
Distributed Learning for Robust Fuzzy
Neural Networks

by

Leijie Zhang

Thesis submitted in fulfilment of
the requirements for the degree of

Doctor of Philosophy

under the supervision of
Professor Chin-Teng Lin

Computational Intelligence and Brain Computer Interfaces Lab
Australian Artificial Intelligence Institute

Faculty of Engineering and Information Technology
University of Technology Sydney

February 2023

Certificate of Original Authorship

I, Leijie Zhang, declare that this thesis is submitted in fulfilment of the require-
ments for the award of Doctoral of Philosophy in the Faculty of Engineering and
Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged.
In addition, I certify that all information sources and literature used are indicated
in the thesis. This document has not been submitted for qualifications at any other
academic institution.

This research is supported by the Australian Government Research Training Pro-
gram.

05/02/2023

1

Production Note:

Signature removed prior to publication.

Abstract

Uncertainty processing and privacy preservation are two particularly significant is-
sues machine learning models need to consider when dealing with real-world data.
To date, distributed fuzzy neural networks (DFNNs) have addressed these issues by
locally processing the uncertainty on different agents in multi-agent scenarios. How-
ever, today’s DFNNs can neither handle data that is too high in dimension, nor can
they process uncertainty once it reaches too high a level. Additionally, DFNNs tend
to learn a shared group of fuzzy rules that they apply to all clients, which limits
the ability to personalise local models to the data they are working with. This is
especially problematic when processing non-independent and identically distributed
(non-IID) local data. Worse still, many client devices hold large amounts of easily-
obtainable unlabelled samples that current DFNNs simply ignore. Hence, this thesis
proposes novel robust fuzzy neural networks (RFNNs) and corresponding new dis-
tributed learning architectures as a solution to these problems.

Creatively, this thesis presents a new robust fuzzy neural network (RFNN) that
can be applied to local clients to handle data with high levels of uncertainty and
high dimensionality, and also improves the ability of local clients to personalise mod-
els to suit the given data, desired privacy levels, and so on. Additionally, RFNNs
overcome some current issues with building highly generalisable models. The RFNN
architecture comprises an adaptive inference engine and neural-structured consequent
components. However, unlike traditional fuzzy inference processes, which use AND
operations, the proposed inference engine can adaptively learn the firing strength
of each fuzzy rule, even when the input data has high dimensionality. Lastly, the
engine then assigns an uncertainty tolerance to the membership values. The neural-
structured consequent components leverage neural network structures to enhance the
reasoning ability of the fuzzy rules when dealing with complex inputs.

As a second innovation, this thesis presents a novel RFNN with interpolation con-
sistency regularisation (ICR) to utilise a large amount of easily-obtainable unlabelled
data. ICR, which was recently proposed to regularise semi-supervised problems,
can force decision boundaries to pass through sparse data areas, thus increasing a

2

model’s robustness. Then, a corresponding novel distributed learning method called
distributed semi-supervised fuzzy regression (DSFR) model is proposed. The frame-
work of the DSFR introduces a novel distributed fuzzy C-means method (DFCM) and
distributed variant of interpolation consistency regularisation (DICR). The DICR is
solved by the alternating direction method of multipliers (ADMM), which locates
the parameters in the antecedent and consequent components of the DSFR model.
Notably, the DSFR model converges very quickly since it does not involve any back-
propagation procedures. It is also scalable to large-scale datasets because it benefits
from both the DFCM and DICR.

The last innovation to be presented is a novel federated fuzzy neural network
(FedFNN) with evolutionary rule learning (ERL). FedFNN offers a new distributed
learning solution for FNNs, including the RFNNs, to enable them to cope with data
heterogeneity, personalised privacy preservation, and high levels of data uncertainty
in decentralized scenarios. Technically, FedFNNs maintain a global set of rules in
the central server and a personalised subset of these rules for each local client. ERL
is inspired by the theory of biological evolution; it encourages rule variations while
activating superior rules and deactivating inferior rules for local clients with non-IID
data. More specifically, ERL is an iterative procedure consisting of two stages: a
rule cooperation stage that updates global rules by aggregating local rules based on
the activation status of each, and a rule evolution stage that evolves the global rules
and updates the activation status of each local rule. This procedure makes FedFNNs
both more generalisable and more personalisable when dealing with non-IID issues
and data uncertainty.

In summary, the main contributions of this research include: 1) A new and
effective end-to-end robust fuzzy neural network (RFNN) architecture that is robust
to data uncertainty and is able to process high-dimensional samples. It includes
an adaptive inference engine that can generate representative firing strengths for
high levels of uncertainty and an adaptive consequent component that enhances the
reasoning ability of the fuzzy rules; 2) A distributed fuzzy C-means method (DFCM)
that can be used directly with any labelled or unlabelled training data available over
an interconnected network, plus a distributed interpolation consistency regularisation
(DICR) mechanism that uses unlabelled data to optimise the parameters in the
consequent component; 3) A federated fuzzy neural network framework (FedFNN)
with evolutionary rule learning (ERL) that handles data uncertainty and non-IID
issues in decentralised scenarios.

3

Publications

Related Papers
L. Zhang, Y. Shi, Y. C. Chang, and C. T. Lin, ”Robust Fuzzy Neural Network
With An Adaptive Reference Engine”, IEEE Transactions on Cybernetics, 2023.

L. Zhang, Y. Shi, Y. C. Chang, and C. T. Lin, ”Federated Fuzzy Neural Network
with Evolutionary Rule Learning.”, IEEE Transactions on Fuzzy Systems, 2022.

Y. Shi, L. Zhang, Z. Cao, M. Tanveer, and C. T. Lin, ”Distributed Semi-supervised
Fuzzy Regression with Interpolation Consistency Regularization.”, IEEE Transac-
tions on Fuzzy Systems, 2021.

L. Zhang, Y. Shi, Y. C. Chang and C. T. Lin, ”Hierarchical fuzzy neural networks
with privacy preservation on heterogeneous big data”, IEEE Transactions on Fuzzy
Systems, pp. 1-1, 2020.

4

Contents

1 Introduction 11
1.1 Privacy Preservation and Distributed Learning 12
1.2 Data Uncertainty and Fuzzy Neural Networks 12
1.3 Distributed Fuzzy Neural Networks 14

1.3.1 The Challenge of Limited Fuzzy Reasoning Ability 14
1.3.2 The Challenge of Data Hetetorgeneity 15
1.3.3 The Curse of Dimensionality Challenge 15
1.3.4 The Challenge of Unlabelled Data Utilization 16

1.4 Research Aims . 16
1.5 Solutions . 19
1.6 Structure of this Dissertation . 20

2 Literature Reviews 21
2.1 Privacy Preserving Algorithms . 21
2.2 Heterogeneous data . 22
2.3 Distributed Learning . 22
2.4 Semi-supervised learning . 23
2.5 Fuzzy Neural Networks . 25
2.6 Robust Deep Neural Networks . 25
2.7 Distributed fuzzy neural networks . 26
2.8 Deep Probabilistic Models . 27
2.9 Federated Learning . 27
2.10 Summary . 28

3 Preliminary 29
3.1 Centralized Fuzzy Neural Networks 29
3.2 Centralized Hierarchical fuzzy neural networks 31
3.3 Distributed Hierarchical fuzzy neural networks 35

5

4 Robust Fuzzy Neural Network with An Adaptive Inference Engine 41
4.1 Formulation . 42

4.1.1 Antecedent Component . 44
4.1.2 Adaptive Inference Engine . 45
4.1.3 Consequent Component . 45

4.2 Experiments . 46
4.2.1 General Performance . 51
4.2.2 Ablation Study . 55
4.2.3 Generalization Analysis . 56
4.2.4 Convergence analysis . 56

4.3 Summary . 56

5 Distributed Semi-supervised Fuzzy Neural Networks with Interpo-
lation Consistency Regularization 58
5.1 Centralized semi-supervised fuzzy regression 59

5.1.1 Fuzzy inference system . 59
5.1.2 Fuzzy C-Means for the structure learning 60
5.1.3 Closed-form solution for the parameter learning 61
5.1.4 Semi-supervised fuzzy regression with ICR 62

5.2 Distributed semi-supervised fuzzy regression with ICR 62
5.2.1 Distributed FCM . 64
5.2.2 Distributed ICR . 66

5.3 Experiments . 68
5.3.1 Performance on Different Datasets 73
5.3.2 Convergence Analysis . 74
5.3.3 Effects of regularization and ADMM parameters 77
5.3.4 Effects of the number of interpolated unlabeled samples 77
5.3.5 Effects of the rule and agent number 77

5.4 Summary . 78

6 Federated Fuzzy Neural Network with Evolutionary Rule Learning 79
6.1 Federated Fuzzy Neural Network . 81
6.2 Evolutionary Rule Learning . 85

6.2.1 Rule Cooperation Stage . 85
6.2.2 Rule Evolution Stage . 88
6.2.3 The Performance of the FedFNN on Non-IID Datasets 96

6.3 Experiments . 96
6.3.1 The Performance of the FedFNN on Datasets with Uncertainty 97

6

6.3.2 Convergence Analysis of the FedFNN with ERL 98
6.3.3 Analysis of Key Parameter Robustness 98

6.4 Summary . 99

7 Conclusion and Future Work 100
7.1 Conclusion . 100
7.2 Future Work . 101

7

List of Figures

1.1 Research map of distributed learning for robust fuzzy neural networks. 17

3.1 The structure of FNN . 30
3.2 Data processing and PP-HFNN structure. 32
3.3 Distributed Clustering. 37

4.1 Architecture of the RFNN. Each color represents a different data pro-
cessing rule. 43

4.2 Test accuracy of the RFNN and other comparators on all eight datasets.
We simulate four levels of data uncertainty on each dataset, where the
RFNN performs better than all comparison methods. 48

4.3 The convergence trend of the RFNN on all eight datasets with four
levels of uncertainty. A higher level of uncertainty leads to slower
convergence speed and worse performance. 49

4.4 Comparison of test performance between the RFNN and different
DNN architectures applied with Dropout. Due to page limitation,
we choose to show the results of DNNs with a dropout rate of 0.05
which perform better on most datasets.. 52

4.5 Comparison of test performance between the RFNN and different
DNN architectures applied with GNI. The noise variance of GNI is
selected as 0.01 for the best performance. 53

4.6 Comparison of test performance between the RFNN and different
BNN architectures. 54

5.1 Architecture of the DSFR model. The upper-left part depicts detailed
structures of each local model, which is presented in the bottom-right
part. Different colours are used to distinguish different types of data
and methods. 63

5.2 NRSME and its standard deviation when varying the number of ICR
samples. 71

8

5.3 NRSME and its standard deviation when varying the number of rules. 71
5.4 NRSME and its standard deviation when varying the number of agents 72
5.5 Convergence analysis of the DFCM method (top) and DICR method

(bottom). 75
5.6 NRMSE and its standard deviation with different model parameters

(top) and Laplacian parameters (bottom). 76

6.1 (a) A brief demonstration of how a species evolve variants to survive
in diverse living environments based on genes selective activation and
expressions. (b) A brief demonstration of how FedFNN selectively
activate a personalized subset of contributive rules for clients to effec-
tively deal with their local non-IID data. 80

6.2 Overview of the FedFNN. 83
6.3 Overview of a local FNN. 83
6.4 Overview of the evolutionary rule learning. 85
6.5 Performance of different algorithms when addressing datasets with

different uncertainty levels. 92
6.6 The convergence of the FedFNN optimization process under different

uncertainty levels on 6 datasets. 92
6.7 Performance of the FedFNN on GSAD at different non-IID levels. . . 93
6.8 Performance of the FedFNN when using different β. 93
6.9 Performance of the FedFNN using different initial global rule numbers. 94
6.10 Performance of the FedFNN on all clients when training on the GSAD

dataset. 95

9

List of Tables

4.1 Dataset Information . 46
4.2 Average classification accuracy (%) / its standard deviation and mean

Averaged F1 Score / its standard deviation of all models on the 8
datasets at 50% level of uncertainty. 49

4.3 Average classification accuracy (%) and standard deviation of RFNN
with MLP-based AIE and RFNN with FNN-based AIE on the 8
datasets at 50% level of uncertainty. 50

4.4 mean Averaged F1 Score and standard deviation of all models on the
8 datasets with a hybrid of uncertainty. 51

5.1 Dataset Information . 69
5.2 Performance comparison on each dataset 70

6.1 Dataset Information . 90
6.2 Average classification accuracies (%) and standard deviations achieved

by each algorithm on the 7 datasets at a 10% level of uncertainty . . 96
6.3 Number of parameters required by each state-of-the-art algorithm . . 96
6.4 Comparison of computing time (s) between FedFNN and DFNN . . . 96

10

Chapter 1

Introduction

With the remarkable development of data collection devices, the data available
for machine learning tasks has become richer not only in quantity but also in di-
mension [1]. Big data and its benefits have become a ubiquitous part of research in
many areas, including social networks, the Internet of Things, commerce, astronomy,
biology, medicine, and more [2], [3]. However, with increasing regularity, the gains
being made seem to come at the threat of violations to the privacy and security of
our personal data [4]. This issue is attracting serious attention in both society and
the research community, especially since the Facebook data privacy scandal [5]. In
addition to privacy concerns, uncertainty is another problematic characteristic of big
data. Uncertainty can arise from a variety of sources, including measurement errors
in sensing instruments, the discrete sampling of measurements, feature perturbation,
which is generally unavoidable during data collection and processing [6]. Even radia-
tion pollution, device reading errors, and uncontrolled environmental factors can lead
to missing or erroneous data. In fact, with the development of data-collecting de-
vices and more diverse data-collection scenarios, uncertainty now commonly exists in
big data. Fortunately, distributed fuzzy neural networks (DFNNs) [7]–[9] have been
proposed to solve these two major issues. However, as shown in Fig. 1.1, what they
cannot handle is complex real-world scenarios where the data are heterogeneous and
enormous in volume and dimension. Worse still, big data is usually only partially
labelled due to the high costs of labelling, which limits an FNN’s ability to learn
a more representative fuzzy set. To solve these issues, we need novel and efficient
machine-learning techniques.

11

1.1 Privacy Preservation and Distributed Learn-
ing

As one of the most salient problems in data science, privacy-preserving machine
learning is attracting attention [10]–[13]. Generally, there are two types of privacy-
preserving machine learning methods; one relies on perturbation and randomisation,
and the other on segmenting the data. Perturbation/randomisation methods alter
the data before releasing or sharing them [11], which offers some limited privacy
protection at the sacrifice of some performance. Methods based on segmentation
typically distribute the data among multiple agents. Neighbouring agents cooperate
with each other to learn global results but without revealing their individual data
to others [14]. Distributed machine learning algorithms have emerged out of these
multi-agent data sharing scenarios as a solution to preserving privacy [15]–[19]. Dis-
tributed algorithms are well suited to big data environments given there are limits
on the amount of data a single agent or a centralised algorithm can feasibly handle.
Hence, to meet the communications overhead and storage capacity needed to pro-
cess information at the big data scale, the data needs to be distributed throughout
a network of interconnected agents [20].

Additionally, federated learning models [21]–[23] offer decentralised learning ar-
chitectures that allow local models to optimise their parameters using gradient de-
scent. The federated learning approach learns a shared model by aggregating the
updates obtained from local clients without needing to access their data. Notably,
differences in the distributions of each client’s data is a key challenge in federated
learning that many researchers have sought to solve [24]–[28]. Some of these solutions
allow clients to build personalised models. However, few existing federated learning
methods are able to simultaneously cope with data uncertainty and non-independent
and identically distributed (non-IID) data in a distributed learning scenario. Further,
although several methods incorporate Bayesian treatments [29] or Gaussian processes
[27], [28] as a potential solution, their performance relies heavily on learning good
posterior inferences and kernel functions, which is very time-consuming.

1.2 Data Uncertainty and Fuzzy Neural Networks
As a set of data’s complexity increases, perturbations in the sample distributions,

inaccurate recordings, obsolete features, and other problems inevitably find their way
into the data, creating uncertainty in the data collected. Loosely defined as “how well
the data speaks to the question of interest with respect to the model” [30], uncertainty

12

over whether the available data will meet the demands of the task begins at the
collection stage. Neither sensors nor humans are immune to measurement errors.
Qualitative data, such as social media accounts, are often subjective in nature, and
the data collected may not be relevant or might be incomplete.

One approach to ameliorate this issue is to apply a regularisation technique to the
data, such as dropout or injecting noise [31], [32]. The idea is to add randomness into
the training process to avoid over-training the weights. However, these regularisation
methods result in a trade-off between data fitting and model generalisation [33]. For
example, with a noise injection technique, reducing the amount of noise injected
will also reduce the model’s generalisability, while adding more noise will make it
more difficult to fit the model to the data distribution. Thus, finding a proper
hyperparameter with which to penalise the regularisation terms is crucial with these
types of methods. In practice, this is not always easy, as uncertainty levels vary
between tasks and scenarios. That means a new hyperparameter needs to be found
for every new task and dataset.

Another approach is combining neural networks with statistical algorithms [34],
[35] to generate deep statistical models [36]–[38]. These models rest on the theoretical
foundations of probabilistic reasoning [39], providing a highly flexible approach to
dealing with data uncertainty. A deep statistical model might come in the form of
a Bayesian neural network (BNN) [40], a deep Gaussian process (DGP) [36], or one
of many others. The strengths of deep statistical approaches are that they can show
high levels of resilience to uncertain inputs, and they can also provide probabilistic
guarantees over their predictions. However, the weaknesses are that most existing
deep stochastic models are based on Bayesian inferences, which requires training
a posterior distribution based on the inputs, and this is usually a time-consuming
process.

That said, these methods have set drastically higher benchmarks in accuracy for a
wide range of machine learning tasks [41], such as image recognition, natural language
processing, and speech processing. However, the downside of these approaches is that
they lack robustness to high levels of data uncertainty [42], especially when the data
carries high levels of uncertainty [42], so good performance in these situations is
hard to guarantee. As a result, researchers have struggled to harness the power of
DNNs for low signal-to-noise ratio tasks – for example, managing a control system
in a noisy scenario. Data uncertainty comes from issues like sample corruptions [43],
adversarial attacks [44], and the growing complexity of data sources [45]. In fact, the
increasing level of uncertainty in data today is becoming one of the most pressing
issues to deal with when designing algorithms for DNNs.

Currently, a powerful and effective solution for dealing with uncertainty is to

13

build a model through a fuzzy inference system, which relies on fuzzy logic [46]–[48].
As learning machines that find the parameters of fuzzy systems (i.e., fuzzy sets, fuzzy
rules), FNNs [49]–[53] comprise an antecedent and a consequent component that offer
a specific architecture for tackling data uncertainty. FNNs deal with data uncertainty
through ‘fuzzification’ operations and architectures based on if-then rules. Notably,
FNNs do not handle data uncertainty particularly well [52], [53]. In fact, generally,
the gradient vanishes at the fuzzy AND operation when the input dimensionality is
too high. As a result, they tend to suffer from a bottleneck problem where high-
dimensional datasets cannot be processed. This has limited the expansion of fuzzy
models to wider applications (see Fig. 1.1), and so we find most of the current
FNNs are designed for control systems, where the learning features are often low-
dimensional [54], [55]. In addition, FNNs cannot make use of unlabelled data, which
means much useful information that could help learning is ignored. Last, because
the uncertainty they do handle is only taken care of in centralised scenarios, FNNs
are not able to handle privacy issues.

1.3 Distributed Fuzzy Neural Networks
As mentioned, FNNs cannot handle data uncertainty in decentralised scenarios.

To address this issue, DFNNs [7]–[9], [56], [57] learn a global FNN by combining many
local models. However, existing DFNNs are fragile to non-IID data. In addition, as
DFNNs tend to learn a shared group of global rules for all clients, their ability to
personalise the model to the local client is limited, and their learned global rules are
less adaptive. Further, they regard the process of integrating the local models as
a convex optimisation problem, solving it with the alternating direction method of
multipliers (ADMM) [58]. However, this overlooks the powerful learning ability of
feedforward FNNs.

Overall, as depicted in Fig.1.1, DFNNs face four key issues: their inability to
deal with high levels of uncertainty in the data; a lack of ability to personalise local
models, which is especially important when the data is heterogeneous or non-IID;
the bottlenecks created by data of high dimensionality; and the inability to use
unlabelled data. These challenges are described in Subsections 1.3.1 through 1.3.4.

1.3.1 The Challenge of Limited Fuzzy Reasoning Ability
Existing DFNNs follow the traditional architectures of FNNs, where the fuzzy

consequent layers are single levels of fuzzy connected layers. However, this kind of

14

linear map is limited in its ability to reason about data with high levels of uncer-
tainty, especially when the uncertainty is introduced via different types of noise. In
today’s real-world applications, data with high levels of uncertainty is quite com-
mon. In addition, the current distributed learning schemes for FNNs formulate the
task to be completed as a convex problem to be solved by ADMM. Yet this scheme
needs the consequent layers of FNNs to have a closed-form solution. This eliminates
the possibility of applying a complex consequent layer, in turn limiting the fuzzy
reasoning ability of existing DFNNs.

1.3.2 The Challenge of Data Hetetorgeneity
Data heterogeneity is attracting serious attention in both society and the research

community, especially post the Facebook data privacy scandal [5]. Usually, data
heterogeneity stems from the nature of the information to be captured and/or the
methods used to generate or acquire the data. Further, it can exist at either the
sample, the feature level, or both. Traditional data processing methods, such as
data cleaning, data integration, dimension reduction, and data normalisation, may
need to be applied in combination to ensure they effectively reduce data disparity
[59].

Heterogeneous data poses many challenges to DFNNs. The enormous scale of the
data required to train a deep model today, category imbalances, and the inherent
non-IIDness of data make almost every aspect of working with a DFNN difficult, from
providing enough processing power to maintaining model accuracy to processing data
uncertainty. Moreover, DFNNs address privacy concerns by combining many local
models to learn a global FNN; however, existing DFNNs are fragile to non-IID data.
In addition, as DFNNs tend to learn a shared group of global rules for all clients,
their ability to personalise the model to local clients is limited, and their learned
global rules are not very adaptive.

1.3.3 The Curse of Dimensionality Challenge
In a standard fuzzy system, the number of fuzzy rules increases exponentially

with the number of system variables [60]–[62]. This limits the feasibility of applying
standard FNNs to heterogeneous big data. In an attempt to overcome the rule
explosion problem, Raju, as far back as 1991, proposed the first hierarchical fuzzy
system [60]. It consisted of a number of low-dimensional fuzzy systems connected in a
hierarchical structure such that the total number of rules increased linearly with the
number of input variables. In the years since then, hierarchical fuzzy systems have

15

been studied in depth [62]–[65] and have been applied to many practical problems,
such as price negotiation [66], video de-interlacing [67], linguistic attribute hierarchy
[68], weapon target assignment [69], cloud resources demand prediction [51], and
more. However, there is very little literature on using hierarchical fuzzy neural
networks (HFNNs) to address uncertainty and privacy concerns nor what to do about
the high computational overhead associated with processing big data.

1.3.4 The Challenge of Unlabelled Data Utilization
Over the past few decades, semi-supervised learning (SSL) algorithms have been

thoroughly investigated for ways to use both labelled and unlabelled data to train
better models [70]–[77]. The different categories of SSL algorithms generally include
self-training [71]–[73], co-training [74], graph-based methods [75]–[77], and MixUp-
based methods [78], [79]. Most of these methods work by adding regularisation
terms into the loss functions as a way of dealing with unlabelled samples. Further,
most of the methods only work in centralised computing scenarios, where training
data is processed at a central node. However, rising concerns over data privacy and
security [80]–[83] have made distributed computing a far more popular paradigm.
Consequently, in many real-world scenarios [4], [5], [84], the available training data
is spread across interconnected networks comprising multiple agents. Typically, these
agents are not allowed to share the data they have with others and can only commu-
nicate non-sensitive information to their neighbours. As such, the training data must
be stored and processed on multiple local nodes instead of in one central place. To
date, only a few researchers have investigated distributed semi-supervised learning
(DSSL) [85]–[87], and none have considered ambiguity or uncertainty in the training
samples [85]–[87]. Both properties are common in real-world datasets, so a framework
that considers these factors would invariably increase model performance, especially
with complex data.

Notably, fuzzy systems have been used with SSL methods for years and have
found their way into many applications [88]–[92]. But actual fuzzy SSL algorithms,
on the other hand, are still in their infancy, and the few that do exist usually rely
heavily on human knowledge and can only be processed in a centralised way.

1.4 Research Aims
The aim of this research is to develop effective and efficient distributed models us-

ing RFNNs. Unlike today’s DFNNs, which are limited in processing low-dimensional
labelled data, the proposed RFNNs, specifically designed for local clients, will be

16

Distributed
Fuzzy Neural Networks

Fuzzy Neural
Networks

Distributed
Learning

Data
Heterogeneity

Samples

Unlabeled
Data

High
Dimensionality

High-level
Data uncertainty

Challenges

Robust Fuzzy
Neural Networks

Personalized
Distributed Learning

Distributed Learning for
Robust Fuzzy Neural Networks

Solutions

Figure 1.1: Research map of distributed learning for robust fuzzy neural networks.

able to generate more meaningful fuzzy rules because they can learn from both la-
belled and unlabelled samples. In addition, RFNNs are also capable of delivering
robust performance when dealing with data that have high levels of uncertainty,
are heterogeneous, or have high dimensionality. In terms of the distributed learn-
ing scheme, this research will not just simply merge an existing distributed learning
model with an FNN. Rather, we propose a novel distributed learning scheme that
solves the current problems with: computing and communication overheads; the
lack of ability to deal with non-IID data; and performance problems when handling
heterogeneous data among local clients. Additionally, the new RFNN architecture
proposed can build highly generalisable models to handle complex real-world tasks
in a distributed setting where the data has high uncertainty, has high dimensional-
ity and are heterogeneous. In addition, RFNNs will not only improve the reasoning
ability of local models by leveraging useful information from unlabelled data, but the
global fuzzy rules will also be applied selectively to support the local data available.

Overall, this study answers five main research questions (RQs):

• RQ1: Can we design a new local FNN that solves the curse of dimensionality
as well as performs robust to high levels of data uncertainty?

• RQ2: Can we design a new FNN that learns from unlabelled data to enhance
the fuzzy reasoning ability of a DFNN?

17

• RQ3: Can we design a novel DFNN architecture that protects privacy while
also handling data uncertainty and heterogeneity that lowers computation and
communication overheads?

To answer these questions, we devised four research objectives (ROs):

• RO1: (Aims to answer RQ1) Develop a robust fuzzy framework that is able to
cope with datasets of high dimensionality and high uncertainty. The solution
should include a novel inference engine that does not suffer from the vanishing
gradient issue associated with current fuzzy AND operations. The inference
engine should be able to learn adaptively from big data with high levels of
uncertainty, and, in describing uncertainty, it should generate robust fuzzy sets
that outperform the current benchmarks. Flexible consequent layers should
be used to handle more complex tasks. Thus, Research Objective 1 involves
developing a new and effective architecture for FNNs, equipped with these
components, that is robust to data uncertainty and is able to process high-
dimensional samples.

• RO2: (Aims to answer RQ2) Design an FNN that investigates and lever-
ages the uncertainty in unlabelled data. Today, there are massive amounts of
unlabelled data that current FNNs cannot exploit. Yet making use of these
valuable features during both the structure learning stage and the parameter
stage would significantly contribute to enhancing the reasoning capabilities of
the fuzzy rules. Therefore, Research Objective 2 involves developing an algo-
rithm that can comprehensively consider the distributions in unlabelled data
so as to build more representative fuzzy sets. Moreover, these unlabelled data
should also be incorporated into the consequent layer learning. Alongside this,
a novel consequent learning method needs to be devised that is able to learn a
more precise decision boundary for the uncertain data.

• RO3: (Aims to answer RQ3) Design a distributed learning model for FNNs
that can handle data heterogeneity and non-IID issues on local clients. In
real-world applications, the training samples located on local clients are usu-
ally heterogeneous, and training features from different clients may vary hugely
in terms of distribution. Moreover, the numbers of samples in different cate-
gories can be unbalanced. These data heterogeneity issues make it difficult for
distributed learning models to generate a global optimal model that produces
good performance for all local clients. Furthermore, the growing number of
clients also leads to a decrease in computing efficiency and gives rise to pri-
vacy concerns. Thus, Research Objective 3 involves designing a novel learning

18

scheme that encourages local clients to learn their own personalised FNNs in-
stead of a global shared one. Considering that local data are heterogeneous,
not all the rules learned from one client will be helpful to all others. Some may
positively contribute, but others may be misleading. Hence, the newly-devised
local FNN should be an expert in processing its own client data and should
only share supportive rules, not misleading rules.

1.5 Solutions
Corresponding to RO1, our solution is an RFNN with an adaptive inference

engine (AIE) that is capable of dealing with different levels of uncertainty in high-
dimensional data. Inspired by the idea of the relational network [93], which uses
DNNs to learn a distance metric so as to compare samples in few-shot learning tasks
[94], the AIE is designed as a learnable neural network module that can automat-
ically adapt itself to learn membership function values and generate corresponding
firing strengths. Unlike relational networks, which directly concatenate representa-
tions of the samples to be compared, our AIE uses non-linear mapping to transform
the outputs of the antecedent component into more representative firing strengths.
Equipped with this AIE, the RFNN not only avoids vanishing gradients when pro-
cessing high-dimensional data, it can also process high levels of uncertainty in the
membership function values. The RFNN consists of three components: an antecedent
component, the AIE, and a consequent component. The AIE connects the antecedent
component and the consequent component in sequence to implement the fuzzy if-then
rules. Unlike deep statistical models, the RFNN has fuzzy logic built right into its
structure instead of needing to learn a posterior distribution of the model weights.
This eliminates much of the need to compute distributions, which reduces overall
overheads. Moreover, unlike existing FNNs, the RFNN includes an FNN-based in-
ference engine to further process any uncertainty that might exist in the membership
function values. In this way, RFNNs generate more suitable firing strengths. Neural
networks are used as consequent layers, which work as a non-linear estimator of the
input samples. This enhances the reasoning ability of the fuzzy rules. The full struc-
ture of the RFNN is trained via backpropagation without extra hyperparameters.

In terms of solving RO2, we propose a fuzzy SSL method that can better utilise
unlabelled samples, which was motivated by a recently developed technique called
interpolation consistency regularisation (ICR) [79]. Unlike other SSL methods,
which essentially use unlabelled data to supplement the available training data, ICR
expands the sample space to capture more extrinsic information. ICR not only
helps to train a better estimator based on augmented training samples but also en-

19

courages consistency between predictions based on both augmented samples, i.e.,
f(λxi + (1 − λ)xj), and the interpolated predictions based on those samples, i.e.,
λf(xi) + (1 − λ)f(xj). Further, ICR can push the decision boundaries toward low-
density areas, which increases the model’s robustness and generalisation performance.
Currently, ICR methods have been widely used in semi-supervised classification tasks
with backpropagation training schemes [79], [95] but seldom with semi-supervised re-
gression tasks.

To meet RO3, we propose a FedFNN with ERL. This implementation handles
data uncertainty and non-IID issues. The theory of biological evolution [96] states
that variants of the same species can evolve to adapt to their different living en-
vironments by selectively activating and expressing their genes. Inspired by this,
we designed an architecture that uses RFNNs as local models. We see these as
compositions of fuzzy rules that capture valuable local data information, such as
distributions, from multiple views. Similar to a specie’s genes, each direction of the
FedFNN is an essential functional component that can be activated or deactivated
for clients according to their performance on local data. Thus, FedFNN aims to
generate a group of global fuzzy rules that can be selectively activated for each local
client. The result is an architecture that outperforms competing approaches with
non-IID data.

1.6 Structure of this Dissertation
Chapter 2 starts with a comprehensive literature review of the problems with

existing distributed fuzzy models. Chapter 3 describes the typical structure of an
FNN along with the ADMM distributed algorithm. Chapters 4, 5, and 6 present the
three models proposed in this research, which solve several significant challenges faced
by existing distributed fuzzy models. These three chapters offer detailed problem
modelling and experiments to verify efficacy. The thesis concludes in Chapter 7 with
a summary of the material covered and our intentions for future work.

20

Chapter 2

Literature Reviews

This chapter provides a review of the existing literature that describes the pri-
mary challenges posed by big data and the corresponding machine-learning solutions.
The literature reviews can be categorized into four main areas: 1) Privacy preserva-
tion and its solutions, which encompass distributed learning and federated learning;
2) Data heterogeneity and its solutions involve robust deep neural networks; 3) Un-
labeled data and semi-supervised learning methods; and 4) Data uncertainty and its
solutions, which include fuzzy neural networks and deep probabilistic models. These
literature reviews offer valuable insights into these specific issues of big data.

2.1 Privacy Preserving Algorithms
The existing literature on privacy-preserving mostly targets non-fuzzy machine

learning and deep learning algorithms. In non-fuzzy machine learning techniques,
computing with encrypted data [81], privacy-preserving identification [82], and privacy-
preserving probabilistic inference [83] have been used to protect privacy. In addition,
schemes like differential privacy [93] are becoming increasingly popular for protect-
ing privacy with machine learning models. Methods to incorporate DP have been
developed for principal component analysis [94], support vector machines [95], and
risk minimization [96]. In terms of conventional deep learning methods, [97] pro-
posed a deep learning system that allows participants to independently train and
share a small model’s key parameters, thereby preserving the privacy of data for
participants, while still benefiting from the contributions of others. In addition, [37]
applying differential privacy and secure multi-party computation to independently
trained neural networks before aggregation, helps to protect sensitive information
when it is passed between networks.

21

Unfortunately, none of these algorithms are suitable for fuzzy neural networks.
Anonymizing sensitive data to preserve privacy suffers from information loss and
attributes and links can still be disclosed. Langari et al. [98] looked to address these
problems with a hybrid anonymizing algorithm based on K-member fuzzy cluster-
ing and the Firefly algorithm (KFCFA). The approach considering K-anonymity
(KA)[99] and its extensions, L-diversity (LD)[100] and T-closeness (TC) [101] as its
three constraints.

2.2 Heterogeneous data
As a way to resolve conflicts in heterogeneous data merged from a variety of

sources, Li et al. proposed an optimization framework to minimize the overall de-
viation between ground truths and the observations provided [102]. Zhang et al.’s
solution combined principal component analysis (PCA) to reduce the number of di-
mensions with correlation analysis to investigate the interactive relations between
features[103]. However, important information can be lost with this strategy, as
PCA and correlation analysis do not consider nonlinear representative and interac-
tive relations between features. A method based on support vector machine (SVM)
was developed by Lewis et al. to infer functional gene annotations from heteroge-
neous data comprising protein sequences and structures [104]. Chen et al. developed
a stacked denoising autoencoder to learn feature representations from hierarchical
human mobility data. With this approach, they were able to predict the risk of
traffic accidents [105]. Zuo et al. [106] proposed a fuzzy heterogeneous method to
address domain adaptation with heterogeneous data spaces. However, none of the
above methods [102]–[106] are a suitable solution to the uncertainty, scale issues and
privacy concerns associated with big data environments.

2.3 Distributed Learning
Distributed learning algorithms [15]–[19] have been successfully applied to many

real-world applications, including wireless sensor networks [16] and privacy-preserving
[107]. Qin et al. [16] combined graph theory with the distributed consensus theory
of multi-agent systems to design two decentralized algorithms for dealing with dis-
tributed problems in wireless sensor networks. One algorithm is based on K-means,
the other on FCM. Targeting privacy preservation, Liu et al. [107] devised a novel
shadow coding schema to save and recover privacy information over distributed net-
works. Two interesting works in ye2020distributed1 and ye2020distributed2

22

provided novel learning algorithms for distributed games. Deep learning solutions
involving consensus models over distributed deep architectures have also been pro-
posed with the aim of improving performance [108], [109]. For example, Forero et
al. [15] proposed a fully distributed method based on support vector machine algo-
rithms by applying an ADMM strategy to obtain optimal global parameters without
the need to exchange and process information through a central communications
unit. Ye et al. [18] later presented a decentralized ELM algorithm that combines
the Jacobian and Gauss-Seidel Proximal ADMM methods. Obviously, all these dis-
tributed learning algorithms do well in alleviating privacy concerns and dealing with
decentralized scenarios. However, none address uncertainty in the training data.

There are also several examples of fuzzy algorithms for distributed learning [7], [8],
[53], [110]. For example, Fierimonte et al. [7] developed a decentralized FNN with
random weights, where parameters in the fuzzy membership functions are chosen
randomly as opposed to being trained. In subsequent work, they introduced an
online implementation of the same FNN structure [8]. Notably, a random method
of identifying parameters can result in very large deviations in accuracy during the
learning process. Additionally, the algorithms are only applied in the consequent
layers of the FNN [7], [8], which means that, strictly speaking, this decentralized
FNN model is only partially distributed. A more recent proposition by Shi et al.
[53] involves a distributed FNN with a consensus learning strategy. A novel method
of distributed clustering optimizes the parameters in the antecedent layer, while a
similar method of distributed parameter learning does the same for the consequent
layer. This solution successfully manages data uncertainty in a distributed setting,
but it does not consider unlabeled samples. Dang et al. [110] proposed a transfer
fuzzy clustering method to enable neighbouring agents to learn from each other
collaboratively. Similar to distributed learning, multi-view learning converges to an
optimal estimator by collaboratively learning from multiple datasets. By applying
a large margin learning mechanism, [111] proposed a two-view fuzzy model that
collaboratively learns from each other. A multi-view fuzzy logic system is introduced
in [112] by adopting nonnegative matrix factorization to build a hidden space in order
to extract useful information shared among different datasets.

2.4 Semi-supervised learning
SSL algorithms [71], [72], [74] were developed to improve model performance with

additional training data in the form of unlabeled samples, while still leveraging the
accuracy afforded by labelled samples. The first tools to solve SSL problems were
self-training [71], [72] methods, which uses unlabeled samples in an iterative two-

23

part procedure. First, the model is trained on a set of only labelled samples. The
trained model is then used to predict the labels of unlabeled data. High-confidence
predictions are then added to the training set, and the model is retrained. An
alternative strategy is co-training [74], which takes a similar iterative approach to
self-training. The difference is that co-training algorithms maintain two separate
estimators which work together on different training subsets and teach each other
during the learning process. Subsequently, generative models [70], [113], [114] were
proposed. These algorithms assume that the model can represent hybrid distributions
as identified in a set of unlabeled samples.

More recently, an increasing number of researchers are incorporating regulariza-
tion terms into the loss function of SSL algorithms as a way to extract more useful
information from unlabeled data. Generally, these regularization terms fall into one
of three categories. These are: traditional regularization [115], which summarizes
and transfers traditional SSL models into regularization terms; consistency regular-
ization [116], which forces the predictions generated to be low-entropy so the decision
boundary does not land in a dense sample area; and entropy minimization [117], [118],
which guarantees that the distribution of the augmented dataset will be the same as
the original.

To implement SSL in deep architecture, an interpolation consistency training pro-
cedure, Verma et al. [119] proposed a solution inspired by MixUp [78] that learns a
decision boundary which ensures consistency between predictions based on the inter-
polated samples and interpolations based on the resulting predictions. Meanwhile,
Berthelot et al. [120] was developing MixMatch – the current state-of-the-art in
model performance. MixMatch basically combines many of the recent dominant SSL
mechanisms, including entropy minimization and MixUp tools. However, all these
algorithms are designed for centralized scenarios and cannot be applied directly to
decentralized problem-solving.

Only a few DSSL methods have been proposed [85]–[87] Chang et al. [85] uses
unlabeled data to reduce distribution errors and applied time-consuming kernel ridge
regression on distributed nodes, after which the weighted average of those nodes’
outputs is calculated to obtain a final estimator. Taking advantage of a wavelet
neural network, Xie et al. [86] devised a new DSSL scheme that incorporates a graph-
based regularization term into a distributed loss function. However, the process
involves constructing a relationship graph of all the sample points, which is quite
time-consuming, especially with large-scale datasets. In pursuit of better efficiency,
the researchers later modified their information-sharing strategy to use an event-
triggered communication scheme [87], and in a later work still, they updated the
objective function to reduce the complexity of loss function by avoiding the twice

24

continuously differential in their previous two models [121]. While there are many
ways to reduce computing time, high computational overhead is an inherent problem
with graph-based regularization that cannot be solved completely. Ultimately, the
choice of DSSL strategy comes down to one of either less robustness or more time
consumption.

2.5 Fuzzy Neural Networks
Fuzzy systems and sets [122], [123] were originally introduced to operate complex

control systems. Over past decades, they have diverged into several types [124]–
[127]. Of these different streams, T–S fuzzy models [127] have achieved great success
at dealing with data uncertainty. By adopting a group of fuzzy rules and member-
ship functions, T-S fuzzy models merge a number of local models together to create a
nonlinear model with the ability to process uncertainty. FNNs [46], [128] were built
upon this property by integrating fuzzy logic into a neural network structure. Us-
ing fuzzy if-then rules, FNNs not only excel at handling data uncertainty, they also
make neural network structures explainable. In recent years, FNNs have been ap-
plied to a range of scenarios, such as distributed learning [7], [53], robot–environment
interaction [129] and mimic habitual sequential tasks [130]. However, current imple-
mentations struggle with two severe problems. First, they have a deep reliance on
the quality of the fuzzy rules that are generated. Second, they suffer from the curse
of dimensionality.

2.6 Robust Deep Neural Networks
One method of easing the issues arising from data uncertainty for DNNs is to use

a regularization-based deep neural network [131]–[136]. Adopting ℓ1 and ℓ2 regular-
ization on a loss function with soft weight-sharing, Nowlan and Hinton [131] observed
good performance with ambiguous data by penalizing the model complexity. This
was the first attempt to enhance a deep model’s robustness by regularizing its pa-
rameters. Since then, most DNNs have adopted dropout [137] strategies against
data uncertainty [132], [133]. By randomly dropping neurons during the training
process, dropout alleviates over-reliance on the model’s parameters, which prevents
deep models from adapting to the inputs too much. Unfortunately, dropout only
works for low levels of uncertainty, and it cannot cope with special situations like
problems with adversary attacks.

In parallel, injecting deep model parameters with noise, especially Gaussian noise,

25

has also proven to be an effective method of processing uncertain data [134], [135].
Based on this idea, Poole et al. [136] introduced a novel Gaussian noise injection
(GNI) method based on an autoencoder that adds Gaussian noise to all layers and
activation functions. The strategy yielded robust results. However, simply injecting
noise into the activation function of a DNN delivers equal gains, which was proven
statistically and empirically by Camuto et al. [32]. Afterwards, Lu et al. [138]
proposed an additional regularization technique for convolutional neural networks
(CNNs) so as to yield models with greater generalizability. Here, a learnable noise
module adaptively generates noises in the hidden layer to increase the robustness
of CNNs. However, similar to dropout, noise injection performance relies on the
structure of neural networks, and extra parameters are needed during the training
process. They are less able to handle samples with high levels of uncertainty.

2.7 Distributed fuzzy neural networks
DFNNs [7]–[9], [56], [57] have been proposed to handle the uncertainties encoun-

tered in distributed applications. The authors in [7] proposed a DFNN model that
randomly sets the parameters in antecedents and only updates the parameters in
consequent layers. Later, they extended this work to an online DFNN model [8].
Their models assume that all clients share the information in antecedent layers,
making this technically not a seriously distributed method. To avoid this problem, a
fully DFNN [9] model was proposed by adopting consensus learning in both the an-
tecedent and consequent layers. As its subsequence variant, a semisupervised DFNN
model [57] was presented to enable the DFNN to leverage unlabeled samples by using
the fuzzy C-means method and distributed interpolation-based consistency regular-
ization. However, the existing DFNNs cannot handle situations in which the data
distribution varies across clients. The authors in [56] proposed a DFNN with hier-
archical structures to process the heterogeneity existing in the variables of training
samples. However, instead of processing the data heterogeneity across distributed
clients, they focused on variable composition heterogeneity, which meant that data
variables were collected from different sources. Generally, by employing the well-
known Takagi-Sugeno (T-S) fuzzy if-then rules [127], the existing DFNN models
build the antecedent layers of their local models in traditional ways (e.g., K-means)
and calculate the corresponding consequent layers with closed-form solutions. Then,
the original DFNNs are transformed into convex optimization problems. While ef-
ficient and effective, they are not able to learn local models with personalized rule
sets. Worse, they fail to utilize the strong learning abilities of neural networks that
enable local FNNs to investigate more adaptive rules.

26

2.8 Deep Probabilistic Models
The existing probabilistically-directed deep generative models, which are com-

posed of statistic inferences and deep architectures, are flexible tools for modelling
uncertainty even with large-scale datasets. Using Bayesian theory to learn a posterior
distribution for DNNs parameters, Bayesian neural networks (BNNs) [37] are one of
the most promising deep statistic models with which to learn from complex samples.
Due to the potential advantages of dealing with uncertainty in this way, most recent
variants of BNNs have also been designed to handle uncertainty [139] and to detect
adversarial examples [140]–[142]. The robustness of BNNs is discussed and statisti-
cally guaranteed in [40], [143]. However, most existing BNNs heavily rely on Monte
Carlo approximation as a posterior inference [144], which is very time-consuming.

Beyond BNNs, Gaussian processes (GPs) [34] have found traction in a wide va-
riety of tasks due to their distinguished performance in dealing with uncertainty
[145], [146]. The downside of these methods, however, is that they were designed for
specific tasks, and they are hard to generalize to other tasks, especially when the
noise levels are heavy. Also, GP models are intractable and rather ineffectual with
large-scale datasets. In past years, deep Gaussian processes (DGPs) have greatly al-
leviated some of the above issues [36], [38], [147]. The most concerning problem with
the current iterations of DGPs is that they focus on regression tasks and are seldom
used for classification problems. Further, similar to BNNs, the training process of
DGPs relies on Bayesian inference and is less time efficient.

2.9 Federated Learning
FL [21] is an emerging distributed paradigm in which multiple clients cooper-

atively train a neural network without revealing their local data. Recently, many
solutions[21], [148], [149] have been presented to solve FL problems, among which
the most known and basic solution is federated averaging (FedAvg) [21], which aggre-
gates local models by calculating the weighted average of their updated parameters.

However, FL has encountered various challenges [150], among which the non-IID
issue is the core problem that makes the local model aggregation process harder and
leads to performance degradation. Numerous FL algorithms have been presented
to solve the non-IID problem, e.g., stochastic controlled averaging for FL (SCAF-
FOLD) [24]; FedProx [25]; model-contrasted FL (MOON) [151], which attempts to
increase the effect of local training on heterogeneous data by minimizing the dissim-
ilarity between the global model and local models; FedMA [29] and FedNova [152],
which improve the aggregation stage by utilizing Bayesian nonparametric methods

27

and local update normalization, respectively; CCVR [153], which calibrates the con-
stitutive classifiers using virtual representations to eliminate the global model bias
caused by local distribution variance; and FedEM [154], which introduces expecta-
tion maximization to make the learned model robust to data heterogeneity. Though
these methods have been proposed based on FedAvg by trying to learn a more ro-
bust global model, they focus on learning a shared global model, which degrades
their performance when the data distributions heavily vary across clients.

Recently, personalized FL (PFL) [26], [27], [155], [156] has been proposed; this
approach aims to process heterogeneous local data with personalized models. Many
of the existing PFL methods were proposed to solve the distributed meta-learning
problem [156]–[159]. Among the methods that target normal PL tasks, multitask
learning [160] is applied to learn personalized local models by treating each client as
a learning task; model mixing [161], [162] achieves the same goal by allowing clients
to learn a mixture of the global model and local models. Notably, the authors in
[163] presented a new local model structure that comprises a global feature encoder
and a personalized output layer. By contrast, LG-FedAvg provides clients with a
local feature encoder and a global output layer.

However, very few of the mentioned FL methods are able to handle data uncer-
tainties, except for that of [29], [152], which adopts Bayesian treatment, and that
of [27], which adopts a Gaussian process. In addition, building Bayesian posteriors
and Gaussian kernels is time-consuming. In contrast, our study uses FNNs as local
models, which are viewed as assemblies of fuzzy rules. Thus, taking rules as basic
functional units, we break down the task of learning a global model into learning
global fuzzy rules, each of which can independently investigate its local sample space
and contribute to the local training process.

2.10 Summary
In this chapter, we have discussed the significant challenges posed by big data

and examined the current solutions available. While some solutions have shown rea-
sonable success in addressing specific issues, such as deep learning (DL) in handling
data privacy and feedforward neural networks (FNNs) in processing data uncertainty,
none of them have been able to simultaneously address and achieve state-of-the-art
performance in all areas, including data uncertainty, data heterogeneity, privacy
preservation, and effective utilization of unlabeled data. This highlights the impor-
tance of the contribution made by this work, as it aims to address these challenges
comprehensively and advance the current state-of-the-art.

28

Chapter 3

Preliminary

In this chapter, three key base models are described to lay a foundation for
DFNNs. These models are the centralized FNNs, the centralized HFNNs, and the
distributed HFNNs, respectively. The centralized FNNs are the basis of all FNNs-
related models, including DFNNs. The centralized HFNNs can be seen as more
general structures of FNNs, which are able to process uncertain data with features
collected from multiple sources. Based on the centralized HFNNs, the distributed
HFNNs are more general in processing data uncertainty for decentralized tasks.

3.1 Centralized Fuzzy Neural Networks
Here, the architecture of FNN that is applied with the first order of the Takagi-

Sugeno (T-S) method of fuzzy inference system is described. Taking x = [x1, x2, · · · , xD]
as the input data with a dimensionality of D and its corresponding target output as
y ∈ R, then the k-th fuzzy rule of the T-S system is

Rule k: IF x1 is Ak1 and · · · and xD is Akd

Then y = wk0 +∑D
j=1 wkjxj

where Akj is a Gaussian membership fuzzy set and its membership function is cal-
culated via,

φkj(xj) = exp
−(xj −mkj

σkj

)2
 (3.1)

where mkj and σkj are the mean and standard variance of the Gaussian membership
function, respectively. Usually, the FNN consists of four feed-forward layers, whose
structure is provided in Fig.3.1.

29

𝜙1

ത𝜙1

𝜑1,1 𝜑1,2 𝜑1,𝐷

𝜙2

ത𝜙2

𝜑2,1 𝜑2,2 𝜑2,𝐷

𝜙K

ത𝜙K

𝜑K,1 𝜑K,2 𝜑K,𝐷

𝑥1 𝑥2 𝑥𝐷

Output

𝜓1 𝜓2 𝜓𝐾

1st

𝑥1 𝑥2 𝑥𝐷

1st 𝑓𝑐𝑜𝑛𝑠𝑞 2nd

𝑥1 𝑥2 𝑥𝐷

2nd 𝑓𝑐𝑜𝑛𝑠𝑞 Kth

𝑥1 𝑥2 𝑥𝐷

Kth 𝑓𝑐𝑜𝑛𝑠𝑞

Input Layer

Antecedent Layer

Consequent Layer

Output Layer

Figure 3.1: The structure of FNN

The first layer is the input layer, where each node stands for a single input feature,
i.e. xi. This layer is responsible for receiving the input features and then transmitting
them to the next layer.

The second layer is the antecedent layer, where each node corresponds to one
fuzzy set and outputs a membership value according to (6.1). Afterwards, firing
strengths corresponding to these fuzzy sets can be calculated by applying fuzzy AND
operation:

ϕk(x) =
D∏

j=1
φkj(xj), (3.2)

where ϕk(x) is the firing strength of fuzzy rule k. The obtained firing strength is
then normalized by

ϕ̄k(x) = ϕk(x)∑K
k=1 ϕk(x)

. (3.3)

where K is the total number of fuzzy rules.
The third layer is the consequent layer, where each node performs a defuzzification

process for each fuzzy rule k using a weighted average operation as follows:

ψk(x) = ϕ̄k(x)(wk0 +
D∑

j=1
wkjxj), (3.4)

30

The fourth layer is called the output layer, which calculates the overall output
by summing the outputs of all fuzzy rules in the third layer as follows,

ŷ =
K∑

k=1
ψk(x), (3.5)

Generally, FNN involves the identification of structure and parameters. The
structure learning is to identify the parameter of the Gaussian membership function
in the antecedent layer for each fuzzy rule k, i.e. mkj and σkj, j ∈ {1, · · · , D}; the
parameter learning is to identify the output weights wk0, · · · , wkD in the consequent
layer. Both structure learning and parameter learning can be addressed via gradient
back propagation[164].

3.2 Centralized Hierarchical fuzzy neural networks
Hierarchical fuzzy neural networks consist of a two-level hierarchical structure.

The lower level contains multiple FNNs, and the outputs of these FNNs are in the
higher level. During the data processing stage, heterogeneous big data is segmented
at both the feature level and the sample level. In feature-level segmentation, the
heterogeneous features are assigned to multiple subsets by a feature splitter to ensure
that each subset only contains homogeneous features. Further, each low-level FNN
is responsible for only one subset. The samples in the sample-level segmentation for
each low-level FNN are further randomly assigned to multiple agents. A distributed
computation framework is then applied to these agents in each low-level FNN to
preserve data privacy and to deal with the enormous amounts of data samples. The
above data processing and HFNN structure are shown in Fig.3.2.

Suppose D := {(Xi, Yi)| Xi ∈ R|F|, Yi ∈ R, i ∈ N} denote the set of training data,
where F and N represents the set of features and samples, respectively, and | · | is
the cardinality operator. As shown in Fig.3.2, the data is first processed blackby
a feature splitter where the full set of heterogeneous features is transformed into
multiple independent subsets of homogeneous features and assigned to a low-level
FNN. Let Fb, b ∈ {1, 2, ..., B} denote the subset of homogeneous features associated
with the b-th low-level FNN. Then in each low-level FNN, the training data is further
segmented by a sample distributor. Nb,l denotes the subset of training data assigned
to the l-th agent (l ∈ {1, 2, ..., L}) of the b-th low-level FNN. Accordingly, the sample
vector is collected in Xb,l

i , ∀i ∈ Nb,l with xb,l
i,j denoting its j-th component.

Next, let us briefly recall the structure of the low-level FNNs, which follows the
first-order of the Takagi-Sugeno method for fuzzy inference systems and has a layer-

31

Data

Feature splitter

Agents

Low
Level

High
Level

Data
Process

Sample distributor

X1 X2 X3

X𝐵X1 X2

X𝐵

𝑋1,𝑙 𝑋2,𝑙

𝑙 ∈ {1,⋯ , 𝐿}

𝑋𝐵,𝑙

Figure 3.2: Data processing and PP-HFNN structure.

by-layer network structure [128]. Now, suppose the output of the l-th agent of the
b-th low-level FNN is zl

b, then the kl
b-th fuzzy rule can be expressed as

32

Rule kl
b: IF xb,l

i,1 is Ab,l
r,1, · · · and xb,l

i,|Fb| is Ab,l
r,|Fb|

Then zrl
b

= wb,l
k,0 +∑|Fb|

j=1 w
b,l
k,jx

b,l
j,1,

where Ab,l
k,j is a Gaussian fuzzy set of the j-th input of rule kl

b, and wb,l
k,j is the

corresponding weight of the consequence. The membership function of Ab,l
k,j can be

written as

φk,j(xb,l
i,j) = exp

−
xb,l

i,j −m
b,l
k,j

σb,l
k,j

2
 (3.6)

where mb,l
k,j and σb,l

k,j are respectively the center and width of the corresponding fuzzy
set. Generally, each low-level FNN is composed of four feed-forward layers, as shown
on the right-hand side of Fig.3.2.

Layer 1 is the antecedent layer: its inputs are xb,l
i,j, and its outputs are derived

through the fuzzification process outlined in (6.1).
Layer 2 is the rule layer: each node in this layer represents a fuzzy rule, which

uses the AND operation to match the outputs of the antecedent layer as follows:

ϕk(Xb,l
i) =

|Fb|∏
j=1

φk,j(xb,l
i,j), (3.7)

where ϕk(Xb,l
i) is the firing strength of fuzzy rule kl

b, and then normalized by

ϕ̄k(Xb,l
i) = ϕk(Xb,l

i)∑Kb
l

k=1 ϕr(Xb,l
i)

. (3.8)

where Kb
l is the total number of fuzzy rules in the l-th agent of the b-th low-level

FNN.
Layer 3 is the consequent layer: each node here performs a defuzzification process

for each fuzzy rule rl
b using a weighted average operation as follows:

ψk(Xb,l
i) = ϕ̄b,l

k (Xb,l
i)(wb,l

k,0 +
|Fb|∑
j=1

wb,l
k,jx

b,l
j,1), (3.9)

Layer 4 is the output layer: the overall output of the l-th agent of the b-th
low-level FNN is derived by summing the outputs of the fuzzy rules in Layer 3 as
follows:

zb,l
i =

Kb
l∑

k=1
ψb,l

k (Xb,l
i). (3.10)

33

For each l-th agent of the b-th low-level FNN, a matrix is defined as Hb,l :=
[Hb,l

1 , · · · , H
b,l
K], where Hb,l

k ∈ R|N |×(|Fb|+1), and

Hb,l
k =

ϕ̄k(Xb,l

1) ϕ̄k(Xb,l
1)xb,l

1,1 · · · ϕ̄k(Xb,l
1)xb,l

1,|Fb|
ϕ̄k(Xb,l

2) ϕ̄k(Xb,l
2)xb,l

2,1 · · · ϕ̄k(Xb,l
2)xb,l

2,|Fb|
...

ϕ̄k(Xb,l
|N |) ϕ̄k(Xb,l

1)xb,l
|N |,1 · · · ϕ̄k(Xb,l

1)xb,l
|N |,|Fb|

The output vector is

Zb,l := [zb,l
1 , · · · , z

b,l
|N |]T ∈ R|N |.

And the weight vector is

wb,l := [wb,l
1,0, · · · , w

b,l
1,|Fb|, · · · , w

b,l

Kb
l
,0, · · · , w

b,l

Kb
l
,|Fb|]

T .

Eq. (3.10) is equivalent to the following matrix form:

Zb,l = Hb,lwb,l. (3.11)

It is worth noting that Hb,l is dependent on the centers and widths of each rule’s
fuzzy sets, i.e., mb,l

k and σb,l
k as well as the data input Xb,l

i .
The outputs of the low-level FNNs are coordinated by a fully-connected layer in

the high level of the hierarchy. For each agent l,

Y l =
B∑

b=1
Zb,lvb,l, (3.12)

where Y l := [Y l
1 , · · · , Y l

N], vb,l is the coordination weight of the hierarchy, and B
is the number of subsets in terms of homogeneous features. Let Z l represent the
collection of outputs from each low-level FNN of the l-th agent, i.e.,

Z l := [Z1,l, · · · , ZB,l] ∈ R|N |×B.

Eq. (3.13) is equivalent to the following matrix form:

Y l = Z lvl, (3.13)

where
vl := [v1,l, · · · , vB,l]T ∈ RB.

Define
ml := [m1,l, · · · ,mB,l],

34

σl := [σ1,l, · · · , σB,l],
H l := [H1,l, · · · , HB,l] ∈ R|N |×nH ,

and
wl := diag(w1,l, · · · , wB,l) ∈ RnH×B,

where nH = ∑B
b=1 K

b
l (|Fb| + 1), and diag(·) represents a diagonal operation on the

matrix.

3.3 Distributed Hierarchical fuzzy neural networks
The training procedure for D-HFNN is to solve the following optimization prob-

lem:
min

ml,σl,wl,vl

1
2

L∑
l=1

(||Y l −H lwlvl||2 + λ

2 ||w
l||2 + µ

2 ||v
l||2), (3.14)

where L is the number of agents, λ and µ > 0 are factors to trade-off the training
error and regularization. Selecting an appropriate value for λ and µ > 0 can make the
solution much more stable and generalizable[165]. The difficulty of the optimization
problem (3.14) stem from three issues. One is the nonconvex nature of the Gaussian
membership function in H l. To address this first difficulty, the key issue is to identify
the parameters of the centers ml and the widths σl of each rule’s fuzzy sets in the
antecedent layer of each FNN. The second difficulty is the distributed computing
scheme for the low-level FNNs, which is needed to manage the scale of the data
and preserve privacy. The last difficulty is the coordination in the high levels of the
hierarchy, where the matrix product between wl and vl is nonconvex. Fortunately,
it is convex after fixing either wl or vl, i.e., it becomes bi-convex.

An intuitive way to solve the nonconvex optimization (3.14) is by using a back-
propagation method[164]. However, back-propagation methods often suffer from slow
training speeds and gradient vanishing problems. In addition, distributed computa-
tion is not easily implemented with back-propagation. Hence, it is not an optimal
choice for heterogeneous big data environments. A more suitable option is an algo-
rithm that is fast to converge with a massive number of samples and is easy to roll
out across a distributed computation framework.

As discussed above, the first difficulty with the optimization problem (3.14) is
to identify the parameters of the antecedent layer of each FNN. A simple idea is to
group the input data into multiple clusters and use one rule for each cluster [166].
Here, we use the popular K-means algorithm[167] to identify the parameters of the
antecedent layer. The K-means algorithm is one of the most efficient clustering

35

algorithms. To tackle the second difficulty of the optimization problem (3.14), we
developed a distributed K-means method, inspired by [168]. As for the coordination
in high-level coordination of the hierarchy, the AO method is used since it is well-
suited to the bi-convex optimization problems and converges very quickly in practice.

Distributed K-means method for the low-level of HFNN

To introduce the distributed K-means algorithm, let us first recall the centralized
K-mean algorithm. The goal of this algorithm is to assemble the input data into
multiple clusters Cb

k, each of which has its own center. The centralized K-means
algorithm for the b-th low-level FNN of the hierarchy can be defined as

mb
k = arg min

mb
k

1
2

Kb∑
k=1

∑
Xb

i ∈Cb
k

||Xb
i −mb

k||2 (3.15)

where mb
k is the k-th center in the antecedent layer of the b-th low-level FNN, and

Kb represents the number of corresponding clusters, which is equal to the number
of rules. Starting from an initial set of K centers, i.e. {mb

1(0), · · · ,mb
K(0)}, the

K-means algorithm alternates between an assignment step and an update step as
follows.

• Assign each observation Xb
i to the cluster Cb

k(t), whose center is closest to Xb
i .

• Update the center of each cluster by

mb
k(t) = 1

|Cb
k(t)|

∑
Xb

i ∈Cb
k

(t)
Xb

i .

Once the center of each fuzzy set is obtained by the above procedure, the correspond-
ing standard variance σb

k,j can be calculated as follows:

σb
k,j =

√√√√√ 1
|Cb

k(t)|

|Cb
k(t)|∑
i=1

(xb
i,j −mb

k,j)2. (3.16)

It is clear that such a centralized K-means algorithm does not preserve privacy
at all, but the distributed K-means algorithm does. As shown in Fig. 3.3, the
data is processed locally by multiple agents. While some limited information is
exchanged between agents, none of it is data. The distributed K-means is built on
ADMM, which is an efficient solution for distributed computation. ADMM is an

36

Distributed

Clustering

Agent-1

Agent-L

Global

--Clustering center

Figure 3.3: Distributed Clustering.

optimization algorithm that solves problems with multiple variables and constraints.
It decomposes the problem into subproblems, updates variables independently, and
enforces consensus between them. It iteratively optimizes the subproblems while
maintaining consistency among the variables. ADMM is effective for large-scale and
distributed optimization problems. A recent study proves the convergence of ADMM
for a variety of nonconvex and possibly nonsmooth functions given some sufficient
conditions[169]. Following our previous work[53], the distributed K-means algorithm
solves the following optimization problem:

min
ml

K

1
2

L∑
l=1

B∑
b=1

∑
Xb

i ∈Cb
k

||Xb,l
i −mb,l

k ||2 (3.17a)

s.t. mb,l
k = rb

k, l = 1, 2, · · · , L (3.17b)

where mb,l
k represents the k-th local center of the l-th agent on the b-th low-level

FNN, and rb
k is the corresponding global center. The global standard variance of the

antecedent layer of the low-level FNNs is expressed as

σ̄b
k =

√√√√ 1
|N |

L∑
l=1
|Cb,l

k |(σ
b,l
k)2 (3.18)

where σ̄b
k denotes the k-th global standard variance of the k-th low-level layer, and

σb,l
k is the local standard variance of the l-th agent.

37

The following augmented Lagrangian is constructed for (3.17):

L(mb,l
k , rb

k,β
b,l
k) = 1

2

L∑
l=1

K∑
k=1

∑
Xb

i ∈Cb,l
k

||Xb,l
i −mb,l

k ||2

+
L∑

l=1

K∑
k=1

βb,l
k

T (mb,l
k − rb,l

k)

+1
2ρ

L∑
l=1

K∑
k=1
||mb,l

k − rb,l
k ||2 (3.19)

where βl
k is the Lagrange multiplier, and ρ is a positive penalty parameter. The

variables are then updated iteratively with the following procedure based on the
ADMM:

mb,l
k (t+ 1) = arg min

m
L(mb,l

k , rb
k(t),βb,l

k (t)), (3.20)

rb
k(t+ 1) = arg min

rb,l
k

L(mb,l
k (t+ 1), rb

k,β
b,l
k (t)), (3.21)

βb,l
k (t+ 1) = βb,l

k (t) + ρ
L∑

l=1

K∑
k=1

(mb,l
k (t+ 1)−

rb
k(t+ 1)), (3.22)

where t is the number of iterations. It is worth noting that the distributed K-means
algorithm is applied to each low-level FNN and the centers mb,l

k can be updated in
parallel by different agents. Additionally, there is a closed-form solution for (5.24)
as follows:

rb,l
k (t+ 1) = 1

Lρ

L∑
l=1

(βb,l
k (t) + ρmb,l

k (t+ 1)) (3.23)

Convergence depends on the following two criteria:

||mb,l
k (t)− rb

k(t)||2 ≤ ϵ1, (3.24)
||βb,l

k (t+ 1)− βb,l
k (t)||2 ≤ ϵ2. (3.25)

Alternating optimization for the high-level of HFNN

In the second stage, the AO method is used to obtain the parameters w and v in
high levels of the hierarchy. Since the raw data is only processed in the first stage, it

38

is not necessary to use distributed computation for the high-level coordination from
a privacy-preserving perspective. Therefore, the optimization problem (3.14) can be
simplified to:

min
w,v

1
2 ||Y −Hwv||2 + λ

2 ||w||
2 + µ

2 ||v||
2, (3.26)

which does not incorporate the agents. Obviously, (3.26) is a bi-convex optimization
problem. After fixing either w or v, it becomes convex. As mentioned, the AO
method is a good choice for this bi-convex optimization problem. The process is as
follows:

Update w with fixed v(t): Let ŵ be the collection of {w1, · · · ,wB} in vector
form. By introducing a matrix Hw(t) := [v1(t)H1, · · · , vB(t)HB], the weight ŵ can
be calculated by solving the following optimization problem:

ŵ = arg min
ŵ

1
2 ||Y −Hw(t)ŵ||2 + λ

2 ||ŵ||
2, (3.27)

which is a standard least-squares optimization problem. Its closed-form solution can
be by setting its partial derivative to 0, i.e.,

ŵ(t) = (HT
wHw + λI)−1HT

wY. (3.28)

Update v with fix w(t): The hidden output vector Z(t) of the low-level FNNs is
generated after w(t) is updated. Then the weight v(t) can be updated by

v = arg min
v

1
2 ||Y − Z(t)v||2 + µ

2 ||v||
2, (3.29)

Similarly, (3.29) can be solved through:

v(t) = (Z(t)TZ(t) + µI)−1Z(t)TY, (3.30)

A summary of the two-stage PP-HFNN optimization algorithm is provided in
Algorithm 2.

39

Algorithm 1 Two-stage optimization algorithm for PP-HFNN
Stage-1: ADMM-based distributed clustering (3.17)
Initialization: Set t = 0 and randomly initialize the global cluster center rb

k(t)
and Lagrange multipliers βb,l

k (t) for each agent in the low-level layers, and randomly
initiate the local cluster centers mb,l

k for all agents in all low-level layers.
for t = 0, 1, 2, · · · , do

Update the local center mb,l
k (t+ 1):

Assignment step: Each agent of each low-level layer assigns its data Xb,l
i to the

cluster Cb,l
k (t− 1), derived in the previous iteration.

Update step: Each agent bl updates the center of each cluster Cb,l
k (t) by

mb,l
k (t+ 1) = 1

|Cb,l
k (t)|

∑
Xb,l

i ∈Cb,l
k

(t)

Xb,l
i (3.31)

Update the global variables rb
k(t + 1) by (5.27) and broadcast it to each

agent l.
Update the dual variables βb,l

k (t+1) by (5.25) and broadcast it to each agent
l

end for
Stage-2: AO method for high-level layer (3.14)
Initialization:Set t = 0, and randomly initialize the output weight v and the
Lagrange multipliers λ and µ. Transform w into ŵ
for t = 0, 1, 2, · · · , do

Fix v and update ŵ by (3.28).
Fix ŵ and update v by (3.30).

end for

40

Chapter 4

Robust Fuzzy Neural Network
with An Adaptive Inference
Engine

To accomplish the research objective RO1, which is focused on addressing the
curse of dimensionality, as well as effectively handling high levels of data uncertainty
prevalent in existing FNNs, this chapter presents a novel solution in the form of a
robust fuzzy neural network (RFNN) augmented with an adaptive inference engine
(AIE). The proposed RFNN with AIE demonstrates the capability to efficiently
tackle diverse levels of uncertainty encountered in high-dimensional data.Inspired by
the idea of the relation network (RN) [170], which uses DNNs to learn a distance
metric so as to compare samples in few-shot learning tasks [171], the AIE is designed
as a learnable neural network module that can automatically adapt itself to learn
membership function values and generate corresponding firing strengths. Unlike
RNs, which directly concatenate the representations of the samples to be compared,
the AIE learns a non-linear mapping to transform the outputs of the antecedent
component into more representative firing strengths. Equipped with an AIE, our
RFNN not only avoids vanishing gradients when processing high-dimensional data,
it also further processes the uncertainty that exists in the membership function values
when handling high-level data uncertainty. The RFNN consists of three components:
an antecedent component, an AIE, and a consequent component. The AIE connects
the antecedent component and the consequent component in sequence to implement
the fuzzy if-then rules. Different from deep statistical models, the RFNN has fuzzy
logic built right into its structure instead of needing to learn a posterior distribution
of the model weights. This eliminates much of the need to compute distributions,

41

reducing overall overheads. Moreover, unlike existing FNNs, the RFNN includes
an FNN-based inference engine to further process the uncertainties that exist in
the membership function values. In this way, they generate more suitable firing
strengths. Further, neural networks are used as consequent layers, which work as
a non-linear estimator of the input samples. This enhances the reasoning ability of
fuzzy rules. The full structure of the RFNN is trained via backpropagation without
extra hyperparameters.

Hence, the contributions of this section include:

• A new and effective architecture that is robust to data uncertainty and able to
process high-dimensional samples in the form of an end-to-end RFNN.

• An AIE that can generate representative firing strengths for high levels of
uncertainty. Specifically, TSK-FNN is used as the inference engine, which
learns a non-linear function that is able to further process uncertainty in the
membership function values of FNNs.

• An adaptive consequent component that enhances the reasoning ability of fuzzy
rules. Neural network structures with more powerful learning abilities are used
as consequent layers to produce more meaningful outputs.

4.1 Formulation
The architecture of the RFNN consists of three components: 1) the antecedent

component, where the adaptive fuzzy sets and their corresponding membership func-
tions are generated; 2) the AIE, where the outputs of membership functions are
converted into firing strengths; and 3) the consequent component, where qualified
consequents of the rules are generated. The structure is illustrated in Fig. 5.1.

Each rule in the RFNN is comprised of a unit in each of the antecedent com-
ponents and the consequent components connected by the inference unit. In Fig.
5.1, components from a single rule share the same color. Sitting between the two
components is the inference unit, which is shared by all rules. Formally, suppose we
have an input set of N labeled samples S = {(x1, y1), · · · , (xN , yN)}, where the label
yi ∈ RC of the i-th sample xi ∈ RD is an one-hot vector. The membership function
values, the firing strength and the output of the K-th rule are denoted as φK , ϕK

and ψK , respectively. Taking the antecedent unit’s centers, denoted as Ck, and the
consequent unit of the k-th rule, denoted as g(ω; ·), we can generally treat the RFNN
as a fuzzy process, understood as follows:

42

𝑋𝑖

C1

𝐶𝐾

𝐶2

𝐶𝐾−1

𝜑1

𝜑2

𝜑𝐾−1

𝜑𝐾

Softmax

One-hot
Vector

Classification
Result

𝑋𝑖

𝑋𝑖

𝑋𝑖

𝑋𝑖

Firing
Strengths

Consequent LayerAntecedent Layer

Adaptive Inference Engine

𝜑

ψ1

ψ2

ψ𝐾−1

ψ𝐾

𝑔(𝜔)1

𝑔(𝜔)2

𝑔(𝜔)𝐾−1

𝑔(𝜔)𝐾

𝜙1

𝜙2

𝜙𝐾−1

𝜙K

Membership
Function Values

Figure 4.1: Architecture of the RFNN. Each color represents a different data pro-
cessing rule.

43

Rule k: IF xi is close to Ck, then yi = g(ω;xi),

where ω is the parameter of the consequent unit.
Our task is then to optimize the weights in these components so as to learn opti-

mized fuzzy rules that work together to make the model robust against uncertainty.

4.1.1 Antecedent Component
The antecedent component is composed of a group of network units that fuzzify

the inputs. As previously mentioned, each unit in the antecedent component can be
thought of as the antecedent part of a fuzzy rule. D fuzzy sets need to be generated
for each antecedent unit, each of which describes an input feature with a Gaussian
distribution. Afterwards, the same number of membership functions are applied to
measure the similarities between these input features and their corresponding fuzzy
sets.

We set the features of a single rule centre as the D cluster centres of fuzzy sets
generated in the antecedent unit. Thus, the data uncertainty can be described by
evaluating the similarity of the samples to these centres. All antecedent units work
together to describe the uncertainty from multiple views, giving rise to the RFNN.
First, the centres ck ∈ RD are collected in a set C = {c1, c2, · · · , cK}, where K is
the number of centers. From these, K fuzzy rules are constructed. Each relies on a
dissimilarity vector ℓ(xi, ck) to denote the distances between features of the sample
xi and that of the rule centres ck. ℓ(xi, ck) can be calculated via:

ℓ(xi, ck) = ((xi,1 − ck,1)2/ σk,1, · · · , (xi,D − ck,D)2/ σk,D)T , (4.1)

where σk is the covariance vector that standardizes the variance of dissimilarity
between the features. This measure can be treated as an element-wise Mahalanobis
distance.
Here, it can be calculated with:

φk(xi,j) = exp(−[ℓ(xi, pk)]j). (4.2)

The rule centres are initialized with the optimized input centres, obtained via
a fuzzy c-means (FCM) [172] clustering algorithm, where K is fixed as the desired
number of clusters. This initialization step is crucial since it can fix the model
architecture; it also helps to facilitate the training process as well. Notably, all
weights related to the antecedent component are tuned by backpropagation to instil
them with robust fuzzification abilities.

44

4.1.2 Adaptive Inference Engine
The inference engine converts the outputs of the membership functions in the

antecedent component units into firing strengths. These strengths reflect the extent
to which the inputs match the corresponding rule. Normally, FNNs apply a fuzzy
AND operation to calculate firing strengths — for example, by

ϕk(xi) =
D∏

j=1
φk(xi,j), (4.3)

where φk denotes the firing strength of xi to the k-th rule. However, this operation
is limited to processing high-dimensional samples, especially within backpropagation
schemes, since it can directly lead to the vanishing gradient problem.

Our AIE f(θ; ·) : RD → R instead learns TSK-FNN [127], [128] to further pro-
cess the uncertainties in the membership function values and generate corresponding
firing strengths. As shown in Fig. 5.1, the AIE’s construction is based on a TSK-
FNN shared by all rules. By adopting proper rule numbers, the inference unit is
able to generate more robust firing strengths in complex scenarios with high levels of
uncertainty. Notably, to avoid the limitation of fuzzy AND operations when process-
ing the high-dimensional membership function values, ℓ2-2norm is used to calculate
the firing strengths in the AIE. Hence, the firing strength corresponding to the k-th
antecedent unit is calculated by:

ϕk(xi) = f(θ; (φk(xi,1), · · · , φk(xi,D))T), (4.4)
where θ denotes the weights of the inference unit. The obtained firing strength is
then normalized by

ϕ̄k(xi) = ϕk(xi)∑K
k=1 ϕk(xi)

. (4.5)

4.1.3 Consequent Component
With the firing strengths obtained, the next step is the defuzzification process

to generate crisp outputs for the fuzzy rules. Traditionally, the rules are defuzzified
through a weighted linear combination of the input features. But this approach is
not suitable for complex datasets. In our architecture, the defuzzification units in
the consequent component g(ω; ·) : RD → RC in Fig. 5.1 serve this purpose. These
units can be groups of parameterized network structures of any type. In our RFNN,
we use 3-layer MLPs as consequent layers. Their outputs multiply the results of the

45

defuzzification units with their corresponding firing strengths. Thus, the outputs of
each rule are derived as follows

ψk(xi) = ϕ̄k(xi)gk(ω;xi), (4.6)
where gk(ω; ·) is the defuzzification unit of the k-th rule. Again, the framework can
be tailored to different tasks simply by changing up the network structures in the
defuzzification unit.

Before feeding the results to the next level of processing, they are summarized
into one raw output that considers all the rules put together. This is calculated by

γ(xi) =
K∑

k=1
ψk(xi), (4.7)

The classification head then follows as a last step at the tail of the consequent
component. This ensures the architecture is suitable for classification tasks. Here,
γ(xi) is processed with a softmax function. Thus, the final prediction is generated
from

ŷ(xi) = Softmax(γ(xi)), (4.8)

4.2 Experiments

Table 4.1: Dataset Information
Dataset Sample Feature Category ς

GSAD [173] 14,061 128 6 0.0917
SDD [174] 58,590 48 11 0.0
FM [175] 180 43 4 0.1431
WD [176] 4,898 11 7 0.4367

MGT [177] 19,020 10 2 0.2098
SC [178] 58,000 9 7 0.7083

WIL [179] 2,000 7 4 0.0
WFRN [180] 5,456 24 4 0.2960

To evaluate the effectiveness of the RFNN architecture, we conducted extensive
experiments with 8 datasets of different types in a variety of settings. The datasets
are real-world datasets containing different kinds of sensor data, including driving

46

monitor signals, shuttle control signals, etc. We selected the datasets for their diverse
scenarios, number of features, sizes, number of categories, and category imbalances.
Hence, each proves the effectiveness and generalizability of the RFNN from a different
view. Note, that we also introduced a category balance factor ς ∈ (0, 1) to measure
sample imbalances across the different categories. This category imbalance factor is
calculated by:

ς =

√√√√ L∑
i=1

(|Di|
|D|
− 1
L

)
2

, (4.9)

where |D| is the size of the dataset, |Di| is the size of the i-th category, and L is the
category number. Intuitively, the bigger the ς is, the more unbalanced the categories
are.

A brief description of each dataset follows, with the descriptive statistics listed
in Table 6.1.

- The Gas Sensor Array Drift (GSAD) dataset [173] consists of 13,910 instances
of gas measurements, each with 128 variables obtained from 16 chemical sen-
sors. The classification task is to detect 6 kinds of gasses at different concen-
tration levels.

- The Sensorless Drive Diagnosis (SDD) dataset [174] is composed of 58,509
samples extracted from electric current drive signals. There are 48 features
in each sample, and all samples are classified into 11 categories according to
different driving conditions.

- The Flow Meter (FM) dataset [175] is an ultrasonic flow meter diagnostic
dataset. Divided into 4 categories, the dataset contains 180 instances of diag-
nostic parameters extracted from a 4-path liquid ultrasonic flow meter. Each
instance is composed of 44 attributes.

- The Wine Quality (WQ) dataset [176] is composed of 4898 physicochemical
samples for evaluating 7 different wine qualities. Each testing sample has 12
variants.

- The MAGIC Gamma Telescope (MGT) dataset [177], containing 10,920 sam-
ples, was generated by a Monte Carlo program to simulate the registration of
high-energy gamma particles. All instances can be classified into two classes,
and each instance consists of 10 attributes of different physical parameters.

- The Shuttle Control (SC) dataset [178] is a stat log dataset containing 9 at-
tributes and 58,000 instances across 7 different categories.

47

- The Wireless Indoor Localization (WIL) dataset [179] is a collection of 2000
instances of the observed signal strengths of 7 WiFi signals visible on a smart-
phone. The task is to recognize 4 classes of inside locations.

- The Wall-Following Robot Navigation (WFRN) dataset [180] consists of 5456
samples collected by 24 ultrasound sensors. All samples are used to detect
movement decisions by the robot.

Figure 4.2: Test accuracy of the RFNN and other comparators on all eight datasets.
We simulate four levels of data uncertainty on each dataset, where the RFNN per-
forms better than all comparison methods.

All features in all experiments were normalized between -1 and 1. To simulate
uncertainty in the different datasets, we randomly sampled a certain proportion of
features and perturbed them with noise generated from a normal Gaussian distribu-
tion. The proportion of polluted features represents the uncertainty level.

As comparators, we chose an FNN, a stochastic model (GP), several deep stochas-
tic algorithms (BNN, GP, and DGP), and two robust deep models (GNI and Dropout).
For fairness, we tested each method with different parameter settings. In addition,

48

Table 4.2: Average classification accuracy (%) / its standard deviation and mean
Averaged F1 Score / its standard deviation of all models on the 8 datasets at 50%
level of uncertainty.

Altorithm Evaluation
Metric

Dataset
GSAD SDD SC MGT WFRN FM WD WIL

MLP dropout mAP 55.65/2.39 80.35/0.76 94.81/2.14 77.03/0.63 75.47/2.01 68.00/9.35 48.77/1.69 77.03/0.63
mF1 0.697/0.029 0.802/0.007 0.981/0.012 0.771/0.009 0.759/0.022 0.674/0.179 0.488/0.016 0.924/0.02

CNN dropout mAP 67.41/3.52 64.42/1.55 80.29/1.02 75.85/0.93 67.03/1.01 66.29/5.50 45.10/2.20 78.65/8.83
mF1 0.673/0.033 0.648/0.013 0.882/0.011 0.759/0.008 0.672/0.017 0.600/0.067 0.453/0.016 0.819/0.055

MLP GNI mAP 43.18/6.21 80.61/0.89 95.49/1.64 78.11/0.92 76.95/2.06 67.43/10.80 48.92/1.47 95.29/1.19
mF1 0.666/0.023 0.796/0.023 0.952/0.014 0.780/0.009 0.771/0.022 0.669/0.063 0.487/0.016 0.954/0.009

CNN GNI mAP 75.52/5.49 81.19/1.90 89.81/3.87 77.30/1.72 74.35/1.87 69.29/4.33 46.38/2.41 89.22/7.86
mF1 0.756/0.053 0.812/0.011 0.898/0.039 0.776/0.015 0.742/0.021 0.640/0.033 0.468/0.034 0.892/0.080

MLP BNN mAP 53.72/8.93 42.61/5.02 92.31/2.71 74.77/1.71 74.95/1.49 51.43/12.78 46.12/2.17 96.49/1.34
mF1 0.567/0.093 0.456/0.002 0.913/0.017 0.737/0.071 0.729/0.049 0.524/0.012 0.441/0.021 0.919/0.034

CNN BNN mAP 47.35/17.52 47.90/4.84 82.77/2.53 74.09/2.84 65.25/3.88 52.00/11.32 46.51/2.55 91.23/2.33
mF1 0.443/0.072 0.469/0.084 0.837/0.013 0.740/0.084 0.612/0.088 0.510/0.011 0.455/0.025 0.913/0.033

GP mAP -.—/-.— -.—/-.— -.—/-.— -.—/-.— -.—/-.— 50.51/9.59 44.24/1.38 87.44/4.26
mF1 -.—/-.— -.—/-.— -.—/-.— -.—/-.— -.—/-.— 0.515/0.090 0.452/0.018 0.844/0.026

DGP mAP 36.41/6.53 56.48/1.89 36.41/6.53 73.82/2.37 45.49/5.49 49.14/13.61 44.89/1.55 51.08/20.38
mF1 0.344/0.053 0.594/0.089 0.314/0.023 0.758/0.037 0.454/0.049 0.429/0.013 0.428/0.015 0.518/0.038

FNN mAP 31.80/2.10 12.04/0.86 62.30/2.17 77.31/0.73 54.02/2.01 38.86/8.23 44.81/1.79 64.71/6.17
mF1 0.348/0.021 0.130/0.086 0.633/0.012 0.713/0.073 0.510/0.001 0.338/0.023 0.418/0.019 0.671/0.017

RFNN mAP 93.13/0.87 92.28/7.15 98.60/0.22 78.93/1.49 87.01/2.16 74.93/6.17 50.86/2.95 96.69/1.02
mF1 0.932/0.012 0.945/0.015 0.992/0.003 0.783/0.013 0.866/0.012 0.709/0.106 0.490/0.013 0.930/0.009

Figure 4.3: The convergence trend of the RFNN on all eight datasets with four levels
of uncertainty. A higher level of uncertainty leads to slower convergence speed and
worse performance.

49

Table 4.3: Average classification accuracy (%) and standard deviation of RFNN with
MLP-based AIE and RFNN with FNN-based AIE on the 8 datasets at 50% level of
uncertainty.

Algorithm Dataset
GSAD SDD SC MGT WFRN FM WD WIL

MLP 85.58/2.4 88.30/0.86 99.05/3.14 79.57/0.50 80.37/1.14 72.86/6.39 49.78/2.67 96.49/0.64
FNN 93.13/0.87 92.28/7.15 98.60/0.22 78.93/1.49 87.01/2.16 74.93/6.17 50.86/2.95 96.69/1.02

we tested BNN, GNI, and Dropout with 6 different MLP architectures and 4 dif-
ferent CNN architectures. We then selected the best results from all settings and
architectures to include in the main article. The supplement contains the results
from many of the variations. Details of each of the models and their corresponding
structures and settings follow:

- Dropout — a training strategy that prevents DNNs from overfitting. This
method randomly drops units during training to decrease covariance. We tested
both the MLP and CNN variants, denoting the models as MLP-based Dropout
and CNN-based Dropout. The dropout rate was chosen from an interval of
{0.05, 0.1, 0.2, 0.3}. The best results were regarded as the final performance.

- GNI — a regularization method that randomly adds Gaussian noise to DNNs to
improve robustness. We again tested both MLP and CNN architectures, inject-
ing Gaussian noise into the activation layers in the range of {0.001, 0.005, 0.01, 0.05, 0.1, 0.3}.
The best performance was chosen as the final result.

- BNN — a combination of Bayesian and DNN methods. Instead of training
specific weights to handle noise attacks, this model optimizes the distribution
of the DNN weights. With both the MLP and CNN architectures, we estimated
the posterior distribution using the no-Uturn sampler [181], which is a self-
tuning variant of a Hamiltonian Monte Carlo algorithm [182]. The number of
samples was set to 100 for all datasets.

- GP — a single-layer stochastic process that generates the Gaussian distribution
of finite input data.

- DGP — a deep belief network based on a GP algorithm. We tested different
numbers of network layers (from 2 to 5), showing the best performance and
the final result.

50

- FNN — a fuzzy neural network where the firing strengths are calculated by
certain exact algorithms (fuzzy AND operations). We varied the number of
rules from 2 to 50 and report the best performance.

- RFNN — our architecture. The variant tested is the basic form of the model.
The number of rules K was determined by searching for the best number of
FCM clusters from a range of [5 : 5 : 50]. We constructed the inference engine
with 2 rules. For the consequent component, we also used a 3-layer MLP to
build the defuzzification units.

All experiments were conducted with 5-fold cross-validation, and each experiment
was repeated 10 times. The final results reported are the mean Average Precision
(mAP) and mean F1 Score (mF1) [183] on test data from these runs. Average
Precision (AP) and F1-Score of multi-classification task were calculated as:

AP =
∑L

l=1
T Pl

T Pl+F Pl

L
, (4.10)

F1 = 2× (AP × AR
AP−1 + AR−1), (4.11)

where AR = (∑L
l=1

T Pl

T Pl+F Nl
)/L is the Averaged Recall and TPl, FPl, TNl and FNl re-

spectively denote the True Positive, False Positive, True Negative and False Negative
of the l-th category.

Table 4.4: mean Averaged F1 Score and standard deviation of all models on the 8
datasets with a hybrid of uncertainty.

Algorithm Dataset
GSAD SDD SC MGT WFRN FM WD WIL

MLP dropout 0.662/0.040 0.815/0.006 0.960/0.022 0.789/0.008 0.758/0.012 0.577/0.106 0.489/0.012 0.906/0.031
CNN dropout 0.706/0.046 0.659/0.004 0.833/0.013 0.767/0.009 0.686/0.012 0.611/0.052 0.449/0.018 0.816/0.057

MLP GNIs 0.666/0.038 0.807/0.003 0.976/0.009 0.791/0.009 0.775/0.018 0.606/0.145 0.497/0.014 0.927/0.011
CNN GNI 0.786/0.017 0.812/0.019 0.921/0.024 0.792/0.016 0.762/0.021 0.651/0.084 0.460/0.020 0.918/0.045
MLP BNN 0.756/0.053 0.792/0.005 0.892/0.027 0.794/0.041 0.749/0.014 0.591/0.078 0.461/0.021 0.914/0.013
CNN BNN 0.747/0.072 0.817/0.008 0.883/0.023 0.790/0.028 0.752/0.018 0.610/0.032 0.465/0.055 0.912/0.033

GP -.—/-.— -.—/-.— -.—/-.— -.—/— -.—/-.— 0.595/0.019 0.454/0.038 0.897/0.026
DGP 0.734/0.053 0.796/0.009 0.836/0.053 0.778/0.037 0.754/0.049 0.589/0.061 0.448/0.055 0.910/0.023
FNN 0.641/0.021 0.732/0.006 0.832/0.017 0.773/0.043 0.740/0.021 0.588/0.029 0.414/0.017 0.871/0.017

RFNN 0.942/0.008 0.960/0.005 0.994/0.002 0.796/0.008 0.855/0.022 0.749/0.106 0.491/0.008 0.929/0.001

4.2.1 General Performance
To test the RFNN’s robustness to uncertainty, we added noise to each of the

datasets in the interval of {0%, 10%, 30%, 50%} and tested each of the methods. The

51

Figure 4.4: Comparison of test performance between the RFNN and different DNN
architectures applied with Dropout. Due to page limitation, we choose to show the
results of DNNs with a dropout rate of 0.05 which perform better on most datasets..

52

Figure 4.5: Comparison of test performance between the RFNN and different DNN
architectures applied with GNI. The noise variance of GNI is selected as 0.01 for the
best performance.

53

Figure 4.6: Comparison of test performance between the RFNN and different BNN
architectures.

54

results appear in Fig. 4.2. With relatively clean data, our RFNN performs equally
well with the state-of-the-art methods. However, the superiority of our model was
revealed when the uncertainty increased.

Although each comparison method offers a solution to improve robustness, it is
clear from the results that uncertainty is still a great threat to learning. As Fig. 4.2
shows, the performance of all algorithms degraded as uncertainty levels rose. The
RFNN appeared the most robust one to the increasing uncertainty, while the BNN
and DGP methods tended to fare the worst. For example, both CNN-based BNN
and DGP suffered a more than 50% drop in accuracy on the GSAD dataset from
clean data to data with 50% uncertainty, whereas the RFNN’s accuracy only dropped
by about 6%.

To further test the RFNN’s robustness when dealing with a high level of uncer-
tainty, we analyzed all the methods when trained on the datasets with 50% noise
added. The results are given in Table II. Note that we did not include the GP
algorithm in this experiment since it is extremely time-consuming with large-scale
datasets. According to the results, the RFNN improved on the previous state-of-
the-art’s result by a large margin. On average, the RFNN scored 12.01% more in
terms of mAP than Dropout, 8.71% more than GNI, and 17.50% more than BNN. In
addition, we tested the robustness of our RFNN when processing high-level hybrid
uncertainties. We polluted all eight datasets with 3 different levels of noise as fol-
lows: 1) 25% of the features were polluted by noise generated from the distribution
N(0,1); 2) 5% of the features were randomly set to 2 to serve as outliers; 3) 20% of
the features were polluted with the distribution N(0.5,1.2). As the results listed in
Table 4.4 show, the RFNN scored 0.165 more in terms of mF1 than Dropout, 0.128
more than GNI, and 0.166 more than BNN.

4.2.2 Ablation Study
To prove the effectiveness of the AIE in processing high-level data uncertainty, we

compared our AIE-based RFNN with the RFNN that used other neural networks as
their inference engines – over 10 different types in total including MLPs and CNNs.
The best performances are shown in Table 4.3. As the results show, our proposed
AIE outperformed the other networks for processing high levels of uncertainty on six
datasets. It achieved an advantage over comparison methods at an average of 3.52%
test accuracy.

55

4.2.3 Generalization Analysis
Our RFNN has looser constraints and stronger generalizability for processing dif-

ferent levels of uncertainties and dealing with different learning tasks. In addition,
the only hyperparameter in our model is the number of rules, which the FCM al-
gorithm selects automatically. Thus, RFNNs can automatically modify their own
structures when processing datasets with large differences. By contrast, most of the
comparison algorithms need to tune extra hyper-parameters during the training pro-
cess, and their hyper-parameter settings need to be re-adjusted by hand when the
level of data uncertainty or the learning scenario changes. Yet as presented in Figs.
4.4 - 4.6, the RFNNs show greater generalizability than the comparison methods,
and they can obviously handle different levels of uncertainty well. In addition, Ta-
bles 4.2 and 4.4 show that the RFNN performs very well when processing real-world
datasets collected from different scenarios and that RFNNs are more generalizable
to different tasks and scenarios.

4.2.4 Convergence analysis
Fig. 4.3 shows test accuracy by epoch. With all eight datasets at different noise

levels, the RFNN was able to converge to its optimized accuracy, although we did
find that the more uncertain the samples, the more epochs were needed to reach
convergence. Interestingly, the volume and dimensionality of the datasets tended
to play an important role in the smoothness of the training process. Datasets with
larger volumes and smaller dimensionality trained more smoothly than the others
because of the greater numbers of samples. Fewer features meant the RFNN found
it easier to learn meaningful rules so as to cover key features and eliminate the
uncertainty. When coping with different uncertainty levels, the comparators needed
to adjust/tune their hyperparameters, whereas RFNN did not need to change its
structure to complete its assigned task – even at very high levels of uncertainty.
From the perspective of model stability, the RFNN tended to behave more stably
with less noisy data as evidenced by the variance of curves drawn in Fig. 4.3.

4.3 Summary
In this chapter, we introduced a novel form of the fuzzy neural network, called the

robust fuzzy neural network or RFNN. The RFNN contains an adaptive inference
engine (AIE) that is trained by an end-to-end backpropagation learning algorithm
to handle uncertainty in data. The AIE provides a nonlinear mapping that fur-
ther processes the uncertainties within membership function values and generates

56

representative firing strengths. As a result, our RFNN is not only able to handle
high levels of data uncertainty, but it can also directly process data with very high
dimensionality. In addition, we presented an architecture where the consequent com-
ponents are constructed from neural networks. These enhance the reasoning ability
of the learned rules. The RFNN is a robust and scalable solution for handling data
uncertainty that shows a great deal of promise for further investigation. The AIE
and consequent component can be constructed with specific neural network struc-
tures that adaptively work for specific applications. Experiments on eight datasets
show that our RFNN delivers state-of-the-art accuracy at very high levels of uncer-
tainty. In addition, an ablation study between FNN-based and MLP-based AIEs
demonstrates the superiority of our FNN-based AIE in improving the tolerance of
uncertainty. Our future work will extend the RFNN with different network structures
of inference engines to fit different scenarios.

57

Chapter 5

Distributed Semi-supervised Fuzzy
Neural Networks with
Interpolation Consistency
Regularization

In this chapter, our aim is to achieve the RO2 by leveraging unlabelled data to
enhance the fuzzy reasoning ability of a FNN. To accomplish this, we propose a dis-
tributed semi-supervised fuzzy regression (DSFR) model incorporating fuzzy if-then
rules and ICR. This model not only enhances the handling of data uncertainty by uti-
lizing clustering information from unlabelled data, but also effectively reduces com-
putation and communication overheads in interconnected networks. A distributed
Fuzzy C-means (DFCM) algorithm locates the parameters in an antecedent com-
ponent and a distributed interpolation consistency regularization (DICR) algorithm
obtains the parameters in a consequent component. Both the DFCM algorithm and
the DICR algorithm are implemented following the well-known alternating direction
method of multipliers (ADMM) [58] to guarantee consensus among all local agents.
Data is only ever processed locally by the agent that owns the data, and very little
information is passed between neighbours, all of which is non-sensitive. Notably,
the DSFR model converges very quickly since it does not involve a backpropagation
procedure. Benefiting from DFCM and DICR, it also scales well to large datasets.
Thus, the main contributions of this chapter include:

• A novel DSFR model with ICR that handles data uncertainty and has lower
computation and communication overheads in interconnected networks than
existing DSSL algorithms.

58

• A DFCM algorithm to locate parameters in the antecedent component of the
DSFR model. The DFCM can be used directly with both labelled and unla-
beled training data available over interconnected networks.

• A DICR algorithm to obtain parameters in the consequent component of the
DSFR model. This is the first implementation to extend ICR to a distributed
and semi-supervised scenario. In contrast to existing DDSL algorithms, such
as graph-based DDSL [86], [87], DICR results in smaller loss values and enjoys
much greater scalability.

5.1 Centralized semi-supervised fuzzy regression
This section sets out the formulation for the centralized semi-supervised fuzzy

regression (CSFR) model with ICR. Notably, CSFR is sequentially trained by unsu-
pervised structure learning and semi-supervised parameter learning.

5.1.1 Fuzzy inference system
Let us briefly describe the fuzzy inference system based on a first-order Takagi-

Sugeno (T-S) method. Consider the estimation of a scalar output y ∈ R from a
D-dimensional input x = [x1, x2, · · · , xD]. The k-th fuzzy rule can be represented as

Rule k: IF x1 is Ak1 and · · · and xD is Akd

Then y = wk0 +∑D
j=1 wkjxj

where Akj is a Gaussian fuzzy set with the following membership function:

φkj(xj) = exp
−(xj −mkj

σkj

)2
 (5.1)

where mkj and σkj are respectively the mean value and standard deviation.
The firing strength for each fuzzy rule is

ϕ̄k(x) =
∏D

j=1 φkj(xj)∑K
k=1

∏D
j=1 φkj(xj)

. (5.2)

where K denotes the number of applied fuzzy rules.

59

The overall output is obtained by summing the outputs of all fuzzy rules multi-
plied with a weighted vector:

ŷ =
K∑

k=1
ϕ̄k(x)(wk0 +

D∑
j=1

wkjxj), (5.3)

The structure learning process, therefore, aims to optimize the parameters of
the Gaussian membership functions in (6.1) for each fuzzy rule, i.e., mkj and σkj,
j ∈ {1, · · · , D}, which is done through the FCM clustering method[166]. In turn, the
goal of the parameter learning process is to identify the output weights wk0, · · · , wkD

in (5.3), done with a least-squares algorithm[184]. A more detailed description of the
structure learning procedure follows next.

5.1.2 Fuzzy C-Means for the structure learning
As mentioned, the structure learning process is governed by the FCM algorithm.

The fuzzy rules are generated by clustering training data into several groups where
each group corresponds to a fuzzy rule. This procedure follows.

Let D := {(Xi, Yi)|Xi ∈ RD, Yi ∈ R, i ∈ {1, · · · , N}} denote the training data
set and xij denote the j-th feature of the i-th sample Xi. The aim of FCM algorithm
is to partition N samples into K groups C := {C1, · · · , CK}, where K denotes the
total number of fuzzy rules and is often assumed to be known as a priori. The most
important task for structure learning is to identify the total number K of clusters,
where the k−th center can be identified follows:

mk = arg min
mk

1
2

K∑
k=1

|Ck|∑
i=1

uα
ik||Xi −mk||2 (5.4)

where |Ck| denotes the k−th cluster, and α ≥ 1 determines the level of cluster
fuzziness. (α is commonly set to 2.) With an iterative technique, the FCM algorithm
then assembles and refines the clusters. All the K centers at iteration t = 0 are
initialized randomly, i.e., {m1(0), · · · ,mK(0)}, the procedures from t+ 1 iterates as
follows:

• Update the membership value:

uα
ik(t+ 1) = 1∑K

c=1(
||Xi−mk(t)||
||Xi−mc(t)||)

2
α−1

(5.5)

60

• Update the cluster center:

mk(t+ 1) =
∑N

i=1 u
α
ik(t+ 1)Xi∑N

i=1 u
α
ij(t+ 1)

(5.6)

The algorithm stops optimizing when the values of centers stay unchanged during the
iteration, and the obtained centers become the centers of each fuzzy set. Meanwhile,
the standard variance σkj of k−th fuzzy set can be written as

σkj =

√√√√ N∑
i=1

uα
ik(Xij −mkj)2/

N∑
i=1

uα
ik (5.7)

And voilà, we have all the parameters in the antecedent layer.
To calculate the output weights in the consequent layer, parameter learning is

described next with a closed-form solution.

5.1.3 Closed-form solution for the parameter learning
Parameter learning begins with a hidden matrix defined as H(X) := [H1, · · · , HK] ∈

RN×K(D+1), where

Hk(X) =

ϕ̄k(X1) ϕ̄k(X1)x11 · · · ϕ̄k(X1)x1D

ϕ̄k(X2) ϕ̄k(X2)x21 · · · ϕ̄k(X2)x2D
...

ϕ̄k(XN) ϕ̄k(XN)xN1 · · · ϕ̄k(XN)xND,

 (5.8)

and the output vector Y := [Y1, · · · , YN].
The output weight matrix w ∈ RK(D+1) can be written as:

w = [w10, · · · , w1d, · · · , wK0, · · · , wKD]T , (5.9)

it can be identified by calculating the optimization problem follows,

minFs(w;X) = min
w

1
2 ||Y − f(w;X)||2 + µ

2 ||w||
2, (5.10)

where f(w;X) = H(X)w, µ > 0 trades off the model performance between train-
ing error and model generalization. (5.10) is a standard least-squares optimization
problem, which can be obtained with a closed-form solution follows:

w = (HTH + µI)−1HTY, (5.11)

where I is the identity matrix with a dimension of K(D + 1).

61

5.1.4 Semi-supervised fuzzy regression with ICR
As mentioned before, using ICR to solve semi-supervised fuzzy regression prob-

lems can push decision boundaries into low-density areas, leading to better general-
ization performance in semi-supervised scenarios [78], [119]. We followed the data
augmentation techniques in [78], [119] to generate interpolation consistency loss and
involved it into the objective function (5.10).

The training set consists of a labelled data set X ∈ Cs, and an unlabeled data set
U ∈ Cu, denoted as C = Cs ∪ Cu. Accordingly, the number of training samples can
be expressed as N = Ns +Nu. ICR augments this training set with virtual samples
constructed from the unlabeled data set Cu as follows:

Ũ = λU1 + (1− λ)U2, U1, U2 ∈ Cu, (5.12)
f(w; Ũ) = λf(w;U1) + (1− λ)f(w;U2) (5.13)

where λ is randomly sampled from a beta distribution.
The objective function of semi-supervised fuzzy regression (SFR) with ICR is

minF(w;X,U) = min
w
Fs(w;X) + γFu(w;U), (5.14)

where

Fu(w;U) = ||f(w; Ũ)− (λf(w;U1) + (1− λ)f(w;U2))||2

= ||H(Ũ)w− (λH(U1)w + (1− λ)H(U2)w)||2,
≜ ||B(U)w||2, (5.15)

where B(U) = H(Ũ)− λH(U1)− (1 − λ)H(U2). The closed-form solution of (5.14)
is:

w = (γBT (U)B(U) + µI +HT (X)H(X))−1HT (X)Y. (5.16)

5.2 Distributed semi-supervised fuzzy regression
with ICR

In this section, we extend the CSFR model to its distributed version and design
distributed training algorithms for it. Since the CSFR model is sequentially trained
by structure learning and parameter learning, we will develop distributed structure
learning and distributed parameter learning sequentially.

62

Our distributed computing scenario is conceived as an undirected graph G =
{L, ξ}, of L agents (nodes) connected by E edges, where L and ξ denote the nodes set
and the edges set, respectively. Agent l is the target agent, and Nl is the set of agents
neighbouring agent l. Given a dataset D := {(Xi, Yi)|i ∈ N}, let {D1, · · · ,DL} be
its decomposition in entirety. The subset Dl is the data housed on the l−th node,
where l ∈ L. The subset of samples located on the l−th node can then be denoted
as Cl. Within each subset Cl, Cl

k denotes the subset of smples in the k− th cluster of
agent l such that ⋃K

k=1 Cl
k = Cl. An illustration of this architecture is shown in Fig.1.

Agent 2

Agent 1

Agent 3

Agent 𝑘

Agent 𝑘+1

Agent 𝑁

Agent 𝑘

𝑋𝐿,𝑘 𝑋𝑈,𝑘

FCM

ICR

S

P

Agent 3

Agent

Agent

Figure 5.1: Architecture of the DSFR model. The upper-left part depicts detailed
structures of each local model, which is presented in the bottom-right part. Different
colours are used to distinguish different types of data and methods.

The corresponding structure learning problem is solved through a consensus strat-

63

egy, formulated as

min
ml

k

1
2

L∑
l=1

K∑
k=1

∑
Xl

i∈Cl
k

(uq
ik)α||X l

i −ml
k||2 (5.17a)

s.t. ml
k = rk, l ∈ L, k ∈ K, (5.17b)

where ml
k represents the local center of the k − h fuzzy set on agent l, rk denotes

the global center, which integrates all the local centers, and |Cl
k| is the cardinality

operation for a local subset. Moreover, (5.17b) is the constraint that assures all local
centers coincide at one global center. Notably, all the local variables among different
agents can be parallelly computed, thus improving the computing speed.

After Identifying all the global centers, the global standard variance can be cal-
culated via

σ̄kj =

√√√√ 1
N

L∑
l=1
|Cl|(σl

kj)2 (5.18)

where |Cl| is the cardinality of a local subset Cl on agent l, σl
kj denotes the j-th

element of fuzzy rule k’s standard variance on subset Cl, and σ̄kj is corresponding
to global standard variance for all agents. Note that the standard variance σl

kj

corresponding to the k-th rule and j-th dimension is calculated in the following
element-wise method:

σl
kj =

√√√√ ∑
Xl

i∈Cl
k

(ul
ik)α(X l

ij −ml
kj)2/

∑
Xl

i∈Cl
k

(ul
ik)α (5.19)

where X l
ij and ml

kj are the j-th components of X l
i and ml

k, respectively.
The parameter learning process can be similarly modelled as follows:

min
wl

1
2
∑L

l=1(||Y l −H(X l)wl||2

+γ||B(U l)wl||2) + µ
2 ||z||

2, (5.20a)
s.t. wl = z, l ∈ L, (5.20b)

where wl represents l−th agent’s local output weight, and z is the global weight that
integrates local weights for all agents.

5.2.1 Distributed FCM
The optimization problem (5.17) is nonconvex, so using an exhaustive search

method to solve the problem would not be efficient. Further, centralized cluster-
ing methods, such as the FCM algorithm used for structural learning, have several

64

shortcomings including high communications overheads, no attention to privacy, and
poor scalability when coping with large-scale data. Hence, a distributed variant of
the centralized FCM algorithm is needed to address these issues. Accordingly, our
formulation of a DFCM algorithm follows.

The first step is to construct the following augmented Lagrangian for (5.17):

Ls(m, r,λs) = 1
2

L∑
l=1

K∑
k=1

∑
Xl

i∈Cl
k

(uq
ik)α||X l

i −ml
k||2

+
L∑

l=1

K∑
k=1

λT
s,kl(ml

k − rk)

+1
2ρs

L∑
l=1

K∑
k=1
||ml

k − rk||2 (5.21)

where λs,kl denotes the Lagrange multiplier and ρs is a positive penalty factor. De-
noting these parameters at iteration t as r(t) and λs(t), the variables are obtained
iteratively using the following ADMM-based updating steps:

(ul
ik)α(t+ 1) = 1∑K

c=1(
||Xl

i−ml
k

(t)||
||Xl

i−ml
c(t)||)

2
α−1

, (5.22)

ml(t+ 1) = arg min
m
L(ml, r(t),λs(t)), (5.23)

r(t+ 1) = arg min
r
L(ml(t+ 1), r,λs(t)), (5.24)

λs,kl(t+ 1) = λs,kl(t) + ρs(ml
k(t+ 1)− rk(t+ 1)). (5.25)

It is worth noting that (5.23) can be solved in parallel among different agents.
The cluster centers ml(t + 1) for each agent l are updated through the same

assignment and update steps from the centralized FCM algorithm. But, it’s easy to
know that the solutions (5.23) and (5.24) can be calculated by setting the partial
derivative of the corresponding variable to zero. Thus, the closed-form solution of
(5.23) and (5.24) are as follows:

ml
k(t+ 1) =

∑
Xl

i∈Cl
k
(ul

ik(t))αXi − λs,kl(t) + ρsrk(t)∑
Xl

i∈Cl
k
(ul

ik(t))α + ρs

(5.26)

rk(t+ 1) = 1
ρs

λ̄s,kl(t) + m̄l
k(t+ 1), (5.27)

65

where

m̄l
k(t+ 1) = 1

L

L∑
l=1

ml
k(t+ 1), (5.28)

λ̄s,kl(t) = 1
L

L∑
l=1

λs,kl(t). (5.29)

Algorithm 2 summarizes the above approach. The convergence behavior is ex-
amined by checking the norms of the following two residuals:

||ml
k(t)−mq

k(t)||2 ≤ ϵ1, (5.30)
||λl

s,k(t)− λl
s,k(t− 1)||2 ≤ ϵ2. (5.31)

Algorithm 2 Distributed FCM (5.17)
Initialization: Set t = 0 and the Lagrange multipliers λs,kl(t) = 0. Initialize
cluster centers and assign them to each agent l.
for t = 0, 1, 2, · · · , do

Update the membership value (ul
ik)α by (5.22) for each agent l.

Update the local variables ml(t+1) by (5.26) and broadcast it to each agent
l.
Update the global variables r(t + 1) by (5.27) and broadcast them to each
agent l.
Update the dual variables λs(t + 1) by (5.25) and broadcast them to each
agent l

end for

The computation complexity of DFCM relies on the local variables update and
global variables update. The computation complexity for DFCM is O(NDK2T1),
where T1 is the required iteration of DFCM. Note that the DFCM is built on the
well-known ADMM algorithm, which generally converges to modest accuracy (such
as ϵ < 10−3) within a few tens of iterations. Therefore, the total computational
complexity of DFCM is quite limited.

5.2.2 Distributed ICR
Likewise, a distributed variant of ICR is needed to tackle the regression problem.

In contrast to existing DDSL algorithms [86], [87], which are typically based on

66

graph operations, DICR is more faster and more accurate with dramatically reduced
computing times, especially with large-scale datasets. The formulation follows.

The augmented Lagrangian for (5.20) is

L(wl, z,βq) = 1
2

L∑
l=1

(||Y l −H(X l)wl||2 + γ||B(U l)wl||2)

+µ2 ||z||
2 +

L∑
l=1

βT
l (wl − z)

+1
2ρp

L∑
l=1
||wl − z||2 (5.32)

where βl is the Lagrange multiplier, and ρp is a small positive penalty parameter.
This augment Lagrangian is then solved using ADMM method by

wl(t+ 1) = arg min
w
L(w, z(t),β(t)), (5.33)

zl(t+ 1) = arg min
z
L(w(t+ 1), z,β(t)), (5.34)

βl(t+ 1) = βl(t) + ρp(wl(t+ 1)− z(t+ 1)). (5.35)

The closed-form solution of (5.33) is clear; w on the l-th agent is updated by

wl(t+ 1) = Q((H l(X))TY l + ρpz(t)− βl(t)), (5.36)

where I is the identity matrix with dimension K(D + 1) and Q can be obtained by

Q = ((H l(X))TH l(X) + γBT (U)B(U) + µI)−1. (5.37)

The solution for (5.34) is similarly found by

z(t+ 1) =
∑L

l=1(βl + ρpwl(t+ 1))
µ+ ρpL

, (5.38)

The computation complexity of DICR is O(KDLT2) if we ignore the cost of data
augmentation, where T2 is the iteration number required by ADMM procedure. As
we analyzed before, T2 is generally about a few tens. Therefore, the total computation
complexity of DICR is small.

67

Algorithm 3 Distributed ICR
Initialization: set t = 0 and initialize the global weight z(t) and Lagrange mul-
tipliers β(t) for each agent l.
for t = 0, 1, 2, · · · , do

Augmented data generation:
Randomly select M samples from the unlabeled data set Cu as U1 and another
M samples as U2. Then generate M number of λ using a beta distribution, and
generate M augmented samples using the interpolation technique in (5.12).
Update the local variables wl(t+ 1) via (5.36) for each agent l.
Update the global variable z(t+ 1) via (5.38) and broadcast it to the other
agents.
Update the dual variables β(t + 1) by (5.35) and broadcast them to the
other agents.

end for

5.3 Experiments
To verify the effectiveness of the DSFR framework, we conducted extensive ex-

periments on six different types of datasets. Descriptive statistics are provided in
Table 6.1; brief descriptions follow:

- The Airfoil dataset [185]. Assembled by NASA, this dataset contains readings
of noise tests with different-sized NACA 0012 airfoils.

- The WarCraft Master Skill Level (WMSL) dataset [186]. A set of playing
data drawn from the WarCraft real-time strategy game, this set contains the
playing data of 3360 gamers. After removing broken records, the final dataset
numbered data on 3338 players.

- The Combined Cycle Power Plant (CCPP) dataset [187]. This set contains
9568 samples of gas and steam turbine loads. We chose the full electrical
power load as the target label and used the remaining data to train the model.

- The California Housing (CH) dataset [188]. A data set of information about
real estate in California, we discarded all non-numeric features and treated the
median house value of a district as the target.

- The King County Housing (KCH) dataset [189]. This is a collection of houses
sold in King County, USA. After removing time-related and restriction-related

68

variables, we used house price as the target and the rest of the features for
training.

- The artificial dataset. We built this dataset to investigate the performance
of the DSFR framework. 5,000 samples X ∈ R8 were generated from a
Gaussian distribution with a mean of [0, 0.5, · · · , 3.5] and a standard devi-
ation of [0.2, 0.4, · · · , 1.6]. The corresponding label Y was given by: Y =
0.3∑8

i=1(Xi)2 + 0.7∑8
i=1(cos(Xi)). We denoted the range of labels as R =

max(X) − min(X) and generated two types of noise from Gaussian distri-
butions N (0.1R, (0.1R)2) and N (R, (0.1R)2), respectively. Then, 5% level of
type-1 noise and 10% type-2 noise were randomly added to labels.

It should be noted that all feature values of these datasets are normalized between
-1 and 1. As listed in Table 6.1, a 5-fold cross-validation is used in our experiment to
randomly generate 5 test sets and 5 training sets, among which we randomly choose
50 samples as labelled data and the rest as unlabeled data. Then we re-conduct
the experiment 10 times and get the average results and its standard variance. For
fairness, we arrange the training sets on an interconnected network with five fully
connected agents, and we set the rule number as 5 in all agents for all these datasets.
All the experiments are conducted on computing nodes with 26 cores of 2.11 GHz
and 95 GB memory.

Table 5.1: Dataset Information
Dataset Features Samples Labeled Unlabeled Test
Airfoil 5 1503 50 1153 300
WMSL 18 3338 50 2621 667
CCPP 4 9568 50 7605 1913
CH 8 20640 50 16462 4128
KCH 15 21613 50 17191 4322

All feature values in all datasets were normalized between -1 and 1. As noted in
Table 6.1, we randomly generated 5 test sets and 5 training sets using 5-fold cross-
validation, from which we randomly chose 50 samples to serve as the labelled data;
the remaining samples were unlabeled data. All experiments were conducted on a
computing node comprising 26 CPU cores of 2.11 GHz and a memory of 95 GB. The
evaluation metric was normalized root mean square error (NRMSE), calculated by

NRMSE =

√√√√ 1
Nσ̂2

Y

N∑
i=1

(Ŷi − Yi)2, (5.39)

69

Table 5.2: Performance comparison on each dataset

Datasets Algorithms
Performance

Centralized Methods Distributed Methods
Test NRMSE T-test Time(s) Test NRMSE T-test Time(s)

Airfoil

FR 0.6657/0.0188 0.0011 0.0581 0.6664/0.0334 0.0052 0.3283
LapWNN 1.3967/0.2478 0.0002 0.2151 1.4428/0.3934 0.0000 7.1624

s-SFR 2.4290/1.5583 0.0419 0.1183 1.6619/0.6212 0.0124 0.3123
SFR-G 1.3124/0.3607 0.0078 0.2066 1.3578/0.1901 0.0043 0.4671

SFR-ICR 0.7423/0.0288 - 0.1363 0.7506/0.0087 - 0.8115

WMSL

FR 0.6702/0.0176 0.0047 0.2811 0.6770/0.0237 0.0017 0.6251
LapWNN 0.7475/0.0865 0.0323 27.741 0.8734/0.0576 0.0110 10.678

s-SFR 0.9871/0.0788 0.0044 0.2953 0.8634/0.0458 0.0013 0.6639
SFR-G 0.9199/0.0474 0.0468 1.0250 0.8846/0.0412 0.0015 1.0134

SFR-ICR 0.7648/0.0311 - 0.5166 0.7588/0.0312 - 1.4836

CCPP

FR 0.2472/0.0075 0.0003 0.1173 0.2472/0.0075 0.0003 0.3059
LapWNN 0.7475/0.0865 0.0001 27.741 0.8734/0.0576 0.0001 10.678

s-SFR 0.3342/0.0528 0.0571 0.0878 0.3263/0.0227 0.0022 0.2690
SFR-G 0.3187/0.0412 0.0811 7.6291 0.3557/0.0820 0.0091 1.1656

SFR-ICR 0.2809/0.0100 - 0.1227 0.2856/0.0130 - 0.5945

KCH

FR 0.5631/0.0080 0.0019 0.2485 0.5657/0.0038 0.0001 0.8836
LapWNN 0.7262/0.0266 0.0969 93.464 0.9348/0.0291 0.0256 24.184

s-SFR 0.8063/0.0433 0.0041 0.1947 0.7704/0.0788 0.0103 0.9245
SFR-G 0.7728/0.0432 0.0123 89.677 0.7915/0.0922 0.0011 9.9487

SFR-ICR 0.6952/0.0270 - 0.5664 0.6673/0.0211 - 1.9435

CH

FR 0.5426/0.0180 0.0000 0.8325 0.5394/0.0219 0.0000 3.6808
LapWNN 1.0023/0.0650 0.0223 94.025 1.0382/0.0294 0.0000 24.801

s-SFR 0.9387/0.1030 0.0012 0.6695 0.9498/0.1210 0.0457 2.8925
SFR-G 0.9886/0.0113 0.0093 53.773 0.9313/0.0584 0.0324 9.7301

SFR-ICR 0.6875/0.0406 - 1.1965 0.7703/0.1217 - 5.2945

Artificial

FR 1.0067/0.0022 0.0435 0.3371 1.0069/0.0039 0.0017 0.7828
LapWNN 1.2384/0.0824 0.0052 2.5700 1.0891/0.0462 0.0034 8.2684

s-SFR 1.1590/0.1202 0.0027 0.2177 1.2021/0.1627 0.0015 0.8537
SFR-G 1.0715/0.0478 0.0261 1.9241 1.0653/0.0756 0.0007 1.1028

SFR-ICR 1.0409/0.0339 - 0.5266 1.0121/0.0094 - 1.4357

To analyze the convergence of our proposed model and the influence of the rule
number and the sample number that is chosen for ICR regularization, we fix the
Laplacian parameter ρp and ρs at 0.1 and 0.1, and the parameters µ, γ, and η,
which is corresponding to the L2norm regularizer, the mix-up regularizer, and the
graph-based regularizer, at 0.1, 0.1, and 0.0001, respectively.

To obtain the best results of our model, all parameters are chosen from an interval
of {10−5, 10−4, 10−3, 10−2, 10−1, 1}. Besides, we set the FCM parameter α as 1.1 to

70

1e2 3e2 5e2 1e3 3e3 5e3 1e4 3e4 5e4 1e5 5e5
ICR Sample Number

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

N
R

M
SE

(a) airfoil

1e2 3e2 5e2 1e3 3e3 5e3 1e4 3e4 5e4 1e5 5e5
ICR Sample Number

0.65

0.7

0.75

0.8

0.85

0.9

N
R

M
SE

(b) CH

1e2 3e2 5e2 1e3 3e3 5e3 1e4 3e4 5e4 1e5 5e5
ICR Sample Number

0.7

0.75

0.8

0.85

0.9

N
R

M
SE

(c) WMSL

1e2 3e2 5e2 1e3 3e3 5e3 1e4 3e4 5e4 1e5 5e5
ICR Sample Number

0.65

0.7

0.75

0.8

N
R

M
SE

(d) KCH
Figure 5.2: NRSME and its standard deviation when varying the number of ICR
samples.

1 2 3 4 5 6 7 8 9 10111213141516171819
Rule Number

0

0.2

0.4

0.6

0.8

1

N
R

M
SE

(a) CH

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Rule Number

0

0.2

0.4

0.6

0.8

1

N
R

M
SE

(b) KCH

Figure 5.3: NRSME and its standard deviation when varying the number of rules.

increase the diversity of fuzzy rules in all experiments. We set the stopping threshold
for DFCM and DICR both as 10−4.

71

2 3 4 8 9 10 11 5 6 7
Agent Number

0.65

0.7

0.75

0.8

N
R

M
SE

training
test

(a) airfoil

2 3 4 8 9 10 11 5 6 7
Agent Number

0.45

0.5

0.55

0.6

0.65

0.7

0.75

N
R

M
SE

training
test

(b) CH

2 3 4 8 9 10 11 5 6 7
Agent Number

0.64

0.66

0.68

0.7

0.72

0.74

N
R

M
SE

training
test

(c) WMSL

2 3 4 8 9 10 1
1

5 6 7
Agent Number

0.54

0.56

0.58

0.6

0.62

0.64

0.66

N
R

M
SE

training
test

(d) KCH
Figure 5.4: NRSME and its standard deviation when varying the number of agents

72

5.3.1 Performance on Different Datasets
All parameters in this section were chosen from an interval of {10−5, 10−4, 10−3,

10−2, 10−1, 1}. Further, the FCM parameter α was set to 1.1 for all experiments to
increase the diversity of fuzzy rules. We repeated each experiment 10 times, reporting
the average NRMSE and its standard variance as the results. For a fair comparison,
we arranged the training sets on interconnected networks with five fully connected
agents, setting the number of rules to 5 for all agents with all datasets. We used 50
samples in the centralized scenario and 10 samples for each agent in the distributed
setting.

We compared several alternative methods within the semi-supervised fuzzy re-
gression (SFR) framework that using different regularization, fully-supervised regres-
sion (FR) model, and one SSL model. All methods are compared in both centralized
and distributed ways and described as follows:

- s-SFR: A variant of SFR, this method applies FCM method in the structure
learning process to leverage both labelled and unlabeled samples. A ℓ2 regu-
larization is used in the parameter learning process to enhance model general-
ization performance.

- SFR-ICR: Our proposed SFR model, based on s-SFR, this fuzzy regression
model adds an ICR term in the parameter learning process to further utilize
unlabeled data.

- SFR-G: Another variant of SFR, different from SFR-ICR, this model involves
a graph-based regularization term. We designed this method to show the effi-
ciency and effectiveness of SFR-ICR under the same settings.

- FR: This is a fully-supervised fuzzy regression model. FR can provide a lower
bound of the loss for the SFR-ICR.

- LapWNN: This method involves a graph-based SSL based on a wavelet neural
network (WNN) [86]. Since LapWNN was developed for distributed semi-
supervised scenarios, thus it is a quite relevant baseline method.

The results shown in Table 5.2, place SFR-ICR as the clear outstanding performer
in both the centralized and distributed settings, providing a strong endorsement of
the effectiveness of semi-supervised fuzzy regression. T-tests were implemented to
show statistical significance between SFR-ICR and other methods. As shown in
Table 5.2, all the p-values are smaller than 0.05. Thus the difference between our
SFR-ICR and other methods is significant.

73

Notably, SFR-G outperformed LapWNN on all datasets in the distributed sce-
narios, indicating that FNN-based SSL outperforms WNN-based SSL methods. Par-
ticularly, SFR-ICR reduced 31.96% NRMSE values compared with the distributed
results by LapWNN on average of all datasets. Within the SFR scheme, the NRMSE
is also smaller by SFR-ICR than by s-SFR and SFR-G, closely outpacing FR, which
indicates that ICR has a much greater ability to extract useful information from unla-
beled samples than other regularization methods. Particularly, SFR-ICR respectively
reduced 23.19% and 19.44% NRMSE values compared with the distributed results
by s-SFR and SFR-G on average of all datasets.

The SFR-ICR is also superior in efficiency. SFR-ICR costs far less time than other
methods in centralized ways. For distributed methods, the reason the computing
speeds of some small-scale datasets is slower is that communication overhead among
agents offsets the computing superiority of SFR-ICR.

We also assessed distributed SFR-ICR (DSFR-ICR) against its centralized coun-
terpart SFR-ICR (CSFR-ICR). DSFR-ICR performed better on all datasets except
for California Housing, demonstrating that a distributed approach can further in-
crease the model performance by spreading computing resources across different
agents.

5.3.2 Convergence Analysis
To investigate the convergence behaviours of the proposed algorithms, we plotted

the loss values of DFCM and DICR with each iteration of the optimization proce-
dure, as shown in Fig. 5.5. In this and the following subsections, we initialized the
Laplacian parameter ρp and ρs at 0.1 and 0.1, and the parameters µ, γ, and η, which
is corresponding to the ℓ2 regularizer, the mix-up regularizer, and the graph-based
regularizer, at 0.1, 0.1, and 0.0001, respectively. Due to space limitations, we ran-
domly choose four datasets to show the results. DFCM converges within 25 iterations
while DICR converges within 300 iterations for all the datasets. We can find that the
required iteration number for DICR is quite larger than that for DFCM. The reason
is that the training process of DICR is more complex than DFCM. Note that DICR
needs to randomly generate virtual samples in a pair-wise manner to augment the
training set. In this way, DICR can better exploit unlabeled samples but sacrifice
the convergence speed.

74

0 5 10 15 20 25
Iteration

0

0.05

0.1

0.15

Lo
ss

(a) DFCM on Airfoil

0 5 10 15
Iteration

0

0.01

0.02

0.03

0.04

0.05

Lo
ss

(b) DFCM on CCPP

0 5 10 15
Iteration

0

0.005

0.01

0.015

0.02

0.025

0.03

Lo
ss

(c) DFCM on KCH

0 5 10 15
Iteration

0

0.05

0.1

0.15

Lo
ss

(d) DFCM on WMSL

0 50 100 150 200
Iteration

0

10

20

30

40

50

60

Lo
ss

(e) DICR on Airfoil

0 10 20 30 40
Iteration

0

50

100

150

Lo
ss

(f) DICR on CCPP

0 20 40 60 80 100 120
Iteration

0

0.1

0.2

0.3

0.4

Lo
ss

(g) DICR on KCH

0 50 100 150 200 250 300
Iteration

0

0.5

1

1.5

2

2.5

3

3.5

Lo
ss

(h) DICR on WMSL
Figure 5.5: Convergence analysis of the DFCM method (top) and DICR method
(bottom).

75

1E-5 1E-4 1E-3 1E-2 1E-1 1
Values of Parameters

0.5

1

1.5

2

2.5

N
R

M
SE

(a) Model parameters on Airfoil

1E-5 1E-4 1E-3 1E-2 1E-1 1
Values of Parameters

0.6

0.7

0.8

0.9

1

1.1

1.2

N
R

M
SE

(b) Model parameters on CH

1E-5 1E-4 1E-3 1E-2 1E-1 1
Values of Parameters

0.7

0.8

0.9

1

N
R

M
SE

(c) Model parameters on WMSL

1E-5 1E-4 1E-3 1E-2 1E-1 1
Values of Parameters

0.6

0.7

0.8

0.9

N
R

M
SE

(d) Model parameters on KCH

1E-5 1E-4 1E-3 1E-2 1E-1 1
Values of Parameters

0.5

1

1.5

2

2.5

N
R

M
SE

p

s

(e) Laplacian parameters on Airfoil

1E-5 1E-4 1E-3 1E-2 1E-1 1
Values of Parameters

0.65

0.7

0.75

0.8

0.85

0.9

0.95

N
R

M
SE

p

s

(f) Laplacian parameters on CH

1E-5 1E-4 1E-3 1E-2 1E-1 1
Values of Parameters

0.7

0.8

0.9

1

1.1

1.2

1.3

N
R

M
SE

p

s

(g) Laplacian parameters on WMSL

1E-5 1E-4 1E-3 1E-2 1E-1 1
Values of Parameters

0.6

0.7

0.8

0.9

1

1.1

N
R

M
SE

p

s

(h) Laplacian parameters on KCH
Figure 5.6: NRMSE and its standard deviation with different model parameters (top)
and Laplacian parameters (bottom).

76

5.3.3 Effects of regularization and ADMM parameters
As is convention, we assessed the influence of each parameter by fixing all other

parameters using the initialization mentioned in Section V.B and varying the pa-
rameter in appropriate intervals: {10−5, 10−4, 10−3, 10−2, 10−1, 1}. The results of the
parameter analysis are presented in Fig. 5.6.

In terms of the regularization parameters γ and µ, the NRMSE drops as param-
eter values increase, reaching its nadir at µ = 1 with all datasets. This suggests
that ICR plays a critical role in the model. The best result for µ, however, differs
for every dataset. On Airfoil, CH and KCH datasets, µ decreases before reaching
its bottom, then starts to climb again, which indicates that the proportion of the ℓ2
term needs to be within a reasonable range.

The variance in the ADMM parameter ρs at different values was very small. ρp

performs better with values greater than 10−3. Thus, we can conclude that ρs is
robust at a wide range of values, but ρs performs better when choosing a relatively
large value.

5.3.4 Effects of the number of interpolated unlabeled sam-
ples

We also investigate how the number of interpolated unlabeled samples affects the
performance of DICR. After fixing the other parameters, we set the interpolated sam-
ple number within the interval {100, 300, 500, 1K, 3K, 5K, 10K, 30K, 50K, 100K, 500K}.
The results are plotted in Fig. 5.2. All curves show a trend that declines in the be-
ginning and then climbs after reaching a minimum NRMSE. The best performance
with the Airfoils and WMSL datasets was with 5K ICR MixUp samples. With CH
and KCH, the best performance was at 10K samples. Hence, it is best to set the
number of MixUp ICR samples near the training sample numbers for each dataset.

5.3.5 Effects of the rule and agent number
The number of rules was varied in the interval of {2, 3, · · · , 20}. As shown in

Fig. 5.3, the more rules, the better the performance. Here, we randomly selected
500 labelled training samples and distributed them relatively evenly over different
numbers of agents. As shown in Fig. 5.4, DSFR was able to stabilize with a range
of agent numbers.

77

5.4 Summary
In this chapter, we proposed a novel DSFR model with fuzzy if-then rules and

ICR. The result is a framework that handles uncertainty and also dramatically re-
duces computation and communication overheads in interconnected networks with
multiple agents. Adopting the ADMM strategy, DSFR involves a DFCM for struc-
ture learning and a DICR for parameter learning. Notably, both algorithms can
extract useful information from not only labelled samples but also unlabeled ones.
The DICR algorithm increases model performance and robustness by restricting the
decision boundaries to low-density regions. Comprehensive experiments on both ar-
tificial and real-world datasets show that DSFR excels in efficiency and effectiveness
compared to state-of-the-art algorithms. A deep variant of DSFR will be considered
in future work to handle high-dimensional unlabeled data. This method will modify
fuzzy logic to make them more suitable to high-dimensional applications. In addi-
tion, we will extend the current distributed learning methods to suit more complex
distributed scenarios.

78

Chapter 6

Federated Fuzzy Neural Network
with Evolutionary Rule Learning

To address the challenges of dimensionality, data heterogeneity, and privacy
preservation outlined in RO3, this chapter introduces a novel approach called the
federated fuzzy neural network (FedFNN) with evolutionary rule learning (ERL).
The FedFNN with ERL is designed to effectively handle data uncertainties and non-
IID (non-independent and identically distributed) issues commonly encountered in
federated learning settings. By employing this approach, we aim to mitigate the
impact of dimensionality, accommodate diverse data characteristics, and ensure pri-
vacy preservation during the learning process. As shown in Fig. 6.1 (a), the theory
of biological evolution [190] states that variants of the same species can evolve to
adapt to their different living environments by selectively activating and expressing
their genes. Inspired by this, we use FNNs as our local models and consider them
as compositions of fuzzy rules, which capture valuable local data information from
multiple views, such as distributions. Similar to the genes of a species, each rule of
the FedFNN is a basic functional component that can be activated or deactivated
for clients according to their performance on local data. Thus, our FedFNN aims
to obtain a group of global fuzzy rules that can be selectively activated for local
clients to enable them to outperform competing approaches on non-IID data. It
is worth noting that our ERL is a novel algorithm different from genetic algorithms
[191]. These two algorithms are inspired by the same theory but designed in different
ways. The genetic algorithm treats the whole population as the evolution subject.
It keeps selecting the fittest individuals in each generation to form more competitive
populations until the performance gets stable. However, it needs to be re-adjusted
whenever the environment is modified. Instead, the ERL considers the internal di-

79

Activate Inactivate

Creatures

Diverse Living
Environment

Gene 1

Gene 3

Gene Gene 𝐾

Gene 1

Gene Gene 𝐾

Adaptive

Evolve

Gene Status:

Features
1

Features
2

Features

Features
3

Features
𝐾

Features 2

Gene 1

Gene 3

Gene Gene 𝐾

Features 2

Features 3

Gene 3

Gene 2

Gene

Gene 1

Gene Gene 2

Gene 2

Gene 2

Gene 2
Gene 3

Gene 3

Adaptive

Evolve

Gene 1

Gene 3

Gene

Gene 2

Gene

White
Fur

Features 1

Fin-shaped
Feet

Features
FeetFeet

Features Features 𝐾

Smooth
Skin

Thick
Fat

Fin-shaped
Feet

Features
FeetFeetFeet

Features 𝐾

Smooth
Skin

Features 3

Thick
Fat

White
Fur

Features 1

Chromosome
Selective Gene Activation

Variation Within
A Species

(a) The evolvement of variants within a species via the selective acti-
vation of genes.

FedFNN

Heterogeneous
Local DatasetRule 1

Rule 2

Rule 3

RuleRule𝐾

Features 1

Features 2

Features 3

FeaturesFeatures𝐾

Rule 1

Rule 2

Rule 3

RuleRule𝐾

Features 1

Features 2

Features 3

FeaturesFeatures𝐾

Personalized
local FNN

Evaluation

Evolutionary
Rule Learning

Features 1

Features 2

Features

Rule 1

Rule 2

Rule 3

Rule Rule 𝐾

Features 3

Features 𝐾

If

Then

C C C

Rule Set
If

Then

C C

If

Then

C C

Selective Rule Activation

Evaluation

Evolutionary
Rule Learning

Activate InactivateGene Status:

(b) The rule selective activation for FedFNN to generate personalized
local FNNs.

Figure 6.1: (a) A brief demonstration of how a species evolve variants to survive in
diverse living environments based on genes selective activation and expressions. (b)
A brief demonstration of how FedFNN selectively activate a personalized subset of
contributive rules for clients to effectively deal with their local non-IID data.

80

versity of species, which means that a species normally includes several types of
populations (subspecies) living in diverse environments. It regards subspecies as its
evolution subjects and selectively optimises and shares gene groups among subspecies
until they perform well in different environments. In our FedFNN, each agent that
handles non-IID data corresponds to a sub-species. The ERL enables agents to co-
operate with each other during their evolutions but preserve their personalities to
adapt to diverse environments. In general, our FedFNN aims at learning 1) a group
of global rules that capture valuable information among local clients and 2) a rule
activation strategy for each local client to ensure the personalization and superior
performance of the FedFNN.

The ERL is an iterative learning approach with two stages: a rule cooperation
stage, where the global rules are updated cooperatively by clients based on their rule
activation statuses, and a rule evolution stage, where the activation statuses of local
rules are adjusted according to their contributions to the performance of the FedFNN
on non-IID local data. The former stage enhances the cooperation among clients
for learning more representative global rules, which increases the generalizability
of the FedFNN. In contrast, the latter stage fulfils the selective activation of rules
that enable the local FNNs to be more adaptive and perform better on non-IID
data, which improves the personalization of the FedFNN. For an explanation of the
FedFNN model, refer to the diagram shown in Fig. 6.1 (b).

The contributions of this chapter are as follows,

• We are the first to propose FedFNN that integrates fuzzy neural networks into
a federated learning framework to handle data non-IID issues as well as data
uncertainties in distributed scenarios. FedFNN is able to learn personalized
fuzzy if-then rules for local clients according to their non-IID data.

• Inspired by the theory of biological evolution, we design an ERL algorithm
for the learning of FedFNN. ERL encourages the global rules to evolve while
selectively activating superior rules and eliminating inferior ones during the
training procedure. This procedure ensures the ability of generalization and
personalization of FedFNN.

6.1 Federated Fuzzy Neural Network
In this section, we describe the general structure of our FedFNN. As depicted

in Fig. 6.2, the FedFNN includes one server and several local clients. The server is
responsible for communication with local clients and maintaining a group of global

81

rules by aggregating the uploaded local rules. Local clients download the global rules
as local rules for constructing their FNNs, which are then updated via training on
their own data. Due to the concerns of data privacy, each local agent learns from its
own data without accessing the data of other agents and communicates, while the
server communicates with all local agents and aggregates the locally learned rules
according to their activation status. An overview of a local FNN is shown in Fig.
6.3.

To mimic the selective activation of genes, the rules in the local clients are ac-
tivated selectively to make the FedFNN personalized and properly adapted to local
non-IID data. Thus, we introduce an activation vector containing the rule status sq

k

of each client. Accordingly, the global server can help local clients activate useful
rules and deactivate useless or harmful rules based on their own local data. For
example, if sq

k = 0, the server will deactivate the k-th rule for the FNN on the
q-th client; otherwise, the corresponding rule will be activated and involved in the
operations of the q-th client.

In the FedFNN, we adopt the fuzzy logic presented in the first-order T-S fuzzy
system [127]. Suppose that our FedFNN holds Q clients; then, the dataset owned by
the q-th client can be denoted as Dq := {xq

i , y
q
i }Nq

i=1, where xq
i = [xq

i1, x
q
i2, · · · , x

q
iD]T

and yq
i ∈ RC are the i-th sample and its one-hot vector label, respectively, and C

and N q denote the category number and the local dataset size. Then, the k-th fuzzy
rule of the local FNN on the q-th client can be described as

Rule k: If xq
i1 is Aq

k1 and · · · and xq
iD is Aq

kD

Then, yq
i = gq(xi; θk)

where Aq
kj is the j-th fuzzy set of rule k on P q and gq(xi; θk) is the corresponding

consequent rule built by a fully connected layer parameterized with θk. Many types
of membership functions can be employed to describe the fuzzy set Aq

kj, such as
singleton, triangular, trapezoidal, and Gaussian ones [192]. Here we choose the
Gaussian membership function for three reasons: 1) Gaussian membership function is
differentiable, which is more suitable for end-to-end learning models; 2) the Gaussian
membership function is proved to be effective in approximating nonlinear functions
on a compact set [164]; 3) Gaussian membership functions are able to represent data
features using different Gaussian distributions, which can capture data heterogeneity
and handle data uncertainty using several distributions.

Generally, the Gaussian membership function φq(xq
ij;m

q
kj, σ

q
kj) of a fuzzy set Aq

kj

has the form

φq
k(xq

ij;m
q
kj, σ

q
kj) = exp

−(xq
ij −m

q
kj

σq
kj

)2
, (6.1)

82

Rule Status
Activate
Inactivate

Local Agent 1

Local FNN

A

C

Category
2 3

Local Data

1

Local
Rules
𝑅𝑙𝑜𝑐𝑎𝑙1

1

Rule
Status

𝑅𝑙𝑜𝑐𝑎𝑙1
2

𝑅𝑙𝑜𝑐𝑎𝑙1
𝐾−1

𝑅𝑙𝑜𝑐𝑎𝑙1
𝐾

Local Agent 2

Local FNN

A

C

Local
Rules
𝑅𝑙𝑜𝑐𝑎𝑙2

1

Rule
Status

𝑅𝑙𝑜𝑐𝑎𝑙2
2

𝑅𝑙𝑜𝑐𝑎𝑙2
𝐾−1

𝑅𝑙𝑜𝑐𝑎𝑙2
𝐾

Category
2 3

Local Data

1

Local FNN

A

C

Local Agent 𝑄
Local
Rules
𝑅𝑙𝑜𝑐𝑎𝑙𝑄

1

Rule
Status

𝑅𝑙𝑜𝑐𝑎𝑙𝑄
2

𝑅𝑙𝑜𝑐𝑎𝑙𝑄
𝐾−1

𝑅𝑙𝑜𝑐𝑎𝑙𝑄
𝐾

Category
2 3

Local Data

1

Server

𝑅𝑔𝑙𝑜𝑏𝑎𝑙
𝐾

𝑅𝑔𝑙𝑜𝑏𝑎𝑙
𝐾−1

𝑅𝑔𝑙𝑜𝑏𝑎𝑙
2

𝑅𝑔𝑙𝑜𝑏𝑎𝑙
1

Global Rules &
𝑎𝑔𝑒𝑛𝑡 1 𝑎𝑔𝑒𝑛𝑡 𝑄𝑎𝑔𝑒𝑛𝑡 2
Rule Status Assemble

Figure 6.2: Overview of the FedFNN.

𝑥𝑖

Softmax

Prediction

𝛴𝛴

Cl
as
sif
ica

tio
n

He
ad

Co
ns
eq

ue
nt

la
ye
r

An
te
ce
de

nt
la
ye
r

𝑔(𝑥𝑖)1

𝜑1,1 𝜑1,2 𝜑1,𝐷

ത𝜙1ℎ(𝑥𝑖)1

𝑥𝑖

Rule 1 [activated]

𝜑𝐾,1 𝜑𝐾,2 𝜑𝐾,𝐷

𝑔(𝑥𝑖)𝐾

ത𝜙𝐾ℎ(𝑥𝑖)𝐾

𝑥𝑖

Rule 𝐾 [activated]

𝜑𝐾,1 𝜑2,2 𝜑2,𝐷

𝑔(𝑥𝑖)𝐾−1

ത𝜙K−1ℎ(𝑥𝑖)𝐾−1

𝑥𝑖

Rule (𝐾−1) [inactivated]

𝜑2,1 𝜑2,2 𝜑2,𝐷

𝑔(𝑥𝑖)2

ത𝜙2ℎ(𝑥𝑖)2

𝑥𝑖

Rule 2 [inactivated]

Figure 6.3: Overview of a local FNN.

83

where mkj and σkj are the mean and standard deviation of the Gaussian membership
function, respectively. Let φq

k(xq
i ;m

q
k, σ

q
k) collect the membership value of the k-th

rule on client P q in vector form. The output of the antecedent layer (also known as
the firing strength) considering the rule activation status sq

k can be written as:

hq
k(xq

i ;m
q
k, σ

q
k, s

q
k) = sq

kexp[||φq
k(xq

i ;m
q
k, σ

q
k)||2]∑K

k=1 s
q
kexp[||φq

k(xq
i ;m

q
k, σ

q
k)||2]

, (6.2)

The consequent output of the k-th rule is denoted as gq(xq
i ; θ

q
k) and can be calculated

by:
gq

k(xq
i ; θk) = [1; xq

i]T θ
q
k, (6.3)

where θq
k ∈ R(D+1)×C denotes the consequent parameters. Thus, by considering rule

statuses, the FedFNN is able to eliminate the interruption of deactivated rules for
local clients. The antecedent layer hq(xq

i ;mq, σq) and the consequent layer gq(xq
i ; θq)

of the q-th client in our model are

hq(xq
i ;mq, σq) = (hq

1(xq
i ;m1, σ1, s

q
1), · · · , hq

K(xi;mq
k, σ

q
k, s

q
K)), (6.4)

and
gq(xq

i ; θq) = (gq
1(xq

i ; θ1), · · · , gq
K(xq

i ; θ
q
k)), (6.5)

respectively. A classification head is further added to the tail to generate the final
predictions by considering the outputs of all K rules. The classification head connects
all rules, which guarantees that the gradient of the loss function can successfully
propagate backward to every component of the local FNNs. Thus, the predictions
of the q-th local FNN f q(xq

i ;mq, σq, θq, sq) can be represented as:

f q(xq
i ;mq, σq, θq, sq) = softmax (τ) , (6.6)

where τ = ∑K
k=1 h

q
k(xq

i ;m
q
k, σ

q
k, s

q
k)gq

k(xq
i ; θ

q
k). Suppose that wq = (mq, σq, θq) collect

the parameters of all local rules on client q; the loss of the q-th local FNN can then
be defined as

ℓq(xq
i ;wq, sq) = −

C∑
c=1

yic log(ŷic), (6.7)

where ŷic is the c-th output of f q(xq
i ;wq, sq), and its goal is to optimize

min
wq ,sq

E(x,y)∼Dq [ℓq((x, y);wq, sq)]. (6.8)

84

Thus, the training objective of our proposed FedFNN can be given by

arg min
Θ

1
Q

Q∑
q=1

ℓq(xq
i ;wq, sq)

= arg min
Θ

1
Q

Q∑
q=1

1
N q

Nq∑
i=1

ℓq(xq
i ;wq, sq),

(6.9)

where Θ denotes the set of personal parameters {wq, sq}Q
q=1.

6.2 Evolutionary Rule Learning
In this section, we present an in-depth introduction to the ERL method, which

enables the FedFNN to be personalized and achieve superior performance on non-IID
data. As shown in Fig. 6.4, ERL includes a rule cooperation stage that improves
the generalization of global rules and a rule evolution stage that enhances the per-
sonalization of the FedFNN. The above two stages are presented in subsection IV.A
and subsection IV.B, respectively.

Local Agent 𝑄

𝑅local𝑄
1

𝑅local𝑄
2

𝑅local𝑄
𝐾−1

𝑅local𝑄
𝐾

Rule Status
Activate
Inactivate

𝑅𝑙𝑜𝑐𝑎𝑙2
1

𝑅𝑙𝑜𝑐𝑎𝑙2
2

𝑅𝑙𝑜𝑐𝑎𝑙2
𝐾−1

𝑅𝑙𝑜𝑐𝑎𝑙2
𝐾

Local Agent 2

𝑅local1
1

𝑅local1
2

𝑅local1
𝐾−1

𝑅local1
𝐾

Local Agent 1

𝑅global
𝐾

𝑅global
𝐾−1

𝑅global
2

𝑅global
1

𝑎𝑔𝑒𝑛𝑡 1 𝑎𝑔𝑒𝑛𝑡 𝑄𝑎𝑔𝑒𝑛𝑡 2

Delete useless rules
& their status

𝑅global
𝐾+1 Generate new rules

Update existing rules
& their status

𝑅global
1

Generate new rules

Server

Cooperation

Rule Evolution Stage

Rule Cooperation
StageStage

Figure 6.4: Overview of the evolutionary rule learning.

6.2.1 Rule Cooperation Stage
In this stage, we focus on the learning of more general global rules. Generally,

the global rules activated by multiple clients are able to capture informative rep-

85

Algorithm 4 Co-Evolutionary Stage of the ERL Method
Input: Number of clients Q, number of global rules K, number of local epochs
E, learning rate η, global ruleset parameter w(t).
Output: The global ruleset parameter w(t+ 1) for the next round.

Server executes:
for q = 1, 2, · · · , Q in parallel, do do

send global ruleset parameter w(t) to P q

send rule activation status sq(t) to P q

receive wq(t) from Local Training
end for
for k = 1, 2, · · · , K do

update the k-th rule wk(t+ 1) using (6.10)
end for

Local Agent Training:
wq(t)← w(t)
for epoch i = 0, 1, 2, · · · , E do

for each batch b = {x, y} of Dq do
calculate ℓ via (6.7)
update wq(t) via wq(t)← wq(t)− η∇ℓ

end for
end for
return wq(t) to server

86

Algorithm 5 Adaptive Evolutionary Stage of the ERL Method
Input: Number of clients Q, number of global rules K, global rule parameter set
w(t), hyperparameter β.
Output: The global ruleset parameter w(t+ 1), the rule status s(t+ 1), and the
rule number K for the next round.

Server executes:
for q = 1, 2, · · · , Q in parallel, do do

for k = 1, 2, · · · , K in parallel, do do
update sq

k(t+ 1) via (6.12)).
end for
if (6.13) and (6.14) both hold or ∑ sq(t+ 1) = 0 then

generate a new rule for client P q and randomly initialize its parameter wK+1.

expand global parameter set w(t+ 1) via w(t+ 1)← [w(t), wK+1].
expand rule status s(t+ 1) via s(t+ 1)← [s(t), 0], sq

K+1(t) = 1.
update K via K = K + 1

end if
end for
for k = 1, 2, · · · , K do

if ∑Q
1 s

q
k = 0 then

remove rule k from global rule list and wk from global parameter set w.
update K via K = K − 1

end if
end for

87

resentations across these clients. Thus, updating the general global rules requires
cooperation among the local clients.

Technically, the rule cooperation stage highly relies on the rule activation status
vectors of the local clients. These vectors are randomly initialized at the beginning
and updated in the rule evolution stage. During each communication round, the local
clients download the global rules from the server as their local rules. Then, the global
server selects the activated rules according to the corresponding rule activation status
vectors to build the local FNNs. As described in the Local Training of the algorithm
4, the constructed personalized local FNNs are then trained on their associated non-
IID local data to update the activated local rules.

Afterwards, each global rule is updated by calculating the weighted average of the
activated local rules. Thus, the parameters of the k-th global rule wk are updated
by activation-status-driven weight averaging:

wk =
Q∑

q=1

N qsq
k

γk

(wk
q), (6.10)

where γk = ∑Q
q=1 N

qsq
k is the factor that measures the contribution of a global rule.

This stage is conducted for L rounds before stepping to the rule evolution stage to
ensure that the global rules are effectively learned under cooperation among the local
clients.

It is worth noting that each global rule is updated by aggregating its correspond-
ing activated local rules instead of aggregating all of them. This is different from
existing FL methods that aggregate local models without checking whether their
updates are helpful or not. Our ERL approach only shares the useful pieces of in-
formation that contribute to each other while avoiding misleading information. This
procedure enables the FedFNN to be more general.

6.2.2 Rule Evolution Stage
After L rounds of coevolutionary learning, the FedFNN optimization process falls

into a bottleneck since the capability of the current model structure has been fully
explored. In this stage, we allow the server to inspect the performance of the learned
model on local samples and then implement the FedFNN to increase its performance
and personalization for handling non-IID data. In general, as described in algorithm
5, the rule evolution stage includes 3 major mutations: evolving new global rules,
activating superior rules, and deactivating local inferior rules.

88

We adopt a contribution factor πq
k to measure the importance of the k-th rule on

the q-th client, which can be calculated as

πq
k =

|Dq |∑
i=1

hq
k(xq

i ;m
q
k, σ

q
k, s

q
k)

|Dq|
, (6.11)

where |Dq| is the size of Dq. Here, we introduce a threshold π̄q to trigger the rule
activation procedure. π̄q is calculated based on the average contribution of the ac-
tivated rules as π̄q = β

∑K
k=1 s

q
kπ

q
k/K

q, where β is a hyperparameter and Kq is the
number of activated rules in the q-th client. A rule is meaningless to client k when
its contribution level is smaller than π̄. Consequently, the server deactivates this rule
for the corresponding clients and eliminates the involvement of those clients in the
rule aggregation process. To assure that this step is completed, the rule status sq

k(t)
in the t-th round is updated by a status adjusting operation:

sq
k(t) =

{
1, πq

k > π̄q
k

0, otherwise (6.12)

It is worth noting that each client should inspect its activated rules to check if the
combination of these rules is sufficient for evaluating its local dataset. If not, it
means that some of the unique features are not captured by the current activated
rule settings. To solve this problem, we introduce two conditions to evaluate the
capabilities of local models from different views:

L∑
l=1

ℓq(t− l + 1)− ℓq(t− l)
L

> 0, (6.13)

ℓq(t)−
Q∑

q=1

ℓq(t)
Q

 > 0, (6.14)

where t is the current training round. The first condition (6.13) serves as a self-
evaluation of the learning performance for each client by monitoring the loss value
trends. If condition (6.13) holds, then the current local rules cannot be further
improved. The second condition (6.14) serves as a peer evaluation by comparing
the loss of the q-th client with the average loss across all clients. If condition (6.14)
holds, then the current local rules cannot handle non-IID data well. If both of these
conditions hold, then the current architecture in the q-th client is unable to attain
high performance. In this case, a new rule should be generated to improve the local
model. To avoid the extreme situation when certain agents have no rules to use,

89

the server will also create new rules for agents once their activated rule number is
detected as zero.

This stage imitates the selective activation process of genes by updating the acti-
vation status of each rule based on its contribution to the local clients. Consequently,
ERL selects useful rules for the local clients from the well-learned global rules, in-
creasing the personalization of the FedFNN. In addition, the updated rule activation
schemes benefit the optimization process in the next round of the rule cooperation
stage in turn because of the better rule selection effect.

Table 6.1: Dataset Information
Dataset Sample Feature Category

GSAD [173] 14,061 128 6
FM [175] 180 43 4
WD [176] 4,898 11 7

MGT [177] 19,020 10 2
SC [178] 58,000 9 7

WIL [179] 2,000 7 4
WFRN [180] 5,456 24 4

In this section, we conduct extensive experiments on 7 datasets of different types
in various settings to evaluate the effectiveness of the proposed FedFNN. Collected
from multiple scenes, the selected datasets are representative and widely used. The
descriptive statistics of each dataset are listed in Table 6.1. In addition, to verify
the superior performance of our model, state-of-the-art DFNNs and FL methods for
constructing deep models are adopted as comparison methods. The details of all
algorithms adopted in this section and their settings are introduced below.

- DFNN: This is the fully DFNN algorithm proposed in [9], which adopts consen-
sus learning in both the parameter learning and structure learning procedures
and achieves state-of-the-art performance among distributed fuzzy models. As
mentioned before, this model learns a consensus FNN for all clients, which
limits its applications in non-IID scenarios. We use DFNN+ and DFNN* to
denote homogeneous and heterogeneous federated setups, respectively.

- FedAvg [21]: This is the most basic and popular algorithm for developing
FL models. Similarly, we use FedAvg+ and FedAvg* to refer to the FedAvg
models that cope with homogeneous and heterogeneous scenarios, respectively.
Considering that the preferable deep model structures for different datasets
vary from each other, to make the comparison convincing, we design more

90

than 20 types of deep models for the comparison and report the best one for
each dataset in the following tables and figures.

- MOON [151]: This is the state-of-the-art FL approach for deep models. MOON
adapts individual clients based on their dissimilarity with the server, which
bestows the outperforming learning ability on the network model in solving
heterogeneous distributed scenarios. Here, we utilize MOON for heterogeneous
situations, namely, MOON*, for the comparison. Similar to FedAvg, we choose
20 deep models with different structures and list their best performance, as
shown below.

- FedFNN: This is the model proposed in our paper, which adopts a rule evolu-
tion strategy to make full use of each fuzzy rule and acquire better estimation
results for each individual dataset. We set the global number of rules K as 15,
the number of ERL iterations as 15, and the number of coevolutionary rounds
L as 10. For the hyperparameter setting, β̄ is set as 0.7.

In our experiment, all the distributed models are assigned with 5 local clients,
each of which can only access their own dataset. To simulate heterogeneous local
datasets for these clients, we generate five non-IID local data partitions using the
Dirichlet distribution Dir(α), where α ∈ (0, 100) is the concentration parameter and
can be seen as the indicator of the non-IID level of the data. Technically, the sample
proportions of all categories for all clients are sampled from Dir(α). The local
datasets are thus generated based on random sampling from the original dataset
based on the obtained category proportions.

It is worth noting that for the fairness of the experiments, the features in all
datasets are first normalized between -1 and 1 using the well-known mapminmax
normalization method. Then, a certain proportion of the features is randomly pol-
luted by noise generated from a normal Gaussian distribution to simulate uncer-
tainty in the different datasets. This perturbed sample proportion is considered the
uncertainty level and is used to verify the uncertainty processing abilities of the
comparison algorithms. In this section, all experiments are conducted with 5-fold
cross-validation, and each experiment is repeated 10 times. The final reported results
are the mean average precision (mAP) values obtained on the test data during these
runs.

91

Figure 6.5: Performance of different algorithms when addressing datasets with dif-
ferent uncertainty levels.

Figure 6.6: The convergence of the FedFNN optimization process under different
uncertainty levels on 6 datasets.

92

Figure 6.7: Performance of the FedFNN on GSAD at different non-IID levels.

Figure 6.8: Performance of the FedFNN when using different β.

93

Figure 6.9: Performance of the FedFNN using different initial global rule numbers.

94

Figure 6.10: Performance of the FedFNN on all clients when training on the GSAD
dataset.

95

Table 6.2: Average classification accuracies (%) and standard deviations achieved by
each algorithm on the 7 datasets at a 10% level of uncertainty

Algorithm Dataset
GSAD SDD SC MGT WFRN FM WIL

DFNN+ 36.64/1.08 16.26/0.67 63.02/4.66 83.22/0.49 53.04/1.59 60.56/6.02 83.40/3.48
DFNN* 34.91/3.38 16.74/1.96 51.08/7.12 79.02/3.66 51.50/4.12 57.22/5.41 82.20/2.20

FedFNN* 90.13/0.89 75.98/3.49 93.12/4.34 86.58/0.56 91.99/3.56 93.33/2.36 96.35/0.86
(↑ 21.57) (↑ 2.3) (↑ 5.6) (↑ 11.28) (↑ 13.94) (↑ 20.03) (↑ 5.01)

MOON* 68.56/0.50 73.68/3.58 87.52/4.38 75.30/3.45 78.05/1.30 73.00/2.59 91.34/1.19
FedAvg* 65.49/0.62 63.38/4.02 79.08/0.35 64.25/0.56 71.94/3.16 63.33/7.07 69.17/5.45
FedAvg+ 70.80/0.72 89.43/0.71 98.35/0.20 82.14/0.69 82.69/1.82 75.67/9.25 94.63/1.41

Table 6.3: Number of parameters required by each state-of-the-art algorithm

Algorithm Dataset
GSAD SDD SC MGT WFRN FM WIL

FedDNN 2,003,462 1,591,051 1,973,255 32,070 539,396 549,124 1,578,756
FedFNN 15,450 9,525 1,320 630 2,220 3,930 690

Table 6.4: Comparison of computing time (s) between FedFNN and DFNN
Algorithm Dataset

GSAD SDD SC MGT WFRN FM WIL
FedFNN 1805 7259 7050 2348 691 111 260
DFNN 683 1642 1534 545 178 38 85

6.2.3 The Performance of the FedFNN on Non-IID Datasets

6.3 Experiments
We conduct extensive experiments with the aforementioned algorithms on all

seven datasets with a non-IID level of 0.5 and an uncertainty level of 10% to verify
the effectiveness of our FedFNN. The obtained results are summarized in Table
6.2, in which the green-coloured values are those for which our FedFNN is superior
to MOON* on different datasets. According to the table, our model outperforms
the existing state-of-the-art FL method MOON* in terms of test accuracy by an
average of 11.43%, which proves the extraordinary heterogeneity handling ability of
our FedFNN.

To verify the robustness of our FedFNN when dealing with different levels of non-
IID data, we choose the concentration parameter α from the set of {0.1, 0.5, 5, 20, 50, 100}
and compare our FedFNN with FedAvg and MOON on the GSAD dataset. The re-
sults are shown in Fig. 6.7, in which the test accuracy curve of the FedFNN for

96

different non-IID levels is flatter and higher than those of the compared FL algo-
rithms. Thus, we can conclude that our FedFNN achieves superior performance
when dealing with a wide range of non-IID data. In addition, when the given data
are uncertain, our FedFNN* that processes non-IID local data can even beat the Fe-
dAvg+ version that processes local IID data on most datasets, which further proves
the robustness of our FedFNN.

It is worth noting that our model is far more lightweight than existing FL al-
gorithms. As listed in Table 6.3, our model has an average of approximately 100
times fewer parameters than existing FL algorithms and achieves a better hetero-
geneity processing capability. Besides, we compared the computation overhead of our
FedFNN and the DFNN on the Quadro P5000 GPU device with a running storage
of 26384 MiB. Our results are listed in Table 6.4. Though the ERL consumes extra
time compared with DFNN, our FedFNN increases more than 40% on average test
accuracy DFNN.

In addition, the personalization abilities of the algorithms are discussed in this
section. To explicitly demonstrate the high level of the heterogeneous federated
scenario, we plot the number of samples in each category for each local client of the
GSAD dataset and the performance achieved by each local model when α = 0.5
in Fig. 6.10. According to Fig. 6.10, our local models outperform MOON* and
FedAvg* on all clients and achieve much higher test accuracy on the 5-th client.
MOON* and FedAvg* fail to learn the features of all categories because of the severe
data heterogeneity.

Clearly, the global models of MOON and FedAvg tend to deal with the samples
in the first five categories and overlook the information learned for the 6th category
after several rounds of aggregation; this is because the samples in the 6th category are
mostly allocated to client 5, whose learned information is easily disturbed by other
clients. Instead, our personalized local FNN for the 5-th client achieves relatively
high performance on all clients by automatically generating new rules to estimate
the unique samples in the 6-th category. The newly generated rules are unique to
this client and cannot be disturbed by other clients; thus, our proposed personalized
local FNN exhibits superiority in dealing with heterogeneous local clients based on
its flexible structure.

6.3.1 The Performance of the FedFNN on Datasets with Un-
certainty

To investigate the effectiveness of the FedFNN when dealing with data uncer-
tainty, we conduct experiments under multiple uncertainty level settings {0%, 10%, 20%, 30%}.

97

The performances of all algorithms on all datasets, except the FM dataset, under
these uncertainty levels, are depicted in Fig. 6.5. Intuitively, our methods achieve
state-of-the-art performance for all uncertainty levels and all datasets. In addition,
we list the performance attained by all algorithms when processing datasets with
10% uncertainty in Table 6.2. From the table, our model outperforms the DFNN*
in terms of test accuracy by an average of 36.40%. Thus, the extraordinary ability
of our FedFNN to deal with data uncertainties can be confirmed.

6.3.2 Convergence Analysis of the FedFNN with ERL
To verify the convergence ability of our proposed FedFNN, the test accuracies

it achieves throughout the optimization process are depicted in Fig. 6.6. As the
results in this figure show, the FedFNN gradually converges with the increase in the
number of communication rounds on all datasets. In addition, the functions and
contributions of the rule cooperation stage and the rule evolution stage are clearly
proven in Fig. 6.6. During the L-th round of the rule cooperation stage in each
ERL iteration, the local clients cooperate with each other to learn more general
global rules, and consequently, as shown in Fig. 6.6, the network performance stably
improves on all datasets. However, the performance of the local FNNs gradually
falls into a bottleneck along with the execution of the rule cooperation stage, as
shown in Fig. 6.6, where the test accuracy hardly increases at each ERL iteration.
The subsequent rule evolution stage solves this issue by updating the local model
architecture. As shown in Fig. 6.6, the performance of the local clients dramatically
increases because of the mutation of local rules. Eventually, these rapid performance
improvements induced by the latter learning stage vanish after each local client learns
all their required activated local rules.

6.3.3 Analysis of Key Parameter Robustness
We conducted extensive experiments to verify the robustness of our key param-

eters, including α, β and the initialized global rule number K. Their corresponding
results are depicted in Fig. 6.7, Fig. 6.8 and Fig. 6.9, respectively. As shown in
Fig. 6.7 and Fig. 6.9, our FedFNN can still achieve good performances when setting
a wide range of parameters. In addition, we can achieve high performance when
setting β >= 0.7 from the results drawn in Fig. 6.8. Intuitively, our FedFNN is
proved to be robust to different parameter settings.

98

6.4 Summary
This chapter proposes a FedFNN with ERL to handle non-IID issues and data

uncertainties in distributed scenarios. The proposed FedFNN integrates fuzzy if-
then rules into an FL framework. By considering these fuzzy rules as the basic
optimization units, our FedFNN is able to learn a group of general global rules and
selectively activate an effective subset of these rules for each local client. This flexible
composition approach for fuzzy rules increases the personalization of the local models
with respect to handling non-IID data. Inspired by the theory of biological evolution,
the proposed ERL method not only encourages the cooperation of local clients at
the rule level to improve the generalization of the global rules but also updates the
rule activation statuses for all clients to make their local models more personalized.
Unlike most existing FL methods that implement aggregation among all local models,
the FedFNN with ERL only aggregates the activated rules for their corresponding
local clients. This enables the server to selectively aggregate only beneficial local
updates, preventing the disturbances brought by harmful updates. Consequently,
the FedFNN with ERL provides an effective learning framework for dealing with
non-IID issues as well as data uncertainties. Comprehensive experiments verify the
superiority and effectiveness of the proposed FedFNN over state-of-the-art methods.

99

Chapter 7

Conclusion and Future Work

7.1 Conclusion
This thesis presented three robust fuzzy models designed for distributed com-

puting scenarios to solve several key issues with high dimensionality, data hetero-
geneity, and unlabelled data optimisation that current distributed fuzzy models face.
First, we proposed a new network architecture, RFNN, which comprises an AIE that
performs non-linear mapping to overcome any uncertainty in membership function
values. As such, it generates highly representative firing strengths. Notably, RFNN
is an architecture where the consequent components are constructed from neural
networks. This enhances the reasoning ability of the learned rules. As a result, our
RFNN is not only able to handle high levels of data uncertainty, but it can also
directly process data with very high dimensionality.

Adopting the ADMM strategy, the DSFR model involves a DFCM for struc-
ture learning and a DICR for parameter learning. Notably, both algorithms can
extract not only useful information from labelled samples but also unlabelled ones.
The DICR algorithm increases model performance and robustness by restricting the
decision boundaries to low-density regions. Finally, a FedFNN with ERL handles
non-IID issues and data uncertainty in distributed scenarios. The proposed FedFNN
integrates fuzzy if-then rules into a federated learning framework. Inspired by the
theory of biological evolution, the proposed ERL method not only encourages the
cooperation of local clients at the rule level to help generalise the global rules, it also
updates the rule activation statuses for all clients to make the local models more
personalised. These three models effectively address the existing significant concerns
with distributed fuzzy models.

100

7.2 Future Work
In the future, we will have a comprehensive plan to improve and expand our

research in multiple directions. Firstly, we aim to enhance the RFNN’s ability to de-
tect adversarial noise, which can pose significant challenges for deep neural networks
(DNNs). Simultaneously, we will focus on enhancing the interpretability of fuzzy
models, making them more explainable and trustworthy in various learning tasks.

Additionally, our goal is to extend the applicability of the FedFNN and explore
its potential in different domains. One such area of exploration is the application
of indoor Wi-Fi localization. By leveraging the capabilities of our models, we aim
to develop more accurate and robust methods for estimating device locations within
indoor environments using Wi-Fi signals. This has practical implications for indoor
navigation, asset tracking, and location-based services, offering improved user ex-
periences and enabling new applications in smart buildings and Internet of Things
(IoT) systems.

In terms of Evolutionary Reinforcement Learning (ERL), our focus will revolve
around increasing the robustness and communication efficiency of the FedFNN in
scenarios involving a large number of agents. We will also investigate privacy preser-
vation techniques, exploring encryption methods to enhance the safety and privacy
of communication information. Additionally, we will explore new schemes to further
boost communication efficiency and quality.

Moreover, our research will encompass the proposal of new types of fuzzy rules
specifically designed for federated fuzzy neural networks to handle uncertainty in
electroencephalography (EEG) signals. As EEG signals inherently exhibit non-IID
features, the FedFNN model holds great potential for effectively analyzing EEGs and
solving tasks related to EEG signal processing.

By pursuing these research directions, we aim to advance the capabilities and
performance of our models, expand their applications to different domains, such
as indoor Wi-Fi localization, and contribute to the development of more robust,
interpretable, and efficient machine learning techniques.

101

Bibliography

[1] J. Wang, C. Xu, J. Zhang, and R. Zhong, “Big data analytics for intelligent
manufacturing systems: A review,” Journal of Manufacturing Systems, vol. 62,
pp. 738–752, 2022.

[2] J. Qiu, Q. Wu, G. Ding, Y. Xu, and S. Feng, “A survey of machine learning for
big data processing,” EURASIP Journal on Advances in Signal Processing,
vol. 2016, no. 1, pp. 1–16, 2016.

[3] H.-Y. Tran and J. Hu, “Privacy-preserving big data analytics a comprehensive
survey,” Journal of Parallel and Distributed Computing, vol. 134, pp. 207–218,
2019.

[4] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-preserving
machine learning,” in 2017 IEEE Symposium on Security and Privacy (SP),
IEEE, 2017, pp. 19–38.

[5] H. Tuttle, “Facebook scandal raises data privacy concerns,” Risk Manage-
ment, vol. 65, no. 5, pp. 6–9, 2018.

[6] S. Prabhakar and R. Cheng, “Data uncertainty management in sensor net-
works,” in Encyclopedia of Database Systems, L. LIU and M. T. ÖZSU, Eds.
Boston, MA: Springer US, 2009, pp. 647–651, isbn: 978-0-387-39940-9. doi:
10.1007/978-0-387-39940-9_115. [Online]. Available: https://doi.org/
10.1007/978-0-387-39940-9_115.

[7] R. Fierimonte, M. Barbato, A. Rosato, and M. Panella, “Distributed learn-
ing of random weights fuzzy neural networks,” in 2016 IEEE International
Conference on Fuzzy Systems, IEEE, 2016, pp. 2287–2294.

[8] R. Fierimonte, R. Altilio, and M. Panella, “Distributed on-line learning for
random-weight fuzzy neural networks,” in 2017 IEEE International Confer-
ence on Fuzzy Systems, IEEE, 2017, pp. 1–6.

102

https://doi.org/10.1007/978-0-387-39940-9_115
https://doi.org/10.1007/978-0-387-39940-9_115
https://doi.org/10.1007/978-0-387-39940-9_115

[9] Y. Shi, C.-T. Lin, Y.-C. Chang, W. Ding, Y. Shi, and X. Yao, “Consensus
learning for distributed fuzzy neural network in big data environment,” IEEE
Transactions on Emerging Topics in Computational Intelligence, 2020.

[10] R. Agrawal and R. Srikant, “Privacy-preserving data mining,” in Proceedings
of the 2000 ACM SIGMOD international conference on Management of data,
2000, pp. 439–450.

[11] K. Chaudhuri and C. Monteleoni, “Privacy-preserving logistic regression,” in
Advances in neural information processing systems, 2009, pp. 289–296.

[12] K. Xu, H. Yue, L. Guo, Y. Guo, and Y. Fang, “Privacy-preserving machine
learning algorithms for big data systems,” in 2015 IEEE 35th international
conference on distributed computing systems, IEEE, 2015, pp. 318–327.

[13] N. Papernot, P. McDaniel, A. Sinha, and M. P. Wellman, “Sok: Security and
privacy in machine learning,” in 2018 IEEE European Symposium on Security
and Privacy (EuroS&P), IEEE, 2018, pp. 399–414.

[14] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Y. Zhu, “Tools for pri-
vacy preserving distributed data mining,” ACM Sigkdd Explorations Newslet-
ter, vol. 4, no. 2, pp. 28–34, 2002.

[15] P. A. Forero, A. Cano, and G. B. Giannakis, “Consensus-based distributed
support vector machines,” Journal of Machine Learning Research, vol. 11,
no. May, pp. 1663–1707, 2010.

[16] J. Qin, W. Fu, H. Gao, and W. X. Zheng, “Distributed k-means algorithm and
fuzzy c-means algorithm for sensor networks based on multiagent consensus
theory,” IEEE transactions on cybernetics, vol. 47, no. 3, pp. 772–783, 2016.

[17] X. Bi, X. Zhao, G. Wang, P. Zhang, and C. Wang, “Distributed extreme learn-
ing machine with kernels based on mapreduce,” Neurocomputing, vol. 149,
pp. 456–463, 2015.

[18] Y. Ye, M. Xiao, and M. Skoglund, “Decentralized multi-task learning based
on extreme learning machines,” arXiv preprint arXiv:1904.11366, pp. 1–11,
2019.

[19] S. Scardapane, D. Wang, and M. Panella, “A decentralized training algorithm
for echo state networks in distributed big data applications,” Neural Networks,
vol. 78, pp. 65–74, 2016.

[20] L. Georgopoulos and M. Hasler, “Distributed machine learning in networks
by consensus,” Neurocomputing, vol. 124, pp. 2–12, 2014.

103

[21] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-
efficient learning of deep networks from decentralized data,” in Artificial in-
telligence and statistics, PMLR, 2017, pp. 1273–1282.

[22] K. Bonawitz, H. Eichner, W. Grieskamp, et al., “Towards federated learning
at scale: System design,” Proceedings of Machine Learning and Systems, vol. 1,
pp. 374–388, 2019.

[23] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning: Concept
and applications,” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 10, no. 2, pp. 1–19, 2019.

[24] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh,
“Scaffold: Stochastic controlled averaging for federated learning,” in Interna-
tional Conference on Machine Learning, PMLR, 2020, pp. 5132–5143.

[25] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, “Feder-
ated optimization in heterogeneous networks,” Proceedings of Machine Learn-
ing and Systems, vol. 2, pp. 429–450, 2020.

[26] A. Shamsian, A. Navon, E. Fetaya, and G. Chechik, “Personalized feder-
ated learning using hypernetworks,” in International Conference on Machine
Learning, PMLR, 2021, pp. 9489–9502.

[27] I. Achituve, A. Shamsian, A. Navon, G. Chechik, and E. Fetaya, “Personalized
federated learning with gaussian processes,” Advances in Neural Information
Processing Systems, vol. 34, pp. 8392–8406, 2021.

[28] F. Linsner, L. Adilova, S. Däubener, M. Kamp, and A. Fischer, “Approaches
to uncertainty quantification in federated deep learning,” in Joint European
Conference on Machine Learning and Knowledge Discovery in Databases,
Springer, 2021, pp. 128–145.

[29] H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos, and Y. Khazaeni, “Fed-
erated learning with matched averaging,” in International Conference on
Learning Representations, 2020, pp. 170–178. [Online]. Available: https://
openreview.net/forum?id=BkluqlSFDS.

[30] D. J. Stracuzzi, M. G. Chen, M. C. Darling, et al., Uncertainty in data ana-
lytics. http://engineering.purdue.edu/˜mark/puthesis, United States,
2016.

[31] S. Merity, N. S. Keskar, and R. Socher, “Regularizing and optimizing lstm
language models,” arXiv preprint arXiv:1708.02182, 2017.

104

https://openreview.net/forum?id=BkluqlSFDS
https://openreview.net/forum?id=BkluqlSFDS
http://engineering.purdue.edu/~mark/puthesis

[32] A. Camuto, M. Willetts, U. Simsekli, S. J. Roberts, and C. C. Holmes, “Ex-
plicit regularisation in gaussian noise injections,” in Advances in Neural In-
formation Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, Eds., vol. 33, Curran Associates, Inc., 2020, pp. 16 603–
16 614. [Online]. Available: https : / / proceedings . neurips . cc / paper /
2020/file/c16a5320fa475530d9583c34fd356ef5-Paper.pdf.

[33] H. Noh, T. You, J. Mun, and B. Han, “Regularizing deep neural networks by
noise: Its interpretation and optimization,” arXiv preprint arXiv:1710.05179,
2017.

[34] C. E. Rasmussen, “Gaussian processes in machine learning,” in Summer school
on machine learning, Springer, 2003, pp. 63–71.

[35] J. M. Bernardo and A. F. Smith, Bayesian theory. John Wiley & Sons, 2009,
vol. 405.

[36] A. Damianou and N. D. Lawrence, “Deep gaussian processes,” in Artificial
intelligence and statistics, PMLR, 2013, pp. 207–215.

[37] T. Charnock, L. Perreault-Levasseur, and F. Lanusse, “Bayesian Neural Net-
works,” arXiv, pp. 1–16, 2020, issn: 23318422. doi: 10.1590/s0104-65001997000200006.

[38] N. Li, W. Li, J. Sun, Y. Gao, Y. Jiang, and S.-T. Xia, “Stochastic Deep Gaus-
sian Processes over Graphs,” NeurIPS 2020 - Advances in Neural Information
Processing Systems 33 pre-proceedings, no. NeurIPS, pp. 1–12, 2020.

[39] M. Pinsky and S. Karlin, An introduction to stochastic modeling. Academic
press, 2010.

[40] G. Carbone, M. Wicker, L. Laurenti, A. Patane, L. Bortolussi, and G. San-
guinetti, “Robustness of bayesian neural networks to gradient-based attacks,”
arXiv, 2020, issn: 23318422. arXiv: 2002.04359.

[41] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[42] L. Zhao, T. Liu, X. Peng, and D. Metaxas, “Maximum-entropy adversar-
ial data augmentation for improved generalization and robustness,” arXiv
preprint arXiv:2010.08001, 2020.

[43] D. Hendrycks and T. Dietterich, “Benchmarking neural network robustness
to common corruptions and perturbations,” arXiv preprint arXiv:1903.12261,
2019.

[44] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing ad-
versarial examples,” arXiv preprint arXiv:1412.6572, 2014.

105

https://proceedings.neurips.cc/paper/2020/file/c16a5320fa475530d9583c34fd356ef5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c16a5320fa475530d9583c34fd356ef5-Paper.pdf
https://doi.org/10.1590/s0104-65001997000200006
https://arxiv.org/abs/2002.04359

[45] T. Kim and C. H. Park, “Anomaly pattern detection for streaming data,”
Expert Systems with Applications, vol. 149, p. 113 252, 2020.

[46] J.-S. Jang, “ANFIS: Adaptive-network-based fuzzy inference system,” IEEE
Transactions on systems, man, and cybernetics, vol. 23, no. 3, pp. 665–685,
1993.

[47] C. El Hatri and J. Boumhidi, “Fuzzy deep learning based urban traffic incident
detection,” Cognitive Systems Research, vol. 50, pp. 206–213, 2018.

[48] Z. Deng, Y. Jiang, F.-L. Chung, H. Ishibuchi, K.-S. Choi, and S. Wang,
“Transfer prototype-based fuzzy clustering,” IEEE Transactions on Fuzzy
Systems, vol. 24, no. 5, pp. 1210–1232, 2015.

[49] I. Couso, C. Borgelt, E. Hullermeier, and R. Kruse, “Fuzzy sets in data anal-
ysis: From statistical foundations to machine learning,” IEEE Computational
Intelligence Magazine, vol. 14, no. 1, pp. 31–44, 2019.

[50] G. Fu and Z. Kapelan, “Fuzzy probabilistic design of water distribution net-
works,” Water Resources Research, vol. 47, no. 5, pp. 1–12, 2011.

[51] D. Chen, X. Zhang, L. L. Wang, and Z. Han, “Prediction of cloud resources
demand based on hierarchical pythagorean fuzzy deep neural network,” IEEE
Transactions on Services Computing, 2019.

[52] K. V. Shihabudheen and G. N. Pillai, “Recent advances in neuro-fuzzy system:
A survey,” Knowledge-Based Systems, vol. 152, pp. 136–162, Jul. 2018, issn:
09507051. doi: 10.1016/j.knosys.2018.04.014.

[53] Y. Shi, C.-T. Lin, Y.-C. Chang, W. Ding, Y. Shi, and X. Yao, “Consensus
learning for distributed fuzzy neural network in big data environment,” IEEE
Transactions on Emerging Topics in Computational Intelligence, to appear,
2020.

[54] H. Liang, J. Zou, K. Zuo, and M. J. Khan, “An improved genetic algorithm
optimization fuzzy controller applied to the wellhead back pressure control
system,” Mechanical Systems and Signal Processing, vol. 142, p. 106 708, 2020.

[55] Y. Pan, P. Du, H. Xue, and H.-K. Lam, “Singularity-free fixed-time fuzzy con-
trol for robotic systems with user-defined performance,” IEEE Transactions
on Fuzzy Systems, 2020.

[56] L. Zhang, Y. Shi, Y.-C. Chang, and C.-T. Lin, “Hierarchical fuzzy neural
networks with privacy preservation for heterogeneous big data,” IEEE Trans-
actions on Fuzzy Systems, vol. 29, no. 1, pp. 46–58, 2020.

106

https://doi.org/10.1016/j.knosys.2018.04.014

[57] Y. Shi, L. Zhang, Z. Cao, M. Tanveer, and C.-T. Lin, “Distributed semi-
supervised fuzzy regression with interpolation consistency regularization,”
IEEE Transactions on Fuzzy Systems, 2021.

[58] S. P. Boyd, “Convex optimization: From embedded real-time to large-scale
distributed.,” in KDD, 2011, p. 1.

[59] L. Wang, “Heterogeneous data and big data analytics,” Automatic Control
and Information Sciences, vol. 3, no. 1, pp. 8–15, 2017.

[60] G. Raju, J. Zhou, and R. A. Kisner, “Hierarchical fuzzy control,” International
journal of control, vol. 54, no. 5, pp. 1201–1216, 1991.

[61] X.-J. Zeng and M. G. Singh, “Approximation theory of fuzzy systems-mimo
case,” IEEE Transactions on Fuzzy Systems, vol. 3, no. 2, pp. 219–235, 1995.

[62] L.-X. Wang, “Analysis and design of hierarchical fuzzy systems,” IEEE Trans-
actions on Fuzzy systems, vol. 7, no. 5, pp. 617–624, 1999.

[63] R. J. Campello and W. C. do Amaral, “Hierarchical fuzzy relational models:
Linguistic interpretation and universal approximation,” IEEE Transactions
on Fuzzy Systems, vol. 14, no. 3, pp. 446–453, 2006.

[64] Y. Chen, B. Yang, A. Abraham, and L. Peng, “Automatic design of hierarchi-
cal takagi–sugeno type fuzzy systems using evolutionary algorithms,” IEEE
Transactions on Fuzzy Systems, vol. 15, no. 3, pp. 385–397, 2007.

[65] L.-X. Wang, “Fast training algorithms for deep convolutional fuzzy systems
with application to stock index prediction,” IEEE Transactions on Fuzzy Sys-
tems, 2019.

[66] X. Fu, X.-J. Zeng, D. Wang, D. Xu, and L. Yang, “Fuzzy system approaches to
negotiation pricing decision support,” Journal of Intelligent & Fuzzy Systems,
vol. 29, no. 2, pp. 685–699, 2015.

[67] P. Brox, I. Baturone, and S. Sánchez-Solano, “Tuning of a hierarchical fuzzy
system for video de-interlacing,” in International Conference on Fuzzy Sys-
tems, IEEE, 2010, pp. 1–6.

[68] H. He and J. Lawry, “The linguistic attribute hierarchy and its optimisation
for classification,” Soft computing, vol. 18, no. 10, pp. 1967–1984, 2014.

[69] M. A. ŞAHIN and K. Leblebicioğlu, “A hierarchical fuzzy decision maker for
the weapon target assignment,” IFAC Proceedings Volumes, vol. 44, no. 1,
pp. 8993–8998, 2011.

107

[70] X. J. Zhu, “Semi-supervised learning literature survey,” University of Wisconsin-
Madison Department of Computer Sciences, Tech. Rep., 2005.

[71] D. Yarowsky, “Unsupervised word sense disambiguation rivaling supervised
methods,” in 33rd annual meeting of the association for computational lin-
guistics, 1995, pp. 189–196.

[72] E. Riloff, J. Wiebe, and T. Wilson, “Learning subjective nouns using ex-
traction pattern bootstrapping,” in Proceedings of the seventh conference on
Natural language learning at HLT-NAACL 2003-Volume 4, Association for
Computational Linguistics, 2003, pp. 25–32.

[73] C. Rosenberg, M. Hebert, and H. Schneiderman, “Semi-supervised self-training
of object detection models.,” WACV/MOTION, vol. 2, 2005.

[74] A. Blum and T. Mitchell, “Combining labeled and unlabeled data with co-
training,” in Proceedings of the eleventh annual conference on Computational
learning theory, 1998, pp. 92–100.

[75] A. Anis, A. El Gamal, A. S. Avestimehr, and A. Ortega, “A sampling theory
perspective of graph-based semi-supervised learning,” IEEE Transactions on
Information Theory, vol. 65, no. 4, pp. 2322–2342, 2018.

[76] Y. Xu, H. Chen, J. Luo, Q. Zhang, S. Jiao, and X. Zhang, “Enhanced moth-
flame optimizer with mutation strategy for global optimization,” Information
Sciences, vol. 492, pp. 181–203, 2019.

[77] J.-W. Jin and C. P. Chen, “Regularized robust broad learning system for
uncertain data modeling,” Neurocomputing, vol. 322, pp. 58–69, 2018.

[78] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “Mixup: Beyond
empirical risk minimization,” arXiv preprint arXiv:1710.09412, 2017.

[79] V. Verma, A. Lamb, J. Kannala, Y. Bengio, and D. Lopez-Paz, “Interpolation
consistency training for semi-supervised learning,” arXiv preprint arXiv:1903.03825,
2019.

[80] J. B. Predd, S. B. Kulkarni, and H. V. Poor, “Distributed learning in wireless
sensor networks,” IEEE Signal Processing Magazine, vol. 23, no. 4, pp. 56–69,
2006.

[81] M. Barni, P. Failla, R. Lazzeretti, A.-R. Sadeghi, and T. Schneider, “Privacy-
preserving ecg classification with branching programs and neural networks,”
IEEE Transactions on Information Forensics and Security, vol. 6, no. 2,
pp. 452–468, 2011.

108

[82] M. A. Pathak and B. Raj, “Privacy-preserving speaker verification and identi-
fication using gaussian mixture models,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 21, no. 2, pp. 397–406, 2012.

[83] M. Pathak, S. Rane, W. Sun, and B. Raj, “Privacy preserving probabilistic in-
ference with hidden markov models,” in 2011 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2011, pp. 5868–
5871.

[84] F. Yan, S. Sundaram, S. Vishwanathan, and Y. Qi, “Distributed autonomous
online learning: Regrets and intrinsic privacy-preserving properties,” IEEE
Transactions on Knowledge and Data Engineering, vol. 25, no. 11, pp. 2483–
2493, 2012.

[85] X. Chang, S.-B. Lin, and D.-X. Zhou, “Distributed semi-supervised learning
with kernel ridge regression,” The Journal of Machine Learning Research,
vol. 18, no. 1, pp. 1493–1514, 2017.

[86] J. Xie, S. Liu, and H. Dai, “A distributed semi-supervised learning algorithm
based on manifold regularization using wavelet neural network,” Neural Net-
works, vol. 118, pp. 300–309, 2019.

[87] J. Xie, S. Liu, and H. Dai, “Distributed semi-supervised learning algorithm
based on extreme learning machine over networks using event-triggered com-
munication scheme,” Neural Networks, vol. 119, pp. 261–272, 2019.

[88] Y. Yan, L. Chen, and W.-C. Tjhi, “Fuzzy semi-supervised co-clustering for
text documents,” Fuzzy Sets and Systems, vol. 215, pp. 74–89, 2013.

[89] S. Poria, A. Gelbukh, D. Das, and S. Bandyopadhyay, “Fuzzy clustering for
semi-supervised learning–case study: Construction of an emotion lexicon,” in
Mexican International Conference on Artificial Intelligence, Springer, 2012,
pp. 73–86.

[90] S. Zhou, Q. Chen, and X. Wang, “Fuzzy deep belief networks for semi-
supervised sentiment classification,” Neurocomputing, vol. 131, pp. 312–322,
2014.

[91] T. Zhang, Z. Deng, H. Ishibuchi, and L. M. Pang, “Robust tsk fuzzy system
based on semi-supervised learning for label noise data,” IEEE Transactions
on Fuzzy Systems, 2020.

109

[92] Y. Jiang, D. Wu, Z. Deng, et al., “Seizure classification from eeg signals us-
ing transfer learning, semi-supervised learning and tsk fuzzy system,” IEEE
Transactions on Neural Systems and Rehabilitation Engineering, vol. 25, no. 12,
pp. 2270–2284, 2017.

[93] C. Dwork, “Differential privacy: A survey of results,” in International con-
ference on theory and applications of models of computation, Springer, 2008,
pp. 1–19.

[94] K. Chaudhuri, A. D. Sarwate, and K. Sinha, “A near-optimal algorithm for
differentially-private principal components,” The Journal of Machine Learn-
ing Research, vol. 14, no. 1, pp. 2905–2943, 2013.

[95] B. I. Rubinstein, P. L. Bartlett, L. Huang, and N. Taft, “Learning in a
large function space: Privacy-preserving mechanisms for svm learning,” arXiv
preprint arXiv:0911.5708, 2009.

[96] J. C. Duchi, M. I. Jordan, and M. J. Wainwright, “Privacy aware learning,”
Journal of the ACM (JACM), vol. 61, no. 6, pp. 1–57, 2014.

[97] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in Proceed-
ings of the 22nd ACM SIGSAC conference on computer and communications
security, 2015, pp. 1310–1321.

[98] R. K. Langari, S. Sardar, S. A. A. Mousavi, and R. Radfar, “Combined fuzzy
clustering and firefly algorithm for privacy preserving in social networks,”
Expert Systems with Applications, vol. 141, p. 112 968, 2020.

[99] L. Sweeney, “K-anonymity: A model for protecting privacy,” International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 10,
no. 05, pp. 557–570, 2002.

[100] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam, “L-
diversity: Privacy beyond k-anonymity,” ACM Transactions on Knowledge
Discovery from Data (TKDD), vol. 1, no. 1, 3–es, 2007.

[101] N. Li, T. Li, and S. Venkatasubramanian, “T-closeness: Privacy beyond k-
anonymity and l-diversity,” in 2007 IEEE 23rd International Conference on
Data Engineering, IEEE, 2007, pp. 106–115.

[102] Q. Li, Y. Li, J. Gao, B. Zhao, W. Fan, and J. Han, “Resolving conflicts in
heterogeneous data by truth discovery and source reliability estimation,” in
Proceedings of the 2014 ACM SIGMOD international conference on Manage-
ment of data, 2014, pp. 1187–1198.

110

[103] J. Zhang and G. Huang, “Research on distributed heterogeneous data pca
algorithm based on cloud platform,” in AIP Conference Proceedings, AIP
Publishing LLC, vol. 1967, 2018, p. 020 016.

[104] D. P. Lewis, T. Jebara, and W. S. Noble, “Support vector machine learning
from heterogeneous data: An empirical analysis using protein sequence and
structure,” Bioinformatics, vol. 22, no. 22, pp. 2753–2760, 2006.

[105] Q. Chen, X. Song, H. Yamada, and R. Shibasaki, “Learning deep representa-
tion from big and heterogeneous data for traffic accident inference,” in Thir-
tieth AAAI Conference on Artificial Intelligence, 2016.

[106] H. Zuo, J. Lu, G. Zhang, and W. Pedrycz, “Fuzzy rule-based domain adapta-
tion in homogeneous and heterogeneous spaces,” IEEE Transactions on Fuzzy
Systems, vol. 27, no. 2, pp. 348–361, 2018.

[107] S. Liu, Q. Qu, L. Chen, and L. M. Ni, “Smc: A practical schema for privacy-
preserved data sharing over distributed data streams,” IEEE Transactions on
Big Data, vol. 1, no. 2, pp. 68–81, 2015.

[108] G. Taylor, R. Burmeister, Z. Xu, B. Singh, A. Patel, and T. Goldstein, “Train-
ing neural networks without gradients: A scalable ADMM approach,” in In-
ternational conference on machine learning, 2016, pp. 2722–2731.

[109] C. Leng, Z. Dou, H. Li, S. Zhu, and R. Jin, “Extremely low bit neural network:
Squeeze the last bit out with ADMM,” in Thirty-Second AAAI Conference
on Artificial Intelligence, 2018, pp. 3466–3473.

[110] B. Dang, Y. Wang, J. Zhou, et al., “Transfer collaborative fuzzy clustering
in distributed peer-to-peer networks,” IEEE Transactions on Fuzzy Systems,
2020.

[111] Y. Jiang, Z. Deng, F.-L. Chung, and S. Wang, “Realizing two-view tsk fuzzy
classification system by using collaborative learning,” IEEE transactions on
systems, man, and cybernetics: systems, vol. 47, no. 1, pp. 145–160, 2016.

[112] T. Zhang, Z. Deng, D. Wu, and S. Wang, “Multiview fuzzy logic system with
the cooperation between visible and hidden views,” IEEE Transactions on
Fuzzy Systems, vol. 27, no. 6, pp. 1162–1173, 2018.

[113] K. Nigam, A. K. McCallum, S. Thrun, and T. Mitchell, “Text classification
from labeled and unlabeled documents using em,” Machine learning, vol. 39,
no. 2-3, pp. 103–134, 2000.

111

[114] S. Baluja, “Using labeled and unlabeled data for probabilistic modeling of
face orientation,” International journal of pattern recognition and artificial
intelligence, vol. 14, no. 08, pp. 1097–1107, 2000.

[115] G. Zhang, C. Wang, B. Xu, and R. Grosse, “Three mechanisms of weight
decay regularization,” arXiv preprint arXiv:1810.12281, 2018.

[116] D. C. Cireşan, U. Meier, L. M. Gambardella, and J. Schmidhuber, “Deep, big,
simple neural nets for handwritten digit recognition,” Neural computation,
vol. 22, no. 12, pp. 3207–3220, 2010.

[117] Y. Grandvalet and Y. Bengio, “Semi-supervised learning by entropy minimiza-
tion,” in Advances in neural information processing systems, 2005, pp. 529–
536.

[118] D.-H. Lee, “Pseudo-label: The simple and efficient semi-supervised learning
method for deep neural networks,” in Workshop on challenges in representa-
tion learning, ICML, vol. 3, 2013.

[119] V. Verma, A. Lamb, J. Kannala, Y. Bengio, and D. Lopez-Paz, “Interpolation
consistency training for semi-supervised learning,” in Proceedings of the 28th
International Joint Conference on Artificial Intelligence, 2019, pp. 3635–3641.

[120] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver, and C. A. Raf-
fel, “Mixmatch: A holistic approach to semi-supervised learning,” in Advances
in Neural Information Processing Systems, 2019, pp. 5049–5059.

[121] J. Xie, S. Liu, H. Dai, and Y. Rong, “Distributed semi-supervised learning
algorithms for random vector functional-link networks with distributed data
splitting across samples and features,” Knowledge-Based Systems, p. 105 577,
2020.

[122] L. A. Zadeh, “Fuzzy sets,” in Fuzzy sets, fuzzy logic, and fuzzy systems: selected
papers by Lotfi A Zadeh, World Scientific, 1996, pp. 394–432.

[123] G. Klir and B. Yuan, Fuzzy sets and fuzzy logic. Prentice hall New Jersey,
1995, vol. 4.

[124] E. H. Mamdani, “Application of fuzzy algorithms for control of simple dy-
namic plant,” in Proceedings of the institution of electrical engineers, IET,
vol. 121, 1974, pp. 1585–1588.

[125] M. Sugeno, “On stability of fuzzy systems expressed by fuzzy rules with single-
ton consequents,” IEEE Transactions on Fuzzy systems, vol. 7, no. 2, pp. 201–
224, 1999.

112

[126] J. M. Mendel and R. B. John, “Type-2 fuzzy sets made simple,” IEEE Trans-
actions on fuzzy systems, vol. 10, no. 2, pp. 117–127, 2002.

[127] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its appli-
cations to modeling and control,” IEEE transactions on systems, man, and
cybernetics, no. 1, pp. 116–132, 1985.

[128] C.-T. Lin and C. S. G. Lee, “Neural-network-based fuzzy logic control and
decision system,” IEEE Transactions on Computers, no. 12, pp. 1320–1336,
1991.

[129] H. Huang, C. Yang, and C. P. Chen, “Optimal robot–environment interaction
under broad fuzzy neural adaptive control,” IEEE Transactions on Cybernet-
ics, vol. 51, no. 7, pp. 3824–3835, 2020.

[130] A. Salimi-Badr and M. M. Ebadzadeh, “A novel self-organizing fuzzy neural
network to learn and mimic habitual sequential tasks,” IEEE transactions on
cybernetics, 2020.

[131] S. J. Nowlan and G. E. Hinton, “Simplifying neural networks by soft weight-
sharing,” Neural computation, vol. 4, no. 4, pp. 473–493, 1992.

[132] B. Mele and G. Altarelli, “Lepton spectra as a measure of b quark polariza-
tion at LEP,” Physics Letters B, vol. 299, no. 3-4, pp. 345–350, 1993, issn:
03702693. doi: 10.1016/0370-2693(93)90272-J.

[133] C. Wei, S. Kakade, and T. Ma, “The implicit and explicit regularization effects
of dropout,” in Proceedings of the 37th International Conference on Machine
Learning, H. D. III and A. Singh, Eds., ser. Proceedings of Machine Learn-
ing Research, vol. 119, PMLR, 13–18 Jul 2020, pp. 10 181–10 192. [Online].
Available: http://proceedings.mlr.press/v119/wei20d.html.

[134] C. M. Bishop, “Training with noise is equivalent to tikhonov regularization,”
Neural computation, vol. 7, no. 1, pp. 108–116, 1995.

[135] G. An, “The effects of adding noise during backpropagation training on a
generalization performance,” Neural computation, vol. 8, no. 3, pp. 643–674,
1996.

[136] B. Poole, J. Sohl-Dickstein, and S. Ganguli, “Analyzing noise in autoencoders
and deep networks,” arXiv preprint arXiv:1406.1831, 2014.

[137] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” The
journal of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

113

https://doi.org/10.1016/0370-2693(93)90272-J
http://proceedings.mlr.press/v119/wei20d.html

[138] Y. Lu, Z. Zhang, G. Lu, Y. Zhou, J. Li, and D. Zhang, “Addi-reg: A better
generalization-optimization tradeoff regularization method for convolutional
neural networks,” IEEE Transactions on Cybernetics, 2021.

[139] Q. Yin, B. Xu, K. Zhou, and P. Guo, “Bayesian pseudoinverse learners: From
uncertainty to deterministic learning,” IEEE Transactions on Cybernetics,
vol. 52, no. 11, pp. 12 205–12 216, 2022. doi: 10.1109/TCYB.2021.3079906.

[140] A. Bekasov and I. Murray, “Bayesian adversarial spheres: Bayesian inference
and adversarial examples in a noiseless setting,” arXiv preprint arXiv:1811.12335,
2018.

[141] Y. Gal and L. Smith, “Sufficient conditions for idealised models to have no
adversarial examples: A theoretical and empirical study with bayesian neural
networks,” arXiv preprint arXiv:1806.00667, 2018.

[142] Y. Li and Y. Gal, “Dropout inference in bayesian neural networks with alpha-
divergences,” in International conference on machine learning, PMLR, 2017,
pp. 2052–2061.

[143] L. Cardelli, M. Kwiatkowska, L. Laurenti, N. Paoletti, A. Patane, and M.
Wicker, “Statistical guarantees for the robustness of Bayesian neural net-
works,” arXiv, pp. 5693–5700, 2019, issn: 23318422.

[144] N. Carlini and D. Wagner, “Adversarial examples are not easily detected:
Bypassing ten detection methods,” in Proceedings of the 10th ACM Workshop
on Artificial Intelligence and Security, 2017, pp. 3–14.

[145] H. Liu, Y.-S. Ong, Z. Yu, J. Cai, and X. Shen, “Scalable gaussian process
classification with additive noise for non-gaussian likelihoods,” IEEE Trans-
actions on Cybernetics, vol. 52, no. 7, pp. 5842–5854, 2022. doi: 10.1109/
TCYB.2020.3043355.

[146] H. Liu, Y.-S. Ong, and J. Cai, “A survey of adaptive sampling for global
metamodeling in support of simulation-based complex engineering design,”
Structural and Multidisciplinary Optimization, vol. 57, no. 1, pp. 393–416,
2018.

[147] Z. Dai, A. Damianou, J. González, and N. Lawrence, “Variational auto-
encoded deep gaussian processes,” arXiv preprint arXiv:1511.06455, 2015.

[148] M. Mohri, G. Sivek, and A. T. Suresh, “Agnostic federated learning,” in In-
ternational Conference on Machine Learning, PMLR, 2019, pp. 4615–4625.

[149] S. P. Singh and M. Jaggi, “Model fusion via optimal transport,” Advances in
Neural Information Processing Systems, vol. 33, pp. 22 045–22 055, 2020.

114

https://doi.org/10.1109/TCYB.2021.3079906
https://doi.org/10.1109/TCYB.2020.3043355
https://doi.org/10.1109/TCYB.2020.3043355

[150] C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, and Y. Gao, “A survey on federated
learning,” Knowledge-Based Systems, vol. 216, p. 106 775, 2021.

[151] Q. Li, B. He, and D. Song, “Model-contrastive federated learning,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, 2021, pp. 10 713–10 722.

[152] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor, “Tackling the objective
inconsistency problem in heterogeneous federated optimization,” Advances in
neural information processing systems, vol. 33, pp. 7611–7623, 2020.

[153] M. Luo, F. Chen, D. Hu, Y. Zhang, J. Liang, and J. Feng, “No fear of het-
erogeneity: Classifier calibration for federated learning with non-iid data,”
Advances in Neural Information Processing Systems, vol. 34, pp. 5972–5984,
2021.

[154] A. Dieuleveut, G. Fort, E. Moulines, and G. Robin, “Federated-em with het-
erogeneity mitigation and variance reduction,” Advances in Neural Informa-
tion Processing Systems, vol. 34, pp. 29 553–29 566, 2021.

[155] V. Kulkarni, M. Kulkarni, and A. Pant, “Survey of personalization techniques
for federated learning,” in 2020 Fourth World Conference on Smart Trends in
Systems, Security and Sustainability (WorldS4), IEEE, 2020, pp. 794–797.

[156] A. Fallah, A. Mokhtari, and A. Ozdaglar, “Personalized federated learning
with theoretical guarantees: A model-agnostic meta-learning approach,” Ad-
vances in Neural Information Processing Systems, vol. 33, pp. 3557–3568,
2020.

[157] A. Fallah, A. Mokhtari, and A. Ozdaglar, “On the convergence theory of
gradient-based model-agnostic meta-learning algorithms,” in International Con-
ference on Artificial Intelligence and Statistics, PMLR, 2020, pp. 1082–1092.

[158] Y. Huang, L. Chu, Z. Zhou, et al., “Personalized cross-silo federated learn-
ing on non-iid data,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, 2021, pp. 7865–7873.

[159] J. Tang, Y. Duan, Y. Zhou, and J. Jin, “Distributed slice selection-based com-
putation offloading for intelligent vehicular networks,” IEEE Open Journal of
Vehicular Technology, vol. 2, pp. 261–271, 2021.

[160] V. Smith, C.-K. Chiang, M. Sanjabi, and A. Talwalkar, “Federated multi-
task learning,” in Proceedings of the 31st International Conference on Neural
Information Processing Systems, 2017, pp. 4427–4437.

115

[161] X. Ma, J. Zhang, S. Guo, and W. Xu, “Layer-wised model aggregation for
personalized federated learning,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2022, pp. 10 092–10 101.

[162] L. Collins, H. Hassani, A. Mokhtari, and S. Shakkottai, “Exploiting shared
representations for personalized federated learning,” in International Confer-
ence on Machine Learning, PMLR, 2021, pp. 2089–2099.

[163] K. Singhal, H. Sidahmed, Z. Garrett, S. Wu, J. Rush, and S. Prakash, “Fed-
erated reconstruction: Partially local federated learning,” Advances in Neural
Information Processing Systems, vol. 34, pp. 11 220–11 232, 2021.

[164] C.-F. Juang and C.-T. Lin, “An online self-constructing neural fuzzy inference
network and its applications,” IEEE transactions on Fuzzy Systems, vol. 6,
no. 1, pp. 12–32, 1998.

[165] G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning machine
for regression and multiclass classification,” IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), vol. 42, no. 2, pp. 513–529, 2011.

[166] S. L. Chiu, “Fuzzy model identification based on cluster estimation,” Journal
of Intelligent & fuzzy systems, vol. 2, no. 3, pp. 267–278, 1994.

[167] J. MacQueen et al., “Some methods for classification and analysis of multi-
variate observations,” in Proceedings of the fifth Berkeley symposium on math-
ematical statistics and probability, Oakland, CA, USA, vol. 1, 1967, pp. 281–
297.

[168] P. A. Forero, A. Cano, and G. B. Giannakis, “Distributed clustering using
wireless sensor networks,” IEEE Journal of Selected Topics in Signal Process-
ing, vol. 5, no. 4, pp. 707–724, 2011.

[169] Y. Wang, W. Yin, and J. Zeng, “Global convergence of ADMM in nonconvex
nonsmooth optimization,” Journal of Scientific Computing, vol. 78, no. 1,
pp. 29–63, 2019.

[170] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales,
“Learning to compare: Relation network for few-shot learning,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2018,
pp. 1199–1208.

[171] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a few exam-
ples: A survey on few-shot learning,” ACM computing surveys (csur), vol. 53,
no. 3, pp. 1–34, 2020.

116

[172] J. C. Bezdek, R. Ehrlich, and W. Full, “Fcm: The fuzzy c-means clustering
algorithm,” Computers & Geosciences, vol. 10, no. 2-3, pp. 191–203, 1984.

[173] A. Vergara, S. Vembu, T. Ayhan, M. A. Ryan, M. L. Homer, and R. Huerta,
“Chemical gas sensor drift compensation using classifier ensembles,” Sensors
and Actuators B: Chemical, vol. 166, pp. 320–329, 2012.

[174] F. Paschke, C. Bayer, M. Bator, et al., “Sensorlose zustandsüberwachung
an synchronmotoren,” in ProcEEDings 23. Workshop comPutational intEl-
ligEncE, 2013, p. 211.

[175] K. S. Gyamfi, J. Brusey, A. Hunt, and E. Gaura, “Linear dimensionality
reduction for classification via a sequential bayes error minimisation with
an application to flow meter diagnostics,” Expert Systems with Applications,
vol. 91, pp. 252–262, 2018.

[176] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis, “Modeling wine
preferences by data mining from physicochemical properties,” Decision sup-
port systems, vol. 47, no. 4, pp. 547–553, 2009.

[177] J. Dvořák and P. Savickỳ, “Softening splits in decision trees using simulated
annealing,” in International Conference on Adaptive and Natural Computing
Algorithms, Springer, 2007, pp. 721–729.

[178] I. Cohen, F. Cozman, N. Sebe, M. Cirelo, and T. Huang, “Semisupervised
learning of classifiers: Theory, algorithms, and their application to human-
computer interaction,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 26, no. 12, pp. 1553–1566, 2004. doi: 10.1109/TPAMI.2004.
127.

[179] J. G. Rohra, B. Perumal, S. J. Narayanan, P. Thakur, and R. B. Bhatt, “User
localization in an indoor environment using fuzzy hybrid of particle swarm
optimization & gravitational search algorithm with neural networks,” in Pro-
ceedings of Sixth International Conference on Soft Computing for Problem
Solving, Springer, 2017, pp. 286–295.

[180] A. L. Freire, G. A. Barreto, M. Veloso, and A. T. Varela, “Short-term mem-
ory mechanisms in neural network learning of robot navigation tasks: A case
study,” in 2009 6th Latin American Robotics Symposium (LARS 2009), IEEE,
2009, pp. 1–6.

[181] M. D. Hoffman and A. Gelman, “The no-u-turn sampler: Adaptively setting
path lengths in hamiltonian monte carlo.,” J. Mach. Learn. Res., vol. 15,
no. 1, pp. 1593–1623, 2014.

117

https://doi.org/10.1109/TPAMI.2004.127
https://doi.org/10.1109/TPAMI.2004.127

[182] M. Betancourt, “A conceptual introduction to hamiltonian monte carlo,”
arXiv preprint arXiv:1701.02434, 2017.

[183] M. Grandini, E. Bagli, and G. Visani, “Metrics for multi-class classification:
An overview,” arXiv preprint arXiv:2008.05756, 2020.

[184] J. de Jesús Rubio, “SOFMLS: Online self-organizing fuzzy modified least-
squares network,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 6, pp. 1296–
1309, 2009.

[185] R. Lopez, E. Balsa-Canto, and E. Oñate, “Neural networks for variational
problems in engineering,” International Journal for Numerical Methods in
Engineering, vol. 75, no. 11, pp. 1341–1360, 2008.

[186] J. J. Thompson, M. R. Blair, L. Chen, and A. J. Henrey, “Video game teleme-
try as a critical tool in the study of complex skill learning,” PloS one, vol. 8,
no. 9, e75129, 2013.

[187] P. Tüfekci, “Prediction of full load electrical power output of a base load
operated combined cycle power plant using machine learning methods,” In-
ternational Journal of Electrical Power & Energy Systems, vol. 60, pp. 126–
140, 2014.

[188] R. K. Pace and R. Barry, “Sparse spatial autoregressions,” Statistics & Prob-
ability Letters, vol. 33, no. 3, pp. 291–297, 1997.

[189] Y. Hu, Y. Zhao, Y. Cai, Z. Fu, and S. Ding, “Comparison of statistical learning
and predictive models on breast cancer data and king county housing data,”
2017.

[190] M. J. Wade and S. Kalisz, “The causes of natural selection,” Evolution, vol. 44,
no. 8, pp. 1947–1955, 1990.

[191] S. Mirjalili, “Genetic algorithm,” in Evolutionary algorithms and neural net-
works, Springer, 2019, pp. 43–55.

[192] J.-S. R. Jang, C.-T. Sun, and E. Mizutani, “Neuro-fuzzy and soft computing-a
computational approach to learning and machine intelligence [book review],”
IEEE Transactions on automatic control, vol. 42, no. 10, pp. 1482–1484, 1997.

118

	Introduction
	Privacy Preservation and Distributed Learning
	Data Uncertainty and Fuzzy Neural Networks
	Distributed Fuzzy Neural Networks
	The Challenge of Limited Fuzzy Reasoning Ability
	The Challenge of Data Hetetorgeneity
	The Curse of Dimensionality Challenge
	The Challenge of Unlabelled Data Utilization

	Research Aims
	Solutions
	Structure of this Dissertation

	Literature Reviews
	Privacy Preserving Algorithms
	Heterogeneous data
	Distributed Learning
	Semi-supervised learning
	Fuzzy Neural Networks
	Robust Deep Neural Networks
	Distributed fuzzy neural networks
	Deep Probabilistic Models
	Federated Learning
	Summary

	Preliminary
	Centralized Fuzzy Neural Networks
	Centralized Hierarchical fuzzy neural networks
	Distributed Hierarchical fuzzy neural networks

	Robust Fuzzy Neural Network with An Adaptive Inference Engine
	Formulation
	Antecedent Component
	Adaptive Inference Engine
	Consequent Component

	Experiments
	General Performance
	Ablation Study
	Generalization Analysis
	Convergence analysis

	Summary

	Distributed Semi-supervised Fuzzy Neural Networks with Interpolation Consistency Regularization
	Centralized semi-supervised fuzzy regression
	Fuzzy inference system
	Fuzzy C-Means for the structure learning
	Closed-form solution for the parameter learning
	Semi-supervised fuzzy regression with ICR

	Distributed semi-supervised fuzzy regression with ICR
	Distributed FCM
	Distributed ICR

	Experiments
	Performance on Different Datasets
	Convergence Analysis
	Effects of regularization and ADMM parameters
	Effects of the number of interpolated unlabeled samples
	Effects of the rule and agent number

	Summary

	Federated Fuzzy Neural Network with Evolutionary Rule Learning
	Federated Fuzzy Neural Network
	Evolutionary Rule Learning
	Rule Cooperation Stage
	Rule Evolution Stage
	The Performance of the FedFNN on Non-IID Datasets

	Experiments
	The Performance of the FedFNN on Datasets with Uncertainty
	Convergence Analysis of the FedFNN with ERL
	Analysis of Key Parameter Robustness

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

