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Abstract

Numerous real-world problems including controlling autonomous self-driving cars,

drones, and robot swarm control are typically formulated as a cooperative multi-agent

reinforcement learning (MARL) challenge. In cooperative MARL, one key challenge is

handling the enormous joint action space. This joint action space increases at an expo-

nential rate relative to the agents present in the MARL task. For instance, if there are

six agents which have nine actions to select from, this will yield a space representing the

joint actions which exceeds over ten million possibilities1. Effective MARL methods must

be capable of operating over a large joint action space, particularly when the application

of traditional single-agent reinforcement learning methods are not practically viable.

In the first section, we examine the usage of dynamic coordination graphs for MARL

called Dynamic Q-value Coordination Graph (QCGraph). QCGraph aims to dynamically

represent and generalise through factorising the combined value function of all agents.

This is achieved by using global information generated from analysing subsets of agents.

This allows agents to learn coordination even when conducting decentralised execution.

The second part of the thesis investigates challenges around detection of distribution

shift in reinforcement learning which occurs when attempting to use offline experiences

which may be sub-optimal. Specifically we explore Dual Behavioural regularised Actor

Critic (DBR) to train agents to gravitate towards “good” experiences, whilst avoiding

“bad” ones. This is achieved through constructing two behavioural policies to model “good”

1six agents with nine actions contains 69 > 10000000
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and “bad” experiences and constraining the resulting learning process of the policy to

ensure the distributional shift is bounded. Although we can apply the general concepts in

DBR to multi-agent reinforcement learning, we can also use experiences of other agents.

We explore this in Multi-Agent regularised Q-learning where we examine mechanisms

for correcting for the differences in experiences across agents based on their underlying

policy distribution when sharing experiences.

In the final part of the thesis we explore the task of collaboration, where we allow

agents to behave in ways which purposely neglect the coordination aspect of mixing

networks which are commonly used in MARL algorithms. To examine this, we first

explore neural network ensemble approaches which can learn disjointly and provide

theoretical guarantees in the boosting framework. We use this ensemble learning

approach in MARL in an approach we call Greedy UnMixing which allows us to combine

the mixer and individual networks such that the mixing network can be ‚Äúunmixed‚Äù,

thereby allowing agents to become uncoordinated explicitly.
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1.1 Introduction

Historically, artificial intelligence was focused on knowledge based reasoning and expert

systems. However these approaches had limitations for tasks that most humans find

straight-forward such as image recognition tasks. This necessitated the advancement

of machine learning and pattern recognition. These approaches focused on providing a

probabilistic approach, which introduced algorithms such as linear regression, gradient

boosted trees, and many other algorithms. Deep learning has further shown tremendous

1



CHAPTER 1. INTRODUCTION

progress primarily in the fields of image and pattern recognition, as well as natural

language understanding, which have been driven through large datasets and the usage

of graphical processing units. In all the examples listed previously, it is assumed that

supervised learning is used, where the training dataset is assumed to be independent of

the decisions made by the algorithms.

However in reinforcement learning, this assumption no longer holds. Instead al-

gorithms take actions which influence the state of the environment. Then within the

reinforcement learning setup, an agent (e.g. an autonomous car), interacts with the

environment (e.g. the act of driving in a city) by taking actions based on what it perceives

through its sensors, including steering, acceleration and braking. At every point of time,

an agent observes and collects rewards from the environment, and acts accordingly.

An agent’s strategy or actions based on observations is known as the ‘policy’ and

reinforcement learning typically aims to maximise the cumulative discounted reward.

Rewards are discounted over a time horizon. This forces rewards earned in the far future

to be less influential than rewards received near-term. This enables agents to correctly

assign value to actions. We define a trajectory as the progression of observations, rewards,

and actions that end on a terminal condition, which can be time-based, or when an agent

completes (or fails) the task. In reinforcement learning, actions are stateful, where the

actions can change the immediate reward, or the transition probability relating to the

next state, and/or future rewards. Our thesis is focused on model-free scenario, where

the agent is not presented with the rules governing the reinforcement learning task,

and therefore is required to learn based on past trajectories of experiences through

interacting with the environment.

2



1.2. OVERVIEW

1.2 Overview

Reinforcement Learning (RL) typically tackle problems that involves a single agent

to solve a single task. However, many challenges involve multiple learning agents,

leading to Multi-Agent Reinforcement Learning (MARL) algorithms. One of the central

challenges is handling the complexity surrounding the enormous joint action space in

the multi-agent setting. As an example, six agents each having nine actions to select

from, will yield a space representing the joint actions exceeding over one hundred million

actions. This demonstrates the exponential growth relative to the increase in number of

agents. As a consequence, MARL methods need to be able to generalise over this complex

joint action space, as the application of traditional single-agent reinforcement learning

methods are impractical. Throughout this thesis, we address MARL challenges using

the commonly used approach called Centralised Training with Decentralised Execution

(CTDE). As part of this framework, training is carried out in a centralised manner, in

which the simulator or environment may have access to global state information, such

as global information on other agents. However in the evaluation or execution phase, the

agents are restricted in their observation and are required to act independently based

only on local state or local observations only.

We focus on developing novel deep MARL algorithms in this thesis. In particular

we focus on the following three facets: coordination, detection, and collaboration. Co-

ordination explores how we can dynamically induce coordination graphs to learn and

exploit graph representations of agents to improve policies. Collaboration describes the

challenge of exploiting the multi-agent paradigm to enable efficient learning through

decoupling single and multi-agent state spaces in the MARL framework. Finally, detec-

tion describes the challenge that arises in accounting for changes in the distributional

shift in agent experiences when leveraging suboptimal experience, or accounting for

distributional shifts when leveraging other agent experiences.

3



CHAPTER 1. INTRODUCTION

1.3 Multi-Agent Reinforcement Learning

Research in RL is typically focused around single agent approaches. However, real world

challenges often necessitates environments or tasks that contain a large number of

autonomous, learning agents. This leads towards the need for multi-agent RL. There

are numerous examples of these tasks, including autonomous vehicles, drones and

packet delivery, among other examples. These tasks typically require agents to make

decisions based on their own local environment-based observations. This may include

other agents, which could be biological in nature such as humans or animals. The reason

why MARL algorithms are required is to explore approaches to constructing effective

policies, algorithms, and rules in these settings. Part of the challenge when applying

single agent RL approaches to multi-agent tasks is the increase in the joint action space

complexity. For example, if we apply single agent reinforcement learning to a task which

involves eight agents with nine actions each, it would lead to attempting to optimise a

joint action space over 100 million in size, rendering this approach impractical.

The MARL field aims to address these kinds of problems, and seeks to develop and

analyse algorithms that can discover and create effective policies in these settings. As

humans we have the ability to learn from negative experiences, whether it is to actively

avoid making the same mistakes again or through observing the mistakes of others. In

this thesis we address how agents can acquire a similar ability through the challenge of

detection - can an agent detect bad experiences and learn from them? Can an agent learn

from other agent’s experiences and apply it to their context where appropriate? A key

component of reinforcement learning is for agents to explore efficiently. As we typically

have multiple agents in multi-agent tasks, we address the challenge of collaboration

by understanding how we can leverage multiple agents to provide diverse experiences

through allowing agents to be decoupled from centralised structures. In the real world,

cooperative tasks can be complex. Sometimes it is advantageous to act alone, or in
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pairs or as a collective. We address the challenge of coordination to understand how

centralised training structures can be dynamically altered to cater for these scenarios.

These observation culminate in the three cardinal components of this thesis: de-

tection, collaboration and coordination within the cooperative MARL framework. We

hypothesise that further consideration around sharing agent experiences and the de-

tection of distributional shifts can be used to optimise MARL policies when there are

limited or sub-optimal data. This can allow for flexible neural network structures in

which agents can ignore centralised mixing networks in MARL algorithms, enabling

greater diversity during exploration, and the ability to generate diverse representations

through graph structures can assist in coordination.

To address these challenges, we will take advantage of centralised training, decen-

tralised execution framework. This framework is commonly used in the real world where

agents are to act or execute autonomously, based on its own local observation, but may be

trained in a closed environment such as a simulator or a laboratory. Centralised training

can greatly enhance the learning process in multi-agent problems and allow algorithms

to exploit the central state information without requiring it upon evaluation.

1.4 Thesis Structure and Contributions

This thesis is concerned with Multi-Agent Reinforcement Learning. The methods which

are introduced surround the three domains below, which are learning to coordinate,

learning to detect, and learning to collaborate.

Below, we provide a brief explanation of each section.

Background

In Chapter 2 we formally introduce multi-agent reinforcement setting and provide the

necessary background to deep multi-agent RL which is explored throughout this thesis.
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Part I: Learning to Coordinate

The previous methods have not directly introduced new structures to the MARL frame-

work; rather they have only introduced mechanisms to leverage existing experiences

better and have multi-agents explore more effectively. To remedy how we can learn poli-

cies more effectively, we leverage ideas around coordination graphs. Having coordination

graphs which are dynamically induced and learned can enable the mixer networks in the

centralised training step to better represent the problem space and update the agents’

policies. Dynamic Coordination Graph (QCGraph) is an approach which explores how

this could be achieved and is competitive with other value factorisation methods in the

Q-value MARL space.

This part draws on the following publications:

• Siu, C., Traish, J. and Da Xu, R.Y., 2021. Dynamic Coordination Graph for Coop-

erative Multi-Agent Reinforcement Learning. To appear in Asian Conference on

Machine Learning 2021.

Part II: Learning to Detect

One of the differences with single agent algorithms when transitioning towards algo-

rithms in the MARL setting is the availability of different agent experiences that can

be used for training all agents. One of the challenges is understanding and detecting

distributional shifts in experiences across diverse sets of experiences that may be from

the same or different agents and adjusting appropriately.

In Chapter 4 we explore Dual Behaviour Regularised Reinforcement Learning (DBR).

DBR proposes an algorithm to learn from experiences which may be sub-optimal in

nature through learning dual behavioural policies to model the distribution of “good”

and “bad” experiences and constraining the policy updates to actively avoid “bad” experi-

ences and move towards “good” experiences. This leverages the ideas discussed in two
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papers, the “Advantage-based Regret Minimisation” framework [35], and “Self-Imitation

Learning” through bootstrapping off an agent’s past experiences [52]. This strategy has

demonstrated the ability to:

• Constrain the exploration of an agent to avoid states leading to poor outcomes

• Constrain the policy evaluation under the regret minimisation framework

• Provide greater representational power compared with approaches which do not

leverage “bad” experiences as a constraint

This approach was used in the MARL context when considering SEAC frameworks to

enable efficient learning from past agent’s experiences in for multi-agent environments

with positive effect.

In Chapter 5 we introduce Multi-Agent Regularised Q- Learning (MARQ). This ap-

proach is different compared with existing MARL approaches, which leverage centralised

structures to promote communication constraints and other global information., The

latter often become extraneous and are removed at execution. Instead of explicitly

learning redundant structures in the form of neural networks which are removed during

agent execution phase in the CTDE framework, we propose to learn these structures

implicitly. This is achieved through sharing agent experiences and the inclusion of a

regularisation penalty which enables structured exploration. In this chapter, we propose

two different ways in which shared experienced can be leveraged either implicitly or

explicitly to regularise our policies in the MARL setting. Our approach addresses limita-

tions in applying shared experiences naively through correcting bias when sharing agent

experiences using off-policy methods through the addition of regularisation constraints.

We observed empirically that this enables more efficient training as we require less data

compared with other MARL approaches which leverage explicit centralised structures

that lead to faster convergence and training speed. We explore how this can be achieved
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through correcting for shared experiences and the inclusion of regularisation penalties

to account for differences in policy distribution across multiple agents.

These chapters are based on the following pre-prints:

• Siu, C., Traish, J. and Da Xu, R.Y., 2021. Dual Behaviour regularised Reinforce-

ment Learning. arXiv preprint arXiv:2109.09037.

• Siu, C., Traish, J. and Da Xu, R.Y., 2021. regularise! Don’t Mix: Multi-Agent

Regularised Q- Learning. arXiv preprint arXiv:2109.09038.

Part III: Learning to Collaborate

So far we have only considered the scenarios to leverage and optimise the set of ex-

periences which the agents have collected, without consideration for how agents can

effectively decouple their own experiences from other agent’s experiences or trajectories.

In Chapter 6 we explore supervised learning techniques in Residual Networks and

how its boosting representation can evolve into new and novel structures to combine

disparate supervised learning models together. We extend this approach to MARL to

demonstrate how we can use ensemble learning techniques to improve the performance of

MARL algorithms with minimal changes to the neural network architecture. In Chapter

7 we introduce Greedy UnMixing (GUM) for Q-Learning in MARL tasks. GUM presents a

novel ensembling approach to “unmix” or decouple the relationship between each agent’s

policy and the centralised mixing network. This simplifies the problem space, and is

achieved through the “centralised training decentralised execution” framework, and

allows the potential of agents to act independently (i.e. unmixing) from the centralised

structures that are typically used in MARL frameworks.

This part draws on the following pre-prints and publications:

8



1.4. THESIS STRUCTURE AND CONTRIBUTIONS

• Siu, C., 2019, October. Residual Networks Behave Like Boosting Algorithms. In

2019 IEEE International Conference on Data Science and Advanced Analytics

(DSAA) (pp. 31-40). IEEE.

• Siu, C., Traish, J. and Da Xu, R.Y., 2021. Greedy UnMixing for Q-Learning in

Multi-Agent Reinforcement Learning. arXiv preprint arXiv:2109.09034.
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In this background chapter, an overview of approaches is provided related to reinforce-

ment learning and other background information which are relevant to the remainder

of the thesis. Concepts which are required only for specific chapters are introduced as

additional background in those chapters. This chapter first introduces single-agent RL

approaches in the Q-learning and Actor-Critic space, before addressing the corresponding
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MARL variations.

2.1 Reinforcement Learning

First we introduce the key concepts related to reinforcement learning [65]. In reinforce-

ment learning, we begin with an agent-environment framework [59] in which an agent

progressively acts on and with the environment over time, denoted by sequential time

steps, t by performing actions, collecting rewards and observations. The environment

consists of state st from state space S at a particular timestep t, and is characterised

by a transition probability function P(st+1|st,ut) : S£U £S!R, the reward is defined

as R(st,ut) : S£U ! R, based on actions ut from action space ut 2U, with discount

factor ∞. This formulation is typically described as the Markov Decision Process (MDP),

because the transition probability is conditional on the previous state-action pair. For

fully observable MDP settings, an agent would observes the complete state of the task

or environment st, and it would choose an action ut 2U according to the agent’s policy

º(ut|s) : S£U ! [0,1]. According the executed action, the environment would (either

in deterministic or stochastic fashion) transition according to the transition probability

st ª P(st+1|st,ut), emiting a reward rt ª R(st,ut) to the agent. In this thesis, we only

consider the model-free setting, in which the reward function and transition function

are hidden, requiring agents to infer the dynamics of the respective task through its

interactions with it, in order to construct the transition and reward functions. In re-

inforcement learning, we aim to maximise the total discounted reward according to a

learned policy. The total discounted reward per episode is determined by a trajectory

ø = {s0,u0, r0, . . . , sT+1}, which allows us to formally define the discounted reward as

J = EøªP(ø)R0(ø). In this setup, Rt(ø)=
P

t0=t∞
t0°t
t0 is the forward-looking return from time

step t onwards.

12
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2.2 Deep Q-Learning

We begin our exploration of reinforcement learning algorithms by covering Q-learning

and several variations in the Deep RL space.

Q-Learning. The Q function is commonly used and can be evaluated for any arbi-

trary policy º. To define this, we first consider the discounted return for any agent a for

an episode to be Ra
t (ø)=

P1
t0=t∞

t0°trat0 . Then the Q function (which is also known as the

action-value function) is as follows:

Qa
º(st,ut)= Est+1:1,ut+1:1

°
Ra

t |st,ut
¢

(2.1)

We can also define the expectation over a given state which induces the value function:

Va
º (st)= Est+1:1,ut+1:1

°
Ra

t |st
¢

(2.2)

Then Q§(s,u)=maxºQº(s,u) which defines the optimal action-value function follows

the Bellman optimality equation shown below:

Q§(s,u)= Es0

µ
r+∞max

u0
Q§(s0,u0|s,u)

∂
(2.3)

This equation forms the underlying Q-learning approach. In approaches which do

not leverage deep learning, Q-learning is typically resolved through environments which

consist of discrete actions allowing for tabular approaches to be used to determine the

corresponding Q values. One of the limitations of the tabular approach is that it operates

on a discrete action space.

Deep Q-Networks. In deep Q-networks (DQN) [29, 48], rather than a tabular

Q function, a deep neural network function Q(s,u;µ) is used, where µ represents the

parameter for the function approximation characterised by a deep neural network. The

objective function for DQNs at iteration i which is optimised through minimising the

Bellman error shown below
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Li(µi)= Es,u,r,s0
°
(yi°Q(s,u;µi))2)

¢
(2.4)

where the objective is yi = r+∞maxu0Q(s0,u0;µ°
i ), with µ° being the parameter of

a fixed deep neural network. This neural network is kept constant for several pre-

determined training epochs whilst updating the network Q(s,u;µi), and which is then

periodically cloned with the baseline Q function.

DQN approach can be extended to “Double DQN” [29] which trains two deep neural

networks with identical networks jointly, and leveraging the alternative network in the

Bellman update equation.

Typically, a strategy called ≤-greedy is a strategy used to select actions to promote

diverse experiences and prevent overfitting. This procedure operates by permitting the

agent to choose a random action during learning phase with probability ≤ and the greedy

action that maximises the Q-value with probability 1° ≤ to ensure agents continually

explore during the RL task during training. DQNs also employ experience replay to

enhance the learning process, whereby the agent builds a dataset of experiences and

samples mini-batches during the training phase. This approach prevents overfitting due

to recent experiences.

Distributional Q-Learning. Rather than only estimating the expected return as

described in Q-learning and DQN approaches, distribution Q learning [2, 12] advocates

modelling the distribution of returns, that is we aim to model the probability law of

Ra
t (ø). To achieve this, one approach is to leverage quantile regression. This allows us

to model the return distribution [12], so compared with the DQN scenario the output of

the neural network is instead increased by an order of N, that represents the number of

quantile targets, ¡1, . . . ,¡N . Thus instead of mean squared error, the quantile Huber

loss is used as shown below:
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Li(µi)=
NX

i=1
Es,u,r,s0

°
Ω¡i (yi°Q(s,u;µi))

¢
(2.5)

where Ω¡ is the quantile Huber loss at quantile ¡,

Ω¡(z)=

8
>><
>>:

|¡°±{z<0}|12 z
2, if |z|∑ 1

|¡°±{z<0}|
°
|z|° 1

2
¢
, if |z|∑ 1

(2.6)

with ± indicating Dirac delta function.

Deep Recurrent Q-Networks. In partially observable settings as st contains global

state information, it cannot be directly used as input for the agents. Instead, an agent

a only receives observation oat which would be correlated with st. Deep recurrent Q-

networks [30] addresses this in single-agent, through approximating Q(ø,u) instead of

Q(s,u) with recurrent neural networks which maintains an internal state over time.

This approach can then be used in partially observable settings. This is accomplished

through using the hidden state of network as an additional input ht°1 and output ht, and

is used over a variety MARL algorithms to address the partially observability aspect.

2.3 Policy Gradient and Actor-Critic Approaches

In this section we examine policy gradient and actor-critic approaches. These methods

differ from Q-learning approaches in that they require estimating a value function (which

can be the Q function, V function, or even the reward itself) and using this value function

to optimise a policy. In Q-learning approaches the policy is derived directly from the

value function whereas in policy gradient and actor-critic approaches, the policy update

procedure modifies the policy’s parameters directly.

Policy Gradient. Before introducing actor-critic, we first consider policy gradient

methods. These methods directly optimise an agent’s policy, parameterised by µº as

oppose to examining the Q function of a given state. The policy gradient objective is to
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optimise the expected total discounted reward J = Eº(Rt). This results in the gradient in

the form rJ(µº)= Eº (rµº logº(ut|st)Q(st,ut)) [66], in which different approaches could

be used to estimate the value function Q. As an example, in REINFORCE [71] the form

of this is provided as rJ(µº)= Eº

≥PT
j=0Rjrµº logº(u j|s j)

¥
. This approach suffers from

high variance in the gradient estimation. This may mean that the algorithm requires

more update steps compared with an approach with lower variance.

Actor-Critic. To remediate the limitations of REINFORCE, actor-critic methods

were introduced, where the actor (or policy) is trained by following a gradient that is

constructed through training the critic, which typically follows a variation of the value

function. For example, one possibility is to replace Rt by the value function V(st;µc),

where the critic network is parameterised by µc. Then the critic would aim to minimise

the following loss:

L(µc)=
°
V (st;µc)° y

¢2 with y= r+∞Vi(st+1;µc) (2.7)

Actor-critic methods could leverage the usage of a target network, in order to keep the

parameters of y constant for a number of iterations, whilst training the neural network,

or leverage polyak averaging [27].

Deep Deterministic Policy Gradient. As Q-learning approaches generally only

operate in the discrete space, approaches like Deep Deterministic Policy Gradient (DDPG)

can be used which follow the spirit of DQN, but operates in continuous action spaces.

This approach extends policy gradient methods to deterministic policies µ : S !U, so

that the gradient of the objective is modified to rJ(µº)= E
°
rµºµ(u|s;µº)ruQµ(s,u)|u=µ(s)

¢
.

DDPG leverages deep neural networks as a function approximator for the policy and

critic, and can leverage ideas from DQN such as replay buffers and target networks [44].
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2.4 Multi-Agent Reinforcement Learning

In our work we examine the Multi-Agent Reinforcement Learning (MARL) problem.

One of the key challenges of MARL is adapting to the enormous joint action space. A

decentralised, partial observable Markov Decision Process [53] is formulated through

the tuple which comprises of hS,U ,P,R,Z,O,n,∞i. We define the environmental state to

be described by st 2 S where t= 1,2, . . . is the timestamp as dictated by the environment.

Then for every time step t, the agents a 2 A ¥ {1, . . . ,n}, from which they select from

u 2U to act accordingly. These actions form the joint action defined by u 2 U ¥Un.

Similar to Q-learning, we define the probability transition function in the environment

to be the state transition function: P(st+1|st,ut) : S£U£S ! [0,1]. All agents share

R(st,ut) : S£U ! R which describes our reward function, and ∞ 2 [0,1) which is the

discount factor.

2.4.1 Partial Observability

Typically, in MARL environments, agents do not have full state information. This is

formalised by restricting each agent to their own local, individual observation z 2 Z

based on observation function we define as O(s,a) : S£A! Z. Using this formulation,

each agent would each have their own action-observation history øa 2T ¥ (Z£U)§. This

is conditioned on each agent’s policy ºa(ua|øa) : T£U ! [0,1]. This could be interpreted

as the probability distribution over the agent actions. In this thesis we restrict our

discussion to only consider the global, shared reward scenario, and agents are unable to

directly observe an individual reward signal. We primarily focus on cooperative, partially

observable multi-agent problems.
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2.4.2 Centralised Training Decentralised Execution

To tackle large action spaces, a common approach is via decentralising the agent’s value

function and/or decision policy, whereby an agent’s policy is restricted only to the agent’s

own local action-observation history. To facilitate training and communication amongst

agents, learning may occur in a centralised fashion to provide additional state informa-

tion and to remove communication constraints among agents. This framework is known

as Centralised Training with Decentralised Execution (CTDE) [40, 54]. In this thesis,

we focus on this paradigm, which means that centralised training may utilise extra

information (such as access to additional state information or communication between

agents, as long as this information is not available or accessible to the policy during exe-

cution time. This approach is the standard approach for solving Decentralised Partially

Observable Markov Decision Process (Dec-POMDP) [53] and is used in numerous experi-

ments provided in this thesis. This paradigm is used in our thesis as it best represents

real-world constraints whereby agents are required to interact with their environment

independently. Constructing agents in this manner ensure that it is robust to scenarios

where we may presume joint policy across multiple agents such as in the centralised

training and centralised execution paradigm. Finally there is also the decentralised

training and decentralised execution paradigm where, where each agent only updates its

own policy with no external knowledge or information, which is more useful in scenarios

where agents are heterogenous and adversarial. In our thesis we focus on cooperate

tasks which lend itself better for Centralised Training with Decentralised Execution

(CTDE) approaches.

2.4.3 Q-Value factorisation Approaches to MARL

In this section, we discuss modifications to DQN that enables supporting multi-agent

and partially observable settings. Applying a single-agent approach like DQN naively to
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a multi-agent setting would require finding the argmaxu over the enormous action space

which makes this impractical. Rather than computing the argmaxu in multi-agent tasks,

many algorithms address this challenge through factorisation in the centralised training

phase known as the “Individual Global Max Condition” (IGM) [5, 6, 57, 63].

Definition 2.1. IGM is defined as a joint-action function for n agentsQjoint : {ø1, . . . ,øn}£

{u1, . . . ,un}! R where {ø1, . . . ,øn} is the joint-action histories for agents 1, . . . ,n, if indi-

vidual Q state action functions exists where [Qi : T£U !R]ni=1, and the following holds

argmaxuQjoint(ø,u)=

0
BBBBB@

argmaxu1Q1(ø1,u1)
...

argmaxuN Qn(øn,un)

1
CCCCCA

then, we say that [Qi] satisfy IGM for Qjoint under ø. In this case we also say that

Qjoint is factorised by [Qi(øi,ui)] or that [Qi] are factors of Qjoint.

Independent Q-Learning. The simplest and perhaps most widely leveraged al-

gorithm in MARL is the Independent Q-Learning (IQL) [67] approach. This approach

forgoes centralised training altogether, and let each agent a learn greedily based solely

on their own observed space to yield the action-value function Qa independently. This

approach, by definition cannot represent interaction between agents and consequently

does not have convergence guarantees. This is due to the fact that each agents’ learning

is confounded by the environment and the activity of other agents. Despite this, IQL has

a strong empirical record [75] and continues to be a relevant baseline for many MARL

tasks.

Value Decomposition Networks (VDN) [64] is one factorisation which satisfies

the IGM condition by being framed as the sum of independent agent’s Q state action

functions, Qa. The factorised Q function for VDN is then defined to be
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Qjoint(ø,u)=
nX

i=1
Qi(øi,ui) (2.8)

Through the additive nature of VDN, this joint action value function would satisfy

the IGM condition.

QMIX. Another approach which attempts to factorise Qjoint is to leverage a mixer

network to combine each agent’s state action function. The key differences compared

with VDN is the ability to include global state information as part of the centralised

training which would be excluded during decentralised execution. To combine each

agent’s state action function Qa and the global state information s, QMIX allows for any

family of monotonic functions such that the constraint between Qjoint and each Qa is:

@Qjoint(ø,u, s)
@Qi(øi,ui)

∏ 0 , 8i 2 A (2.9)

This monotonic constraint is enforced by constructing a mixing network where all the

weights are non-negative. This has been shown to approximate any monotonic function

[13].

QTRAN. Whilst the previous approaches is restricted to only combining utility func-

tions through additive manner (VDN) or through monotonic mixing network (QMIX),

QTRAN aims to generalise this to any action-value function [63]. This is constructed

through applying linear constraints on the agent state action functions on the objec-

tive function. To complete this, three value functions are defined, Qjoint, which is any

hypernetwork to combine each individual agent’s state action function, Qvdn, which

represents the sum of each individual agent’s state action function as per the VDN

formulation, and Vqtran(ø) =maxuQjoint(ø, ·)°maxuQvdn(ø, ·). Then enforcing the con-

straint Qvdn°Qjoint+Vqtran ∏ 0 during the optimisation step will guarantee that the IGM

condition is maintained. This is estimated through calculating the optimal local action

which we denote by Q0 that is determined counterfactually. That is, given Q0 i
joint(ø, {u

i[
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u°i};µ) , u°i := (u1, . . . ,ui°1,ui+1, . . . ,un), with Q0
joint(ø,u;µ) =

Pn
i=1Q

0 i
joint(ø, {u

i [u°i};µ),

where the fixed action vector u is determined by argmaxuQvdn(ø, ·).

In addition to Equation 2.4, QTRAN calculates the loss relative to the “optimal”

action and “non-optimal” action, which are combined in a weighted fashion that are

hyperparameters to the QTRAN construction. The Losses relative to the “optimal” action

and “non-optimal” action are shown in Equation 2.10 and 2.11 respectively:

≥
Q0

joint(ø,u;µ
°)° Q̂joint(ø,u;µ°)+Vqtran(ø;µ)

¥2
(2.10)

≥
min

≥
Q0

joint(ø,u;µ)° Q̂joint(ø,u;µ)+Vqtran(ø;µ), 0
¥¥2

(2.11)

Where Q0 is constructed through counterfactually determining the optimal action,

and Q̂ leverages a ‘detach’ operator to stop the gradient flow through the network.

2.4.4 Policy Gradient and Actor-Critic Approaches to MARL

Although this thesis does not focus on actor-critic multi-agent methods, we discuss

various actor-critic MARL approaches as a point of comparison.

Independent Actor-Critic. In Independent Actor-Critic (IAC) allows each agent

to possess their own policy network and value function. It leverages their own local

action-observation history as input to the policy. To improve convergence and training

speed, this method commonly uses parameter sharing between the policy network and

value function.

Shared Experience Actor-Critic. Shared Experience Actor-Critic (SEAC) [9] is

an extension of IAC whereby it applies experience sharing by combining gradients of

different agents as part of its training step. This approach treats trajectories from other

agents to be off-policy data, and is corrected through importance sampling. That is

if ∏ 2 [0,1] is the weight of sharing, then the losses for the policy network and value

network respectively for agent a become:

21



CHAPTER 2. BACKGROUND

L
seac(µº,a)=L

a(oat ;µ
º,a)+∏

X

k 6=a

º(uk
t |okt ;µº,a)

º(uk
t |okt ;µº,k)

L
a(okt ;µ

º,a) (2.12)

L
seac(µc,a)=L

a(oat ;µ
c,a)+∏

X

k 6=a

º(uk
t |okt ;µº,a)

º(uk
t |okt ;µº,k)

L
a(okt ;µ

c,a) (2.13)

Where µº,a, µc,a is used to describe the parameters of the policy network and critic

network related to agent a respectively and L(o;µ) symbolises the loss calculates given

observation o with parameter µ.

Multi-Agent Deep Deterministic Policy Gradient. Another way to extend IAC

approach is described in Multi-Agent Deep Deterministic Policy Gradient (MADDPG)

[45]. This is achieved by maintaining a separate centralised critic networks. That is, each

agent’s critic network has direct access to all agents’ policy information for centralised

training purposes.

Learning Implicit Credit Assignment. In the previous approaches each agent

had their own actor and critic networks. Learning Implicit Credit Assignment algorithm

(LICA) [76] differs from these approaches as it leverages a centralised critic which is

shared for all agents formulated as a hypernetwork. It introduces entropy regularisation

to improve policy optimisation which induces more stochastic actions. Entropy regulari-

sation has been shown to empirically improve policy optimisation through the addition of

an entropy regularisation penalty. For example, modifying the training objective is one

approach to explicitly achieve this [26, 27, 60]. Alternatively one could implicitly enable

this through augmenting the reward function [70]. The policy objective has an additional

entropy regularisation term in the form Ea
°
H(ºa(·|oat )

¢
. In the LICA formulation the

entropy calculation is normalised across all agents. The optimal joint action can be

generated i nthis formulation through enabling consistent exploration across all agents.
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Part I

Learning to Coordinate
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Abstract

In this part we discuss how coordination is explored within graph structures with

applications to Reinforcement Learning (RL). First we explore the usage of graphs

to determine coordination among agents in the multi-agent reinforcement learning

framework. Our method uses dynamically generated graph structures at every step

in the environment which are created independent from the environment definition.

Coordination in this setting is only defined in centralised training step. Even when

agents are executed in a decentralised manner, we demonstrate this approach still

maintains coordination, exceeding other current RL approaches in the decentralised

execution centralised training paradigm.
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CHAPTER 3. Q-LEARNING WITH COORDINATION GRAPHS

3.1 Introduction

Within cooperative multi-agent reinforcement learning (MARL), one of the central chal-

lenges is tacking the enormous joint action space. For example, some of the environments

used in this chapter have over eight agents with nine actions to select from, yielding a

joint action space which exceeds over a million actions. This joint action space grows

exponentially relative to the number of agents.

To tackle the large action space challenge, one approach is to decentralise the ex-

ecution of agent decisions, whereby an agent policy is conditioned on only their local

action-observation history. To facilitate training and communication amongst agents,

learning may occur centrally with additional global knowledge, which implicitly provides

latent information to agents as we remove the ability for agents to communicate amongst

each other. This approach is known as Centralised Training with Decentralised Exe-

cution (CTDE) [40, 54]. Recently, these approaches have generally focused on factored

Q-value functions, which have demonstrated success [57, 64], and which focus on the

value function factorisation.

There has also been a focus on representational ability when these factorisation

techniques suffer from structural constraints, that is it presumes fixed, predetermined

relationships among the agents. This has been addressed through considering the

joint action-value space within the centralised training step [5, 6, 63]. However, these

approaches face challenges when adapting to a dynamic environment, where agent

relationships may change as it interacts with the reinforcement learning environment.

For example, the approach taken in [6] relies on constructing a new network or model

for every pair of agents which becomes unmanageable when the agent size is large. In

the scenario for [63] it directly factorises the full joint action-value function, where as
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[5] suggests to use a static predetermined coordination graph with parameter sharing

to alleviate the challenges presented within [6]. Both [5] and [63] presuppose a fixed,

immutable coordination graph which may not necessarily be appropriate depending on

the MARL problem.

3.1.1 Contribution

To address these challenges, we introduce Dynamic Q-value Coordination Graph (QC-

Graph). QCGraph represents the value function as a coordination graph (CG) with

payoffs determined by dynamically generated subsets of coordinating agents. To achieve

scalability, QCGraph employs hierarchical graph neural network techniques to enable

parameter sharing among arbitrary dynamically generated CGs and the respective agent

utilities at both a micro and macro level of relationships or coordination. Parameter

sharing is commonly used within factorised MARL approaches. Within Value Decom-

position Networks (VDN) [64] and Monotonic factorisation Value factorisation (QMIX)

[57], parameters are shared across all utility or state action functions by conditioning

only on an agent’s history (i.e. previous local states and actions). Approaches like DCG

[5] and QTRAN [63] take this to the extreme approximating all payoff functions with

the same function approximator. For QCGraph, we extend the limitations of DCG to

allow for dynamic CG, as opposed to having a predefined, fixed CG, and is trained using

deep Q-learning approaches. The QCGraph’s performance is compared with other MARL

Q-learning algorithms and actor-critic algorithms in a variety of tasks which require

coordinated actions.

3.2 Preliminaries

Dec-POMDP We examine decentralised partially observable markov decision pro-

cess [53] hS,U ,P, r,Z,O,n,∞i, with st 2 S being the environments state, and t is the
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CHAPTER 3. Q-LEARNING WITH COORDINATION GRAPHS

corresponding timestep, with t = 1,2, . . . . At each time step every agent denoted by

a 2 A ¥ {1, . . . ,n}, selects u 2U which is an action, with u 2 U ¥Un being defined as

the joint action space. Additionally, we define s0 2 S to be the next state. This is

drawn according to P(·|s,u) which is the state transition function. We are interested in

cooperative RL where all agents share the same reward, so the reward for the whole en-

vironment is r(s,u), the discount factor ∞ 2 (0,1). In these, the partial observable setting

is considered. This is denoted to be z 2 Z which is generated by O(s, i) : S£ A ! Z.

Furthermore, for a particular agent a, we define ø to be øa 2 T ¥ (Z £U)§, which

is agent a’s action observation history; on which it conditions its stochastic policy

ºi(ui|øi) : T£U ! [0,1]. Where º is the joint policy and is the Q function or the action-

value function: Qº(st,ut)= Est+1:1,ut+1:1[Rt|st,ut], where Rt =
P1

k=0∞
krt+k being the total

discounted reward. The goal of the problem is to find the optimal action value function

Q§

Centralised Training Decentralised Execution (CTDE) In this chapter, our

models follow the centralised training with decentralised execution frame work. That

is, training is centralised, and execution is decentralised. This framework operates

by providing all state information, including global information during the centralised

training phase. However each agent during execution or evaluation, can only leverage

its own action-observation history.

Related Work Prior work on the decentralised agent execution include Independent

Q-learning (IQL) [67], where the algorithm models each agent as an independent Q-

learner. This creates challenges as a particular agent’s viewpoint becomes non-stationary

relative to all other agents as they also update their respective policies. To resolve

this some centralised entity is used [54] [40], which typically employs some form of

parameter sharing between agents. Value Decomposition Networks (VDN) [64], perform

Q-learning with a value function in a centralised manner by taking the sum of each
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(a) (b) (c) (d)

Figure 3.1: Examples of value factorisation are shown in (a, b, c, d), examples of
coordination graph factorisation shown in items (b, c, d): (a) sum of independent Q state
action functions as used in VDN, QMIX and MAVEN; (b) sum of pairwise payoffs as
used in DCG; (c) sum of node-wise payoffs based on dynamically generated coordination
graph (our approach); (d) single hyper-edge with no factorisation as used in QTRAN. The
factorisation indicates how the aggregated Q-value function q combines each individual
parameterisation for agent i indicated by ai.

agent’s individual state value function. QMIX [57] extends VDN through employing a

mixing network for the agent utilities with monotonic constraints, which allows different

states to yield different mixtures so that the centralised training step can maximise

the value functions in an independent manner. MAVEN [47] is another decentralised

approach which builds on top of QMIX by introducing a latent space that enables

hierarchical control which in turn allows for committed, temporally extended exploration.

These three methods condition on the state action function of each agent and their

respective historical observations, i.e. the previous actions and observations share the

parameters as shown in Figure 3.1(a). DCG [5] is another decentralised agent execution

approach that uses the addition of one extra linear layer which is used to approximate a

coordination graphs (CG) pairwise payoffs. For DCG, parameter sharing is employed to

approximate all payoff functions in the same neural network as shown in 3.1(b). QTRAN

[63] is another approach which attempts to calculate the central Q-learning through

applying linear constraints between agent’s state action functions (or utility) and joint

action values, which removes structural constraints of factorisable MARL tasks.

Individual-Global-Max (IGM) Condition and Factorisable Tasks
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For CTDE methods, we define the individual agent utilities (or state action functions)

by Qi, i 2 A. A key motivating approach for these algorithms is the ability to be decen-

tralised. One approach to achieving this is the “Independent Global Max” condition [63]

which states 9Qi, where for all s,u:

argmaxuQ
§(s,u)= (argmaxu1Q1(ø1,u1), . . . ,argmaxun qn(øn,un))

VDN and QMIX demonstrate two sufficient methods for factorising Q§ for IGM

can be accomplished through additivity and monotonicity respectively. QTRAN has

demonstrated that any joint action-value function Q§(s,u) satisfies IGM condition if

Q̂(s,u)°Q§(s,u)+ V̂(s)=

8
>><
>>:

0, if u= ū

∏ 0, if u 6= ū
(3.1)

where ūi is the optimal local action argmaxuiQi(øi,ui) and ū= {ū1, . . . , ūn}, Q̂(s,u=
Pn

i=1Q
i(øi,ui) 1, V̂ is the state-value network defined as V̂(s)=maxuQ§(s,u)°Pn

i=1Q
i(øi, ūi).

QTRAN uses a similar approach to Deep Q-Networks DQNs [48], which uses a replay

buffer that stores the experiences in the tuple format hs,u, r, s0i, where s0 is the state

observed after taking action u in state s with reward r. The parameters of the action-

value function, µ is trained by using the replay buffer through minibatch sampling and

minimising the following objective:

L(µ) :=(Q§(s,u)° yDQN)2+
°
Q̂(s,u)°?Q§(s, ū)+ V̂(s)

¢2

+
≥
min

°
V̂(s,u)°?Q§(s,u)+ V̂(s),0

¢¥2 (3.2)

where yDQN = r+∞maxu0Q§(s0,u0;µ°), and we let the parameter of a target network

be defined as µ°, which is held constant and the parameter is cloned from the µ are

1noting that s is the global state, and øi is the partial observable state for the agent i
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regular predetermined intervals, and ? is the ‘detach’ operator which stops the gradient

flow through to Q§, which ensures Q§ is fixed.

3.2.1 Coordination Graph

A coordination graph represents the joint payoff function between agents which is

aggregated to compute the joint value function in the MARL setting. In a coordination

graph the vertices represent the agents whilst the edges represent the relationship

between the agents of the joint action space.

In this framework, each agent i has an associated payoff F i. An agent’s local utility

may be influenced by other agent’s actions and state, if we assume that the payoffs are

independent utilities thenF
i ¥Qi as shown in Figure 3.1(a) for QMIX, VDN and MAVEN

models. We define Scope(F i)Ω S[U to be set of state variables and action variables

that influence an agent’s local utility Qi. We further define the relevant agent decision

variables to be Relevant(F i)= {aj 2 A|aj 2 Scope(F i)}. Intuitively, a coordination graph

connects agents whose local utility functions interact with each other. Then extending

the definition of coordination graph to the undirected counterpart proposed by Guestrin

et al. [23]:

Definition 3.1. A coordination graph for a set of agents with local payoff {F i, . . . ,Fn} is

an undirected graph whose nodes are {a1, . . . ,an} which contains an edge {ai,aj} if and

only if ai 2Relevant(F j) or aj 2Relevant(F i).

Coordination graphs depend only on state and thus every state can have its own

unique CG. DCG constructs the coordination graph through consideration pairwise

payoffs Figure 3.1(b), whilst QTRAN constructs a coordination graph through a single

hyper-edge with no factorisation Figure 3.1(d). Our approach as shown in Figure 3.1(c),

where the nodewise (or agent) payoff is constructed through consideration of the whole
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state space and all agent actions. Then the total utility will depend on the setup of the

respective coordination graph, as shown in Figure 3.1(b, c, d).

The application of the Heaviside step function discretises Prob
°
ai 2Relevant(F j)

¢

according to threshold determined by bstate, it is equivalent to performing

eAstate =

8
>><
>>:

1, if æsigmoid(FV)∏ bstate

0, if æsigmoid(FV)< bstate

3.2.2 Graph Neural Networks

In applying graph neural networks to the centralised training phase, in a manner which

is amenable to factorisation, we need to ensure that all operations are permutation

invariant to enable generalisation when learning arbitrary relationships between agents.

In our thesis, we represent the undirected graph (as defined by Definition 3.1) G as

hA,Fi, where A 2 {0,1}n£n is a symmetric adjacency matrix, and F 2 Rn£d is the node

feature matrix assuming each node has d features.

Graph Convolution Network. A graph convolution network [38] (GCN) is a net-

work which takes as input the feature matrix and the adjacency information in order to

summarise the attributes of each node and output a node-level feature matrix. This oper-

ates in a similar way to how convolution operations are used where kernels are convolved

across local regions of the input to produce feature maps. GCNs use layer-wise forward-

propagation operation defined by X(`+1) = æ(ÂX(`)W(`)) 2 Rn£d`+1. Where X(`) 2 Rn£d`

represents the feature matrix of layer ` with d` features, where the feature matrix at

layer 0 is initialized by X(0) = F, and where Â = D° 1
2 (A+ I)D° 1

2 ,Dii =
P

j(A+ I)i j. We

denote the trainable weight matrix as W` 2Rd`£d`+1 which applies a linear transforma-

tion to the feature vectors which is a weight matrix, and æ is the activation function.

GCN is naturally permutation invariant and can be used to addressed the permutation

invariance challenge in CG.
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Differentiable Pooling. Whilst GCN is used for a node level prediction, the chal-

lenge involved generating a graph level prediction for the total payoff. One naive ap-

proach, is to approximate the total payoff by taking a sum, i.e.
P

i Qi [24]. Differentiable

Pooling (DiffPool) [73] allow for graph coarsening through a learnable pooling strategy,

which reduces the size of the graph while retaining its essential attributes. DiffPool is a

module which pools nodes given a (learned) assignment matrix which uses a layer-wise

forward-propagation operation. Let the number of nodes at layer ` be n`, then DiffPool

generates a new graph hA,Zi at layer (`+1), defined by A(`+1) =V>
(`)A(`)V(`) 2Rn`+1£n`+1

and Z(`+1) = V>
(`)X(`+1) 2 Rn`+1£d` . Where V(`) 2 Rn`£n`+1 is the learned cluster assign-

ment matrix at layer `. Then hA(`+1),Z(`+1)i fully defines the new coarsened graph

with n`+1 nodes. A(i) is a real matrix, which represents the strength of fully connected

edge-weighted graph. To enforce V(`) to be a proper assignment matrix, softmax function

can be applied in a row-wise fashion to ensure that the assignments generated are

probabilistic in nature. The learned cluster assignment matrix can be generated using a

GCN layer, V(`) = ǣ(AX(`)W̄(`)) where the learnable weight matrix W̄(`) 2Rn`£n`+1, and ǣ

is the softmax activation function (i.e. the assignments are probabilistic). This approach

has been demonstrated to be permutation invariant [73].

3.3 Proposed Method

The key idea behind QCGraph is to generate dynamic coordination graphs as part of the

mixing network in the centralised training phase of the CTDE problem. In this section

we explore how dynamic adjacency matrices can be generated and demonstrate how it is

applied to cooperative Dec-POMDP problems.
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3.3.1 Dynamic Adjacency Matrix Generation

In the previous section, both GCN and DiffPool assume a provided adjacency matrix as

part of the input to the graph neural network. In the setting of coordination graphs, the

adjacency matrix is defined if and only if the agents are relevant to each other. In this

instance, we aim to have a different and dynamic adjacency matrix depending on how

agents and state are reflected in the a reinforcement learning environment.

Adjacency matrix generation

We denote the learned node assignment matrix for the feature matrix as V 2 Rd£n for

feature matrix F 2Rn£d. Each column of V represents one of the n agent nodes. With a

given assignment matrix, the generate adjacency matrix is defined as A =æ(FV) 2Rn£n.

Where æ is chosen to be a suitable activation function. Intuitively, V provides a soft

assignment based on the feature matrix. The values of the adjacency matrix denotes the

pairwise connectivity strength between all nodes. Then for the node pairs {ai,aj}, eA will

denote the measure of relevance. If the choice of æ is the sigmoid function, then elements

i, j in eA will denote Prob
°
ai 2Relevant(F j)

¢
. This output can be used as-is as input to

further graph neural network layers.

Addressing Permutation invariance

For the adjacency matrix to be useful for graph classification, the generation of the

adjacency matrix should be invariant under node permutations. To address this, in

our construction of the dynamic adjacency matrix, the node feature matrix should be

pre-sorted before computing the adjacency matrix. This can be approached as a variable

to k-max pooling used in Graph U-Nets [21], where the node feature matrix is projected

to 1D through a trainable projection vector p given by yi = Fip/kpk. Then each node can

be sorted according to the scalar projection value yi.

36



3.3. PROPOSED METHOD

Adjacency Matrix Generation with Hard Assignments

Algorithm 3.1 Adjacency Matrix Generation with Hard Assignments
Input: F,S, with learnable weights pnode,pstate,V
1: F √ nodesort(F,pagent) . Sort nodes based on projection derived from node feature matrix as in Section 3.3.1

2: ystate √ Spstate 2R . The state specific bias through calculating projection derived from state S

3: eAagent √ægumbel(FV), eAstate √æstep(FV + ystate) . Compute adjacency matrices with and without bias

as in sec. 3.3.1

4: eA√ eAagent+ eAstate
5: eA =max( eA+ eA>,1) . Ensure symmetry in undirected coordination graph, with an element-wise max function

Return: eA

With all these components in place, we can construct our approach to generate hard

assignments specifically for coordination graph problem. Hard assignments enforce

a binary, on/off relationship between agents. To ensure that hard assignments are

generated, we use the gumbel-softmax trick [34, 46] and the Heaviside step function

which are denoted by ægumbel, æstep respectively. As we presume our coordination graph

is undirected, symmetry is achieved through updated the adjacency matrix eA =max( eA+

eA>,1). This approach is given in pseudo-code form in Algorithm 3.1.

Recall in Section 3.2.1, we define an agent to be Relevant to payoff for agent i is

defined by Relevant(F i)= {ai 2 A|ai 2 Scope(F i)Ω S[U}. This suggests the importance

of including global state information to determine the CG from one step in our environ-

ment to another. An example of this is if there is an immediate threat outside a set of

agent’s partially observable state, but can be observed from a global level.

3.3.2 QCGraph

We introduce the Q-value Coordination Graph (QCGraph), which trains the payoff

and value functions represented by coordination graphs. This approach aims to unify

other CG approaches (QTRAN and DCG) in an overall framework, as well as remove

constraints on having fixed pre-determined coordination structures. Figure 3.2 shows

the neural network architecture used in QCGraph.
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Figure 3.2: QCGraph network structure. In blue is the mixing network, and in green is
the agent network structure. On the left is the overall network structure, on the right is
the mixing network.

The agent network (shown in green, or bottom-left side of Figure 3.2) describes the

agent utility network. Each agent’s network is its individual utility or state action Q

function Qi(øi,ui). At every point of time, every agent observes and uses as input its

local state for a neural network constructed using a GRU recurrent layer followed by

dense linear layer with |U | outputs. This setup is the same one used in QMIX, MAVEN,

DCG [5, 47, 57]. The output of the utility network is both the utility value itself, Qi and

also the utility network’s hidden feature layer. This approach of emitting both the utility

value and recurrent network’s hidden state, hi to the mixing network for centralised

learning is used in both QTRAN and DCG [5, 63].

The mixing network (shown in blue, or right side of Figure 3.2). The first “module”

is the graph node sorting operation. For each agent i, as Qi can be interpreted as a 1D

projection of the hidden state hi, this can be used to pre-sort the node feature matrix as

required for permutation invariance as part of the approach outlined by Equation 3.3.1.

The next hypernetwork generates the graph adjacency matrix as outlined by Algorithm

3.1. The learnable parameters consists of a single linear layer and the state bias, as the
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node feature matrix project (step 1. in Alg 3.1) is subsumed in the first module of the

mixing network. The next two modules are the GCN and DiffPool modules explained in

Section 3.2.2, which are constructed with one layer each (that is, the GCN only consists of

one forward layer, and DiffPool consists of one forward layer to pool all nodes). The final

state bias is constructed through a two layer hypernetwork with ReLU non-linearity, in

the same manner used by QMIX. Through the use of graph neural network techniques

in its setup, QCGraph generally would have comparable number of parameters or in

most cases less than QMIX2.

The agents and mixing network leverage training through centralised mechanism,

and each agent uses its own utility function Qi to take an action during decentralised

execution. QCGraph is trained with the objective to minimise the loss as defined by

QTRAN [63] as described by Equation 3.2, which ensures that QCGraph satisfies IGM

condition.

In general CG approaches are used to avoid relative overgeneralisation when agents

conduct exploration. DCG and QTRAN both enable the estimation of value in the overall

joint action space. This approach is useful in certain environments where cooperation

is important. For example, in the predator-prey environment, the predators may need

to cooperate together in order to capture large or dangerous prey. From each agent’s

viewpoint, the reward signal will depend on other agent’s actions. In models which do

not take into account joint actions, (QMIX, IQl. MAVEN) it is not possible to learn the

optimal policy. Furthermore QCGraph has the ability to dynamically adapt the level of

coordination graph over various states which becomes important in wargame scenarios

where the level of appropriate cooperation may differ according to the formation or

number of agents available at a particular point in time.

2In QMIX, the state bias is projected to every agent in the hypernetwork. This is replaced with graph
neural network modules instead.
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3.4 Experiments

We now empirically evaluate QCGraph over several MARL benchmarks including mi-

croRTS, Modified Predator-Prey, two step and PettingZoo environments. We analyse the

overal results and the representation ability of QCGraph.

3.4.1 microRTS

A challenging benchmark for reinforcement learning research is real-time strategy (RTS)

games. Our experiments leverage an AI research focused environment called microRTS

[55]. We place particular emphasis on the decentralised micromanagement problem in

microRTS, where every agent operates an army character. The scenarios we consider

are where two opposing groups of units are placed on opposing sides of the map with the

aim to annihilate all opposing forces. The initial placements of units within the groups

varies across episodes. For our opponent we use the winning heuristic AI agent in the

2019 microRTS competition3. We compare our results on sets of maps in a homogenous

setting involving 4 heavy (4h), 8 heavy (8h) and 16 heavy (16h). We further compare our

results using heterogeneous settings with a mixture of units involving 2 light, 2 range

and 2 heavy (l2r2h2) and setups which examine different learned behaviour, involving

the RL agent controlling 3 ranged units against 8 worker units and RL agent controlling

5 heavy units against 6 heavy units. The environment setup is similar to previous works

which used StarCraft environments [15, 57].

First we consider the homogeneous environments (4h, 8h, 16h); these microRTS

environments as shown in Figure 3.3(a, b, c). When there are a lower number of agents,

IQL performs well relative to the other models. However as the number of agents

increase, the performance difference between IQL and most notably QMIX begins to

3Competition was hosted at IEEE CoG 2019. Results and source code of the AI bots can
be found here: https://sites.google.com/site/micrortsaicompetition/competition-results/
2019-cog-results
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(a) 4 Heavy (Our Agent) vs 4
Heavy (Heuristic AI)

(b) 8 Heavy (Our Agent) vs 8
Heavy (Heuristic AI)

(c) 16 Heavy (Our Agent) vs 16
Heavy (Heuristic AI)

(d) 3 Range (Our Agent) vs 8
Workers (Heuristic AI)

(e) 2 Light, 2 Range, 2 Heavy
(Our Agent) vs 2 Light, 2
Range, 2 Heavy (Heuristic AI)

(f) 5 Heavy (Our Agent) vs 6
Heavy (Heuristic AI)

Figure 3.3: Performance of various algorithms on three microRTS maps over a variety
of unit combinations. We compare the performance of our agent against the heuristic
approach.
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show. The flat line rewards yielded by QMIX, also demonstrate QMIX suffering from

relative overgeneralisation in the microRTS environment. In contrast, in our approach,

QCGraph and MAVEN continue to perform comparably with IQL in the low number

agent scenario, and alongside QTRAN outperforms other approaches in the larger agent

scenarios where stronger coordination is beneficial. Unlike QTRAN, QCGraph performs

well in both low and high number of agents, and with improved data efficiency.

Second we consider the heterogeneous environments (r3-w8, l2r2h2, h5-h6); these

microRTS environments are shown in Figure 3.3(d, e, f). As these environments are not

mirror match-ups, the MARL agents are required to find novel approaches to overcoming

their opponents; making use of the strengths and weaknesses of particular matchups or

traits of the units. From the r3-w8 and h5-h6 variations, we can see that DCG finds a

local optimal solution to coordinate the agents, but is unable to find the optimal solution.

This may indicate the limitations of coordination when considering pair-wise approaches.

In comparison MAVEN is able to find the best approach in both of these scenarios.

Although, our approach, QCGraph does not manage to find the local or best approach in

the h5-h6 scenario, we manage to find the best approaches for the mixed squad scenario

and in r3-w8, suggesting QCGraph out-performs other approaches when working with

longer term planning with range units which require "hit and run" tactics to perform

well in scenarios where the head-on approach is inferior.

3.4.2 Modified Predator-Prey

We also explore a modified cooperative predator-prey environment (MPP) based on task

presented from QTRAN and DCG [5, 63] which addresses the relative overgenerlisation

problem. MPP is built over the microRTS game-engine where the attack action is

replaced with a capture action to keep the prey in place, rather than damaging the prey.

The prey moves randomly when it is not being held, and rewards are presented only at
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(a) Modified Predator-Prey without negative re-
wards

(b) Modified Predator-Prey with negative re-
wards

Figure 3.4: Performance of various algorithms on Modified Predator-Prey.

the end. If a prey has two or more agents surrounding it a positive reward is presented

(i.e. greater than 0). If a prey has one or no agent surrounding it, a non-positive reward

is presented (i.e. 0 or less).

As shown in Figure 3.4 QTRAN and QCGraph perform the strongest for without

negative reward penalty (the ‘w/o neg’) task, with QCGraph being more data efficient,

whilst QCGraph and DCG perform the strongest (with QTRAN in third place) for with

negative reward penalty (the ‘w/ neg’ task). This demonstrates the importance of CG in

cooperative settings. Although MAVEN performs strongly in the ‘w/o neg’ MPP, it fails to

converge to the optimal solution in ‘w/ neg’ task. Overall QCGraph appears to be the

superior approach in both scenarios.
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Figure 3.5: Performance of Ablations in the Modified Predator-Prey game

(a) k-nearest neighbour representation in Mod-
ified Predator-Prey where there is no negative
reward.

(b) k-nearest neighbour representation in Mod-
ified Predator-Prey where there is negative re-
ward.

Figure 3.6: Representability of Predator-Prey Games.
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3.4.3 Two Step

We also use the two-step benchmark environment to demonstrate the representation

ability that is possible in our approach. In the first instance only Agent 1 acts and

chooses the matrix game for Agent 2. In the subsequent time step, both agents choose an

action based on the matrix game in step 1 and receive a global reward according to the

matrix game as shown in Figure 3.7.

In the two-step game results as shown in Figure 3.8, IQL suffer from relative generli-

sation, and in comparison all other approaches successfully identify the optimal payoff

matrix.

Ablations We explore ablations in relation to the choice of network construction in

QCGraph as shown in Figure 3.5(a). We denote the model “QCG-obs” to explore the

choice of h̃, whether the local observation or hidden layer transformation, we label the

model “QCG-nosort” for the removal of node sorting, and “QCG-pool” for the removal of

DiffPool, which is replaced with global sum pooling instead (analogous to the scenario in

[5] and [63]). We perform all our ablation experiments on the MPP ‘w/o neg’. Without

pre-sorting the nodes, the convergence is slower as it does not need to encode all possible

node permutations. Without the graph neural network module, the agent fails to capture

agent relationships. Using the local observation instead of the hidden layer may result

in lower quality policies, as suggested in QTRAN [63], yields improved performance,

which suggests noise or redundant information would be removed as part of the hidden

layer representation. The use of DiffPool also allows for information to propagate for

cooperative learning over global pooling layer. This demonstrates the importance in our

mixing network choices and construction.

Representability The key differentiator within QCGraph compared with other

coordination graph approaches is the ability to generate relations dynamically. We

hypothesise that QCGraph allows dynamically generated graphs and can mold itself to
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Figure 3.7: The two-step game’s pay-off matrix after the first agent chooses an action.
Choosing “A” leads to state 2A for the subsequent agent, and choosing “B” leads to state
“2B”.

(a) (b)

Figure 3.8: Average reward of two step matrix game (a) showing the reward in the last
training iteration, and (b) showing the average reward over the training iteration.

the appropriate form, by shifting and changing the adjacency matrix structure during the

mixing phase in centralised training step. To demonstrate this, we plot the approximate

k-nearest neighbour adjacency matrix by freezing the neural network at the start,

middle, and end of training for both the MPP ‘w/o neg’ and MPP ‘w/ neg’ environments.

The approximate k is determined by the average number of agents deemed Relevant

according to Definition 3.1 per step. Each frozen model is run 100 times and the

distribution of all the (hallucinated and unused) generated adjacency matrices created

in the centralised training step is shown as boxplots in Figure 3.6(a, b). We observe
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opposite tendencies in these two environments; when there is no penalty, QCGraph

has a bias towards fully connected coordination graphs. This is reflected by QTRAN

performing strongly in this environment, compared with DCG as shown in Figure 3.4(a).

In comparison, in the scenario where penalties are provided, QCGraph has bias towards

dynamically generating coordination graphs with lower number of agents, which explains

the superior performance of DCG compared with QTRAN in 3.4(b). This demonstrates

QCGraph’s representational ability to adapt and build structures which transition

towards more rewarding joint behaviours compared with existing CG approaches, as it

exhibits more stable behaviour when the optimal solution is found.

3.4.4 PettingZoo Benchmarks

Figure 3.9: Petting Zoo Environments: pistonball, pursuit and water world.

PettingZoo offers a unified API across a multitude of MARL environments to facilitate

benchmarking MARL algorithms. We access a variety of benchmark algorithms using

standardised preprocessing as suggested in the original benchmarks [68]. We assess a

wide variety of environments from different MARL benchmark tasks including “Butterfly”

[68], “MPE” [45] and “SISL” [25] environments, with their tasks depicted in Figure 5.1.

We also use variations of the environment that lower the number of agents by 25%,

which have been marked by medium suffix in the scenarios where the default agents

exceeded 4.

The “Butterfly” cooperative tasks used were cooperative pong and pistonball. In
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cooperative pong the aim is to ensure the puck remains in the environment. The task

terminates if the puck is out of bounds from the right or left edges of the environment.

The “MPE” cooperative tasks used were reference and spread. The reference task

aimed to move agents towards its assigned landmark. The agent’s assigned landmark

is known only by the other agents. In the spread task, rather than having a specific

landmark assigned to a specific agent, all agents must learn to cover all landmarks while

avoiding collisions with one another.

The “SISL” cooperative tasks used were pursuit and waterworld. In pursuit, the

agents control units (the pursuers), where the goal is to eliminate randomly moving

enemies, similar to the predator prey task. An evader agent is captured when two or

more pursuers surround it. In waterworld the pursuer agents aim to consume food while

avoiding randomly moving poison.

We assess our approach, QCGraph, against QTRAN, QMIX, IQL, SEAC, LICA, and

MADDPG algorithms, using the Q-learning approaches as our baseline, and comparison

against the state-of-the-art MARL algorithms using actor-critic approaches.

Figure 3.10: Performance of QCGraph against other Q-learning approaches over a
variety of benchmark environments.

Q-learning Baseline. The performance of QCGraph against other Q-learning algo-

rithms is shown in Figure 3.10. We observe that QCGraph yields higher returns across a

range of environments. In the environments similar to predator-prey with penalties (pur-
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QCGraph QMIX IQL SEAC MADDPG LICA

reference 10.64 ± 14.94 3.41 ± 18.27 -4.1 ± 16.38 12.76 ± 17.92 9.71 ± 16.31 27.84 ± 19.21
spread 30.35 ± 28.08 18.56 ± 27.11 12.13 ± 28.71 42.85 ± 28.7 19.64 ± 28.81 43.7 ± 29.66
pursuit 244.2 ± 30.33 157.13 ± 31.07 96.39 ± 32.04 168.24 ± 29.91 179.69 ± 30.04 248.03 ± 29.17

waterworld 204.59 ± 30.24 126.35 ± 28.87 48.78 ± 27.14 135.7 ± 27.88 156.99 ± 29.61 206.73 ± 29.52
pistonball 286.02 ± 43.54 187.43 ± 45.85 158.62 ± 39.87 193.56 ± 49.65 158.18 ± 30.79 172.06 ± 34.83

pong 28.91 ± 13.85 28.39 ± 8.85 22.25 ± 3.82 46.84 ± 3.01 55.43 ± 5.02 22.25 ± 2.94

pursuit
medium

169.57 ± 30.71 29.24 ± 23.46 28.57 ± 20.91 100.84 ± 31.08 123.8 ± 29.45 161.51 ± 29.67

waterworld
medium

193.49 ± 30.45 22.69 ± 21.87 32.08 ± 24.63 147.73 ± 28.21 20.39 ± 22.27 192.47 ± 29.58

pistonball
medium

165.73 ± 55.94 58.52 ± 45.36 82.38 ± 24.95 243.47 ± 52.34 136.8 ± 26.95 296.77 ± 65.96

pong
base

29.14 ± 14.87 27.42 ± 2.96 24.37 ± 8.08 40.74 ± 13.61 32.81 ± 3.79 21.2 ± 3.27

MRR
default only

0.524 0.233 0.181 0.524 0.405 0.512

MRR
overall

0.561 0.291 0.189 0.462 0.348 0.553

Table 3.1: Final Evaluation returns with one standard deviation. Highest and second
highest returns are shown in bold and italics respectively. The mean reciprocal rank
(MRR) is provided (higher is better) to allow for comparison across different MARL
approaches. MRR (default only) refers to the default PettingZoo environments, whilst
MRR (overall) includes the additional modified PettingZoo environments.

suit and waterworld), we observe QTRAN generally outperforms QMIX and IQL, which

is reflected in the QTRAN results [63], but fails to yield the same level of consistency

in other environments [5, 47, 76]. In this particular sets of tasks, QTRAN notably per-

forms the worst on pistonball out of all Q-learning approaches. QCGraph’s considerable

performance improvements over Q-learning approaches confirm the effectiveness of our

proposed methods.

Comparisonwith Actor-Critic Approaches. The performance of QCGraph against

other state-of-the-art MARL approaches is shown in Table 3.1. We observe that QCGraph

achieves competitive results across all tasks over a wide variety of cooperative MARL

environments. Although QCGraph did not “win” more tasks than LICA algorithm, it

provided more consistent results across all scenarios, demonstrated by its relatively

higher mean reciprocal rank. We hypothesise this is due to the ability of QCGraph to

dynamically alter its coordination structure during training to yield the ideal agent

formulation in the Q-learning settings.
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3.5 Conclusion

This thesis introduced QCGraph, an architecture for value factorisation over dynamically

generated coordination graphs, which can be maximised through creating subgraphs

dynamically. We evaluated our approach on a variety of environments to demonstrate

the efficacy of the QCGraph algorithm. QCGraph is superior to existing coordination

graph approaches experimentally, in both data efficiency and representational capability.

We demonstrate how Graph Neural Networks approaches through node ordering and

DiffPool can be used to resolve the agent reshuffling problem, as well as expand multi-

agent reinforcement learning to a dynamic cooperative environment at both a local and

global level.
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Part II

Learning to Detect
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Abstract

In this part of the thesis we focus on methods allowing us to detect changes in our experi-

ences as we train our agents on various tasks. In chapter 4 we examine the challenge

in single agent reinforcement learning where we are provided suboptimal experiences

and how we can constrain our updates through detecting and modelling “good” and “bad”

experiences. We evaluate our approach compared with offline reinforcement learning

benchmarks. In chapter 5 we examine the multi-agent setting where we want to share

experiences in DQN approach and how modifications can be made to IQL algorithms to

detect and account for differences in agent experiences through importance sampling

and leverage MARL benchmark environments.
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4.1 Introduction

In model-free reinforcement learning, the goal is to learn a policy which maximises the

cumulative discounted reward for a particular environment. In most scenarios, an agent

has direct access to the environment, and can perform data collection activity. This

has led to development of algorithms which are able to ignore or disregard the agent’s

sub-optimal behaviours [1, 52]. As a consequence, greedy approaches are prevalent

in reinforcement learning, leading to mode-seeking behaviour rather than approaches

which model the whole space by understanding the density of returns [22, 51]. This leads

to approaches which may penalise or even “forget” bad experiences and rewards, due to

the inherent bias towards high rewards. This concept is known as optimismand can be

formulated in regret settings [35].

At the same time, offline reinforcement learning has recently developed a lot of

interest. This approach adds restrictions to the typical model-free reinforcement learning

situation, whereby the agents may not necessarily have direct access to the environment,

but instead an additional constraint is added where the model can only use experiences

recorded in a static offline dataset [41, 50, 72]. This dataset of experiences may not even

be optimal, and can be suboptimal or even random, where the offline RL task is for the

RL algorithm to recover the policy which is emitted from the experiences (if we assume

that the experiences were generated from an optimal policy) or to infer a superior policy

from the sub-optimal dataset. There is particular interest in Offline RL, because in the

real-world, it is typically costly to deploy or test a policy. There could also be cost or other

practical considerations which prevents an agent from being able to continually update

the policy in an online manner [43]. Examples of this could include autonomous driving

[74], healthcare applications [49], and recommendation systems [3] which contain a large

abundance of information, but the deployment of new reinforcement learning agents

may only be completed after extensive testing and evaluation.
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Empirically, the “greedy” nature of many RL approaches lead to poor performance in

the offline setting. Even algorithms which leverage a replay buffer (DQN, DDPG, SAC)

may perform poorly, which is caused by the sensitivity to the experience distribution

present when applying offline reinforcement learning naively [18].

In this chapter we develop approaches to achieve the following goals: the challenge

around approaches typically being “greedy” and not leveraging bad experiences, and the

offline reinforcement learning setting where the experiences provided may be suboptimal

with limited to no ability to access the underlying environment. Furthermore we want to

ensure that any developed method can remain competitive even when used in the typical

reinforcement learning scenario where the agent has full access to the environment.

To achieve this, we first want to consider the ability to leverage offline RL to provide

agents the ability to learn in a structured manner. Present approaches generally require

collecting experiences through interacting with the environment or presume access to

such an environment. As such, many of these approaches may assume that the expe-

riences collected are near-optimal or optimal and assume environments are consistent.

We remove these constraints by introducing dual, advantage-based behaviour policy

which uses counterfactual regret minimisation. Our approach is assessed in online and

offline contexts, as well as scenarios where the training and evaluation environments are

inconsistent. In comparing all these scenarios, the flexibility of our approach is shown.

Furthermore our algorithm is comparable and even outperforms several strong baseline

models in a range of continuous environments. To motivate the neural architecture

choice, we perform additional ablation studies which illustrates the representative power

and provide insights to how our dual behaviour regularised actor critic model has been

designed, explore potential modifications, and probe the generalisability of our approach.

We leverage a behaviour regularised actor critic model to build a novel algorithm.

This approach can estimate an advantage-like function which uses counterfactual regret.
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From a construction standpoint it combines several ideas through Advantage-based

Regret minimisation (ARM) [35] (policy variation) and Behaviour Regularised Actor

Critic (BRAC) [72].

To demonstrate the efficacy of our algorithm, it is evaluated over various continu-

ous control tasks, using the PyBullet offline reinforcement learning environment and

PyBullet environments [17], and some other discrete action environments. It is shown

empirically that over different RL contexts, this approach generalises better and is more

robust compared with prior methods.

To tackle the challenge of detection our approach leverages the clipped advantage

to model changes in distributions of experiences, compartmentalising them into the

positive clipped advantage (or “good” experiences) and the corresponding negative clipped

advantage which represents “bad” experiences.

4.2 Background

It has been confirmed empirically that using off-policy approaches such as TD3 and DDPG

in offline reinforcement can struggle to learn a sensible policy, even when the offline

experiences presented are derived from a single, consistent (optimal) behaviour [72]. This

challenge is due to the erroneous generalisation which is derived from leveraging function

approximators to estimate/approximate the Q, state-action value function. One way this

has been addressed is through regularising the learned policy towards the behaviour

policy explored in Behaviour Regularised Actor-Critic (BRAC) [72] and Bootstrap Error

Accumulation Error (BEAR) [41]. The difference between these approaches centres

around the choice of divergence metrics and choice of the regulariser between the

behaviour and target policy. For example, Maximum Mean Discrepancy (MMD) is used

by BEAR and Kullback-Leibler divergence is used by BRAC [41, 72].

Rather than explicitly regularising policies, other approaches would be to implicitly
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regularise policies to support offline reinforcement learning. One approach is the ad-

vantage weighted actor-critic algorithm (AWAC), which uses implicit constraint on the

actor with an off-policy critic. In this particular scenario, AWAC does not use an explicit

behaviour policy, as it learns a policy that maximises the critic function via its value

function, but also implicitly restricts the distribution of the policy to remain within the

range of observed data during the update step of the actor network [50]. In contrast,

Munchhausen Reinforcement Learning (MRL) [70], which uses implicit regularisation

has been used in Q-learning by augmenting the immediate reward. This approach aug-

ments the immediate reward with the scaled log-policy which has been demonstrated to

implicitly perform KL regularisation when executing the policy update. Another related

approach is to perform reward decomposition as part of the off-policy training, however

current approaches use this only to aide explainability and not learning [36].

4.3 Dual behaviour Regularised Reinforcement

Learning

Next we provide the necessary background of our approach “Dual Behaviour Regularised

Reinforcement Learning” (DBR). Then we explore the representation power of DBR and

provide intuition behind how DBR operates.

4.3.1 Behaviour Regularised Actor-Critic

In this section, we formally introduce Behaviour Regularised Actor-Critic approaches

including BEAR [41] and BRAC [72], which are the basis of our Dual Behaviour Regu-

larised algorithm and are used in offline reinforcement learning.

First we consider the Soft Actor-Critic (SAC) framework which underpins both BEAR

and BRAC. The modification which SAC makes compared with the actor-critic definition
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provided above, is the addition of an entropy regulariser term. In the SAC framework,

we can define the expectation over a given state which induces the value function as

below:

Vº(st)= Est+1:1,ut+1:1
(Rt|st) (4.1)

Then to cater for the additional entropy regulariser term, we modify Equation 4.1 to:

Vº(st)= Est+1:1,ut+1:1 [Rt+ÆH(º)|st] (4.2)

Then to extend SAC to the BRAC and BEAR framework, we replace the entropy

regulariser with a choice of Divergence function D with the appropriate behavioural

policy Ø.

Vº(st)= Est+1:1,ut+1:1

£
Rt°ÆD(º,Ø)|st

§
(4.3)

In this setting the behavioural policy Ø is generated from the static dataset of

transitions D, which means that the behavioural policy is always well-defined, even if

multiple distinct policies were used to collect experiences. As a consequence, it cannot

be presumed that the algorithm can directly access the behaviour policy. Instead we

approximate this behaviour policy [41, 72].

Ø̂ := argmax
º̂

E(s,u,r,s0)ªD [log º̂(u|s)] (4.4)

The differences between BRAC and BEAR lie in the choice of divergence functions.

In the BRAC framework, the Kulback-Leiber divergence is used, whilst the Maximum

Mean Discrepancy divergence (MMD) used in the BEAR framework additionally adds a

threshold constraint ≤∏ 0 to the kernel MMD distance, which is shown below:

EsªD[D(º,Ø)|st]< ≤ (4.5)
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This grants the algorithm control over the level of constraint the policy can diverge

away from the behaviour policy. In theory, altering ≤ enables faster or slower fine-tuning

when the BEAR algorithm is allowed to collect samples of experiences [50].

4.3.2 Clipped Advantage Actor-Critic

In this section, we examine two approaches which both use clipped advantage and

their intuitions to improve actor critic approaches. First self-imitation learning (SIL)

[52] builds ontop of SAC. In this formulation an additional update step is performed

in conjunction with the standard update procedure. This update step uses the clipped

advantage to update the actor-critic model. Within SIL, the clipped advantage is shown

below

Asil
t (s,u)=max

√
1X

k=t
∞krk°V (s;µ),0

!
(4.6)

where rk indicates the reward at time k and ∞ being the discount rate.

The second approach is the advantage regret minimisation framework (ARM), where

the clipped advantage is in the recursive form:

Aarm
t (s,u)=max(At°1(s,u),0)+ (Q(s,u;µ)°V (s;µ)) (4.7)

Beyond the recursive nature of ARM and SIL, the intuitive difference between the

two approaches is the definition of the advantage function. In SIL the advantage is in the

form that considers the cumulative discounted rewards, whereas the default approach

in ARM considers advantage in the form that leverages the Q-function, though any

advantage function can be used, including the formulation used in SIL.

The other difference in the two approaches is the algorithmic setup. In SIL, the

authors propose an additional step in training the policy to perform an additional update,
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where it functionally speaking resamples the agent’s experience only taking the top

experiences to retrain, whereas ARM formulation does not require an additional update

step and can use the clipped advantage directly in its training regime for the policy.

One of the challenges in the ARM framework, is the potential in the policy update

returning log(0). Due to this, ARM is typically used only in Q-learning due to the discrete

action space. This does not occur in the SIL setup because experiences which would

cause such an update would have been discarded.

4.3.3 Method

One of the main contributions of our algorithm, Dual Behaviour Regularised Actor-Critic

(DBR), is to remediate the constraints of the BEAR and ARM algorithm. DBR aims to

address the following deficiencies:

• Recall in the BEAR algorithm, the existence of a fixed hyperparameter ≤ which

allows the BEAR policy to have greater flexibility when fine tuning. Can we enable

a flexiblity ≤?

• In the ARM formulation, we are restricted to Q-learning approaches spaces due

to the nature of clipped advantage. Can we extend it to actor-critic approaches

without encountering the log(0) issues which would occur?

To address these points, DBR splits the behavioural policy estimation into two parts,

the positive and negative clipped advantage, which are defined in Equation 4.8 and 4.9

below:

A+
t (s,u)=max

√
1X

k=t
∞krk°V (s;µ),0

!
(4.8)

A°
t (s,u)=min

√
1X

k=t
∞krk°V (s;µ),0

!
(4.9)
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Furthermore we split our Behavioural policies into positive and negative variations

in a similar manner

Ø̂+ := argmax
º̂

E(s,u,r,s0)ªD+[log º̂(u, |s)] (4.10)

Ø̂° := argmax
º̂

E(s,u,r,s0)ªD°[log º̂(u, |s)] (4.11)

(4.12)

where the replay buffer subsets that revolve around the value function are de-

fined as D+,D°. That is D+ = {(s,u, r, s0) 2 D s.t. A+
t (s,u)> 0} and D° = {(s,u, r, s0) 2

D s.t. A°
t (s,u)< 0}. The update for Ø̂+ and Ø̂° uses the same behavioural policy and only

controls the action space in which the actor is trained and penalised against.

We can apply an ARM style update to the BEAR framework which would resemble

Vº(st)= Est+1:1,ut+1:1

£
Rt°ÆD(º, Ø̂+)|st

§
(4.13)

with the divergence function choice to be MMD. Then to enable the policy improve-

ment step to be dynamic, rather than using a fixed ≤, we instead can leverage the negative

behaviour policy

EsªD[D(º, Ø̂+)|st]<max(≤,EsªD[D(º, Ø̂°)|st]) (4.14)

Intuitively, as new experiences are added to the replay buffer, a desirable outcome

is for the divergence between the estimated positive and negative behaviour policies,

moving towards the positive behaviour policy than the negative behaviour policy, i.e.

D(º, Ø̂+)<D(º, Ø̂°). This idea is central to our detection challenge, as the dual behaviour

policies act as a surrogate to detect and adapt to changing distributions and experiences.

This approach avoids the issue of discarding experiences as in SIL and the policy

gradient update in ARM by training Ø̂+, Ø̂° concurrently. Then all experiences would
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be used in the counterfactual regret minimisation framework, and achieved through

surrogate objective optimisation of Ø̂+, instead of analysing the clipped advantage directly.

Consequently this implicitly ensures the objective is as below

argmin
º

EsªD[D(º,Ø+|s)] (4.15)

which means the behaviour policy Ø+ is approximated by using the clipped advantage

A+.

Therefore, our approach is a variation of ARM with alterations of the surrogate

objective, thereby addressing the deficiencies in the original ARM algorithm and allowing

it to be used in policy gradient and actor-critic approaches.

In spite of the modifications, DBR still maintains the concentrability coefficient bound

in the original BEAR algorithm which considers the dual data distributions D
+ and

D
° and its corresponding marginal state distribution. Define ¶ to be the set of policies,

and ¶≤ = {º|º(u|s)= 0 whenever Ø+(u|s)<max(≤,Ø°(u|s)} to be ¶ when constrained by

support sets (i.e. policies that reside in the positive clipped advantage, but away from

negative clipped advantage regions). Then the concentrability coefficient can be defined

as:

Assumption 4.1. (Concentrability) Define Ω0 to be the initial state distribution, and the

distribution of training data S£U be defined as µ(s,u), with marginal µ(s) over S. If

there exists coefficients c(k) where º1, . . . ,ºk 2¶ and s 2 S:

Ω0Pº
1P

º
2 . . .P

º
k (s)∑ c(k)µ(s) (4.16)

where transition operator on states induces by ºi is defined by Pº
i . Then, we can define

C(¶), the concentrability coefficient as

C(¶) := (1°∞)2
1X

k=1
k∞k°1c(k) (4.17)
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Theorem 4.1. Define the data distribution created by behaviour policy Øi to be µØi . Let

the marginal state distribution be µØi (s), ¶≤ = {º|º(a|s) = 0 if Ø+(a|s) <max(≤,Ø°(a|s)},

and the highest discounted marginal state distribution be defined as µ¶≤ , with Ω being

the distribution of the initial state which follows º 2 ¶≤ afterwards. Then C(¶≤), the

concetrability coefficient exists and is bounded:

C(¶≤)∑C(Ø+) ·
µ
1+ ∞

(1°∞) f (≤)
(1°≤)

∂
(4.18)

where f (≤) :=maxØ̃2{Ø+,Ø°}mins2S,µ¶≤ (s)>0[µØ̃(s)]> 0.

Proof. For clarity we simplify notation so ¶≤ is referred to as ¶. Then let µ¶ to be

highest discounted marginal state distribution from initial starting state Ω with policy

º 2¶. That is:

º¶ := max
{ºi}i :8i,ºi2¶

(1°∞)
1X

m=1
m∞m°1¡0Pº

1 · · ·P
ºm (4.19)

By definition of ¶, we have ¶,8s 2S,8º 2¶,º(u|s)> 0) Ø+(u|s)> ≤. The marginal

state distribution of Ø+ and ¶ can be shown to be bounded in total variation distance by

DTV (µØ+||µ¶)∑ ∞
1°∞ (1°≤).

By definition of ¶, which is the set of policies, 8s 2S,µ¶(s)> 0) µØ+ ∏ f (≤). Where

f (≤)> 0 is a constant with parameter ≤. This observation holds irrespective of the BEAR

or DBR framework. This encapsulates the maximum visitation probability of states when

executing behaviour policy Ø+(a|s) or Ø°(a|s) from Ω, the initial state distribution, with

Ø+(a|s)∏ ≤ which constrains the actions which can be executed from the environment.

Then in consideration of Ø := Ø+[Ø°, we have the constant f (≤) ∏ Ø. When combined

with the total variation diverse bound, maxskµØ+(s)°µ¶(s)k ∑ ∞
1°∞ (1°≤), we get that

sups2S
µ¶(s)
µØ+

∑ ∞(1°≤)
(1°∞) f (≤)

+1 (4.20)
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Given, C(¶) := (1°∞)2
P1

k=1 k∞
k°1c(k) or the marginal state visitation distribution

ratio when performing policy iterate with backups using the distribution-constrained

operator and µ=µØ+ the data distribution. As a result,

C(¶≤)
C(Ø+)

:= sup
s2S

µ¶(s)
µØ+

∑ 1+ ∞

(1°∞) f (≤)
(1°≤) (4.21)

⌅

Our approach differs from the BEAR algorithm as it uses Ø° to intentionally avoid

performing poor actions. This is particularly important if there are degenerative states

as part of the environments, which are non-terminal states that will create sub-optimal

trajectories. An example of such an environment is shown in Figure 4.1 as part of the

Connect-4 game, which demonstrates our algorithms ability to avoid critical mistakes

compared with other approaches. This is shown in the learned policy behaviour output

shown in Figure 4.1(b), where our approach successfully identifies the correct move in

constrast to approaches which only use Ø+.

If DBR uses a fixed constraint like BEAR rather than using Ø°, then our model would

take the form of ARM where the behaviour policy acts as a constraint enforcing clipped-

advantage style update. If the form of the advantage function uses the cumulative reward,

instead of the Q state action function with a separate update step, then the model would

take the form of SIL instead. Rather than performing explicit regularisation, we can also

augment the reward similar to Munchhausen Reinforcement Learning, which performs

an implicit entropy regularisation. To regularise with respect to the behaviour policy,

we can modify the reward augmentation to the form rmrl
t := rt+∑ logØ+(u|s), with the

scaling factor ∑ 2 [0,1]. In our ablation experiments, we explore all of these variations.
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4.4 Experimental Results

We compare the results of our DBR algorithm against other approaches. First we

describe our experiment details including data collection and hyperparameters, and then

we discuss the details of our results.

The experiments we conduct are both for offline reinforcement learning and online

reinforcement learning. We also evaluate DBR on environments where the training

environment is different (easier) to solve than the evaluation environment to re-affirm

the representative power of our approach.

Our experiments were conducted by leveraging the PyBullet environments in the

online setting and also with generated offline PyBullet datasets. The choice of hyperpa-

rameters for comparison networks is based on their official implementation details and

is shown in Table 4.1. We use a three layer neural network in all of our experiments and

attempt to keep all the neural network parameter sizes the same across all approaches

with appropriate changes on an algorithm level. We compare our approach with TD3,

SAC, BEAR and AWAC. For DBR specifically, we leverage the same hyper-parameter

setup as BEAR. This included the same settings for Q function ensembles with two

ensembles. We also conduct ablation studies around the variations of DBR which lever-

age self-imitation or Munchhausen RL approaches which used the original author’s

suggested hyperparameters. All experiments were evaluated using 1000 episode rollouts

which use entirely different evaluation environments, and we show the training iteration

and average reward in the respective tables and figures.

4.4.1 Data collection

To generate data for our offline experiences dataset, we leverage Soft Actor-Critic algo-

rithm. The breakdown of our approach is shown below:
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• Random data was generated through sampling based on the uniform distribution

over the action space in the environment

• The medium dataset was generated by learning a policy using the Soft Actor Critic

algorithm for 1 million timesteps for each environment and using the final policy

to generate a dataset of experiences.

• Mixed data was created through including all experiences of the agent throughout

the training of the medium agent.

4.4.1.1 Hyper-parameters

Hyperparameter Values
Replay Buffer Size 1000000
Steps per Iteration 1000

Number of pretraining steps 1000
Learning Rate 0.0003
Batch Size 256

Policy Hidden Sizes [256, 256, 256]
Policy Hidden Activation ReLU

Target Network ø 0.005
Reward Scale 1

Discount 0.99

Table 4.1: Hyper-parameters used for RL experiments

4.4.2 Connect-4

For this task, we demonstrate the representation power and the ability for DBR to

generalise by having the RL agents train on an agent which acts according to a random

policy, whilst evaluating on a heuristic agent which leverages Monte-Carlo Tree Search

[7]. We leverage Double DQN [29] as our benchmark and modify BEAR and DBR to use

discrete actions [10]. The results can be seen in Figure 4.1 and in Section 4.3.3 where it is
1From “gameplay of Connect-4”, “https://en.wikipedia.org/wiki/Connect_Four’’
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(a) Connect-4: Red to play. The only
move which does not lose the game
is the right-most file which blocks Yel-
low’s winning move1 (b) Learned behaviour policy, based on

the environment state depicted in (a).

(c) Evaluation performance using an
(unseen) adversarial agent (depth 10
MCTS).

Figure 4.1: Connect-4: during training, the opposing agent makes moves at random.
However it is evaluated on a separate and unseen agent which acts according to a MCTS
policy with various depths. All of the different approaches were trained for two million
rollouts. Notice that DBR Ø° has highest energy with the right move. Contrast this with
only using Ø+ which fails to identify the correct action. In comparison BEAR completely
fails to identify the correct action.

demonstrated that DBR is able to generalise and that there is a loss in performance from

the other agents as we move from an easy training environment to a more challenging

evaluation environment as shown in Figure 4.2. This demonstrates that DBRmay benefit

from a more diverse set of experiences, even if this includes lower-quality examples to

construct superior policies.
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(a)

(b)

Figure 4.2: Performance over Connect-4 environment, where the agents are trained on
a random agent, and evaluated on a random agent (left) and a heuristic MCTS agent
with depth 10 (right). The average is provided over the last ten steps, with error bars
representing one standard deviation.
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4.4.3 PyBullet Environments

When training on the PyBullet environments, we allow agents access to the environment.

Although algorithms like BEAR, AWAC were designed to be used in the offline or batch

setting rather than the online setting, this task demonstrates how our modifications to

BEAR algorithm enable DBR to dynamically control exploration. The outputs of our

experiment is shown in Figure 4.3 where we observe DBR is indeed superior to other

offline RL approaches (AWAC, BEAR), and comparable to the typical baselines (SAC,

TD3). One key observation around the limitation of AWAC, is the necessity of building

up the policy through offline data, which may prevent AWAC activating tabula rasa.

Throughout this process, it is demonstrated that DBR is able to find the appropriate

balance between offline and off-policy reinforcement learning.

(a)

Figure 4.3: PyBullet environments: trained tabula rasa. The graphs report last ten steps
with the error bars being one standard deviation.
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Tasks/Algorithms DBR DDQN TD3 SAC BEAR AWAC

Ant-PyBullet (Offline - Random) 13.6±5.73 ° 11.2±5.99 10.1±2.4 11.1±6.02 10.0±4.15
Halfcheetah-PyBullet (Offline - Random) °226±359 ° 180±133 °192±8.2 °1405±42.7 301±4.6
Hopper-PyBullet (Offline - Random) 16.6±2.88 ° 11.9±0.856 16.2±2.86 16.2±2.93 16.1±2.68
Walker2d-PyBullet (Offline - Random) 0.822±0.490 ° 4.69±0.426 1.45±0.465 33.7±4.97 13.0±1.08
Ant-PyBullet (Offline - Medium) 175±2 ° 266±53.9 106±2 91±18.25 169±2
Halfcheetah-PyBullet (Offline - Medium) °1539±8.2 ° °1716±14.7 °49.9±9.2 °1359±312 °1456±6.4
Hopper-PyBullet (Offline - Medium) 17.3±6 ° 15.4±0.65 11.5±2.6 16.1±2.97 14.1±6.17
Walker2d-PyBullet (Offline - Medium) 33.3±4.8 ° 8.03±7.83 36.6±6.81 46.5±49.3 14.6±19.8
Ant-PyBullet (Offline - Mixed) 292±0.255 ° 43.7±24.9 236±0.153 82.4±7.32 403±0.119
Halfcheetah-PyBullet (Offline - Mixed) °1694±9.3 ° °1675±19.2 °1654±8.7 °1669±14.78 °870±3.1
Hopper-PyBullet (Offline - Mixed) 12.1±3.38 ° 13.5±0.783 18.3±27.9 16.1±2.88 23.1±13.6
Walker2d-PyBullet (Offline - Mixed) 39.3±7.99 ° 8.74±21.2 35.6±5.51 52.3±61.2 48.4±15.5
Ant-pybullet-v0 (Online) 2136±6.5 - 98.9±3.4 2302±7.5 567±9.3 547±9.2
Halfcheetah-pybullet-v0 (Online) 919±9.4 ° 2172±4.5 1370±3.2 19.3±18 383±2.8
Hopper-pybullet-v0 (Online) 2435±923 ° 2470±9.3 2031±7.4 33.4±1.83 794±6.1
Walker2d-pybullet-v0 (Online) 1837±758 ° 1611±117 1721±7.39 47.0±16.9 6.75±5.82
Connect 4 ‚Äì Random 0.982±0.0158 0.589±0.161 ° ° 0.967±0.116 °
Connect 4 ‚Äì MCTS 10 0.912±0.0793 0.214±0.161 ° ° 0.75±0.187 °

Table 4.2: Performance in benchmark tasks. We report the performance based on the evaluation environment with one
standard deviation.
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4.4.4 Offline Reinforcement Learning

Next we examine the performance of DBR over offline RL tasks. We divide our analysis

in two parts, corresponding to the environments available: medium-quality data, and

performance on random/mixed quality data.

For the medium quality dataset, we observe that DBR is comparable with BEAR -

having similar performance or better (Figure 4.4(a)). In the scenarios where DBR was

outperformed by TD3 or SAC, DBR was the next strongest approach. This is shown in

our results for environments “ant-PyBullet” and “halfcheetah-PyBullet”.

For the random and mixed datasets, we observe that DBR achieves good results

compared with other approaches except for “walker2d-PyBullet-random” and “hopper-

PyBullet-mixed” environments. These results shown in Figure 4.4 are in line with our

expectations that DBR is a more robust algorithm, and can adapt more readily in light

of suboptimal experiences in the dataset.

4.4.5 Ablation Studies

In our DBR formulation we have been prescriptive in our algorithmic choices. In this

section we empirically explore the algorithm decisions, justify our choices over a range of

environments and demonstrate the stability of DBR. We also explore the possibility of

using an implicit regularisation scheme in a similar manner to MRL.

Figure 4.6 demonstrates the strength of our choice, and the degenerative behaviour

present when using an implicit regularisation scheme as suggested by MRL. Furthermore

as shown in Figure 4.2, that the strength of DBR is shown that superior policy can be

obtained from a diverse set of experiences even if this includes lower-quality examples.
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(a) “Medium” Offline Datasets

(b) “Random” Offline Datasets

(c) “Mixed” Offline Datasets

Figure 4.4: PyBullet Control environments: each agent only used offline datasets with
no exploration. (a) frozen policy after training (medium) (b) random policy, (c) mixture
of random and medium quality experiences. The average is provided over the last ten
steps, with error bars representing one standard deviation.
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(a)

(b)

Figure 4.5: PyBullet environments, when trained tabula rasa (i.e. without offline data).
The average is provided over the last ten steps, with error bars representing one standard
deviation.
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(a)

(b)

Figure 4.6: Ablation Results. The average is provided over the last ten steps, with error
bars representing one standard deviation.
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DBR Bear IAC SEAC

pursuit 19.76 ± 10.44 18.37 ± 9.77 16.86 ± 9.38 17.56 ± 9.69
reference 21.51 ± 9.94 7.54 ± 3.45 2.65 ± 1.28 2.68 ± 1.24
spread 7.60 ± 3.27 5.64 ± 2.46 3.78 ± 1.76 3.99 ± 1.87
tag 8.76 ± 3.68 5.65 ± 2.46 3.78 ± 1.76 3.99 ± 1.87

waterworld 21.25 ± 9.43 17.40 ± 8.36 15.17 ± 7.55 16.28 ± 7.75

Table 4.3: Final Evaluation returns with one standard deviation for multi-agent environ-
ments using DBR and BEAR as drop-in replacements for “shared experience actor critic”
algorithm using PettingZoo environments.

4.5 Multi-Agent Experimental Results

The DBR framework can be extended to multi-agent scenario with great effect. In

this section we perform ablation study and compare with other multi-agent actor-critic

frameworks to determine the performance of DBR. As DBR makes efficient use of

offline and off-policy information, we can drop-in DBR model in "shared experience

actor critic" model which operates by enabling other agent experiences to be augmented

with each agent in the CDTE MARL framework. To ensure consistency across tasks

and environments, consistent preprocessing was used as suggested in other MARL

benchmark [68]. When evaluating our agents, the tasks were run in separate evaluation

environments with 1000 episode rollouts.

From the results shown in Table 4.3, we observe that DBR has superior performance

compared with other actor critic approaches when used as a drop-in replacement for

algorithms which can use additional history and data where the agents are assumed to

be homogenous. This demonstrates the superior performance and opportunities provided

by DBR algorithm.
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4.6 Discussion and Future Work

In this chapter we formulated DBR, which is an approach to bridge offline reinforcement

learning with off-policy approaches through relaxing constraints placed on it through

the ARM framework and BEAR algorithm. This is achieved through removing the

fixed constraint in the BEAR algorithm, and enabling DBR to dynamically control its

exploration rate based on the advantage framework. This removal of the fixed constraint

is central to our detection challenge in this part of this thesis, whereby it enables

our algorithm to detect and adapt to the appropriate tasks based on the advantage

framework.

This approach enables DBR to generalise over different types of tasks and datasets,

including suboptimal policies as shown in the PyBullet experiments, and generalising

over tasks such as Connect-4 where the training environment is simpler than the

evaluation environment. We justified our choice for the construction of the clipped

advantage both theoretically and empirically by comparing it with self-imitation learning

and implicit regularisation in the Munchhausen RL framework.

Future extensions to our work could entail exploring more scenarios in which be-

haviours can be transferred from one context to another. Through exploring and re-

searching these challenges, it can enable algorithms which can be trained using large

scale datasets leading to similar progress made in recent years within the supervised

learning fields in image recognition and natural language understanding.
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5.1 Introduction

In the previous chapter we examined the challenge of detection in the single agent

reinforcement learning (RL) scenario whereby we explored how we can learn a surrogate

behaviour policy that is positively and negatively clipped to bridge the offline and off-

policy algorithm which can generalise better and induce superior policies compared with

the experiences that the policy may be based on.

In this chapter we continue with the detection challenge but instead in the multi-agent

setting. Similar to the previous chapter we examine how we can improve our policies

through optimising our available experiences and again also examine how explicit or

implicit regularisation can be leveraged to improve multi-agent reinforcement learning

(MARL). One key observation in MARL that algorithms leverage Q-learning is if we

naively use experiences of other agents, it does not greatly improve performance [9].

In this chapter we explore Multi-Agent Regularised Q-Learning (MARQ), which strives

to correct for the underlying policy distribution to enable experience sharing to occur

through regularisation. Furthermore MARQ aims to address these challenges without

explicit centralised structures which we hypothesis enable agents to perform structured

and diverse exploration.

Unlike many other MARL approaches, MARQ does not leverage centralised structures

[45, 47, 57, 76]. Instead, the MARQ framework is closer to Independent Q-Learning

(IQL) [67] variation of Shared Experience Actor-Critic [9]. Despite lack of centralised

structures, by imputing other agent’s experiences, and correcting for policy distribution

differences, MARQ can still attain superior performances compared with the analogous

IQL approach. By having structured exploration, agents can leverage their collective

experiences which allow agents to explore the most promising directions. This has been

demonstrated empirically as MARQ generally yields greater returns with less iterations

compared with other approaches.
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In line with the challenge of detection, instead of using DQN MARQ uses a distribu-

tional reinforcement learning algorithm [12], which enables MARQ to apply importance

sampling and divergence measure. This approach enables experiences to be gathered

in an adaptive manner, and the direction in which agents perform exploration and the

nature of the policy updates allow greater returns in less iterations.

In this chapter, we summarise our contributions to Multi-Agent regularised Q-

learning as follows:

• We empirically demonstrate more efficient training by allowing of diverse expe-

riences through regularisation compared with existing MARL Q-Learning ap-

proaches.

• We demonstrate that optimising over experience gathering and shared experience

can outperform existing MARL Q-Learning approaches and independent learning

approaches without expensive centralised structures.

5.2 Related Works

Diversification

To tackle the challenge of detection, one approach is to encourage diverse experiences

to induce and find promising states. In single agent RL, this has been approached in

an unsupervised manner by generating new skills through considering the maximum

entropy without taking into account the reward signal [14]. The analogous scenario

in MARL was constructed by considering mutual information in the joint state-action

[47]. These approaches involve detecting and modelling the underlying policies involved.

These are not the only approaches which can be used to promote diversification, as other

approaches in RL exist which consider the exploitation and exploration trade-off [32, 56].
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Entropy Regularisation

Entropy regularisation is an approach which can be leveraged to promote structured

exploration. This is a common policy optimisation technique where an entropy penalty is

added to the policy and value function update, and has been used in multiple single-agent

reinforcement learning algorithms [26, 27, 60]. Entropy regularisation can also occur

implicitly by augmenting the reward signal [70]. In the MARL scenario, an adaptive

entropy regularisation approach has been empirically shown to promote consistent

exploration across multiple agents [76].

5.3 Multi-Agent Regularised Q-Learning

Next we provide the necessary background on our approach “Multi-Agent Regularised

Q-Learning” (MARQ). Then we outline our methodology and discuss the various consid-

erations in the construction of the MARQ algorithm.

Multi-Agent Reinforcement Learning and Q-Learning

First we introduce our notation and provide background to multi-agent reinforcement

learning as part of the MARQ setup. Within MARQ, the problem can be framed as

a Dencentralised Partially Observable Markov Decision Process [53]. This is defined

by the tuple hS,U ,P,R,Z,O,n,∞i where the state of the environment is st 2 S where t

represents the time step embedded in the environment. Then for every time step t, each

individual agent a 2 A ¥ {1, . . . ,n} selects their corresponding action u 2U independently

from all other agents. We define the joint action of all agents to be u 2U¥Un. As part

of the environment, it contains a probability transition function or the state transition

function P(st+1|st,ut). In our experiments, we restrict the MARL problem to be coop-

erative, that is, the same reward function and reward is provisioned to all agents and
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defined by R(st,ut) with discount rate ∞ 2 [0,1).

In this thesis, environments are presumed to be partially observable, we formalise

this by restricting each agent to their own local, individual observation z 2 Z based

on the observation function O(s,a)! Z. Then by convention, a given particular agent

a’s action-observation history is defined as øa, so that this conditions on the agent’s

stochastic policy ºa(ua|taua).

In this formulation, the Q function for a particular agent i is defined as

Qi(st,ui
t)= Est+1:1,ui

t+1:1

h
Rt|st,ui

t

i
(5.1)

Then in Independent Q-Learning [67], the objective is the Bellman optimality equa-

tion which is as follows

Q§(s,u)= Es0

µ
r+∞max

u0
Q§(s0,u0|s,u)

∂
(5.2)

For a particular agent a, The Q function would be approximated through a neural

network function approximator Q(s,u;µa), where the algorithms typically leverage pa-

rameter sharing across agents for efficiency. The object of this approach is to minimise

the following loss function

L(µ)= Es,u,r,s0
°
(y°Q(s,u;µa))2

¢
(5.3)

Where y= r+∞maxu0Q(s0,u0;µ°) with µ° being the parameter of a target network.

The target network is frozen for several training steps and is then updated according

to a predetermined schedule with the baseline Q function. A distributional variation

for Q learning is created through having the Q function outputting the distribution

estimates and using quantile Huber Loss instead of the mean squared error returns

when modelling the Q function [12].
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Another extension over the distributional variation of Q learning is Conservative

Q-Learning (CQL). If the empirical behavioural policy at state s is defined as º̂D(u|s) :=
P

s,u2D 1[s=s,u=u]P
s2D 1[s=s] , the addition of Q-value maximisation term (shown in red) from º̂D; below

is the iterative update at timestamp t:

Q̂t+1 √ argmin
Q

Æ ·
≥
EsªD,uªº(u|s)[Q(s,u)]°EsªD,uªº̂(u|s)[Q(s,u)]

¥

+1
2
Es,u,rs0ªD

°
(yt°Q(s,u;µ)2

¢
(5.4)

CQL provides theoretical improvement guarantees over the lower bound, and provide

extensions through the choices of regularisers R(º). In this chapter, we are interested

in the multi-agent setting, where there are additional considerations when leveraging

other agent experiences.

5.3.1 Correcting for Shared Experiences

In constructing MARQ, we use the Independent Q-Learning framework distribution Q-

learning approach instead of DQN. Prior work has shown that using shared experience in

Q-Learning frameworks has demonstrated to have minimal improvement in performance

in the MARL setting[9]. In this section, we describe how to improve and rectify the

deficiencies which were identified.

The key observation is if we leverage Q-learning and shared experiences without

correction, this may cause the Q function to be underestimated.

Proposition 5.1. If the DQN iterative update for agent i using the observation history

from agent k is provided as follows:

Q̂i
t+1 √ argmin

Q
Æ ·EsªDk,uªºi [Q(s,u;µi)]+ 1

2
Es,uªDk

h
(yi°Q(s,u;µi))2

i
(5.5)

Then the resulting Q-function Q̂k := limt!1 Q̂i, lower bounds Q̂k at all (s,u).
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Proof. Consider the iterative update Equation 5.5 above. If the derivative is set to 0,

it yields the below equation:

8s,u 2Dk, 8t Q̂ i
t+1(s,u)= yit °Æ

ºi(u|s)
ºk(u|s)

(5.6)

Observe that ºi(u|s)> 0,ºk(u|s)> 0,Æ> 0. When we consider the iterative update,

the Q-value will be underestimated, i.e. Q̂i
t+1(s,u)∑ yit . The intuition here is without

adjustment, the experience realised from another agent may be inappropriate. If we

consider all pairwise combinations of agents, we can extend this to all agents.

To improve this setup, we can attempt to correct through the value loss function. If

the shared experience is an out of distribution sample, the value loss would be high due

to undersampling. This leads to the addition of a regularisation penalty to the value loss

component similar to the Shared Experience Actor-Critic approach [9]. We demonstrate

this below, where using our notation define the update iterate for agent i by sampling

from agent k to be Q̂{i,k}
t+1 , and ∏ being a hyperparameter which weighs the strength or

reliance on experiences from other agents; with the new regulariser component shown in

red:

Q̂{i,k}
t+1 √ argmin

Q
Æ ·

≥
EsªDk,uªºi [Q(s,u;µi)]°EsªDk,uªº̂k(u|s)[Q(s,u;µi)]

¥

+ 1
2
Es,uªDk

h
(yit °Q(s,u;µi))2

i
+∏ ·Es,·,r,s0ªDk,uªºi

∑
ºi(u|s)
ºk(u|s)

∏∞∞∞V i(s)°
≥
r+∞V i(s0)

¥∞∞∞

(5.7)

Similar to Shared Experience framework [9], we have found the hyperparameter ∏ to

be largely insensitive, and have used ∏= 1 in our experiments with a separate ablation

study to justify our reseults in Section 5.4.2.1. Our experiments and setup are different

from Christianos et al (2020) [9], as we leverage a distribution RL approach which allows

for importance sampling and for the correction to be used. This demonstrates how a
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Q-learning approach can be used to align performance with the results in the actor-critic

framework.

5.3.2 Explicit Adaptive Regularisation

Our approach is not the first approach to explore the impact of regularisation for MARL

algorithms. As part of Learning Implicit Credit Assignment (LICA), structured explo-

ration was encouraged through the addition of an entropy regulariser. This is adaptive

entropy was created dynamically by controlling the entropy gradients to ensure they are

consistent across all agents during the training step

H
i := ∑H(ºi)

@Hi :=°∑ · logºi+1
H(ºi)

where the entropy is H, policy of agent i is ºi, and the hyperparameter to control

regularisation strength is ∑. In the MARQ framework, we are operating using Q-

Learning approach, and not the actor-critic approach which is used in LICA. Instead

a distributional RL approach is taken which can allow for the inclusion of the entropy

regularisation. Rather than having a regulariser which operates only on each agent

independently as in LICA, diverse trajectories are encouraged through the cross-entropy

regulariser. Furthermore the advantage in using this approach is that it does nor require

the reward signal and can be computed in an unsupervised manner. With cross entropy

defined as H(p,q)=H(p)+DKL(pkq), the iterative Q-learning update from Equation 5.8

the regulariser penalty (shown in red) is:
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Q̂{i, j}
t+1 √ argmin

Q
Æ ·

≥
EsªDi ,uªºi(u|s)[Q(s,u;µi)]°EsªDi ,uªº̂i(u|s)[Q(s,u;µi)]

¥

+1
2
Es,u,rs0ªDi

h
(Q(s,a)° yit )

2
i
+∑

X

k2{1,...,n}

≥
H(ºi)+DKL(ºikºk)

¥
(5.8)

Where ∑ controls the regulariser. One observation in this setup is since cross entropy

by definition is non-negative, it will encourage diversity which is offset by the entropy

correction. This demonstrates how we can extend LICA’s adaptive entropy.

5.4 Experiments

Figure 5.1: Petting Zoo Environments: pong, pistonball, pursuit and water world.

Our MARL experiments are conducted through the benchmark MARL datasets

[25, 45, 68] depicted in Figure 5.1.

Cooperative Pong is the original Atari Pong but provided as a multi-agent variation

[68]. In this cooperative game, the goal is to ensure the ball stays in play. This is

achieved through allowing the agents to “guard” the left and right side of the field by

only being able to move vertically.. To make this task challenging, the agents can be set

to be heterogenous, in which one of the paddles is shaped as a tiered cake. The reward

structure is a dense, whereby a positive reward is provided if the game is in progress

otherwise a terminal, negative reward is provided.

Pistonball is a cooperative game where there are multiple pistons each controlled

by its own agent [68]. The objective of this task is to move a ball from one end of the
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environment to the other through activating pistons which can move up and down. In

this scenario, coordinated behaviour is necessary across agents to ensure success. The

reward structure is based on the movement of the ball.

Pursuit is an environment where we take control of purser agents, with the aim to

capture randomly moving evaders [25]. In this task, rewards are provided whenever an

evader is captured and subsequently removed from the environment.

Waterworld is an environment that comprises of archea attempting to navigate and

survive in a simulation [25]. The task in this scenario is to find food and avoid poison,

that can generate positive and negative rewards accordingly.

In the Spread and Referenceenvironments, the environment consists of stationary

landmarks in which we can leverage multiple agents to interact with the environment

[45]. In both environments, the goal is for the agents to move closer to landmarks.

Both tasks have the same action space, but the objects differ slightly. In Reference,

each agent has a target landmark they are to approach, but not directly observable to

themselves, but is known to the other agents, and have additional actions which enable

direct communication with other agents. In Spread all agents must approach all other

landmarks without collision. In these environments, the reward is provided based on

distance to the landmarks, with Spread providing penalties if agents collide.

5.4.1 Experiment Details

We use consistent parameters and preprocessing across all environments, using de-

faults suggested by MARL benchmarks [68]. During evaluation, we run on a separate

environment with 1000 evaluation steps.

In our experiments, we used the setup and code based on official implementations.

The pymarl library was used for LICA, QMIX, IQL, whilst rlkit was used to reimplement

SEAC, MADDPG with gumbel softmax [34, 46] support for discrete action space for
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Policy Hidden Shape [64, 64, 64]
Mixer Hidden Shape [32, 32, 32]
Activation Function ReLU

Learning Rate 0.0003
Replay Buffer Size 1000000
Steps per Iteration 1000

Discount 0.99
Reward Scale 1

Table 5.1: The MARL Experiment hyperparameters

SEAC and MADDPG, which is inline with the approach suggested by Christianos et al

(2020) [9]. In all models, parameter sharing was used as in the pymarl setup.

5.4.2 Results

In this section we compare MARQ against existing state of the art approaches. Through

our results, we demonstrate MARQ has comparable if not stronger performance compared

with existing approaches (Figure 7.5). In addition to our strong performance, MARQ also

requires less training time compared with other approaches which used a centralised

mixing network. Our approach does have an increased training time compared with IQL

due to the distributional RL base algorithm which is used.

5.4.2.1 Ablation

For our ablation studies, we examine different hyperparameters and choices for our

regulariser. Most importantly our approach is not sensitive to the shared experiencing

weighting irrespective of the regularisation approach used. More importantly we demon-

strate that as ∏ ! 0, the model approaches a model which does not leverage shared

experiences and leads to a decreased performance for the approaches using shared

experience KL divergence, shown in Figure 5.4 and 5.5.
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Figure 5.2: Comparison over a variety of benchmark MARL tasks. The average is
provided over the last ten steps, with error bars representing one standard deviation.

5.5 Conclusion

In this chapter, we have explored the Multi-Agent Regularised Q-Learning approach,

which demonstrates effective ways to leverage shared experiences in Q-Learning with

adjustments to ensure policy distributions are appropriately catered for. This tackles the
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Figure 5.3: Training time evaluation using IQL as the baseline.

detection challenge laid out in this thesis by being able todetect and adapt to changing

circumstances provided to us in the shared experience paradigm.

This approach has excellent speed of convergence and strong performance compared

with other approaches despite lack of the centralised mixing structures of centralised

algorithms. Through our empirical results, we have justified our algorithm, including

the neural architecture decisions which reveal the stability of our approach.

Further avenues of research could explore improved ways to tune the amount of shar-

ing depending on the MARL environment, examining whether cross entropy regularised

penalties help or hinder actor-critic frameworks and greater consideration of the role of

diverse states and exploration strategies in MARL.

91



Figure 5.4: Sensitivity analysis hyperparameter ∏ with explicit mixing. The average is
provided over the last ten steps, with error bars representing one standard deviation.
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Figure 5.5: Sensitivity analysis hyperparameter ∏ with implicit mixing. The average is
provided over the last ten steps, with error bars representing one standard deviation.
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Part III

Learning to Collaborate
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Abstract

In this part of the thesis we focus on the topic of collaboration. To achieve this we first

consider how we can explore neural architectures in chapter 6, and then its application

to multi-agent reinforcement learning in chatper 7. From the multi-agent perspective,

we examine how we can leverage multiple agents to generate diverse experiences by

allowing agents to decouple from centralised structures with minimal overhead allowing

our approaches to adapt to different MARL environments which may benefit from

different levels of cooperation, and demonstrate our approach empirically.
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CHAPTER 6. RESIDUAL NETWORKS ACT LIKE BOOSTING ALGORITHMS

6.1 Introduction

In this chapter we tackle the problem of collaboration through the lens of exploring

and choosing neural architecture choices. In particular we consider Residual Networks

(ResNet) [31], and demonstrate the equivalence to boosting feature representations, and

how they can be extended to AdaNet framework and retain the theoretical bounds offered

to it via Online Gradient Boosting Theory. We will use this approach to justify our neural

architecture choices for MARL neural network architecture selection by interpreting an

ensemble classifier as a special variant of mixer network as introduced by QMIX.

Prior to our work, there have been other attempts to explain ResNets in various ways

including:

• Attempting to unravel ResNet itself [69]

• Observing the connection between identity loops and its ability to avoid local

optimas [28]

• Treating residual modules as weak classifiers which can be induced through se-

quential training [33]

One reason why there is such a strong interest in interpreting Resnets, is due to the

empirical evidence and the subsequent architectures which have empirically been easier

to optimise, and consistently have demonstrated superior performance on a variety of

datasets including ImageNet and CIFAR-10 [31].

In this chapter, we first examine ResNet and Online Boosting, highlighting the

conditions in which they are equivalent. This is shown through observing that layer

by layer boosting in ResNet can be represented through additive modelling approaches
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in Logistboost [16], with the key difference being that the feature representations are

boosted rather than the label itself. Specifically, if we leverage a composite loss function

in the Online Boosting framework, then it is the same as ResNet. As a consequence,

ResNet does not adhere to traditional boosting theory results. This is because it cannot

be represented as a linear weighted ensemble, however through the results from the

Online Boosting framework through the regret bounds apply to ResNet architectures.

Armed with this intuition, we explore further different ways in which the ResNet

architecture can be updated using ideas from Online Boosting. This includes adding a

dynamic, learnable shrink parameter, rather than a fixed hyperparameter which is used

in ResNet, offering additional flexibility to the ResNet framework.

Here, the vanilla ResNet approach is compared with our modified approach on bench-

mark dataset CIFAR-10 and Street View House Number task, whereby our approach

demonstrates some improvement over the vanilla approach with the addition of the

shrinkage parameters.

Next we reinterpret ResNet to the supervised tabular setting by implementing

boosted decision trees as a neural network, and evaluate our results on multiple super-

vised learning benchmark datasets and other tree ensemble methods being Deep Neural

Decision Forests [39], Adanet [11] (using decision trees with decision tree modules) and

Gradient Boosted Tree algorithms. In our experiments, our approach produced greater

performance to the other neural network variants compared with the tradition gradi-

ent boosted tree ensemble models. Finally we apply this architecture to the RL and

MARL environment benchmark datasets to demonstrate its ability to generalise beyond

supervised learning problems.
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6.2 Preliminaries

We provide preliminary background for the rest of the chapter, covering ResNet and

boosting. We will examine the regret bounds formed as part of the Online Gradient

Boosting setting [4] and AdaNet generalisation bounds [11].

6.2.1 Residual Neural Networks

In this section we provide an overview of the ResNet algorithm. ResNet is comprised

of stacked “residual blocks”. These modules are composed of an identity function fu(x),

where each identity function call maps its input, where the depth of the module is

denoted by u. Here, fu(x) is any kind of sequential neural network layers, such as

convolutions (in image recognition). In this chapter, we examine image recognition setup

using convolutions and also how decision tree modules can be constructed to build a

boosted neural network decision tree representation.

Let gu+1(x) be the output of the u-th residual block with input x in a ResNet model

with corresponding output:

gu+1(x)= gu(x)+ fu(gu(x)) (6.1)

Output is then defined recusively as in Equation 6.1 with the U-th residual moduled

constructed by summing prior modules together. That is gU+1(x)=
PU

u=0 fu(gu(x)), with

the initial conditions g0(x)= 0, f0(g0(x))= x. Afterwards, a linear layer is used with the

output of the appropriate size for the supervised learning problem at hand.

ŷ= bæ(w>gU+1(x)) (6.2)

= bæ
√

UX

u=0
w> fu(gu(x))

!
(6.3)
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where bæ is a mapping of classification outputs to the appropriate label, which is

typically chosen to be a sigmoid function like softmax.

6.2.2 Boosting

In this section we provide an overview of boosting. Boosting is an approach to combine

weaker learners, which is any model that performs better than a naive model, to a strong

learner. In AdaBoost, the algorithm chooses training sets to construct weak classifiers to

create novel inferences [16]. This style of boosting follows the approach in BoostResNet

[33]. Whereas for gradient boosting, pseudo-residuals are used for training and can also

operate in the online setting [4].

If we define hu(x) to be input function of x with Æu being the weight for u-th model,

then we can reframe boosting as bF(x) = PU
u=1Æuhu(x) which is a linear combination

of U models [16] [4]. To boost using the feature representation input, logitboost was

introduced [16]; in this scenario boosting leverages the softmax (or logit) transform

ŷ= bæ( bF(x)) (6.4)

= bæ
√

UX

u=1
Æuhu(x)

!
(6.5)

Where bæ is the logit or softmax function. As we can see, the ResNet linear classifier

layer algorithm possesses a similar form. Furthermore, this approach can be extended to

the online formulation. To achieve this, one adjustment is required. First, the partial

sums defined by ŷi°1 is updated to include a shrinkage parameter which is used to

dynamically update the weights of each module, which is updated via gradient descent.

To ensure convergence, the outputs are must be bounded [4].

One important distinction between online gradient boosting and traditional boosting

learning bounds is that it is regret based. The difference between best hypothesis learner

and the loss from the learner is defined as:
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RA(U)=
UX

u=1
`u(hu(xu))°min

h§2F

UX

u=1
`( f §(xu))

This regret bound used in online gradient boosting, applies to weak linears that could

be combined linearly. This is subject to weak learners which have a linear, convex, loss

function which is 1-Lipschitz bounded.

Corollary 6.1. (Based on Beygelzimer et Al. 2015) With ¥ 2 [ 1N ,1] being the learning

rate, N representing the weak learners, both which are hyperparameters. Then Algorithm

6.1 for span(F ) is an online learning algorithm, provided the loss functions are convex,

linear and Lipschitz constant which is bound by 1. This would have the regret bound, so

that for any f 2 span(F ):

R0
f (U)∑ (1° ¥

|| f ||1
)N¢0+

O
≥
|| f ||1 · (¥U +R(U)+

p
U )

¥

where ¢0 :=
PU

u=1`
√
u (0)°`

√
u ( f (xu)) this is the initial error, with the regret for the base

learner defined as R.

For this theorem to hold, there are two conditions which need to be satisfied. First,

the weak learner A, must be bounded, that is kA(x)k ∑D, for a fixed, pre-determined

value D. Second, the loss functions chosen must have a computable subgradient which

possess a finite upper bound. Consequently, the constraints placed by BoostResNet which

requires the explicit distribution to be maintained over the training set is removed when

leveraging the online boosting formulation. Next we consider AdaNet Generlisation

Bounds as an additional interpretation of ResNets.

In feedforward neural networks, the AdaNet Generlisation Bounds is a multi-layer

architecture, which acts as a directed acyclic graph [11]. In this formulation, there
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are two conditions which must be satisfied. First, all layer weights are bounded with

l p-norm, where p ∏ 1. Second, the activation function in the feed forward network is

bounded Lipschitz constant by 1. Under these constraints, generalisation error bounds

shown below holds [11]:

Corollary 6.2. (Based on Cortez et al 2019) Define the distribution over X £Y to be D

and a sample of m examples to be defined by S which are chosen indepdently at random

based on D. Then with F(x), our decision tree classifier, would satisfy with probability at

least 1°±:

R( f )∑ R̂S,Ω( f )+
4
Ω

lX

k=1
|wk|1Rm( bHk)+

2
q

log l
m

Ω

+C(Ω, l,m,±)

with C(Ω, l,m,±)=

vuutd 4
Ω2 log(

Ω2m
log l

)e log l
m

+
log 2

±

2m

Notice that this bound is dependent on the (logarithmic) depth in relation to the

network l. Based on the network l, earlier layers would have a much greater effect than

the latter layers of the neural network. In the next section, we explore ways to construct

novel neural network architectures by examining the formulation of ResNet and ideas

from various boosting approaches.

6.2.3 Related Works

Due to the empirical success ResNet has had, many researchers have tried to explain

how ResNet yields its results. One approach is to reinterpret ResNet as a “multi-channel

telescoping sum boosting” framework which enables sequential training that creates

the BoostResNet algorithm [33]. Another attempt focused around ResNet under linear

constraints which sought to understand its representational power through observing

importance of the identity connections and the ability to avoid local minimas [28]. In

Highway networks, they considered the identity layers are shortcuts through the network
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to carry gradients through that provides intuition for how the paths enabled the network

to behave like a shallow ensemble [69].

Of particular interest to our approach is the relationship between BoostResNet [33]

and AdaNet [11]. In both of these papers, they provide architectural changes to the

underlying neural network to justify the usage of boosting, instead we aim to explore

ResNet without altering how ResNet is trained or the ResNet architect itself.

To understand the changes to the ResNet, first, the sequential nature of the Boost-

ResNet algorithm means that the model can never be truly updated online. For AdaNet,

additional feature vectors in arbitrary formats are sequentially added which may not be

compatible with the ResNet structure. Furthermore, vanilla AdaNet promotes a “bushy”

representation, rather than a deep feature representation that exists in ResNet. We

demonstrate that ResNet can be interpreted as a special case of the AdaNet framework,

where we stack modules deep rather than wide, which means that ResNet possess

AdaNet generalisation guarantees as they belongs to the same category of feedforward

neural networks. To emphasis this, we create Neural Decision Tree ResNet modules to

be used in the supervised scenario compared with Gradient Boosted Tree algorithms and

compare their performances.

6.3 On the Equivalence of Boosting and ResNet

Recall from equations 6.2 and 6.4, LogitBoost and ResNet clearly have their similarities.

Ultimately, both formulations both leverage the feature representation aspect of the

neural network in its boosting. In ResNet, a linear classifier w connected across all

modules.

Assumption 6.1. Let bhu(x) :=w> fu(gu(x)) to be the u-th residual module, where w is a

trainable. The residual module bhu(x) is said to be a hypothesis module or weak learner
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8u∏ 0.

The weak learner condition is required to ensure as per Corollary 6.1 the learning

bounds are upheld. Next we demonstrate the different variants of ResNet modules which

are the basis for the experiments. All these variations follow the weak learning condition

that is required for Online boosting guarantees to hold.

6.3.1 Online Boosting Considerations

Next we consider regret bound analysis specifically for in ResNet formulation and

demonstrate the regret bounds still hold for a base weak learner that uses linear loss

functions which are convex with 1-Lipschitz condition.

Algorithm 6.1 Composite Loss Functions for span(F ) variation - Online Boosting

1: Copy a given algorithm A N times, which we allow it to be: A1,A2, . . . ,AN , with
hyperparameter ¥ 2 [ 1N ,1] being the step size

2: for i = 1,2, . . . ,N do
3: set µi = 0
4: end for
5: for u= 1,2, . . . ,U do
6: Sample xu
7: Define F0

u = 0
8: for i = 1,2. . . ,N do
9: Fi

u = (1°µi)Fi°1
u +¥Ai(xu), with shrinkage (1°µi) for Ai

10: end for
11: Determine the output of the learner yu =√°1(FN

u )
12: Calculate `

√
u (Fu)

13: for i = 1 to N do
14: Using the calculated loss, pass to Ai via Fi°1

t
15: Update µi 2 [0,¥]
16: end for
17: Evaluate algorithm using yu
18: end for

Through Algorithm 6.1 and Corollary 6.1, our algorithm follow its regret bounds.

Next, we need to check the composite loss functions satisfies conditions as described in

Section 6.3.2.
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6.3.2 Analysis

In Corollary 6.1, we consider the set of convex linear loss defined by C. We examine

considitions so that a composite loss function ell√ 2 C.Reid et al. (2010) [58] has shown

that a sufficient condition for a composite loss function to belong in C is if it is a composite

function with its canonical link.

Lemma 6.1. Smoothness is retained in composite loss functions

Proof:

Proof. Support √°1 is a Lipschitz continuous function and bounded. Then it follows

that the composite function is also Lipschitz bounded. This can be shown below

| f2( f1(x))° f2( f1(y))|∑ L2| f (x)° f1(y)|

∑ L1L2|x° y|

⌅

Consequently if √°1 has Lipschitz constant bounded by 1 and the composition is also

bounded by 1, then the resulting composite loss function belongs to C. Consider the cross

entropy loss. In this scenario, the canonical link for cross entropy is softmax. As this

has Lipschitz constant of 1, then the composite loss is also in class C. Therefore ResNet

satisfies the regret bound has it has a logic link and boosts the feature representation of

a neural network.

One approach to convert BoostResNet to online learning is to leverage a common

linear layer across all ResNet submodules. Then as in Algorithm 6.1 line 12 would

be resolved as it would enable the online boosting algorithm update step to compute

reference boosting function’s gradient. Notice in BoostResNet side-steps this and instead
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Figure 6.1: An example of a modified ResNet with shrinkage parameter using a shared
linear layer.

constructs a different linear classifier layer which are dropped at the end of each sequen-

tial training phase. The usage of the combined auxiliary linear layer in our approach as

a “shortcut” to the final layer is shown in Figure 6.1.

In our ResNet formulation, we can enable each module to all predict the same output

y by allowing the final linear classifier layer to be shared with all the submodules,

effectively acting as a shortcut. This formulation would have the output yiu and its

corresponding weak learners w> bAi product predictions as part of the neural network.

This can be seen in lines 8, 9 of Algorithm 6.2. Hence each residual module would be

updated with respect to the label y.

It has been shown for ResNet that the paths exhibit a binomial distribution [69]. As

such, the average path length is n
2 as there will be a path that moves across each module,

and n routes that moves across a single module. Then even without leveraging a shared
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Algorithm 6.2 ResNet with Shrinkage - Online Boosting Algorithm

1: Copy a given algorithm A N times, which we allow it to be: A1,A2, . . . ,AN , with
hyperparameter ¥ 2 [ 1N ,1] being the step size.

2: for i = 1,2, . . . ,N do
3: set µi = 0
4: end for
5: Define F0

t = 0
6: for u= 1,2, . . . ,U do
7: . Feed Forward

8: Sample xu
9: for i = 1,2, . . . ,N do

10: Fi
u = (1°µi)Fi°1

u +¥w> bAi(xu)
11: Calculate yi

u =√°1(Fi
u)

12: end for
13: . Back Prop

14: for i = 1,2, . . . ,N do
15: Using back proagation, update all layers and shrinkage paramters in the sub-

network up to module i using output yi
u,

16: end for
17: Evaluate algorithm using yN

u
18: end for

layer, the ResNet framework enables gradients to be recoved to all residual modules.

Through unravelling a ResNet, the paths of a ResNet are distributed in a binomial

manner [69], that is, there is one path that passes through n modules and n paths that

go through one module, with an average path length of n/2 [69]. This means that even

without a shared layer, there will be paths within the ResNet framework where the

gradient is recovered to the residual modules. This approach is shown by figure 6.2, and

has an identical setup as algorithm 6.2 except in the back propagation step, we update

all layers based on the whole network using output yN
t only.

Remark: by using Algorithm 6.1, and reframing residual models as an Online

Boosting we can see the equivalence when ¥= 1 in our hyperparamter selection, and if

we fix the shrinkage parameter µi = 0. Even with these adjustments, the regret bounds

still so long as the residual modules themselves are bounded.
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Figure 6.2: An example of the modified ResNet with two modules and shrinkage layers.

6.3.3 Constructing Decision Trees

In this section we explore how these can be constructed in our framework with online

boosting guarantees and associated generalisation error analysis.

In this framework we reframe decision trees based on the approach taken by “Deep

Neural Decision Forest” [39] as depicted in Figure 6.3. This formulation is equivalent to

a feedforward neural network consisting of three layers. These three layers at a high

level would be, a learnable layer representing the nodes in a tree, next is a predeter-

mined layer used to determine the routing through the tree which is derived from the

adjacency matrix when interpreting the decision tree as a graph structure, last layer

is a learnable layer represents the leaf node output probabilities in the decision tree.
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Furthermore, to ensure the appropriate regret bounds hold, the layers in the neural

network representation must be bounded through l p-norm, where p∏ 1, with activation

functions being coordinate-wise and Lipschitz constant of 1. To determine the size of

each layer, this is reflective of the number of nodes in the decision tree structure which is

pre-determined before training. Let the decision tree nodes to be a pre-selected number

n, with the input size of the feature vector to the decision tree module to be size k. Next

we describe the construction of each layer.

Figure 6.3: ResNet module based on “Deep Neural Decision Forests” [39]. This forms the
decision tree ResNet module.

We begin with the input of the decision tree module, which determines the route

taken by each node. The decision splits in this setting are typically oblique decision

splits. This can be determined by using learnable parameters £= {W ,b}, whereW 2Rk£n,

b 2Rn. Then the output would be H1(x)= cW>x+ bb with x being the input to the module,
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where cW = [+W ©°W] and bb= [+b©°b], and © is the concatenation operation.

The second layer is predetermined and based on the structure of the tree provided. It

is based on the adjacency matrix when representing a tree as a graph which informs the

decision tree neural network structure which nodes would route to the corresponding leaf

nodes. We introduce this through a matrix Q 2 {0,1}2n£(n+1). To ensure the 1-Lipschitz

bounded function condition holds, let ¡2(x) = log±softmax)(x) be activation function

where ± represents function composition. As log(x) is 1-Lipschitz is bounded and in the

domain (0,1) and in the range softmax(x) 2 (0,1),8x, then this is an allowable activation

function, with H2(x)=Q>(¡2 ±H1)(x) to be the second layer output.

Figure 6.4: Left: Scikit-Learn Decision Tree, Right: Neural Network Decision Tree.
Using a hard max function will generate the appropriate decision tree.

The final layer is the probability output of the leaf layer in the neural network. This

is a learnable linear layer based on the leaf layer, parameterised by º 2 Rn+1. Then

º>(¡3 ±H2(x)) is the output of the decision tree with activation function ¡3(s)= exp(x).

As the range of H2(x) is (°1,0), consequently as the domain of exp(x) is (°1,0) then

¡3(x) is a 1-Lipschitz bounded function. As the construction of our neural network is a

series of feedforward layers, then it is part in the artificial neural networks family as

AdaNet, leading to the same generalisation bounds. The summary of the three layer

feedforward neural network is shown in Figure 6.4. To extend this approach to ResNet,
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the feature representation must be invariant to output size of the ResNet module. To

accomplish this a linear layer is added to guarantee that the shortcut has precisely the

same dimensions as required for compatibility with the decision tree modules.

Figure 6.5: A decision tree can be represented by neural networks using three layers.
This representation is constructed with a trainable decision tree and leaf nodes.

The formulation of these equations and their parameters is shown in figure 6.4

which demonstrates how a decision tree trained in Python Scikit-Learn can have its

parameters be converted to a decision tree in our neural network formulation, and

figure 6.5 demonstrates the formulation of the three layer network which constructs this

decision tree.

6.4 Experiments

For our experiments, we explore two different modifications to ResNet architectures. In

the first setting, we examine modifying ResNet with convolution modules that are used
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for image classification and in the second instance we modify ResNet to be used in the

tabular setting by using decision tree modules.

We first explore image datasets in which we use the convolution network variation

and examine the impact when adding trainable shrinkage parameter and dense linear

layer over image classification tasks.

In the tabular setting, we compare the boosted decision models with ResNet decision

tree modules. This was compared with other approaches both in the neural network

setting [39] and the offline setting [37] with the results shown in table 6.3 where we

conduct our training and testing datasets with 70%, 30% split.

We also apply our approach to reinforcement learning which is conducted over a range

of benchmark reinforcement learning and multiagent reinforcement learning benchmark

tasks.

6.4.1 Image Recognition Results

For the image recognition benchmark we use exactly the same 20-layer ResNet as a

point of comparison, as used in the official implementation. To generate our variation,

we add a learnable shrinkage parameter (ResNet-Shrinkage), and also a shared linear

layer (ResNet-Linear Projection).

MODEL TEST TRAIN

RESNET 0.94630 0.93886

RESNET (W/ SHRINKAGE) 0.94852 0.93917
RESNET (LINEAR PROJECTION) 0.94626 0.93689

Table 6.1: Performance of the “Street View House Number” Task. The modules below
leveraged similar hyperparameters, for example all models are standardised with number
of iterations and the learning schedule of the Optimisers.)
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MODEL TEST TRAIN

RESNET 0.91530 0.98412

RESNET (W/ SHRINKAGE) 0.91870 0.98504
RESNET (LINEAR PROJECTION) 0.88570 0.94496

Table 6.2: Performances of the CIFAR-10 Task. The modules below leveraged similar
hyperparameters, for example all models are standardised with number of iterations
and the learning schedule of the Optimisers.)

From the results, using shrinkage outperforms the vanilla ResNet model in both

datasets, however the model with shared linear appears to perform worse in the CIFAR-

10 challenge. Based on our experiments, the addition of a shrinkage parameter can be

included to improve the performance of ResNet models.

6.4.2 Gradient Boosting Decision Tree

For comparison in the tabular scenario, we examine the ability to use different residual

module representation to construct a variety of models based on ResNet. Using residual

network modules, decision trees can be constructed and trained as a ResNet (ResNet-

DT), and also its shared linear representation (ResNet-DT Linear Projection), and using

AdaNet to with decision trees (AdaNet-DT). As a comparison we used LightGBM for

their boosted decision trees (Light-GBDT) and random (LightRF) forest algorithms, and

used Deep Neural Decision Forests (DNDF) as the baseline approach. To ensure the

experiments are comparable, we keep the hyperparameters for all models consistent,

with each model having a maximum of 15 trees, depth of 5. For all neural network

approaches, the models were trained for 200 epochs.
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Dataset
ResNet-DT ResNet-DT (Linear Proj.) DNDF AdaNet-DT LightRF LightGBM
Test Train Test Train Test Train Test Train Test Train Test Train

adult 0.8386 0.8837 0.7733 0.8057 0.8538 0.8579 0.8533 0.8628 0.8596 0.8624 0.8613 0.8638
covtype 0.8302 0.9689 0.8246 0.9457 0.6825 0.6877 0.7106 0.7153 0.7598 0.8030 0.7831 0.8396
dna 0.8848 0.9888 0.9204 0.9830 0.9361 0.9794 0.9288 0.9919 0.9393 0.9632 0.9466 0.9745
glass 0.6719 0.7933 0.5781 0.7933 0.4688 0.5667 0.5781 0.7133 0.5938 0.7067 0.7031 0.8533
letter 0.9700 0.9934 0.9590 0.9868 0.8495 0.8602 0.8383 0.8524 0.8693 0.9056 0.9075 0.9481
sat 0.8710 0.8904 0.9125 0.9628 0.8275 0.8519 0.8695 0.8976 0.8835 0.9204 0.8885 0.9556
shuttle 0.7859 0.7860 0.7859 0.7860 0.7859 0.7860 0.9964 0.9965 0.9985 0.9992 0.9997 0.9997
mandelon 0.9078 0.9848 0.8856 0.9881 0.8722 0.8776 0.8478 0.8576 0.8322 0.8700 0.8456 0.9219
soybean 0.8873 0.9916 0.8922 0.9979 0.6127 0.6388 0.9069 0.9937 0.7255 0.8058 0.8971 0.9415
yeast 0.5910 0.7382 0.4876 0.5486 0.3865 0.4071 0.5618 0.6064 0.5708 0.6843 0.6090 0.7594
Number of Top Scores 3 3 1 3 0 0 1 1 0 0 5 3
Mean Reciprocal Rank 0.5117 0.5783 0.4067 0.5450 0.2283 0.1983 0.3150 0.345 0.3367 0.2683 0.6700 0.5450

Table 6.3: Performance of the decision tree module across a variety of supervised learning benchmark datasets.
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(a) Relative performance over the training dataset.

(b) Relative performance over the test dataset.

Figure 6.6: he relative performance across a range of algorithms. We use “Deep Neural
Decision Forest” as the baseline model. Higher scores indicate superior performance.

To ensure comparability among all models, we considered the median and mean

error improvement compared with a baseline model. The baseline model chosen was

the DNDF model as they were the overall worst performing model in our benchmarks.

Whilst LightGBM appeared to be the best average improvement compared with the

baseline, both of our approaches ResNet-DT performed second best, being superior to
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MEAN IMPROVEMENT MEAN RECIPROCAL RANK

LIGHTGBM 26.140% 0.545
LIGHTRF 17.414% 0.2683
ADANET-DT 16.519% 0.345

RESNET-DT 25.360% 0.5783
RESNET-DT (LINEAR PROJECTION) 20.306% 0.545

Table 6.4: The relative performance across a range of algorithms. We use “Deep Neural
Decision Forest” as the baseline model. We calculate Mean Reciprocal Rank on the
training splits.

MEAN IMPROVEMENT MEAN RECIPROCAL RANK

LIGHTGBM 20.904% 0.67
LIGHTRF 13.665% 0.3367
ADANET-DT 14.771% 0.315

RESNET-DT 17.892% 0.5117
RESNET-DT (LINEAR PROJECTION) 12.949% 0.4067

Table 6.5: The relative performance across a range of algorithms. We use “Deep Neural
Decision Forest” as the baseline model. We calculate Mean Reciprocal Rank on the
testing splits.

LightGBM’s Random Forrest variation and AdaNet-DT. In our experiments, AdaNet-DT

was restricted from building “deep” models, and were only have to construct “bushy”

models compared with ResNet-DT. Even with these restrictions, the AdaNet-DT approach

outperformed the baseline implementation.

To construct a baseline for all models to be comparable, the results presented are on

the average and median error improvement compared with DNDF models, as they were

the worse performing model based on these benchmarks. From the results in Tables

6.4 and 6.5, LightGBM performed the best with the best average improvement on error

relative to the baseline DNDF model. What is interesting is that both our ResNet-DT

model performed second best, beating LightRF and AdaNet-DT models. It is important

to note that our setup for AdaNet-DT only allowed a “bushy” candidate model, this
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did not allow AdaNet-DT to build deeper layers compared with ResNet-DT approach;

only allowing it to build a wider and shallow architect through appending additional

decision trees. Despite this, the AdaNet-DT implementation did outperform the DNDF

implementation.

To understand the overall performance, rather than looking at single statistics, it

is important to understand how the model performance is distributed overall. This is

shown in Figure 6.6 which demonstrate the distribution of the train and test datasets.

Based on these results, we observe ResNet-DT and RestNet-DT Linear Projection have

similar variations in their results.

Overall the performance between ResNet-DT and LightGBM is neglible with our

approach providing additional flexibility to update the tree ensemble via minibatch

and the ability to produce non-greedy decision rules. We can use online learning to

enable training over large datasets through incremental minibatch updates, to allow

adaptations for data drift, whereas LightGBM is unable to operate in this manner.

6.5 Reinforcement Learning Experimental Results

The ResNet module approach can be extended beyond supervised learning. Recently

there has been success in re-interpreting Residual Networks to learn underlying feature

representation in reinforcement learning space [61]. In this section we apply ablation

studies for our ResNet modules using Q-Learning approaches in the MARL space. In

this setting rather than interpreting each module as a classifier, we can instead reframe

the problem to suggest that each module is an independent agent where during training

time, the Q values can be combined in a similar way as the shared linear classifier

module.

We first examine our approach as a drop-in replacement to DQN models where the

MLP are replaced with a model with skip connections and shrinkage. The ablation study
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is conducted over a range of benchmark reinforcement environments built on top of DQN.

The ablation environments use DQN as the baseline model, DQN with ResNet modules

(DQN-RN), DQN with ResNet module with shrinkage (DQN-RN+). Our environment

setup uses the default settings, except for GridWorld [8] environments which include

using the inbuilt Action Bonus and FlatObs wrappers. The task in GridWorld is to

navigate a grid to fetch an item given a prompt, where the actions and movement in the

space are purely discrete. In GridWorld, an episode is terminated upon timeout or when

an agent picks up an object irrespective whether it is the correct one or not. A reward

is provided for successfully picking up the correct object, whereas a negative reward

is provided if the incorrect object is retrieved. Acrobot is a classic control environment

where the goal is to apply torque on the actuated joint to swing the free end of a line chain

above a given height. Finally Lunar Landing involves optimizing a rocket’s trajectory

path to determine when it is optimal to fire the engine at full throttle or turn it off. The

act of turning off an engine along with directionality means this environment is also a

discrete action environment.

The results from our RL experiments can be seen from Figure 6.7 where DQN-RN

approaches are comparable and in general superior to DQN approaches with DQN-RN+

edging out over DQN-RN approaches.

Next we evaluate our ResNet approach in the context of MARL environments with

the following variations: IQL model as a baseline (IQL), IQL with ResNet modules

(IQL-RN), IQL with ResNet modules with shrinkage (IQL-RN+), finally QMIX style

module where the mixing network is the sum of the sub-agents Q values with shrinkage

(QMIX-RN).

To ensure consistency across tasks and environments, consistent preprocessing was

used as suggested in other MARL benchmark [68]. When evaluating our agents, the

tasks were run in separate evaluation environments with 1000 episode roll outs. From
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Figure 6.7: The returns from benchmark Reinforcement Learning problems. The return
is provided over the last ten epochs. Higher scores indicate superior performance.

the results shown in Table 6.6, we first notice that simply replacing the standard MLP

with ResNet modules does not guarantee improved performance, but in fact often leads

to worse performance! On the contrary, by having a shrinkage parameter we yield consis-

tently better results than IQL. Consistent with the results from the supervised learning

tasks, we can also see the addition of the additive shrinkage becomes a hyperparameter

choice similar to the comparison between the decision to use a shared module in the

supervised scenario.
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IQL IQL-RN IQL-RN+ QMIX-RN

pursuit 11.79 ± 6.64 11.89 ± 6.78 12.98 ± 6.74 12.25 ± 6.80
reference 1.06 ± 0.52 1.042 ± 0.55 1.18 ± 0.60 1.65 ± 0.82
spread 1.58 ± 0.81 1.62 ± 0.86 1.78 ± 0.93 2.03 ± 1.04
tag 43.80 ± 1.09 25.2 ± 1.077 27.6 ± 1.29 7.8 ± 1.30
waterworld 6.44 ± 3.48 6.29 ± 3.45 7.49 ± 3.72 7.52 ± 3.91

Table 6.6: Final Evaluation returns with one standard deviation for multi-agent environ-
ments using ResNet modules as a drop-in replacement for “Independent Q-learning” for
MARL tasks using PettingZoo environments.

6.6 Conclusions

We end this chapter by demonstrating the relationship between ResNet and Boosting

through interpreting the residual modules as linear classifier of weak learners. By

adding a shrinkage parameter, it has provided promising results in refining ResNet

models. By extending this approach to decision trees, our approach also enables learning

decision tree ensembles without the downsides of offline approaches. These insights

into the ResNets and Boosting could be used to spur other novel networks and provide

various interpretation and justification into neural network architecture choices. These

choices and subsequent reinterpretation of ensemble networks can be applied to MARL

environments as a special kind of mixer networks in a QMIX style model which we

demonstrated can yield superior performance to MLP with minimal changes.
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7.1 Introduction

In this chapter we continue our journey in examining the challenge of collaboration in

MARL tasks. In the previous chapters we considered models part of the Centralised

Training with Decentralised Execution (CTDE) framework which leveraged centralised

structures. This raises a key question - what if this centralised structure is redundant

or even harmful to our learning process? Could we “unmix” this representation, and

thereby remove this altogether? Greedy UnMix (GUM) is our approach which aims to

achieve this through treating the decision for having the centralised mixing structure as

a neural architecture choice. In doing so, GUM enables the ability to simplify the problem

space, and ensembles the individual agent state action functions via a distributional RL

approach.

Through our empirical experiments we demonstrate various ways in how we can

combine our agent state action functions with a mixer network and decouple them under

the lens of ensemble learning. We demonstrate the importance of Q-ensemble choices by

exploring different approaches and justifying our decision in thorough ablation studies.

GUM is also evaluated across a range of MARL benchmark environments in which we

demonstrate comparable results with existing approaches despite its relative simplicity.

7.2 Background

Here we provide an overview of key concepts which are important to this chapter. This

thesis is focussed on the decentralised partially observable setting, defined by tuple
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hS,U ,P, r,Z,O,n,∞i, with st 2 S being the environments state, and t is the corresponding

timestep, with t = 1,2, . . . [53]. At each timestep every agent a 2 A ¥ {1, . . . ,n}, selects

action u 2U, with u 2U¥Un being defined as the joint action space. Additionally, the

we define s0inS to be the next state. This is drawn according to P(·|s,u) which is the

state transition function. We are interested in cooperative RL where all agents share

the same reward, so the reward for the whole environment is r(s,u), the discount factor

∞ 2 (0,1). In this these, the partial observable setting is considered. This is denoted to

be z 2 Z which is generated by O(s, i) : S£A! Z. Furthermore, for a particular agent

a, we define ø to be øa 2 T ¥ (Z£U)§, which is agent a’s action observation history; on

which it conditions its stochastic policy ºi(ui|øi) : T £U ! [0,1]. Where º is the joint

policy which is the Q function or state action function: Qº(st,ut)= Est+1:1,ut+1:1[Rt|st,ut],

with the discounted reward defined as Rt =
P1

i=0∞
irt+i.

7.2.1 Centralised Training Decentralised Execution

In this chapter, we again focus on the Centralised Training Decentralised Execution

(CTDE) framework, where training occurs in a centralised fashion, whilst during evalua-

tion, the execution of the agents is decentralised. More specifically, during training phase,

the model can access global state information and any agent’s action-observation history.

During evaluation, agents only act according to their own øi which is the decentralised

execution.

7.2.2 Learning from Suboptimal Experiences

One recent area of interest in reinforcement learning (RL) is the focus in learning and

constraining policy updates when only suboptimal data is available. This is often framed

in the context of offline RL, whereby often the key to resolving this challenge is recognis-

ing that there are temporal differences when bootstrapping against a target network [41].
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This often leads to overly optimistic Q function estimates particularly when estimating

actions that are unseen or out of distribution. This necessitates algorithms which go

beyond imitation learning, as imitation learning typically presumes the existence of

optimal data. Solutions to resolve this include avoiding out-of-distribution actions based

on the behaviour policy distribution [20, 41, 72], or using a distributional reinforce-

ment learning approach which can attempt to reduce the overestimation by providing

lower-bound value estimates [19, 42].

7.2.3 Multi-Agent Reinforcement Learning

In this chapter, we focus on MARL approaches part of the CTDE framework. Perhaps

the most straight-forward approach is Independent Q-Learning (IQL) [67]. In IQL, there

is no centralised training (or more specifically, there is no additional state information

used), and the agents will train and execute independently from each other, based only

on their local observation. To increase the training speed, parameter sharing is typically

used. To combine Q state action functions, various approaches are used which can

leverage centralised training structures. For example VDN [64] creates a centralised

structure through the summation of each agent’s independent state action function,

QMIX [57] uses monotonic neural network hypernetwork as a centralised structure to

combine independent Q functions and QTRAN [63] allows the usage of any arbitrary

function by modifying the objective to ensure effective computation of the argmax in the

state action function. Policy gradient and actor critic methods can also be used in this

framework. For example MADDPG [45] leverages independent actors for decentralised

execution, but allows the critics to have access to other agent’s state, whereas LICA [76]

leverages a centralised critic with an adaptive entropy constraint to ensure consistent

exploration by all agents when training.
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7.3 Methodology

To describe our methodology we first provide some preliminary background covering how

we extend independent Q learning to the distributional RL approach and extending it to

an ensemble approach to enable unmixing the joint Q-learning algorithm.

7.3.1 Conservative Q-Learning in Multi-Agent Settings

Next, we examine the considerations required when adaptive Conservative Q-Learning

to MARL setting. Before that, we provide a brief overview of Conservative Q-Learning

(CQL) [42]. Conservative Q-Learning is an adaptation of distributional RL approach in

the DQN space. The distributional RL approach that is used is the Quantile Regression

DQN [12]. The changes made to DQN arem we first convert the output to emit quantile

estimates, and then modify the corresponding loss estimate from mean squared error

to quantile Huber loss. The additional change which CQL makes is the inclusion of the

regulariser penalty which minimises the expectation of the Q state action function based

on a behaviour policy µ, which is constructed to match the state-marginal based on the

experiences, which we denote by EøªD,uªµ[Q(ø,u)]. Let Ø̂(u|ø) :=
P

ø,u2D 1[ø=ø,u=u]P
ø2D 1[u=u] , where

D is our dataset of experiences denote the empirical behaviour policy. This leads to the

iterative update for CQL algorithm.

In the independent setting, as each agent has their own Q state action function,

then each agent would “conservatively” estimate Q, allowing theoretical guarantees in

CQL to hold. Given that we operate in CTDE framework, the next question would be to

ask under what conditions and which appropriate Q value factorisation would the CQL

guarantees still hold?

As the QMIX centralised mixing function leverages monotonic transformations using

Q1,Q2 . . .Qn, which is the Q state action function of each agent. The naive solution is to

regularise with respect to the whole hypernetwork, however this approach is not required!
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This is because regularising the individual agent Q state action functions (i.e. agent

policies) is sufficient to provide a lower bound on the algorithm execution. This means

we do not necessarily need to regularise or interact with the mixing hypernetnetwork.

We will explore the effects of both scenarios in the ablation studies. As the addition to

the setup is only the regulariser term, then the independent global max formulation [63]

would still hold.

7.3.2 Greedy UnMixing

The Greedy UnMixing algorithm (GUM) is applicable to any MARL Q-learning algorithm

with a centralised mixing network such as algorithms belonging to the QMIX family

including QMIX, VDN, QTRAN, QCGraph. The key insight is the ability to control

the influence of this centralised mixing network, treating this decision to be a neural

architecture selection problem. To induce this, we leverage a learnable parameter that

controls the mixing strength between the independent and centralised networks. This

weight can be interpreted as a trade-off parameter, whereby the larger the weight, the

greater the influence of the central mixing network. As GUM learns, the trade-off

parameter may learn to be close to zero, in which case our algorithm would revert to

the independent Q-learning framework and in essence remove the centralised mixing

components.

The CQL framework extends the iterative update step in Q-learning as follows:

Q̂º
CQL √ argmin

Q
Æ ·

≥
EøªD,uªµ[Q(ø,u)]°EøªD,uªØ̂[Q(ø,u)]

¥

| {z }
(off-policy) CQL regulariser

+1
2
Eø,u,ø0ªD

£
(r(ø,u)+∞Eº[Q̄(ø0,u0)]°Q(ø,u))2

§
| {z }

standard TD error

(7.1)

Then in the GUM setup, the regulariser term from Equation 7.1 is denoted as

R, is used for the mixer network in the MARL setting and denoated as Rmixer. Our
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learning parameter is represented as Æ and Æmixer respectively and the neural network

architecture is shown in Figure 7.1. The update equation is shown below

Q̂º
GUM √ÆR+ÆmixerRmixer

+1
2
Es,u,s0ªD

£
(r(s,u)+∞Eº[Q̄mixer(s0,u0)]°Qmixer(s,u))2

§
(7.2)

Figure 7.1: GUM Algorithm Architecture. In the diagram above, a is used to indicate
the agent index, whereas Æ and Æmixer indicates the trade-off parameters. We observe
that the model is first created without the mixer network, and is cloned over with a
learned trade-off parameters Æ and Æmixer. Then the neural network can perform neural
architecture search decision and assign weights to the independent agent policies and
the mixer network to avoid overfitting.

To conclude, we have laid out the architect of GUM, and described how we can

implicitly unmix the independent and mixing networks through leveraging regulariser
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strength. In the next section, we reinterpret GUM in the ensemble learning framework,

and position GUM as a neural network architecture problem in the AdaNet framework.

7.3.3 Greedy UnMix as an Ensemble

The neural network architecture selection problem has been explored through AdaNet

framework which proposes candidate modules with hard selections [11], or through

soft selection [62]. The GUM algorithm can be reformed to leverage soft proposals

using a trade-off parameter Æ. Under this approach the neural network architecture

selection reforms to having the base architecture to be the independent Q-learning

network with a soft proposal involving the central mixing network. This is not the

only approach to ensemble Q learning functions, and has been explored elsewhere in

other approaches for gaining better estimations of the value functions, typically in the

actor-critic methods [20, 41, 44]. These variations are explored in the ablation sections of

the experiments. The final output of the GUM model under the explicit approach framed

as a neural network architecture selection problem is then to leverage the monotonic

function factorisation Qadanet =Æ[Q1, . . . ,Qn]+ÆmixerQmixer, with learnable parameters

Æ and Æmixer using gradient ascent.

Q̂º
GUM-adanet √ Es,u,s0ªD

£
(r(s,u)+∞Eº[Q̄adanet(s0,u0)]°Qadanet(s,u))2

§
(7.3)

Algorithm 7.1 Greedy UnMixing

1: For all agents {Qi}ni=1, set the Q state action and the mixer hypernetwork Qmixer,
trade off factor Æ,Æmixer.

2: for timestep t= 1, . . . ,N do
3: Update {Qi}ni=1 and the mixing network, Qmixer functions, via objective from Equa-

tion 7.2 or Equation 7.3 for the implicit or explicit approach respectively.
4: For the trade off factors Æ,Æmixer.
5: end for
6: Use decentralised execution to evaluate via {Qi}ni=1
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To conclude, we have presented the two variations (implicit and explicit unmixing)

related to GUM.

7.3.3.1 Analysis of GUM Algorithm

The formulation of the GUM algorithm is based on a multi-agent extension of Conserva-

tive Q-Learning.

Theorem 7.1. (Lower bound estimate of the true policy is obtained through Equation 7.2)

Under the QGUM function from Equation 7.2 the value of an independent agent’s policy,

V̂º(s)= Eº[Q̂GUM(s,u)], leads to the generation of a lower bound to Vº(s)= Eº[QGUM(s,u)]

which is the true value function, with µ=º for any Æ> 0.

Proof. We can compute the Q function update as per the objective in Equation 7.2, with

k being the policy update iteration. Before determining the lower bound estimate of the

true policy, we first consider value function update below:

V̂k+1(ø) := Euª{ºi(u|ø)}ni=1
£
Q̂k+1(s,u)

§

=B
§V̂ k(ø)°Æ

√
nX

i=1
Euªºi(u|øi)

∑
µi(u|øi)
Ø(u|øi)

°1
∏!

°ÆmixerEuªºmixer(u|s)

∑
µmixer(u|s)

Ø(u|s) °1
∏

For clarity in notation, we drop the i, then for any particular agent, if µ = º,

Euªº(u|ø)
h
µ(u|ø)
Ø(u|ø) °1

i
. Following this result:
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Euªº(u|ø)
£
Q̂k+1(ø,u)

§
=

X
u

º(u|ø)
∑
µ(u|ø)
Ø(u|ø) °1

∏

=
X
u
(º(u|ø)°Ø(u|ø)+Ø(u|ø))

∑
µ(u|ø)
Ø(u|ø) °1

∏

=
X
u
(º(u|ø)°Ø(u|ø))

∑
º(u|ø)°Ø(u|ø)

Ø(u|ø)

∏

+
X
u

Ø(u|ø)
∑
µ(u|ø)
Ø(u|ø) °1

∏

=
X
u

∑
(º(u|ø)°Ø(u|ø))2

Ø(u|ø)

∏
+

X
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X
u
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X
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∏
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∏ 0

Then
Pn

i=1Euªºi(u|øi)
h
µi(u|øi)
Ø(u|øi) °1

i
is non-negative, with each agent regulariser being

independent and additive. A similar approach is used when examining the joint state

action mixer component Euªºmixer(u|s)
h
µmixer(u|s)

Ø(u|s) °1
i
.

Euªºmixer(u|s)

∑
µmixer(u|s)

Ø(u|s) °1
∏
=

X

u2U
ºmixer(u|s)

∑
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=
X
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≥°
ºmixer(u|s)°Ø(u|s)+Ø(u|s)

¢
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=
X
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∑
(ºmixer(u|s)°Ø(u|s))2
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+
X
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µmixer(u|s)+

X
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We observe that Euªºi(u|øi)
h
µi(u|øi)
Ø(u|øi) °1

i
,8i and Euªºmixer(u|s)

h
µmixer(u|s)

Ø(u|s) °1
i
is non-negative.

Then when considering the GUM algorithm, each value iterate induces underestimation

V̂k+1(s)∑B
§V̂k(s).
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⌅

Figure 7.2: GUM Architecture: Ensemble variation with explicit mixing parameters. In
the diagram above, a is used to indicate the agent index, whereas Æ and Æmixer indicates
the trade-off parameters.

7.4 Experiments

Figure 7.3: Petting Zoo Environments: pong, pistonball, pursuit and water world.
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Our MARL experiments are conducted through the benchmark MARL datasets

[25, 45, 68] depicted in Figure 7.3.

In this section we empirically justify our approach through various benchmark tasks.

To accomplish this, we leveraged various MARL benchmark environments [25, 45, 68],

shown in Figure 7.3.

One of the environments is a MARL varient of Cooperative Pong, where multiple

agents control paddles, with the goal of keeping the puck in play (that is away from the

left and right edges). A global positive reward is provided if the puck stays in the environ-

ment, and a negative reward otherwise. This environment enforces partial observability

by only allowing each agent the ability to observe their half of the environment.

In Pistonball it is a cooperative environment where each agent controls a piston with

the goal of moving a ball from one side of the screen to the other. Each agent controls a

piston which can be moved up and down, where partial observability is enforced through

allowing each agent to only observe its immediate area surrounding its piston.

As part of the “SISL” cooperative environments, we explored Waterworld and Pursuit.

In both environments the goal is for the agents to control pursuers which are to capture

evaders (in pursuit) or food (in waterworld). In pursuit, the pursuers can only capture

the evaders when two or more surround the evaders, whilst in waterworld, the pursuers

must concurrently avoid randomly moving poison.

From the “MPE” environments, we examined Spread and Reference environments,

where the goal of both environments is to move agents towards landmarks. In Reference,

each agent needs to move to a particular landmark which is not known to the agent itself,

but is known by all other agents with the action space including additional actions to

directly communicate with other agents, whereas in Spread, the goal is for all agents to

cover all agents without collision
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7.4.1 Implementation Details

We use the official implementation of MARL algorithms where provided. In particular we

leverage the pymarl library for LICA, QMIX, IQL implementations. SEAC and MADDPG

was implemented by using the single agent variants in rlkit which was extended to the

multi-agent environments. To convert continuous action spaces to discrete, we used

gumbel softmax [34, 46], which follows the experiments conducted in SEAC. To construct

GUM, we used the official implementation of CQL which uses rlkit, extended to MARL

setting.

To ensure consistency across tasks and environments, consistent preprocessing was

used as suggested in other MARL benchmark [68]. When evaluating our agents, the

tasks were run in separate evaluation environments with 1000 episode rollouts. The

hyperparameters used are summarised in Table 7.1.

7.4.2 Hyper-parameters

Hyperparameter
Replay Buffer Size 1000000

Number of pretraining steps 1000
Steps per Iteration 1000

Discount 0.99
Reward Scale 1
Batch Size 256

Mixer Hidden Sizes [32, 32, 32]
Policy Hidden Sizes [64, 64, 64]

Policy Hidden Activation ReLU
Learning Rate 0.0003

Target Network ø 0.005

Table 7.1: The MARL Experiment hyperparameters
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Figure 7.4: GUM Algorithm Ablations. Shown are bar graph with the average return in
the last ten iterations with 1000 episode rollouts. The error ranges shown are confidence
intervals with one standard deviation. From the results above, we can see the GUM
algorithm outperforms other approaches in the ablation studies which demonstrates the
theoretical results and motivates our particular choices empirically.

7.4.3 Ablations

For ou ablations, we explore how different architecture choices influence the manner

in which an agent generalises. We label the variations as follows: “GUM” algorithm is

when the regulariser Æ representing the trade-off factor is fixed, whilst, if Æ is a learned

parameter we refer this as “GUM-lagrange”. Rather than using implicit methods, if

explicit stacking approach is used in a similar manner to AdaNet, we label this approach

“GUM-adanet”. As “GUM” is fundamentally CQL with a mixer network, we explore the

case where no GUM modifications are made, and instead we blend CQL with QMIX with

a fixed trade-off and learned trade-off which has been respectively labelled as “CQMIX”

and “CQMIX-lagrange”. To illustrate the effect of naive ensemble approaches, we have

explored using the minimum and mean [20, 41, 44] which is respectively labelled as

“QMIX-min” and “QMIX-mean”.

Overall, the GUM variations generally perform better than the other algorithms.
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Figure 7.5: Comparison over a variety of benchmark MARL tasks. The average is
provided over the last ten steps, with error bars representing one standard deviation.

What is perhaps surprising is the explicit stacking approach performs well in half of the

tasks, but is inferior to CQL with QMIX approach for the other environments. Further-

more we can conclude using ensembling techniques in single agent approaches is inferior

when used in the multi-agent setting. When comparing the implicit regulariser GUM

approaches to the naive CQL with QMIX we can see GUM approach is superior across

all environments. This motivates and demonstrates the importance of the regulariser

network and unmixing parameter. We hypothesis that the addition of the regulariser

alters the update rate between the mixer and independent Q functions in a similar

manner to how Polyak averaging is used for the target network.

7.4.4 Experimental Results

When comparing GUM with MARL benchmark and state-of-the-art approaches it per-

forms comparably in cooperative tasks. In this section, all GUM algorithms leverage

the variation where the trade-off factors are trainable, and is equivalent to the “GUM-

lagrange” variation in the previous section. By examining Figure 7.5, we observe our
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approach is comparable or outperforms all other approaches across algorithms regardless

whether they use Q-learning or actor-critic approaches.

7.5 Conclusions and Future Work

We introduce GUM which enables ensembling between mixer and independent networks

for MARL tasks. We motivate our choices theoretically through examining methods

for implicitly and explicitly ensembling the central mixer network when operating in

the CTDE framework, and demonstrate the efficacy of our neural network construction

empirically through our ablation studies, and superior results compared with state-of-

the-art approaches over different benchmark MARL tasks.

Future extensions to this approach could include examining how our approach can be

extended to the actor-critic framework and theoretical justifications of our architecture

construction approach to enable more effective and efficient MARL algorithms.
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8.1 Summary

In the first part of this thesis, we focused around the challenge of detection. In Chapter 4

and 5 we tackled the challenge around detecting distribution changes in single and multi-

agent reinforcement learning. First, in chapter 4 we described a scheme to learn from

sub-optimal experiences through leveraging “bad” experiences in the regret framework

to constrain policy updates. Experimental results demonstrated that our proposed

approach was competitive to existing algorithms and could effectively be used in offline

reinforcement learning settings and online even in the face of sub-optimal policies.

Chapter 5 explores the multi-agent settings where experiences are shared within the

Q-learning setup to enable more efficient training and improve convergence compared

with other Q-learning MARL algorithms. Despite the removal of centralised structures,

we demonstrate this approach to be superior to the independent Q-learning scenario

indicating that through sharing experiences agents have the ability to extrapolate or

coordinate despite lack of centralised network structures.

In future we hope to combine our approaches and have the ability to constrain our

agents in how policies are executed and trained to constrain policies based on “bad”

experiences across multiple agents. As the single-agent scenario is heavily based on actor

critic model and the multi-agent scenario revolves around Q-learning, we will need to

adapt our algorithms to cater for these differences. This could be through first exploring

effective ways to leveraging “bad” experiences in the Q-learning framework and extend

to the multi-agent framework, or adapting our approach to the multi-agent setting.

The second part of this thesis revolved around collaboration. Chapters 6 and 7

explore the challenge of MARL collaboration through ensembles of agents allow us to un-

mix agents from their centralised learning structures allowing agents to generate more

diverse experiences. Chapter 6 describes the boosting interpretation of residual networks

for the neural architecture selection problem, which can be framed and extended to



supervised learning problems such as gradient boosting trees. This idea is leveraged and

used in chapter 7 which explores a principled manner to construct MARL algorithms

to decouple agents to theoretically enable both centralised and decentralised training

concurrently. We demonstrated that this framework provides improvements on certain

MARL environments.

As our approach only examines how this is accomplished using QMIX algorithms,

additional research could explore how other architectural choices influence performance.

Using neural architectural selection could also have interesting implications if we relax

the restriction of having a fixed, known number of agents at the beginning of the MARL

environment, as it could allow for arbitrary agents which are trained independently and

gradually “mixed” together with the other agents. We hypothesis this approach could be

used to scale up learning in various MARL tasks.

In the last part of this thesis, we examined coordination. Chapter 3 tackles co-

ordination through generating dynamic coordination graph structures which enables

flexible structures which can adapt to a wide variety of challenging MARL problems. We

demonstrated the flexibility of this representation which allows it to solve complex coor-

dination tasks in the MARL settings, and remains competitive with other state-of-the-art

approaches.

One of the exciting prospects of using graph based approaches is the ability to scale

out to more agents without altering the underlying graph representation. This would

be an exciting avenue to explore, as it would mean a centralised mixing network can be

used to train on multiple different MARL tasks, potentially enabling transfer learning

and speeding up training.

8.2 Future Work

While all of this is fantastic progress, important open challenges remain:



• One of the key limitations of current approaches presume the number of agents

are known and do not consider scenarios where agents can be dynamically added

and removed from the environment, and construct networks which can adapt to

the constantly changing environment inputs.

• In many applications there may be different levels of coordination which is required

as not all agents would act optimally. This is particularly important when agents

require to interact with unknown agents such as humans. Being able to generalise

their behaviour to cater for this is critical for adapting to applications such as

self-driving cars that can properly account for the perspectives of other agents.

• Many cooperative MARL tasks do not leverage a shared global reward. Instead

agents are rewarded individually and there may only exist partial common interest.

Relaxing this constraint is a under-explored area in the context of cooperative

MARL tasks and coordination.

Addressing these limitations in multi-agent learning will profoundly challenge the

way we construct autonomous agents and as human beings interact with the world

around us.
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