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ABSTRACT

C
omparative analysis plays a crucial role in real-world data analysis, especially

when dealing with multivariate data. Efficient comparison of hierarchies

and node attributes, spatiotemporal data, and even data uncertainties in

multivariate data still remains a challenge and gap in certain application contexts.

This thesis provides a comprehensive visual comparative analysis of multivariate data,

consisting of four individual research approaches that explore innovative visual solutions

to improve the understanding and comparison of multivariate data.

The first approach focuses on balancing the comparison of hierarchies and node

attributes. It introduces a novel visualization technique, PansyTree, which utilizes a

tree metaphor and node merging to depict merged nodes in the structure. This enables

the merging of three datasets into a single tree, facilitating easier exploration and

comparison of structures, nodes, and node attributes.

The second approach, +msRNAer, presents a portrait-based visual modeling method

for time series and multidimensional feature comparison in epidemiology. It presents

time series and multidimensional features in a reduced-dimensional space, highlighting

similarities and differences among designed portraits. This approach has been tested

on COVID-19-related datasets and has proven effective in identifying location-based

patterns and relationships between COVID-19 cases and risk factors in census data.

The third approach is the User-centered Visual Explorer (UcVE), which offers cus-

tomizable views for exploring and comparing spatiotemporal and multidimensional

features. UcVE reduces the cognitive load of users by allowing them to visualize, save,

vi



ABSTRACT

and track their exploration results. With an easy-to-use interface, UcVE enables users to

switch between views and explore data at various levels of detail, making the analysis of

complex spatiotemporal data more accessible and intuitive.

The fourth approach, ClinicLens, is an interactive visual analytics system aimed at

exploring, comparing, and optimizing the testing capacities of healthcare clinics in the

presence of multivariate uncertainties. ClinicLens leverages a combination of collabo-

rative visual views and AI algorithms to support domain experts in making informed

decisions and adjustments regarding testing capacities and COVID-19 situations.

In conclusion, these four approaches offer diverse perspectives for improving the

understanding and comparison of complex multivariate data and have demonstrated

their usefulness and effectiveness in real-world applications.
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1
INTRODUCTION

1.1 Background

T
he advent of big data has brought about significant increases in data volume

and diversity of multivariate data types, including hierarchical structures,

spatiotemporal features, and multidimensional structured and unstructured

data features, presenting numerous challenges for data analysis. As such, it is essential to

effectively balance the representation of various types of features in abstract datasets and

to uncover and understand connections between these features through visual analytics.

Despite this, traditional visualization and visual analytical methods are insufficient for

dealing with complex implicit features and applications, posing persistent challenges in

specific analysis tasks. Effective visual analytics can greatly aid in the interpretation and

analysis of multivariate data, and there is a growing need for visual analysis systems
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that support flexible exploration and provide explicit comparisons of implicit features

during the analysis process [191].

Returning to applied scenarios, the growing emphasis on the need for informatics

and analytics in public health over the past 30 years has led to an increasing amount of

investment cost in information systems [38]. Visual analytics in bioinformatics raised

significant roles in big data analysis tasks in public health, especially in epidemiological

analysis as connections tighten up with people. However, many research challenges

and gaps still need to be filled, although many new tools and algorithms have already

been developed to aid experts in analyzing and visualizing the complex data used in

epidemiological analysis [43]. As Lauren et al. [38] highlighted in a survey, complex

epidemiological exploration and comparison require novel visualization tools, and most

of the existing visualizations applied in analysis tasks suffer from limited adoption.

More and more standard visualizations in epidemiology evolve into visual analytics that

aims to combine multivariate data such as analytical tasks of considerable complexity,

dynamism, and uncertainty rather than simple features. [15, 17].

Taking the current global pandemic of COVID-19 as an example, Australian federal,

state, and local community public health officials synthesize highly disparate data to

facilitate timely communication with the public and inform decisions regarding policies

to protect public health. Since the first outbreak, visualization has been crucial in

addressing risks to the public’s health. The phenomenon and its global effects have been

captured in an astounding number of visual representations [6, 215]. Given that both the

volume and complexity of data on infectious diseases are increasing, comparative analysis
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of epidemiology data combining multivariate data, such as hierarchical structures [105],

spatiotemporal features [164], or other complex distinct features[209], continues to be a

fundamental challenge.

1.2 Problem Statement and Gaps

The field of data visualization continues to grapple with the challenge of effectively

presenting multiple data types for comparison, despite the proliferation of techniques

developed for multivariate data analysis. Research problems and gaps in the visual

comparison of multivariate data are mainly aggregated into two aspects: multivariate-

oriented and scenario-oriented. In this subsection, we first introduce the general research

problem in multivariate data, followed by specific data types of hierarchical and spa-

tiotemporal features as examples. Finally, we emphasize introducing the problem and

gaps from epidemiology to COVID-19-related scenarios as target applications.

1.2.1 Problems and Gaps in Multivariate Data Visualization

In recent years, the amount of data being generated and collected has increased exponen-

tially. With this increase in data volume and varied types, there is a need for effective

ways to analyze and interpret it. Multivariate data visualizations are powerful tools for

exploring and understanding complex datasets [57, 149]. However, there are still gaps in

the research on this topic that need to be addressed, particularly in comparison tasks

among different data types. Gintautas et al. [63] provided academic chapters entitled
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"Multidimensional Data Visualization - Methods and Applications" that categorized

conventional and traditional visualization methods for multivariate data. However, they

also mentioned the posed difficulties and challenges that researchers faced consistently.

These difficulties and challenges have corresponded in another prior survey paper [39]

which illustrated them from four perspectives:

1. Effecitve Mapping. Finding a suitable mapping method or layout for selected

dimensions from multivariate data is not a simple task, because High-dimensional

multivariate data can be difficult to map into a 2D visual form. Thus, graphical attributes

should be designed carefully to make them easy to understand. The visual representation

should allow for integrated analysis of different attributes while allowing users to judge

each dimension separately and independently.

2. Selected Dimensionality. Multivariate data is often large in size and high in

dimensionality, resulting in a dense structure. As a result, it can be challenging to

present such data in a single visual display, making it difficult for users to explore the

data space intuitively and interactively, as well as distinguish individual dimensions.

Additionally, the ordering of dimensions may have a significant impact on the expressive-

ness of visualization [101]. Different arrangements can lead to different conclusions, but

currently there is no established ordering principle.

3. Design Tradeoffs. Visualization is an effective way to provide users with a qual-

itative overview of large and complex datasets, allowing them to identify structure,

patterns, trends, and relationships more efficiently [76]. However, due to the high di-

mensionality of multivariate data, we often need to sacrifice the ability to show detailed
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information for each attribute [213] as we have fewer graphic attributes for encoding,

for instance, balancing design space and data scope displayed. Therefore, when visual-

izing multivariate data, there is always a tradeoff between the amount of information,

simplicity, and accuracy.

4. Effectiveness Assessment. The evaluation of visualization and visual analytic

methods has been a subject of debate due to their subjective nature. Although some visual

methods have been validated through quantitative analysis, such as time complexity and

comparisons with analogous techniques, the majority of methods still rely on user studies

and case studies for evaluation. Consequently, objectively assessing the effectiveness of

an information visualization technique poses the fourth significant challenge.

In sum, to explore the research problems and gaps, we set one key research question

thoroughly in this thesis:

How to dynamically and effectively analyze complex multivariate data?

We further expand to list this key question-based with the following detailed sub-

questions with their main allocated discussion parts in this thesis:

1. What types of conventional and traditional data are utilized in multivariate data

analysis? (Chapter 1 Introduction, Section 1.1 Background)

2. What are the current limitations and challenges in exploring and comparing

multidimensional data using these conventional and traditional data types? (Chapter 1

Introduction, Section 1.2 Problem Statement and Gaps)

3. How can explorations and comparisons between different data types be effectively

represented in multivariate data visualizations? (Chapter 2 Literature Review, Section
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2.1 Methodology-based Related Works)

4. What visualizations or visual analytic methods can be designed and presented for

these types of data in multivariate analysis for exploration and comparison purposes?

(Chapter 2 Literature Review, Section 2.2 Multivariate-based Related Works)

5. How can the usefulness and effectiveness of these presented methods be convincingly

evaluated? (Different Approach-based Evaluations Designed in Sections 3.4, 4.5, 4.6, 5.6,

and 6.6)

1.2.2 Problems and Gaps in Visualizing Hierarchical Features

Hierarchical features are considered conventional and key features in multivariate data

analysis. They represent a structured organization of data elements, typically arranged

in a hierarchical or nested manner. However, hierarchical features are often accompanied

by other multivariate data features that pose significant challenges due to their complex

and implicit relationships. The intricate dependencies between different levels of the

hierarchy can make it difficult to effectively analyze and interpret the data. To uncover

the underlying patterns and relationships in multivariate data with hierarchical features,

advanced methods and techniques are required, along with expertise in data analysis

and domain-specific knowledge.

Despite the widespread use of tree-based visualizations, such as trees and treemaps,

to depict hierarchical relationships, these methods have been criticized for their inability

to effectively compare multiple hierarchical structures, each of which may possess mul-

tidimensional attributes. Alternatives, such as node-link or space-filling methods, also

6



CHAPTER 1. INTRODUCTION

have limitations in effectively displaying complex hierarchical relationships within data.

Consequently, there is a pressing need for innovative visualization methods designed

specifically for hierarchical data comparison, with the capability to interactively present

intricate relationships in a clear and concise manner. Such methods should balance both

clearer hierarchies display and node multidimensional attributes to further facilitate

exploratory analysis and provide a visually compelling representation of the data.

1.2.3 Problems and Gaps in Visualizing Spatiotemporal Features

Spatiotemporal features play a crucial role in understanding the relationships between

data points in both spatial and temporal dimensions. They capture the spatial and

temporal characteristics of the data, providing valuable insights into patterns, trends,

and interactions over time and space. However, analyzing spatiotemporal data poses

its own challenges due to the complexities of spatial dependencies, temporal dynamics,

and the integration of both aspects. Effectively harnessing the information contained

within spatiotemporal features requires specialized analytical approaches and domain

knowledge.

Specifically, based on the challenges and research gaps in spatiotemporal data mining

(STDM) highlighted in [80], five factors must be addressed when exploring spatiotempo-

ral space.

1. Complex and implicit spatiotemporal object relationships.

2. The need for interdisciplinary effort and integration of various heterogeneous

datasets and multiple data mining algorithms.
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3. The problem of discretization of the spatiotemporal region due to scale and zoning

effects on data mining results.

4. Heterogeneity and dynamicity of the data characteristics.

5. The need for further efforts in STDM for data representations, advanced modeling,

visualization, and comprehensiveness.

The worldwide COVID-19 pandemic has caused severe strain on healthcare systems

and had detrimental impacts on society and the economy all over the world [36]. To date,

growing attention has been paid to visualization techniques, such as visual dashboards

[98, 183, 206], CT diagnoses [96, 119], and genomics modeling [126, 127]. They assist

domain experts in comprehending, analyzing, and modeling COVID-19 [36]. Visual ana-

lytics assists in containing and controlling this global crisis from multiple perspectives

[238].

1.2.4 Problems and Gaps from Epidemiology to

COVID-19-related Scenarios

Epidemiology-related. Epidemiology, the study of the distribution and determinants

of health and disease in populations, has become increasingly important in the context

of global health challenges such as infectious disease outbreaks and chronic conditions.

Despite the advancement of analytical methods and technologies, there remain signifi-

cant research gaps and challenges in the field of epidemiological analysis. Some of the

key issues summarized from a systematic survey [38] include the points:

1. Incomplete and inaccurate data, which can limit the ability to accurately charac-
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terize disease patterns and risk factors.

2. Complex and interrelated determinants of health and disease, including both

individual-level factors (e.g., lifestyle, genetics) and population-level factors (e.g., socioe-

conomic status, environmental exposures).

3. The need for integrative analysis methods that can effectively account for the

multilevel and dynamic nature of epidemiological data.

4. The challenge of generalizing findings from observational studies to broader popu-

lations, given the potential for selection and measurement bias or uncertainties.

5. The need for more sophisticated and flexible data visualization methods to effec-

tively communicate the results of epidemiological analyses to stakeholders.

These research gaps highlight the ongoing need for innovative analytical methods

and approaches in the field of epidemiology to support the understanding and control of

health and disease in populations.

COVID-19-related. The ongoing COVID-19 pandemic has had a profound impact

globally, making it a critical area of study in epidemiology. Information visualization

and visual analytics have been crucial in exploring COVID-19 information, with a

large number of visual dashboards implemented to support real-time and correlation

analysis tasks [237]. However, despite these efforts, there are still significant challenges

in effectively analyzing COVID-19 data.

Existing visual dashboards aggregate specific COVID-19-related information and

provide multiple views to display non-interactive visualizations and limited data types,

such as current case counts across countries [59, 157] and broad trends of cases within
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countries [153, 200]. Despite the success of these visual dashboards, the sheer volume of

COVID-19 data and the need for in-depth research into its data types and uncertainties

highlight the limitations of information visualization for complex analysis tasks [36, 166].

To better manage COVID-19 and future infectious disease outbreaks, it is necessary

to combine more metadata, such as spatiotemporal and multidimensional features,

to support more advanced analysis [53]. Recent efforts have been made to introduce

advanced visual analytics methods [110, 228, 233] and AI4VIS [145, 159, 175] to address

these limitations. However, dynamic and multi-aspect visual analyses of COVID-19

data remain insufficient. A systematic survey of existing literature [26] highlights key

research gaps and problems in this area, including:

1. The need for integrative and multidisciplinary approaches that effectively consider

both the medical and social-economic aspects of the pandemic.

2. The challenge of dealing with incomplete, inconsistent, and rapidly evolving data,

which can impact the accuracy and reliability of visualizations.

3. The need for more sophisticated and flexible visual encodings to effectively commu-

nicate the results of COVID-19 analyses to stakeholders.

4. The challenge of effectively representing the spatial and temporal dimensions of

the pandemic, given the dynamic and evolving nature of COVID-19 data.

5. The need for more interactive and user-centered visualization tools to support

real-time decision-making and exploration tasks.

These research gaps highlight the ongoing need for innovative and effective infor-

mation visualization and visual analytics techniques to support the understanding and
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control of the COVID-19 pandemic.

1.3 Research Aims and Objectives

This thesis aims to conduct a comprehensive visual comparative study on multivariate

data analysis. The study will investigate visual comparison approaches for typical multi-

variate data, such as hierarchical structures and spatiotemporal features, in comparison

to other multivariate data. Additionally, the study will identify and summarize the

challenges and gaps in current analysis tasks.

To achieve the objectives, the study proposes novel and original approaches based on

visual comparison of multivariate data. These approaches aim to individually address

the limitations of traditional visual analytics methods in handling complex and diverse

multivariate data. The proposed approaches will support the flexible exploration and

comparison of implicit features in the data and will be validated on various data and

applied scenarios.

To substantiate the research inquiry, the study will conduct a comprehensive liter-

ature review of the existing research on multivariate data analysis, with a particular

focus on the conventional and traditional data types utilized. Additionally, the study

will explore the current limitations and challenges of visualizing multidimensional data

using these data types and investigate how relationships and comparisons between

different data types can be effectively represented.

To address the identified research gaps, the study will propose novel visualizations
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or visual analytic methods that can be designed and presented for these data types

in multivariate analysis for exploration and comparison purposes. The study will also

evaluate the usefulness and effectiveness of these methods convincingly through the use

of empirical studies and experiments.

It is essential to note that the effectiveness of general visual analytics methods

largely depends on the specific application context. Thus, the objectives of this study

are summarized concisely in bullet points to ensure their alignment with the intended

application scenario:

1. A visualization technique needs to be presented facing the challenge of comparing

more than two hierarchical structures. Multiple hierarchical structures and the

multidimensional attribute values of each node should be able to have balanced

comparisons using the method.

2. A visual modeling method needs to be proposed for location-based time series and

multidimensional features in epidemiological analysis tasks, which should support

comprehensive exploration and interactions.

3. A visual analytic method further breaks down geo-barriers in order to investigate

implicit relationships among location-based units on maps, while a based visual

analytic system runs for comparing multiple visualization units chosen by the

fulfilled interactions in collaborative views.

4. To enable interactive exploration of the COVID-19 pandemic based on actual

needs, a visual analytics approach with a focus on a dataset related to COVID-
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19 is anticipated to be developed. This strategy aims to improve comprehension

of multivariate data such as the connection between clinic testing capacities,

confirmed cases, and COVID-19 testing. The methodology also enables comparison

and improvement of clinic testing capacities.

Overall, this study aims to contribute to the field of multivariate data analysis by

providing novel visualizations and visual analytic methods that can be used to effectively

explore and compare different data types in multivariate analysis.

1.4 Significance and Contribution

The significance of this thesis is demonstrated through the presentation of four distinct

and novel approaches. Each approach is individually applied to a range of topics and

scenarios using either completely unique or partially diverse data sources. The entire

visual analytic studies are progressively completed in accordance with research objectives

and associated goals: The four sections that make up the pathmap of the entire visual

analytical study, as shown in Figure 1.1, provide multiple comparisons of various implicit

features across distinct datasets. The first three are meant to be general approaches to

common application scenarios, which can be easily applied to other scenarios with slight

adjusting, while the last is presented specifically for the clinics’ testing capacities within

the aggregated COVID-19 dataset.

In summary, the four presented approaches each provide available visualization

prototypes or systems, all of which are already open-source, and they adopt unique
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visual designs and views. The slight differences lie in the fact that PansyTree focuses on

visualization design, +msRNAers represents a visual modeling method, UcVE offers com-

prehension visual exploration, and ClinicLens places more emphasis on the application

of COVID-19.

Specifically, we first purposed a visualization technique called PansyTree for compar-

ing both hierarchical structures and multidimensional features as node attributes by

merging three hierarchies; secondly, we further introduced a visual modeling method

for general epidemiological analysis, namely +msRNAers, for assembling location-based

portraits with implicit features of time series and multidimensional features; further-

more, we presented a user-centered visual explorer (UcVE) for progressive comparing

multiple visualization units with implicit features in spatiotemporal space; finally, we

implemented ClinicLens, a novel visual analytics system, to allow domain experts to

forecast, compare, and optimize the multivariate features that may affect clinic testing

capacities under uncertainties.

Figure 1.1: The whole pathmap of this thesis comprises four included approaches, where
PansyTree, +msRNAers, and UcVE can be considered as general approaches that can be
easily applied to suitable data types with slight adjusting, while ClinicLens is specifically
designed for the clinics’ testing capacities within the aggregated COVID-19 dataset.
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The contributions of PansyTree are summarized as:

1. PansyTree, a visualization technique that combines three hierarchies to represent

the hierarchical structure and node attributes of three shallow and steady trees.

2. Introduce the pansy and the design of its blossoming phase for better-comparing

differences among hierarchical structures and multidimensional features.

3. Visual cues and interactions in the prototype system help users explore merged

hierarchical dataset patterns easily.

The contributions of +msRNAers are summarized as:

1. Design visual modeling method for location-based time series and multidimen-

sional features. Inspired by viral anatomy, we developed a visual modeling method,

+msRNAers, interacting with collaborative views for spatiotemporal and multidi-

mensional features in the majority of epidemiological analysis tasks.

2. Integrate platform for storage spatiotemporal features in COVID-19 aggregated

dataset. we create an integrated platform for all LGAs based on multiple datasets,

including census data, LGA geographical data, COVID-19 cases, and events data

extracted from government websites.

3. Implement a visual prototype for analyzing relationships between COVID-19

cases in spatiotemporal and census key factors in multidimensional features. This

prototype aims to support the government in its investigation and comparison of

implicit community factors and in identifying useful implications for the possible
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patterns of the firmly established community characters against the vulnerability

faced by COVID-19.

The contributions of UcVE are summarized as:

1. Design-oriented: A visual metaphor of unit visualization with the customizable

aggregated view to expand the visual representation scalability. The UcVE maps

unit visualization with the encoded abstraction of spatiotemporal information in

three statuses: single, auto-clustered, and custom-merged, which allows for easy

tracking and details on dynamic demand for each individual variation, making

exploration easier.

2. Human-oriented: User-centered progressive exploration approach with saving and

tracking in-process visualization results to ease user cognition workload. Users can

record each interacted result on a map as a storage sequence for further iterative

callback and exploration to deal with spatiotemporal region discretizations; rank-

ing and target tracking can also be done interactively between different storage

sequences.

3. Comparison-oriented: Comparative visualization with user-selected multiple visual-

ization units concurrently, breaking to geo-barriers to explore implicit relationships

among units. Combined with other visualization views and interactions, a compari-

son matrix view enables a detailed comparison of spatiotemporal attribute values

among multiple visualization units in a scalable manner.

The contributions of ClinicLens are summarized as:
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1. ClinicLens can assess clinic testing capacities under uncertainties by involving

domain expert opinion and formulating feature modeling methods within the

Back-end Engine.

2. A visual analytic system assembles the Back-end Engine with the Front-end

Visualization, enabling domain experts to interactively explore the COVID-19

situation and optimize the testing capacities of clinics.

3. Three real-life case studies with expert interviews cross-evaluate the usefulness

and effectiveness of ClinicLens.

1.5 Overview of thesis structure

The remainder of this study is organized as follows: The literature review is listed in

Chapter 2. We begin with PansyTree in Chapter 3. In Chapter 4, we elaborate on the

visual design for +msRNAers. Chapter 5 describes the workflow of UcVE. Chapter 6

is structured for a detailed approach to ClinicLens. We summarize the whole visual

analytical study of the thesis in Chapter 7. Chapter 8 includes all four related approaches’

codes published on GitHub.
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2
LITERATURE REVIEW

2.1 Methodology-based Related Works

This section provides methodology-based related works that contain common approaches

in visual comparison and how AI techniques benefited visual analytics for further

decision-making.

2.1.1 Visual Comparison

Tasks involving data analysis and visualization frequently involve comparison [70].

Finding trends in a collection of social networks [61, 231], comparing two CT scans

[102], searching for similarities between several temporal trends [147], or searching for

patterns in a collection of genetic sequences [163] are some examples of what it might

entail in specific comparing tasks. Comparison analysis is frequently not limited to one
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data type but calls for an understanding of the implicit relations between multivariate

data, regardless of the data type or domain [25]. Since they involve both the problems

of the multiple data features and their potential relationships, such comparisons are

frequently challenging.

A broad survey [70] offers a conceptual framework to help with developing responses

to scenarios involving visual comparison. The framework comprises a set of four consid-

erations that aid in understanding comparison tasks, their difficulties, and potential

solutions. We can further identify the most significant considerations in visual com-

parison are comparative elements and layout designs. As summarized, they conclude

elements may be affected by: 1. the number of items being compared; 2. the size or

complexity of the individual items; 3. the size or complexity of the relationships. Thus,

how to balance the number of items, the multivariate data in individual items, and reveal

implicit relationships among multivariate data is a long-term issue [160]. Numerous

comparative visualization approaches only support comparisons between two items (e.g.

File Comparison [142], peer-peer relations [135], time series comparison [11]), which

fulfill comparison in both detailed single elements and other detailed information such

as multidimensional attributes, trends, and relationships; others focus on the expanded

number of items for comparison (e.g. fusion and concatenation side by side [42, 89], hun-

dreds of vertical sequences [115], etc), which are emphasized the amount of compared

items but lose some detailed information. As a result, balancing the numbers and the

details must be taken into account based on the analysis tasks.

The visual layouts of comparison also need to be addressed. The survey [71] also
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contains the concerns of common layout designs used in the visual comparison which

are mainly divided into three aspects: juxtapose, superpose, and explicit encoding. Con-

trasting with superposition, juxtaposition arranges objects in different views next to one

another in order while superposition arranges objects in the same location [193]. The

relationships are the main focus of explicit encoding, which frequently combines juxta-

posed, superimposed, or transformed layouts. The juxtaposition fits well in the limited

number of items comparison and can depict very detailed attributes but lose space in

some contexts. The superposition saves space but may constrain the other information.

The explicit encoding also incurs additional learning costs due to its transforming visual

design but can absorb the benefits of both juxtaposition and superposition. Moreover,

the chosen visual comparison layout may be determined by the multivariate data, for

instance, some variation or element-based comparisons usually used juxtaposition to

show the trends with details, as Mauve [47] and Sequence Surveyor [12] in the genomes

visualization field; time-series data is often applied with superposition such as due to

comparison in same view will easily get insights of the differences [138, 141]; the explicit

encoding may remap and redesign view for further comparison, for example, improved

parallel coordinates [91, 107] for comparing multivariate data among axes. Nowadays,

visual comparisons are no longer limited to a single view but have evolved into a visual

analytics system with multiple views that work together to respond to comparing queries.

The visual design layouts are essential for comparison tasks because we must select the

right layouts for various usage scenarios.

To sum up, there is a wealth of literature in the field of visualization that addresses
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the challenge of comparing multivariate data that has already been summarized. From

the conventional use of star glyphs, [66] and parallel coordinates [94] to more advanced

methods [85, 221] and finally to recent innovations such as dimension reduction tech-

niques [65, 67] and interactive visualizations [83], even with visual analytic methods,

researchers have developed a variety of research for effectively visualizing and comparing

multivariate data. These methods have been applied in diverse domains, from biology

and engineering to finance and the social sciences. By offering different perspectives

and trade-offs, these techniques provide valuable tools for exploring and understanding

complex relationships within multivariate data, enabling data analysts and domain

experts to gain new insights and knowledge.

2.1.2 AI-empowered Visual Analytics Aided Decision-making

Many fields have extensively benefited from AI-empowered techniques and applica-

tions [37]. Among the available tools and techniques, advancements in AI-empowered

techniques hold the potential to propel visual analytics to new heights, enabling the

development of sophisticated applications for data analysis. A survey reveals that AI-

empowered visual analytics facilitates the progressive exploration of intermediate results

and computational processes, undergoing continuous convergence iterations towards

informed decision-making [64].

Through feature engineering with diverse data types, researchers have applied ma-

chine learning predictions and reasoning to a wide range of specific analysis tasks and

decision-making problems. For example, Stolper et al. [197] devised a progressive visual
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analytics system that presents intermediate outcomes derived from a sequence-mining al-

gorithm applied to medical treatment events, providing clinicians with valuable insights.

PlanningVis [198] integrates an automatic planning algorithm with interactive visual

explorations to efficiently optimise daily production planning in the manufacturing indus-

try. The tool also offers support for quick responses to unanticipated incidents. Tac-Simur

[212], an AI-driven visual analytics platform, simulates the processes surrounding table

tennis competitions, assisting coaches in establishing competition strategies. PassVizor

[223] provides tools for in-depth analysis of passing dynamics in football games, while

CohortVA [236] helps historians identify the social structures and mobilities of historical

figures by analysing group behaviour.

To evaluate the performance of machine learning models in visual analytics, re-

searchers typically employ measurements by comparing their indicators among models,

e.g., RMSE, MAPE, and R2, to further choose the appropriate model for their expected

tasks [185]. Xu et al. [225] used multiple models in mTSeer to perform 3E forecasting

on multivariate time series data, where 3E stands for exploration, explanation, and

evaluation. On the PromotionLens platform [235], Random Forest (RF), Extreme Gra-

dient Boosting (XGBoost), and Multilayer Perceptron (MLP) emerged as winners in

the comparison for providing a visual exploration of strategies to promote e-Commerce

commodities. In this vein, RISeer [41] visually conducts interregional inspections and

comparisons for urban economic development using RF and XGBoost, while LEGION

[48] enables users to compare and choose regression models that were created by feature

engineering or by fine-tuning their hyperparameters.
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2.2 Multivariate-based Related Works

Both multivariate data and high-dimensional data involve visualizing datasets with

multiple variables, but they differ in terms of the number of dimensions represented

[220]. After collecting vast surveys on multivariate data [39, 104, 139, 148] and high-

dimensional data [129, 179, 182] visualization, the similarities and differences between

them are summarized below.

The similarities between multivariate data and high-dimensional data visualizations:

Representation of multiple variables: Both multivariate and high-dimensional

data visualizations aim to represent multiple variables simultaneously. They allow

analysts to explore relationships, patterns, and trends within complex datasets.

Exploration of relationships: Both types of visualizations provide tools for ex-

ploring relationships between variables. They help users identify correlations, clusters,

outliers, and other important patterns in the data.

Visual encoding techniques: Visual encodings such as color, size, shape, position,

and texture can be used in both multivariate and high-dimensional data visualizations

to represent different variables and their values.

The differences between multivariate data and high-dimensional data visualizations:

Dimensionality: Multivariate data visualization typically deals with datasets where

the number of variables (dimensions) is relatively low (e.g., 2-5 variables). On the other

hand, high-dimensional data visualization focuses on datasets with a large number of

variables (dimensions), often exceeding the ability to visualize them directly.

Techniques used: Multivariate data visualization commonly employs techniques
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like scatter plots, parallel coordinates, heatmaps, and small multiples to represent and

compare variables. High-dimensional data visualization requires specialized techniques

such as dimensionality reduction methods (e.g., t-SNE, PCA) or projection methods (e.g.,

parallel coordinates in higher dimensions) to reduce the dimensionality and visualize

the data effectively.

Data complexity: High-dimensional data visualization faces challenges due to the

curse of dimensionality, as the number of variables increases, making it difficult to

visualize the data comprehensively. Multivariate data visualization, on the other hand,

is relatively simpler to handle due to the lower number of variables.

Interactivity and exploration: Given the complexity of high-dimensional data,

interactive visualization tools are often essential to navigate and explore the data

effectively. Multivariate data visualization also benefits from interactivity but to a lesser

extent.

In summary, both multivariate and high-dimensional data visualizations aim to

represent multiple variables, explore relationships, and uncover patterns. However, high-

dimensional data visualization requires specialized techniques to address the challenges

posed by the higher number of dimensions, while multivariate data visualization is more

straightforward due to the lower dimensionality.

In this section, we retrieve relevant work on hierarchical structures and spatiotem-

poral features, two typical data types used in visualization and visual analytics. Other

multivariate data combined with both of them maintain challenges for visual design that

need to be addressed further.
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2.2.1 Tree Visualization for Comparison

The connection approach and the enclosure approach are the two most basic streams of

tree visualization. They are both effective approaches for the visualization of hierarchies,

and which one we should use depends primarily on the properties of the data in a

particular application domain [87].

In the last two decades, many good tree visualization methods have appeared that

combine both the connection and the enclosure concepts into one so that they can take

advantage of both techniques. The treevis.net [188] concludes with over 300 methods

for tree visualization, such as Cone-Tree [178], Tree-Maps [99], Spaced-Optimized Tree

[146], Treemapbar [90], Angular Treemaps [118] and SFMDVis [92]. Among them,

some ideas are closely related to plants in nature. For instance, Botanical Visualization

[106] shows the layered relationships between trees, branches, and fruits that have

emerged using 3D technology; Interring [229] is designed as a flower-like metaphor

to display hierarchical information within an individual icon. Moreover, researchers

further improve tree visualization techniques with visual cues [171] and interaction

optimizations [46] to enhance the implicit insight of users. Zheng et al. [240] investigate

the extension of four hierarchical univariate concepts the sunburst chart, the icicle

plot, the circular treemap, and the bubble treemap to the multivariate domain, which

provides relatively comprehensive visual solutions for multivariate data in single tree

visualization.

Comparison is not a single task in tree visualization[71]. Instead, it requires the

user to perform a series of interactions on a group of objectives to complete a set of
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explorations, such as finding similarities, performing difference analysis, etc. Li et al.

[117] conducted an updated survey on tree comparison. Specifically, tree comparison

can be divided into the comparison of the hierarchical structures and the node attribute

values. Among them, most techniques are limited to comparing two trees at a time

[42, 58, 78, 108]. Although there remain visualization methods for more than two trees

[115, 239], they are still considerably fewer and have limitations in the comparison of

both node attribute values and hierarchical structures.

Merging tree visualization for comparison is one of the common methods in tree

comparison which refers to the use of algorithms to calculate the correspondence between

the nodes of the comparison tree. According to the relationships, these nodes are merged

together and a tree structure including all merging nodes is constructed. Within each

merged node, attributes can be compared through visual coding [117]. Therefore, the

core of the merge tree visualization is to directly compare the merged nodes’ attributes in

detail, and the structural difference is compared by their presence or absence. Existing

merge methods are mainly divided into two types. One is to merge the juxtaposed

hierarchical structure to achieve the effect of aggregation as a whole, and the difference

is reflected by the fluctuation of the relationship [31, 75, 78]; the other is to merge the

nodes in advance through algorithms to build the effect of aggregation [187, 219, 227].

The former is closer to the conventional node-link methods, so it is easier to recognize

the attributes and hierarchical information.
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2.2.2 Visual Exploration and Comparison of Spatiotemporal

Features

A summary of geospatial content by Alex et al.[232] indicates that there were 94 of

220 papers in recent IEEE VIS publications used geospatial data. A variety of visual

analytics methods and tools have been developed to visually make sense of geospatial

data[16]. Among them are the analysis of the origin-destination[120, 242], the vehicle

trajectory[10, 122, 186], the vehicle flow analysis[216], and etc[50, 79, 103, 112, 144].

The spatial-temporal features of geospatial datasets complicate matters of analysis[217].

In contrast to simple geographic information path or sampling point analysis[169, 170],

time-varying attributes in especially large-scale dataset[52] bring a high level of uncer-

tainty in the dissemination and change of geographic information, and different data

attributes introduce a large number of cascading relationships, making it difficult to

analyze patterns underlying datasets using traditional visual methods. Time curves[21]

provide a visual method to illustrate and reveal informative patterns in a range of differ-

ent spatiotemporal datasets. Brehmer et al.[30] surveyed several timelines and designed

a hybrid timeline representation that combines different timeline representations in a

three-dimensional space.

As a result, in addition to a series of spatiotemporal visualization encodes on the

map[211], the researchers also purposed the KDE[192] (kernel density estimation), which

can help with the problem of uneven distribution density. Hurter et al.[93] provided

a KDE-based visual clustering approach to depict clutters in complex graph drawings.
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Since then, various clustering methods have been applied to spatiotemporal data to de-

pict clustering by different parameters, which can effectively reduce visual overlapping

issues[14, 125, 131]. DDLVis[113] provides a visual analytic system with an applied

peak-based kernel density estimation method to produce the data distribution for the

spatiotemporal data. Compass[54] is presented for analyzing the dynamic causality in ur-

ban time series. In addition to clustering algorithms and other AI algorithms[15, 97, 243]

to assist analysis, spatiotemporal data analysis also necessitates human-computer inter-

action, such as Andrienko et al. combined multiple map screenshots with SOM method

for analyzing multiple map views; Lee et al. present a visual analytic system[109] that

used Short-Term Memory model to forecasting, as well as support users to inspect each

traffic congestion caused in multiple views. A bus network-based visual analytic system

[216] supports visually comparing each route parameter in spatiotemporal aspects.

Most visual analysis systems based on spatiotemporal data today can help people

reduce overlapping and dimensionality using AI algorithms[32, 50, 79, 114], as well as

record and compare the results of multiple analyses by taking screenshots or displaying

parameters side by side. However, few of them can support the flexible expansion of the

interaction between each storage, like tracking and comparing spatiotemporal features

among different storages, which is reducing the capabilities of each storage significantly.

As a consequence, the support system needs to include not only algorithms for parsing

spatiotemporal data but also fulfill some exploration strategies for gathering as much

other related multivariate data from each user interaction as possible for later recall and

comparison.
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2.3 Scenario-based Related Works

Since the majority of our approaches utilized COVID-19-related datasets as their foun-

dation, we introduced visualization in epidemiology analysis and visual analytics in

COVID-19 in this section. The section’s objective is to clearly direct our subsequent

research work through specific scopes by categorizing typical epidemiology visualization

applications as well as the growth of visualization and visual analysis within the context

of COVID-19.

2.3.1 Visualization in Epidemiology Analysis

As early as 2020, a systemic review of COVID-19 epidemiology [162] proved high-

spreading speed when the epidemic broke out. Since then, an increasing number of

visual representations were presented to aid COVID-19 analysis. A novel study [181] on

computational modeling used visualization-centric and algorithm-assisted for epidemi-

ological modeling that has proved visualization plays a critical role in epidemiological

analysis in 2022. Another ongoing collaboration [62] between epidemiological modelers

and visualization researchers summarized the concurrent challenges and solutions. They

listed common visualization charts such as heat maps [165, 184] and timelines [161],

and further composite graphics with small multiple views which could support epidemi-

ological modeling. Wei et al. [214] surveyed and categorized geographic visual display

techniques in epidemiology research into two categories of Traditional Cartography and

Geo-visualization.

From distinct angles of data analysis, certain risk features [51, 124] may influence
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the analysis in epidemiology and make the analysis tasks more challenging. As Chui et

al. [45] added human factors (age, gender, etc.) into the study of infectious diseases in the

paper, further analysis of visualization in epidemiology is beneficial, and it improves the

precision of algorithms like modeling and prediction [180]. According to our classification,

there are two perspectives for visualization in epidemiological analysis depending on the

type of data used: spatiotemporal-based and multi-dimensions-based.

Pandemics are geographical in nature, and constitute spatiotemporal phenomena

across large ranges of scales [137]. Improved geographic visualization plays an important

role in pandemic research, that offers an environment to represent multivariate data by

cartographic means, based on its geographical information effectively and attractively

[73, 189, 202], and it is one of the top ten keywords of IEEE VIS [95] (top conference in

visualization field); also 16% of existing related visualization works adapt maps [100].

Multidimensional-based data analysis makes epidemiological analysis possible to con-

nect to other factors. A Singapore epidemiology of eye diseases research is a population-

based study where 8,697 adults of Malay, Indian, and Chinese ethnicity [44]. Steinger et

al. [196] used generalized linear models to investigate the influence of key epidemiologi-

cal factors on potato virus infection risk. A tool has been deployed to demonstrate the

impact of social distancing strategies during the H1N1 (swine flu) outbreak by Maciejew-

ski et al. [130]. Trajkova et al. analyze relevant Twitter data and discuss facilitating data

interpretation via visualization to avoid the spread of misconceptions and confusion on

social media [203]. Also, multidimensional data visualization such as Parallel coordinates

is commonly employed for visualizing multidimensional geometry [82, 94, 134]. They
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could apply visualization research on multidimensional attributes during the pandemic,

to promote the understanding of how data entries compare to each other.

2.3.2 Visual Approaches to COVID-19

Since the COVID-19 pandemic’s initial outbreak, an astounding number of visual rep-

resentations or models have been created to reflect the virus’s global spread and the

effects it has had on various nations and regions [23, 56, 123, 184, 204]. A survey [238]

conducted 668 COVID-19 data visualizations to map the landscape of existing visual

works. Another novel research [237] focused on investigating complex interplay based

on COVID-19 datasets between design goals, tools and technologies, data information,

emerging crisis contexts, and public engagement by a qualitative interview study among

dashboard creators. It could be summarized as two types of data sources in common

COVID-19 research: directly-linked data such as infected cases, recovery, and mortality

rates [1, 218], and indirectly-linked data, which contains community information such

as [174], financial impacts [9, 199], etc., which are not linked to the pandemic directly as

objective factors.

In common COVID-19 visualization research, basic techniques include traditional

line charts, bar charts, maps, etc. Kahn’s report reveals that 38% of related works apply

line/area charts, and bar charts take a 29% share [100]. We have collected 48 existing

related research works to date in Australia; 10 of them deliver a similar dashboard view,

and others either offer graphs or are still ongoing works; the University of Melbourne

conducts an online tool that gives a 10-day forecast [205]. Seven projects import data
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from aspects such as financial, and local government area (LGA) details other than only

the pandemic case details. Most works apply traditional bar, stacked bar, line, map, etc.

visualization methods.

In our classifications, visual approaches in COVID-19 datasets are separated into

three stages: information visualization, visual modeling, and visual analytics.

From aspect one, raw data collected during the pandemic are applied as inputs

to generate graphs. An interactive web-based dashboard [59] to track COVID-19 in

real time was first presented by CSSE at Johns Hopkins University. Followed by the

WHO created an online global dashboard [156] to show COVID-19 statuses around the

globe. Hannah et al. [176] built 207 country profiles with aggregated cases, testings,

vaccinations and etc which allow users to explore the detailed statistics on the COVID-19

pandemic. And macro-perspective in multiple related COVID-19 datasets, which contain

such infection cases, recovery, and mortality rates with COVID and connected with social

factors like geographical[72], social media and journalism[110, 234], human mobility

trajectory [228], and other factors[18, 68, 88]. In Australia, the State and Territory

governments assist the public with recognizing current statuses by visual dashboards

[1, 116, 152, 168]. However, most of these visualization methods focus on displaying

data to specific populations[96, 222] or using infectious disease models[6] to analyze

and predict data[194], whereas GIS-based geographic information systems can only

pre-mark sampling points on the map and cannot interact, limiting the human-computer

interaction of extended analysis capabilities and making joint analysis difficult for

decision-makers.
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From aspect two, its visual modeling imports indirectly-linked data and offers deeper

insights by integrating multiple attributes. The prototype interfaces are common imple-

mentations from this perspective; they combine computational analysis techniques with

interactive visualizations [8, 20, 27, 33, 77, 207, 210, 234], which also emphasize analyt-

ical reasoning concerning the pandemic data and other facts that may affect infection

cases or get affected by the pandemic by interaction techniques. Carson et al. [111] pre-

sented a big data visualization and visual tool for analyzing COVID-19 epidemiological

data. Besides, more and more research has included objective factors in the COVID-19

analysis. Wu et al. develop a novel Joint Classification and Segmentation (JCS) system

to perform real-time and explainable chest CT diagnosis of COVID-19 infections [222].

Muto et al. import more facts about gender, age, marriage state, poverty, and drink-

ing/smoking habits into a matrix to address Japanese citizens’ behavioral changes and

preparedness against the outbreak [143]. Jiang et al.[98] presented a knowledge graph

modeling method to interactively explore epidemic situations. Yang et al. noticed that

based on crowd movement and control measures may have an impact on the epidemic,

so they proposed EpiMob[228], a visual analytic modeling method that simulates the

changes in human mobility and infection status.

From aspect three, completed visual information is extracted to assist exploration of

the COVID-19 pandemic. It takes into account more relevant yet not directly-linked data

which includes modeling [22, 69, 86, 172], predicting [18, 40, 110, 180, 224], and other

complex explorations [233, 241] with AI modeling [35] for visual analytics. Vast visual

analytics methods in COVID-19 have been systematically reviewed in a survey that
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comprehensively guided challenges, tasks, methods, progress, gaps, and opportunities

utilized in approaches to investigating pertinent COVID-19 analysis [36]. Reinert et al.

conduct a framework that enables effective and efficient visual exploration through inter-

active, human-guided analytical environments during the pandemic [173]. Shehzad et al.

proposed a decision-making environment [6] for person-to-person contact modeling in the

COVID-19 pandemic which was based on their previous works [7, 130] in epidemiology.

Bowe et al.’s approach indicate that the pandemic plays out differently across different

scales; it is related to the global supply chain, local dynamics, neighborhood mutual

aid networks, and personal geographies of mitigation and care [29]. Preim and Lawonn

describe visual analytical solutions aiming to provide preventive measures. Prevention

advocates behavior and policy changes likely to improve human health [167]. Another

research proposes a prediction of pandemic viral attack and how far it is expanding

globally by Roy et al. [180]. Guo’s system discovers spatial interaction patterns, provid-

ing valuable insight into designing more effective pandemic mitigation strategies and

supporting visual exploration in time‚Äêcritical situations. An approach by Christopher

[84] was conveyed through visual exploration by similarity comparison and predictions.

Yu et al. [233] provided a user-centered visual explorer that applied COVID-19 datasets

for in-process exploring and comparing spatiotemporal features in portraited-based per-

spectives. In AI4VIS, Ou et al. [158] anticipated the gas consumption under government

intervention during the COVID-19 pandemic by using machine-learning-based models.

Yang et al. [230] applied NLP to a visual analytics system, CVAS, identifying key events

since the outbreak and the impact of the pandemic on public sentiment. Afzal et al. [6]
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created a visual analytics prototype that gives public health professionals the ability

to simulate and model the spread of COVID-19 by providing county-level data on the

populace, demographics, and hospitalizations. Xu et al. [224] presented a web-based

visual analytics tool, EPIsembleVis, for conducting a comparative visual analysis on the

consistency of COVID-19 ensemble predictions under model uncertainties. Inspired by

these related works, we began our earlier work with subject matter experts, gathered the

most pertinent data, and extracted pertinent information for exploring and comparing

COVID-19-related multivariate data of various visual analysis tasks in the following

chapters.
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PANSYTREE: MERGING MULTIPLE HIERARCHIES

3.1 Research Scope of Pansytree

The large volume of data generated in various fields is often stored in hierarchical struc-

tures as their natural forms, including organization structure, disciplinary classification,

and taxonomy of objects. The increasing complexity of data often prevents humans from

understanding and detecting the similarities and differences between multiple datasets.

However, most existing visualization methods are designed for a single hierarchical

dataset. Inspired by the Pansy flowers with multi-colored petals, we propose PansyTree

to visualize, merge, and compare multiple hierarchical datasets. PansyTree uses the

centrally rooted tree to convey the merged hierarchical structures and different colored

petal sets on each pansy node to represent the respective attribute values for multiple

datasets. This new visualization method, supported by interactive filtering and combin-
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ing functions, allows users to explore and compare one or multiple datasets. We use three

datasets of Chinese National College Entrance Examination (CNCEE) results in 2017

and present two use cases to demonstrate its effectiveness.

3.2 PansyTree

The visualization design is inspired by a flower named Pansy. Pansy is a peculiar plant

derived by hybridization from several species. A pansy grows different colored petals

on one flower. The overall visual design is based on the metaphor of a pansy flower and

floral phases to visualize multiple combined datasets on one merged graph. The proposed

PansyTree has the capability to visualize the respective attribute values of each node

among these datasets and also convey the merging hierarchical structure. We introduce

the design concept in detail for our pansy flower in the following subsections.

3.2.1 Pansy Design

Each Pansy highlighted petals’ colors to distinguish different datasets. Table 3.1 shows

how we propose using a visual cue on the flower center to calculate the total number of

merged attributes in the current node. The three nodes corresponding to the same node

name are merged into one by arranging their respective attributes clockwise, and the

height of the petals represents the magnitude of the value, while petals of different colors

obey the same located order. Specifically, each petal from 0-120 degrees is represented for

red, 120-240 degrees for blue, and 240-360 degrees for yellow by defining the vertically
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Figure 3.1: A life cycle with different phases in flower blooming.

upward as the starting point and arranging clockwise in turn by each merged node.

Similarly, for each particular color, the attribute values are also arranged in clockwise

order.

A new issue arises when we use the colored petal height to describe the magnitude of

node attributes. That is, when there is no data, we don’t know if the attribute value is 0

or if the same node does not appear at all in the merged tree structure. Furthermore, we

extend the pansy design with a new definition. We plan to use a petal height equal to

0 to represent the case where the attribute value is 0. At the same time, we introduce

"sepal" with gray to distinguish whether there is node data with attribute values of 0 in

the merged hierarchy.

Furthermore, each plant in nature has a life cycle. While the flower blooms, its petals

grow progressively. Figure 3.1 shows the floral life cycle from seed to full blossom. The

life cycle can be divided into three phases: growth, pre-maturity, and maturity. Therefore,

we can not only use the petals’ height to encode attribute information but also take

advantage of this process to describe the growth patterns.
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Table 3.1: The description of each Pansy design

Names Example Description

Flower Center
A node in the center of
Pansy summarizes the petal
amount in number.

Petals
Three colored petals in
Pansy, represent attribute
values by their heights.

Sepals
Grey sepals in the pansy
represent no attribute val-
ues but occupy hierarchies.

Pansy

The pansy consists of a
node element and petals
or sepals that represent at-
tribute value through color.

3.2.2 Tree Design

Considering the actual needs of the hierarchical structure are more significant than

the location requirements of the same hierarchies in the merged structure, we use force

layout to allocate each node’s location, thereby forming a topological tree structure as a

whole. In order to display the relationships between the hierarchies and the nodes in the

force layout, we further define the links between the root and its children as "trunk,"

while others are "branches." We also set visual cues with animated links called "animated

cursors" to show the closeness of relationships, which is defined as the flow speed of the

animated cursors between the parent and its child nodes being in a direct ratio with the
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result of the intersection between this parent and each child divided by the number of

the parent node attributes, which are represented in the following table 3.2.

Table 3.2: The description of tree elements design

Names Example Description

Trunk
The link between the root
node and its child node.

Branch
Reducing the width of links
level by level.

Animated cursor

The flow speed of links,
called "animated cursors,"
between parent and child is
described as:

The equation in the description cell of the animated cursor represents the speed of

links, denoted as VLink. It is proportional to the difference in the number of elements in

the node sets (father node C1 and its child node C2), divided by the number of elements

in the father node C1.

3.2.3 Interaction Design

Although the node-link visualized in the force layout could represent elements’ relation-

ships, it is still not the most proper choice for hierarchies [208]. Because user exploration

of the process can be tedious, requiring them to follow each link to discern the hierarchies,

increased the timing and learning cost. Therefore, we set up some interaction solutions

to deal with these possible issues. To solve the crossover, we make the nodes sticky while
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moving so users can drag to reduce the overlapping of nodes and links. To further help

users navigate the hierarchical comparison, we designed three interaction techniques as

auxiliary tools, as shown in Figure 3.2.

Structural cue highlighting. Due to the randomness and uncertainty of the force-

oriented layout, we are concerned that users may still have difficulties understanding

the hierarchical structure when animated links are overlapping or their speed is similar.

Accordingly, we set the structural cue to highlight the attributes and relationships of

this selected pansy, its ancestor, and its children.

Conditional permutations to filter hierarchies. For the merging tree with

hundreds of nodes, it is essential to set different conditional permutation filters for

special groups that users usually concern themselves with; otherwise, other merged

nodes with other colors will distract them. To facilitate such filters, we add a sketch

called Pansy for interactions, which provides several combined visualization outputs by

selecting three colors.

Collapse or expand nodes to show details. When the overall hierarchy has a

relatively greater depth and width, the screen size will hinder user navigation. We are

concerned about users exploring their focused substructure by gradually expanding

branches. In other words, we collapse some useless leaf nodes in the initial status. In

general, we will collapse or expand the hierarchical structure with a certain depth in the

initial state based on the average width of the merged tree to ensure the structure is

balanced.
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Figure 3.2: Three interaction techniques of PansyTree with (a) highlighting the attributes
and relationships of hovering pansy node, its ancestor, and its children. (b) filtering
pansy nodes by hierarchies. (c) collapse or expand nodes to show node details.

3.3 Data Description

The proposed visualization technique is designed to visualize, combine, and merge

multiple hierarchies for comparison that share a similar taxonomy in the same context.

It would be particularly useful for those datasets whose structures are balanced.

3.3.1 CNCEE Dataset

This paper demonstrates this technique by using three balanced hierarchical datasets

from the 2017 Chinese National College Entrance Examination (CNCEE) results. These

three datasets are the entrance scores for different disciplines at three universities:

Zhongshan, Nankai, and Wuhan. The structure of these datasets follows a proprietary

disciplinary classification stipulated by the Chinese government. In China, the entrance

score for each discipline varies between different universities and provinces. The dataset’s

depth is fewer than 10 levels, and the nodes on each level are fewer than 20 nodes.
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3.3.2 Data Reprocessing

After data cleaning, we first sort the attribute values of each discipline in three hierar-

chies in turn, letting these datasets expose the discipline with the same name. Afterward,

we merge these disciplines according to the same names, which further establishes a

union tree with their shared structures while keeping their unique portions. The result

is a union tree, as well as its attribute values in each node, created from the merging of

three different hierarchical datasets.

The merged CNCEE dataset is divided into nine discipline categories, which cor-

respond to engineering, natural science, and other discipline categories. As another

example, the Engineering discipline has children’s subjects such as Electronics, Materi-

als, Geology, etc. And its children’s children, etc, together form a hierarchical structure;

on the last level, each leaf node represents the most meticulous unit.

Each university dataset in the merged result is represented by a single color; the

red portion represents Zhongshan, the blue portion Nankai, and the yellow portion

Wuhan. Each of the discipline node’s attributes is recorded as the entrance scores from

29 provinces. To allocate the score data, we used a linearized order based on China’s

geographical location, from west to east and north to south. In other words, each of the

merged nodes combined from three single datasets has three times 29 provinces, which

equals 87 petals. For the whole tree structure, this result dataset contains 153 nodes in

total, and the deepest level is 5. For clearer descriptions, we define the actual names on

each possible level in Table 3.3.
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Table 3.3: The description of overview elements

Name Description Example
Universities Root node Nankai University
Disciplines Nodes on Level 1 Engineering
Subjects Nodes on Level 2 Electric information

Majors
Nodes on Level 3 (Op-
tional)

Computer Science

Units Leaf nodes on Level 4 Software Engineering

3.4 Case Studies

We implemented a prototype interface based on PansyTree. As shown in Figure 3.3,

there is a main view with merged datasets (D) and a selected panel (E) hovering on

the desktop, in which the top shows the number of nodes on each level calculated by

each university. On the bottom, this panel provides a draft pansy filter for selecting any

combination among the three merging datasets. We demonstrate two case studies that

emerged from the exploration of the CNCEE datasets. In the first case, we compare

two trunk structures from an overview aspect; the second case reveals hierarchy and

attribute differences in detailed branches.

3.4.1 Case I: Branches Comparison

In case I, we compare branches in two discipline trunks in PansyTree. After clicking to

expand all Pansy nodes, it will be easily recognized as having nine discipline trunks and

their branches under each discipline node.

We notice that the maximum number of petals in each node is 87 (29 provinces times

3 universities), so we utilize 0 to 90 petals in each node to describe the whole process

and divide it into 6 phases with a 15-petal interval. At the same time, we define which
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Figure 3.3: PansyTree is utilized by merging three datasets from the 2017 CNCEE
dataset. A, B, and C visualize the entrance scores for three universities, respectively.
B) Zhongshan; and C) Nankai University. The centrally rooted tree represents the
hierarchical classification structures of the discipline at these three universities. The
flowers on the tree represent the overview of entrance scores for each discipline, whose
petals symbolize the scores for different provinces in China. D) Merging into PansyTree:
merging the three datasets onto one tree; D1) Focus view: The baseline scores to enter
universities in the discipline of journalism and communication D2) A closer examination
of D1. E) A control panel for filtering or combining multiple datasets.
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petals have a number between 0 and 30 as the growth phase, 30 to 60 as pre-maturity,

and 60 to 90 as maturity.

To compare their branches, we chose the Engineering and Nature Science disciplines,

which have relatively detailed subject classifications. Based on recording the number of

petals in each node, we find that the number of petals in each node in the Nature Science

discipline, which at growth phase is 11, at pre-maturity is 3, at maturity is 3, summed

at 17, has 31 nodes in total, 24 at growth, 5 at pre-maturity, and 2 at maturity in the

Engineering discipline.

Comparing the number of nodes and their petals in different phases, we could

summarize that the discipline of engineering has more detailed subject classifications

and also discern that the subjects related to the engineering discipline are more popular

than those related to Nature Science because of the prosperity degree of branches.

3.4.2 Case II: Nodes Comparison

We conduct another case for exploring the node differences in specific branches. We not

only focus on attribute value details but also aim to compare hierarchical structure

differences among merged datasets.

Users begin by clicking the Journalism and Communication subject node, shown

in Figure 3.3 (D2), and the system will expand all of the leaf nodes, which appear as

the detailed units under three universities, many of which are characteristic of each

university. For instance, the Media Creativity Unit is unique for Zhongshan, as are the

Advertising, Broadcast Television, Broadcasting, and Art units for Wuhan.
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Users can further their explorations based on the interaction results. It is not difficult

to notice that there is no blue color, indicating that there is no attribute value in this

branch, but it remains the sepal under the discipline Literature, subject Journalism and

Communication, and Journalism and Communication unit. In other words, it clearly

means there is no score from any province in Nankai in 2017, but it has the above

classifications. There are also nodes named Journalism Unit and Communication Unit

that connect both score data and hierarchical structures from Zhongshan and Wuhan.

In order to verify our findings, we visited the official websites of three universities and

found Zhongshan and Wuhan have divided journalism and communication into two units,

as opposed to not being separated in Nankai. This actual case not only illustrates how

PansyTree could help users compare hierarchical datasets but also reveals hierarchical

details and attributes.

3.5 Conclusion of PansyTree

In this chapter, we introduce PansyTree, a visualization technique inspired by a nature

metaphor that is designed to handle the merging of three shallow and steady hierarchies.

The primary objective of PansyTree is to provide a comprehensive representation and

comparison of both the structures and attribute values of over 100 nodes within these

hierarchies. By leveraging the power of PansyTree, users can gain valuable insights and

make informed decisions based on a holistic understanding of complex hierarchical data.

To demonstrate the effectiveness and practicality of PansyTree, we present user cases
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that showcase its utility with CNCEE datasets. Through these real-world scenarios,

we highlight the ability of PansyTree to visualize and analyze intricate hierarchical

structures and attribute values, thereby aiding users in making data-driven decisions.

From a technical perspective, the usage of PansyTree expands the possibilities of

visual design and implementation, particularly by enabling the circular layout to accom-

modate the merging of multiple hierarchies. The design of each Pansy and petal within

PansyTree, with encoded radius and contour, serves as the technical foundation for the

approaches presented in the subsequent three chapters. These technical features provide

a solid basis for further advancements and enhancements in visualizing and exploring

hierarchical data using PansyTree as the underlying framework.
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4
+MSRNAERS: SPATIOTEMPORAL AND

MULTIDIMENSIONAL VISUAL MODELING METHOD IN

EPIDEMIOLOGICAL ANALYSIS

4.1 Research Scope of +msRNAers

With the assistance of experts, a visual modeling method called +msRNAers, was de-

veloped for spatiotemporal and multidimensional features in the majority of epidemi-

ological analysis tasks. The +msRNAers were also added with collaborated views to

assemble a completed visual modeling method for spatiotemporal and multidimensional

features. This visual modeling adopts a portrait design inspired by viral anatomy for

each community-based location for exploring and comparing the complex relationships

between the number of cases in time-varying and objective risk factors that may affect
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transmissions, in addition to exploring epidemiological data patterns in the fundamental

geographic, timeline, and multidimensional visual designs. This creates a vivid under-

standing of how objective risk factors are interconnected and contributes more broadly

to resilient communities, particularly in light of the effects of pandemic transmission.

To validate the usability of +msRNAers, we collaborate with Australian Government

experts to apply COVID-19 aggregated datasets with processes of:

1. Extracting evidence by each local government area (LGA) from the completed 2

years in 742 days (from January 1st, 2020, to January 11th, 2022) of COVID-19 case

data compressed to 106 weeks or 53 fortnights for scalability.

2. Adding a marked timeline with intervention events extracted by NLP.

3. Connecting the most recent census community profiles to each LGA; combining

case data with LGA and postal area geo-locations in New South Wales (NSW), Australia.

We then identify expert-supervised risk factors related to LGAs, including demo-

graphic indicators (e.g., higher-risk populations), social indicators (e.g., relationships),

economic indicators (e.g., rental and mortgage affordability), infrastructure indicators

(e.g., housing), and resident travel behavior (e.g., using public transportation).

We adjusted visual designs with multiple views and interactions to facilitate visual

exploration in COVID-19-related exploration of interactive community portraits, sup-

ported by an interactive control panel with event timelines, a coordinated geographic

view, and a multidimensional coordinate with a filtering function. This application not

only proves the effectiveness and scalability of +msRNAers’s visual modeling but also

aims to assist the government in real cases by investigating the pre-existing community
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factors and discovering practical implications for the potential patterns of the estab-

lished community characters against the vulnerability facing COVID-19. We offer the

applied +msRNAers prototype to one user study for iterative improvement and three

subject-driven cases of our COVID-19 aggregated datasets, demonstrate how +msRNAers

works across LGAs and postal areas in NSW in spatiotemporal and multidimensional

features of COVID-19 datasets. These case studies provide a selected, high-level picture

of community resilience in infrastructure and explore the dimensions of resilience. We

evaluated the COVID-19 exploration results and conducted interviews with domain

experts to collect their feedback for future research.

4.2 Design Requirements

In 2022, a survey conducted by Jason et al. [62] summarized the challenges, solutions,

reflections, and recommendations of visualization for epidemiological modeling. The

authors categorized the supporting visual modeling in epidemiological analysis into

three stages based on different time scales:

The initial stage involves the quick application of candidate templates with visualiza-

tion tools to establish problems. Data is transferred to preset combinations of views for

simple comparison.

In the short-mid term stage, ongoing research provides a redesign of the visualiza-

tion prototype for iteratively redefining the problem, exploring potential patterns, and

providing users insight into complex tasks.
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In the long-term stage, a more stable visual system is developed for widespread

application to common usage scenarios, as demonstrated through multiple cases in

epidemiological analysis.

This summary underscores the motivation for our proposed visual modeling method

in epidemiology to fulfill multiple objectives. The visual modeling method for epidemio-

logical analysis should not only enable quick responses to basic information trends of

a pandemic, such as the infection cases in time-varying trends but also facilitate the

discovery of knowledge concerning combined analysis tasks, such as identifying the

factors that affect infection cases. Finally, the visual modeling method must be applied

to a completed visual system and validated using real-world cases.

In consultation with experts from the epidemiology and health domains, we outlined

the following user requirements: Experts required information to assess the profile of

communities in terms of their resilience to virus attacks. Combined with the inspection

of the number of infected cases, a few key factors might affect and help understand the

impacts of different pandemic phases concurrently. They must assess the impact of the

government interventions and measure the resulting pandemic situations in order to

investigate both the community profile and the infection cases concurrently. They needed

to investigate the link between community factors and the number of infection cases

caused by outbreaks, intervention events, and responses. Usability studies conducted

with early existing prototypes identified a variety of requirements. The desired features,

which we distilled into three progressive categories of peer-to-peer design requirements

for our approach from aspects of visual design, visual analytics, and modeling prototype
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application during several design iterations with subject matter expertise.

R1. Provide comparative visualization portrait of the numerical distribution

of consecutively transmitted cases for each community: To perform effective

epidemiological analysis, it is essential to describe consecutive infection cases in terms

of timelines and locations. This involves investigating the geographic and temporal

trends of the epidemic’s spread, along with qualitative analyses utilizing spatiotemporal

features. By providing comparative visualization portraits of these aspects for each

community, we could better understand the patterns and trends of transmission.

R2. Offer visual exploration for analyzing transmission patterns with spa-

tiotemporal and multidimensional features among each community: Epidemic

outbreaks are often related to various objective factors in specific locations, such as

socioeconomic or cultural factors. Therefore, it is crucial to support multidimensional

feature exploration, including humanities and finance, among other fields, in addition

to visualizing the spreading situation with spatiotemporal features. By combining both

perspectives in interactive portraits of location-based risk factors and infection cases over

time, we can provide a more comprehensive understanding of transmission patterns.

R3. Verify the effectiveness of visual modeling through a prototype system

using actual epidemiological cases: To demonstrate the effectiveness of our visual

modeling approach, the prototype system should offer multiple visual views with robust

interactive functions, such as collaborative filtering and comparison. By applying this

system to real user studies and case studies in epidemiological tasks, we can show how

our approach can help researchers gain insights and make informed decisions in the
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field.

4.3 Visual Modeling

To address the design requirements, this section presents our design rationale through

visualization, design considerations, and guidelines for the components.

4.3.1 Design Metaphor

Figure 4.1: The cross-sectional simulation of SARS-related coronavirus with its main
components.

Inspired by viral anatomy, our visual design primarily adopts the 2D genome struc-

ture of SARS-related coronavirus particles. Coronaviruses, named for their "crown-like"

shape observed in the electron microscope, have particles packed with shells. This illus-

tration became familiar to the public, as shown in Figure 4.1, and is widely introduced

by the news and media. The coronavirus particles are organized with +sRNA (positive
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single-stranded RNA) polymers packed inside, further surrounded by outer inserted

proteins. These outer proteins derive from the cells in which the virus is last assembled

but are modified to contain specific viral proteins, including the Spike (S), Membrane (M),

and Envelope (E) Proteins. The S Protein allows viruses to enter and infect other cells.

After the virus enters the host cell, the genome was transcribed, and replication takes

place involving coordinated processes of RNA synthesis. Positive Multiple Strands of

RNA Encoder, abbreviated as "+msRNAers", is the name of our proposed visual modeling

method. Inspired by this simulation and combined with our previous research [60, 233],

we map different parts of the virus into multiple meanings and design +msRNAers to

apply the aggregated datasets of its inner and outer parts.

4.3.2 Visual Design

We depict a novel visualization that leverages the biological components of the coron-

avirus as metaphors to represent and compare communities’ epidemiological charac-

teristics. Specifically, we define the particle symbol for each community, which we call

a "Portrait", and designed the outer Proteins and inside RNAs to encode information

related to cases (such as actual cases and cases per 10k/100k population) and transmis-

sion trends and cases of each community’s unique risk factors, respectively. Figure 4.2

shows the detailed design for all components. Notably, we varied the RNA from positive

single strand to positive multiple strands to capture multiple key risk variables related

to community characteristics. This design choice provides multidimensional insight into

the epidemiological patterns of each community and aims to fulfill R1.
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Figure 4.2: Two types of visual portraits’ implementation processes, which consist of (e)
Portrait with S and M Proteins, and (f) Portrait with E Proteins. Added (c) 4 strands
of RNAs into both Portrait (e) and (f), the red arrow path represents the process of (a)
combining bars on the timeline and encoding as S and M Proteins; the light gray arrow
path represents the portrait with (b) E Protein in grayscale as different phases of the
timeline.

As domain experts suggested, the number of infection cases caused by the pandemic

is related to multiple potential factors among communities, e.g., population and its

percentage of higher-risk groups, including the aged, lower-income, and lone-person

groups. As a result, we could emphasize community portraits based on the characteristics

of the vulnerable population in high-risk areas. Hence, we assemble all visual elements

as the portrait for each community, as shown in Figure 4.2. This single aggregated

crown-like portrait describes both the community’s existing characteristics and also

how the community reflects viral infection case number information. The visual portrait

consists of three components: the crown, outer designs with Proteins, and inner designs
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with RNA. The circle of a crown represents one unit of the whole timeline. On the outside,

we use multi-segments as time spans, with the S Protein representing case number

information, the M Protein representing zero cases, and multiple RNAs representing the

highlights of selected factors in higher risk groups inside the crown. The E Protein, unlike

the S and M Proteins embedded on the crown, can represent significant intervention

events rather than case numbers.

Crown Design: We define the central core with radius Rc of the Crown to label

the community C, as shown in Figure 4.2(d). The circular loop surrounding the Crown

easily depicts the entire timeline of any transmission taking place. The circle is evenly

divided into continuous segments matching time spans for S or M Proteins, clockwise

from the top point to the looped end. Further, we use E Proteins to denote the categorized

intervention events within the timeline, colored in grayscale.

Outer Design: The outer-growing S Proteins are densely packed together. For each

community over each time span, we encode distinct bars with rounded corners, with their

heights representing the case numbers shown in Figure 4.2(a). We use the smallest-sized

M Proteins to indicate zero cases in a certain time span. The S or M Protein heights of

time span x are calculated as follows:

(4.1) Htimespanx =


h+R′

c ∗ (a+ ln f (x))∗b , f (x) ∈ N+

h , f (x)= 0

We define f (x) is the function of recording infection cases corresponding to this time

span. A base height h appears when there are 0 cases in one time span, i.e. f (x)= 0; a
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growth height is proportional to the number of non-zero infection cases in a time span x,

where f (x) must be positive integer, defined as f (x) ∈ N+. Both a and b are customized

parameters, and R′
c refers to the initial radius of the Crown.

Inner Design: Although viruses normally only carry one strand of RNA, it is not ideal

to employ only one strand to represent several important elements. We suggest splitting

the RNA strand into numerous strands to show these parameters, which conserves space

and reduces unnecessary requirements. Thus, we propose to distribute the four RNA

strands across three channels rather than joining them head-to-tail. Each element’s

maximum value is set to occupy half of a channel when multiple data elements of the

same type must be represented, such as visualizing the numbers of males and females

(exclusive of transgender people). These two can then be combined and allocated to a

single channel. Other whole channels may be assigned to data of a single type. Figure

4.2(c) demonstrates the potential of our visual design to share one channel with two

RNAs. We implement three channels of RNA that grow from the middle point of the

circle. Combining two related factors in one shared channel accommodates all four RNAs

placed in three oriented channels within the Crown.

To fulfill the visual design, we employ a visual metaphor of spiral genomes with four

cosine wave-shaped RNAs with the same amplitude in the three channels. As shown in

Figure 4.2, the length of RNA is encoded by the exact values (e) of its categories.

To denote the length of RNA L i j in the arc, we define

(4.2) L i j =
[
Rc + (m−0.5)∗ R′

c −Rc

3

]
∗ (

Ni j

max{Ni}
∗ 2π

n
+ γ

n
)
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i.e., the arc angle θi j corresponding to the arc length L i j is

(4.3) θi j = (
Ni j

max{Ni}
∗ 2π

n
+ γ

n
)∗ 2π

2π+γ

Equation (3) employs a rescaling that ensures the maximum will not exceed the cur-

rent RNAs’ located channel lengths. Ni represents the set of data from the independent

variable RNA category i, and max{Ni} denotes the maximum value in Ni. Ni j refers to

the value of data from an independent variable community j in an independent variable

RNA category i. Parameter m ∈ {1,2,3} allocates the exact location in the channel of the

current RNA category i. Parameter γ is the minimum arc angle in RNAs, maintaining

RNA even if the value of Ni j is very small. Parameter n ∈ {1,2} indicates whether the

maximum length of RNAs occupies a full or half channel. We define Θi j as the maximum

arc angle with Θi j = 2π
n when Ni j =max{Ni}. Therefore, any θi j ∈ [0,Θi j].

We further define the cosine wave function Fi j for drawing each RNA as

(4.4) Fi j =
R′

c −Rc

3
∗

[
|cos(θi j ∗

Ni j

N j
)|+ (m−1)

]

Equation (4) is simplified by the designed function Fi j = R′
c−Rc
3 ∗|cos(θi j ∗ Ni j

N j
)|+ (m−

1)∗ R′
c−Rc
3 . This equation is assembled from two parts: one draws the cosine shape with

an absolute value function, while the other is used for radial translation. The parameter

in equation (4) applies R′
c−Rc
3 as amplitude after the absolute value is calculated, N j

as the sum value of data from community j, and the frequency in cosine waves Ni j
N j

represents the ratio of the current value from community j in RNA category i divided by

the sum of community j. The above RNA design allows for the comparison of different

communities within the same RNA category from two distinct perspectives. The first
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involves comparing current categorical values among multiple communities based on

RNA length, while the second relates to comparing the ratio of current values with the

total value in the same community, as determined by RNA frequencies.

As an illustration, the RNA for selected factor income from community Sydney

should be mapped when allocated in the second channel: Fincome,Sydney = R′
c−Rc
3 + R′

c−Rc
3 ∗

|cos(θincome,Sydney ∗ Nincome,S ydney
NS ydney

)|.

Filter Trigger Design: All the portraits are needed to motivate a filter trigger. We

reset the Crown and created a sample portrait with E Proteins for filtering purposes,

which can be used interactively to attach events to the timeline. On the outer circle, the

grays indicate different events by timeline. In the inner Crown, three full-circled values

of RNAs, as shown in Figure 4.2(f), are the indicators for selected factor groups. During

exploration, we intend to interact with the visualization by interacting with all these

elements in the Control Panel.

Design for All Colors: Two sets of color scales for Control Panel and Portrait View

are used in our visual design. To raise awareness of the threat, we encode bright red

for the S Protein design, encoding the infection case numbers, and light grey for the

M Protein, indicating there were no cases this week. Inside the Crown of the portrait,

inner color scales are used to representatively paint community portraits on RNAs,

which include azure blue, mint pink, gold yellow, and pale purple. In the Control Panel,

a pre-defined grayscale is designed for the E Protein to differentiate the types of in-

tervention events along the timeline, initially with normal gray, silver gray, and dark

gray. A darker shade of gray indicates a higher level of restriction for the events. For
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interaction, charcoal gray is used in both the Control Panel and portrait design for

selection interaction.

4.4 Data Preparation and Prototype Application

We further developed a web-based visual prototype based on +msRNAers, which aims

to assist in investigating the pre-existing community factors and discovering practical

implications for potential patterns of established community characters against the

vulnerability faced by epidemiological analysis.

Although +msRNAers should be suitable for most epidemiological analyses with

community factors, we introduced the aggregated COVID-19 datasets in NSW as hot

topics from epidemiological analysis to better present the design ideas in the previous

section. We then applied +msRNAers to the prototype implementation by each view and

introduced the interaction designs in this application.

4.4.1 Data Sources

We investigated whether there are any patterns or potential relationships between

NSW COVID-19 cases and demographics, geo-information, infrastructure information, or

other factors in the census fields, as clarified by the requirement of analyzing COVID-19

situations. Multiple datasets were aggregated to demonstrate the effectiveness of our

approach, which includes COVID-19 case data with event timelines and selected columns

of NSW census data.
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Figure 4.3: The entire workflow of the visual modeling method +msRNAers applied to
NSW COVID-19 aggregated datasets, from raw data collection to prototype system which
embodies one completed pathway. It consists of two types of arrows, where the tangerine
color connects the human-participated actions and the cyan color means the data flow
direction. The pathway starts from (A) data collection and processing, (B) dealing with
datasets summarized COVID-19 cases, GIS information, LGA-based censuses under
experts’ supervision, and intervention events extracted by NLP, and assembling the
aggregated datasets for application in +msRNAers; (C) the prototype interface with (E)
Portrait View depicts four high-risk factors and COVID-19 cases corresponding to the
selected timeline in (D) Control Panel and interacts with (F) and (G); (F) the GIS View
with highlighted polygons of LGAs and postal areas shows their COVID-19 distribution;
(G) the MDC View is a high-level overview of other risk factors from the census indicators.
This +msRNAers prototype is finally completed by a conducted user study by adding a
search function (H) in GIS View.

The COVID-19 case data in NSW was collected by the government, and the pandemic

data program led by the Data Analytics Centre (DAC) provides digital information

to improve the coordination of the government‚Äôs COVID-19 response. The datasets

provided applicable information about infection cases based on the location of usual

residence since the first infection case; they excluded 189 cases in crew members who
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tested positive while onboard a ship docked in NSW at the time of diagnosis; and

case aspects include confirmed, tested, recovered, and deaths by their notification date,

location, age-range, and likely source of infection. Some of them were no longer released

due to privacy. Plus, the GIS map data and event information were extracted from media

releases [150] and NSW Property Web Service [49] authorized by NSW government

websites, respectively.

We decided to identify the high-risk factors that may contribute to COVID-19 infection

from the census data, which involves millions of people and households and is conducted

by the Australian Bureau of Statistics (ABS) every four years. The data provide a rich

snapshot of the nation and inform the government, communities, and businesses. It

contains essential concepts, such as populations, rents, mortgages, incomes, religions,

languages, and housing. Besides, based on the definition from ABS, a lone person is

classified as the only person aged 15 or over who lives in a private dwelling. Also, people

in NSW earning more than 50% but less than 80% of the NSW or Sydney median income

are described as earning a lower income [4]. The next wave of census data was released

in stages since June 2022, but detailed information will not be released until mid-2023.

Thus, the latest census data from 2016 was applied in this paper.

4.4.2 Variables Consideration

The COVID-19 case dataset delivers every case recorded by NSW Health and contains

multiple attributes concerning cases by notification date and postcode, local health

district, LGA, and likely source of infection. Considering the risk of leaking information
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that could directly identify individuals, only personal age, gender, and location of their

usual residence are included in this dataset, which is assessed to measure the risk of

identifying an individual and to measure the information gained if it is known that an

individual is in the dataset. LGA is an official spatial unit that contains multiple postal

areas that represent the whole geographical area, and there are 128 LGAs in NSW in

Australia (Bayside Council was formed on September 9th, 2016 after the 2016 census, and

relevant LGA data are merged from the City of Botany Bay and Rockdale City Councils).

Moreover. As data journalism may affect the COVID-19 pandemic [55], relevant news

articles, alerts, and ministerial media releases issued by the NSW government about

COVID-19 are attached as events to combine with the notified date of infection cases.

The timeline selection was intercepted during the COVID-19 pandemic, from January

2020 to January 2022. We used Natural Language Processing (NLP) [136] to extract

textual information from media data and considered marking the timeline related to

keywords in interventions and social restrictions as three types of phases: uncontrolled,

eased (e.g., keeping social distance, masks required), and restricted control (e.g., curfew,

bubble restriction, lockdown), and the marked timeline was attached to the COVID-19

cases dataset for two data periods: the long period used 53 fortnights of COVID-19 case

data as a biweekly time span grouped by 106 weeks of data from January 1st, 2020, to

January 11th, 2022; the short period was used 53 fortnights of case data as a weekly

time span from January 1st, 2020, to January 5th, 2021. Further imported JSON files

combined a single LGA layer for the long period and an LGA layer with postal areas for

the short period of COVID-19 case data.

64



CHAPTER 4. +MSRNAERS: SPATIOTEMPORAL AND MULTIDIMENSIONAL VISUAL
MODELING METHOD IN EPIDEMIOLOGICAL ANALYSIS

We further consulted domain experts and selected the four top key factors from a suite

of factors by their supervision that may cause infection in their communities (LGAs and

postal areas) as directed: males and females aged 70+, lower income groups, and living

alone groups. Experts extended four additional categories of indicators from censuses

that may affect the COVID-19 pandemic: LGA-based demographic indicators, social

indicators, economic indicators, infrastructure indicators, and resident travel behavior.

Each category contained over 30 indicators and descriptions. Some indicators contained

complex hybrid patterns that may influence transmission. For instance, apart from living

alone, the indicator of household is defined as different from a family, which refers to

at least one person over the age of 15 who lives in the same private dwelling. In this

situation, it is necessary to deliberate on the comprehension of demographic, social, and

economic indicators. We extracted the data on median age, population, and area size from

LGA demographic information and further calculated population density; median rent

expense, median mortgage, median personal income, median family income, and median

household income from social and economic indicators; average bedrooms per person

and average bedroom size per household as dwelling factors from the infrastructure

indicator; and public transportation rate for traveling from resident travel behavior.

Finally, we had 96460 rows of COVID-19 case data up until January 11th, 2022, and

aggregated both datasets with intervention events and spatiotemporal features as well

as simplified objective factors from the NSW census data tables of size 449 MB.

Below lists a detailed statistics table, Table 4.1, summarized the COVID-19 case

data and dimensions we established. This dataset were also applied for approaches in
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Chapter 5 and 6.

Table 4.1: The overview of COVID-19 case data collection

Dimensions Data Type
Record Date Date
LGA Location String
Postal Area Location String
COVID-19 Case Amount Number
COVID-19 Test Amount Number
LGA-based Median Age Float
LGA-based Population Number
LGA-based Area Size Float
LGA-based Median Rent Expense Float
LGA-based Median Mortgage Float
LGA-based Median Personal Income Float
LGA-based Median Family Income Float
LGA-based Median Household Income Float
LGA-based Average Bedrooms per Person Float
LGA-based Average Bedroom Size per Household Float
LGA-based Public Transportation Rate Float

4.4.3 Prototype Implementation

The prototype was implemented to meet requirements that offer extra visual explorations

of interactive community portraits. For common epidemiological analysis tasks, we

assembled the proposed +msRNAers prototype with collaborative visualization views, as

shown in Figure 4.3, including the Control Panel (D), Portrait View (E), Geographic View

(F), and Multidimensional Coordinates View (G), implemented based on D3.js [28] and

Mapbox.js [133] as a base map.

For better illustration, we applied our data preparation to the NSW aggregated

COVID-19 dataset. The entire workflow of the applied +msRNAers prototype is demon-

strated in Figure 4.3. In this subsection, the +msRNAers prototype is introduced as being
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integrated into the pipeline workflow with summarized human-participated actions and

data flow directions by steps, which include collecting and dealing with raw datasets,

processing specific data with NLP, extracting information under expert supervision to

the aggregated COVID-19 datasets, and applying +msRNAers to the prototype system

with several functions and interactions finalized.

Control Panel and Portrait View. The Portrait View is built containing a Control

Panel based on our visual modeling method, with a force-directed layout to avoid overlap-

ping and improve readability. First, we can select the applied datasets and inspection of

modes - either actual cases or cases per 10k population - in the Control Panel. Then, we

can hover over or click on each time span on the sample portrait to interactively observe

the corresponding filter result on each portrait and inspect all color tooltips among each

view.

We can further inspect, explore, and compare infection cases and community key

factors for each in the Portrait View, with aggregated case numbers by time span on the

Crown and overviews of selected risk factors in the inner. We fix the Portrait View as the

main view and set each portrait with the first channel with azure blue for older males

and mint pink for older females, the second with gold yellow for lower-income groups,

and the third inner channel with pale purple for lone people groups.

GIS View. We added extra visual polygonal layers to the Mapbox-drawn landscape

to divide different LGAs and postal areas in NSW. When an LGA or postal area is

selected, it will be highlighted with a charcoal gray polygonal boundary and will display

detailed geographical information and infection cases. Using the GIS View, we can explore
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geographical information by zooming in on postal areas within the LGA and zooming out

for an overview. The GIS View also provides a playable timeline window to enable the

inspection of the spreading situations in selected time periods. The visual design of the

GIS View utilizes a red gradient scale. The darker the red, the more infection cases are

represented in each LGA.

MDC View. We utilized parallel coordinate-based visualization for multidimensional

variables. The MDC View aims to show a high-level overview of other factors related to

community resilience and allows users to explore the dimensions of resilience. Each LGA

polyline is distinguished by coordinates, different colors, and different styles. Polyline

uses different dash styles or colors according to the positive proportion of infection cases.

4.4.4 Visual Interactions

We can interact with multiple views, including Portrait, GIS, and MDC Views, triggered

by Control Panel. We offer flexible interactions within and among multiple views col-

laboratively on this visual prototype system for each visual exploration from multiple

perspectives, summarized as follows.

By combining the Control Panel and Portrait View, we implemented several interac-

tions that enable efficient navigation through the LGA portraits and visual cues within

the core for further exploration and comparison.

Filtering by Time Spans. The interactive Control Panel serves as a starter to filter

LGAs in all visual views and by time spans based on intervention events and to address

all color legends in the Portrait View. Users can independently inspect the COVID-19
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cases on the S or M Protein among each LGA portrait based on the gray-scale mapped

on the E Protein, a time period of intervention events, or a time period before and after

the restriction events.

Zoom and Pan. An interactive portrait based on SVG supports zooming and panning

for exploring overviews or detailed visual elements.

Drag and Reposition. The force-directed layout ensures that each portrait does not

overlap. Users can drag and lock any portrait to a new location to allocate any selected

LGA for comparison. In addition, we enhance interactions for further functionality by

left-clicking to mark the cores and canceling their current location by double-clicking.

Highlight Visual Cues and Switch Contexts. When hovering the mouse over

each type of visual cue in the Portrait View, corresponding visual cues and associated

data information tooltips will be highlighted for further inspection.

Conjunction with filtering interaction. As shown in Figure 4.4, dynamic high-

lighting of ranking or case numbers in the core is supported based on the cases or

prevalence rate with the average cases per 10k population in the previous filtered time-

line added with the hovering S Protein’s height. Alternatively, users can hover only on

RNA to highlight its ranking among all LGAs.

The GIS and MDC Views collaborate with the Portrait View by highlighting both the

selected LGAs and postal areas. Some other interactions are also supported.

Playable Timeline Window. The GIS View provides an interactive timeline window

that allows users to investigate the transmission situation over different time spans. It

includes several functions, such as auto-play and pause, enabling users to customize
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their explorations.

Boundaries Highlighted. The GIS View supports clicking to highlight boundaries

and reflect LGA portraits in the Portrait View. It also supports connecting with the cores

in the LGA selection.

Heatmap Highlighted. The GIS View offers a heatmap layer in LGA or postal areas

by timeline filtering in the Control Panel. The colors reflect the number of COVID-19

cases in the selected time period.

Brush on MDC View. In the MDC View, the brush function is used to filter the

portrait factors in multiple dimensions and reflect them to other views.

Figure 4.4: Four highlighting strategies are displayed when hovering over the (a) ranking
and tooltip of the selected RNA among all LGA portraits, (b) sum of case numbers in the
filtered phase with the total cases in the entire period, (c) ranking and tooltip of case
numbers summed by hovering over any time span, and (d) time span context is switched
to case numbers per 10k population.
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4.5 User Study

To ascertain the viability and effectiveness of the +msRNAers prototype, we conducted a

user study before conducting the case studies. In this section, we present the details of

the study setup and analyze the obtained results.

4.5.1 Participants and Apparatus

In our user study, we endeavored to recruit a diverse group of participants with varied

backgrounds and levels of research experience in the field of computer-related disciplines.

Ultimately, we successfully recruited 16 volunteers from our campus, comprising an

equal representation of 8 male and 8 female individuals. Notably, the age range of our

participants was wide, ranging from 19 to 30 years, with a mean age of 24.06 years.

Additionally, we verified that 5 of our participants were enrolled college students without

any prior research experience, while the remaining 11 were postgraduate candidates with

research experience ranging from one to eight years, resulting in a mean of 1.88 years

of research experience. Despite their shared interest in visualization, all participants

reported being unfamiliar with visualization methodologies.

All user studies were planned to be presented in the campus study pods. Our +msR-

NAers prototype was supported by an Apple MacBook Pro (15in, 2018) equipped with 16

GB of memory, i7 processors, and a Radeon Pro 555X Graphics Card, allowing partici-

pants to visualize and interact with the +msRNAers prototype clearly and effectively on

a 60-inch LED external monitor with 1920 x 1080 resolution.
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4.5.2 Tasks

The tasks included in our user study incorporated quantitative and qualitative analysis.

The quantitative analysis provided objective numerical data, while the qualitative

analysis allowed us to gain subjective insights into participants’ interactions that aimed

to verify the feasibility and effectiveness of +msRNAers prototype.

To enhance clarity in quantitative analysis, we established specific exploration tasks

for each view as well as collaborative tasks among the views to test the exploration

capabilities of +msRNAers prototype. By recording the completion time of each task, we

intended to conduct analyses to determine whether +msRNAers prototype improved the

exploration capabilities for portraits’ COVID-19 case trends and risk factors and whether

they had positive impacts from a visual metaphor standpoint. Additionally, we planned to

gather participants’ feedback on their interactions with the prototype as a whole and each

view, using a set of six well-designed questions to assess their personal experience. Figure

4.5 lists specific exploration tasks and detailed questionnaires. Besides, we planned to

record their feedback in transcripts via interview for qualitative analysis.

4.5.3 Procedure

After setting up the exploration tasks and questionnaires, we rehearsed a tutorial on

how to use +msRNAers for exploration, repeated the five exploration tasks, and recorded

completion times. We found that each exploration task could be completed within four

minutes. Although we conducted the design of +msRNAers, the randomness of a force-

directed layout in Portrait View did not provide significant benefits in terms of saving
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Figure 4.5: The quantitative analysis results of the exploration task list (E1−E5) and
the questionnaire (Q1−Q6), where exploration tasks record the completed time in a box
plot and the questionnaire counts participants’ choices in stacked bars.

our completion time. In other words, every participant could finish each exploration

task within four minutes after tutorials. Therefore, we decided to allocate approximately

a 60-minute face-to-face session for each participant, consisting of a 10-minute tuto-

rial, approximately 20 minutes of exploration, a fixed 10-minute preset questionnaire,

and a 20-minute open-ended interview. Participants were instructed on how to apply

+msRNAers prototype and were required to complete five specific exploration tasks, with

completion times recorded. They were also asked to complete the questionnaire based on

their subjective experiences during prototype usage. Additionally, their complementary

feedback was also recorded and used for subsequent qualitative analysis.

4.5.4 Results

In this subsection, we discussed the quantitative and qualitative results of our user

study.

Quantitative Results. The quantitative results of our user study were reflected in
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two aspects. The first aspect was task completion time. We observed that the fluctuations

in completion time across these five tasks were within reasonable ranges. The median

time to complete the first four exploration tasks varied from 36 seconds to 61 seconds,

while the last, more complicated task took a median of 181 seconds to complete. This

consequence could be easily explained by the fact that the completion time of tasks

E2-E4 was slightly reduced as participants became more familiar with the prototype

during the first exploration task. Additionally, the first four exploration tasks focused

on simple tasks that could be completed within one or two views. In contrast, the

last exploration task required participants to engage with all collaborative views and

gradually decipher three interactive results. Consequently, this task demanded more

time and attention, leading to a higher median completion time. These results were in

line with our expectations, as all tasks were completed within four minutes.

According to the results of the questionnaire, the majority of participants expressed

satisfaction with the +msRNAers prototype. Specifically, 12 out of 16 participants strongly

agreed with its performance, while the remaining four were satisfied with it overall.

All participants were highly impressed with the prototype’s visual design in Portrait

View and expressed varying degrees of satisfaction with its analysis functions, including

trends, rankings, and risk factors. Two later questions further highlighted the excep-

tional integration of both GIS View and MDC View in the prototype. The final question

evaluated the implementation of interaction logic, with one participant responding neu-

trally and the other 15 participants expressing varying degrees of agreement that the

interaction implementation was user-friendly.
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The quantitative results from two aspects indicated that participants rated the

feasibility and effectiveness of the applied exploration tasks and prototype designs

relatively highly. They also found the visualization and interaction designs to be intuitive

and impressive.

Qualitative Results. As an extension of the quantitative results, we further em-

ployed qualitative analysis during the last 20-minute open-ended discussion. In par-

ticular, we conducted opinion research for individuals who did not provide the most

satisfactory options on the questionnaire. To derive the qualitative results, we repeatedly

reviewed the interview recording, summarized their critical thinking, and achieved a

consensus based on their complementary feedback during the interview.

Their feedback was mostly positive with high marks, with only a few critical com-

ments. These comments can be mainly divided into two aspects:

(1) A few participants felt that the current force-directed layout of Portrait View was

a "double-edged sword". On the one hand, it provided dynamicity to avoid overlapping

and allowed for easy dragging and relocating, but on the other hand, its randomness

may increase the workload of recognizing specific portraits in multiple explorations.

(2) Some participants who marked Neutral or Somewhat Agree in Q6 expected to see

more interaction logic among views, such as enabling the inclusion of more risk factors

in Portrait View or providing solutions for swapping key risk factors with other factors

in MDC for higher levels of comparison purposes.

We felt grateful for their feedback as it served as a pre-evaluation before case studies

to domain experts and helped us improve this applied prototype. Regarding the com-
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ments on the applied force-directed layout, we believe that its advantages outweigh

the disadvantages, but we still consider it necessary to improve. As a result, we imple-

mented the search function in GIS View to filter any LGAs or postal areas, which also

strengthened the interaction between GIS View and Portrait View to a certain extent.

Since we are proposing a visual modeling method for epidemiological analysis, any

other related applications using +msRNAers in prototypes may vary in detail. In this

situation, with the prior requirements that we consulted with domain experts, we deemed

that locking the highest risk factors in each portrait is acceptable because aged, lone,

lower-income groups have been proven by domain experts to be high-risk factors, while

other objective factors selected from the census were considered to be indirectly related

categories. Thus, we explained the reasoning to the participants and derived their

understanding and acceptance.

Overall, our user study showed that the design of +msRNAers is creative, and the

application of +msRNAers with the COVID-19 aggregated dataset was also proven to

be feasible and effective, although there were some imperfections in certain details.

According to the user study, we not only improved +msRNAers with search functions

in GIS View but also inspired some interesting cases that were demonstrated in future

subject-driven case studies.
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4.6 Case Studies

Coastal areas are considered densely populated areas prone to cluster infections for

transmission, in contrast to the vast land and sparsely populated areas of NSW, Australia.

For other incidents, intermittent spreading cycles of virus variants, corresponding policies

or restrictions, densely populated residential areas, areas where older people gather,

more impoverished areas, or areas with relatively backward public infrastructure may

affect the infection situation among different LGAs. In this section, we finalized our

+msRNAers prototype in two different data aspects based on the COVID-19 aggregated

dataset in NSW, which consists of a weekly case summary of each postal area within an

LGA in one year and a bi-weekly case summary of LGAs in two years, to the aggregated

dataset to provide three prominent cases: Overview-driven cases, Event-driven cases,

and Portrait-driven cases, which are based on highlighted driving aspects to compare

and explore the significant connections between COVID-19 issues and detailed factors in

each LGA census, even attempting to discover the relationships and potential patterns

that were really affecting the COVID-19 pandemic behind each LGA portrait. We also

combined our findings with facts and news for verification and analysis.

4.6.1 Overview-driven Cases

We first set up a visual representation for the LGA portraits within the period from

January 1st to January 11th, 2022. Connected to the GIS View, it showed the severity

distribution of COVID-19 cases in geo-polygons. With a quick glance in Figure 4.6(a),

we could distinguish whether the situations are severe or not with roughly two types of
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Figure 4.6: Three cohorts of LGA Portrait Collections: (a) A partial overview of LGA
Portraits and geo-locations for 2020 and 2021. (b) Selected LGA Portrait with cases
appearing continuously from July to December 2021. (c) Selected LGA Portraits with no
cases for the full year of 2020.

portrait appearances. The results are also correspondingly reflected on the map, showing

the contrasting perspectives between coastal and inland areas in case numbers.
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When comparing one LGA portrait to another, one can examine variations in the

COVID-19 cases spreading situations among LGAs. The S Proteins of each LGA portrait

showed the changing trends of COVID-19 cases by height. The only two LGA portrait

types that can be distinguished based on appearance are those with COVID-19 cases in

both 2020 and 2021 and others with cases only in 2021 but none in 2020.

We randomly sorted a few portraits of each type for analysis, as shown in Figure

4.6(b). The second visual result depicts the trends of COVID-19 cases within an 8-LGA

portrait collection. We gained insights demonstrating that they all suffered relatively

worse situations and caused two typical waves of cases from mid-year to the end of

2021. Compared to the height of S Proteins in each portrait, they reached the peak of

the first wave in September, dropped back to low levels in November, and rose sharply

to the highest point in two years. We corroborated the visual result with the actual

situation as the NSW government released Delta concerns on July 30th, 2021[151], and

the information released on November 28th, 2021, of the first Omicron variant case in

NSW[2]. From GIS View, we found they are all located in coastal areas surrounding

Sydney City.

The following visual output in Figure 4.6(c) showed all LGAs with portraits had

COVID-19 cases during 2021, although they did not have any cases in 2020. We could

further observe that there were 7 LGAs located in inland areas despite the presence of

Kyogle LGA near the coastal regions of these 8 LGAs. Compared with cases appearing

frequently in other developed LGAs, this consequence was most likely related to the

sparse population of these LGAs.
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4.6.2 Event-driven Cases

We observed that the first wave of COVID-19 spread across NSW from approximately

January to October 2020. Based on the events on the timeline, we divided this period

into three phases: uncontrolled, eased, and restricted control. Therefore, we further

filtered each LGA portrait into weekly time spans from January 1st to October 20th,

2020. This enabled us to inspect the COVID-19 spreading situations among LGAs during

this period, as tracked with the details of these events.

Uncontrolled Phase. After interacting on the Control Panel, we hovered the mouse

over each E Protein to spot LGAs, which detected the first case occurring in week 4 in

Randwick, Paramatta, Kur-ring-gai, and Burwood.

Concurrently, we noticed the first intervention event started in week 13. Thus, we

began by selecting the phase from January 1st, 2020 to March 24th, 2020, to identify

the uncontrolled phase. We further utilized the playable timeline window in GIS View

to explore the spreading pattern in the Greater Sydney Region and surrounding places.

As shown in Figure 4.7(a), besides the case that occurred in week 4, there were no

other cases during the period from January 1st, 2020 to February 25th, 2020. However,

starting from week 9 to the end of week 12, cases began spreading in the surrounding

places of the Greater Sydney Region, and in a short period, the cases spread severely

and finally caused outbreaks in almost all postal areas, especially in the Waverley LGA

in the darker polygon color.

Drawing an overview of this uncontrolled phase, the visualization results in Figure

4.7(b) show that all LGAs were affected by the first wave of weekly increasing COVID-19
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cases, with no restricted events yet. We focused on LGAs with the highest number of

COVID-19 infections and interacted with them in GIS View. We located them around

the main cities, including Sydney. During this period, Bondi Beach, in the Waverley

LGA, had more cases than other LGAs, peaking in only two weeks. We noted that Bondi

Beach was crowded with massive gatherings of people, as reported in the news, and

health officials announced a crowd ban on March 21st, 2020. NSW residents were facing

physical and psychological pressures due to the spread of COVID-19 and bushfires across

the state. These factors indirectly contributed to overcrowding in these tourist hotspots.

This situation was also reflected in the Northern Beaches LGA, which saw a rapid

increase in COVID-19 cases in the first wave of the pandemic. We further examined the

other two LGA portraits, Sydney and Woollahra, and concluded that the consequences

were likely due to the connection to Waverley in GIS View, resulting from the movement

of people in the adjacent LGA. The fifth infection case in the LGA occurred in Sutherland

Shire, located in the southern region of Sydney. We could assume that the COVID-19

pandemic had spread to the outer LGAs in this phase.

Eased Phase. We adjusted the timeline for the first NSW lockdown events from

March 25th to June 30th, 2020. The visual results of the top 5 LGAs in Figure 4.7(c)

show that Northern Beaches had the highest number of cases, followed by Penrith and

Blacktown, with Sydney LGA dropping to fourth place. Waverley finished fifth. With the

special ban in place at Bondi Beach, the number of infection cases in Waverley and its

adjacent LGA, Sydney, significantly decreased. We also noted that the NSW lockdown

event had a positive impact on LGA cases in the Greater Sydney Region, as reflected
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by 0 infection cases in Northern Beaches, Sydney, and Waverley for several weeks in

the second half of the selected timeline. Penrith, Blacktown, and Blackburn all had a

larger number of low-income residents and are located in the Greater Western Sydney

Region, which had more than half the cosine arc of the lower-income RNA and an intense

frequency. As a result, we anticipated that the pandemic would spread quickly to other

LGAs in the Greater Western Sydney Region.

Restrict Controlled Phase. To test our hypothesis, we further filtered the timeline

from July 15th to October 20th, 2020, which was when a new lockdown and tighter

restrictions were implemented by the NSW government. The visual results, as shown in

Figure 4.7(d), reveal that all of the LGAs are connected in the Greater Western Sydney

Region. We observed that the most strictly controlled events showed stable increases in

cases, even in Cumberland and Liverpool, which had continuous growth in cases over

the next few weeks. This confirms our conjecture about the pandemic situation, with a

large number of infection cases in the Greater Western Sydney Region.

We also noticed potential patterns among LGA portraits, particularly in the lower-

income RNA, demonstrating that all five LGAs have significant lower-income population

groups and high population density. In other words, during the implementation of the

tightened lockdown, most people worked from home or were self-isolated, and the number

of infection cases in the CBD and tourist hotspots markedly decreased. Thus, the factors

in the LGA portraits will dominate and reflect the number of infection cases. Lower-

income groups or other population factors in the census may be the most crucial factors

affecting the spread of the pandemic.
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Figure 4.7: The event-driven cases encompass explorations of (a) the COVID-19 spreading
pattern in the uncontrolled phase and (b)-(d) three phases of overviews. (a) provides a
detailed breakdown by time spans of the COVID-19 spreading pattern in the Greater
Sydney Region and surrounding places during the uncontrolled phase from 2020/01/01 to
2020/03/24. In (b)-(d), each marked ranking number is arranged according to geo-location,
where (b) contains the top 5 LGA portraits in total infection cases with non-controlled
events applied to the same phase as (a); (c) displays the top 5 LGA portraits in total in the
eased phase from 2020/03/25 to 2020/06/02; and (d) includes the top 5 LGA portraits in
total case numbers during the restricted controlled phase from 2020/07/15 to 2020/10/20.

4.6.3 Portrait-driven Cases

The highlighted interaction in RNAs facilitates the comparison of four key factors within

each portrait and multiple attached attributes in MDC View. We selected 12 alternative

factors in the census indicators to enable a more comprehensive comparison of the

COVID-19 situations based on their portrait factors. To conduct these comparisons, we

analyzed portrait-driven cases with different factor influences in collaboration among

views.
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Prevalence Rate Influence. We began by exploring LGA portraits for the entire

time period from January 1st, 2020 to January 11th, 2022, aimed at comparing LGA

portraits of coastal areas with inland areas across different case modes. We randomly

selected two coastal LGA polygons (Sydney and Mid-coast) and two inland LGA polygons

(Cobar and Hay) as representatives and compared them using actual case mode and

prevalence rate mode, as depicted in Figure 4.8.

The consequences conveyed that all S Proteins in Sydney and Mid-Coast LGAs

decreased in prevalence rate mode, while all S Proteins in inland LGAs increased in

height. The opposite occurred in actual case mode. We were able to make comparisons

among all LGA portraits in both modes because they had been standardized using the

same calculation methods as for the S Protein heights.

These findings suggest that almost all LGAs in inland areas had insufficient 10k

population, resulting in the height of S Protein in their portraits growing. We also

concluded that the cases per 10k population with standardization were similar in both

coastal and inland areas, which validated the strong infectiousness of COVID-19.

Case Trends and Lower-income Influences. Based on our previous findings,

there may be potential relationships between COVID-19 cases and lower-income groups

in each LGA. Therefore, we kept the COVID-19 outbreak timeline from the first year

(January 1st, 2020 to January 5th, 2021) in the Control Panel and selected the top 10

LGAs with the worst COVID-19 pandemic situations (i.e., highest total case numbers).

From the top 10 rankings displayed on each portrait in the first year, as shown in

Figure 4.9(a), we identified that areas with RNAs longer than half the range of lengths,
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Figure 4.8: Four cohorts of LGA portraits in different modes (actual cases and cases
per 10k population) were selected using LGA polygons in GIS View. Two coastal LGAs
(Sydney and Mid-Coast) are marked with white pins, while two inland LGAs (Cobar and
Hay) are marked with black pins.

or LGAs with the busiest frequency of RNA in one factor, have comparatively worse

COVID-19 situations. For example, Fairfield ranked 8th highest in the number of cases
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with 143 total cases. This area contains the 4th longest lower-income RNA length but

the highest tightness frequency. Additionally, the RNA lengths of aged and lone persons

in this area do not approach half the length of the full path.

Given that all lower-income RNAs are highlighted in the visual overview, we assume

that the lower-income RNA in the LGA portrait is the most influential factor in COVID-

19. We selected 9 LGA portraits only based on the appearances of low-income RNA

and categorized them into three layers whose lengths are longer than one-half, longer

than one-quarter but shorter than one-half, and shorter than one-quarter. As shown in

Figure 4.9(b), significant patterns are revealed, showing that the COVID-19 situation

improves by layers, where the length of lower-income RNAs achieve shorter from left to

right and top to bottom.

Combined Influences on LGA portraits, geo-locations, and events. We reset

the time period to encompass both the eased and restricted controlled phases. Upon

analyzing the Greater Sydney Region using GIS View, we observed that adjacent LGAs

exhibited similar heatmap polygons. Using an iterative approach, we selected the top 5

LGA portraits with the highest case sums during this period and evaluated their case

sums, as well as the total case sums throughout the year. These five LGAs are highlighted

in Figure 4.9(c), whose pin-points correspond to the colors used in Figure 4.9(d). With

the exception of the Waverley LGA, which had been analyzed in previous cases, the other

four LGAs were adjacent. While all five LGAs had case ratios exceeding 50% during

the selected period, given the duration of our chosen timeframe, which spanned more

than half a year, these eased and restricted events effectively suppressed the spread of
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COVID-19 in this densely populated region to a certain extent.

Household and Dwelling Influence. The LGA portraits were reverse-selected in

the MDC View help to discover the consequences of COVID-19 spread in conjunction with

other highlighted census attributes from residents’ perspectives. In each column, the

median age of each LGA is roughly inversely proportional to financial factors, including

the median mortgage, personal income, family income, household income, and rent cost.

In most living environments with more than two bedrooms in one household, the majority

of people do not meet the standard of one bedroom per person. This indicates that most

people still live with others or families, which must also be considered in the analysis of

the consequences of the pandemic’s spread.

Population Density Influence. The three LGAs with the highest population densi-

ties in the Greater Sydney Region are Sydney, Waverley, and Northern Sydney. These

areas have all been severely affected by COVID-19. Upon analyzing their trends on

coordinates, we discovered that they share similarities such as a young median age,

similar financial profiles, high living costs, and a propensity for using public transit.

4.7 Discussion and Interview with Domain Experts

The +msRNAers prototype applied with our aggregated COVID-19 dataset was deployed

and used in the workplaces of three domain experts from the Australian government.

Through interaction with domain experts, we observed the following:
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Figure 4.9: The compiled cohorts of cases are organized according to LGA portrait factors.
Specifically, (a) an LGA portrait collection showcases the top ten areas with the highest
infection case counts across the entire timeline; (b) a visualization shelf of LGAs is
presented in three levels, filtered by lower-income factors; (c) detailed portraits of filtered
LGAs are provided, and the colors of map pin-points correspond to the colors used in (d);
and (d) two portrait cohorts are presented after being filtered by population density and
public transportation rate, displayed in multidimensional coordinates and distinguished
by colored lines to differentiate LGAs.

4.7.1 Influence of Key Risk Factors

The combined influence of key risk factors has a notable negative relationship

with the community’s resilience profile against the virus spread. According to infection

cases, LGAs with a higher representation in four risk groups are all at the top of the

list. For example, among the entire list of factors in NSW, the Central Coast has the

highest-ranked key factors, ranking #1 in aged group, #1 in lone person group, and #2 in

lower-income group; Canterbury also has the highest-ranked key factors, ranking #2 in

aged group, #1 in lower-income group, and #3 in lone person group.
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The larger the population in the high-risk group, the higher the COVID-19

cases.

Key factor(aged group): The areas with smaller aged male or female groups among

LGAs in NSW have significantly reduced infection cases. In the ranking according to in-

fection cases, the top LGAs generally have older age groups in community representation.

There is not much difference in the effect caused by aged male or female groups.

Key factor(lower-income): Among four key risk factors, the lower-income group

has the highest impact on COVID-19 risk. The visualization results show that infection

cases significantly increase for LGAs in the lower-income group, roughly occupying

one-quarter of the maximum of the lower-income group population in NSW. For example,

Cumberland, Canterbury, Sutherland, Sydney, Fairfield, Penrith, Blacktown, Liverpool,

and Central Coast are the LGAs with the worst COVID-19 situation, which have larger

population sizes in the lower-income group from small to large.

Key factor(lone-person): The lone-person group has a certain impact as well. For

example, Sydney CBD ranked 3rd according to infection cases and has key risk factor

rankings: lone person (#1), low-income (#12), and age group (Male #25, Female #29).

Compared with other factors across all LGAs, its influence seems the weakest. However,

it would also affect the LGA’s resilience if taking into account other risk factors.

Lower risk factors, higher resilience: According to the domain expert, if LGAs

have a lower presentation of most risk factors, their resilience appears to be higher. This

also showed in the situation where several higher-resilience LGAs would respond quickly

and positively to flatten the curve and reduce the risk, even when they were the areas
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where these early and severe infections happened during outbreaks.

Domain experts pointed out that these implications largely support the guidelines

developed by the Australian government during the pandemic. However, they would

also include representation of other under-resourced people in future work, who may

also be more at risk of exposure, including Aboriginal and Torres Strait Islander people,

people living in aged care facilities, and people with disabilities. They plan to share with

us more datasets to increase the diversity of higher-risk groups. For the lone-person

risk group, domain experts explained that an individual or group’s social relationships

should be significantly affected and explained that a lone person would have much fewer

resources and social support compared to people living together. Australian and most

Western societies encourage young adults to move out and live alone. However, this

situation may not be beneficial during a pandemic. Apart from living conditions, they

would also like to explore diverse relationship statuses as they believe that residents’

relationships might have a greater impact on social support and mental well-being.

4.7.2 Influence of Other Factors

The higher population does attract more risk for infection. All LGAs with larger

resident populations should be given more attention during all phases of the pandemic.

For example, Canterbury, Blacktown, and Central Coast ranked top 3 in population and

have higher infection cases than other outbreak LGAs.

Travel restrictions could effectively control the risk caused by activities

related to public transportation. For instance, North Sydney, Burwood, and Inner
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West are the top 3 in terms of the number of people who frequently use public transit.

These LGAs have the earliest cases during outbreaks before the controlled phase due to

the high volume of public transit. However, they respond positively and quickly when

the government increases travel restrictions.

Geographic factor: From the overview, the total number of infection cases in coastal

areas is generally higher than in inland areas for the first 12 months. In particular, those

areas with famous beaches had severe infections, for example, the Northern Beaches and

Waverley (with Bondi Beach). Analyzing the spreading pattern in the Greater Sydney

Region during the uncontrolled phase, domain experts observed that the outbreak

initially appeared in scattered locations throughout the LGA and subsequently spread to

areas adjacent to existing cases. During the early stage of the outbreak without control,

spreading patterns were more apparent in residential areas. However, in the latter

half of the phase, the pattern became more prevalent in tourist attractions, ultimately

resulting in the peak of infection cases in Waverley.

Domain experts have also discovered that the combination of key risk factors and

other factors can have a more significant impact. Taking Northern Beaches as an example,

they had the most infection cases in the first year of the COVID-19 outbreak, with a

greater effect on geographic factors and the highest presentation in lone-person groups,

despite a reasonable economic indicator and low presentation in the aged group. Although

most of these implications seem obvious, they would consider strengthening governance

based on these factors, as these implications also prove the effectiveness of government

intervention. The experts also emphasized the crucial need for clearer regulations about
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beaches and recreational usage.

After experimenting with experts, we also conducted a follow-up interview. Overall,

experts were impressed by the "actionable insights" that +msRNAers obtained. They felt

excited about the interface design inspired by the viral 2D structure. They expressed

that it supported their memory of each data object and their representation because

of the familiarity of the metaphor adopted. They commented, "This would help us

reduce the effort and time involved in training other staff." They found that "interaction

with humans and interface-in-the-loop is intuitive and assists them in manipulating

exploration along a timeline and geographic map." They also used the prototype system

to make several valid assumptions and discover unexpected implications. For assumption

validation, they found that the prototype’s capability to help them target higher-risk

groups is "specifically useful," and the interactive portrait was "the most useful treasure"

considering the magnitude of the data they have.

Experts consistently agreed that the visual modeling of +msRNAers can be easily

applied in most epidemiological analyses due to the similarity of virus transmission,

which is often caused by spatiotemporal and objective factors. The prototype will be

reusable because the integrated portrait designs helped them augment awareness by

porting most data features. They were swiftly able to identify higher-risk regions with

"constrained factors and higher presentation in risk groups using the realistic." The

experts mentioned that they expect the prototype to enable them to understand how to

build profiles and predictions for communities in the future based on "reasonable and

meaningful information provided."
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4.8 Limitations of +msRNAers

Our work was constrained by the quality and availability of the data provided, including

the related datasets and redefined risk factors with domain experts. These data issues

could have led to inaccuracies in our final results. For example, COVID-19 case data

collected by the NSW government is based on usual residence, but some records did not

track location accurately, which could have compromised the precision of our analysis.

Concurrently, the case data we had access to were recorded by LGAs or postal areas,

which limited our ability to examine more granular infection trends in communities.

Additionally, our use of a weekly time frame, as dictated by the aggregated datasets, may

have limited our ability to uncover more nuanced patterns in the pandemic’s progression.

The Australian Bureau of Statistics conducted the latest census surveys on communities

in 2020, but the complete summary will not be released until mid-2023. Thus, we utilized

the 2016 census in aggregated datasets, which may pose bias in accurately assessing the

impact of the pandemic on population demographics and social indicators during this

ongoing period. Moreover, the LGA profiles we used contained a vast amount of data,

with over 15,000 variables each. We could not concentrate on all variables, necessitating

a reduction to only thirteen based on expert supervision. We considered social and

economic indicators and indicators of vulnerability to COVID-19, such as rental and

mortgage affordability. However, variables in other categories may have directly or

indirectly influenced our results. Furthermore, the intervention events in the COVID-19

dataset were constrained by the Australian government system, with different levels of

government responsible for administering public policies and programs, which may have
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resulted in varying intervention measures implemented across LGAs in NSW.

4.9 Conclusion of +msRNAers

With epidemiological analysis as a backdrop, this paper proposes a new visual modeling

method called +msRNAers for exploring and comparing spatiotemporal and multidimen-

sional features based on requirements in epidemiology. The method employs a metaphor

to assemble portraits that can be used for visualizing each community by combining

the visual encoding of time-varying case numbers with objective risk factors that may

affect transmissions. The method integrates multiple views, including a Control Panel,

GIS, and MDC Views, to provide wide-scope observations on filtering events at different

severity levels, geo-based spreading distributions, and multidimensional risk factors for

each community.

To evaluate the feasibility and effectiveness of +msRNAers, we deployed and applied a

two-year-scale aggregated dataset by integrating COVID-19 cases with geo-information,

NLP-extracted event division on timelines, and risk factors from NSW census data

based on expert supervision. After applying +msRNAers to this COVID-19 aggregated

dataset, we progressively validated the feasibility and effectiveness of +msRNAers by

conducting one user study to iteratively improve the applied prototype and comparing

visual portraits from profuse perspectives in three subject-driven case studies. We

summarized how geography, phases of intervention events, and objective risk factors

affected COVID-19 spreading situations during the pandemic.
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In further interviews with domain experts, we identified additional objective factors

that may be influential in the Australian context. We examined pre-existing commu-

nity factors and discovered practical implications for potential patterns of established

community characteristics against the vulnerability facing this pandemic. Despite some

limitations and future work, feedback from domain experts suggests that the +msR-

NAers can be considered a common visual modeling method for exploring community-

based spatiotemporal and multidimensional features. This method can be applied to

abundant epidemiological analyses, such as investigating case trends and comparisons,

geo-distribution and transmission, risk factors explorations and rankings, and other

related tasks.
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UCVE: USER-CENTERED VISUAL EXPLORER OF

IN-PROCESS COMPARISON IN SPATIOTEMPORAL SPACE

5.1 Research Scope of UcVE

We cooperated with domain experts and further developed an original User-centered

Visual Explorer (UcVE) based on unit visualization with scalable aggregated views. The

spatiotemporal features are encoded in each visualization unit for their variation. UcVE

allows users to view, save, and track the outcomes of in-progress exploration to lessen

the cognitive load on the user. UcVE can facilitate concurrent comparison with multiple

visualization units, which are selected from historical and current exploration results

in coordination with storage sequence and block tracking views. To maximize the user’s

exploration ability, UcVE provides a flexible geo-based layout, aggregation functions, and
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temporal views of the timeline with categorized events. Using COVID-19 datasets, we

present case studies in various user contexts. We also worked with domain experts to

discuss our case findings and provide expert feedback for evaluations.

UcVE makes the following main contributions in three orientations:

• Design-oriented: A visual metaphor of unit visualization with the cus-

tomizable aggregated view to expand the visual representation scalability (C1,

C5). The UcVE maps unit visualization with the encoded abstraction of spatiotem-

poral information in three statuses: single, auto-clustered, and custom-merged (C2),

which allows for easy tracking and details on dynamic demand for each individual

variation (C4), making exploration easier.

• Human-oriented: User-centered Progressive exploration approach with

saving and tracking in-process visualization results to ease user cognition

workload. Users can record each interacted result on a map as a storage sequence

for further iterative callback and exploration to deal with spatiotemporal region

discretizations (C3, C4); ranking and target tracking can also be done interactively

between different storage sequences (C5).

• Comparison-oriented: Comparative Visualization with user-selected mul-

tiple visualization units concurrently, breaking to geo-barriers to explore

implicit relationships among units (C1, C3). Combined with other visualization

views and interactions, a comparison matrix view enables a detailed comparison of

spatiotemporal attribute values among multiple visualization units in a scalable
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manner (C5).

5.2 Requirements Analysis

Our goal is to create a visual approach that allows users to progressively explore and

compare multiple visualization units with different spatiotemporal properties.

We know from previous research that analyzing spatiotemporal data is one of the

most difficult aspects of visual analysis, so how to clearly and completely abstract

spatiotemporal features is our main design requirement. Other related properties, for

example, multivariable and textual data, are usually present with spatiotemporal data.

In addition to visualizing all spatiotemporal features, we must consider designing and

implementing user-based interaction methods that are applied to every individual user

scenario to assist users in in-depth further complex spatiotemporal dataset analysis.

This work aims to focus on the majority of analytical tasks in spatiotemporal data

which can be abstracted from their spatial location accompanied by numerical attribute

values in their temporal features. In Section 5.5, we introduced the COVID-19 crisis

context as an example of typical spatiotemporal datasets and applied them to UcVE. We

also discussed the design requirements in the collaboration with domain experts and

analysts in the NSW government and distilled the requirements as below.

R1: Draw encoded visualization units in a reasonable manner. The fundamen-

tal method of mapping the geographic coordinates of units to a map makes a geo-based

layout easy to implement but encoding the adjustable temporal features of each unit
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while displaying the geographic coordinates remains a design challenge that needs to be

addressed. As a current instance, the analysts in NSW Government released a visual

interface [201] for COVID-19 basic statistics for each geo-spot which used colored heat-

polygons on a playable timeline rather than abstracted as visualization units for each

spot. This consequence makes inspection worse when exploring polygons with large size

differences on different scales, and the detailed values are not evident to map colors on

polygons.

A flexible overview of encoded units within a limited view of map space is required

to clearly interact with and explore multiple visualization units with spatiotemporal

features in a reasonable manner. The NSW COVID-19 statistics interface only supports

inspecting the confirmed cases counted in each spot in the past month, also, it only shows

the trend of data changes rather than allowing for numerical comparisons of various

geo-spots within a constrained area or attribute comparisons of map overviews across

different timelines.

R2: Record encoded visualization units in various analysis results. To support

the user-centered exploration of historical and current results, implementing the storage

function is needed to allow users to record the results of each interactive exploration and

the relevant map parameters for a later callback. Simultaneously, multiple storage steps

can break the geographical barrier by allowing two units that are far apart to be checked

and to track and compare temporal features underlying different timelines.

R3: Facilitate detailed comparisons of each encoded visualization unit in

user-centered scenarios. One of the difficult parts of the comparison task is comparing
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detailed data that varies in both time and location. It should be capable of facilitating

detailed comparisons of the same geo-location underlying different time phases, as well

as data attribute value comparisons of multiple geo-locations underlying the same time

phase. The timeline should include multiple categorized options.

5.3 Visual Design

To allocate the design requirements outlined in Section 3, we proposed a visual design,

which employs visualization units for user in-process exploring and comparing spatiotem-

poral datasets. Any spatiotemporal datasets with spots in geographic coordinates and

numerical values in time-vary attributes for each spot can be applied to this design easily.

The visual design of each units is inspired by the Sunburst[195] and Off the Radar[13]

visualization of flower-like metaphors[60].

In this section, we demonstrated the visual design of units, as well as user-centered

progressive exploration strategies with UcVE Storage and UcVE Matrix interactions.

For each distinct unit, we abstracted the spatiotemporal features into petals, and dis-

tinguished three statuses of visualization units by different colors in centers, as shown

in Figure 5.1(a). The visualization units with a single unit (navy color), visualization

unit with auto-clustered units which are automatically clustered according to different

zooming scales (green color), and visualization unit with manually merged units (orange

color) are defined based on current exploration scenarios, as shown in Figure 5.1(b).
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5.3.1 Visualization Units Design

We investigated redesigning each spot as a visualization unit with timeline attributes

and mapping them to each geo-location to fully describe spatiotemporal features. The

visualization unit should enable converting each unit into a single unit on the map,

allowing each node to depict spatiotemporal features with a compressed adjustable time

span.

Figure 5.1: The design of visualization units. (a) A basic visualization unit with encoded
petals and a colored center; (b) Three exploration scenarios of visualization units based
on varying scales: single units, auto-clustering units, and custom-merging units.

Defining single visualization unit. The circular node is commonly used to pinpoint

location information on a map. We locate the centroid of the polygon area of each target

unit as the geo-locations of a single spot. To symmetrically attach temporal attributes,

we redesigned the radial directions of the nodes for visualization. The x-axis of the

polar coordinates is defined as the perimeter of a circular node, whereas the y-axis is

defined as the vertical direction. Simultaneously, the perimeter of each node is sliced
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into a predetermined number of identical-sized spans to meet the visual discrimination

channels of the user. Simultaneously, the attribute values of the corresponding time

spans are allocated to each slice of the perimeter in a radially outward direction with

different histogram heights (named petals). The formula for calculating petal i’s height

in a single unit s is defined as:

P(si,w)= a · ln(F(si,w)+b),

F(si,w),a,and b ∈ N∗
(5.1)

A growth petal height P(si,w) of this visualization unit which refers to a single

unit is proportional to the attribute value, in which F(si,w) is the function to count

the numerical value corresponding to this week w. Both a and b are positive integer

parameters that can be adjusted to ensure that the petal height is 0 when the infection

number is 0.

Defining auto-clustered visualization unit. When there are too many rendered

nodes, the query results on the map frequently cause overlapping issues, resulting not

only in difficulty in recognition, but also vastly increases the client’s rendering cost. We

employed a progressive map node clustering method to solve this problem, which can

automatically cluster nodes based on the provided clustering radius and regenerate a

new cluster center to depict multiple nodes within the acceptable visible area, depending

on the map’s current zooming scale, the cluster unit consists of all clustered single

units which defined as F(c j,w)=
n∑

i=1
F(si,w). The function in Equation (2) is applied to

calculate the petal i in week w of clustered visualization unit c which is clustered by

other singles.
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(5.2) P(ci,w)= a · ln(
n∑

i=1
F(si,w)+b)

The recalculated cluster centers should be biased towards the denser areas of the

children units, and the clusters under different zooming scales based on map tiles should

be weighted separately, so a step-weighted coordinate calculation should be applied.

Defining custom-merged visualization unit. Similarly, the heights of the petals

in each clustered node should be reunited, but because simple superposition would result

in excessive heights, we reframe the merged petal heights while merging the different

statuses of nodes’ location sets. At this point, the merged petal height represents the

sum of the infection cases in each time span of all the clustered nodes. After solving the

node overlap problem by revising the clustering method, we realized that the automatic

clustering method can sometimes result in geographical classification errors, which

will hinder the user’s ability to explore target nodes, so we developed a visual analysis

interaction based on drawing a polygon selection to merge customized aggregation.

As a result of the merge, the merged visualization unit m calculates the center and

each petal’s height using a similar algorithm which sums each time span of infection

cases in each merged visualization unit, to the units’ set and marks the centroid of the

newly merged polygons as its location on the map. The petal i’s height of the merged unit

is defined as:

(5.3) P(mi,w)= a · ln(
n∑

i=1
F(si,w)+

m∑
j=1

F(c j,w)+b)

103



CHAPTER 5. UCVE: USER-CENTERED VISUAL EXPLORER OF IN-PROCESS
COMPARISON IN SPATIOTEMPORAL SPACE

Where P(mi,w) represents the petal height in week w of the visualization unit

merged by other clustered and single visualization units.

Any polygon G can be divided into n finite simple triangles T1,T2,. . . ,Tn where the

centroid of these simple triangles is (Tix ,Ti y) and the area is A i. So the coordinates of

the centroid of the newly merged polygon are (Gx,G y).

(5.4) Gx =
∑

Cix · A i∑
A i

,G y =
∑

Ci y · A i∑
A i

,

A brushable timeline linked with visualization units should be attached to help filter

time phases more efficiently. Each visualization unit utilizes the adjustable segmented

circular arc as the time span unit, with radially arranged petal heights displaying the

attribute values in this time span.

However, because of the geographic distance between nodes and the radially grown

petal directions, comparing the petal height of different visualization units will be

more difficult. To demonstrate the differences among visualization units, we introduce

comparison strategies in other visualization designs and interactions.

5.3.2 Visual Exploration Strategies

The comparison strategies guide users on supporting exploring and comparing analysis

tasks. Most geographic visualizations aim to output analyzed results while users interact

with a map in diverse manners. However, the interaction results displayed by the map

usually vary in different states. To effectively solve this problem, we implemented a user-

centered visual explorer (UcVE) based on geo-map with viewing, saving, and tracking

in-process visualization results.
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UcVE Storage: Ranking. Considering that the user may vary the zooming scale or

time phase of the view when exploring the map, we allow the visualization unit states of

the current perspective to change.

The visual storage should support the saving of all visualization units and parameters

set on the map during each step of exploration for easy reloading later.

Each visualization unit is compressed into a colored block and queued into a sequence

with all units on the current map view. Considering different units occurs based on

different map scale, we encode each block with a nested block to indicate belonging

relationships. For example, block A is made up of blocks B, C, and D, and we have

recorded A in sequence 1, and B, C, and D in sequence 2. If we want to track B, the

nested block in A will be highlighted with the same color as B. Both Figures 4 and 7

show this situation.

Each storage step records each of the user interaction results in an ordered sequence,

which is then ranked from left to right in descending order of each visualization unit’s

total attribute value sum, and compresses each visualization unit into a nested-able

block to depict the containing relations of units among different storage sequences.

We highlighted the associated visualization blocks that have the same spot names

or contain spot names in different storage sequences. The time span indicator, which

utilized the number of each storage sequence, is marked in front; the outer arc length

of each number maps the time span of the storage and can be dragged to swap orders

among other storage sequences, as shown in B6 in Figure 1.

UcVE Matrix: Comparison. The UcVE storage function greatly increases users’
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analytical scalability. To further compare the detailed value difference among visualiza-

tion units, we introduce an n×m matrix space. Each grid in the matrix can visualize the

detailed attributes of each visualization unit. The parameters n and m can be altered to

accommodate users’ appropriate resolution. Each draggable grid is listed with compa-

rable visualization units that aim to break through the limitations of objective factors

(visualization units with different zooming scales or views, different time spans selected,

etc.). However, in juxtaposition, it is difficult to precisely compare visual differences

among items that are far apart, even if they can be adjusted in order. Therefore, we

employed an explicit encoding on the visualization unit that can extract and represent

visual critical differences among juxtaposed visualization units in grids, rather than

blinding users to minor changes in their comparison. The comparison strategy of each

visualization unit in the grid is a benchmark peer-to-peer visual analysis method. Specif-

ically, this comparison strategy involves selecting one visualization unit as the compared

benchmark interactively, while other visualization units automatically vary based on the

compared benchmark, and the encoded visual results of the changes show the difference

in comparison.

This comparison strategy allows for highlighting the associated petals of the compared

visualization units that correspond to the petals of the selected benchmark, as well as

encoding the petal shape (raised or depressed) in other compared visualization units

to show the compared differences. We listed two pre-options to encode the petal shape:

Bezier curve and Polyline.

A Bezier curve, which is usually intended to approximate a real-world shape, is
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defined by a formula that uses a set of discrete control points to define a smooth, con-

tinuous curve. The definition of a Bezier curve indicates that the first and last control

points are always the endpoints of the curve. However, the intermediate control points

generally do not lie on the curve. This means that if the Bezier curve is used to describe

the petal’s outer shape, the expected accuracy may not be depicted, as shown in Figure

5.2. Therefore, we rule this option out.

The Polyline, in contrast to the Bezier curve, uses an accurate value to better describe

raised or depressed differences. We defined that the radius of this petal at its highest

or lowest point equals the radius of the compared benchmark petal Pbench, the current

petal height Pcurrent describes the height of this petal edge, as shown in Figure 5.2.

Figure 5.2: The comparison strategies in UcVE Matrix design. (a) It will cause value bias
when using a Bezier curve to depict the petal’s outer shape; (b) It shows what is possible
when using Polyline to plot visualization unit petals to compare the value differences.

Furthermore, we added numbers and time span units to the colored center of the

visualization unit to indicate the exact value of the entire visualization unit or one

specific petal when hovering over it.
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5.4 COVID-19 as Spatiotemporal Dataset Example

Spatiotemporal data relates to both space and time [81]. There is typically various

information at various times on every spatial spot, and this information is typically

accompanied by multi-dimensional attributes. When users encountered the tasks of

comparisons among them, variation can bring analysis difficulties. As a result, it is

crucial to separately represent the features of various dimensions, including time and

space.

In the past two years, we have engaged in research on COVID-19 data in New South

Wales (NSW), Australia. Supported by domain experts, we designed different visual

tools to reveal useful patterns behind the basic statistics. During these collaborations,

we noticed that the uncertainty of the COVID-19 epidemic means that traditional

data analysis performs more poorly than effective visual models. In particular, the

spatiotemporal features in hot spots, as inseparable parts of the epidemic analysis, played

a significant role in analyzing the COVID-19 spread. The following subsections present

COVID-19 as our data source, followed by variables of consideration corresponding to

the design requirements.

5.4.1 COVID-19 Data Sources

The NSW Government has made available open-source datasets for COVID-19 cases and

tests within NSW[1]. Our example dataset provides information on the number of daily

infections based on COVID-19 case locations since the first infection was detected in Jan.

2020 to 2022. It excludes 189 cases of crew members who tested positive while onboard a
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ship docked in NSW at the time of diagnosis. The case aspects include confirmed, tested,

recovered, and death by their notification date, location, age range, and likely source

of infection, but the analyzing task becomes complicated because the available data

variables are continuously adjusted and reduced due to privacy and other reasons. In

addition, relevant news articles, alerts, and ministerial media releases issued by the

NSW government on COVID were retrieved as events that can be combined with the

notification date of the case dataset. As common division methods of usual residence,

128 Local Government Areas (LGAs) and 964 postal zones within NSW boundaries were

included in the geographical datasets provided by the NSW Data Analytics Center (DAC),

which were introduced with geo-polygon and geo-coordinates data.

5.4.2 Variables Consideration

As domain experts guided us to further meet the requirements, we discussed relevant

key variables selected from multiple datasets.

Our COVID-19 case dataset contains information collected from January 1st, 2020

to January 31st, 2022 in NSW on cases by notification date and postcode, local health

district, LGA, and likely source of infection. Due to the risk of personal information being

leaked, only the notification date of confirmation and the location of each case’s usual

residence can be accessed in this dataset.

During the data cleaning process, we discovered that issues arose when the same

case corresponded to multiple postal zones; the 648 postal zones resulted in overcounts,

making identification more difficult. The LGA, which is defined as an official spatial unit
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that may contain multiple postal zones, represents a reunited geographical neighborhood.

Therefore, using LGAs can help to solve the situation where the same case is counted

multiple times. Simultaneously, it can improve the map’s construction and readability.

As a consequence, we chose 128 LGAs as the geo units for the aggregated area.

Considering that different government-released events caused different degrees

of impact on the pandemic spread, we organized the retrieved media information of

government-conducted events into two categories: intervention and restriction. Each

time span unit was considered to cover all signature events in the past 2 years, which

consisted of monthly cases summed up daily and listing 25 months of case data from

each LGA.

In this study, we finalized 98298 rows of 25-month infection case data from Jan. 1st,

2020 to Jan. 31st, 2022, which we bridged with 2 categories of 12 significant events from

128 LGAs.

5.5 Visual Exploration Workflow

In this section, we propose a user-centered progressive workflow for the interactive

visual exploration based on D3.js[28] and Mapbox [133], and further implement a visual

analytics system applied to the COVID-19 datasets in NSW, Australia to demonstrate

UcVE from a workflow perspective, as shown in Figure 5.3.
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Figure 5.3: The entire workflow of UcVE embodies a user-centered progressive and
comparative exploration, which consists of UcVE Entry, UcVE Storage, and UcVE Matrix.

5.5.1 UcVE Entry: Parameter Setting

After the visual analytics system loads the COVID-19 data, the user interacts by setting

the parameters of the clustering radius and basic time span unit. The value of the clus-

tering radius equals the width of a tile. The tile on the map is defined as a segmentable

basic unit on the current zooming scale; the basic time span unit specifies the time

span of the minimal unit represented by each petal in each visualization unit. Users

can transfer multiple visualization units and all parameters for further exploration and

comparison as entries to UcVE storage in sequence, including cluster radius, time span

unit, current map view and zooming scale, and all unit data in the selected time span.

5.5.2 UcVE Storage: Iterative Exploration

The scalabilities are expanded by the diverse permutations and combinations of the

transferred parameters to represent the various visual exploration results of multiple

visualization units in which the user performed multiple storage steps. Users can itera-
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tively zoom in or out to different scales to expand or recluster target units, as well as

produce storage of multiples by adjusting the selected time spans. Simultaneously, the

ranking strategy in UcVE storage supports tracking and highlighting each visualization

unit into associated block that refers to the same or contains spots in different storage

sequences. Moreover, each historical or current storage sequence can be reloaded on

the map as a callback to reflect all the visualization units’ situations in this storage

sequence.

5.5.3 UcVE Matrix: Detail-level Comparison

Users can drag and drop interesting visualization unit blocks into the UcVE matrix view

for detailed comparison. Users can compare the similarity-difference patterns showcased

by the encoded petals’ outer shape in this matrix. (1) visualizing one unit within a

selected time phase; (2) tracking the varied trends of one specific unit in different time

phases; (3) listing the detailed attribute distribution of different units in different time

phases; and (4) comparing the detailed attributes of the same time span among multiple

units are some of the possible patterns that can be explored or compared. Users can

also progressively explore until they reach the conclusion by iteratively removing any

visualization unit and adding new ones from multiple storage sequences.
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5.6 Case Studies

In contrast to more sparsely populated areas, the coastal areas of NSW are more densely

populated, making them more susceptible to cluster infections. For instance, over the

last two years, the government has conducted periodic intervention and control events in

all or parts of New South Wales, which may have suppressed the epidemic infection at

various times.

In this section, we present three categorized cases: map-driven, storage-driven, and

matrix-driven, which we progressively employ to explore and compare important connec-

tions and differences between spatiotemporal properties in the NSW COVID-19 dataset,

as well as attempt to find the covid behind the influence of LGAs on potential pandemic

patterns. Relevant parameters must be pre-entered into the visual analysis system. In

these case studies, users can customize the clustering radius, which corresponds to the

tile width in the current map perspective, and the basic time span is set to monthly. The

number of blocks which are used in each storage sequence depicted in each row is 18,

and the size of the UcVE comparison matrix is 3 rows by 5 columns.

5.6.1 Map-driven Cases

In the initial map view, users can observe both automatically clustered visualization

units and individual units, which are distributed on the map based on their geo-location.

Users can adjust the zooming scales by zooming in and out and custom-merge their target

visualization units by interactions to gather new visualization units of different statuses

for map-driven case exploration. With the help of the brushable categorized timeline,
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users can adjust different time phases to filter visualization units on the map. In these

map-driven cases, the clustering radius is set to 70 to better distinguish auto-clustered

visualization units.

Visualization unit comparison of coastal LGAs with inland LGAs. We roughly

divide NSW into two sections, coastal and inland. To better display visualization units

on the map, we use the merged interactive tool to select four areas, two coastal and

two inland as follows: the northeast coastal area near the border of Queensland; the

southeast coastal areas near the border of Victoria, which has representative cities like

Sydney, Newcastle, Wollongong, etc.; the north-central areas; and the remote western

areas, as shown in Figure 5.4.

When users look at the entire timeline over 25 months, they can observe that both

the two parts of coastal parts are ranked top 2 with the total number of COVID-19

infection cases in the whole period of 25 months, which is specified as the southeast

coastal areas near Victoria win the first with merging 3 auto-clustered visualization units,

then the northeast coastal areas near Queensland reached the second with merging 2

auto-clustered visualization units, and followed by the remote western areas containing

6 auto-clustered visualization units and 4 single visualization units, and accompanied by

the north-central areas, which is the last one with 2 auto-clustered visualization units

and 1 single visualization unit.

The reason for such widespread of COVID-19 cases may be due to the geographical

features of New South Wales. New South Wales is Australia’s most populous state, with

a large number of densely populated cities along its coastal sides; rich forest resources
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Figure 5.4: A map-based case with rankings in each visualization unit center. Using
the interactive merge function, the 128 LGAs were classified into 4 visualization units
representing the southeast coastal areas near Victoria (Rank 1); the northeast coastal
areas near Queensland (Rank 2); the north-central areas (Rank 3); and the remote
western areas (Rank 4) within NSW for exploratory analysis.

in the north-central areas; and less populated remote western areas. We know that

the epidemic’s spread is directly proportional to population density. This explains why

COVID-19 outbreaks are more severe in densely populated coastal areas, despite the

fact that the LGA area size is much smaller than in remote western areas.

Visualization units comparison of Northern and Southern Sydney LGAs.

Users can brush to select time phases by swiping through the entire timeline. We chose

the first 4 months of the COVID-19 outbreak in this case to investigate the epidemic
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situation in Sydney and surrounding cities. We zoomed into the bottom-most visualization

unit displays around Sydney, then merged North Sydney with its adjacent neighbor,

Mosman for further analysis on the map, as shown in Figure 5.5. According to the petals

of single visualization units representing Ku-ring-gai, Burwood, and Parramatta LGAs,

we found that they had the first local cases in January; also, the ranking of the total

number of confirmed is Australia’s most populous state, with a large number of densely

populated cities along its coastal sides; rich forest resources in the north-central areas;

and less populated remote western areas. We know that the epidemic’s spread is directly

proportional to population density. This explains why COVID-19 outbreaks are more

severe in densely populated coastal areas, despite the fact that the LGA area size is

much smaller than in remote western areas.

Visualization units comparison of Northern and Southern Sydney LGAs.

Users can brush to select time phases by swiping through the entire timeline. We chose

the first 4 months of the COVID-19 outbreak in this case to investigate the epidemic

situation in Sydney and surrounding cities. We zoomed into the bottom-most visualization

units displays around Sydney, then merged North Sydney with its adjacent neighbor,

Mosman for further analysis on the map, as shown in Figure 6. According to the petals

of single visualization units representing Ku-ring-gai, Burwood, and Parramatta LGAs,

we found that they had the first local cases in January; also, the ranking of the total

number of confirmed cases found that visualization units representing Woollahra and

Waverley had the highest total number of infection cases among the 16 visualization

units around Sydney over the selected 4 months.
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Figure 5.5: A map-based case with rankings in each visualization unit center. The first
4 months of the full timeline month (January 2020 to April 2020); merged Northern
Sydney and Mosman from the perspective of the Sydney city map to explore and analyze
the epidemic situation in northern and southern Sydney.

We note that the LGAs where the first local covid cases occurred in January 2020

were Ku-ring-gai, Burwood, and Parramatta. These three LGAs are all major residential

areas in the Greater Sydney District, which also proves the hypothesis that COVID-19

is prone to outbreaks in these places; and North Sydney and Mosman are the main

business districts in Sydney. Compared with its southern neighboring LGA, Sydney

(different from the Greater Sydney District), the north of Sydney is the main working

area, while the south of Sydney is mainly for entertainment, with a large number of

shopping malls and famous beaches in Bondi. As reported on various news outlets, after
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the Australian wildfires had been contained at the end of 2019, large crowds poured

into beach destinations for a vacation, resulting in an extremely high population density,

which became the source of the spread of the COVID-19 outbreak in early 2020, indirectly

leading to the first lockdown in NSW.

5.6.2 Storage-driven Case

Multi-segment time phases can be divided by brushing the timeline in the 25 months

and recorded into the storage view for tracking and the exploration of the number of

COVID-19 cases represented in visualization units’ petals. In these storage-driven cases,

the clustering radius keeps the set at 70.

Tracking the ranking of multiple visualization units. We drew a polygon to

select the entire Greater Sydney Districts from the overview and classified the whole

timeline into two options. One option is to divide the entire timeline into two years, 2020

and 2021; the other is to divide the entire timeline on a 4-monthly scale, shown in the

time span indicator. The ranking track of each using the storage function to record their

visualization units in batches is shown in Figure 5.6.

We selected 4 representative visualization blocks, namely Northern Sydney, Southern

Sydney, Burwood, and Chatswood, from those recorded for comparative analysis. Our

observations reveal that the four blocks are all from the first visualization block in the 0th

storage, which is the Sydney LGA’s visualization unit block with the largest number of

COVID-19 cases at the time of the initialized overview. Sydney’s epidemic performance is

worse than Burwood and Chatswood from an overall perspective, whether in years or in
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a 4-month phase. Analyzing the growth trend, we found that Northern Sydney, Southern

Sydney, and Burwood all showed signs of a rebound in the number of covid cases from

August 2020 to December 2020, while Chatswood experienced a rebound in cases from

December 2020 to April 2021. Based on the combined NSW government interventions

and restrictions, it was found that during the two lockdown periods (March 2020 to June

2020 and July 2020 to November 2020), there was a short period of unblocking, which

led to the second wave of the covid epidemic, and after the second lockdown in November,

the third spread of Omicron.

Among their own visualization blocks, the total case rankings in the Northern Sydney

region fluctuated greatly, while the Southern Sydney region was always in the top 8;

on the contrary, Burwood and Chatswood never entered the top 8. We also combined

official information from NSW census data [154] to find that COVID-19 spread quickly

in crowded residential areas, such as South Sydney, Burwood, and Chatswood, which

are popular tourist destinations, and led to a secondary transmission of the virus when

the lockdown period ended whereas, in North Sydney, which acts as a business district,

the number of infections responded quickly to government interventions because people

worked from home during the lockdown period.

5.6.3 Matrix-driven Cases

The visualization units in the matrix allow for comparison at a fine granular level. The

user is not only able to select any visualization unit from the storage view, but they

also enable examining the differences in each petal’s attribute values by observing the
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Figure 5.6: The storage-driven case. For visual analysis of their COVID-19 case rankings
through two timeline classifications, four representative visualization units, Northern
Sydney, Southern Sydney, Burwood, and Chatswood, were selected. Of these, the 0th
storage represents all visualization units stored in the overview state; the 1st and 2nd
storage steps respectively represent the epidemic data for the years 2020 and 2021 under
the zooming scale of Sydney City; the 3rd to 8th storage steps respectively represent
the storage of visualization units in four-monthly time span units from January 2020 to
December 2021.

various petal’s outer encoded shapes.

A comparison of multiple visualization units before and after government

interventions. In this case, the clustering radius is set to 70. The intended time period

we brushed for this case starts from January 2020 to July 2020, then we recorded the

interaction results and picked the top 5 visualization units for a detailed comparison

in this matrix after custom-merged the visualization units of Northern Sydney and

Mosman. In terms of overall COVID-19 cases, the auto-clustered visualization unit

(Woollahra and Waverley) had the highest number of infections, followed by three

single visualization units (LGA Sydney, Canterbury-Bankstown, and Cumberland). The
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combined visualization unit of Northern Sydney and Mosman is fifth, as shown in Figure

5.7.

By comparing the petal shapes in the coming months, we discovered that the auto-

clustered visualization unit of Woollahra and Waverley has much lower cases than the

other three single visualization units (in decreasing order, these being Cumberland,

Canterbury-Bankstown, and Sydney) from May to July 2020. Moreover, Woollahra and

Waverley had 0 diagnosed cases in May 2020, and only in June and July did these areas

have more than the combined nodes of Northern Sydney and Mosman (Northern Sydney

and Mosman had 0 infection cases in May and June 2020).

We note that the time phase we selected from January 2020 to July 2020 includes the

vacuum period from January to March 2020, the first lockdown from the end of March

to June 2020, the related restriction in June 2020, and the starting point of the second

lockdown beginning in July. This visual finding verifies the earlier case analysis that a

huge number of individuals flocking to coastal areas acted as a catalyst for the epidemic’s

early development. COVID-19 spread when the government began intervening with

lockdown events in March, causing new cases in the LGAs in residential communities.

Because Northern Sydney and Mosman are both in the CBD, there were no new cases in

the lockdown from May to July.

Exploration of multiple visualization units during government interven-

tions. In this case, the clustering radius is set to 50. Due to the vast majority of gov-

ernment intervention events targeting the Greater Sydney Districts, we zoomed into

the view of the Greater Sydney Districts on the map. We found that the Waverley and
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Figure 5.7: The matrix-driven case of exploring multiple visualization units before and
after government interventions. Picked in order from the top 1 to 5 of the total infection
cases in the zooming scale of the Greater Sydney Districts with the time phase from
January to July 2020: auto-clustered visualization unit of Woollahra and Waverley,
followed by 3 single visualization units, LGA Syndey, Canterbury-Bankstown, and
Cumberland, and a custom-merged visualization unit of Northern Sydney and Mosman.

Woollahra areas that were severely affected by the COVID-19 outbreaks in the early

phases were not automatically clustered together, so at that time, we used the merge

function to merge them as a new visualization unit. In the current storage sequence, we

found that the custom-merged visualization unit (Waverley and Woollahra) did not ap-

pear in the top five, and we clicked to select the top five visualization units for a detailed

comparison. We hovered the mouse over each petal of the first Canterbury-Bankstown,

and the petals of the other visualization units (Cumberland, Sydney, Bayside, Randwick,

and Parramatta LGAs) were highlighted correspondingly. From June 2021 to January

2022, the comparison results represent the difference in the number of cases each month

for the five selected visualization units.

The results in Figure 5.8 show that Canterbury-Bankstown had the highest number

of covid cases for each of these 8 months. Although in some months, the ranking of other

visualization unit cases is not followed by the total ranking order from the total number
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of infections, for example, Sydney (with a total ranking of 3rd) has 8543 confirmed cases

in December, which is much larger than Cumberland’s 5650 (total ranking 2nd), but

overall, the ranking order of this selected phase is to a certain extent the same.

In line with its intervention measures, the NSW government announced the third

closure of the Greater Sydney Districts in June 2021 to deal with the mutated COVID-19

virus, Omicron. During the lockdown phase, it can be seen that in the first half of the

lockdown, that is, from June to September, the number of confirmed cases of the epidemic

was still increasing gradually, and there was no downward trend until October, so the

government ended the lockdown at the end of October. The epidemic was relatively stable

in November after the lockdown ended, but during the Christmas holiday season in

December, it increased and reached a peak in January 2022, with three single units in a

single month, which is more than 12,000 cases.

5.7 Feedback from Domain Experts

We deployed the visual analytic system based on UcVE online and discussed our case

study findings with two anonymous domain experts from the Australian government in

different departments.

After learning about our methodology and exploration strategies, both experts ex-

pressed their enthusiasm for using UcVE to analyze the spread of COVID-19 in NSW. We

asked the experts to explore on their own using our system, answering their questions

and recording their preferences and feedback. By redoing our case studies, they first
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Figure 5.8: The matrix-driven case of multiple visualization units during government
interventions. Picked in order from the top 1 to 5 of the total infection cases in the
zooming scale of the Greater Sydney Districts with the time phase from June 2021 to
January 2022. The selected visualization units represented LGAs from left to right are
Canterbury-Bankstown, Cumberland, Sydney, Bayside, Randwick, and Parramatta.

affirmed our findings in the different cases before delving into various explorations

based on their individual interests in the COVID-19 dataset. They mentioned that the

UcVE-based visual analysis system was responsive and that the storage function was

flexible enough to give them enough analytical confidence. They all appreciated our

visual outputs in the universal state that make it possible to connect spatiotemporal to
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general analysis with rich adjustable parameters and grant possibilities on some very

aggregate predictor questions. The expert from the NSW Health Department commented

that the system not only displays the full range of COVID-19 with its geographic and

timeline features, but it also presents the data in a clear and interactive visualization

output. The other expert from the DAC expressed the view that the comparison function

of UcVE was initially difficult to understand. However, after learning, it was possible to

actively compare the distribution of any one or more LGAs within NSW during the past

two years. Three experts appreciated UcVE’s visual design and anticipated the future

benefits of this technology, which allows for precise time comparisons over a single day

or week.

5.8 Limitation of UcVE

Our research is generally limited by two aspects. One being is that the spatiotemporal

features may come from various data sources among different analytical tasks. For

example, the COVID-19 datasets in NSW were applied to UcVE, which includes diverse

data sources from official releases, social media, and unstructured textual data sets

obtained by the researchers of this chapter, which constrained our work. Manually

integrating these datasets may produce inaccurate results. Relevant COVID-19 case

data was collected by the NSW government based on case locations, yet some records

failed to specify the locations where the infections were acquired. Moreover, although

the COVID-19 case data released by the NSW government contains open-sourced postal
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areas and LGAs in the geographic information, we found that there are a lot of errors

and null values in the postal area data, which prevents us from using a more detailed

geo-scale to explore their locations.

Secondly, our work is also constrained by parameter settings. Our UcVE-based

visual analytics system delivers strong scalability for user-centered analysis. However,

it requires prior learning of how to use the system and how to set relevant parameters,

which may incur additional learning costs. For instance, setting a proper clustering

radius may make exploration easier; the size of the parameters of the visual cues in the

storage and comparison matrix must be set by users based on their screen resolution;

the parameters for calculating the petal height in UcVE need to be set based on data

magnitude for a better display.

5.9 Conclusion of UcVE

In this chapter, we present UcVE, a user-centered visual explorer for in-process exploring

and comparing spatiotemporal features by visualization units. The visualization unit

uses a geo-based layout to display several visualization units by abstracting the attribute

values of time-varying properties into encoded petals that compress at each unit’s geo-

locations. We adjusted the aggregation purposes to define three distinct visualization

unit statuses: single, auto-clustered, and custom-merged, keeping map space efficient

and enhancing user exploration capabilities while avoiding overlapping issues. The

visualization unit allows users to visualize, save, and track in-process exploration results
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to reduce user cognitive load. We explain it as two exploration strategies: one preserves

users’ visualization unit interaction output as steps in the current map perspective for

historical and current exploration results callback, and the other allows users to compare

the attribute values of temporal properties by the encoded petal outer shape of multiple

visualization units at a detailed level.

We further implement a visual analytic system that offers UcVE for visual explo-

ration and comparison of COVID-19-related datasets. We abstracted each LGA with a

coordinated location and its monthly COVID-19 infection cases to encode on the map

and coupled the map with a brushable timeline chart to filter different time phases.

Simultaneously, two other charts in the system responded to two exploration strategies

for tracking visualization unit blocks and comparing encoded visualization units in the

matrix. We used three separate case studies in the COVID-19 dataset to demonstrate

the efficiency of visualization units, each driven by a different function and explored

the causes of the visual results. We also undertook a review in cooperation with domain

experts and prioritized our future work based on their feedback.
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6
CLINICLENS: VISUAL ANALYTICS FOR EXPLORING AND

OPTIMIZING THE TESTING CAPACITY OF CLINICS GIVEN

UNCERTAINTY

6.1 Research Scope of ClinicLens

Recapping the last three years, a valuable lesson learned from COVID-19 is the vital

role of the clinic in responding to the pandemic [155]. During this period, numerous

clinics were involved in sampling, testing, and diagnosing the disease in addition to

giving vaccinations and triaging hospitalizations [5]. However, too many of the current

visual approaches emphasize case trends, such as location-based transmission analysis

[19] or studies on human mobility [24]. Few tools concentrate on the clinics themselves,

which ignores the impact that the clinics have had in preventing the spread of COVID-19.
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These clinic features (which are distinguished from clinical features) include information

like the clinic’s location, business hours, the medical services provided, and their testing

capacities. Clinical features are primarily based on the patient and include information

such as sign levels and mortality [226].

"Testing is our window onto the pandemic and how it is spreading. Without testing,

we have no way of understanding the pandemic." Quoted statement from Ritchie et

al.[177]. As we dig deeper into the testing data, it is clear to see that high-quality and

high-quantity testing can have significant economic and social ramifications during a

pandemic. For example, during COVID-19, large-scale rapid testing was an essential

part of the pandemic management strategy for many countries. Through these programs,

cases were diagnosed and treated quickly, and the close contacts of positive cases were

isolated to slow down the spread. Mass testing, isolation, and population screening in

high-risk areas were all crucial public health measures that both helped to control the

outbreak and provided information to guide social restrictions [132]. We also know that

accurate and prompt testing can reduce the duration of isolation and quarantine, making

it faster to get back to work and resume other activities [140]. However, clinic testing

capacities are characterized by underlying uncertainty. For example, the demographics of

the area in which the clinic is located may not be fully known, or social restrictions might

alter the test numbers. However difficult, it is crucial to investigate and maximize clinic

testing capacities in the face of these uncertainties if we are to contain the COVID-19

outbreak.

Accordingly, we developed ClinicLens, a visual analytics system that allows domain
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experts to investigate, forecast, and optimize the testing capacities of clinics. At present,

ClinicLens has been driven by an aggregated dataset of COVID-19 data pertaining to New

South Wales (NSW), Australia. However, we have plans to expand the system to support

other states and territories in Australia. We also note that the framework ClinicLens is

built upon could be used to provide visual analytics for other infectious diseases with a few

modifications. The architecture comprises Back-end Engine and Front-end Visualization

that not only provides dynamic overviews of COVID-19 trends in NSW but also includes

regression models that can forecast testing capacities. Notably, the framework is robust

to uncertainty. Overall, the system helps domain experts to explore the features that

may affect clinic’s testing capacities through a visual interface that provides analytics

from multiple perspectives: spatiotemporal, location-based demographics, interventions,

service factors, etc. Particularly, with the AI-empowered-oriented interactions, domain

experts can investigate feature details across collaborative visual views in steps, analyze

the cascading relationships between features as they develop, and iteratively update

features as a way to optimize the testing capacity of clinics. Three case studies and expert

interviews validate the usefulness of ClinicLens as contributing new angles through

which to explore both the trends associated with COVID-19 and optimize the testing

capacities of clinics. In sum, ClinicLens offers the following detailed contributions.

• ClinicLens assesses and forecasts clinic testing capacities despite uncertainty in

the data through feature modeling methods inside the Back-end Engine.

• This visual analytics system amalgamates the Back-end Engine with Front-end

Visualization, enabling users to interactively explore COVID-19 trends across NSW
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and optimize the testing capacities of clinics accordingly.

• Three real-life case studies with expert interviews cross-evaluate the usefulness

and effectiveness of ClinicLens.

6.2 Prior Study

In this section, we present our prior study conducted in consultation with a panel of

three domain experts. This past work includes conventional studies on the bottlenecks

and gaps in COVID-19 research, a background on the available datasets, the concept

of uncertainty as it applies to clinics and testing, and the needs and expectations of a

useful and valuable analytics system, as specified by our experts.

6.2.1 Conventional Research Bottlenecks and Gaps

Over the past three years, we have been working closely with three COVID-19 experts.

Each has a Ph.D. degree and more than 20 years of experience in their field. Two works

for the NSW Government: expert E1 focuses on data science and visualization, while E2

is a policy consultant. Expert E3 works at a clinic.

When talking about the pandemic generally, all our experts stated that it has been a

difficult period for people in Australia and for humanity as a whole. They also commented

that it is unfortunate that people are still getting COVID-19 and passing away today.

Although the overall momentum of the epidemic has been contained, the ever-evolving

virus variants still trouble people and professionals. "We all respect and value the work of
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front-line medical professionals, and I want to do whatever I can to help the community

improve things," said E1. "We already have made lots of research on CT diagnosis with

algorithms that aid in pre-therapy, but the conventional research on COVID-19 data

stands still on numbers and simple visualizations," he added. He also noted that he

anticipates gaps and bottlenecks in the existing COVID-19 research simply because

the data is multivariate and is rife with uncertainty. Existing methodologies might be

helpful for analysis, but they struggle in certain difficult situations.

E1 and E2 shared with us the current visualization interface released on the NSW

Government’s website. At a base level, the interface provides basic statistics for cases,

tests, and deaths over the previous seven days plus overall. It also provides line charts

of cases, tests, and vaccine rates as trend visualizations for the whole period. A map

application keeps track of cases and test data in geo-distributions over a 30-day timeline.

Nevertheless, the systems do not support any interactions of selection, filtering, or stor-

age. Hence, the system cannot really be used to support deep decision-making. "We need

intelligent decision-making aids," E2 and E3 stated from different perspectives. "both pol-

icymakers and clinic managers need to stand by objective bases before making a decision,

such as data simulation and what-if analysis, rather than acting impulsively." "That’s

exactly what visual analytics can provide." According to E1-E3’s thinking, visualization

and visual analytics can greatly aid in the overall analysis of COVID-19 data. Hence,

good visual analytics should be a positive step forward that should be easily combined

with interactivity and machine learning algorithms to improve the overall analysis expe-

rience with specific COVID-19 tasks. It is worth noting that clinical data research makes
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up a sizable portion of E3’s work, and he also has experience in hospital settings. This

offered us a great transformational path for connecting epidemiological data analysis to

facts. He raised concerns about the entire health system being overwhelmed over the

past three years ‚Äì a sentiment the other experts shared. "The current healthcare system

does not appear to be sufficiently intelligent or optimized. Clinics operate independently

and have limited connections with one another, indicating room for improvement.," E3

emphasized.

6.2.2 Data Background and Uncertainties

Much information has been provided by the COVID-19 Data Program [3] to improve

the NSW Government’s coordinated COVID-19 response. Headed by the NSW Data

Analytics Center (DAC), this program assembles open-source datasets of COVID-19-

related information, such as tests, cases, and clinic information. The datasets are updated

weekly and made available to the public on the NSW Government website. However,

in the post-COVID era, analysis tasks have changed from straightforward numerical

analysis to more intricate aftermath work. Therefore, some of the statistical items in the

datasets have been modified given that the epidemic has largely been suppressed. Likely

infection sources, for instance, are no longer identified, but geo-based clinic information

has been added to help people locate where to obtain a test more quickly.

Our first focus as researchers was on the datasets that are still being continuously

updated. These included the tests, cases, and clinic datasets from the NSW Government

website. E2 pointed out that government interventions affecting COVID-19 restrictions
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should also be taken into account: "Overlapped interventions should have significant

impacts on test and case amounts". Hence, we also crawled news on government inter-

ventions, which we combined with the case information on confirmed infections, the test

results, their locations, and the notification dates. Aside, the clinics’ dataset contained de-

tails of the COVID-19 testing and assessment centers, such as their geographic location,

services list, and business hours. Although these three datasets appear straightforward

and manageable, all domain experts still noted that they are actually complex and filled

with uncertainty.

In clarifying these uncertainties, we discovered three main areas of issue: 1) the

method used to count the tests; 2) daily test attributions; and 3) each clinic’s daily testing

numbers.

In terms of the counting methods, our domain experts noted that "The NSW Gov-

ernment has a specific counting method on tests." The NSW Government determines

counting every negative COVID-19 test on any day separately (i.e. ⇒ n· = n). That

means an individual’s first positive test is counted, along with each negative test they’ve

had on previous days. But, after the first positive test, no additional tests are included

(i.e. ⇒ n· = 0 ). All three experts acknowledged that this form of counting guarantees

the authenticity of the tests to at least some extent. Plus, it reduces errors and makes

statistical analysis easier.

Second, "We must realize that not all daily tests summed each day are from the

previous day." The truth is that not all clinics have the ability to test COVID-19 nucleic

acid results, and shipping every test from clinics to a specific laboratory for testing delays
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the release of data. We were reminded that, usually, all the test results would be made

public within 3 days, although some may still take up to seven days. Thus, the second

uncertainty is that the actual daily tests released are dispersed but should be reported

in the data releases of the previous days. Hence, as researchers, we needed to consider

how to handle this uncertain consequence when modeling clinic features.

Third, our experts reported that "we cannot monitor the number of tests or testing

capacities provided by each clinic on a daily basis." because the basic unit under which

the testing numbers are released is either a local government area (LGA) or postcode,

not each individual clinic, which also leads to uncertainty.

On the whole, the first uncertainty, counting methods, can be managed in the data

processing. To resolve the last two uncertainties, dispersed daily test counts and the

lack of attribution to particular clinics, the domain experts concurred that the testing

capacities for each clinic should be abstracted by dividing them into daily test numbers

for each clinic. Then machine learning algorithms could be used to establish models for

predicting the daily test count amounts allocating this uncertainty.

6.2.3 Requirement Analysis

We finalized the brainstorming with E1-E3 by gathering their concerns and expectations

and summarizing their requirements. We had all settled on visual analytics as a sig-

nificant theme, and all experts agreed that they expected to receive a visual analytics

system that used the continuously updated NSW COVID-19 data. After several rounds

of discussion, we concentrated on the following four requirements.
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R1. Establish feature modeling for clinic testing capacities given uncer-

tainty. Our approach should first collect and sort the existing data. This would involve

untangling the selected features to make them reasonable given the uncertainty in the

data. Next, each data feature should be ported into an aggregated dataset. Any data

scaling that may affect a clinic’s testing capacities would be formulated, and feature

models would be established through feature engineering. Last, we would undertake an

evaluation to confirm the model’s reliability. To accomplish all this, it would be necessary

to implement Back-end Engine that included all the above processes as components.

R2. Visualize COVID-19 information and clinic-based test capacities based

on multiple features. On the basis of our prior study, the domain experts expected

that we would implement Front-end Visualization that could display the time series and

location-based trends found in the data, as this is what was required to support detailed

and dynamic visualizations of daily test and positive case numbers. Additionally, machine

learning algorithms and visual analytics techniques should be used to provide multiple

different user-friendly views as the system’s outputs. As the foundation for visualizing

clinic-based information in the COVID-19 background with numerous features, these

views need to cooperatively support exploration navigation and intuitive interactions.

R3. Provide the ability to investigate the impact of possible features on the

clinic’s testing capacity. The experts also asked for the flexibility to interact with any

of the features that could affect testing capacity. "Advanced interacting" might include

inspecting each feature’s importance, filtering the time periods, selecting the locations

to be included, adjusting the clinic features included in the analysis, and saving the
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results of exploration. They also wanted a system that allowed iterative investigations of

these impacts and one that, in addition, offered a well-designed visual view of the ground

truths, initial prediction results, and updated prediction results in any given analysis.

R4. Enable strategies for optimizing a clinic’s testing capacities. Above all,

the experts expected a comprehensive system where the knowledge gained from their

iterative investigations could be used to optimize clinics’ testing capacity and inform

upcoming decisions. Adopting reasonable strategies requires the application of case

studies in real-world scenarios to enhance the resilience of clinic testing capacity for

sustainable balances and to demonstrate the effectiveness of our system.

6.3 ClinicLens Overview

ClinicLens was developed to meet the above four requirements, which is an interactive

visual analytics system based on regression analysis that was designed to explore and

optimize clinic testing capacities using data that contains uncertainty. As outlined in

Fig. 6.1, the ClinicLens pipeline is based on the experts’ requirements. It consists of

Back-end Engine and Front-end Visualization. The Back-end Engine is composed of Data

Processing Component, Feature Modeling Component, and Regression Model Component.

The regression model quantifies the data columns to predict the daily testing capacity of

each clinic as a fundamental implementation of R1. As the assembled dataset driving

ClinicLens, we combined the raw COVID-19 test and case information published by the

NSW Government with the clinic data, data on the government interventions, and the
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Figure 6.1: The ClinicLens framework. ClinicLens consists of (A) Back-end Engine and
(B) Front-end Visualization. The entire pipeline of the framework is depicted here, which
begins with importing the data in A1 via the Data Processing Component. The data
processing procedure involves multiple steps but results in an aggregated NSW COVID-
19 dataset that contains three different feature types. These data are then stored in a
database (A2). In A3, the Feature Modeling Component loads the aggregated dataset,
abstracts one-to-one relationships, and constructs the training set. The Regression
Model Component then establishes two appropriate models (RF and XGBoost) for data
prediction in A4. The entire Back-end Engine is always ready to be called upon by the
Front-end Visualization system (B). A suite of parameters can be adjusted in the Control
Panel (B1). Then users are transported to the regression model view (B2). Additionally,
four other main visualizations can be rendered by the front-end system for further
interpretation, exploration, and interaction (B3).

demographic census data. These datasets were then cleaned, extracted, aligned, and

rescaled into usable features that could be used to train the regression models. The

Front-end Visualization conjuncts multiple views guided by elaborate colors [190]. Users

can interact with these views to explore trends in COVID-19 tests and cases based on

location (to meet R2) or clinic and clinic features (to meet R3). Additionally, the system

can generate iterative forecasts of testing capacity based on any of the features available

in the system (to meet R4).
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6.4 Back-end Engine

The Back-end Engine in ClinicLens involves an exhaustive data pathway, from accepting

the raw data to processing and storing that data in database to finalizing the output

of the two trained models. Notably, the Back-end Engine is robust to data uncertainty.

The models, based on random forest (RF) and XGboost, are also bridged to the Front-end

Visualization to both display the data in a way that can be iteratively analyzed and to

offer predictions of clinic testing capacities. The overarching goal of the framework is to

predict each clinic’s testing capacity using the daily LGA testing numbers as a ground

truth. Additionally, each component of the Back-end Engine connects to the front-end

system via an API port. Each of the components is described in more detail next.

6.4.1 Data Processing Component

The purpose of the Data Processing Component is to load the raw datasets retrieved

from Data.NSW, NSW Health, and the Australian Bureau of Statistics (ABS) into the

framework. These datasets comprise both structured and unstructured data. In terms of

structured data, three datasets contain tabular data. 1) The NSW government COVID-19

tests and cases data, which include the number of daily COVID-19 tests conducted 1 and

the number of confirmed cases 2, are released on a weekly basis. These data are classified

by LGA and postcode. 2) COVID-19 clinic data. This dataset contains the service details

of the authorized clinics 3, hereafter termed the "clinic features". These details describe
1NSW COVID-19 tests: https://data.nsw.gov.au/nsw-covid-19-data/tests
2NSW COVID-19 cases: https://data.nsw.gov.au/nsw-covid-19-data/cases
3COVID-19 clinics: https://data.nsw.gov.au/nsw-covid-19-data/covid-19-clinics
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such things as each clinic’s business hours, services offered, and testing requirements.

Again, these data are classified by LGA and postcode. 3) The 2021 Census dataset, which

contains location-based demographic information gathered from the most recent census

4; the unstructured data pertain to government interventions. These data were crawled

and then processed using a natural language processing (NLP) model as part of prior

research [233].

To prepare ClinicLens, each dataset was next pre-processed to remove all self-testing

counts and self-reported cases from the test and case numbers. In tandem with confirming

that there were no empty values in any of the datasets, this process aligned the data

with the case counts released by the clinics. The COVID-19 tests and case datasets were

then combined with the clinic features and the government interventions, yielding an

aggregated dataset of 252,350 rows. These data were stored in a database spanning 128

LGAs (612 postcodes) and 248 clinics and 10 government interventions over a 1030-day

period from 1 January 2020 to 28 October 2022.

Before feature modeling, the aggregated dataset was aligned and rescaled by fea-

ture. We were guided by the domain experts, optimizing and selecting the features by

assembling and recalculating them in a series of iterative experiments. Through unidi-

mensional exploration and correlation analysis, we ensured that every feature was both

reasonable and distinguishable. Thus, our assumptions about which features could affect

a clinic’s testing capacity were built up over time and guided by expert input. Overall,

these features fall into three main categories. 1) Numeric features (XN), such as LGA
4The 2021 Census: https://www.abs.gov.au/census
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population densities, daily test, and case numbers, the clinics’ business and break hours,

location-based clinic counts, and day counts over the whole period. 2) Standard scaling

features (XS), which consist of the current day of the week (1-7), the current season

(1-4 represent Spring to Winter), and three levels of government interventions (0-3,

where 0 means no intervention and 3 means the strictest interventions). 3) Objective

factors of clinic features (XBm), mostly binary, which comprise factors such as "Referral

Required" (0/1 indicating whether a GP referral was required to conduct the test), "Age

Limit" (whether the clinic tested infants), "Booking Required" (whether an online book-

ing was required before testing), "Walk-in Allowed" and "Drive-through Allowed", and

"Wheelchair Accessible", which are all self-explanatory.

6.4.2 Feature Modeling Component

The Feature Modeling Component begins with abstracting the aggregated dataset and

preparing the training dataset, all for the purpose of predicting the testing capacities of

each clinic. To illustrate the process as simple as possible, we used LGAs as our basic

unit; however, postcodes could also be used as an alternative unit.

Compared to the one-clinic-one-LGA relationship (one-to-one), a multiple-clinics-

to-one-LGA relationship (multiple-to-one) will introduce uncertainty into the clinics’

daily test counts. As previously discussed, we did not have information on the daily

test counts of each clinic to directly support multiple-to-one relations, so we redefined a

new one-to-one relationship for each clinic in each multiple-to-one relationship for the

purposes of training. Specifically, we reconstructed a new one-one relationship for each
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multiple-one relationship to contain all clinics in a new LGA-based entity by rescaling

their clinic features to LGA-based wholes so that they could correspond to the daily

released test amounts on each LGA as ground truth. Hence, each clinic binary scaling

feature and clinic count in multiple-one are rescaled, to sum up as a whole feature:

XB(m,n) = {
∑n

0 x1,
∑n

0 x2, . . . ,
∑n

0 xm,n}, where m represents the number of binary factors

and n stands for the number of clinics in this multiple-one relation. Other features are

automatically transcribed to the previous value based on LGAs, which aligns the ground

truth of daily test amounts with the LGAs of a single clinic. Thus, the assumption of

aiming regression training in each LGA is defined as YLGA = {XN , XS, XB(m,n)}.

Table 6.1: Regression Model Performance

Models RMSE MAPE R2

Linear 770.65 141.86 0.27
GBDT 135.20 81.50 0.97
XGBoost 69.90 66.61 0.99
CatBoost 197.16 85.95 0.95
ExtraTree 379.57 73.16 0.82
LightGBM 184.45 79.88 0.96
DecsionTree 337.89 73.98 0.86
RandomForest 59.62 70.23 0.99

6.4.3 Regression Model Component

As COVID data involve time-series information, regression models serve as the common

choices for forecasting the testing capacities [36]. We thus tested various models, includ-

ing linear regressor, GBDT, XGBoost, CatBoost, ExtraTree, LightGBM, Decision Tree,

and RF on our constructed training dataset. The results are shown in Table 6.1, which

are evaluated by RMSE, MAPE, and R2. Of all models tested, the comparison result
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suggests that both RF and XGBoost are the most appropriate regression models for this

analysis task because they have representative performance on predicted accuracy and

feature importance. We determined to employ these two regression models and applied

them to the aggregated dataset to predict the possible testing amount for each clinic

per day, defined as yclinic. The regression estimates the daily clinic test by a regressor

f like: yclinic = f ({xN , xS, xB(m,1)}). yclinic is evaluated per the ground truth of YLGA,

as YLGA ≈∑n
1 yclinic. We adjusted and optimized the coefficients to ensure the outputs

are reasonable, such as ensuring the test amounts not to be negative and keeping two

decimal digits.

6.5 Front-end Visualization

We introduce the Front-end Visualization of ClinicLens, which enables iterative closed-

loop explorations of clinic testing capacity across multiple collaborative visual views. The

in-process visual exploration is followed by requirements and started from inspiration by

the visual metaphor "Lens on Map [128]", concurrently implementing other views and

interactions that dynamically bridge the connection to the Back-end Engine.

In addition to the four main visualization views, there are two supplemental views:

the Control Panel and the Model Features View. The Control Panel allows users to select

particular datasets, filter timelines, nominate which unit to use, select a preset set of

features or all features to include in the regression, adjust the lens size, and change the

color representations. The Model Features View shows the RF and XGBoost switches,
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along with the importance attached to each feature to help determine which model is

most appropriate for the user.

Turning to the four main views, the Map-Lens View offers options for navigating,

inspecting trends in the pandemic, selecting LGAs, and a heatmap of the clinics’ testing

capacities given the current settings. The Storage View is where users can save their

exploration results. The results of explorations can be saved at each iteration in the

form of ranking or tracking LGAs by their testing capacities. The Indented Tree-Matrix

Comparison View is designed to help users interactively inspect, compare, and configure

the clinic features to generate testing capacity predictions, while the Testing Capacities

Prediction View depicts the ground truth trends before and after any predictions are

made. More detail on each of these views is offered next.

6.5.1 Map-Lens View

The Map-Lens View is designed to serve as a trigger that instructs users to begin their

exploration. As such, this view offers a variety of buttons that allow interactivity, as

illustrated in Fig. 6.2. A well-designed lens, consisting of three nested layers, is attached

to the map’s scope once a size parameter has been selected in the Control Panel. We

specify these three nested layers to proceed clockwise, starting from the vertical and

stopping at the circular end.

Inner: The intervention timeline layer. The inner layer assembles the features

of the time series and the interventions over the selected period, including the level of

intervention from 0-3. A two-sided draggable slider is available, which can be used to
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filter the timeline by day, and two colors (turquoise blue for eased events and saxe blue

for restrictions) to distinguish 0-3 level-divided intervention events, where null means

no event and the superimposed two colors represent the strictest intervention.

Outer: The test and case count layer. The outer layer expands the space to evenly

distribute and radially express the daily test and case counts based on the chosen time

frame. To balance space utilization and data range, the radial height V of both test and

case amounts H is considered to combine piece functions that are equal to the same

calculation: H(day,tests,cases) ∝ a · ln V (tests, cases)+ V (tests,cases)
b . V (tests, cases) means

the amount number of either cases or tests, a and b are adjustable parameters used to

achieve a better screen fit. Different representations were painted, where true green

stands for tests and true red represents the cases.

Middle: The positive case rate layer. The daily rate of positive cases helps users to

better understand the relationship between testing capacities and cases. It is essentially

a highlighted color scale (from canary yellow to scarlet red ) to map the daily COVID-

19 severity of LGAs in the current Lens scope. The positive case rate for any given day is

calculated by Rday = Vcases
Vtests

.

In addition to basic navigation tools, the Map-Lens View likewise offers some buttons

for users to interact with the map. Users can draw polygons to select LGAs or use

nearby buttons to toggle each map layer on or off. The map’s scope is made up of three

superimposable layers: a base layer with pins representing clinic locations, a status

polygons layer, and a heatmap layer of testing capacities. The status polygons and the

heatmap of average testing capacities interact simultaneously with lens pans and zooms
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of the map.

The map base layer is used for locating each clinic in NSW. Each clinic is included in

an LGA. The basic setting of the status polygons layer is based on the number of clinics

in an LGA. To make it simpler for users to visually recognize multiple-one or one-one

relationships, we encoded the sea green for LGAs with multiple clinics and the wisteria

purple for an LGA with a single clinic. In addition, we commit to utilizing tangerine

yellow for user-selected LGAs through interactions. The testing capacities layer shows

the average testing capacities of each clinic on a heatmap scale from moon yellow to

strong red . The average testing capacity of a specific clinic Tclinic is calculated by:

Tclinic =
∑d2

d1
yclinic

d2−d1
, where d2 and d1 defined as time period from d1 to d2.

6.5.2 Storage View

User-centered design is being incorporated into an increasing number of visual analytics

systems. In ClinicLens, we employ a user-centered design that is similar to our previous

design in UcVE [233] to support the ability to save the results of users’ explorations for

later recall. The Storage View receives the save command and further compresses and

lists the LGAs that Map-Lens View had selected for sequential allocation, according to

the exploration results on Map-Lens View. With the exception of the first circle in each

sequence, which is called the location-unit circle and shows the sequence number and the

selected period in Map-Lens View, each LGA queried in the sequence is represented by

an LGA circle with the same colors as the LGA on the map. The precise clinic numbers in

each LGA, represented by the number-in-center LGA circles, are queued in descending
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Figure 6.2: The Map-Lens comprises three nested layers: (1) The intervention timeline
layer (M4), which encodes interventions and is adjustable through draggable sliders;
(2) The test and case count layer (M3), which are displayed through color bars; and
(3) the positive case rate layer (M3), rendered as a heatmap. The four buttons (Lens
Switch, Clinic Switch, Polygons Switch, and Heatmap Switch) control the lens and the
three superimposable map layers. These three layers are the base layer (M1), the status
polygons layer, and the heatmap layer (M2). The lens can also be locked in place on
the active scope using the Lens Locker button. When finished exploring the Map-Lens
View, users can preserve the results with the Save button or Delete the callback from
the Storage View.

order based on the total number of tests in the sequence.

As depicted in Fig. 6.1, the Storage View additionally allows for the reordering,

tracking, and highlighting of every sequence with associated links if they point to the

same LGA across different sequences (e.g., LGA Canterbury-Bankstown is tracked

rankings by link connections among sequences). The situations of all LGA circles in each

historical or current storage sequence can also be updated on the Map-Lens View as
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callbacks.

6.5.3 Indented Tree-Matrix Comparison View

Inspired by the hierarchical confusion matrix in Neo [74], we created and implemented

an indented tree-matrix structure of the clinics’ features by LGA. Abstracting a tree

structure, as shown in Fig.6.3, the hierarchy progressively represents LGAs, clinics, and

features by level.

The matrix on each leaf node shows the specific features of the clinics, while the

hierarchical structure in Fig.6.3(a) illustrates the progressive relationship between the

LGAs, clinics, and features. Subtrees can be expanded or collapsed, and features can

be revised by clicking. For a more comprehensive analysis, users can add LGAs to the

tree-matrix by clicking the LGA circles in the Storage View.

Additionally, each clinic’s leaf-fused features can be split into two blocks, as shown in

Fig.6.3(b). One block is a 1×6 vector of blocks representing the clinics’ objective factors.

(From left to right, these are Referral Required, Age Limit, Booking Required, Walk-in

Allowed, Drive-through Allowed, and Wheelchair Accessible). Salvia blue is used to

distinguish whether the (binary) value is "Yes" or "No"). The other block is a 7×48 matrix

of blocks detailing the business hours across a week from 0:00 to 24:00 for each day of the

week from Monday to Sunday. Here, a scale of red to green indicates from few to many

hours, with each block in the matrix representing half an hour as the basic unit to allow

for precise adjustments. Users can compare and edit the various features of the adjacent

vectors or matrices among the clinics using the Indented Tree-Matrix Comparison View.
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The prediction button queries the Back-end Engine for updated features and performs

regression analyses of the clinics’ testing capacities.

Figure 6.3: The Indented Tree-Matrix Comparison View combines the benefits of a
tree structure and matrices to interactively expand the hierarchy and balance any
adjustments to the objective factors and the business hours. Here, (a) shows the entire
structure of the Tree-Matrix View, while (b) illustrates how a unified vector and matrix
represent both the features of the objective factors and the business hours.

6.5.4 Testing Capacities Prediction View

The Testing Capacities Prediction View relies on two regression models. These models

provide users with insights to help interpret specific trends and correlation variations

in the testing capacities of each clinic in a given LGA over the chosen time period. This

view offers two modes of inspection across four views, delineated by five colors, as shown

in Fig.6.4. The prediction results can be saved as a graph.

The two modes of inspection: 1) a step-line chart that conveys the ground truth

against the predicted daily testing capacity for each clinic (along with its possible varia-

tions); and 2) a curve-line chart that shows smooth trends and discrepancies between

the ground truths and the predictions.
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Figure 6.4: The Testing Capacities Prediction View provides two alternative regression
models, RF and XGBoost, which are each based on different feature importances. The
four statuses (P1-P4) are based on different data inspection angles and are controlled
by corresponding buttons. These can be summarized into two modes: (P1-P3) Step-line
mode and (P4) Curve-line mode. (P5) shows the five colors, which designate: positive and
negative effects, the ground truths, the initial predictions, and the updated predictions
for clinic testing capacities by LGA.

The four switchable views: Users can switch between the four views via buttons

with each offering a different data inspection angle. The first view, the Testing Capacities

Prediction View, shows the predicted test counts for each clinic as bars under a daily

total cap versus actual testing capacities (check P1 of Fig.6.4). The Second is a view of

the updated predictions. This view displays the forecast test capacities for each clinic

after revisions to their features have been made. Total capacities are shown as step-line

charts for negative effects, and these are connected to step-line charts of the original

predictions and the ground truth (see P2). The third view shows the updated predictions

of the test counts for each clinic based on any changes made to the features. This view

also includes step-line charts of the original predictions and the ground truths without

positive and negative effect bars, as shown in P3. Last are the three curve-line charts

representing the ground truth, the initial predictions, and the updated predictions, as

depicted in P4.
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The five colors: These colors need to be reasonable and distinguished by other colors

used, we borrow true black the dashed lines representing the ground truth trends;

ultramarine blue for the solid lines representing the initial predictions; fuchsia red

for the solid lines representing the updated predictions; fuchsia red for the positive

effects of any changes made to the clinic features; and lime green for the negative

effects of any changes made to the features.

6.6 Evaluation

To evaluate ClincLens, we conducted three case studies, after which we gathered and

synthesized feedback through interviews with domain experts.

6.6.1 Case Study I: Overview of COVID-19 Broad Trends and

Regional Clinic Average Testing Capacities

We first conducted a general exploration of broad COVID-19 trends across all of NSW

using ClinicLens. After initializing the parameters to include the entire period from

1 January 2020 to 28 October 2022, we drove the lens to include all LGAs. The broad

trends returned are shown in Fig. 6.5(A).

Overall, we observed the following:

1) Generally, the daily test counts had a periodic 7-day trend, except for two irregular

patterns: a) a pulse at the beginning of the third wave of the Alpha and Beta variants;

and b) a peak and a sustained high level of testing beginning in the second half of
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2021. Then, from the middle of the NSW Government’s final intervention, testing counts

decreased. These were the reopening restrictions put in place between 8 November 2021

and 31 January 2022.

2) In the early days of the outbreak, daily case numbers were generally low. There

were even scattered days when there were no new cases. However, the situation started

deteriorating in 2022, peaking at 20.9k+ cases on 6 January. The spreading of the

Omicron and other multiple subvariants led to a sharp increase in case numbers, which

maintained high until the end of the study period.

3) Because logarithmic mappings of the test and case numbers are not intuitive at

small values, we instead examined the daily positive case rates. First, we divided the

entire time period into five segments, each with its own specific COVID-19 background.

Phase 1 covered the period of the outbreak before any restrictions were put in place, this

being from 1 Jan 2020 to 24 Mar 2020. Positive cases were reported on January 25 and

27, 2020, followed by an approximately one-month absence of cases before COVID-19

finally broke out in force at the beginning of March. After reaching a peak of nearly 1,000

cases per day in late March, the government decided to implement a limited intervention.

Phase 2 covers a period of three main restriction programs enacted between 25 March

2020 and 26 February 2021. These interventions successfully suppressed the spread, each

within a month, giving rise to a 10-month period of diagnosis rates under 0.2% against

three waves of the virus. Phase 3 spans a flat recovery period with no interventions from

27 February 2021 to 24 June 2021. During this period, NSW’s clinics conducted over

10,000 tests per day. Generally, positive case rates stayed under 0.1%, except for one day
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on 4 March 2021, when it reached 0.15%. In Phase 4, from 25 June 2021 to 31 January

2022, the Delta and Omicron variants successively overtook all measures to stop them.

In this period, the testing capacities of all clinics were overwhelmed to full loads. After

two temporary bursts of spread around the Christmas and New Year holidays, positive

case rates crossed the 40% mark and, unsurprisingly, continued to rise to a top rate of

58.16%. By 8 January 2022, case numbers had reached 149,033 from 256,229 tests. The

final phase covers the period from 1 February 2022 to 28 October 2022, where multiple

subvariants coexisted in the population. During this period, the clinics’ test capacities

gradually restored to levels allowing over 10k tests per day. However, given the voracity

of the subvariants, positive case rates stayed high. Fortunately, none exceeded 40%, and

the majority were below 25%.

We then explored the clinic distribution across NSW, observing that clinics had been

established based on populated areas. For example, most of the LGAs near the coast

had more than one clinic with fairly concentrated clinic densities. By contrast, LGAs in

the more inland areas had few authorized clinics. For example, Broken Hill, a regional

service town, had only two clinics to serve the entire Far West Region ‚Äì an area of

around 95,000 km2. This observation gave us some insight into the huge differences

in test counts between the coastal and inland regions. Hence, we used the heatmap

to decompose the major trends around the Greater Sydney Area by the five identified

phases of the pandemic, as shown in Fig.6.5(B). These heatmap results again confirmed

our findings of the broad changes in periodic testing capacities across the clinics in the

Greater Sydney Area.

153



CHAPTER 6. CLINICLENS: VISUAL ANALYTICS FOR EXPLORING AND
OPTIMIZING THE TESTING CAPACITY OF CLINICS GIVEN UNCERTAINTY

Figure 6.5: Case Study I: (A) The COVID-19 broad trends in NSW from 1 January 2020
to 28 October 2022, where intervention events in the timeline represented government
intervention events against the virus variants in varied periods and the scatter points
represented the varied distribution of clinics. (B) A five-piecewise periodic heatmap chain
of the average testing capacities of clinics in the Greater Sydney Area.
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6.6.2 Case Study II: Investigating the Impact of Clinic Features

on Testing Capacities

In this case study, we explored how the clinic features influence testing capacities. As

discovered in Case Study I, most clinics were operating at full capacity from 25 June

2021 to 31 January 2022. Hence, we began our investigation by adjusting the map lens

to this period.

The LGA of Sydney, which includes the central business district and close surrounds,

is a significant place in the Greater Sydney Area. It is an artery of communication to

northern Sydney, the southern airport, the eastern coastal beaches, and the western

residential areas. Zooming into the Greater Sydney Area, as shown in Fig. 6.6(A), we

drew a polygon to highlight the Sydney LGA and saved the current navigation results

to the Storage View. Seven clinics are located in this LGA (see Fig. 6.6(B)), ranking

fourth in the total number of tests performed during this time period. Clicking on the

LGA Sydney circle, we then browsed all the clinics’ features in the Indented Tree-Matrix

Comparison View. Here, we discovered that all clinics allowed walk-ins and all were

wheelchair accessible. Only one clinic required a booking before tests. Five out of the

seven clinics were open seven days a week and for more than eight business hours per

day. The other two only operated on weekdays and only for 4.5 hours per day and 8 hours

per day, respectively, as indicated in Fig. 6.6(C). Looking to check for the impact of these

clinics on Sydney’s testing capacities, we delved further into these two subcases.

Exploring the impact of a clinic’s business hours. Initially, we attempted to
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slightly adjust the business hours of each clinic, helped by the RF model. The predictions

that followed showed that this feature can indeed affect a region’s test capacities. Test

numbers are positively correlated with business hours and inversely correlated with

break hours. Additionally, over several iterative adjustments to the business hours, we

observed that test capacities were not sensitive to sudden increases or decreases in the

operating hours on a certain day. Rather, because there is uncertainty in the released

figures, the regression model adds together the testing numbers of the previous few

days. In addition, we also found that simply changing the business hours of a certain

clinic affected the predicted test numbers of other clinics on the same day. In fact, any

changes to the business hours on a certain day would cause variations in test counts over

a period of 7 days. As an example, to represent this phenomenon, we changed our two

weekday-only clinics, Central and 4Cyte, to open on the weekend with the same hours

(see Fig. 6.6(D)), while keeping the clinics’ other objective factors unchanged. Fig. 6.6(F)

shows the resulting predictions.

Within Fig. 6.6(F), Panel F1 shows the daily test numbers for both the ground truth

and the predictions for 3 December 2021 to 31 December 2021. Panels F2 and F3 show

alternate views of these data. Overall, these results confirm the fact that extending these

clinics’ business hours to Saturday and Sunday changes the predicted test numbers

for each clinic not only on those days but also for the previous few days. Additionally,

from the detailed tooltips, we discovered that both these clinics were significantly more

affected (positively) in terms of test number predictions than any of the other clinics

in the marked zone on the day of 11 December 2021. Generally speaking, opening on
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the weekend seemed to have a positive impact on the clinics from Thursday to Saturday,

most evidently on Saturday, and a negative impact from Monday to Wednesday. However,

from a periodic perspective, extending the business hours to the weekend had a positive

impact on overall test amounts for the week.

Panels F2 and F3 also reveal some other interesting patterns. For instance, test

numbers in the week of 11 December 2021 are different from the following week in that

extending the business hours had a greater impact on test numbers this week than

the next. The predicted peak was postponed by one day and, even though the clinic’s

test capacities would have already reached the regional limit, the highest peak of the

predicted values versus the actual values are essentially the same. This indicates that

the RF model learned from the time series features in the training dataset that the test

numbers during the Christmas and New Year holidays were not sensitive to a clinic’s

business hours. As such, the prediction results for the following week remained fairly

stable compared to the ground truth.

How different objective factors affect test capacities. Through multiple pro-

gressive explorations, we discovered that only a few clinics supported both walk-ins

and drive-through testing. The "Walk-in Allowed" clinics were mostly located in densely

populated areas, while the "Drive-through Allowed" clinics were mostly located in re-

mote areas, some of which required booking before tests. Additionally, we learned that

test numbers were correlated to both of these factors. In other words, because most

clinics were either walk-in or drive-through, not both, different combinations of factors

would cause different variations in the testing capacities predicted. Thus, we found
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that every clinic needed to set a "Yes" to at least one of "Walk-in Allowed" or "Drive-

through Allowed", plus a "Yes" to "Referral Required", "Age Limit", "Booking Required",

or "Wheelchair Accessible". Not doing this had a negative effect on test counts, and vice

versa. Further, we investigated the effects of adding break hours to the clinics’ business

hours. The results show that adding a few break hours (say, 1-2 hours) has no discernible

impact on testing capacities.

However, what did intricately impact the predictions was changing confluences

of the clinic features. As an example, Fig.6.6 shows a case where we set "Age limit"

and "Requires Booking" for both the Central Clinic and 4Cyte to "Yes" (see Fig.6.6(E)).

Additionally, we adjusted the business hours to include an hour break each weekday and

extended the Central clinic’s weekend hours by 2.5 hours and the 4Cyte clinic’s hours by 4

hours each day. The predictions, shown in Fig.6.6(G), are located in the same time period

as the previous subcases presented in curve-line mode. Although some trends in both the

initial and updated predictions are staggered, there were not too many differences in the

overall testing counts for the week because most trends matched properly. However, the

pattern shown in Fig.6.6(G1) illustrates the differences in trend over a five-week period

from 3 December 2021 to 7 January 2022. Inspecting the values more closely using the

tooltips, we discovered the predicted test numbers each day for the first three weeks

were generally lower than the initial predictions. This situation can perhaps more clearly

be seen from a side-by-side comparison of Fig.6.6(F3) and (G1), where the updated clinic

features cause a negative influence that outweighs the benefits of extending the weekend

business hours in terms of testing capacity. Moreover, Fig.6.6(G2) shows us that updating
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Figure 6.6: Case Study II: (A) Driving Map-Lens to the Greater Sydney Area within a
time constraint of 26 June 2021 to 1 February 2022. (B) Saving the exploration result to
the Storage View and selecting the LGA Sydney circle to (C) the Indented Tree-Matrix
Comparison View for further observation. (D)-(F) and (E)-(G) provide two different
subcases of predicted testing capacities with updated clinic features.

the features for our two focus clinics, Central and 4Cyte, affected the forecast testing

numbers for all clinics in the Sydney LGA on certain days. However, the most major

effects were felt in these two clinics. This result is consistent with our findings from the

previous case study. We also found it convincing that the predicted test numbers changed

in the first three weeks before the holidays and then remained relatively constant for the

next two weeks. This indicates that the models are accurately reflecting people’s testing

behaviors.
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6.6.3 Case Study III: Exploring the Optimization Strategy with

LGA-based Testing Capacities under Uncertainties

While exploring the aggregated COVID-19 dataset, we realized that making reasonable

updates to the clinics’ features could reduce the pressure on certain periods of daily

test capacities. Additionally, maintaining a similar volume of tests seemed to achieve

the most sustainable balance between clinics’ testing volume tolerance and efficient

testing services. Thus, we sought to explore patterns and optimize the clinics’ features

to prevent the spread of cases and inform policies for coexisting with the virus in the

post-COVID era. We discussed the previous two case studies with our domain experts

before undertaking the third case study, and, with their feedback in mind, we set out

to find strategies for optimizing the testing capacities of the clinics across one LGA

by adjusting their clinic factors. This included considering the geographical location of

each clinic, their business hours, and their other service details. The complete process

is shown in Fig. 6.7. Our focus points for this case study were three main city scopes

in NSW: the LGAs’ of Greater Sydney; the Central Coast, a regional area just north of

Greater Sydney, and the third most populous region of NSW; and the city of Newcastle,

north of the Central Coast, which is NSW’s second most populous region (see Fig. 6.7(1)

and (2)). Fig. 6.7(3) and (4) show the polygon drawn to highlight the Central Coast LGA.

We explored and stored four time periods, as shown in Fig. 6.7(5) before finally opting

for the period from 1 February 2022 to 28 October 2022. In this period, there were no

government interventions, while positive cases remained consistently high. In fact, the
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positive rates did not start to decline until the end of August which accordingly reflected

on the daily test that counts reflect a similar trend with the average weekly total of tests

performed reaching 40k prior to September and eventually dropping to approximately

20k after.

As Fig. 6.7(6) shows, the Central Coast LGA and its eight clinics reported the third

highest test counts in the state during this period. We first examined the average testing

capacities of each clinic in the Central Coast LGA through the heatmap. Next, we

selected this LGA and gathered statistics on the features of the clinics from the Indented

Tree-Matrix Comparison View. Fig. 6.7(7) shows the clinics’ features.

From this Fig.6.7(7), we can see that the Central Coast boasts one "almighty" clinic,

namely Gosford 4Cyte Pathology Clinic (B), which is open 10 hours per day and supports

both walk-in and drive-through clients. It is wheelchair accessible and does not require

referrals or bookings. Further, there is no age limit for the patients tested. The remaining

seven clinics in this LGA either support walk-ins or drive-throughs, not both, and most

operate for only 8 hours per day. From their locations on the Map-Lens View, we observed

that the Gosford clinic was grouped with three other adjacent clinics that could conduct

tests for each other. The other four were located in relatively independent regions.

Our formulated strategy for optimizing the testing capacities in this LGA is shown in

Fig.6.7(8). We made the decision to keep the entire business hours the same by appearing

the Saturday hours to six hours and appending one hour of break time on the other

days, as found in (E). From the Map-Lens View, we observed that the Doyalson clinic

(C) was geographically close to the Morisset clinic (A) in another LGA (Lake Macquarie)
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and that Morriset had stronger average test capacities but did not operate on weekends.

Hence, the Doyalson Clinic, to some extent, appeared to be an alternative to Morriset for

weekend testing. Both clinics were checked as "Drive-through Allowed" and "Wheelchair

Accessible" but, we ruled out setting Doyalson Clinic as Walk-in Allowed by checking

its location and surroundings on Google Maps with an abundance of caution. Thus, we

did not change any of Doyalson’s features. We further discovered that the Trubi Umbi

Clinical Lab (D), which was located in a populated area, was open for 5 hours for all

weeks but only provided 5 hours on the COVID-19 test on Monday, Wednesday, Thursday,

and Friday in our database. After confirming on HealthDirect 5 that the hours for Trubi

Lab were not an error in our database, we included updating (D) to (F) as suggestions in

the optimization strategy.

Fig. 6.7(9) shows the updated predictions. However, although there appeared to be

differences between the initial and the updated predictions, it was clear that roughly

half of the predicted daily test numbers were nearly identical for the time period, as

shown more clearly in (G). At the same time, we discovered that the initial and updated

predictions may be staggered during a period of trend. The total forecast test counts in

the updated predictions were slightly higher than the counts for the initial predictions

in certain weeks, as shown in (H). In other words, the updated predictions were higher

than the initial predictions for most days from 19 March 2022 to 1 August 2022.

Exploring deeper, we hovered over each clinic bar to read the tooltips and identify

which clinics contributed the most significant test amounts to the updated predictions
5A government-funded service updated clinic information in real-time: https://www.healthdirect.gov.au/
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Figure 6.7: Case Study III demonstrates various steps and visualizations conducted
using the system. (1) The Control Panel shows the time scale, unit, feature columns, and
lens size settings. (2) The Regression Model View examines the importance of features
after focusing on specific city scopes. (3) The Map-Lens View allows filtering of time
periods. (4) Drawing a polygon highlights a specific area. (5) The Storage View saves time
period sequences. (6) The Indented Tree-Matrix Comparison View focuses on a specific
region to compare clinic features. (7) Initial clinic features are compared with (8) updated
features. (9) The Testing Capacities Prediction View visualizes predictions and compares
daily test capacities.

on specific days. The statistics reveal that the Gosford and Tumbi clinics were primarily

responsible for the increases. This positive result accords with our strategy of extending

Tumbi’s business hours to include Tuesdays, Saturdays, and Sundays and increasing

Gosford’s business hours from no hours to 6 hours on Saturdays. Notably, the one-hour

break set at the Gosford clinic each day did not cause any unexpected fluctuations.

Overall, this proves that ClinicLens can be used to develop a reliable strategy for

optimizing testing capacities across an LGA.
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6.6.4 Expert Interview

After conducting the case studies, we arranged one-on-one structured interviews with

our three domain experts (E1-E3). From a discussion of our findings from the three case

studies, we received affirmation from the domain experts that ClinicLens archived their

initial expectations. We then provided them with tutorials and encouraged them to use

ClinicLens independently to explore issues of their own interest. Their feedback and

qualitative preferences are summarized below.

Reliability of the Back-end Engine. According to all the experts, ClinicLens

provides productive results when exploring and optimizing clinic testing capacities given

uncertainty. All the information included in the Back-end Engine was reasonable and,

after selecting the appropriate regression model based on performance, the experts felt

confident in performing their analysis tasks. This was, in part, thanks to ClinicLens’s

assistance in providing the RF and XGBoost models with automatic feature extraction

as steady streams to the Front-end Visualization. Additionally, ClinicLens also offers

all-feature regression, which means that new feature inputs can easily be added in the

future.

Effectiveness of the Front-end Visualization. The consensus among all domain

experts was that each view in the Front-end Visualization was considered in terms of

its visual form. They were all impressed with the ClinicLens design. E1 commented

on ClinicLens overall as being a valuable visual analytics system. He was especially

impressed with the visual expressions in the Testing Capacities Prediction View. E2

highlighted that "including a mobile lens on the map is a smart move. In addition to
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representing rich information, such as combining interventions, the Map-Lens View can

be persuasively explored using several different interaction techniques and serves as a

trigger for other views for collaborative exploration". E3, on the other hand, particularly

admired the Indented Tree-Matrix Comparison View. He thought the indentations of

the statistics not only effectively conveyed the structure of the data in a constrained

area but also allowed the user to adjust the clinic features for prediction in a worry-free

manner. Cycling through the user-friendly interactions in each view, the experts agreed

that ClinicLens had a low learning curve and could offer quick responses to COVID-19-

related questions through visual analytics and machine learning techniques that were

not just limited to clinic testing capacities. In general, they felt the whole visual pipeline

ran smoothly over the COVID-19 aggregated dataset, and the experts thought it could

significantly increase the efficiency of their analyses.

6.7 Discussion and Limitation of ClinicLens

The purpose of exploring testing capacities. The first and most important thing

to discuss is that we must accept the fact that predictions inevitably contain bias or

variance [34]. Any slight change in a clinic’s factors might lead to changes in testing

capacities. The predictions may vary with different attempts to change the same feature,

but few, if any, changes will result in a change of large magnitude. Further, some changes

resulted in staggered variations between the initial and updated prediction results. This

and the inherent uncertainty in the data are the primary reasons we recapped. We
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cannot trace the total test numbers announced for a certain day to the actual tests

conducted by each clinic. Rather, we can only estimate a clinic’s test capacity based on its

given features with machine learning models. However, this does offer a good overview

from a visual analytics perspective. Further, our aim stretches beyond simply predicting

test capacities. We have designed ClinicLens to help users optimize the testing capacity

of a clinic, a postcode, an LGA, or an entire state by giving them the option to adjust

multiple different clinic features.

Optimization Strategies. There is no limit to the number of optimization strategies

that can be explored through ClinicLens. Many strategies formulated will increase the

testing capacity of the selected region. However, considering that there is always bias and

uncertainty in predictions, we must experiment iteratively and combine real situations

with actual experience to find the most appropriate strategies. Generally speaking, a few

solid and preferred strategies should ultimately be reached after observing and closely

examining a given situation. Our case studies inspired and motivated the domain experts

to devise their own feasible strategies. For example, Case Study II taught them that they

could tweak various combinations of clinic factors, including just one clinic’s business

hours, to create a positive effect on a whole region’s testing capacity. Case Study III

showed them that ensuring each clinic was open consistently during the same business

hours each day also increased testing capacities, whereas adding break hours to days

had little impact.

Generalizability and Scalability. The generalizability and scalability of our Clini-

cLens can be considered in terms of three perspectives. First, the aggregated COVID-19
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dataset is only an example of the data that could be used to power ClinicLens. Our

demonstrated visualizations ran perfectly both over subsegments of the data and over

the whole time period under study. Second, the architecture of ClinicLens is designed to

purposefully separate the Back-end Engine from the Front-end Visualization. This means

that different models can be added or revised very easily. In addition, the framework

provides all-feature regression, which means that ClinicLens is flexible. It can easily

accommodate future additions of new features or input. Lastly, even though ClinicLens

in its demonstration form is limited to exploring COVID-19 data, all our domain experts

agree that this could be a productive visual analytics system for other epidemiological

analyses. With slightly adjusted parameters and by adding a few more visualization

views to help analyze spatiotemporal features, ClinicLens could be used to analyze clinic

testing capacities for other infectious diseases.

Limitations. Our approach remains constrained by certain implicit features of

the clinic information. First, some implicit features may cause fluctuations in a clinic’s

predicted test capacity. For example, uneven population density and the size of each clinic

in terms of the number of employees and the quality of the medical services provided

may influence a person’s preference for where they get tested. Additionally, we did not

account for any differences in business hours that may have impacted the prediction

results. For example, there would clearly be different forecasts for clinics that were open

at 5 am and not 5 pm. We also did not demarcate clinics authorized to conduct rapid

testing for international airline departures (where the results are made available within

48 hours) as these features give rise to more complex regression analysis. One feature
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that the experts requested after using ClinicLens was the ability to add or delete clinics

from an area and forecast the impact on the other clinics in the region. ClinicLens does

currently not do this, but it may be a function we add in future work.

6.8 Conclusion of ClinicLens

In this paper, we presented ClinicLens, an interactive visual analytics system for use by

domain experts to both explore location-based COVID-19 case and test statistics as well

as optimize the testing capacities of the clinics in selected locations. Motivated by the

current challenges in preparing for infectious disease outbreaks and informed by expert

requirements, ClinicLens comprises Back-end Engine that is automatically driven by AI

to identify and extract features that may affect clinic testing capacities and Front-end

Visualization system that offers multiple perspectives on the data to support planning

and decision-making. Importantly, the framework is robust to the uncertainty inherent

in the available COVID-19 datasets. Three real-world case studies along with expert

interviews validate the usefulness and effectiveness of ClinicLens. As such, we believe

ClinicLens offers a fresh perspective on the decision-making surrounding clinic testing

capacities for infectious disease management. In the future, we intend to address the

current limitations of ClinicLens as well as deliver more visual assistance for real-world

analysis tasks to domain experts.
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CONCLUSION AND FUTURE DIRECTION

This thesis focuses on conducting a series of visual comparative studies on remarkable

data features in multivariate data. The study begins with a comprehensive literature

review of related works in the areas of methodology-based, multivariate-based, and

scenario-based research. Based on the current research problems and gaps, the sig-

nificance and objectives of the research are concisely outlined. The research pathmap

consists of four main approaches in a progressive pipeline, each of which focuses on ex-

ploring and comparing different aspects of multivariate data in various domains. The four

approaches offer different emphasis on enhancing the understanding and comparison of

datasets, including:
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7.1 Conclusion and Future Direction of PansyTree

The PansyTree, is a novel approach for comparing hierarchical structures and node

numerical multi-attributes by merging union trees. In this study, we introduce a unique

icon called "Pansy" to represent each merged node in the hierarchical structure. The

Pansy icon is characterized by three colors that map data items from three distinct

datasets at the same hierarchical position or tree node. The petals and sepals on the

Pansy icon are designed to display the values of each attribute and the hierarchical

information. Moreover, we redefine the links in force layout encoded by width and

animation to improve the communication of hierarchical information. We apply the

PansyTree to CNCEE datasets and present two use cases to demonstrate its effectiveness.

Although PansyTree provides a visualization solution for comparing both hierarchical

structures and attribute values by merging three hierarchies, its potential for multiple

hierarchy comparisons in various scenarios is worth exploring. In future research and

development, we aim to investigate and evaluate the extent to which PansyTree can

effectively handle merging larger datasets and accommodating a higher number of

attribute values. This exploration will involve assessing the scalability and performance

of PansyTree under different conditions.

Moreover, we will emphasize enhancing the ability to compare attributes and hier-

archical structures through visual encoding and interaction techniques. This includes

refining the visual encodings used for representing attribute values and finding ways to

facilitate intuitive interactions that allow users to explore and analyze the hierarchical

data efficiently. By enhancing the visual encoding and interaction capabilities, we aim to
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provide users with more powerful tools for making insightful comparisons and gaining a

deeper understanding of complex datasets.

7.2 Conclusion and Future Direction of +msRNAers

The +msRNAers, which takes into account the spatiotemporal features of virus trans-

mission patterns and multidimensional features of objective risk factors in communities,

enabling portrait-based exploration and comparison in epidemiological analysis. We

applied +msRNAer to aggregate COVID-19-related datasets in New South Wales, Aus-

tralia, combining COVID-19 case numbers, geo-information, intervention events, and

expert-supervised risk factors extracted from LGA-based censuses. We demonstrated

the +msRNAer workflow and evaluated the feasibility, effectiveness, and usefulness by

applying aggregated COVID-19-related datasets via one user study and three subject-

driven case studies. According to positive feedback from experts, +msRNAer provides

a general understanding of analyzing comprehension that not only compares relation-

ships between cases in time-varying and risk factors through portraits but also supports

navigation in fundamental geographical, timeline, and other factor comparisons. By

adopting interactions, experts discovered functional and practical implications for po-

tential patterns of long-standing community factors against the vulnerability faced by

the pandemic. Experts confirm that +msRNAer is expected to deliver visual modeling

benefits with spatiotemporal and multidimensional features in other epidemiological

analysis scenarios.
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Based on the feedback from participants in the user study and discussions with do-

main experts, we have targeted four aspects to focus on in our future work of +msRNAer.

Firstly, we plan to update our prototype by importing refined COVID-19 case data

and new census data later next year, when community datasets are collected during the

pandemic.

Secondly, to increase the diversity of community profiles, we will include more vari-

ables, such as relationships, ethnic groups mentioned by domain experts, and education

level. We will continue to apply machine learning algorithms, such as Principal Compo-

nents Analysis (PCA) for dimensionality reduction to add more categorical indicators

and time series predictions for infectious cases affected by risk factors. We also expect to

propose a rating system for all variables with assistance and evaluation from domain

experts, which would be able to quantify the characteristics of communities. By design-

ing an appropriate measurement matrix for indicators, we will be able to create index

metrics for future use in other epidemiological analysis scenarios. These metrics will not

only assist decision-makers in making pandemic prevention measurements but will also

educate the public on personal influence, and eventually, how to work together to tackle

this great challenge through their own efforts.

Thirdly, with the improved approach, we intend to conduct a systematic review with

more government staff. As suggested, we will offer an automated reporting function for

storytelling purposes. This function would help disseminate the right messages to the

public.

Finally, we will consider applying our prototype to more transmission datasets in
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epidemiological analyses to validate the scalability of +msRNAers.

7.3 Conclusion and Future Direction of UcVE

The UcVE, a user-centered visual explorer for progressive comparing multiple visu-

alization units in spatiotemporal space. We create unique unit visualization with the

customizable aggregated view based on the visual metaphor of flower bursts. Each visu-

alization unit is encoded with the abstraction of spatiotemporal properties. To reduce

user cognition load, UcVE allows users to visualize, save, and track in-the-process ex-

ploration results. In coordination of storage sequence and block tracking views, UcVE

can facilitate comparison with multiple visualization units concurrently, selected from

historical and current exploration results. UcVE offers a flexible geo-based layout, with

aggregation functions and temporal views of the timeline with categorized events, to

maximize the user’s exploration capabilities. Finally, we demonstrate the usefulness

by using COVID-19 datasets, case studies with different user scenarios, and expert

feedback.

In light of these limitations and the feedback from the domain experts via UcVE’s

evaluation, we will update our system by expanding the diversity of related COVID-19

datasets and updating the supporting functions. We will take into consideration the NSW

government follow-up updates and obtain more precise and thorough location data. For

example, we can drill down from LGAs to postal areas and even construct a visual analytic

system based on travel paths if permitted. Simultaneously, we will consider incorporating
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census data for each sampling location, such as local population, economic indexes, etc.,

to better understand the relationship between these factors and the epidemical spread.

We will also improve the system storage function to enable the collaborative exploration

of multi-users online as well as an analysis of multiple user interaction behaviors.

With these improvements, we also plan to conduct a systematic evaluation with more

government staff. As suggested, we will offer an automated analysis function of real-time

data, which would help relevant policymakers apply proper decisions.

7.4 Conclusion and Future Direction of ClinicLens

The ClinicLens, an interactive visual analytics system for exploring and optimizing

the testing capacities of clinics in spatiotemporal and multidimensional features given

uncertainties. ClinicLens houses a range of features based on an aggregated set of

COVID-19 data. It comprises Back-end Engine and Front-end Visualization that take

users through an iterative exploration chain of extracting, training, and predicting

testing-sensitive features and visual representations. It also combines AI4VIS and visual

analytics to demonstrate how a clinic might optimize its testing capacity given the

impacts of a range of features. Three qualitative case studies along with feedback from

subject-matter experts validate that ClinicLens is both a useful and effective tool for

exploring the trends in COVID-19 and optimizing clinic testing capacities across regions.

Future work on ClinicLens involves several key areas of development. First, we

plan to enhance the Back-end Engine by incorporating additional implicit features and
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integrating state-of-the-art algorithms. For instance, we will explore the utilization of

advanced algorithms outlined in [121], which can enhance the system’s robustness to

uncertainty and improve feature modeling and predictions. These advancements will

contribute to more accurate and reliable results, empowering decision-makers with better

insights for managing infectious disease outbreaks.

Another aspect of our future work involves the development of a clinic editor as a

new system function. This feature will provide users with the ability to edit and update

clinic information, facilitating efficient management of clinic data within the system. By

incorporating this editor function, we aim to enhance the usability and versatility of our

system, enabling users to maintain accurate and up-to-date clinic information.

Furthermore, we have plans to expand the coverage of ClinicLens beyond its current

implementation in New South Wales. We aim to extend the system’s capabilities to cover

other states and territories in Australia, creating a comprehensive and real-time system

for managing future outbreaks of infectious diseases nationwide. This expansion will

enable health authorities and policymakers to have a unified and coordinated approach

to effectively respond to potential outbreaks across different regions.

By incorporating implicit features, integrating advanced algorithms, developing a

clinic editor function, and expanding ClinicLens to cover other states and territories, we

are committed to continuous improvement and ensuring that our system remains at the

forefront of disease management and public health initiatives.
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7.5 Conclusion

The PansyTree, +msRNAers, and UcVE have potential capacities that are designed

as general visual analytical approaches that can be easily expanded to other eligible

multivariate datasets. In contrast, the ClinicLens pays more attention to providing visual

solutions for the urgent needs of clinics’ testing capacities. All these approaches provide

flexible and interactive methods for users to explore, compare, and understand complex

data in different application scenarios and have received positive feedback from experts

in relevant fields.

In conclusion, the research presented in this thesis focuses on conducting a closed loop

of visual comparative studies on multivariate data analysis. The four main approaches

proposed offer different emphases on enhancing the understanding and comparison

from different angles of multivariate data. Future direction on this topic could include

further refinement and expansion of these approaches, improvements on exploring and

comparing functions, integration with real-world users, and the development of new

visual analytical methods to pursue more accurate, intelligent, and real-time responses,

especially on the 3E (effectiveness efficiency, and experience) of visualization performance

in multivariate data.
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APPENDIX

All four related approaches’ codes in this thesis have been posted available on Github:

1. PansyTree: https://github.com/YuDong5018/PansyTree.

2. +msRNAers: https://github.com/YuDong5018/msRNAers.

3. UcVE: https://github.com/YuDong5018/UcVE.

4. ClinicLens: https://github.com/YuDong5018/clinic-lens.
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