufmann, 2001.

[21] L. Chang, J. X. Yu, L. Qin, H. Cheng, and M. Qiao. The exact distance to

destination in undirected world. The VLDB Journal, 21(6):869–888, 2012.

[22] L. Chen, A. Gupta, and M. E. Kurul. Stack-based algorithms for pattern

matching on dags. In Proceedings of the 31st international conference on

Very large data bases, pages 493–504. VLDB Endowment, 2005.

[23] X. Chen, Y. Peng, S. Wang, and J. X. Yu. Dlcr: efficient indexing for label-

constrained reachability queries on large dynamic graphs. Proceedings of

the VLDB Endowment, 15(8):1645–1657, 2022.

[24] Y. Chen and Y. Chen. An efficient algorithm for answering graph reach-

ability queries. In 2008 IEEE 24th International Conference on Data En-

gineering, pages 893–902. IEEE, 2008.

[25] Z. Chen, A. W.-C. Fu, M. Jiang, E. Lo, and P. Zhang. P2h: efficient

distance querying on road networks by projected vertex separators. In

Proceedings of the 2021 International Conference on Management of Data,

pages 313–325, 2021.

[26] J. Cheng, S. Huang, H. Wu, and A. W.-C. Fu. Tf-label: a topological-

folding labeling scheme for reachability querying in a large graph. In Pro-

ceedings of the 2013 ACM SIGMOD International Conference on Manage-

ment of Data, pages 193–204. ACM, 2013.

[27] J. Cheng, J. X. Yu, X. Lin, H. Wang, and S. Y. Philip. Fast computation

of reachability labeling for large graphs. In International Conference on

Extending Database Technology, pages 961–979. Springer, 2006.

161

Chapter 7 BIBLIOGRAPHY

[28] J. Cheng, J. X. Yu, X. Lin, H. Wang, and P. S. Yu. Fast computing reacha-

bility labelings for large graphs with high compression rate. In Proceedings

of the 11th international conference on Extending database technology: Ad-

vances in database technology, pages 193–204. ACM, 2008.

[29] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick. Reachability and distance

queries via 2-hop labels. SIAM Journal on Computing, 32(5):1338–1355,

2003.

[30] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

algorithms. MIT press, 2009.

[31] L. d. F. Costa, F. A. Rodrigues, G. Travieso, and P. R. Villas Boas. Char-

acterization of complex networks: A survey of measurements. Advances in

physics, 56(1):167–242, 2007.

[32] L. Dagum and R. Menon. Openmp: an industry standard api for shared-

memory programming. IEEE computational science and engineering,

5(1):46–55, 1998.

[33] E. Djikstra. A note on two problems in connection with graphs. Nu-

merische Mathematik, 1:269–271, 1959.

[34] W. Fan, X. Wang, and Y. Wu. Performance guarantees for distributed

reachability queries. Proceedings of the VLDB Endowment, 5(11):1304–

1316, 2012.

[35] M. Farhan, Q. Wang, Y. Lin, and B. Mckay. A highly scalable labelling

approach for exact distance queries in complex networks. arXiv preprint

arXiv:1812.02363, 2018.

162

BIBLIOGRAPHY Chapter 7

[36] X. Feng, L. Chang, X. Lin, L. Qin, and W. Zhang. Computing connected

components with linear communication cost in pregel-like systems. In 2016

IEEE 32nd International Conference on Data Engineering (ICDE), pages

85–96. IEEE, 2016.

[37] R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contraction hi-

erarchies: Faster and simpler hierarchical routing in road networks. In

International Workshop on Experimental and Efficient Algorithms, pages

319–333. Springer, 2008.

[38] A. V. Goldberg and C. Harrelson. Computing the shortest path: A search

meets graph theory. In SODA, volume 5, pages 156–165. Citeseer, 2005.

[39] R. J. Gutman. Reach-based routing: A new approach to shortest path

algorithms optimized for road networks. ALENEX/ANALC, 4:100–111,

2004.

[40] R. Halin. S-functions for graphs. Journal of geometry, 8(1-2):171–186,

1976.

[41] M. S. Hassan, W. G. Aref, and A. M. Aly. Graph indexing for shortest-

path finding over dynamic sub-graphs. In Proceedings of SIGMOD, pages

1183–1197. ACM, 2016.

[42] M. Hilger, E. Köhler, R. H. Möhring, and H. Schilling. Fast point-to-point

shortest path computations with arc-flags. The Shortest Path Problem:

Ninth DIMACS Implementation Challenge, 74:41–72, 2009.

[43] H. Jagadish. A compression technique to materialize transitive closure.

ACM Transactions on Database Systems (TODS), 15(4):558–598, 1990.

163

Chapter 7 BIBLIOGRAPHY

[44] M. Jiang, A. W.-C. Fu, R. C.-W. Wong, and Y. Xu. Hop doubling label

indexing for point-to-point distance querying on scale-free networks. arXiv

preprint arXiv:1403.0779, 2014.

[45] R. Jin, H. Hong, H. Wang, N. Ruan, and Y. Xiang. Computing label-

constraint reachability in graph databases. In Proceedings of SIGMOD,

pages 123–134. ACM, 2010.

[46] R. Jin, N. Ruan, S. Dey, and J. Y. Xu. Scarab: scaling reachability compu-

tation on large graphs. In Proceedings of the 2012 ACM SIGMOD Inter-

national Conference on Management of Data, pages 169–180. ACM, 2012.

[47] R. Jin, N. Ruan, B. You, and H. Wang. Hub-accelerator: Fast and ex-

act shortest path computation in large social networks. arXiv preprint

arXiv:1305.0507, 2013.

[48] R. Jin and G. Wang. Simple, fast, and scalable reachability oracle. Pro-

ceedings of the VLDB Endowment, 6(14):1978–1989, 2013.

[49] R. Jin, Y. Xiang, N. Ruan, and H. Wang. Efficiently answering reachability

queries on very large directed graphs. In Proceedings of the 2008 ACM

SIGMOD international conference on Management of data, pages 595–608.

ACM, 2008.

[50] D. B. Johnson. A note on dijkstra’s shortest path algorithm. Journal of

the ACM (JACM), 20(3):385–388, 1973.

[51] S. Jung and S. Pramanik. An efficient path computation model for hier-

archically structured topographical road maps. IEEE TKDE, 14(5):1029–

1046, 2002.

164

BIBLIOGRAPHY Chapter 7

[52] J. Kim and T. Wilhelm. What is a complex graph? Physica A: Statistical

Mechanics and its Applications, 387(11):2637–2652, 2008.

[53] A. M. C. A. Koster, H. L. Bodlaender, and S. P. M. van Hoesel. Treewidth:

Computational experiments. Electron. Notes Discret. Math., 8:54–57,

2001.

[54] J. Kunegis. Konect: the koblenz network collection. In Proceedings of

the 22nd International Conference on World Wide Web, pages 1343–1350.

ACM, 2013.

[55] K. Lakhotia, R. Kannan, Q. Dong, and V. Prasanna. Planting trees for

scalable and efficient canonical hub labeling. Proceedings of the VLDB

Endowment, 13(4).

[56] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time: densifica-

tion laws, shrinking diameters and possible explanations. In Proceedings

of the eleventh ACM SIGKDD international conference on Knowledge dis-

covery in data mining, pages 177–187, 2005.

[57] J. Leskovec and A. Krevl. Snap datasets: Stanford large network dataset

collection, 2014.

[58] H. Li, Y. Ge, R. Hong, and H. Zhu. Point-of-interest recommendations:

Learning potential check-ins from friends. In Proceedings of SIGKDD,

pages 975–984. ACM, 2016.

[59] W. Li, M. Qiao, L. Qin, Y. Zhang, L. Chang, and X. Lin. Scaling distance

labeling on small-world networks. In Proceedings of the 2019 International

Conference on Management of Data, pages 1060–1077, 2019.

165

Chapter 7 BIBLIOGRAPHY

[60] W. Li, M. Qiao, L. Qin, Y. Zhang, L. Chang, and X. Lin. Scaling up

distance labeling on graphs with core-periphery properties. In Proceedings

of the 2020 ACM SIGMOD International Conference on Management of

Data, pages 1367–1381, 2020.

[61] Y. Li, S. George, C. Apfelbeck, A. M. Hendawi, D. Hazel, A. Terede-

sai, and M. H. Ali. Routing service with real world severe weather. In

Y. Huang, M. Schneider, M. Gertz, J. Krumm, and J. Sankaranarayanan,

editors, Proceedings of the 22nd ACM SIGSPATIAL International Confer-

ence on Advances in Geographic Information Systems, Dallas/Fort Worth,

TX, USA, November 4-7, 2014, pages 585–588. ACM, 2014.

[62] Y. Li, M. L. Yiu, N. M. Kou, et al. An experimental study on hub labeling

based shortest path algorithms. Proceedings of the VLDB Endowment,

11(4):445–457, 2017.

[63] Y. Liu, T. Pham, G. Cong, and Q. Yuan. An experimental evaluation of

point-of-interest recommendation in location-based social networks. Proc.

VLDB Endow., 10(10):1010–1021, 2017.

[64] T. Maehara, T. Akiba, Y. Iwata, and K.-i. Kawarabayashi. Computing

personalized pagerank quickly by exploiting graph structures. Proceedings

of the VLDB Endowment, 7(12):1023–1034, 2014.

[65] S. Maniu, P. Senellart, and S. Jog. An experimental study of the treewidth

of real-world graph data. In 22nd International Conference on Database

Theory (ICDT 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,

2019.

[66] J. Maue, P. Sanders, and D. Matijevic. Goal-directed shortest-path queries

166

BIBLIOGRAPHY Chapter 7

using precomputed cluster distances. Journal of Experimental Algorithmics

(JEA), 14:3–2, 2010.

[67] E. Nuutila. Efficient transitive closure computation in large digraphs. 1998.

[68] D. Ouyang, L. Qin, L. Chang, X. Lin, Y. Zhang, and Q. Zhu. When hi-

erarchy meets 2-hop-labeling: Efficient shortest distance queries on road

networks. In Proceedings of the 2018 International Conference on Man-

agement of Data, pages 709–724, 2018.

[69] D. Ouyang, L. Yuan, L. Qin, L. Chang, Y. Zhang, and X. Lin. Efficient

shortest path index maintenance on dynamic road networks with theoret-

ical guarantees. Proc. VLDB Endow., 13(5):602–615, 2020.

[70] Y. Peng, Y. Zhang, X. Lin, L. Qin, and W. Zhang. Answering billion-scale

label-constrained reachability queries within microsecond. Proc. VLDB

Endow., 13(6):812–825, 2020.

[71] M. N. Rice and V. J. Tsotras. Graph indexing of road networks for shortest

path queries with label restrictions. Proc. VLDB Endow., 4(2):69–80, 2010.

[72] N. Robertson and P. D. Seymour. Graph minors. III. planar tree-width.

J. Comb. Theory, Ser. B, 36(1):49–64, 1984.

[73] N. Robertson and P. D. Seymour. Graph minors. II. algorithmic aspects

of tree-width. J. Algorithms, 7(3):309–322, 1986.

[74] R. A. Rossi and N. K. Ahmed. The network data repository with interac-

tive graph analytics and visualization. In AAAI, 2015.

[75] S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, and M. T. Özsu. The ubiquity

of large graphs and surprising challenges of graph processing: extended

survey. The VLDB Journal, 29(2):595–618, 2020.

167

Chapter 7 BIBLIOGRAPHY

[76] P. Sanders and D. Schultes. Highway hierarchies hasten exact shortest path

queries. In European Symposium on Algorithms, pages 568–579. Springer,

2005.

[77] R. Schenkel, A. Theobald, and G. Weikum. Hopi: An efficient connection

index for complex xml document collections. In International Conference

on Extending Database Technology, pages 237–255. Springer, 2004.

[78] C. Sommer. Shortest-path queries in static networks. ACM Computing

Surveys (CSUR), 46(4):1–31, 2014.

[79] J. Su, Q. Zhu, H. Wei, and J. X. Yu. Reachability querying: Can it be

even faster? IEEE Transactions on Knowledge and Data Engineering,

29(3):683–697, 2016.

[80] R. Tarjan. Depth-first search and linear graph algorithms. SIAM journal

on computing, 1(2):146–160, 1972.

[81] S. Trißl and U. Leser. Fast and practical indexing and querying of very

large graphs. In Proceedings of the 2007 ACM SIGMOD international

conference on Management of data, pages 845–856, 2007.

[82] L. G. Valiant. A bridging model for parallel computation. Communications

of the ACM, 33(8):103–111, 1990.

[83] L. D. J. Valstar, G. H. L. Fletcher, and Y. Yoshida. Landmark indexing

for evaluation of label-constrained reachability queries. In Proceedings of

SIGMOD, pages 345–358. ACM, 2017.

[84] S. J. van Schaik and O. de Moor. A memory efficient reachability data

structure through bit vector compression. In Proceedings of the 2011 ACM

168

BIBLIOGRAPHY Chapter 7

SIGMOD International Conference on Management of data, pages 913–

924. ACM, 2011.

[85] H. Wang, H. He, J. Yang, P. S. Yu, and J. X. Yu. Dual labeling: An-

swering graph reachability queries in constant time. In 22nd International

Conference on Data Engineering (ICDE’06), pages 75–75. IEEE, 2006.

[86] H. Wang, J. Li, J. Luo, and H. Gao. Hash-base subgraph query processing

method for graph-structured xml documents. Proceedings of the VLDB

Endowment, 1(1):478–489, 2008.

[87] Y. Wang, Q. Wang, H. Koehler, and Y. Lin. Query-by-sketch: Scaling

shortest path graph queries on very large networks. In Proceedings of the

2021 International Conference on Management of Data, pages 1946–1958,

2021.

[88] F. Wei. Tedi: efficient shortest path query answering on graphs. In Proceed-

ings of the 2010 ACM SIGMOD International Conference on Management

of data, pages 99–110. ACM, 2010.

[89] H. Wei, J. X. Yu, C. Lu, and R. Jin. Reachability querying: An indepen-

dent permutation labeling approach. Proceedings of the VLDB Endowment,

7(12):1191–1202, 2014.

[90] Wikipedia. Expressways of china, 2021.

[91] L. Wu, X. Xiao, D. Deng, G. Cong, A. D. Zhu, and S. Zhou. Shortest

path and distance queries on road networks: An experimental evaluation.

Proceedings of the VLDB Endowment, 5(5):406–417, 2012.

[92] G. Xu and Y. Xu. GPS: theory, algorithms and applications. Springer,

2016.

169

Chapter 7 BIBLIOGRAPHY

[93] J. Xu, F. Jiao, and B. Berger. A tree-decomposition approach to protein

structure prediction. In 2005 IEEE Computational Systems Bioinformatics

Conference (CSB’05), pages 247–256. IEEE, 2005.

[94] D. Yan, J. Cheng, Y. Lu, and W. Ng. Effective techniques for mes-

sage reduction and load balancing in distributed graph computation. In

A. Gangemi, S. Leonardi, and A. Panconesi, editors, Proceedings of the

24th International Conference on World Wide Web, WWW 2015, Flo-

rence, Italy, May 18-22, 2015, pages 1307–1317. ACM, 2015.

[95] Y. Yano, T. Akiba, Y. Iwata, and Y. Yoshida. Fast and scalable reacha-

bility queries on graphs by pruned labeling with landmarks and paths. In

Proceedings of the 22nd ACM international conference on Information &

Knowledge Management, pages 1601–1606. ACM, 2013.

[96] H. Yildirim, V. Chaoji, and M. J. Zaki. Grail: Scalable reachability index

for large graphs. Proceedings of the VLDB Endowment, 3(1-2):276–284,

2010.

[97] J. X. Yu and J. Cheng. Graph reachability queries: A survey. In Managing

and Mining Graph Data, pages 181–215. Springer, 2010.

[98] T. Zhang, Y. Gao, L. Chen, W. Guo, S. Pu, B. Zheng, and C. S. Jensen.

Efficient distributed reachability querying of massive temporal graphs. The

VLDB Journal, 28(6):871–896, 2019.

[99] T. Zhang, Y. Gao, C. Li, C. Ge, W. Guo, and Q. Zhou. Distributed reacha-

bility queries on massive graphs. In International Conference on Database

Systems for Advanced Applications, pages 406–410. Springer, 2019.

[100] J. Zhou, S. Zhou, J. X. Yu, H. Wei, Z. Chen, and X. Tang. Dag reduc-

tion: Fast answering reachability queries. In Proceedings of the 2017 ACM

170

BIBLIOGRAPHY Chapter 7

International Conference on Management of Data, pages 375–390. ACM,

2017.

[101] A. D. Zhu, W. Lin, S. Wang, and X. Xiao. Reachability queries on large

dynamic graphs: a total order approach. In Proceedings of the 2014 ACM

SIGMOD international conference on Management of data, pages 1323–

1334. ACM, 2014.

[102] A. D. Zhu, H. Ma, X. Xiao, S. Luo, Y. Tang, and S. Zhou. Shortest path

and distance queries on road networks: towards bridging theory and prac-

tice. In Proceedings of the 2013 ACM SIGMOD International Conference

on Management of Data, pages 857–868, 2013.

[103] L. Zou, K. Xu, J. X. Yu, L. Chen, Y. Xiao, and D. Zhao. Efficient pro-

cessing of label-constraint reachability queries in large graphs. Inf. Syst.,

40:47–66, 2014.

171

	TITLE PAGE
	CERTIFICATE OF AUTHORSHIP/ORGINALITY
	ACKNOWLEDGEMENTS
	ABSTRACT
	PUBLICATIONS
	TABLE OF CONTENT
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Distributed Reachability Labeling
	Shortest-Path Queries on Complex Graphs
	Label Constrained Shortest Path on Road Networks
	Roadmap

	LITERATURE REVIEW
	Reachability Queries
	Index-free Approaches
	Index-assisted Approaches
	Index-only Approaches

	Shortest Distance and Path Queries
	Search Based Methods
	Hierarchical Methods
	Labeling based Methods
	Tree Decomposition based Methods

	Label Constrained Path Queries
	Label-Constrained Reachability Query
	Label-constrained shortest path queries.

	DISTRIBUTED REACHABILITY LABELING
	Chapter Overview
	Preliminary
	Notations
	Total Order Labeling
	Problem Statement

	Distributed Reachability Labeling
	TOL Revisited
	Filtering-and-refinement Framework
	Two Labeling Methods
	Distributed Implementation

	Batch Labeling Optimization
	Experiments
	Settings
	Comparison with Competitor Methods
	Comparison Between Proposed Algorithms
	Effect of Parameters on Index Time

	Chapter Summary

	SHORTEST-PATH QUERIES ON COMPLEX GRAPHS
	Chapter Overview
	Preliminary
	Distance Queries and Extensions
	PLL and Its Extension
	CTL and Its Extension

	Monotonic Landmark Labeling
	Index Structure
	Query Processing
	Index Construction

	Extension of MLL
	Experiments
	Chapter Summary

	LABEL CONSTRAINED SHORTEST PATH ON ROAD NETWORKS
	Chapter Overview
	Preliminaries
	Existing Solution
	A Naive Indexing Approach
	Tree Decomposition
	A Naive Indexing Approach

	Our new indexing approach
	A New Index Structure
	Query Processing by LSD-Index
	LSD-Index Construction
	Shortest Path Restoration
	Extension for Directed Road Networks
	Handling Large

	Parallel Index Construction
	Experiments
	Limitation of LSD-Index
	Chapter Summary

	EPILOGUE
	BIBLIOGRAPHY

