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ABSTRACT 

KEYWORDS: Computer Vision, Construction Progress Monitoring, Unsupervised 

Segmentation, Self-supervised Classification, Point Clouds, Deep 

Learning, Data acquisition, 3D reconstruction, As-built modelling, Feature 

Engineering. 

Progress monitoring is one of the essential tasks while executing a construction project. 

Effective monitoring leads to accurate and timely analysis of the project’s progress 

which is required to make vital decisions for project control. Conventional progress 

monitoring techniques are error-prone, time-consuming, and require human effort. 

Therefore, this research aims at automation of the monitoring process of construction 

progress through computer vision to enable effective control of projects.  

The significance of research on computer vision-based construction progress 

monitoring is high as it provides advantages over conventional technologies in terms of 

reduced labour costs, improved quality and increased productivity. However, there are 

direct benefits of using vision-based progress monitoring which can help in better and 

informed project management. Firstly, computer vision can be used to automate the 

process of construction progress monitoring, which can lead to improved accuracy and 

efficiency. This is because computer vision can be used to extract data from images and 

videos without the need for manual intervention. This can save time and money, and it 

can also reduce the risk of human error. Secondly computer vision can be used to 

provide increased visibility into the construction process. This can be helpful for project 

managers and stakeholders, as it can help them to track progress and identify potential 
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problems early on. This can help to prevent delays and cost overruns. Finally, computer 

vision can be used to improve decision-making in construction projects. This is because 

it can provide project managers with real-time data about the progress of the project. 

This data can be used to make informed decisions about scheduling, resource allocation, 

and quality control. With this motivation, this research is focused on achieving three 

key objectives. 

The first objective is to explore the state-of-the-art of progress monitoring in 

construction in the literature and in practice. The key takeaway from the first objective 

is establishing the need to work towards a robust, autonomous, and implementable 

progress monitoring technology for progress monitoring of construction projects. 

Computer vision is identified as an appropriate technology that fulfils all the essential 

requirements for monitoring projects autonomously. Therefore, the second objective 

aims to develop an integrated framework for Computer Vision-Based Construction 

Progress Monitoring (CV-CPM). 

The developed three-stage framework discusses in detail the various tools, 

technologies, and algorithms involved in the process of CV-CPM. The element 

identification stage is found to be one of the key stages of the framework. Previously, 

researchers have experimented with automating this task using heuristics-based 

approaches, which require manually applying constraints and, therefore, an ample 

amount of complex coding and domain knowledge. Recently, learning-based 

approaches are being explored, which take the input as the as-built data from the 

projects, captured in the form of 3D point clouds. However, the existing supervised 

approaches require much effort in manually labelling the training data. Also, the 
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training data cannot be reused in other projects because each construction project 

involves a unique set of elements, and as such, preventing them from being generalised. 

Therefore, there is the need for a hybrid approach for as-built modelling to overcome 

the individual shortcomings of the heuristics and learning-based approaches for element 

identification in point clouds. 

Finally, the third objective aims to develop a novel hybrid self-supervised approach for 

element identification for CV-CPM. In this context, the proposed hybrid network using 

deep learning based on a contrasting approach concatenated with a set of handcrafted 

features can extract specific features to differentiate between various elements on a 

construction site. This hybrid feature vector enables the network to segment various 

building elements from the construction point cloud data and classify them into six 

object classes, i.e., wall, beam, column, door, window, and slab. The model is trained 

and evaluated on the S3DIS dataset with the classes relevant to construction stages. The 

results are evaluated using the standard metrics for precision, recall, F1-score, and 

overall accuracy. Finally, the developed pipeline titled ‘ConPro-NET’ is tested on a 

mid-construction dataset. The results showed that ConPro-NET achieved an overall 

accuracy of 80.86% on the S3DIS test dataset and 80.95% on the case study dataset. 

The hybrid feature model gave a significant improvement of 24.49% over deep learning 

features and 14.54% over handcrafted features on the S3DIS dataset.  
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CHAPTER 1.  

INTRODUCTION 

Construction Progress monitoring is one of the key tasks in construction processes. It is one of 

the toughest challenges a construction manager must encounter. It is considered as a critical 

success factor for projects to be delivered on time and within budget and as one of the most 

difficult tasks due to the complexity and interdependency of activities. Accurate construction 

progress measurement has been shown to be critical to the success of a building project (C. 

Kim, Son, & Kim, 2013a). Despite project control being very important, the construction 

industry does not have efficient monitoring systems compared to other industries (Navon & 

Sacks, 2007)(K. Han, Degol, & Golparvar-Fard, 2018).  

The progress of a project is represented in terms of percentage which is calculated using earned 

value of individual activities. The basic concept of progress monitoring involves computing 

actual progress and comparing it with expected progress at a particular instance and make 

timely decisions for corrective actions. 

The chapter has been divided into five sub sections. The first sub-section is on motivation. The 

second sub-section is on the broad research gaps identified. The third sub-section states the 

objectives of the thesis. The fourth sub-section presents the overall methodology of research, 

and the fifth sub-section presents the thesis organization. 

1.1 MOTIVATION 

Construction industry interests for timely and accurate information on the progress of the 

construction project are increasing. Construction managers need to have a check on progress 
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for schedule completion of the projects (Hamledari, McCabe, Davari, & Shahi, 2017). They 

also want information about the activities which are ahead of schedule and behind schedule to 

reallocate the resources. Progess monitoring also helps to reduce the risk of project failure by 

identifying potential problems early on, project managers can take steps to mitigate those risks. 

This can help to ensure that projects are completed on time and within budget. 

Progress monitoring can help in enhancing data-driven decision making. Manual visual 

observations and traditional progress monitoring help to obtain feedback about progress 

measurement but are time-consuming, error-prone, and infrequent (Marianna Kopsida & 

Brilakis, 2020).  By conducting research in this field, we aim to develop data-driven monitoring 

approaches that provide accurate and reliable information for decision-making processes. This 

involves utilizing advanced technologies such as data analytics, machine learning, and artificial 

intelligence to process and analyze monitoring data. 

A recent article highlighted the benefits of progress monitoring in quantitative terms with the 

data collected from the industry (Unearth, 2023): 

• Cost Savings: Effective progress monitoring can help identify delays, inefficiencies, 

and potential issues early in the construction process. By taking prompt corrective 

actions, construction companies can avoid unnecessary expenses associated with 

rework, schedule overruns, and material wastage. Cost savings through progress 

monitoring have been reported to range from 5% to 20% of the total project budget. 

• Time Reduction: Timely monitoring allows project manag(Unearth, 2023)ers to 

identify bottlenecks, track progress, and take necessary steps to avoid delays. By 

optimizing resource allocation and scheduling, construction projects can minimize time 

overruns and potentially accelerate the overall project timeline. This can lead to earlier 
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project completion, reduced financing costs, improved cash flow, and earlier revenue 

generation. 

• Improved Productivity: Progress monitoring provides valuable data on labor 

productivity, equipment utilization, and material flow. By analyzing this information, 

construction companies can identify areas for improvement and implement measures 

to enhance overall productivity. Improved productivity translates to better project 

performance and increased profitability. 

However, construction progress monitoring currently is a cumbersome task and reporting and 

analysing of results can be very costly and resource consuming (T. Omar & Nehdi, 2016a). 

These numbers of savings can improve if progress monitoring is done in an efficient and 

automated manner. Therefore, there is a need for an automated platform that can recognize the 

progress in real-time, analyse and report the results (Pučko, Šuman, & Rebolj, 2018).  

Many technologies like RFIDs, Barcodes, GIS, LiDAR, RGB-D Cameras, Photogrammetry, 

videogrammetry, laser scanners etc., have been used for extracting the data and evaluating the 

progress from construction sites (T. Omar & Nehdi, 2016a). Many of these technologies though 

researched upon have not delivered an implementable level of automation and accuracy and 

therefore are not being used in practice .  

There is no study on level of adoption of the existing state of the art practices for progress 

monitoring in construction, particularly in the context of Indian construction industry. 

According to the MoSPI (Ministry of statistics and Program Implementation) report, in general 

there is a delay and cost overrun observed in the completion of many construction projects. 

Ineffective progress monitoring has been attributed as one of the primary reasons for these.  
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There is also no study on the challenges faced in the industry in context of the applied 

approaches of progress monitoring. Even the list of the available progress monitoring methods 

was last evaluated and classified in 2016 (T. Omar & Nehdi, 2016a). There have been a lot of 

technical advancement in these methods in the last five years, and a new classification and 

evaluation of technologies is required (Alizadehsalehi & Yitmen, 2016a, 2021). (Extended 

literature review for this is presented in Section 2.3) 

Even the selection of progress monitoring technology is subjective and is no scientific approach 

has been developed towards this, the factors which needs to be considered while selecting a 

progress monitoring technology for a project are not available directly in literature. 

Over the past decade or so, the nature of construction and infrastructure management is shifting 

towards a paradigm in which there is an increasing demand for understanding various aspects 

of what is happening at the field from a 3D perspective. There are many challenges in this 

domain which have been identified and worked upon by the researchers but still the accuracy 

of point cloud models, noise in the data captured, incorrect identification of structural elements 

remains to be the key problems faced (Z. Ma & Liu, 2018). 

Images and videos for documentation and visualization are currently being used at construction 

projects (Dimitrov & Golparvar-Fard, 2014). It is convenient to capture images and they can 

be transferred in real time. The computational power changed in the last decade and the 

availability of mobile cameras have significantly driven the monitoring process to use a vision-

based approach. The decrease in camera cost and the improvement in communication 

technologies have motivated this research to be based on the inputs from vision-based 

technologies. The decreasing cost of laser scanners is also a driver to adopt vision-based 

technologies for monitoring projects in future. 
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Therefore, the computer vision-based progress monitoring methods have been explored very 

recently. However, these approaches have contributed to different parts of the whole pipeline 

for example in data acquisition (Q. Wang, Tan, & Mei, 2020), 3D reconstruction (Z. Ma & Liu, 

2018) or as-built modelling (Hyunsoo Kim & Kim, 2021). There are numerous methods, tools, 

techniques, and algorithms at every stage of the process, however there is no study that 

assembles these components in a systematic and structured manner. There is a critical need for 

a framework which encompasses these components and the comparison withing various 

options at each stage. Also, there is a requirement that these should be positioned and compared 

for better and informed selection. (Extended literature review for this is presented in Section 

3.1 and summaries in section 3.3) 

The areas of priority for research for onsite implementation of computer vision based progress 

monitoring  have not been identified till now and there is a need to explore these with future 

research strategies. 

Next in these computer vision-based methods, researchers have used heuristics (Kang, Patil, 

Kang, Koo, & Kim, 2020) as well as supervised learning-based models (Park & Cho, 2022) to 

estimate the progress. However, these approaches have their individual shortcomings and 

cannot be applied for practical implementation. Not only this, but there are also other 

challenges involved for practical implementation and feasibility of these approaches on site.  

Some of these challenges include the lack of smooth and automated workflow for scan to BIM, 

use of laborious and inefficient heuristic-based approaches and use of supervised learning 

approaches which requires a lot of labelled data. Also the data being used for training the 

models is of fully constructed buildings rather than under construction buldings. (Extended 

literature review for this is presented in Section 5.2) 
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Therefore, with this motivation and background the next section summarises the specific 

research gaps in the three key areas that this research will focus upon. 

1.2 RESEARCH GAPS 

The key area wise research gaps this thesis focuses on are listed below: 

A. Construction Progress Monitoring - State of the Art: Literature and Practice 

1. There is currently no structured information on the type of progress monitoring 

technologies being used by construction companies (India and UAE). 

2. There is no information on the challenges faced by the construction companies using 

the conventional progress monitoring technologies. 

3. A systematic classification and evaluation of existing progress monitoring technologies 

does not exist. 

4. There is no structured information about the factors and their relative importance that 

influence the selection of a progress monitoring technology for a project. 

B. Computer Vision Based Construction Progress Monitoring (CV-CPM) 

1. There are several approaches in literature focusing on CV-CPM, however they are 

siloed and therefore there is a need for an integrated framework for CV-CPM. 

2. There are numerous tools, techniques, algorithms these methods focus on and therefore 

there is a requirement that these should be positioned and compared for informed 

selection. 

3. The areas of priority for research for onsite implementation of CV-CPM have not been 

identified till now and there is a need to explore these with future research strategies. 

C. Element Identification and Recognition for CV-CPM 

1. The solutions involving Scan-to-BIM are still not matured, various studies have been 

conducted, still there is lack of smooth and automated workflow. 
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2. Currently proposed heuristics-based techniques require a lot of effort in hard coding 

and domain knowledge about the facility being constructed. 

3. Learning-based techniques have potential to be used in the three key steps of vision-

based progress monitoring but have been only sparsely explored. 

4. The data being used currently is of fully constructed buildings & spaces, the 

constructions stage data is something different and should be generated and utilized. 

5. Existing methods are based on supervised learning of features and requires a lot of 

labelled data that is not available for construction domain and hence cannot be 

implemented easily. 

1.3 THESIS OBJECTIVES 

Within the scope of this study, the following objectives are expected to be achieved for 

mentioned challenges: 

1. To evaluate the state of the art of progress monitoring in construction. 

a. To evaluate existing solutions for progress monitoring using literature, actual site-

data and challenges that are faced. 

b. To provide a systematic classification and evaluation of the available progress 

monitoring technologies. 

c. To list out the factors that affect selection of progress monitoring technology for a 

project. 

2. To develop an integrated framework for vision-based progress monitoring in construction. 

a. Develop an integrated framework that captures the process requirements of 

construction progress monitoring and enables the characterization and 

categorization of current and future work in the area. 
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b. Utilize the framework to position and compare various concepts and tools adopted 

by published research studies. 

c. Identify areas and strategies for future work in the area. 

3. To develop a pipeline using hybrid self-supervised approach for automatic capture of 

constructed elements from point clouds and using it for progress monitoring in 

construction. 

a. To study the combined used of heuristic and learning based approaches (hybrid 

approach). 

b. To develop a customised approach for object segmentation specifically for 

construction 

c. To utilize concepts from feature engineering to and improve the performance of the 

method. 

1.4 THESIS SCOPE 

The thesis begins evaluation and classification of various available technologies for achieving 

objective 1. However, the scope for objective 2 and objective 3 is limited to 3D computer vision 

technologies for construction progress monitoring. 

1.5 RESEARCH METHODOLOGY 

The following Figure 1.1 shows the overall methodology adopted for this research. The 

identification of this research area (Progress Monitoring in Construction) was done through the 

practical experience from industry, current on-going trend in the literature (Patel, Guo, & Zou, 

2021) as well as the estimated impact on the industry (Unearth, 2023). The state of the art of 

the technologies used in construction industries were documented and were found to be in-

effective. 
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In the next step, challenges pertaining to progress monitoring in the industry were identified 

and then a preliminary review of literature was conducted to check the potential solutions 

available. It was observed that there is a considerable gap in research and implementation due 

to various technological and economic reasons. With this as motivation, gaps were identified 

and objectives aiming towards these gaps were set. The scope of the study was also constrained 

to solve it in the given timeframe. In final step, the work towards each objective was conducted 

and the findings were used as an input for solving the next research gap. The first two objectives 

adopted a qualitative methodology, the third objective adopted an iterative design methodology 

followed by a quantitative method for testing. 

It should be noted that, this research contains both qualitative and quantitative methodologies, 

based on the specific gap to be solved at each objective. Therefore, a mixed methodology is 

used to integrate qualitative and quantitative approach together. 
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Figure 1.2 Consolidated methodology for each research objective. 

1.6 THESIS ORGANISATION 

This thesis is structured into seven comprehensive chapters. The first chapter serves as the 

'Introduction,' laying the foundation for the research by presenting the background information, 

discussing the motivation behind formulating the problem, identifying research gaps, and 

outlining the objectives to be achieved.  

The second chapter is dedicated to the evaluation and classification of progress monitoring 

technologies in the construction industry. This chapter primarily focuses on accomplishing 

objective 1, providing an in-depth analysis and assessment of existing technologies used for 

monitoring construction progress. 

Moving forward, the third chapter undertakes a detailed literature review, specifically 

exploring computer vision-based approaches for construction progress monitoring. This 
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chapter synthesizes and examines the existing body of knowledge in the field, shedding light 

on the various methodologies and techniques employed. 

In the fourth chapter, a comprehensive and elaborate 'Integrated Framework for Computer 

Vision-Based Construction Progress Monitoring (CV-CPM)' is introduced. This framework is 

meticulously defined, outlining its components and functionalities, and its development centers 

around accomplishing objective 2. 

The fifth chapter delves into the 'Hybrid Self-Supervised Approach for CV-CPM,' a novel 

methodology specifically designed to enhance the computer vision-based progress monitoring 

system. Objective 3 is the main focus of this chapter, as it explores the development and 

implementation of the hybrid self-supervised approach to further improve the accuracy and 

efficiency of the CV-CPM system. 

Chapter six presents a captivating case study, illustrating the practical application and real-

world results of the developed CV-CPM system on an under-construction project. This chapter 

provides valuable insights into the system's performance and effectiveness in a real-life 

scenario. 

Finally, the seventh chapter concludes the thesis, summarizing the key findings, highlighting 

the contributions made by the research, discussing any limitations or challenges encountered, 

and offering recommendations for future studies and advancements in the field of computer 

vision-based construction progress monitoring. 

By organizing the thesis into these seven chapters, the research aims to provide a 

comprehensive and systematic exploration of the topic, presenting a clear progression from 



32 

 

problem formulation and literature review to the development and evaluation of innovative 

approaches for construction progress monitoring. 
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CHAPTER 2.  

IDENTIFICATION, CLASSIFICATION AND EVALUATION OF 

PROGRESS MONITORING TECHNOLOGIES IN 

CONSTRUCTION 

In the previous chapter, the motivation, various research gaps and objectives were presented. 

This chapter is focused on the objective 1 of this thesis. This chapter have eight sub-sections. 

The first sub-section is on Introduction. The second sub-section is on the questionnaire survey-

based field study. The third sub-section states the literature review method. The fourth sub-

section presents the classification of automated progress monitoring technologies. The fifth 

sub-section presents the factors affecting progress monitoring technology selection. The sixth 

sub-section presents the result of a questionnaire survey for identifying the relative importance 

index (RII) of the various factors. The seventh sub-section is discussion and followed by the 

final sub-section on conclusions. 

2.1 INTRODUCTION: PROGRESS MONITORING IN CONSTRUCTION 

Progress monitoring is one of the essential tasks while executing a construction project. 

Effective monitoring will lead to an accurate and timely analysis of the project's progress which 

is required to make vital decisions for project control (Ekanayake, Wong, Fini, & Smith, 

2021b). On the other hand, inefficient and delayed updates regarding the project's progress, 

estimated by comparing the as-built status with the as-planned status, will lead to time and cost 

overruns (Pushkar, 2018). Automated progress monitoring techniques are preferred over the 

conventional manual data entry method as the latter is time-consuming and complex, especially 

if the project scope is vast. Numerous tools and technologies are being used for progress 
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monitoring of construction projects (Alizadehsalehi & Yitmen, 2019; T. Omar & Nehdi, 

2016a). Therefore, it is necessary to systematically classify and evaluate them based on their 

advantages and limitations for successful and appropriate implementation. Hence, this chapter 

identifies several progress monitoring techniques and evaluates them by highlighting their 

advantages and limitations. Several factors affecting the selection of these technologies for 

implementation have also been identified and ranked. 

2.1.1 Research Gaps and Sub-objectives 

A project life cycle in a construction industry involves several stages, like designing, planning, 

scheduling, execution, monitoring, controlling, and demolition. Monitoring and control to 

minimize time and cost overruns are crucial for a construction project. Accurate and real-time 

progress monitoring is essential for achieving project objectives with expected KPIs. 

Progress monitoring also plays a vital role in avoiding unexpected circumstances and 

eliminating disputes and legal challenges among the stakeholders. Automating various tasks in 

monitoring and controlling will reduce the complexity involved in manual documentation and 

calculations in a project to a considerable extent. Hence, a prompt and feasible automated 

progress monitoring technology is essential in the present-day construction sector (M. Kopsida, 

Brilakis, & Vela, 2015) (T. Omar & Nehdi, 2016b). 

Automation in progress monitoring has evolved over the past two decades, with several 

technologies with varying levels of automation used in projects. With several technologies 

available, there is not enough clarity on the type of technology appropriate for a specific case 

or project. 
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Existing literature has focused on the specific technology of progress monitoring, for example, 

specifically, vision-based (Ekanayake et al., 2021b) or tag-based (P. R., Raphael, & 

Vaidyanathan, 2019). For a robust implementation, firstly, there is a critical need to identify 

and classify these technologies and, secondly, to evaluate them based on their advantages and 

limitations. Therefore, two sub-objectives towards objective 1 are to: 

1. Identify, classify, and evaluate technologies available for progress monitoring of

construction projects.

2. To list factors that enable appropriate technology selection for the project-specific use

case.

This chapter contributes to objective 1 of this thesis. The overall methodology followed for 

objective 1 has been shown in Figure 1.2 

2.2 RESEARCH METHODOLOGY – OBJECTIVE 1 

Figure 2.1 Research Methodology for Objective 1 

The research method for achieving objective 1 is shown in Figure 2.1. First, a preliminary 

review of literature was conducted by searching various papers on progress monitoring 

technologies. These papers were collected from Scopus and Web of Science databases using a 
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keyword search-based method, followed by snowballing technique. A total of 61 papers with 

49 journal articles and 12 conference papers were identified from the databases, and an 

exhaustive review with analysis was performed. 

These papers were analysed to gent preliminary information about the state of the art of 

progress monitoring from a literature standpoint. With this information and authors practical 

on-site experience, a preliminary questionnaire survey was designed to evaluate the state of the 

art of progress monitoring from industry standpoint. Three key information were to be derived 

from the survey; these were: 

1. Which technologies are being practically used for progress monitoring and what is 

the frequency of their use at various projects? 

2. What are the challenge the task force is facing by using these technologies? 

3. What are the other mobile or desktop applications being used for storing the progress 

data?  

Once the questionnaire was designed for getting these answers, a survey was conducted with 

participants who were working or having experience in executing at least one construction 

project in the last 2-3 years. Next, they obtained data was analysed and the findings were 

presented in form of visual and statistical graphs and charts. 

The information helped the author to have the holistic view of progress monitoring from both 

the literature standpoint and implementation standpoint. Hence the evaluation of technologies 

was performed. Also, the classification of technologies was done by segregating the 

technologies based on the type of science (fundamental technology) they use for progress 

estimation. 
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2.3 QUESTIONNAIRE SURVEY-BASED FIELD STUDY 

The data was collected through a questionnaire survey to study the progress monitoring 

technologies currently used in projects. This section describes the participant demographics, 

the survey's results, and conclusions. The questionnaire is attached in appendix A for reference. 

2.3.1 Demographics of participants 

The survey was sent to about 200 participants working or having experience in executing at 

least one construction project in the last 2-3 years. The participants from the survey were part 

of one of the following organizations. 

1. L&T Construction 

2. Navnirman Builders 

3. Bara architects 

4. URC Construction (P) Ltd 

5. APCRDA 

6. NCBS-TIFR 

7. L&W construction 

8. Total Environment Building Systems Pvt Ltd, Bengaluru 

9. L&T Oman LLC 

10. CDM Smith 

11. NBCC INDIA LTD 

2.3.2 Survey Results and Discussion 

Sixty-eight responses were received for the survey. That account for 34% response rate. 

Distributions of cost of the projects in INR Crores where the survey participants have worked 
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in the last 2 to 3 years is shown in the following Figure 2.2and Figure 2.3. It can be seen from 

the distribution in Figure 2.3, that the mix of projects by varying project cost i.e., helped to 

capture a decent diversity of the Indian and Arabian markets. 

 

Figure 2.2 Distribution of individual project cost 

 

Figure 2.3 Distribution of the number of projects in the cost bracket 

The average cost of the 50 projects reported was found as INR 715 Crores. The project’s cost 

ranged from INR 6 Crores to INR 3000 crores which helped to capture the technologies used 

from very small projects to mega projects. 
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Figure 2.4 Progress monitoring technology being used as reported by survey participants on 

different projects. 

Figure 2.4 shows the various progress monitoring technology being used as reported by survey 

participants on different projects. Manual entry on Excel Sheets and calculation of quantities 

by pen and paper-based methods are the major methods of progress monitoring used in Indian 

construction sites. It is also observed that 50% of sites use still cameras for documentation of 

site photographs and videos. This documented information is presented in site meetings for 

visual understanding of the project progress. A very small number of sites (<4%) reported 

usage of image processing or 3D reconstruction techniques for quantity calculation from 

images. 

The use of laser scanners and remote sensing methods is not observed in the 50 projects 

(including the high-cost projects also), there can be two explanations for this as per this survey, 

first is because of the high expertise required to operate a laser scanner, second is that many 

scans from different locations are required to get an accurate point cloud which makes it time 

consuming. 
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The technology adoption at individual level was highlighted as one of the points which impacts 

the adoption of any pilot technology being introduced in the projects, interestingly these 

adoption practices should be looked into so as to implement the technologies being developed.  

2.3.3 An overview of reporting of progress on major projects across India  

From Table 2.1 it is evident that even on large value projects the pen and paper based and excel 

sheet-based methods supported by manual inspection are the most common ways of evaluating 

project progress. CCTV based monitoring; RFID have been used in some projects. 

The projects which are deploying video cameras and drones e.g., Project 2 and 3, are using this 

data for only documentation purpose. This also indicates that, the high initial cost of technology 

at selection stage is not a concern and constrain for these projects and organisations. 

Table 2.1 Progress monitoring technology reported on high value projects. 

Sl. 
No. 

Project Name 
(Anonymized) 

Project 
Cost 
(INR 
Crores) 

Organization 
(Anonymized) Technology Used for Progress Monitoring 

1 Project 1 3000 Organization 1 
Excel Sheet Based Quantity Calculation & 

DPR Reporting 

2 Project 2 3000 Organization 2 

Excel Sheet Based Quantity Calculation & 
DPR Reporting 

RFID Based / Sensor Based 

CCTV Based Surveillance 

Drone Based Monitoring (Images/Videos) 

GPS Based 

Still Cameras Photos / Mobile Photos or 
videos (For Only Documentation) 

3 Project 3 2500 Organization 3 

Pen & Paper Based Quantity Calculation & 
DPR Reporting 

Excel Sheet Based Quantity Calculation & 
DPR Reporting 

CCTV Based Surveillance 

Fixed Cameras (Time-lapse/Periodic Photos) 

Still Cameras Photos / Mobile Photos or 
videos (For Only Documentation) 

Smart glasses 

4 Project 4 1600 Organization 4 

Pen & Paper Based Quantity Calculation & 
DPR Reporting 

Excel Sheet Based Quantity Calculation & 
DPR Reporting 
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Still Cameras Photos / Mobile Photos or 
videos (For Only Documentation) 

5 Project 5 1300 Organization 5 

Pen & Paper Based Quantity Calculation & 
DPR Reporting 

Excel Sheet Based Quantity Calculation & 
DPR Reporting 

2.4 LITERATURE REVIEW – PROGRESS MONITORING TECHNOLOGIES 

The reference literature for the review was collected from Scopus and Web of Science 

databases using a keyword search-based method, followed by snowballing technique. Initially 

a gross total of 120 articles were obtained. Then the articles were shortlisted based on their 

abstracts which were focusing on progress monitoring technologies, with a total database of 53 

articles. Next eight additional articles were added for completeness for covering the newer 

technologies (Extended Reality) which rarely covered by the selected papers. Finally a total of 

61 papers with 49 journal articles and 12 conference papers were identified from the databases, 

and an exhaustive review with analysis was performed. The chronological distribution of the 

selected papers is shown in Figure 2.7. 

 

Figure 2.7 Chronological distribution of selected papers 

The search attributes used in the review with the keywords used and search scope is as shown 

in  
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Table 2.2. The relevant articles for the construction domain were filtered after reading the 

abstracts. The filtered articles were considered for meta-analysis. 

Table 2.2 Search attributes 

Search attributes  Values used in the search 
Databases 
Language 

Year of Publication 
Type of the document 

Keywords 
 

Web of Science, Scopus 
English 
2000-2022 

Journal articles, Conference papers 
Progress monitoring technologies, 
Automated progress monitoring. 

2.5 CLASSIFICATION OF AUTOMATED PROGRESS MONITORING 
TECHNOLOGIES 

The selected papers contained various automated techniques' case studies, challenges, and 

benefits. Based on the meta-analysis, seventeen state-of-the-art progress monitoring techniques 

were identified.  

Each of these technologies has unique advantages and limitations in construction site 

monitoring. Hence, there is a need for a detailed analysis to identify these so that they can be 

used effectively. A detailed and systematic review of the above-mentioned technologies is 

presented in Table 2.3, along with their advantages and limitations with the relevant references. 

As shown in Table 2.3, these techniques were classified into six major categories as enhanced 

Information Technologies (IT), tag-based methods, geospatial technologies, building 

information modelling and associated commercial software, computer vision-based 

approaches, and extended reality and are discussed below: 

1. Enhanced IT: These include handheld computing devices (Personal Digital Assistants or 

PDAs, handheld personal computers), Interactive Voice Response or IVR, multimedia tools, 
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and e-mails. These are the most basic techniques, which are information technology-based 

communication tools. These technologies are primarily of lower cost with a limited level of 

automation but can increase the chances of communication between stakeholders, thereby 

helping site information tracking (T. Omar & Nehdi, 2016b). 

2. Tag-based techniques: These involve tags and codes that can be attached to various 

resources on-site and are primarily used for material tracking and inventory, employee badge 

scanning, and equipment tracking. These include barcodes, quick-response or QR codes, radio-

frequency identification, or RFID tags, and ultra-wideband or UWB tags. Each tag's working 

principle is based on Automatic Identification and Data Capture (AIDC). It must be noted that 

a tag-based technology cannot directly extract spatial element information, visually represent 

the site changes, and collaborate with other vision-based techniques (T. Omar & Nehdi, 

2016b)(Guven & Ergen, 2021)(Alaloul, Qureshi, Musarat, & Saad, 2021). 

3. Geospatial techniques: These include fundamental technologies based on location-based 

sensors like Geographic Information System (GIS) and Global Positioning System (GPS). 

These techniques are used for geo-referenced data capture, analysis, and modelling. GIS can 

be used in large infrastructure projects where there is a need to store and handle vast amounts 

of data. It can be a useful geospatial tool, which uses location as the primary focus in database 

management, whereas GPS aids in the spatial analysis and navigation of different activities on 

the site. 

4. Building Information Modelling Based: BIM is a process involving different tools, 

technologies, and contracts, which aids in better visualization of construction sites for accurate 

project management. BIM also aids in stakeholder management practices of the construction 

industry for different aspects of communication, collaboration, engagement, and satisfaction. 
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This can be used along with commercial scheduling software like MS Project so that progress 

monitoring can be done efficiently (Deng, Gan, Das, Cheng, & Anumba, 2019). 

5. Computer vision Based: It is an emerging field focusing on information retrieval through 

visual inputs. These inputs include digital images, videos, thermal images, as-built point 

clouds, panoramas, and photospheres. These techniques involve fixed surveillance, 

photogrammetry, videogrammetry, range imaging, and 3-D laser scanning. Computer vision 

sub-domains include learning, 3D scene modelling, video tracking, 3D pose estimation, object 

recognition, scene reconstruction, object detection, and event detection, which can be used for 

progress monitoring (Ekanayake, Wong, Fini, & Smith, 2021a) (Paneru & Jeelani, 2021b). 
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No Technology Advantages Limitations Ref 

1. 

En
ha
nc
ed
 IT
 

Hand-held 
computing  

• Small-sized, portable, handy, flexible devices with 
several features, that can be integrated with other 
technologies. 

• Some devices are costly, and suitable applications 
need to be developed so that integration can be 
made more efficient. 

(T. Omar & Nehdi, 2016b) 

Interactive 
Voice Response 

or IVR 

• Efficient and quick means of sending information 
from sites. 

• Manual errors might occur while responding to 
multiple choices. 

• Difficulty in retracing the already answered 
correct messages. 

Multimedia • Flexible tool to aid remote progress monitoring by 
safe documentation and visualization of project 
information. 

• Manual site data capture results in errors. 

Electronic 
Mails or E-
Mails 

• E-procurement tool for quality supply chain 
management. 

• Attached with images, documents, videos, forms, etc, 
where the site personnel respond with the easy 
retracing of answered questions. 

• Improper internet connection, and difficulty in 
responding from small devices might cause a 
delay in information exchange. 

2. 

Ta
g 
ba
se
d 

Bar-codes • Cost-effective, accurate, easy to use, portable, and 
flexible. 

• No need for an external device to read the codes. 

• Direct line of sight required for data capture, time 
taking in item tracking. 

• Labels can get destroyed or lost due to adverse 
weather conditions. 

(T. Omar & Nehdi, 

2016b)(Keyvanfar, Shafaghat, & 

Awanghamat, 2021) 

Quick 
Response or 
QR codes 

• Portable and flexible technology with a better storage 
capacity. 

• QR code reading applications can be installed on 
devices easily. 

• Lightweight wireless QR code pocket printers can be 
used in sites. 

• Might get affected by harsh environmental 
conditions. 

• More effective in indoor tracking compared to 
outdoors. 

• Monitoring of reinforcement, concreting, and 
those which are not easily accessible are difficult 
to be monitored using QR codes. 

(Z. Wang et al., 2021a) 

Table 2.3 Detailed review of the progress monitoring technologies 
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No Technology Advantages Limitations Ref 

Radio 
Frequency 
Identification 
or RFID tags 

• Use radio waves that can be read accurately outside 
the line of sight as well, without direct contact 
compared to light waves. 

• Reliable, portable, flexible, reusable, technique that 
can withstand harsh environmental site conditions. 

• Supports indoor tracking of materials, facility and 
building component management, and information 
flow in large projects. 

• Capable of identifying individual items and can read 
multiple items in an instant simultaneously. 

• Storage capacity is higher than that of a barcode and is 
unaffected by differences in illumination. 

• Costlier than barcodes. 
• If there are metals or liquids or moisture in the 

nearby area, the results can be erroneous. 
• Using RFID can be time-consuming, and costly if 

a single tag is used to track each one among 
several materials and equipment. 

• Limitation of the battery operation time, and there 
is insufficient accuracy in location identification if 
it is not depending on a fixed network. 

• There are insufficient international standards, 
multi-protocol tags and readers, and also a concern 
on the return of investment. 

(M. Kopsida et al., 2015)(Guven & 

Ergen, 2021)(Alaloul et al., 

2021)(Alizadehsalehi & Yitmen, 

2016b) 

Ultra-wide 
band or UWB 

tags 

• More accurate than RFID with strong signals even in 
obstructions.  

• Provide real-time resource tracking, 3-D coordinates 
for position sensing and consume low energy. 

• UWB tags are not cost-effective compared to 
RFID. 

• No daily necessity embedded tool or mini device. 
(Alaloul et al., 2021) 

3 

G
eo
sp
at
ia
l 

      

Geographic 
Information 
System or GIS 

• Optimal location for construction equipment can be 

found, with efficient capture, storage, and analysis of geo-

referenced information with minimum redundancy. 

• Creation of geographical maps of high quality, by 
visually representing the construction schedule to monitor 
the plant and equipment, that can be provided to the clients.  
• Can be used as a forecasting tool for early identification 
of time and space conflicts, and better safety regarding 
worksite considerations. 

• Difficult to use in indoors.  

(Cheng & Chen, 2002) 

Global 
Positioning 

System or GPS 

• Accurate location of positions while material tracking 
in construction supply chain management can be facilitated 
by using the Global Positioning System or GPS.  

• Difficult to use in indoors. 
• Tagging several construction elements using GPS 
tags is very expensive. 

 

(Sbiti, Beddiar, Beladjine, Perrault, 

& Mazari, 2021)(Xue, Hou, & Zeng, 

2021) 
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No Technology Advantages Limitations Ref 

4. 
 B
IM
 a
nd
 c
om
m
er
ci
al
 so
ftw
ar
e 

• Visualization- clash detection & information 

management. 

• Schedule updates- automatic quantity take off & cost-

estimation. 

• Enhanced collaboration & information exchange 

among stakeholders 

• Integrated with supply chain for product design & 

material delivery. 

• Integration with LPS or Last Planner System for lean 
construction. 
• Knowledge based systems that are active, along with 
various simulations in BIM contribute to data analysis. 
• Choosing inputs using a hybrid video and laser scans, 
as-built BIM can be generated automatically. 

• Limited in monitoring, scheduling, and 
decommissioning phases. 
• Errors resulting from the manual navigation of 
BIM model and need for constant automated updates, 
especially for fast-tracked projects. 
• Limited interoperability, even with other data 
acquisition techniques. 
• Commercial software like MS Project, Primavera, 
etc cannot provide digital drawings and visualisation 
for construction. 

(M. Kopsida et al., 2015)(Mutis, 

Joshi, & Singh, 2021) 

5. 

C
om
pu
te
r 
V
isi
on
 

Fixed 
surveillance 
(crane 

cameras, closed 
circuit 
television 

cameras, etc) 

•  Safe, cost-effective, fully automated techniques, with 
low labour requirements that can be deployed in multi-
building as-built point cloud extraction in conjunction with 
BIM.  
• Inefficient site coverage should be resolved by the 
deployment of more crane cameras. 
• Can be used for documenting daily or weekly progress 
in the construction site.  
• The data acquired from the CCTV images can be 
directly transferred to the head office from the site through 
the internet. 

• Crane camera images may result in noisy as-built 
point clouds and may get affected by heavy winds. 
Mounting the camera may require extra effort, and there 
is limited flexibility due to the motion range of the 
cranes. 
• 3-D point clouds may be fragmented if there is 
incomplete site coverage. 
• As the position of cameras is fixed, there is a 
limitation in the application of CCTV cameras in huge 
projects. There is a need to arrange several cameras, 
and the data clashes between different cameras have to 
be fixed. 

(M. Kopsida et al., 2015)(Guven & 

Ergen, 2021)(Alaloul et al., 

2021)(Alizadehsalehi & Yitmen, 

2016b)(Xue et al., 2021)(Masood, 

Aikala, Seppänen, & Singh, 2020) 

 

C
om
p

ut
er
 

V
isi
o

n 

 
Photogrammet

ry 

• Automatic identification of objects using cameras and 
image processing algorithms by integration with n-D BIM.  

• There is a limitation due to difference in lighting 
conditions, which may affect the resolution. Thermal  
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No Technology Advantages Limitations Ref 

 • Lesser equipment cost and technical requirement, along 
with portability for the image capturing devices and 
improved flexibility. 
• High resolution compared to satellite imaging, for 
representing the geometric attributes and high texture 
representation.  
• The recorded images can be analysed using software 
packages with computer vision techniques and machine 
learning algorithms for automatic updates with as-built -3D 
models by reconstruction. 

images along with wireless sensors and BIM can be 
used to overcome this problem. 
• Object edge detection might not be proper, 
occlusions, noisy images and presence of shadows will 
affect the accuracy of progress estimation.  
• The location from which the photos are taken has 
to be matched with the checkpoints in the drawings, 
which can be a difficult problem. 

 

 

(Xue et al., 2021) 

 
Videogrammet

ry 

• Can be used for both indoor and outdoor progress 
tracking.  
• Moving equipment can be tracked. 

• Less accurate than laser scanning and 
photogrammetry, may get affected due to occlusions. (Alaloul et al., 2021)(Mutis et al., 

2021) 

 
Range or depth 
cameras 

• Easier as-built point cloud generation directly, as it 
contains depth information. 
• Higher resolution compared to normal digital cameras, 
and higher portability with lower technical pre-requisite. 

• Cost is lower than that for laser scanners but will 
be generally higher than that of normal digital cameras. 
• Range of shooting is limited and is mostly used in 
automated indoor construction progress monitoring. 

(Xue et al., 2021) 

 
 
 

3-D Laser 
scanners 

• High-resolution, precise, and accurate progress 
monitoring technology unaffected by illumination, and is 
used for quality control, structural health monitoring, 
condition assessment of structures, and tracking of 
components, along with active collaboration between the 
stakeholder teams. 
• Automatic comparison being done between as-built and 
as-planned point clouds so that progress deviation detection 
becomes easier, and the schedule is updated accordingly. 

• Highly expensive equipment with low portability, 
limited texture information, time-consuming data 
acquisition, mixed pixel restoration, need for sensor 
calibrations regularly, greater warm-up time. 
• Operation requires larger technical knowledge, and 
might not be suitable for progress monitoring 
continuously. 
• Accuracy of the data acquisition using laser 
scanning might be affected due to occlusions and in the 
site.  

(Guven & Ergen, 2021)(Alaloul et 

al., 2021)(Alizadehsalehi & Yitmen, 

2016b)(Xue et al., 2021)(Masood et 

al., 2020)(Arif & Khan, 2021a)  
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No Technology Advantages Limitations Ref 

6. 
Ex
te
nd
ed
 r
ea
lit
y 

• Enables accurate visualization of the construction site 
from various angles.  
• Worksite planning in construction, visualization of 
equipment operation for inspection, comparison between as-
planned and as-built images can be done. 
• They can be used easily in both interior and exterior 
locations, under different construction phases, and is cheap 
with the requirement of minimal training and set-up time. 

• Automation quality depends on the technology in 
the device used.  
• Stationary methods are limited in portability, have 
less cost-effectiveness, and need additional time for 
setting up the equipment when compared to mobile 
methods.  
• Installation of fiducial markers requires additional 
investment in time and cost.  
 

(M. Kopsida et al., 2015)(Sbiti et al., 

2021)(Xue et al., 2021)(Ali, Lee, 

Lee, & Park, 2021) 
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6. Extended Reality Based: This relatively newer technology allows a combined real and 

virtual environment, supporting human-machine interactions. These techniques can be further 

classified into augmented reality (AR), virtual reality (VR), and mixed reality (MR), based on 

the difference in visualization. These techniques can be employed for the collection of digital 

data and can handle computing and network technologies in progress monitoring. 

2.6 FACTORS AFFECTING PROGRESS MONITORING TECHNOLOGY 
SELECTION 

As shown in Table 2.3, each technology is characterized by its advantages and limitations. 

Apart from these, key factors should be considered before choosing the appropriate technology 

for progress monitoring in a construction project.  These parameters have been identified by 

several authors through their research (Alizadehsalehi & Yitmen, 2019; Ekanayake et al., 

2021b; Hannan Qureshi et al., 2022; Ibrahimkhil, Shen, & Barati, 2021; M. Kopsida et al., 

2015). However, three factors i.e. project type, statutory requirements and operating range are 

added based on the authors industry experience and the learnings form the preliminary 

questionnaire survey. 

Figure 2.8 Factors affecting selection of technology. 
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Figure 2.8 shows the key factors to be considered while selecting the appropriate technology 

for progress monitoring. The context of these factors for selection is described as follows: 

1. Level of Automation: The extent of manual/computer control while using the technique.. 

2. Time efficiency: The speed of data acquisitions as well as data processing. 

3. Operating range: The distance up to which the employed technology works. 

4. Utility: Adaptability of the technology used in interior and exterior construction progress 

monitoring. In other words, whether the technology is a general case solution. 

5. Preparation required: The level of preparation required while setting up the equipment 

or process at the deployment stage. 

6. Accuracy: The reliability of the collected data along with precision. 

7. Training required: The amount of training or knowledge a user requires before using a 

particular technique. 

8. Cost: The amount of financial and computational costs incurred to adopt and implement 

the technology. 

9. Susceptibility in adverse weather: The extent of use of the technology in harsh 

environmental conditions like low visibility 

10. Compatibility for use : The level by which a particular technology can be integrated with 

other technologies or the existing Enterprise Resource Management (ERP) system. 

11. Statutory requirements: The legal codes and procedures to be followed while using a 

technique enforced by the authorities. 

12. Mobility: The ease, flexibility, and portability of the related equipment. 

13. Project type & characteristics: The type of the project and characteristics of a particular 

construction project where the technology can be used. 
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Note: The difference between utility and Project Type and Characteristics is highlited below 

for better clarity: 

Utility - Adaptability of the Technology: Utility refers to the value or benefit derived from 

using a particular technology for a specific purpose. In this case, the utility is focused on the 

adaptability of the technology used in interior and exterior construction progress monitoring. 

It assesses whether the technology can effectively and efficiently fulfill the monitoring 

requirements in both interior and exterior construction settings. 

The utility of the technology would depend on factors such as its compatibility with different 

construction environments, its ability to capture and analyze relevant data, its ease of 

integration with existing systems or processes, and its overall effectiveness in facilitating 

progress monitoring activities. A technology with high adaptability would be versatile and 

flexible enough to be applied in various construction scenarios. 

Project Type & Characteristics: Project type and characteristics refer to the specific nature 

and attributes of a construction project. Different construction projects can vary significantly 

in terms of their scale, complexity, scope, timeline, and specific requirements. The project type 

and characteristics provide context to understand the unique aspects of a particular construction 

endeavor. 

When considering the application of technology in construction projects, understanding the 

project type and characteristics is essential. This includes factors such as the type of 

construction (residential, commercial, industrial, etc.), the size of the project, the specific 

construction methods or materials used, the presence of any regulatory or environmental 

considerations, and other project-specific factors. 
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2.7 RANKING OF FACTORS BASED ON A QUESTIONNAIRE SURVEY 

Currently, there is no scientific method followed on projects site to determine the progress 

monitoring technology to be used. The current method of deciding that is based on the 

experience of the technical staff employed for the project. Therefore, an attempt in the direction 

to make this decision objective and scientific has been made in this research. 

An indicative survey from the experts from various companies and project sites has been done 

to give these factors a relative importance score (Appendix B). However, this is just an initial 

step towards this study and future in-depth research is require validating these factors and 

detailed framework development. 

To evaluate the relative importance of these factors, an indicative questionnaire survey with 

factors description and factors definition was designed and sent to 40 experienced professionals 

from the construction industry. The participants were postgraduate engineers working on 

different construction projects across India in several organisations with at least two years of 

field experience. The survey participants were selected so that each participant had relevant 

experience and knowledge about the factors that are considered while selection of progress 

monitoring technologies on construction projects. The definitions of these factors were also 

included in the survey for uniform understanding. Each factor was given a rating of high (3), 

medium (2) or low (1) for the importance they hold in the selection process. Finally, 33 

responses were received from the participants of the survey. 
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Table 2.4 RII Scores for various factors computed from the questionnaire survey. 

Sl. No. Factors RII 

1 Project Type and Characteristics 0.93 

2 Cost 0.89 

3 Time efficiency 0.88 

4 Level of Automation 0.80 

5 Statutory requirements 0.75 

6 Operating Range 0.73 

7 Training Required 0.67 

8 Preparation Required 0.63 

9 Accuracy 0.60 

10 Susceptibility in adverse weather 0.55 

11 Mobility 0.54 

12 Utility 0.48 

13 Compatibility for use  0.42 

Below are the results after analysing the Relative Importance Index (RII) as calculated from 

Equation 2.1. RII is used to analyse the survey results for factors. 

$%% = ∑(#!)
%∗'    (2.1) 

Where, 

W = Constant expressing the weighting given to each response 

A = Highest rating (In this case, A=3) 

n = Frequency of responses 

N = Total number of responses 
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The RII of the factors that are identified for progress monitoring technology selection can be 

utilized in order of their relative importance if to avoid conflict of ambiguity in decision making 

for selecting appropriate technology. The “Project type and characteristics” is the most 

important factor to be considered. Next cost and time efficiency of the technology being 

implemented are the next factors which are considered important. 

2.8 HYPOTHETICAL CASE FOR DEMONSTRATING TECHNOLOGY 
SELECTION 

In the context of a large-scale bridge construction project, let's compare the factors in order of 

their importance to select a progress monitoring technology between laser scanning and 

photogrammetry. 

1. Project Type and Characteristics: The project involves constructing a long-span 

suspension bridge over a river with complex geometry and unique design elements. 

2. Cost: Laser Scanning: The initial cost of laser scanning equipment and software is 

$100,000. Photogrammetry: The initial cost of photogrammetry equipment and 

software is $50,000. 

3. Time Efficiency: Laser Scanning: It takes approximately 3 hours to complete a 

comprehensive scan of the entire bridge construction site. Photogrammetry: It takes 

approximately 6 hours to capture aerial photographs of the bridge construction site. 

4. Level of Automation: Laser Scanning: Laser scanning technology offers a high level of 

automation, capturing detailed point cloud data automatically. Photogrammetry: 

Photogrammetry requires manual processing of aerial photographs to generate 3D 

models, which is less automated. 

5. Statutory Requirements: Both laser scanning and photogrammetry meet the statutory 

requirements set by local building codes and regulations. 
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6. Operating Range: Laser Scanning: Laser scanners have a range of up to 300 meters, 

allowing for comprehensive coverage of the bridge construction site. Photogrammetry: 

Aerial photographs can cover a wide area, providing sufficient coverage of the bridge 

construction site. 

7. Training Required: Laser Scanning: Operators require specialized training to operate 

laser scanning equipment and process point cloud data effectively. Photogrammetry: 

Operators need training to capture high-quality aerial photographs and process them 

into accurate 3D models. 

8. Preparation Required: Laser Scanning: Some site preparation is needed to set up targets 

for registration and ensure line-of-sight coverage of the bridge structure. 

Photogrammetry: Aerial photography requires flight planning and coordination with 

drone operators, but minimal site preparation is needed. 

9. Accuracy: Laser Scanning: Laser scanners provide highly accurate point cloud data 

with millimeter-level precision. Photogrammetry: Photogrammetry can achieve sub-

centimeter accuracy in generating 3D models from aerial photographs. 

10. Susceptibility in Adverse Weather: Both laser scanning and photogrammetry can be 

affected by adverse weather conditions such as heavy rain or strong winds. However, 

laser scanning is generally more robust against adverse weather conditions. 

11. Mobility: Laser Scanning: Laser scanners are less mobile due to their size and the need 

for setup on tripods or mounts. Photogrammetry: Photogrammetry using drones offers 

greater mobility and flexibility to capture images from various angles and locations. 

12. Utility: Laser Scanning: Laser scanning is well-suited for capturing detailed as-built 

information, precise measurements, and monitoring structural deformations. 
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Photogrammetry: Photogrammetry excels in providing visual representations and 3D 

models of the bridge construction site. 

13. Compatibility for Use: Both laser scanning and photogrammetry can be integrated with 

Building Information Modeling (BIM) systems and other project management tools for 

seamless data exchange and collaboration. 

Considering these factors and their relative importance as provided, the project team 

determines that laser scanning is the preferred progress monitoring technology for the bridge 

construction project. While it has a higher initial cost and requires specialized training, laser 

scanning offers superior accuracy, automation, and is well-suited for capturing detailed as-built 

information and monitoring structural deformations, which are critical for a large-scale bridge 

construction project. 

2.9 DISCUSSIONS 

Progress monitoring is crucial for accurate project control. Choosing the appropriate automated 

technology based on required parameters is vital in the monitoring stage of a project. 

Automated technologies can be integrated based on the requirements and can be highly 

efficient in reducing project overruns compared to manual methods. The technology must be 

chosen without overselling, such that the investment returns from the project can be made 

higher. 

An idealized situation would enable a higher efficiency in all these parameters, which is not 

practically possible in a single technology. Therefore, selecting a suitable technology that 

produces the maximum output based on these parameters would be the goal in the monitoring 

phase of a construction project. 
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Another important consideration is that newer technologies might face challenges about their 

widespread acceptance, as the construction companies might tend to reject the pilot integrated 

automation technology proposals (Fathi, Dai, & Lourakis, 2015). This happens mainly due to 

a lack of technical knowledge on automated technologies and the tendency to continue adopting 

conventional techniques. So integrated proposals through research should be added with proper 

inspection and maintenance guidelines, followed by proper incentives to the enterprises, so that 

widespread adoption can be facilitated. Moreover, data collection by a single resource tracking 

is never sufficient for accurate progress monitoring. Hence, applying data fusion techniques is 

vital to track multiple resources in a construction site. 

2.10 CONCLUSIONS 

This chapter provides a systematic review, evaluation and then classification of various 

automated progress monitoring technologies from field survey and literature.  

Using field survey, the data was collected for the technologies and tools being used in 

construction projects. The challenges that construction sites face with the existing monitoring 

technologies were also acquired and documented. It was observed that majorities of the 

construction sites relied on excel sheet based as well as pen and paper-based method of 

reporting progress, and hence were struggling to complete the projects on time. The survey 

results also reported that the technologies being used were time consuming, requires several 

manual tasks and are not accurate. 

In literature sixty-one relevant publications to understand the state-of-the-art to guide future 

research. It also identifies the benefits and limitations associated with each technology (in 

Table 2.3), along with the factors affecting their selection. 
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It is to be noted that each construction project is unique and has its specific characteristics. As 

all the technologies have their advantages and shortcomings, selecting a technology that suits 

a particular project is extremely important. The technologies can be combined and integrated 

to minimize cost overruns. This review provides a basis for this selection, as it systematically 

identifies the scope for each automated technology. In addition, more review efforts are 

recommended to identify suitable mounting methods that can be used in combination with the 

techniques. The RII scores of various factors have been computed through a questionnaire 

survey-based method can be used in the technology selection process. However, these 

importance values are the preliminary research findings, more in-depth work is required for 

their validation in future. 

It can be noted that, after the development of smart phone, there have been increase in the use 

of mobile cameras world-wide. The images and videos are now being commonly used for 

documentation of information. Even the cost of these devices has decreased, and they are now 

affordable. The processing capabilities have also increased in near future and advanced with 

the developments in cognitive computing. Therefore, the field of computer vision which 

involves extracting and processing information from inputs such as images, videos, point 

clouds is believed to be one of the disruptive technologies of current and near future. Therefore, 

this research scopes down to explore the use of computer vision for construction progress 

monitoring in the following chapters. 1 

 
1 Parts of this chapter have been published in the following articles: 

1. Reja, V. K., Pradeep, M. S., & Varghese, K. (2022). A Systematic Classification and Evaluation of 
Automated Progress Monitoring Technologies in Construction. Proceedings of the 39th ISARC, 120–
127.  

2. Reja, V. K., Varghese, K., & Ha, Q. P. (2022a). As-built data acquisition for vision-based construction 
progress monitoring: A qualitative evaluation of factors. Proceedings of the 10th WCS, 24-26 June 2022, 
Sri Lanka., (June), 138–149. 
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CHAPTER 3.  

COMPUTER VISION-BASED TECHNOLOGIES FOR 

CONSTRUCTION PROGRESS MONITORING  

In the previous chapter, various progress monitoring technologies were introduced, analysed, 

and classified and finally the scope of this research was fixed to the computer vision 

technologies. This chapter reviews the existing computer vision-based progress monitoring 

methods in the literature systematically. This chapter have four sub-sections. The first sub-

section is on Introduction. The second sub-section is on the methodology followed. The third 

sub-section states the overview of vision-based monitoring of construction progress. The fourth 

sub-section presents conclusions. This chapter contributes to the objective 2 of this thesis. The 

overall methodology followed for objective 2 has been shown in Figure 1.2 

3.1 INTRODUCTION: COMPUTER VISION-BASED TECHNOLOGIES 

Monitoring the progress of construction projects is crucial, as it provides vital inputs for 

managers to make timely and informed decisions. Improper progress monitoring leads to losing 

control of the project, resulting in time and cost overruns. Traditional progress-monitoring 

methods require manual data entry, which proves to be tedious, time-consuming, and prone to 

human error (Teizer, 2015). Therefore, its effectiveness can be improved through automation. 

In the previous chapter, it was observed that technologies investigated for their applicability in 

automated progress monitoring in construction include RFID, barcodes and QR codes, laser 

scanning, photogrammetry, videogrammetry, range imaging (RGB-D), web-based CCTV, and 

structural sensing (T. Omar & Nehdi, 2016b). Among these, the impact of vision-based 

technologies was initially limited due to the sophistication of the data-acquisition devices and 
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the high computing power required for processing. However, with the increasing ubiquity of 

both devices and high-performance computing, it has become feasible to implement vision-

based technologies in applications that automate construction processes. Computer vision 

enables computers to derive numeric information from digital images, videos, depth images 

and 3D point clouds, process the information, and take action. Sub-domains of computer vision 

relevant to this research include scene reconstruction, 3D pose estimation, motion estimation, 

object detection, object recognition and labelling, learning, and 3D scene modelling. 

Vision-based technologies have been studied on a wide range of construction applications, such 

as workforce tracking, resource tracking, condition assessment, quality inspections, safety 

management, and automated layout generation (Paneru & Jeelani, 2021a). Several studies on 

vision-based construction progress monitoring have also been reported. However, the 

processes for effective progress monitoring are diverse, intricate, and complex. In addition, 

many concepts and technologies can be applied to automate each stage of the process. An 

integrated framework to characterise and categorise the current and future studies in this area 

will enable systematic investigation and documentation in this domain. 

Review papers in this domain have focused on specific aspects of the progress monitoring 

process. One study has presented a review of data acquisition technologies (T. Omar & Nehdi, 

2016b), while another (Z. Ma & Liu, 2018) have comprehensively studied 3D reconstruction 

techniques. A couple of studies  (Ekanayake et al., 2021b) (Patel et al., 2021) have recently 

presented a bibliometric analysis of the literature and highlighted specific challenges to be 

addressed. However, there are several stages in the process, and a broad study of both literature 

and practice has resulted in identifying the following key stages: (i) data acquisition and 3D 

reconstruction, (ii) generation of as-built models, and (iii) monitoring progress. Currently, there 

is no integrated framework that addresses the details of the processes of Computer Vision-
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Based Construction Progress Monitoring (CV-CPM), from data acquisition to progress 

estimation. Therefore, to address this gap, the following sub-objectives are identified:  

1. Develop an integrated framework that captures the process requirements of vision-

based construction progress monitoring and enables the characterisation and

categorisation of current and future work in the area.

2. Utilise the framework to position and compare the various concepts and tools

adopted by published research studies.

3. Identify areas and strategies for future work in the area.

3.2 RESEARCH METHODOLOGY – OBJECTIVE 2 

Figure 3.1 Research methodology for Objective 2 

As shown in Figure 3.1, as a first step towards these objectives, relevant articles were selected 

through the broader steps defined in the PRISMA framework. These include identification, 

screening, eligibility, and inclusion. An extensive keyword search in the Scopus and Web of 

Science (WoS) reputable scientific databases was conducted. The keywords used were 

“progress monitoring in construction,” “construction progress monitoring,” “progress 

monitoring,” “automated progress monitoring,” “computer vision in construction progress 

monitoring,” and “vision-based progress monitoring in construction.” One hundred eighty-two 

articles were retrieved from the keyword search. Primary screening of the articles was carried 

out by reading their abstracts. In order to capture relevant developments in this rapidly evolving 
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area, only key articles appearing after 2014 were defined as eligible for meta-analysis. Other 

articles which address specific parts of the framework were also referred to and positioned 

appropriately to support the framework. For an article to qualify as a key article for review, the 

following two criteria were set:  

• “The article should present an applied computer vision-based progress monitoring pipeline 

by demonstrating it with a case study or experimental results.” 

• “Pipelines addressing both indoor and outdoor progress monitoring, as well as pipelines 

ending at different stages of a type of progress estimation, were considered (i.e., only 

visualisation as well as visualisation with quantification).” 

Twenty-four key articles were selected and included for meta-analysis to formulate the 

framework. Among other articles referred for specific tools and techniques, fifty-four articles 

are from the civil engineering domain, and eight are from the computer science domain. 

The key articles were systematically reviewed, analysed, and categorised based on the process 

they addressed and the concepts they used, following the methodology defined by (Omair & 

Alturki, 2020). The framework evolved as more studies were characterised, categorised, and 

positioned within it, and the application contexts of concepts and technologies used were 

studied and compared. After the reviewed works were positioned in the framework, the 

processes, concepts, and technologies that need to be further developed/explored were 

identified. 

The chapter characterises and classifies the key studies in this area, based on the three macro-

stages of the CV-CPM process. 
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Papers 

Data Acquisition 
3D 
Reconstruction 

As-Built 
Output 

Progress Monitoring Identified 
Elements 

Oper
ationa
l 

State 

Key Focus LPM 

Technology Method 
Indoor/ 
Outdoo
r 

Visualiz
ation Comparison Quantification 

Schedule 
Updating 

    

(Khairadeen Ali, Lee, 
Lee, & Park, 2021) 

 

Laser 
Scanning and 
Photogramme

try 

Manual Indoor SLAM 3D Mesh 

Extende
d 

Reality 
XR 

(VR+A
R) 

Visualization N N 
Target 
Cuboidal 
Objects 

N 

Immersive VR 
(iVR)–based 
visualization of 
progress 

L
-2 

V
isualization and com

parison 

(Pour Rahimian, 
Seyedzadeh, Oliver, 
Rodriguez, & 
Dawood, 2020) 

 

RGBD 
Camera 

Manual Both 
Virtual 

photogramme
try 

Segmented 
Images 

Interacti
ve VRE 

Object 
Detection 

N N 

Building 
Elements 

(Walls, floor, 
beams etc.,) 

Y 

CNN-based 
object detection 
and use of gaming 

engine 

(Alex Braun, Tuttas, 
Borrmann, & Stilla, 

2020) 

Digital 
Images 

UAV Outdoor 
Commercial 
Software 

Segmented 
Image with 
Point Cloud 

3D 
Viewer 

Image and 
Point cloud-
based Object 
Detection 

N N Columns Y 

Computer vision-
based element 
detection using 
images, camera 
poses, as-planned-
BIM, precedence 
relationships 

(Vincke, de Lima 
Hernandez, Bassier, 
& Vergauwen, 2019) 

Laser 
Scanning or 
Photogramme

try 

Manual Both 
Commercial 
Software Point Cloud VRE 

Commercial 
Software N N Not specified N 

Gaming engine 
utility for 

visualization of 
as-built and as-
planned data 

(K. Han et al., 2018) 
Photogramme
try / LS UAV Both SfM & MVS Point Cloud 

3D 
Viewer Thresholding N N 

Construction 
Materials Y 

Uses Geometry 
and Appearance 
based reasoning 

(A. Braun, Borrmann, 
Tuttas, & Stilla, 

2014) 

Photogramme
try Manual Outdoor VSfM / SGM Point Cloud 

3D 
Viewer 

Projection 
Thresholding N N Columns N 

Uses Graph 
Theory and 
precedence 

Table 3.1 Review of pipelines for vision-based progress monitoring. 



68 

 

Papers 

Data Acquisition 
3D 
Reconstruction 

As-Built 
Output 

Progress Monitoring Identified 
Elements 

Oper
ationa
l 

State 

Key Focus LPM 

Technology Method 
Indoor/ 
Outdoo
r 

Visualiz
ation Comparison Quantification 

Schedule 
Updating 

    

relationships for 
Progress 

(K. K. Han, Cline, & 
Golparvar-Fard, 

2015) 

Photogramme
try / LS Manual Both SfM & MVS BIM 

3D 
Viewer 

Ontology 
based 

Deviations 
N N Not specified Y 

Uses Construction 
Sequence 
Ontology 

(Zollmann et al., 
2014) 

Photogramme
try 

UAV Outdoor SfM 3D Mesh AR 
viewer 

Interactive 
AR 

N N Building 
Façade 

N 

AR-based 
Progress 

monitoring using 
mobile aerial 3D 
reconstruction 
and visualization 

(Karsch, Golparvar-
Fard, & Forsyth, 

2014) 

Photogramme
try 

(Unordered 
Images) 

Manual Both 
Model-

assisted SfM Point Cloud 
Constru
ctAide 
GUI 

Visual Colour 
Coded N N Not specified N 

Uses user assisted 
SfM method 

(Dimitrov & 
Golparvar-Fard, 

2014) 

Photogramme
try 

(Unordered 
Images) 

Manual Both SfM & MVS BIM 
web-
based 
viewer 

Material 
Recognition N N 

Construction 
Materials Y 

Appearance-based 
material 

classification 
using LM & HSI 

features 

(Arif & Khan, 2021b) Videography Fixed Both NA 
Object in 
Image 

Image 
viewer 

MATLAB 
Image 

Processing 
Y N 

Columns, 
beams, block 
masonry 

N 

MATLAB-based 
element cropping 
and quantity 
estimation 

L
-3 

Q
uantification 

(S. Kim, Kim, & Lee, 
2020) 

Laser 
Scanning and 
Photogramme

try 

UAV Both 
Manual 
Modelling 

Mesh Model/ 
3D BIM 

3D 
Viewer 

Overlapping 
& BoQ Y N 

Structural 
Components N 

Hybrid data 
collection using 
drone-based 

photogrammetry 
and Laser 
Scanning 

(Z. Wang et al., 
2021b) 

Video Camera Fixed Outdoor NA 

Object 
Detected & 
Segmented 
Images 

3D 
Viewer 

Object 
Detection 

Y N Precast Walls N 

Object detection, 
segmentation and 
multiple objects 
tracking from 

L
-3 

Q
uantifi
cation 
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Papers 

Data Acquisition 
3D 
Reconstruction 

As-Built 
Output 

Progress Monitoring Identified 
Elements 

Oper
ationa
l 

State 

Key Focus LPM 

Technology Method 
Indoor/ 
Outdoo
r 

Visualiz
ation Comparison Quantification 

Schedule 
Updating 

    

images to detect 
precast walls. 

(Marianna Kopsida & 
Brilakis, 2020) 

RGBD 
Camera Manual Indoor 

Commercial 
Software 3D Mesh 

Mixed 
Reality 

Rays 
Thresholding Y N 

big regular-
shaped 
objects 

N 
Mixed Reality–
based progress 
monitoring 

(Mahami, Nasirzadeh, 
Hosseininaveh 
Ahmadabadian, & 
Nahavandi, 2019) 

Photogramme
try 

Manual Both 
SfM & MVS 
with Coded 
Targets 

BIM 3D 
Viewer 

BoQ N N Walls N 

Enhanced method 
for 3D 

reconstruction 
using coded 
targets 

(Maalek, Lichti, & 
Ruwanpura, 2019) 

Laser 
Scanning Manual Both 

Commercial 
Software Point Cloud 

3D 
Viewer 

Overlapping 
Distance 
Threshold 

Y N 
Rectangular 
Columns N 

Extraction of 
columns using 
geometric and 

relationship-based 
reasoning 

(M. Bassier et al., 
2019) 

NA NA Both NA Point Cloud 
3D 

Viewer 
Thresholding Y N Walls N 

Percentage of 
completion of in-
situ cast concrete 

walls 

(Bognot, Candido, 
Blanco, & 

Montelibano, 2018) 

Videogramme
try UAS Outdoor 

VSfM / 
CMPMVS 3D BIM 

3D 
Viewer Thresholding Y N 

Building 
Façade N 

Uses UAS 
images, low-cost 
photogrammetry, 

and GIS 

(Pushkar, Senthilvel, 
& Varghese, 2018) 

Photogramme
try Manual Both 

Commercial 
Software Point Cloud 

3D 
Viewer 

Object 
Detection Y N 

Masonry 
Walls Y 

Use of feature 
engineering for 
object detection 
and data 

classification 

(Bosché, Ahmed, 
Turkan, Haas, & 
Haas, 2015) 

Laser 
Scanning 

Manual Both Commercial 
Software 

BIM 3D 
Viewer 

Object 
Recognition 

Y N MEP 
Components 

N 

Use of Hough 
Transform to 

detect parametric 
features with Scan 

Vs BIM 
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Papers 

Data Acquisition 
3D 
Reconstruction 

As-Built 
Output 

Progress Monitoring Identified 
Elements 

Oper
ationa
l 

State 

Key Focus LPM 

Technology Method 
Indoor/ 
Outdoo
r 

Visualiz
ation Comparison Quantification 

Schedule 
Updating 

    

(Golparvar-Fard, 
Peña-Mora, & 
Savarese, 2015) 

Photogramme
try 

(Unordered 
Images) 

Manual Both SfM & MVS Point Cloud 
D4AR 
Viewer 

Voxel 
Occupancy Y N 

Columns, 
Foundation 
Walls 

N 

Use of machine-
learning scheme 
built upon a 
Bayesian 
probabilistic 
model 

(K. K. Han & 
Golparvar-Fard, 

2014) 

Photogramme
try 

(Unordered 
Images) 

Manual Both SfM & MVS Point Cloud 
web-
based 
viewer 

Material 
Recognition Y N 

Construction 
Materials Y 

Appearance-based 
material 

classification 

(H. Omar, 
Mahdjoubi, & 
Kheder, 2018) 

Photogramme
try 

Manual Outdoor Commercial 
Software 

Point Cloud NA 
Enclosed 
Volume 
Calculation 

Y Y Columns N 

Photogrammetry-
based monitoring 
with automated 
notification 
system and 

schedule update 

L
-4 

Schedule U
pdate w

ith 
notifications 

(Pučko et al., 2018) RGBD 
Camera 

Manual Both 
Commercial 
Software 

4D BIM 
3D 

Viewer 

Commercial 
Project 

Management 
Software 

N Y Not specified N 

Continuous 
monitoring using 
helmet-mounted 
scanners 
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These processes are grouped into three stages, as follows: 

i. Acquisition of as-built data and conversion into a point cloud using 3D 

reconstruction techniques. 

ii. Generation of the as-built model from the point cloud (with reference to the as-

planned model, if available) 

iii. Comparison of the as-built and as-planned models to assess progress by 

visualisation and/or by quantifying the work done. 

All studies on vision-based progress monitoring focus on one or more of these stages. 

Table 3.1, a key output of this study, was developed through a detailed review of the 

published works on vision-based construction progress monitoring. The articles were 

identified through the systematic process described in the introduction. The categories 

shown in Table 3.1 were refined iteratively based on objectives, solutions and concepts 

addressed by the reviewed papers. 

The studies referred to in Table 3.1 are arranged based on the category of progress 

monitoring, as indicated in the last column. The first column contains the reference to 

the study, and the subsequent columns contain the categories and sub-categories based 

on the macro-level model. The cells in Table 3.1 identify the technology, concept, and 

algorithm explored in each category and sub-category. It can be observed in Table 3.1 

that for each category, there is a wide range of alternatives for all process components, 

construction elements, and the key foci that the studies have explored, as discussed 

briefly in the following paragraphs. 
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Data Acquisition and 3D Reconstruction: This section of the table documents the 

data acquisition technologies, type of mounting, and usage environment 

(indoor/outdoor) that the studies use. Depending on the input type, the data undergoes 

3D reconstruction using various commercial software, as shown in Table 3.1. The 

workflow from data acquisition to 3D reconstruction is discussed in detail in Chapter 

4, subsection 4.1. 

As-built Modelling: As shown in Table 3.1, there are varied output data types that are 

generated by the pipelines. The generation of these as-built models requires specific as-

built modelling techniques, which are classified and discussed in detail in subsection 

4.2. 

Progress Monitoring: Table 3.1 also indicates the level of progress monitoring (LPM) 

carried out, judging by the types of platforms used to implement progress estimation. It 

was seen that various progress monitoring pipelines have ended at different levels of 

monitoring. Therefore, this study classifies these into four levels. These are: (L-1) only 

visualising the as-built model, (L-2) visualisation incorporating a comparison with the 

as-planned model, (L-3) quantification of progress, and (L-4) quantification with 

schedule update and warning notifications. 

For progress visualisation, different immersive and non-immersive environments have 

been used. For quantification, numerous approaches have been used based on the 

availability of an as-planned model. The details are discussed in Chapter 4, subsection 

4.3. 
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In addition to the three process components—data acquisition and 3D reconstruction, 

as-built modelling, and progress monitoring—Table 3.1 also characterises the pipelines 

on two additional parameters. First, the types of elements being worked on, and second, 

whether the structure’s current operational state can be recognised (e.g., a wall’s stage 

can be brickwork- completed, plastered, or painted). 

3.4 CONCLUSION 

As inferred from Table 3.1, numerous combinations of tools, concepts, and algorithms 

need to be evaluated to arrive at the appropriate approach for a specific progress 

monitoring need. Though all the combinations may not be technically viable, a 

significantly large set of options needs to be experimentally explored and documented 

to ensure systematic progress in this domain. Therefore, an integrated framework 

encompassing all the processes will support the systematic study. 

In the next chapter, the three macro-level steps are expanded to formulate the detailed 

framework wherein the concepts/processes/technologies mentioned in these studies are 

characterised, positioned, and discussed.2 

 
2 Parts of this chapter have been published in the following articles:  

1. Reja, V. K., Varghese, K., & Ha, Q. P. (2022b). Computer vision-based construction progress 
monitoring. Automation in Construction, 138, 104245.  
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CHAPTER 4.  

INTEGRATED FRAMEWORK FOR COMPUTER VISION-

BASED CONSTRUCTION PROGRESS MONITORING (CV-

CPM) 

4.1 INTRODCUTION: PROPOSED FRAMEWORK FOR CV-CPM 

Automating the process of construction progress monitoring through computer vision 

can enable effective control of projects. Systematic classification of available methods 

and technologies is necessary to structure this complex, multi-stage process. Using the 

PRISMA framework, relevant studies in the area were identified. The various concepts, 

tools, technologies, and algorithms reported by these studies were iteratively 

categorised, developing an integrated process framework for Computer-Vision-Based 

Construction Progress Monitoring (CV-CPM). This framework comprises data 

acquisition and 3D reconstruction, as-built modelling, and progress assessment. Each 

stage is discussed in detail, positioning key studies, and concurrently comparing the 

methods used therein. The four levels of progress monitoring are defined and found to 

strongly influence all stages of the framework. The need for benchmarking CV-CPM 

pipelines and components are discussed, and potential research questions within each 

stage are identified. The relevance of CV-CPM to support emerging areas such as 

Digital Twin is also discussed. 

The integrated framework for Computer Vision-based Construction Progress 

Monitoring is shown in Figure 4.1. This framework was derived after evaluating the 
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existing literature studies in detail using the macro-level framework lens described in 

the previous chapter (Section 3.3, Figure 3.2) and the methodology defined in (Omair 

& Alturki, 2020). This section explores the micro-level details of each of the three main 

components.  

The following three sub-sections are on the various processes, algorithms, methods, and 

technologies that could be applied to the relevant subsections of the framework. 

This chapter is divided into seven subsections. The first sub-section introduces this 

chapter. The second sub-section is on data acquisition and 3D reconstruction. The third 

sub-section is on as-built modelling. The fourth sub-section is on progress monitoring. 

The fifth sub-section presents discussion. The sixth sub-section aligns the recently 

published works to the CV-CPM framework. This is followed by conclusions in the 

seventh sub-section. 
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4.2 DATA ACQUISITION AND 3D RECONSTRUCTION 

This section addresses the data acquisition (Figure 4.1 (a)) and 3D reconstruction 

(Figure 4.1 (b)) components of the framework. The data acquisition depends on the 

acquisition technology as well as the sensor mounting method selected. There are 

various steps involved in 3D reconstruction algorithms. The decision as to which 

technologies to use is a multi-faceted issue. Defining these based on the characteristics 

of a construction project and other factors is the primary contribution of this section. 

4.2.1 Data acquisition: technologies and methods 

Data acquisition depends on selecting the technology and the sensor mounting method 

(Figure 4.1 (a)). As seen in previous chapter (Table 3.1), several combinations of 

sensing technologies and sensor mounting methods have been explored. Digital 

cameras (Golparvar-Fard et al., 2015)(Dimitrov & Golparvar-Fard, 2014), video 

cameras (Bognot et al., 2018), laser scanners (Bosché et al., 2015), and range imaging 

(or RGB-D cameras) (Marianna Kopsida & Brilakis, 2020)(Pour Rahimian et al., 

2020)(Pučko et al., 2018) are the vision-based technologies used for collecting data for 

progress monitoring. They generate inputs to the framework in the form of image 

frames or point clouds. The sensor mounting method for data acquisition can be in the 

form of fixed devices, handheld devices, robotic systems mounted on unmanned ground 

vehicles (UGV) (A. Adán, Quintana, Prieto, & Bosché, 2020), unmanned aerial 

vehicles (UAV) (Bognot et al., 2018), or a combination of these systems (Asadi et al., 

2020). 
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The key factors that govern their selection have been identified and are positioned along 

the outer ring. These factors have been adopted from literature as well as authors on 

experience. 

Eight key factors for the sensor mounting method include statutory clearance, cost of 

mounting equipment, range of operation, preferred use case, operator training, 

navigation, manoeuvring speed, and accessibility. In addition, twelve key factors for 

data acquisition technology have been identified. They include the level of automation 

for data capture*, real-time data availability, range of equipment operation, spatial 

resolution, spatial accuracy*, adequate lightning requirement, user training 

requirement*, time for data capture*, preparations for data capture*, computation cost 

for processing, equipment portability*, and equipment cost*. Kindly note that the 

factors that are marked with * are adopted from (Marianna Kopsida, Brilakis, & Vela, 

2015). The other factors included here are from the author’s own experience with these 

technologies. 

This matrix is constructed based on the review and classification of literature. The 

relative comparison indicator for technology versus sensor mounting method is 

indicated along the radial direction. The low, medium, and high ratings are shown using 

green, yellow, and red colour codes, respectively. The proposed rating is a preliminary 

step towards assisting in the selection of a combination. As the proposed ratings are 

based on the authors’ perspective, experimental studies are required to make them more 

objective.  



80 

 

4.2.2 3D reconstruction 

Following the image-based input from the previous step, the next step is to generate a 

point cloud model from a series of algorithms for 3D reconstruction (Figure 4.1 (b)). 

As observed from the literature presented in the previous chapter, most 

photogrammetry-based progress monitoring pipelines use commercially available 

software to generate a 3D point cloud from optical camera images or depth images.  

Optical camera images do not contain depth information. SfM (Structure-from-Motion) 

and SLAM (Simultaneous Localisation and Mapping) are the two conceptual 

approaches to add depth information for sparse 3D reconstruction. 

Depth images are captured using RGB-D cameras, for example, Microsoft Kinect. They 

have depth information (XYZ coordinates) along with colour information (RGB values) 

on a per-pixel basis. This information is used for mapping and performing dense 3D 

reconstruction using intrinsic and extrinsic camera parameters (Q. Wang et al., 2020). 

The output from a laser scanner is a 3D point cloud, and hence does not require 3D 

reconstruction. 

The work in (Z. Ma & Liu, 2018) focuses on generating point clouds from monocular 

and stereo images, and video frames using SfM for photogrammetry and its 

corresponding algorithms for 3D reconstruction. In this chapter, only the basic concept 

of SfM is presented, and a detailed comparison with SLAM is made to facilitate 

decision making for 3D reconstruction in construction. 
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SfM (Visual SFM (Wu, 2011) or Open SfM (Mapillary, 2018)) is a technique consisting 

of a combination of algorithms for photogrammetric 3D reconstruction from numerous 

image frames (Figure 4.1 (b). It is an offline approach for estimating the scene's camera 

motion information. The process is to match all the images to each other, find the 

correspondences, and then delete mismatched images to obtain relative camera 

positions and the structure without any prior geometric or semantic information. The 

concept of SfM is based on stereoscopic photogrammetry, as stated in (Furukawa, 

Curless, Seitz, & Szeliski, 2009). A detailed review of the 3D reconstruction by SfM 

and its algorithm can be obtained in (Z. Ma & Liu, 2018) and (Golparvar-Fard, Peña-

Mora, & Savarese, 2011). 

Figure 4.3 Comparison between SLAM and SfM for 3D reconstruction 

in construction 
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SLAM (Bailey & Durrant-Whyte, 2006) is a more general framework, in real-time, 

where a mapping system starts motion from an unknown location in an unknown 

environment, and during movement, simultaneously keeps track of its position with 

respect to the surrounding environment, building an incremental map. SLAM may 

depend on sensors like cameras, LiDAR, GPS, IMU, etc. Modern visual SLAM has 

gradually developed into a multi-feature, multi-sensor, and deep learning-based method 

that can be used for dynamic and haphazard construction environments. 

As shown in the literature presented in the previous chapter, the use of Visual SLAM 

in progress estimation has been sparsely explored in construction. With the rapid 

advances in autonomous technologies for data acquisition (UAV/UGV based), SLAM-

based reconstruction will become more relevant in construction. Figure 4.3 shows the 

comparison between SfM and SLAM to guide the selection process for 3D 

reconstruction applications for progress monitoring. The three key factors are discussed 

below in detail, namely: 

1. Data sequence: SfM is based on feature matching of image pairs is highly 

dependent on the quality and the sequence of the image frames obtained. It need not 

necessarily require ordered image frames. On the other hand, SLAM builds an 

incremental map in real-time and requires sequential frames to estimate the previous 

and next poses. Hence, construction sites collecting images from multiple location-

aware sensors should be able to work on SfM. SLAM can be selected for sites 

requiring autonomous navigation of robots in volatile unmanned environments. 

2. Computational cost: The process of SfM is computationally costly because of 

unordered data compared to SLAM, which works on ordered data. Bundle 
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adjustment (non-linear optimisation) (Triggs, McLauchlan, Hartley, & Fitzgibbon, 

2000) in SLAM is applied only on the last “N keyframes”, as opposed to the entire 

graph in SfM, to give a real-time performance in budget. In scenarios where the 

availability of parallel GPUs is not a constraint for computation, SfM will give 

better results than SLAM. 

3. Path-planning or Autonomy: Pre-planning the robot surveillance paths for 

construction sites is tedious and complex. Planned paths are subjected to uncertainty 

on construction sites due to their dynamic nature. Both SfM and SLAM can be used 

if the sensor is mounted on a UAV or a UGV. SfM is predominantly used in known 

environments where surveillance paths can be planned. In contrast, SLAM is 

advantageous for autonomous applications in random locations and unknown 

environments. 

Apart from these three key features, other sub-factors which can be considered are 

shown in Figure 4.3. In general, SLAM generates a sparse map compared to SfM and 

has limitations in loop closure, scaling, and drifting issues. However, SLAM can 

overcome SfM's drawback when dealing with a featureless or repetitive scene with 

potential false matches. Also, SfM has been tried on a larger scale, whereas SLAM can 

be used for small-scale tasks (Mitsugami, 2011; Sun, Zhang, Wang, & Zhang, 2021). 

It is evident from the review that both technologies have their advantages and 

disadvantages, and selection should be based on project requirements and 

compatibility. There are multiple algorithms for SLAM (Sun et al., 2021) and SfM 

((Wu, 2011),(Mapillary, 2018)), and when various types of embedded sensors are 

included, the options for selection increase. For example, the embedded camera sensor 
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can be monocular, binocular or RGB-D. Based on the type of sensor, the core of the 

reconstruction algorithm changes, as well as the accuracy and the computation time. 

Therefore, numerous combinations of these variations increase the complexity of the 

framework and the resulting selection process. 

4.2.3 Absolute scale recovery and dense 3D reconstruction 

The output obtained by the image-based pipeline is primarily sparse and not to scale. 

Therefore, as shown in Figure 4.1 (b), it requires absolute scale recovery and dense 3D 

reconstruction. Laser scans do not require this. Table 4.1 shows the techniques and 

algorithms that can be used in the associated sub-processes. 

The scale recovery sub-process determines the absolute scale of the generated sparse 

point cloud by comparing it with the local coordinates of the point in the sparse point 

cloud. Scale recovery has been implemented using, manual techniques, pre-measured 

objects, and geo-registration, as shown in Table 4.1. The first two techniques require 

manual measurements and feeding ground truth, whereas geo-registration requires 

automated sensing of camera parameters to apply the transformation. 

Table 4.1 Sub-processes and associated techniques 

Sub-Process Techniques/ Algorithms Existing Use in Progress 
Monitoring Pipelines Other Works 

Absolute Scale 
Recovery 

Manual - 

(Rashidi, Brilakis, & 
Vela, 2015) 

Pre-measured Object (Mahami et al., 2019)(K. K. 
Han & Golparvar-Fard, 2014) 

Geo Registration 
(Zollmann et al., 2014)(Bognot 

et al., 2018) 

Dense 3D 
Reconstruction 

Multi-view Stereo MVS (K. K. Han & Golparvar-Fard, 
2014)(K. Han et al., 2018) 

(Wu, 2011)(Mapillary, 
2018) 

(Mitsugami, 2011) 

Clustering Multi-View 
Stereo (CMVS) 

(Mahami et al., 2019) 

Patch-based Multi-View 
Stereo (PMVS) (Mahami et al., 2019) 
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Sub-Process Techniques/ Algorithms Existing Use in Progress 
Monitoring Pipelines Other Works 

MVS with voxel 
colouring 

(Golparvar-Fard et al., 
2015)(Dimitrov & Golparvar-

Fard, 2014) 
SGM (A. Braun et al., 2014) 

Meshing using PSR (Bognot et al., 2018)(Zollmann 
et al., 2014) 

Registration 

Coarse Registration  

(M. Bueno, González-
Jorge, Martínez-Sánchez, 
& Lorenzo, 2017)(Martín 

Bueno, Bosché, 
González-Jorge, 

Martínez-Sánchez, & 
Arias, 2018) 

(Mitsugami, 2011) 

Manual 
(Golparvar-Fard et al., 2015)(S. 
Kim et al., 2020)(K. Han et al., 

2018) 

Marker-Based 
(Zollmann et al., 2014)(Maalek 

et al., 2019) 
Sensor-Based (Zollmann et al., 2014) 

Feature-Based 
(Mahami et al., 2019)(Lei, 
Zhou, Luo, & Love, 2019) 

Fine Registration  

ICP 

(Zollmann et al., 2014)(C. Kim, 
Son, & Kim, 

2013b)(Khairadeen Ali et al., 
2021)(A. Braun et al., 2014) 
(Pučko et al., 2018)(C. C. Kim, 
Kim, Son, & Kim, 2013)(Alex 

Braun et al., 2020) 
Image Registration  

Geo-referencing 

(Karsch et al., 2014)(K. K. Han 
et al., 2015)(Roh, Aziz, & Peña-
Mora, 2011)(K. K. Han & 
Golparvar-Fard, 2014) 

(Golparvar-Fard et al., 2011) 

Noise and 
Outlier 
Removal 

Manual (S. Kim et al., 2020) (Lee, Son, Kim, & Kim, 
2013)(Y.-F. Liu, Cho, 
Spencer, & Fan, 2016) 

RANSAC+PCA-based (Maalek et al., 2019) 

Tensor voting algorithm (C. Kim et al., 2013b) 

Down 
Sampling  

Point-space strategy 
Algorithm - (Son, Kim, & Kim, 2015) 

The next sub-process, Dense 3D reconstruction, recovers the scene details. The 

algorithms used are multi-view stereo (MVS), clustering views for multi-view stereo 

(CMVS), patch-based multi-view stereo (PMVS), and semi-global matching (SGM). 

The open-source algorithms which, perform dense 3D reconstruction include 

VisualSfM (Wu, 2011), OpenSfM (Mapillary, 2018), and Bundler SfM (Mitsugami, 

2011). 

A dense 3D reconstruction step is required if the reconstructed point cloud is sparse, 

typically in the case of reconstruction from monocular or stereoscopic images or video 
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frames. The reconstruction output from depth images is already dense enough to be 

used directly and does not require dense 3D reconstruction. 

Only a handful of CV-CPM pipelines have stated the method used for absolute scale 

recovery and dense 3D reconstruction; others have not explicitly mentioned it in the 

paper. The choices available for absolute scale recovery and dense 3D reconstruction 

add additional variables to the CV-CPM framework. Once a dense point cloud is 

generated, the next step is to pre-process it through registration, noise filtering, outlier 

removal and down sampling. These sub-processes and model generation are discussed 

in the next section. 

4.3 MODEL GENERATION 

In this section, first, the characteristics of the as-planned model are discussed. All the 

steps in pre-processing and the process of generating the as-built model are then 

discussed in detail (Figure 4.1 (d)). The existing techniques for as-built model 

generation are categorised into heuristic-based and learning-based methods. The 

definition of these categories and the mapping of existing pipelines to these 

categories/sub-categories is the primary contribution of this section. This section also 

presents the trade-off between the levels of information the various as-built outputs 

provide for progress estimation and the computational complexity required to generate 

them. 
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4.3.1 As-Planned model 

As-planned models may or may not be available for a particular facility or project. 

Generally, they are prepared in the design phase of the project. These can be 2D/3D 

CAD or 3D/4D BIM models. The approach to progress monitoring depends on the 

availability and type of the as-planned model, as it facilitates comparison with the as-

built model. 

4.3.2 As-Built model 

The following sub-sections include the details for the various sub-processes and options 

for as-built modelling (Figure 4.1 (c)). 

4.3.2.1 Point cloud pre-processing 

Point cloud pre-processing is a crucial step towards as-built modelling to improve the 

point cloud quality. The level of automation in pre-processing has not been adequate, 

and manual intervention is still used to get the required quality. Table 4.1 outlines the 

critical sub-processes of point cloud pre-processing, which broadly consist of 

registration, noise filtering, outlier removal, and down-sampling, along with various 

techniques and algorithms used in the corresponding literature. The table also shows 

studies that have addressed fundamental aspects of these sub-processes. 

Registration involves merging multiple partial point clouds obtained into a single file 

or registering an as-built point cloud over an as-planned BIM model for progress 

monitoring. There are two stages of registration, coarse and fine. 
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Coarse registration aligns a set of point clouds using correspondences between them. 

In contrast, the fine registration algorithm further matches multiple point clouds by 

estimating a rigid transform and minimising the distance between the corresponding 

matched points. The selection of these approaches depends on the type of data 

acquisition technology used and location capture, as registration depends on localising 

the data. While the manual and marker-based methods require iterative human efforts, 

the sensor and feature-based approaches are reported to be more automated. The 

Iterative Closest Point (ICP) algorithm is the most used in CV-CPM pipelines for fine 

registration. It searches for an optimum solution, and the convergence speed is directly 

proportional to the accuracy of coarse registration. For image-based methods, image 

registration over the BIM model is made using georeferencing. 

Next, noise and outliers are unwanted points and are removed to improve the point 

cloud quality prior to further processing. Finally, due to the merging of point clouds, 

the overlapped regions become much denser, affecting processing efficiency. Hence 

down-sampling is performed to make the point cloud uniform. Relevant works which 

include these steps are shown in Table 4.1. 

Although pre-processing of data has been presented in some progress monitoring 

pipelines, there is no detailed exploration of the available techniques. There is a need 

for a comprehensive study and further research to customise pre-processing methods 

based on the input pipeline’s requirement. There is also a need to explore the other 

techniques mentioned in Table 4.1 for better results using the CV-CPM framework. 
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4.3.2.2 Types of as-built models: 

Table 4.2 Relative computational requirements and output accuracy for the level of 

progress monitoring, based on the type of as built models. 

Type of as-
built 
models 

Level of progress monitoring 

L-1 and L-2 L-3 and L-4 

Progress Visualization Progress Quantification 

Computation for model 
generation Quality of visual output Computation for 

progress quantification 
Accuracy of 
Qty. take-offs 

IFC/BIM Very High Very High Very Low Very High 

Surface 
Model High High Low High 

Mesh 
Model Low Medium High Medium 

Voxel 
Model Low Medium High Low 

Point 
Cloud Very Low Low Very High Very Low 

Existing pipelines have used several combinations of as-built and as-planned model 

comparisons for progress estimation. Based on the algorithm and method used, the as-

built output can be a pre-processed point cloud (Maalek et al., 2019), voxel model 

(Hübner, Weinmann, & Wursthorn, 2020), mesh model (Marianna Kopsida & Brilakis, 

2020)(Zollmann et al., 2014), surface model (Macher, Landes, & Grussenmeyer, 

2017)(Xiong, Adan, Akinci, & Huber, 2013), or IFC/BIM models (Mahami et al., 

2019)(Pučko et al., 2018)(Bosché et al., 2015) (Figure 4.1 (d)). 

The level of progress monitoring proposed for a project plays a vital role in deciding 

the type of as-built model to be generated. Table 4.2 compares computational 

requirements and quality of output for the different levels of progress monitoring with 

the corresponding types of as-built models. Here, green represents a performance 

improvement, and red indicates a decrement in performance. 
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It can be seen from Table 4.2 that for L-1 or L-2 based monitoring, voxel-based, mesh-

based, or point cloud models are recommended to be used because of low computational 

requirements. Even if the point cloud quality is low, it is adequate for visualisation. 

While visual output quality is better for IFC-based or surface models, it is not 

recommended for progress visualisation due to very high computing requirements. 

For L-3 or L-4 based monitoring, while it will take higher computation to generate an 

IFC or surface-based model initially, the computation required for progress 

quantification will be substantially lower with higher accuracy; hence it is 

recommended. On the other hand, the mesh model, voxel model, and point clouds are 

easy to generate but will take higher computation to perform the comparison and result 

in low accuracy. Mesh-based and voxel-based modelling are explored domains that are 

easier to develop using established algorithms and software and therefore were briefly 

introduced. 

Hence, this trade-off of required computation, accuracy, speed, and application case 

should be considered while designing the progress monitoring pipeline for a specific 

usage requirement. The relative comparison provided here is a preliminary step based 

on the authors’ perspective. To arrive at more objective ratings, the parameters must be 

assessed quantitatively (for computation and accuracy) and qualitatively (for visual 

output quality). Further experimentation is required to make these assessments. 

Progress visualisation (L-1 & L-2) is typically being implemented at construction sites. 

However, to take critical decisions, quantifying progress is essential. IFC-based as-built 

models can provide direct and accurate progress quantification (L-3) and facilitate 
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schedule updating and notifications generation (L-4). Therefore, existing studies have 

explored various techniques to achieve point-cloud to IFC/BIM model conversion. The 

following sub-section discusses and classifies these approaches in detail.  

4.3.2.3 Point Cloud to BIM 

This section focuses on as-built modelling methods resulting in IFC classes (Figure 4.1 

(d)). Only two existing studies have classified point cloud-to-BIM approaches 

(Pătrăucean et al., 2015)(Zeng, Chen, & Cho, 2020). One has classified them as local 

and auxiliary heuristics based on as-planned BIM involvement (Pătrăucean et al., 

2015), whereas the other extends the classification based on geometry, rule, model, and 

feature-based techniques (Zeng et al., 2020). 

Table 4.3 summarises the approaches taken by the referenced studies to explore the 

point cloud-to-IFC/BIM conversion. This study broadly classifies these approaches as 

heuristics-based and learning-based and into additional subclasses, extending the 

classification by (Pătrăucean et al., 2015) and (Zeng et al., 2020). 

The use of heuristics has been based on geometry, rule-based, relationship-based, and 

model-based constraints. Learning-based techniques can be generally classified as 

geometric and appearance learning. The following section discusses and analyses the 

two approaches of element recognition in detail
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Table 4.3 Parametric as-built modelling approaches in the literature 

Approaches 
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A. Heuristics-based approach 

Heuristics-based approaches (Figure 4.1 (d)) use pre-coded domain knowledge to 

identify elements from as-built point clouds. Table 4.4 shows the comprehensive sub-

classification of identified heuristics with their definitions as formulated by the authors 

and the context of their applications in the literature. Following are a few insights from 

Table 4.4 for the four types of heuristics: 

1. Geometrical constraints have been applied based on shape, dimensions, point 

density, and associative geometry. They require only basic geometric information 

as inputs; therefore, they are widely utilised. The challenge lies in retrieving and 

feeding this information for all the elements, as construction sites may have 

unconventional elements. 

2. Rule-based constraints have been applied based on the direction of the surface 

normal, orientation, principal axis direction and other rules. Apart from a few 

complex elements, most elements can be identified by applying these rules. 

3. Relationship-based constraints: The construction sequence is of utmost 

importance, as it can accurately define the objects’ dependencies from schedules, 

enabling better element detection for progress monitoring. These time-based 

relationships can be helpful while there is limited visibility of the scene or 

occlusions. Space-based constraints have been used in the literature using 

ontological relations (K. K. Han et al., 2015) and shape grammar (H. Tran, 

Khoshelham, Kealy, & Díaz-Vilariño, 2019), but they are challenging to formulate 

and apply in practice. 
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4. Model-based constraints: Model-based element retrieval uses reverse engineering 

to recognise the elements. The point cloud is registered over the as-planned BIM 

model, and the elements are identified based on overlap occupancy. Although the 

method results in high accuracy, its use is limited because it requires a detailed as-

planned model. It has specific point cloud quality and reference BIM model 

requirements (Rebolj, Pučko, Babič, Bizjak, & Mongus, 2017). The approach also 

faces computational challenges in automatic registration as the acquired point cloud 

data is voluminous. 

 It can be summarised that heuristics-based techniques usually require a significant 

amount of prior information. Generation of this information requires domain 

knowledge about construction and the type of elements being recognised. A 

recommended solution is to define a set of metaheuristics that generally applies to any 

construction dataset as a subset of all the heuristics; using them will make element 

identification viable with less detailed information requirements. 

Though using some heuristics makes element identification easier, a pure heuristic-

based approach for CV-CPM can be unreliable and challenging to be implemented. 

B. Learning-based approach 

Learning-based techniques (Figure 4.1 (d), Table 4.3) are used on point clouds for 3D 

shape classification, object detection, and segmentation. They are based on training 

features using a neural network and computed weights to predict object or material 

classes. Two types of learning approaches have been used:  
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1. Geometric Learning extracts geometrical features using descriptors and feeds 

neural networks on statistics like distance, area, and angles. The geometric features 

are used to identify the element's physical presence. 

2. Appearance Learning extracts features like HSI (Hue-Saturation-Intensity) colour 

values, material reflectance, and surface roughness as features. The appearance-

based features describe its operational state. 

As observed from Table 4.3, only a few studies have detected elements for as-built 

modelling using learning-based techniques in the past. Most of these methods detect 

geometric features and do not recognise the elements' operational state. A few studies 

recognised the operational state by using image processing techniques (K. K. Han & 

Golparvar-Fard, 2015)(K. Han et al., 2018) and learning appearance-based features 

(Hamledari, McCabe, & Davari, 2017). 

For progress monitoring applications, learning-based approaches have been 

predominantly used on 2D image data, and there are very few studies involving 3D 

point cloud learning. Recent advances in machine learning and deep neural networks 

have motivated researchers to explore this area. However, their application in point 

cloud-based element recognition for construction has been limited because of 

challenges such as: 

1. 3D point cloud data are unstructured, large, and with varying point densities, 

making 3D feature detection computing-intensive and time-consuming. 
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2. Scan data are generally noisy and have occluded components and cluttered scenes. 

Also, the data are often susceptible to changes in environmental factors such as rain, 

fog, dust, or mist. 

3. Learning models do not perform well when there is a significant difference between 

the training and test data. 

4. Supervised learning requires extensive annotated training and testing datasets for 

various categories of incomplete building elements: currently, the data is limited. 

ScanNet (Dai et al., 2017), S3DIS (Armeni et al., 2016), and ModelNET-40 (Zhirong 

Wu et al., 2015) are 3D point cloud datasets consisting of different classes of building 

elements that are currently used in studies. However, these data sets represent 

completed buildings; for construction progress monitoring studies, data sets are 

required to be acquired from buildings under construction. For material recognition, 

one such example of an image-based dataset is the Construction Material Library 

(CML) created in (Dimitrov & Golparvar-Fard, 2014) and (K. K. Han & Golparvar-

Fard, 2015), which consist of more than 3000 images categorised into 20 construction 

material classes.
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Table 4.4 Classification of applied heuristics to obtain specific elements. 

Heuristics Classification Elements and Applied Heuristics 

Geometry-based 
Dimensional and associative 
restrictions that can be applied on 
point clouds, segmented planes, 
objects, or volumetric 
representation. 

Shape and dimension 

Wall: dimensional constraints(Pu & Vosselman, 2009)(Macher et al., 2017) 
Wall: floor to roof distance (Arnaud et al., 2016) 
Column: dimensional constraints (Chen et al., 2017) 
Floor: altitude of plane (Arnaud et al., 2016) (Hübner et al., 2020) 
Floor: location of centroid (Díaz-Vilariño et al., 2015) 
Roof: altitude of plane (Arnaud et al., 2016) 
Roof:location of centroid (Díaz-Vilariño et al., 2015) 
Pipe: dimensional constraints (Bosché et al., 2015) 
Pipe: circular cross-section (Bosché et al., 2015) 
Window: rectangular (Arnaud et al., 2016) (Previtali, Díaz-Vilariño, & Scaioni, 2018) 
Door: narrow regions along the trajectory of the device (Franz et al., 2018) 
Door: rectangle shape constraints (Arnaud et al., 2016) (Quintana, Prieto, Adán, & Bosché, 2018) (Previtali et 
al., 2018) 
Opening: shape (Arnaud et al., 2016) (Antonio Adán et al., 2018) 
Secondary components : shape (Antonio Adán et al., 2018)  

Point density 

Floor: point density (Chen et al., 2017) 
Roof: point density (Chen et al., 2017) 
Window: low point density (Arnaud et al., 2016) (Pu & Vosselman, 2009) 
Wall: 2D countour generation (Franz et al., 2018) 

 
Associative geometry 

Opening: the location on the wall (Arnaud et al., 2016) 
Beam: plane projection and line fitting (Chen et al., 2017) 
Window & door: distance from the wall, ceiling and adjacent wall (Arnaud et al., 2016) (Previtali et al., 2018) 

Rule-based 
These are the general heuristics 
most of the building elements 
follow. 

Surface normal 
Floor: surface normal opposite to direction of gravity (Arnaud et al., 2016) (Hübner et al., 2020) (Ochmann et 
al., 2019) (C. Wang et al., 2015) 
Roof: surface normal in direction of gravity (Arnaud et al., 2016) (Ochmann et al., 2019) (C. Wang et al., 2015) 

Orientation 

Wall: orthogonal to ground (Arnaud et al., 2016) (Hübner et al., 2020) 
Wall: verticallity constraint (Pu & Vosselman, 2009)(C. Wang et al., 2015) (Hübner et al., 2020)(Ochmann et 
al., 2019) 
Window & door: alignment (Previtali et al., 2018) 

Principal axis Door: axis constraints (Franz et al., 2018) 

Other Window: never stand-alone (Pu & Vosselman, 2009) 
Door: never stand-alone (Pu & Vosselman, 2009) 

Relationship-based 
Relationship-based heuristics can 
be time-based or space-based. 

Time-based 
(e.g., the sequence of construction 
objects) 

Sequential relationships (K. K. Han et al., 2015) 
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Heuristics Classification Elements and Applied Heuristics 

Space-based (e.g., connections 
between objects or spaces). 

Wall: intersects with ground (Pu & Vosselman, 2009) (K. K. Han et al., 2015) 
Roof: on top of walls and intersect on top of walls (Pu & Vosselman, 2009)  
Window: positioned in walls (Pu & Vosselman, 2009) (K. K. Han et al., 2015) 
Door: positioned in walls (Pu & Vosselman, 2009) (K. K. Han et al., 2015) 
Opening: the location on the wall (Arnaud et al., 2016) 

Model-based 
Uses as-planned BIM model to 
detect elements using overlap with 
as-built data. 

Derived from existing model 

Pipes: alignment and comparision (Bosché et al., 2015) 
Elements: voxel occupancy (Golparvar-Fard et al., 2015) 
Elements: ray thresholding (Marianna Kopsida & Brilakis, 2020) 
Elements: commercial software (Pučko et al., 2018) 
Elements: thresholding (Alex Braun et al., 2020) 
Elements: machine learning (Pour Rahimian et al., 2020) 
Secondary components: RGB comparison (Antonio Adán et al., 2018) 
Door: RGB comparison (Quintana et al., 2018) 
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There are two approaches to generate the data. The first approach is by generating 

realistic, rendered elements-based graphic models to create synthetic data. The second 

approach is to capture and process real-world data with the high computing power of 

state-of-the-art data acquisition devices. 

If the challenges mentioned earlier are solved, the learning-based techniques open doors 

to autonomous element detection and identification for robust progress monitoring. 

C. Hybrid Approaches 

As discussed, both the heuristics-based approach and the learning-based approach face 

a set of challenges. While the former requires extensive hard coding of the domain 

knowledge, which is complex and challenging to define for all situations faced in 

construction, the latter approach requires extensive training datasets, higher 

computational resources, and knowledge of advanced computing techniques. Though 

heuristics-based approaches may work for general geometric components, they fail to 

perform when the construction scene becomes complex and do not follow conventional 

rules, relationships, and geometries. Learning-based approaches are more adaptive, as 

they can generalise on-site data and are not based on structured domain knowledge. 

This comparison will also be discussed in detail in section 5.3.2. 

Therefore, to utilise the advantages of both the approaches and overcome their 

individual shortcomings, there is a need to explore the hybrid approach, i.e., using 

heuristics in conjunction with learning algorithms. 
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4.4 PROGRESS MONITORING 

Progress monitoring requires a visual or quantitative comparison between the as-

planned and as-built models. Four progress monitoring levels identified as a part of this 

study are L-1, L-2, L-3, and L-4, as discussed in section 2. The following sub-section 

discusses the key technologies and methods used for implementing these levels. 

4.4.1 Progress visualisation and comparison (L-1 and L-2) 

L-1 based monitoring is currently the predominant method used at construction sites 

and only requires visualising the 3D as-built model built from spatial data obtained 

from the site. As an extension to L-1, L-2 based monitoring requires a visual 

comparison between as-planned and as-built status at a given time. This is also used on 

several projects and explored by numerous research studies. 

These visualisations or comparisons can be made using selected environments, as 

shown in Figure 4.1 (e). The literature review in previous chapter, shows that most 

pipelines have used non-immersive environments such as a 3D viewer or web-based 

viewer. A few pipelines have used immersive Extended Reality (XR) environments, 

which include Augmented Reality (AR) (Golparvar-Fard et al., 2011)(Zollmann et al., 

2014), Virtual Reality (VR) (Pour Rahimian et al., 2020)(Vincke et al., 2019), and 

Mixed Reality (MR) (Khairadeen Ali et al., 2021)(Marianna Kopsida & Brilakis, 2020). 

While a few studies used traffic light-based coding to show progress (Golparvar-Fard 

et al., 2011), the use of comparative and interactive UI has also been investigated 

(Zollmann et al., 2014). Interactive UIs are gaining popularity, as they can pass 
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information among stakeholders and assign tasks or comments for the workforce by 

adding features like annotating PDF notes into the environments. Advancements in 

gaming engines can be used to represent point clouds and BIM models by importing 

and overlaying in a single VR environment utilising Unity3D (Pour Rahimian et al., 

2020)(Vincke et al., 2019). 

Based on the review of literature and practice, this study finds that the capability of 

visualisation environments is underutilised for progress monitoring applications. With 

advancements in computing skills, rapid development in immersive technologies, and 

required bandwidths supported by the 5G standard, these platforms can provide the 

required information in real-time. Focused research is required to generate interactive 

UI and integrate AR and VR environments to give the user the best of both worlds and 

utilise gaming engines to take progress visualisation to the next level. 

4.4.2 Progress quantification, schedule updating, and notifications (L-3 and L-4) 

The next level of progress monitoring, L-3, involves quantifying the completed 

elements. Therefore, in continuation to Table 4.2, Figure 4.4 shows a trade-off for 

selecting the quantity estimation method corresponding to the type of model generated. 

Here, on the left-hand scale, the green-to-red colour variation indicates the increase in 

complexity from low to high. Similarly, the green-to-red colour variation indicates the 

decrease in the ease of progress quantification from high to low on the right-hand scale. 

While the IFC/BIM models can produce direct BoQs from IFC-based element 

geometries (Mahami et al., 2019), other models require comparison with the as-planned 

model. For surface models and mesh models, object detection (based on models 
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overlapping) (Pour Rahimian et al., 2020), detection by ray thresholding (Marianna 

Kopsida & Brilakis, 2020), or enclosed volumetric comparison (H. Omar et al., 2018) 

can be made for estimating quantities of completed elements.  

For comparison using voxel occupancy, the as-planned model is voxelised and 

overlapped with as-built point clouds, after which thresholding is done to detect the 

occupied voxels (Golparvar-Fard et al., 2015). Although it works well for smaller 

models, it may be computationally costly for larger models; hence, it is not a preferred 

option. For direct usage of the point cloud, the most straightforward and widely used 

method is Scan-vs-BIM, which uses thresholding-based element identification. This 

method requires an as-planned 3D BIM and has its shortcomings (M. Bassier et al., 

2019), but the as-built model generation step can be skipped, saving computation. 

Various Commercial project management software are also used for detecting 

deviations between as-planned and as-built models that can result in the quantification 

of contractual scheduling metrics (Pučko et al., 2018)(Vincke et al., 2019). 

The selection of a model for progress monitoring depends on the project’s 

characteristics (type, budget, duration), the required level of progress monitoring, and 

other factors. A detailed study of these factors is required to converge onto an 

appropriate pipeline for progress monitoring based on the project-specific use case. 

For L-4 progress monitoring, updating schedules and generating reports/notifications 

are included with progress quantification. This is challenging; therefore, as shown in 

literature in previous chapter, only a few pipelines have explored this area. Though 
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updating in their pipelines, they have not specified the details. Therefore, there is a 

necessity to conduct and integrate focused studies for tackling these specific challenges. 

Likewise, only a few studies have explored an automatic notification system that can 

trigger notifications while monitoring and controlling a construction site (H. Omar et 

al., 2018). These can be obtained via SMS or e-mail, containing warnings, reports, or 

graphical outputs based on the settings and LoD required. The frequency and content 

of notifications should be selected to give construction managers broad insights about 

areas to target for meeting schedules. As discussed earlier, providing managers with 

real-time information/alerts about any deviation in the schedules or discrepancies in the 

as-built model from the as-planned model is essential for in-time decision making and 

can improve the project’s performance. 

In addition to providing updated information on progress status, features to suggest 

interventions and control strategies and forecast resulting outcomes will automate 

project controls even further. 

Conventional control decisions taken by the project managers are based on the know-

how of issues specific to the project. Automated control suggestions can be generated 

using cognitive computing on the progress status and the data from sources such as the 

organisation's Enterprise Resource Portal (ERP). Such an approach can recognise 

patterns in activities that suffer delays and suggest interventions to bring the project 

back on track. There have been selected deployments using AI-based simulation 

engines for addressing complications inherent in scheduling and project coordination 

(ALICE Technologies, 2021). Such deployments can also evaluate alternatives and 
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provide real-time suggestions. This is an emerging area with significant potential, and 

further exploration is required. 

This section presented a micro-analysis of the stages of the CV-CPM framework. 

Various gaps were identified while discussing each section in detail. The following 

section discusses the application of the CV-CPM framework to enable broader 

evaluation of various pipelines/components to develop benchmarks. It also summaries 

specific challenges identified within each stage. 

4.5 DISCUSSION 

As presented and discussed in the previous section, numerous combinations of input-

process-output options are possible at each stage of the CV-CPM framework. For an 

integrated pipeline across all stages, the combinations of options are immense. Given 

the pace at which technology is developing, the number of options will continue to 

increase. However, only a limited combination of options will be feasible, and this 

research has proposed guidelines to structure these combinations. 

A systematic approach is essential to explore and document the performance of specific 

approaches/algorithms and integrated CV-CPM pipelines. This section discusses 

requirements for benchmarking to enable a systematic study. The section also 

summarises potential research questions within each stage of CV-CPM and discusses 

its relevance to support the emerging area of Digital Twin. 
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4.5.1 Benchmarking 

Benchmarking evaluates pipelines, algorithms, devices, and tools using standard 

datasets and test methods. Figure 4.5 outlines the broad requirements to benchmark 

pipelines and components of CV-CPM, and these are discussed below: 

1. Datasets: Though existing datasets contain relevant information for building 

elements (Dai et al., 2017)(Armeni et al., 2016), these represent completed elements 

and not the schedule-based construction progress of the elements as required for 

progress monitoring. Hence, there is a requirement for creating an open-source 

dataset that contains the data on elements as construction progresses. As shown in 

Figure 4.5, these can be synthetically created or acquired from the real world. The 

dataset type will change based on the particular stage under investigation. For 

example, for 3D reconstruction, the type of dataset required for benchmarking 

reconstruction algorithms will be in the form of raw images, videos, and depth 

images. 

2. Testbeds: While existing studies in the area have contributed significantly to 

knowledge about the applicability of specific algorithms and tools used, the 

experimental set-ups and procedures used for these investigations vary. As a result, 

repeatability, and comparison of results across research groups are not feasible. 

Figure 4.5 Benchmarking of CV-CPM 
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Hence, for each CV-CPM stage, there is a need to design standard testbeds that 

define the experimental setup, procedures, and measurement parameters. As shown 

in Figure 4.5, the testbed can be either computational for benchmarking software 

(algorithms) or physical for benchmarking the hardware (devices/sensors). For 

example, a testbed for data acquisition can have sensors capturing data with various 

physical constraints, like the speed of capture, distance from an object, lightning 

condition, resolution settings etc., that can be varied to perform multiple 

experiments. Further, the testbeds should be flexible to accommodate the 

requirements for collaborative explorations in the area. 

3. Component of CV-CPM: As shown in Figure 4.5, for CV-CPM, the components 

can be benchmarked independently or as pipelines integrating multiple components. 

Each component can be evaluated for its independent performance. Additionally, 

the pipelines can also be benchmarked for their effectiveness for overall progress 

monitoring by varying specific components within the pipeline. This will 

standardise the approach to sequence and investigate various input-process-output 

combinations and enable a systematic comparison of results with other studies. 

 

4. Evaluation Metrics: There are several factors to be considered for evaluation. 

While most benchmarking studies within this framework require the definition of 

quantitative metrics, qualitative measures will also be required to evaluate 

subjective outcomes. For example, for benchmarking visualisation environments, 

qualitative factors like ease of use, skills required for navigation, immersive features 

for comparison, and training requirements can be compared from a user feedback-

based evaluation. Correspondingly, for benchmarking the algorithms, the 
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evaluation metrics can be in the form of accuracy, processing time, computational 

cost etc., which are quantitative. 

The integrated CV-CPM framework and the guidelines proposed for each stage is 

expected to assist in developing a strategy and a roadmap for benchmarking. As a wide 

range of studies is required, the technology roadmap needs to be developed 

collaboratively by the research community. A starting point for these studies can be to 

investigate the subjective ratings proposed in this study and quantify these ratings 

through controlled experimental testbeds. The CV-CPM framework can help in 

structuring and prioritising the areas to be explored in developing a roadmap so that 

they form a standard reference for benchmarking studies. 
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4.6 ALIGNING THE RECENTLY PUBLISHED WORKS ON THE DEVELOPED CV-CPM FRAMEWORK 

Table 4.5 Aligning the recently published work to the CV-CPM framework. 

Paper Reference Data 
Acquisition 

3D 
Reconstruction 

As-built 
Modelling 

Progress 
Monitoring 

Level of 
Progress 
Monitoring 

Elements 
Identified Key Contribution- Remarks 

(Kavaliauskas, 
Fernandez, 

McGuinness, & 
Jurelionis, 2022) 

Manual, Laser 
Scanner 

Direct Point 
Cloud Point Cloud 

Thresholding 
based approach 
using overlapping 

L-3 
Columns, 
Wall 

alignment of point cloud data with the 
IFC and automatic object detection 

(Halder et al., 2022) 
UGV, 360 
Camera NA 

360 Projected 
Image spheres 

BIM based AR 
Overlap L-2 

Structural 
Elements 

remote AR solution to provide a real 
time visual stream of the construction 
work registered/aligned with the 3D 
geometric model of the building that is 

extracted from the BIM model 

(Puri & Turkan, 
2020) 

Manual, Laser 
Scanner 

Direct Point 
Cloud Point Cloud 

Comparison of 
real and virtually 
generated point 

cloud 

L-3 
Bridge 

Components 
construction progress monitoring using 

lidar and 4D design models 

 

It can be seen from Table 4.5 that the recently published works can directly be aligned with the CV-CPM framework. Using this, these 

works can be reviewed and classified easily, as it becomes well-defined that which technology or method have been used at the particular 

stage in the pipeline. This also shows that the developed CV-CPM framework is comprehensive.  
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Table 4.6 Aligning the recently published works for benchmarking requirements 

Paper Reference Dataset Testbed Evaluation Matrix 

(Kavaliauskas et al., 2022) Real world Computational Quantitative 

(Halder et al., 2022) Real world Computational and Physical Quantitative and Qualitative 

(Puri & Turkan, 2020) Real world Computational Quantitative 

 

 

It can be seen from  Table 4.6 that the  recently published works can also be alighen dfor the benchmarking requirements that are mentioned 

in the previous section.
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4.7 CONCLUSION 

CV-CPM has the potential of creating an immense impact by providing real-time, 

accurate, reliable information to construction managers. Though a significant amount 

of work has been done in the last decade, specific challenges remain due to the 

construction industry's dynamic nature and complexities at sites. Some of these 

challenges have been addressed; however, significant gaps need to be filled to make 

pipelines accurate and automated to meet rising user expectations of real-time feedback. 

This study has comprehensively reviewed individual pipelines and formulated an 

integrated CV-CPM framework, shown in Figure 4.1. The proposed framework 

positions all the reviewed papers, including recent papers in this area. Hence, it can be 

inferred that it is holistic and robust.  

In addition to the basic concepts and references to the work done in this area, Table 4.7 

summarises the key contributions of this chapter for the micro-level stages of the 

framework with reference to other related works. 

It was found that the four levels of progress monitoring identified in this study strongly 

influence the technology selection for the pipeline at each stage. For implementing 

progress monitoring on a construction project, it is recommended that the pipeline and 

components required are selected based on the chosen level. 

 



112 

 

Among several potential research areas, advancements in the as-built modelling stage 

are required to facilitate the quantification of progress. To enable this, exploring a 

hybrid approach that combines learning with heuristics is recommended.  

 The need and requirements for benchmarking and future research directions derived 

from the CV-CPM framework have been presented in the Discussion section. 

Addressing these requirements and following a well-developed roadmap in this area is 

essential to move CV-CPM research from laboratory studies to field applications. 3 

 
3 Parts of this chapter have been published in the following articles:  

1. Reja, V. K., Varghese, K., & Ha, Q. P. (2022). Computer vision-based construction progress 
monitoring. Automation in Construction, 138, 104245.  

 

Stage Published review papers Detailed contribution of this research Reference Their contribution 

Data 
Acquisition 

(T. Omar & 
Nehdi, 
2016b) 

Categorised, listed, and 
compared various data 
acquisition technologies and 
studies in detail. 

• Identified and proposed factors and ratings that can be 
used to guide selection of sensors-mount combinations 
for data acquisition. 

3D 
Reconstruction 

(Z. Ma & 
Liu, 2018) 

Presented and overall pipeline 
for 3D reconstruction using 
SfM. Categorised, listed, and 
compared techniques for SfM 
technologies and studied in 
detail. 

• Comparison SLAM and SfM technologies for 
construction progress monitoring. 

As-Built 
Modelling 

(Pătrăucean 
et al., 2015) 

Presented an overview of the 
heuristic-based modelling 
process and classification of 
categories. 

• Defined types of as-built models based on existing 
work and proposed guidelines for selecting as-built 
model type for progress monitoring based on project 
requirements. 

• Detailed review of as-built modelling approaches and 
rationale for using a hybrid approach. 

Progress 
Visualization NA NA • Categorised progress monitoring into four levels and 

associates these levels as the requirements driver for 
deciding on options in the upstream stages of process. Progress 

Quantification NA NA 

Table 4.7 Summary of stage-wise specific contributions 
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CHAPTER 5.  

CONPRO-NET – A HYBRID SELF-SUPERVISED 

LEARNING ARCHITECTURE FOR PROGRESS 

ESTIMATION OF CONSTRUCTION PROJECTS 

In the previous chapter, the CV-CPM framework have been discussed in detail. It was 

also discussed that a hybrid approach which involves both the heuristic and learning 

based approach should be explored for better and improved performance. Therefore, in 

this chapter a hybrid approach is utilized for progress estimation. This chapter 

contributes to objective 3 of this thesis. The overall methodology followed for objective 

3 has been shown in Figure 1.2 

This chapter is divided into six sub-sections. The first subsection introduces this 

chapter. The second subsection is a specific literature review about the works which 

have explored the quantification of construction progress, the segmentation and 

classification methods that have been already used and finally the specific research gaps 

for this chapter. The third sub-section presents the Hybrid self-supervised approach for 

progress quantification. The fourth section is on experimentation and results over the 

S3DIS dataset. The fifth sub-section is on the interpretation of results and discussion. 

Finally, the conclusions of this chapter are presented in sub-section six. 



114 

 

5.1 INTRODUCTION: AUTOMATED PROGRESS ESTIMATION 

From the last chapter, it is clearly evident that, among several automated technologies, 

computer vision-based construction progress monitoring (CV-CPM) is one of the 

leading technologies being explored. Using 3D as-built point clouds as inputs, 

researchers have experimented with heuristics-based approaches, which involve 

applying geometrical constraints and therefore require a significant amount of hard 

coding and domain knowledge. Recently, learning-based approaches have been 

explored; nevertheless, the existing supervised approaches also require substantial 

effort for manual labelling of the training data and cannot be generalised for different 

construction projects.  

Therefore, this research investigates combining heuristics and learning based methods 

and develops ConPro-NET, a novel hybrid self-supervised learning-based method for 

element identification from construction point clouds. Figure 5.1 shows the Framework 

of the proposed hybrid self-supervised approach for construction progress 

quantification. After pre-processing the unlabelled data, first, a customized distance 

thresholding-based approach is adopted on pre-processed point clouds for the 

unsupervised segmentation of elements. Next, these segmented objects are given as 

input to the feature extraction module, which uses a contrastive learning approach. 

Contrastive learning uses positive and negative pairs of the same object to learn their 

match to each other and hence learn the features of each object. The learnt features are 

refined by performing clustering and further they are augmented with a set of 

handcrafted features defined based on local geometric and visual properties to form the 

hybrid feature vector. Handcrafted features include the surface area, average z-
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coordinate, average R, G and B values and local covariance features (linearity, 

planarity, verticality, and scattering) of an element.  

Figure 5.1 Framework of the proposed hybrid self-supervised approach for element 

identification – ConPro-NET 

The pre-training and feature engineering step is followed by the downstream task, 

classification in this case with a test set which has labelled data for six object classes, 

i.e., wall, beam, column, door, window, and slab. The classification model is trained

and evaluated on the remaining S3DIS dataset and a stage-wise collected data for 

progress monitoring of an under-construction building. The classification model is 

evaluated on matrices such as precision, recall, and F1-score. The results show that the 

proposed hybrid-self-supervised approach has achieved an overall classification 

accuracy of 80.86% on the S3DIS dataset and 80.95% on the case study dataset. 
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5.2 RESEARCH METHODOLOGY – OBJECTIVE 3 

The research method commonly employed while designing a computer vision pipeline 

iteratively is known as the "iterative design" or "iterative development" method. This 

approach involves a cyclical process of designing, implementing, testing, and refining 

the computer vision pipeline in multiple iterations to progressively improve its 

performance and address any limitations or challenges that arise during the 

development process. 

In the context of computer vision, an iterative design approach allows to gradually 

enhance the pipeline by incorporating feedback from testing and evaluation stages. 

Each iteration involves refining the pipeline's algorithms, adjusting parameters, fine-

tuning models, and incorporating new insights gained from the analysis of results. This 

iterative process continues until the desired performance or objectives are achieved. 

The iterative design method enables researchers to incrementally improve the accuracy, 

efficiency, and robustness of the computer vision pipeline. It also allows for flexibility 

and adaptability, as adjustments and modifications can be made based on the evolving 

requirements and challenges encountered during development. 

Hence an iterative design method was deployed by conducting multiple trails before 

finally freezing the ConPro-NET pipeline. 
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5.3 QUANTIFICATION OF CONSTRUCTION PROGRESS: RELATED 
WORKS 

In the past, several technologies have been explored for construction progress 

monitoring. In literature these technologies have classified under six broad categories, 

these are: conventional IT based, tag-based, geospatial-based, BIM-based, computer 

vision based, and extended reality based. The scope of this research and the reviewed 

work is limited to computer vision-based technologies (CV-CPM). 

Most of the existing methods for progress monitoring have used an image based 2D 

comparison using computer vision to monitor progress. However, these approaches 

detect the presence of the elements based on comparison with existing models or 

drawings (Arif & Khan, 2021b). The have limited knowledge representation and are 

dependent on estimating pose of the object in the image which is a complex and requires 

additional information to solve in a featureless scene. Therefore, the recent methods 

have shifted towards 3D datasets and corresponding approaches. 

For 3D data, the computer vision-based construction progress monitoring (CV-CPM) 

framework holistically defines the entire process. It consists of three key steps, i.e., data 

acquisition with 3D reconstruction, as-built modelling, and progress estimation. Recent 

studies on progress monitoring have focused on various tools, technologies, and 

methods in these pipelines (Ekanayake et al., 2021b)(Alizadehsalehi & Yitmen, 2021). 

The first step towards element identification is to segment the point clouds. These 

segments of points are then clustered together to form a meaningful object. These 
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objects are then classified by applying a heuristics-based approach or a learning-based 

approach. These steps are discussed in detail in the following subsections. 

5.3.1 Segmentation of point clouds 

After 3D reconstruction which was discussed in section 4.2.2 and Table 4.1, 

Segmentation of the 3D point cloud is a first step towards element detection. Data-

driven methods such as Random Sample Consensus (RANSAC) (Kang et al., 

2020)(Yang, Cheng, & Wang, 2020) and Hough Transform (HT) (Rausch & Haas, 

2021) or region-growing (Maarten Bassier, Bonduel, Van Genechten, & Vergauwen, 

2017)(Khaloo & Lattanzi, 2017) have been predominantly adopted for segmenting 

points generated in indoor building environments. These methods use geometrical 

properties of the data for performing segmentation, in some cases knowledge driven 

methods are also used. Another approach used three defined heuristics for segmentation 

of large point clouds, these were the distance threshold for the region growing, the 

threshold for the minimum number of points needed to form a valid planar region, and 

the decision criterion for adding points to a region (Poux, Mattes, Selman, & Kobbelt, 

2022). 

On the other hand, unsupervised segmentation approaches which have been used 

successfully include Density-Based Spatial Clustering of Applications with Noise 

(DBSCAN) (Makantasis, Doulamis, Doulamis, & Ioannides, 2016)(B. Wang, Yin, Luo, 

Cheng, & Wang, 2021). Extending this, Hierarchical DBSACAN (HDBSCAN) with 

KMeans for clustering was also used to boost performance for segmentation of indoor 

scenes (J. W. Ma & Leite, 2022). RandLA-Net, a deep learning-based encoder-decoder 
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network, was used to segment the scaffolds from the acquired point clouds (J. Kim, 

Chung, Kim, & Kim, 2022). 

Most of the existing studies work on point-level based segmentation approaches. These 

approaches require an additional step of extracting geometric elements from the 

segmented data using neighbour network approach which depends on the accuracy of 

the previous step (Hyunsoo Kim & Kim, 2021). Therefore, going forward applying 

deep learning networks on object-level features are expected to be much adaptable than 

point-level features from machine’s perspective, this has also been validated (J. W. Ma 

& Leite, 2022). Therefore object-level classification approaches are discussed in the 

next sub section. 

5.3.2 Classification of segmented elements 

For CV-CPM once the as-built point cloud is segmented, and clusters are formed, these 

clusters of points are classified and measured to detect the progress. As discussed and 

shown in Section 4.3.2.3, Table 4.3 and Table 4.4, there are two key approaches found 

in the literature to facilitate this classification: 

(a) Heuristic-based Approach: These are in form of geometrical constrains, 

conventional rules, spatial and temporal relationships or constraints derived 

from a model (Maalek et al., 2019)(K. K. Han et al., 2015). 

(b) Learning based Approach: They use data to learn features using neural networks 

and then predict the object class (Perez-Perez, Golparvar-Fard, & El-Rayes, 

2021). 
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Both the above approaches have their respective advantages and disadvantages. The 

heuristic-based approaches require to hardcode constraints, rules and relationships 

which is complex and laborious. The learning-based approach requires high amount of 

labelled data for each element class and are computationally complex. This study 

focusses on the usage of this hybrid approach as it has not explored earlier. The next 

subsections discuss the usage of point cloud-based heuristics and learning approaches 

used in literature. 

5.3.2.1 Heuristic Based Approaches 

Primarily three types of heuristics have been used in previous literature. Geometry 

based approaches have used shape and dimension (Bosché et al., 2015)(Macher et al., 

2017)(Antonio Adán et al., 2018)(Díaz-Vilariño et al., 2015)(Quintana et al., 

2018), point density of the point clouds (Pu & Vosselman, 2009)(Franz et al., 2018), 

associative geometry (Arnaud et al., 2016)(Chen et al., 2017)(Previtali et al., 2018) to 

recognize elements. Rule based approaches uses rules such as surface normal (Hübner 

et al., 2020)(C. Wang et al., 2015)(Arnaud et al., 2016), orientation (Pu & Vosselman, 

2009)(Ochmann et al., 2019)(Previtali et al., 2018) and direction of principal axis 

(Franz et al., 2018). Relationships based approaches have been utlized by applying 

spatial (K. K. Han et al., 2015)(Pu & Vosselman, 2009)(Arnaud et al., 2016) as well as 

temporal relationships (K. K. Han et al., 2015).  

Though this is a widely utilized approach for element identification, it requires a large 

amount of preliminary information about building elements to be fed prior. In case the 

information is fed manually, some elements which cannot be defined as simple shapes 
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can go unrecognized (Zeng et al., 2020). It works well if the as-planned 3D BIM model 

is available so that the geometric properties can be extracted easily. This approach may 

lead to errors and ambiguity if multiple objects have a similar geometry. 

5.3.2.2 Learning based Approaches  

Learning-based approaches uses machine learning to train 3D feature descriptors to 

classify the point cloud data into different categories. Local descriptors are used to store 

features at the point level, while global descriptors are used to store features at the object 

level. Hence, there are two techniques in feature-based learning methods. First is point-

level classification, which extracts each point's local features, then classifies them 

individually into an object category. The other technique is a segment-level 

classification, which first requires subdividing the point cloud into meaningful 

segments corresponding to different building components. Then, these segments are 

classified into different object classes. 

The object level 3D detection of class-specific building primitives from point cloud 

scans is essential for Scan-to-BIM (Y. Xu, Shen, & Lim, 2021). Most of the Scan to 

BIM approaches depends on detecting detect geometric and semantically rich features 

(Z. Ma & Liu, 2018). 

Recently deep learning techniques have endured considerable progress in applications 

involving the understanding of 3D scenes, which include instance segmentation (Jiang 

et al., 2020) and object detection (He, Zeng, Huang, Hua, & Zhang, 2020). A likely 

solution to 3D modelling problems is to leverage the advanced object-level feature 
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encoding capability of deep convolutional neural networks (DCNNs). The majority of 

learning-based approaches are based on point cloud segmentation (Chen et al., 

2019)(Perez-Perez et al., 2021)(Zeng et al., 2020). 

PCIM by Park et al. can automatically recognize construction objects and their 

properties with supervised deep learning approaches. Furthermore, it can store 

information in the original point cloud data with a hierarchical structure, rather than 

converting it to a solid or rigid model. The PCIM framework generates XML files to 

represent detected object and their properties while preserving the original point cloud 

data (Park & Cho, 2022). Chen et al. (Chen et al., 2019) converted the point cloud into 

a graph representation, where vertices represented points and edges represented 

connections between points within a fixed distance. Then an edge-based classifier and 

a point-based classifier were successively used to determine the type of building 

element. Finally, the detected object was matched with the corresponding BIM entity 

based on the nearest neighbour. Iwaszczuk et al. (Iwaszczuk et al., 2018) studied RGBD 

information's influence to label structural elements in an indoor scene using an encoder-

decoder CNN framework. This architecture also worked in the fusion of RGB and 

RGBD by taking advantage of redundancy in the information. Xu et al. (Y. Xu, Shen, 

Lim, & Li, 2021) presented a two-stage 3D object-detection method using region-based 

convolutional neural networks (R-CNN). Scan2BIM-NET (Perez-Perez et al., 2021) 

used: two convolutional neural network (CNN) and one recurrent neural network 

(RNN) for semantically segmenting the structural, architectural, and mechanical 

components present in point cloud data. It classifies beam, ceiling, column, floor, pipe, 

and wall elements. 
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5.3.3 Semi, self, and un-supervised learning 

In the modern times, where data driven approaches are taking an edge over traditional 

approaches, the bottleneck situation is to find the correctly labelled data. Hence, in the 

case of learning-based methods, unsupervised, self-supervised and semi-supervised 

learning methods carries equal importance as supervised learning schemes, particularly 

when the labelled data is unavailable. 

Unsupervised learning is a classical machine learning approach where labels for input 

data is not required for a model to learn (Hastie, Tibshirani, & Friedman, 2009). In this 

approach no corresponding output labels for input data are available. Instead of 

generating a mapping between input and output labels in supervised methods, the 

unsupervised schemes try to model the underlying distribution or structure of the data. 

These methods broadly revolve around two kinds of algorithms: clustering based 

unsupervised schemes; association rule based unsupervised schemes. Clustering based 

schemes try to take advantage of neighbourhood properties of the input data points and 

group them on the basis of their similarity or differences. Association rules try to find 

the relationship between several variables in the dataset, for example, occurrence of one 

event ‘a’ led to occurrence of another event ‘b’.  

Semi-supervised is a machine learning approach which utilises small amount of labelled 

data with a large amount of unlabelled data (Jaiswal, Babu, Zadeh, Banerjee, & 

Makedon, 2020; Zhu, 2005). It can be considered as an intermediate case of 

unsupervised learning and supervised learning where the target is to improve the 

performance of unsupervised models with small amount of labelled data while skipping 

the expensive process of getting the entire dataset labelled.  
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Self-supervised learning methods is another machine learning approach within contrast 

with semi supervised method which do not require any labels and utilise the underlying 

structure of the data to predict the outcomes (Jaiswal et al., 2020). It automatically 

learns the representation within the data and attempts to solve the tasks designed for 

supervised learning methods.  

In construction, finding labelled data in a practical scenario is difficult and working on 

approaches which analyse building point cloud in an unsupervised, self-supervised or 

semi-supervised manner is the need of the hour. Hence this study proposes to use 

combination of unsupervised and self-supervised learning methods for segmentation 

and classification of components respectively. 

5.3.4 Research Gaps, Objectives & Contributions 

Regarding progress monitoring and in particularly identification of construction 

elements, the current research has identified following directions for the recognition 

and classification of point cloud objects: 

• The aforementioned methods rely on supervised learning and necessitate a

large, labelled dataset to train the neural network for feature extraction.

However, due to the unique nature of construction elements and the potential

for significant variations, obtaining labelled data for all element classes is

impractical.

• These methods rely solely on deep learning features and have yet to explore

handcrafted features, which could potentially aid in distinguishing elements

from one another with greater ease.
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• Traditional methods of object segmentation that involve edge-based or region 

growing techniques cannot be directly applied to under-construction data, as 

visible surfaces are often grey in colour, and element shapes are three-

dimensional with multiple planar sides, making them non-planar. 

Therefore, to address these potential research gaps, this research contributes by 

proposing a hybrid self-supervised approach. The work is towards fulfilling the third 

objective of this thesis with its sub-objective. 

Thesis Objective 3: To develop a pipeline using hybrid self-supervised approach for 

automatic capture of constructed elements from point clouds and using it for progress 

monitoring in construction. 

• To study the combined used of heuristic and learning based approaches (hybrid 

approach). 

• To develop a customised approach for object segmentation specifically for 

construction 

• To utilize concepts from feature engineering and to improve the performance of 

the method. 

The key contributions of this study are mentioned below: 

• An unsupervised segmentation approach has been developed that utilizes plane 

segmentation and distance-based thresholding to merge them to form 

meaningful objects. 

• A self-supervised feature learning and classification algorithm has been 

developed based on contrastive learning to predict the object classes. 
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• Handcrafted features have been identified and incorporated into the deep 

learning-based features, resulting in a hybrid approach that improves 

performance. 

• The application of ConPro-NET has been demonstrated on an under-

construction building dataset. 

5.4 CONPRO-NET – A HYBRID SELF-SUPERVISED APPROACH FOR 
PROGRESS QUANTIFICATION 

The schematic diagram of the ConPro-NET for assessing the progress of construction 

projects is illustrated in Figure 5.2. The proposed framework processes unlabelled data 

after pre-processing and performs unsupervised segmentation of various 3D 

components of the construction point clouds. The resulting segmented components are 

randomly partitioned and then used as input to a self-supervised learning pipeline. A 

classification framework, ContraSim model, is trained using the parts of different 

objects to learn the similarity and dissimilarity between pairs of parts, labelling them as 

positive or negative pairs. The learned features are augmented with handcrafted features 

extracted using the geometrical properties of the point cloud objects. Unsupervised 

clustering is then applied to the features, and cluster IDs are assigned as pseudo-labels 

to the data. 

Subsequently, the original data and their pseudo-labels are used to train another 

classification model, Clusterify model, which performs a 6-class classification task to 

refine the quality of the features generated by the previous model. This step improves 

the learned features for the point cloud data and augments them with handcrafted 

features to capture geometric details more precisely. The pre-training step allows the 
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learned features of the point cloud data to be used for downstream tasks with small 

amounts of labelled data, such as classification, segmentation, and object recognition. 

In this study, the downstream task of point cloud object classification is performed on 

new and unseen construction data. Each component of the proposed framework is 

discussed in detail in the following subsections. 

5.4.1 Dataset 

In deep learning, large datasets are required for pre-training the initial weights for 

unsupervised feature extraction. Pre-training a model with large datasets can allow the 

model to learn intrinsic features of a specific type of data, which can later be used for 

downstream tasks such as classification and segmentation. However, a large dataset for 

construction data is currently unavailable. The building dataset, which contains finished 

or completed elements, is the closest representation of construction data. The ScanNet 

(Dai et al., 2017) and Stanford 3D Indoor Scene (S3DIS) datasets (Armeni et al., 2016) 

are the two available large building datasets. 

The ScanNet dataset is an indoor RGB-D video dataset that only contains walls, floors, 

windows, and doors as relevant classes to construction. On the other hand, the S3DIS 

dataset consists of six large-scale indoor areas with 271 rooms, where the components 

are categorized into 13 categories, with seven classes being relevant to the problem: 

floor, wall, beam, column, door, window, and ceiling. Therefore, the S3DIS dataset was 

used for pre-training without labels (as shown in Figure 5.2 A). The distribution of these 

classes across the six areas is presented in Table 5.1. Additionally, to avoid confusion 

between roof and floor elements, they were merged into a single class named "slab". 
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Among the six areas, areas 1, 3, 5, and 6 were used for training, while areas 2 and 4 

were used for testing purposes. 

Figure 5.2 Framework diagram of ConPro-NET: the proposed hybrid self-supervised 

approach for construction progress quantification 

Table 5.1 Area-wise and class-wise distribution of elements in the S3DIS dataset 

Areas Total 
Rooms Beam Ceiling Column Door Floor Wall Window 

Area 1 44 61 55 57 86 44 234 29 

Area 2 40 11 81 19 93 50 583 8 

Area 3 23 13 37 12 37 23 159 8 
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Areas Total 
Rooms Beam Ceiling Column Door Floor Wall Window 

Area 4 49 3 73 38 107 50 282 40 

Area 5 68 3 76 74 127 68 343 52 

Area 6 48 68 63 54 93 49 247 31 

Total 272 159 385 254 543 284 1848 168 

5.4.2 Pre-processing 

The data samples taken from S3DIS dataset are pre-processed before giving them to 

feature extraction models. As shown in Figure 5.2 (B). The steps taken for pre-

processing the data samples, such as data preparation, down sampling, normal 

estimation, and data augmentation are described below. 

5.4.2.1 Data Preparation 

To prepare the S3DIS dataset for feature extraction, all buildings from the six distinct 

areas undergo a point removal process to exclude irrelevant classes. The S3DIS dataset 

comprises a total of 13 classes, namely clutter, ceiling, floor, wall, beam, column, 

window, door, chair, table, bookcase, sofa, and board. However, for the current study, 

only classes relevant to construction environments, including wall, door, roof, floor, 

window, beam, and column, are utilized. Therefore, all points associated with classes 

other than these seven are removed in this step. 

5.4.2.2 Down Sampling 

Construction point cloud datasets are usually very large and projects face, data transfer, 

storage, and computational challenges (Boje, Guerriero, Kubicki, & Rezgui, 2020. 

Therefore, to avoid high computation and processing time, all the building point clouds 
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were down- sampled with a distance threshold of 0.015m. The Sub- sampling tool in 

cloud compare was used to down sample the point clouds. It works by sampling points 

from the point cloud such that the distance between two points in the point cloud is not 

less than the threshold specified. The value of the distance threshold was selected such 

that no element after down sampling had lesser than 2048 points, which is one of the 

hyper-parameters for contrasting based approach and will be discussed later. Although 

this is an optional step, it is utilized it in this study to so as to attain a practically 

implementable pipeline. 

5.4.2.3 Normal Estimation 

Estimating normal for unorganised point clouds and point clouds with noisy edge could 

be a challenging task. In order to estimate normal for real world data, the method should 

be able to robust to noise occurring and other outliers, and it should be sensitive to sharp 

feature while being computationally efficient.  

For the proposed pipeline, the normal estimation algorithm is adopted from the work 

proposed by (Boulch & Marlet, 2012), which uses Randomized Hough Transform for 

estimating normal from the point clouds. Randomized Hough Transform (RHT) 

proposed in (L. Xu, Oja, & Kultanen, 1990) is a variation of conventional Hough 

Transform, widely used for detection of lines, curves, and other shapes. RHT is 

proposed to overcome the issues in the Hough Transform such as high computational 

complexity and low detection accuracy. The normal estimation algorithm is described 

as: 
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Algorithm: 5.1 – Algorithm for Normal Estimation 

 

In the Algorithm 5.1, if the selected point ' on a piece-wise planar surface is far away 

from any sharp feature or edge on the surface, then 3 points (1, (2, (3 are picked in the 

neighbourhood )!, which defines a planar patch and hence normal can be selected 

accordingly. In another case, if the selected point !, lies near to a sharp feature or edge, 

then the neighbourhood "# is partitioned into two planes, "#1, "#2 with respect to the 

position of 3 points, and the dominant one is chosen for selecting the normal with point 

P. A plane is considered as dominant if all 3 points are contained by that plane. 

5.4.2.4 Data Augmentation 

To avoid the class imbalance, data augmentation was performed by creating desired 

number of building elements for each of the six classes. Data Augmentation was carried 

out on the building elements from the original S3DIS dataset and not on the building 

elements obtained after the segmentation pipeline to make sure that the newly added 

elements are free from any errors. The data was augmented by subjecting each building 
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element to rotation, jittering, scaling, and shifting. The rotation was done only about 

the z-axis to maintain the orientation of the elements intact. Jittering is done on every 

point, and it adds a very small variation to the location of each point. Each building 

element is then scaled by a factor between 0.8 to 1.25 and is further shifted along all 3 

axes by the same amount which lies between -0.1 meters to 0.1 meters. The details of 

elements used at each stage for the S3DIS dataset after data augmentation are shown in 

Table 5.2. 

Table 5.2 Statistics of the dataset used at each stage for the S3DIS dataset after data 

augmentation. 

Stage Pretraining SVM Training Testing 

Data S3DIS S3DIS S3DIS 

Wall 1500 300 76 

Door 1199 240 60 

Slab 1500 301 76 

Window 1202 240 60 

Beam 1201 115 61 

Column 1201 240 61 

5.4.3 Unsupervised Segmentation 

Automatic shape segmentation is an essential step while analysing the building point 

clouds. The large point cloud scans of buildings have multiple components that are re- 

quired to be identified and segmented for further processing. The automatic shape 

segmentation could be performed in a supervised or unsupervised fashion depending 

upon the availability of data and resources. An unsupervised or self-supervised 

approach of learning with no or less labels is always beneficial in case of less or no 

labelled data.  
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Getting labelled data is a very expensive process and creates bottleneck situation in any 

learning-based project. Hence as shown in Figure 5.2 (C), an attempt is made towards 

approaching the problem of segmentation with no labelled data in an unsupervised 

manner.  

The unsupervised segmentation algorithm used in this work is a region growing based 

approach, which involves steps such as normal estimation, region growing, merging of 

planes by estimating correct set of parameters. Apart from the conventional voxel-based 

methods in 3D point clouds, the region growing method is another popular method to 

group different segments of a point cloud in 3D or an image in 2D. Region growing is 

a widely used method in unsupervised segmentation in 2D images, and it hence a 

promising segmentation approach for 3D point clouds as well. However, normal 

estimation is a critical step in the region growing algorithm where angles of several 

normal are used in growing the regions of a 3D point cloud. In the coming sections, 

several steps employed in the unsupervised segmentation will be described. 

5.4.3.1 Region Growing 

Region growing is used for estimating the planes from the normal estimated in the 

previous step. Region growing is a general method used for segmenting various regions 

in an image. A seed point is taken, and it is compared with neighbourhood points and 

merged in it if found similar. In this way pixels belonging to the same regions are grown 

and regions are identified. In case of 3D point clouds, taking the region growing method 

to 3D, regions are segmented with the help of normal corresponding to the point in 

consideration. Angles of the normal are compared to grow the region with respect to 
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the seed point. Algorithm 5.2 describes the algorithm corresponding to region growing 

in point clouds with the help of normal extracted in the previous step. 

The algorithm makes use of three parameters, number of nearest neighbours, angle 

threshold and curvature. In this work, for every point, the algorithm iterates through its 

nearest neighbours’ points and keep on adding points to the current region if its normal 

is within a threshold angle with respect to the normal of the seed point. In the Alg. 5.2, 

line 1 and line 2, refers to initialization of regions and list of all points $%&'! (%)'&, 

within a point cloud !. There is a point picked up with minimum curvature 

(!*%)+,-.), which is added to the set of seed points (see line 7). Now, for every seed 

point, its neighbourhood point is found (see line 10). In this set /0, every point is 

checked for its angle of the normal (1) if it is lesser than a certain angle threshold 

(1'ℎ-2&ℎ(34). If it is lesser than the threshold angle, then the current point is added to 

the current region, which is again tested for its curvature value against a pre-specified 

threshold value (see line 16). 

If the curvature is found to be lesser than the threshold value then this point is added to 

the seeds point list (see line 17), followed by adding current region to global segment 

list (see line 22). 
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Algorithm: 5.2 – Algorithm for region growing 

 

In these experiments, the number of nearest neighbours were chosen as 30 and the 

curvature threshold as 0.98. The nearest neighbour value is decided more from the 

computation perspective. The curvature threshold and angle thresh- old was decided 

based on the experiments carried out for various values of these parameters. A curvature 

threshold of 0.98 and angle threshold of 5" worked best in the visual results of the 

experiments carried out. For higher values of thresholds, planar elements of wall and 

roof were getting combined into one element. Here 5" threshold angle have been used 

based on the visual analysis of various angle threshold. Within a cluster, the seed point 
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gets updated to a new point if its curvature is less than 98#ℎ percentile of all the 

curvatures in the point cloud. 

5.4.3.2 Cluster Refinement 

In this step, the points which are not assigned to any of the regions in the region-growing 

step, are assigned to their nearest clusters. These points essentially belong to the sharp 

edges and hence do not satisfy the angle threshold condition with any of the seed points. 

The cluster refinement process works by first calculating the centres 5$%&#%', 6$%&#%', 

7$%&#%' for all the clusters, which is computed as the mean of the 5, 6, 7 coordinates of 

the clusters, respectively. It then iterates through all the unassigned points and assigns 

them to the cluster nearest to them. The angle threshold condition used in region-

growing is not imposed during the cluster refinement step. Some of the unassigned 

points in the region- growing step could be outliers as well, which serves as noise in the 

dataset. In order to avoid assigning these outliers to any of the clusters, a check is 

performed to ensure that the distance between the new point being added, and the 

cluster centre is less than the maximum distance between the cluster centre and any 

point already present in the cluster i.e., the newly added point should not be at a distance 

greater than any of the already present cluster points from the cluster centre. 

5.4.3.3 Merging the planes 

The plane segmentation step outputs planes from the input point cloud. These set of 

planes alone do not have any significance in terms of building elements as they are 

plane segments from various elements in the building. For using them to form a 
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meaningful information, these planes need to be separated based on the element they 

belong. For example, a laser scan of a column may result in four separate planes, the 

idea is to club these planes together, to make it a column element. To implement this, a 

centre-to- centre distance threshold can be applied to the set of planes acquired from 

the previous step. The value of this threshold should be selected such that: 

• All the parts of the same elements should get clubbed together

• No parts of two different elements should get clubbed together

However, in a realistic situation, fulfilling both these criteria on the entire data is a 

tedious task. Hence the objective is to find a distance threshold which can fulfil these 

criteria to a maximum extent. Selecting a random threshold value can give following 

results as depicted in Figure 5.3: 

• Case (a) No planes get clubbed together

• Case (b) Fewer planes from same element gets clubbed together

• Case (c) All planes from same element gets clubbed together

• Case (d) All planes from same element and some planes from other

elements get clubbed together 
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planes from the nearby objects ‘Beam 2’ gets merged with ‘Beam 1’ and create a 

meaningless object. Hence the ideal value of ' should be as in case c. Kindly note that 

when the threshold will be applied it will be applied to all the planes, and hence multiple 

objects will get clubbed together based on the threshold set. In this case of two beams, 

one should get two separate objects for ‘Beam 1’ and ‘Beam 2’ as shown in Figure 5.4 

with a correct threshold value. Hence, one of the novel contributions in this work is the 

threshold finding method, which gives us the value of a best possible threshold, helping 

us to club not all but most of the planes in the building point clouds accurately. This is 

based on creating a matrix of distances of all detected plane and manually getting the 

threshold range out of it. 

5.4.3.4 Noise Removal 

After merging the planes into meaningful objects, there are few left out clusters of 

points which consist of less than 2048 points. These tiny clusters are usually points 

which gets left out and adds up to noise. Even visual assessment of these clusters does 

not give any sense of identification. Therefore, a noise removal step is applied, by 

automatically removing the clusters which have less than 2048 points. 

5.4.4 Self-Supervised Classification 

The building point clouds have been pre-processed and segmented to extract complete 

objects like wall, beam, columns by merging the planes obtained by using unsupervised 

segmentation technique as discussed in previous sections. These objects are given as 

the input to the model pre-training and feature learning framework which aims towards 

extracting high-quality features from these objects for classification. The pre-training 
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step is followed by the object classification downstream task. The entire dataset is 

divided into two main sets: 80% of the data is unlabelled and is used for training the 

feature learning pipeline while the remaining 20% of the data is labelled and used for 

object classification downstream task.  

Figure 5.5 Detailed Methodology for Self-Supervised Classification 

Therefore, as shown in Figure 5.5, the feature extraction is conducted in a self-

supervised manner with contrastive learning, clustering the features and assignment of 

cluster IDs as pseudo labels. Further, to refine the learned features, a 6-class 

classification training is performed using the point cloud data and pseudo labels (see 

Figure 5.6). In this work, a ContraSim model for contrastive feature learning is 

proposed, which uses cross entropy loss to learn the features from part objects. The 

feature learned from this stage are clustered using K-means ++ algorithm and pseudo 

labels are assigned to each cluster.Further Clusterify model is proposed to obtain 

refined features by performing a 6-class classification task with the labels obtained from 
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the previous step for the original point cloud data. Specific Hand-crafted features are 

extracted to further enhance feature representation and capture local geometric 

properties. These features are used with contrastive features in clustering to obtain 

pseudo labels and further with learned features using Clusterify model.  
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5.4.4.1 ContraSim Model 

Contrastive learning is a technique in which features from the visual data are learned 

by learning the similarity and dissimilarity between the samples in the data. This is an 

efficient technique to learn the visual features in a self-supervised way with unlabelled 

data. Contrastive learning presents the similar and dissimilar parts of data points to each 

other to make the machine learning model learn the parts which belong to the same 

class and parts which do not.  

In the proposed work, features are learnt from the point cloud segments of the building 

in a self-supervised fashion. The various objects from the building point clouds are 

segmented in the previous steps are split randomly into two parts as shown in Figure 

5.6, with red boxed in point cloud objects. Two different parts of the same object are 

shown with blue and red coloured points. For the purpose of splitting the object point 

cloud into two parts, a random plane is found and points which are present on either 

side of that plane are considered to be two object splits.  

Algorithm 5.3 describes the procedure “Split Object” for randomly splitting the point 

cloud object into two parts. In this algorithm, 3 random points, a, b, c are selected and 

multiplied with the X, Y, Z array of coordinates in point cloud object. It essentially tries 

to find a random plane in 3D, to split the point cloud objects into two parts, where the 

equation of the plane is ax+by + cz= 0. It sums the coordinates in (X, Y, Z) arrays and 

adds the points which has their Sum >= 0, to the first Split (Sp1) and points which has 

their Sum < 0, to the second Split (Sp2). 
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These pairs of segments of each object are compared with each other for positive and 

negative pair and hence features are learned for each object by learning similarity. Parts 

which belong to the same objects constitutes the positive pair, labelled as 1 and parts 

which belong to different object makes negative pair, labelled as 0. In the Figure 5.7,the 

process of learning features with contrastive learning is depicted. A sample positive 

pair input to the ContraSim model looks like, A-B of the same object and C-D belong 

to different object, which also makes A-C, A-D or B-C, B-D as negative pairs since 

they are coming from different objects. Hence, learning the features by learning the 

positive and negative pairs brings all the positive pairs and negative pairs close together 

respectively as a group. 

Thus, this is a binary classification task with the positive and negative pairs as the input. 

This is a completely self-supervised learning process as no ground truth labels are used 

for feature extraction. 

Algorithm: 5.3 – Algorithm to split a point cloud object 
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ContraSim model utilizes DGCNN model as the backbone network for feature 

extraction purpose. DGCNN introduced a novel operation EdgeConv which aims 

towards recovering the topological information (local geometric features) in a point 

cloud. EdgeConv is applied directly on a dynamically generated graph in a Graph 

Neural Network (GCNN) to incorporate the local neighbourhood properties of a point 

cloud. In the Figure 5.7, the DGCNN backbone network is used for each part of the 

input object which is randomly split. Each branch of the network uses a spatial 

transformer network which allows a neural network to learn the spatial transformations 

to be applied on an input data (2D image or 3D point cloud), to enhance the geometric 

invariance of the network. After that, it uses a sequence of 4 EdgeConv layers with 

kernel sizes 64, 64, 64 and 128, followed by a convolutional layer to combine the 

feature embeddings generated from the previous EdgeConv layers. The final feature 

embedding is pooled into a 256 − 8 Max Pooling layer. The features generated from 

both the branches of the network are concatenated using a single vector by using 3 fully 

connected layers, where final classification is learned in the form of a binary 

classification for a positive or negative pairs. 

The ContraSim model takes ),*#(%)' (number of points) as an input parameter which 

indicates the number of points each cut part should have. As mentioned earlier, this 

model takes a pair as input i.e., two cut parts. These cut parts are converted into objects 

with ),*#(%)' number of points. For objects with a smaller number of points, some 

random points are repeated to get the required number of points while for objects with 

higher number of points, points are removed to obtain objects with the desired number 

of points. For the purpose of experiments, various values for ),*#(%)' like 256, 512, 
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1024, 2048 and 4096 were tried. Also, a batch size of 16 was used for training the 

model. 

(5.1) 

The loss function used for training the ContraSim model is cross entropy (see Eq. 5.1) 

which is optimized by stochastic gradient descent (SGD). ContraSim model is based on 

the binary classification task, and hence there are only two classes. The true labels are 

converted into one hot vector of size 2, and softmax activation is applied to the predicted 

values. Then, these are used for computing the cross-entropy loss. 

5.4.4.2 Clustering 

In this step clustering groups all the features learned from ContraSim model into the 

desired number of clusters, $6$ clusters in the current case. The features learned by the 

ContraSim model are given as the input to the K-means ++ clustering algorithm. 

Clustering algorithm starts by choosing an initial set of centroids and assigning each of 

the data points to one of these clusters. After every iteration, the centroids are updated 

based on the data points assigned to that particular cluster. The algorithm stops when 

the maximum number of iterations are completed which is kept as 300 for this problem 

by empirical observation. The Clustering algorithm takes K as an input, and K=6 was 

chosen as input for experiments as there are a total of six classes which are wall, door, 

window, slab, beam, and column and obtains 6 clusters for the features (see Figure 5.6). 
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Further, pseudo labels (cluster IDs) to each cluster are assigned which act as a label for 

the original point cloud data in a supervised 6-class classification. 

5.4.4.3 Clusterify Model 

In the above steps, features generated from ContraSim model are clustered and cluster 

ID as assigned as pseudo labels. Now another model Clusterify is trained which is a 

supervised n-class classification model using the original point cloud data and labels 

(pseudo labels) generated in the previous step. The Clusterify model (see Figure 5.6) 

aims at learning refined features of the building elements by making use of the cluster 

labels obtained in the Clustering step. Thus, in this step supervised learning is used to 

boost the feature learning process. In contrast with the ContraSim model where building 

element parts are considered as positive and negative pairs, in Clusterify model the 

entire building element is taken as input. Clusterify model tries to learn the mapping 

between the input building elements and the pseudo-labels and in this process where 

the potential learned features will help in differentiating building elements belonging 

to different classes. Clusterify model also used DGCNN network as a backbone 

network for learning the features as described in the previous section. 

The Clusterify model also takes ),*(")&# number of points as input which indicates the 

number of points each object will have. All the building elements will be converted into 

objects with ),*(")&# number of points in the same way as done for the ContraSim 

model. However, in contrast with ContraSim model that takes cut parts of the building 

element as input, the Clusterify model takes the whole building element as the input. 

Therefore, for the experimentation purpose if the ),*(")&# is chosen as 256, 512, 1024, 
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2048 or 4096 for the ContraSim model training, then the ),*(")&# will be 512, 1024, 

2048, 4096 or 8192 respectively for the Clusterify model that is twice the ContraSim 

model. 

Similar to the ContraSim model, the loss function used by Clusterify model is softmax 

cross-entropy (see Eq. 5.2). Clusterify model deals with the task of assigning the 

building elements to one of the k-classes where the value of k is decided in the 

clustering step. The loss is computed in a similar way as discussed in the ContraSim 

model part. 

(5.2) 

Where, 6̂) is the vector of predicted scores and 6) is the corresponding true label in the 

form of one-hot encoding. The summation is done over all the classes. 

Hand-crafted features (which will be discussed next) are augmented first with 

ContraSim features to generate pseudo labels and again with features learned by 

Clusterify model to be used for downstream tasks. These features capture local 

geometric properties of the point cloud objects and they are able to enhance the overall 

classification performance to great extent. 
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5.4.4.4 Augmentation of handcrafted features 

In addition to the features that are automatically learnt, handcrafted features are 

additionally experimented with to fill the gaps in automatic feature extraction. The 

construction dataset in the consideration is largely different from the datasets used in 

computer vision for identifying elements from the point clouds. The datasets used in 

literature consists of general day to day elements such as table, chair, lamps. etc, which 

have a very distinguishable shape and structure and easy to differentiate between 

different classes if automatic feature extraction is done using contrastive learning. 

Hence, some of the very specific features from the building elements which make them 

distinct are identified and augmented with the automatically learnt features to improve 

the classification performance. These features are targeted towards capturing the local 

geometric properties of the components in point cloud which might be missed by the 

automatically learnt features using contrastive learning.  

To begin the process of extracting handcrafted features (Figure 5.5) construction dataset 

was analysed, and various features were identified which makes one element different 

with another. Such features were: Average RGB value, Surface Area, Average z-

coordinate, Average covariance features. These handcrafted features are independent 

of the domain of point cloud used and can be used for general construction data of point 

cloud data, which makes the system generalised for a vast variety of the construction 

data in contrast with the conventional rule-based systems, where rules are identified 

using the domain knowledge or the past trends. 
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identify its dense 3D geometry. Triangular mesh is generated using Poisson surface 

reconstruction algorithm which uses a regularized optimization to generate a smooth 

surface in a point cloud. This mesh is used to find the surface area of the individual 

component in the point cloud. Algorithm 5.4 is used to calculate the surface area. In 

Figure 5.8 (b), it can be seen that the door has a smaller area when compared to the 

wall. 

Algorithm: 5.4 – Algorithm for surface area calculation 
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• Average z-coordinate: Height of every object in the point cloud is an important 

feature, which can distinguish between objects with similar appearance but different 

functional roles. In the context of construction data, there are multiple objects which 

can have similar appearance taking the shape into consideration, for example a wall and 

a beam. The two rectangular objects have different functional roles and positions in 

construction data but could be ambiguous for a deep learning model to extract 

distinguishing features. Their placement with respect to the ground makes them 

different in a scene and hence a height feature can be important in this context. In Figure 

5.8 (c) it can be seen that the height coordinate for various objects is separated apart, 

which can work as a good feature for classification. 

• Average covariance features: For the purpose of capturing local geometric 

properties covariance features are widely used in the literature. Covariance features are 

calculated by first generating a covariance matrix of 3 for all the points for its 

neighbourhood. In this line, a covariance matrix for each point is generated with 50 

nearest neighbour points found by K-nearest neighbour algorithm. After that the 

eigenvalues and eigenvectors from the covariance matrix are calculated. Since eigen 

values represent geometric properties of an object, features such as Linearity, Planarity, 

Scattering, and Verticality can be identified using them. These local geometric features 

are described below for the eigen values < − 0, 1, 2, arranged in ascending order: 

– Linearity(L): It suggests the linearity of a given point based on its surroundings, 

i.e., whether the surrounding is linear or not. 
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(5.4) 

– Planarity(P): It provides the planarity of a given point based on its surroundings, 

i.e., whether the surrounding is a plane or not. 

(5.5) 

– Scattering(S): It suggests the sphericity of a given point based on its 

surroundings, i.e., whether the surrounding is curved or not. 

(5.6) 

– Verticality(V): This metric gives the verticality of a given point based on its 

surroundings, i.e., whether the surrounding is vertical or horizontal. 

The unary vector of principal direction in R3+ is defined as the sum of the absolute 

values of the coordinate of the eigenvectors weighted by their eigenvalues. 

(5.7) 
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Algorithm: 5.5 – Algorithm for permutation Importance 

 

Algorithm 5.5 demonstrates the process of finding important features from the pool of 

1033 features with function Permutation Importance. The Alg. 5.5 takes a trained 

model M and a dataset D as parameters to the function Permutation Importance and 

tries to find the importance score for each feature fi for randomly shuffling the rows for 

fi in dataset D, K times (line 3,4). With every shuffle, it calculates its importance score 

Scoreimpi, j which is accuracy of prediction in the current case for the shuffled dataset 

Di,j with Model M (line 5). After K iterations, it takes the average of importance scores 

obtained at each step Scoreimpi (line 6), further adding the value to the list of all the 

importance scores (Importance) (line 7). The larger the value of Scoreimpi for feature fi, 

the more important is the feature to the trained model, pertaining to the fact that 

shuffling more important feature will cause more drop in the accuracy value. 
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The details of feature selection based on importance are discussed in section 5.4.1. The 

most important 103 features in the order of their ranking and importance score are listed 

as: Blue, Red, Green, Surface area, Average Z, Verticality, Planarity Linearity, 

Scattering and deep learning features. Here, Blue, Red, Green are the RGB colour 

values, and out of the 1033 features, top 100 features with the remaining three 

handcrafted features were taken to make a feature vector of size 103. In order to 

measure the sensitivity of the selection of vector dimension, experiments were 

performed with size, multiple dimensions (details in section 5.4.1). Hence, considering 

the highest performance, feature vector dimension 103 is selected for training the 

classifier. The feature vectors used for downstream training are scaled using the scaling 

function defined as = = (()	+)
, , where x is each feature, µ is mean of whole feature 

column and @ is the standard deviation of the feature column. 

5.4.4.6 Classifier Training and Testing 

In this step, the quality of feature extraction with model pre-training is tested with the 

remaining 20% S3DIS data for a classification task. The building elements are 

classified into one of the six classes (Wall, Door, Slab, Window, Beam and Column) 

with the remaining labelled dataset which is divided into train and test sets.  

SVM classifier is used as the classifier which is trained on the train set which consists 

of features of the building elements extracted from both the ContraSim or Clusterify 

model as the input and the ground truth labels as the output. The final results of 
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classification are presented on the test set in the results section. Equation below depicts 

the loss function used in training the SVM classifier. 

 

Here, A is the set of weights and B is the set of biases, + is the penalty when a sample 

is misclassified or within the margin boundary. 6% refer to the training labels and 5% is 

the feature map. 

The testing of the pipeline is conducted on the test dataset, here the remaining 

unlabelled data from the S3DIS is used which have not been used till now at any stage. 

The experimental details, results and their interpretations are presented in the next 

section. 

5.5 EXPERIMENTAL RESULTS AND DISCUSSION 

In this section, all the experiments performed in the proposed work is described in 

detail. All the experiments were performed on GPU, NVIDIA Quadro RTX 6000 

Passive with 24 GB memory, with 2.3 GHz clock speed and NVIDIA Tesla T4 with 16 

GB memory with 2.2 GHz clock speed.  
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The experiments were performed on the test set created from the S3DIS dataset i.e., 

Area 2 and Area 4, which consist of 40 rooms and 50 rooms respectively. The pipeline 

shown in Figure 5.2 was executed till the Step 3 of unsupervised plane segmentation.  

Next to select an appropriate merging threshold to form meaningful elements the 

method described in section 3.3.3 was used. For this, a case is demonstrated with Area 

6 - Copy Room 1 as shown in Figure 5.11(a) from the S3DIS data set and applied the 

mentioned empirical method to get the range for the appropriate threshold. 

CopyRoom1 has a total of 8 elements, with 1 beam, 2 slabs, 1 door and 4 walls. 

Executing unsupervised segmentation created a total of 11 planes for this room, with 3 

for beam, 1 for ceiling, 1 for floor, 1 for door and 5 for walls segments. The distance 

between these planes is as shown in Figure 5.10. 

 

Figure 5.10 The distance (in meters) between the centroid of the identified planes from 

the plane segmentation algorithm 
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Figure 5.11 (a) Original Point cloud of CopyRoom1 from S3DISDataset (b) Segmented 

point cloud (c) Case 1: if ' ≤ 0.81 (d) Case 2: if ' > 0.81 and ' < 0.97 (e) 
Case 3: %C ' ≥ 0.97 

To appropriately club the planes into meaningful elements, the following three critical 

threshold ranges were identified by analysing the Figure 5.10. 

o if ' ≤ 0.81 *: Individual segments of a single beam element are not 

getting clubbed together. 

o if ' > 0.81 * and ' < 0.97 *: Two segments of the same wall are not 

getting clubbed together, but it is getting identified as a wall. Segments 

of the beam are getting clubbed together. 

o if ' ≥ 0.97 *: One segment of the beam (B2) and one segment of the 

wall (W4) will combine into one element, which will form a 

meaningless element, with parts of two different elements. 

Therefore, it is meaningful to select a threshold as 0.81 * < ' < 0.97 *. Similarly, this 

empirical method can be applied to few other rooms for identifying the range of 

meaningful threshold for this data. But this range of the possible threshold will not vary 

much for a particular dataset as the elements will be the same as the case considered. 
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However, for a new data the same method will be used for selecting the appropriate 

merging threshold. Here to validate this method, experiments were performed by taking 

value of t as 0.8m, 0.9m and 1.0m and present the results. 

(5.8) 

Figure 5.13 depicts the IoU (Intersection over Union) values generated for various 

threshold values in meters across all the object classes. IoU (see Eq. 5.8) is a metric to 

measure the performance of a segmentation method, where DBE20'&2F is the segmented 

object for a specific class and DBE20':G is the ground truth object taken from the 

original data. IoU measures the overlap in the areas of segmented object and the ground 

truth object. The threshold depicts the value taken for merging the different segmented 

planes for object classes to create one single object. However, lower the threshold value, 

the higher will be the IoU, because merging with a lower threshold value remains a very 

conservative way to merge the planes and create a consolidated object. This will 

eventually lead to a good overlap with the original planes but misses out merging all 

the points in an object, leading to higher miss-classification rate. However, the higher 

threshold value in merging will lead to over merging of the planes and lead to confusing 

the machine learning model in identifying the exact shape of the object.  

Hence, the target at this stage is to select an optimal value of which gives a good IoU 

for segmentation and also leads to lower miss-classification rate. As empirically 

identifies in the previous step, threshold values (') should be selected in the range of 
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Figure 5.13 Individual IoU values for different threshold and Median IoU of various 

object classes for unsupervised segmentation 

The remaining pipeline as shown in Figure 5.2 was executed and the results obtained 

were evaluated based on the matrices provided below. 

  (5.9) 

  (5.10) 

   (5.11) 

  (5.12) 

Precision is a measure of how many of the positive predictions made are correct (true 

positives). (Formula shown in Eq. 5.9) 
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Recall is a measure of how many of the positive cases the classifier correctly predicted, 

over all the positive cases in the data. It is sometimes also referred to as Sensitivity. 

(Formula shown in Eq. 5.10) 

F1-Score is a measure combining both precision and recall. It is generally described as 

the harmonic mean of the two. Harmonic mean is just another way to calculate an 

“average” of values, generally described as more suitable for ratios (such as precision 

and recall) than the traditional arithmetic mean. (Formula shown in Eq. 5.11) 

Accuracy: The base metric used for model evaluation is often Accuracy, describing the 

number of correct predictions over all predictions. Where, !-24%0'%()&$"''%$# is the 

total number of correct predictions over all classes and ! -24%0'%()& *"#+, is the total 

number of predictions. (Formula shown in Eq. 5.12) 

5.5.1 Hybrid Feature ranking and analysis for selection 

After performing the feature ranking algorithm for the overall 1033-dimensional hybrid 

feature vector, graded experiments were performed by selecting number of top ‘n’ 

features to select the relatively important features. Table 5.3 below shows the individual 

feature ranking obtained for various runs for the handcrafted features.  

As it was expected, some of the handcrafted features contributed more than the deep 

learning features in object classification. It can be seen from the ranks in the table that 

the top important features are the R, G, B colour features, Surface area and Average Z. 

The covariance features rank slightly lower, with verticality contributing most, then 
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linearity and scattering contributing almost equivalently and then scattering 

contributing the least. 

Table 5.3 Individual Feature ranking obtained for various runs for the handcrafted 

features. 

 Feature Rankings 
Features Run 1 Run 2 Run 3 Run 4 Run 5 

Blue 1 3 3 1 1 

Red 2 1 1 2 2 

Green 3 2 2 3 3 

Surface Area 4 6 4 52 65 

Average Z 5 46 6 4 5 

Verticality 52 297 174 120 178 

Planarity 681 696 698 698 697 

Linearity 682 697 699 699 698 

Scattering 859 851 856 852 854 

Average Ranking 254.3 288.8 271.4 270.1 278.1 

Slight deviations were obtained in the rankings as the contribution for each feature 

varied every time, however many features were ranked very closely to due equal 

importance score. Run 1 results were chosen to the documentation proceeded as it gave 

the lowest average ranking of the handcrafted features.  

Below is the summary of two classes of experiments that were performed. 

Experiment 1: Directly taking top features according to their rank. 

The first experiment was performed by directly taking the top ‘n’ features and reporting 

the results for overall accuracy. Here values of ‘n’ are selected to capture the trend and 

sensitivity in overall accuracy. The values of n, that were chosen were 1, 2, 3, 4, 5, 10, 

15, 20, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300. These results have been 
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shown in Figure 5.14. The graph shows that the overall accuracy increases till about the 

top 25 features are included, however after then it does not vary much and slightly 

decreases as more features are added. 

Figure 5.14 Overall Accuracy Vs number of top features used. 

Note: The values in brackets (x, y) are (No. of top features, Overall Accuracy) for each 

point on the graph. 

Table 5.4 The data in tabular format obtained for Experiment 1 

Number of Top Features Overall Accuracy (%) 

1 32.99 

2 41.37 

3 44.41 

4 52.22 

5 54.08 

10 69.13 

15 73.46 

20 76.02 

25 79.59 
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Number of Top Features Overall Accuracy (%) 

50 78.82 

75 78.31 

100 78.06 

125 78.82 

150 77.04 

175 77.8 

200 76.78 

225 76.53 

250 76.27 

275 77.8 

300 77.55 

It can be seen that the top 25 features contribute most to the accuracy as it reaches a 

maximum there at 79.59% and then slightly declines thereafter. 

Experiment 2: Taking top features according to their rank and adding the 

remaining handcrafted features. 

The second experiment was performed by directly taking the top ‘n’ features and the 

remaining handcrafted features which did not come in the top ‘n’ features. These results 

have been shown in Figure 5.15 

It can be seen that the overall accuracy reached a maximum of 80.86% at 103 features, 

and slightly decreases thereafter as the number of features included were increased. 

It is interesting to note that, as the number of features that are included passes a certain 

number, then the accuracy starts to slightly decline in both the experiments. This is 

because, all the features inclusion might not positively affect the accuracy and might 

result in overfitting. Therefore, if the features that are required for accurate 
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classification are increased, then after a after a certain threshold the accuracy begins to 

decline. 

For the thesis, the results corresponding to the 103 features were documented and 

reported. These contains the 100 top features with the remaining three handcrafted 

features as obtained in run 1. 

 

Figure 5.15 Overall Accuracy Vs number of total features used after considering the 

top 'n' features in addition to the remaining handcrafted features. 

Note: The values in brackets (x, y) are (No. of features, Overall Accuracy) for each 

point on the graph. 

 

9, 67.34

14, 76.02

19, 76.02

24, 79.59

29, 79.59

54, 79.65

78, 80.10

103, 80.86

128, 80.35

153, 80.35

178, 80.63

203, 80.10

228, 80.10

253, 79.08

278, 77.80

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0 50 100 150 200 250 300

Ov
er
al
l A

cc
ur
ac
y 
(%

)

No. of Features Used

Overall Accuracy (%)



169 

 

Table 5.5 The data in tabular format obtained for experiment 2. 

Number of Top 
Features Used 

Remaining Handcrafted 
Features Total Features Used Overall Accuracy (%) 

5 4 9 67.34 

10 4 14 76.02 

15 4 19 76.02 

20 4 24 79.59 

25 4 29 79.59 

50 4 54 79.65 

75 3 78 80.10 

100 3 103 80.86 

125 3 128 80.35 

150 3 153 80.35 

175 3 178 80.63 

200 3 203 80.10 

225 3 228 80.10 

250 3 253 79.08 

275 3 278 77.80 

300 3 303 76.78 

5.6 RESULTS AND INTERPRETATIONS 

Table 5.6 shows Precision, Recall, F1-score for various object classes with 3 different 

feature engineering approaches proposed in this work, i.e., Deep learning-based 

features, handcrafted features, and Hybrid features. As it can be seen from Table 5.6 

that overall accuracy for Hybrid method of feature engineering, i.e. augmenting the 

deep learning based features and handcrafted features, gives the highest overall 

classification accuracy for all the object classes which is 80.86 % as compared to overall 

accuracy with deep learning based features (56.37 %) and handcrafted features (66.32 

%).  
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Table 5.6 Experimental results of classification pipeline with different sets of features 

on the S3DIS Dataset 

Features Without Handcrafted Features Only Handcrafted Features Hybrid Features 

Object Class Precision Recall F1-
score Precision Recall F1-score Precision Recall F1-

score 
Wall 43.03% 44.73% 43.86% 58.44% 59.21% 58.82% 63.33% 75.00% 68.67% 

Door 30.64% 31.66% 31.14% 73.33% 91.66% 81.48% 79.66% 78.33% 78.99% 

Slab 57.89% 72.36% 64.32% 73.84% 63.15% 68.08% 85.88% 96.05% 90.68% 

Window 64.40% 63.33% 63.86% 62.12% 68.33% 65.07% 83.33% 75.00% 78.94% 

Beam 88.23% 50.84% 64.51% 52.00% 44.06% 47.70% 97.82% 76.27% 85.71% 

Column 71.42% 73.77% 72.58% 76.27% 73.77% 75.00% 86.20% 84.03% 84.03% 

Overall 
Accuracy 56.37% 66.32% 80.86% 

Color coding for Table 5.6 

• 0% to 33.33% - Red (Low Score) 

• 33.33% to 66.66% – Yellow (Medium Score) 

• 66.66% to 100% – Green (High Score) 

It can be seen from Table 5.6 that the individual F1-score is the highest for all the object 

classes for hybrid-based approach, specially Beam and Door object classes, which are 

nearly failed to be classified using deep learning-based features.  

Table 5.7 depicts the confusion matrices for classification of objects with all 3 proposed 

feature engineering schemes. It can be seen that the Beam and Door object classes are 

highly miss-classified when only deep learning-based features are used. These numbers 

are improved and reach highest from handcrafted features to hybrid features by 

augmenting the deep learning based and hand-crafted features. The similar trend is 

observed for all the object classes. Hence, it can be concluded that hybrid features are 

performing much better as compared to deep learning-based features and handcrafted 

features used alone.  
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Table 5.7 Overall Confusion matrix for classification pipeline, without handcrafted 
features, with only handcrafted features and hybrid features for the S3DIS 

test data. 

Without Handcrafted Features 

  Wall Door Slab Window Beam Column 

Wall 34 13 13 4 2 10 

Door 20 19 9 8 1 3 

Slab 7 8 55 5 0 1 

Window 7 8 5 38 1 1 

Beam 5 12 9 0 30 3 

Column 6 2 4 4 0 45 

  

Only Handcrafted Features 

  Wall Door Slab Window Beam Column 

Wall 45 7 4 0 13 7 

Door 2 55 0 1 1 1 

Slab 9 4 48 7 6 2 

Window 10 3 4 41 2 0 

Beam 3 3 7 16 26 4 

Column 8 3 2 1 2 45 

  

Hybrid Features 

  Wall Door Slab Window Beam Column 

Wall 57 7 0 5 0 7 

Door 6 47 5 1 0 1 

Slab 1 1 73 0 1 0 

Window 13 1 1 45 0 0 

Beam 3 3 6 2 45 0 

Column 10 0 0 1 0 50 
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5.6.1 Comparison with other existing methods 

Table 5.8 Class wise accuracy (percentages) comparison between different recognition 

methods 

Class 
Supervised Methods Unsupervised Method 

(Armeni et 
al., 2016) 

 (F. Liu, Li, Zhang, 
& Zhou, 2017) 

(Chen et 
al., 2019) 

Proposed (ConPro-
NET) 

Beam 66.7 78.6 42.1 76.3 
Ceiling 7.16 89.6 84.8 

96.1 
Floor 88.7 95 97.2 
Column 91.8 89.4 43.8 82 
Door 54.1 33.4 55 78.3 
Wall 72.9 60.1 52.4 75 
Window 25.9 75.3 54.3 75 
Average 58.1 74.48 61.37 80.45 

Table 5.8 shows the comparison of class wise accuracy between the proposed method 

and existing approaches. Our methods outperform the existing supervised approaches 

for slab, door and wall classes.  It can also be noted that the average accuracy is the 

highest for our method. However, our method requires an empirical threshold value to 

be selected based on the dataset or the project elements. A lot about the methods 

performance depends on how appropriately we can select the threshold. 

5.7 CONCLUSION 

This work presents ConPro-NET, a hybrid self-supervised method to detect and classify 

various components of a building point cloud, which is used for automatic construction 

progress monitoring. The key gap this chapter highlights is the incompetency of the 

supervised method for construction progress estimation domain where many building 

elements are project specific and cannot not be generalised. The labelling of point 

clouds acquired from construction site is a highly tedious and labour-intensive task. 
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Also, there are so many variations of the types of components used at construction site, 

therefore a project specific labelled dataset is difficult to obtain. Even the components 

on under-construction site are mostly grey and therefore traditional segmentation 

techniques cannot be applied. 

The study contributes to the existing knowledge in the following ways. Firstly, a novel 

distance-threshold-based merging of planes approach is developed to conduct the 

distinctly challenging problem of segmenting various components in a construction 

environment. Secondly, the self-supervised approach is customized and applied to 

perform and work on the building construction dataset. Finally, construction-specific 

handcrafted features are identified and applied to the pipeline for improving its 

performance. The experiments showed that the hybrid features introduced and used in 

this paper improved the overall accuracy of the pipeline by achieving an 80.86% overall 

accuracy. The results also shows that the proposed method outperforms the existing 

approaches for the average class wise accuracy.  
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CHAPTER 6.  

CASE STUDY EVALUATION  

In the previous chapter, ConPro-NET, hybrid self-supervised approach was developed 

and experimented on the S3DIS dataset. This chapter present the results of the 

developed pipeline on a case study dataset of an under-construction project. This 

chapter is divided into seven sub-sections. The first sub-section is about project details. 

The second sub-section gives the details of the collected data. The third sub-section is 

on Revit modelling. The fourth sub-section is on annotating the dataset to prepare it for 

testing. The fifth sub-section is on implementing ConPro-NET for element detection on 

this dataset. The sixth sub-section shows the results obtained and their interpretation. 

The seventh sub-section discusses about the limitations of the method and future 

directions of research. 

6.1 PROJECT DETAILS: 

The case study was conducted on a local residential building project in Chennai, India. 

The existing building complex was built in 1990, and they were required to undergo an 

extension to have one bedroom and a bathroom with a balcony added to each house's 

existing plan. Figure 6.1 shows the previously existing quarter structure (left) and the 

currently built extension structure (right). The plinth beam stage was considered the 

zero-progress stage as no structural components were visible at this stage when the data 

collection started, as shown in Figure 6.1 (left). The current structure stage was 

considered the fifth stage, as shown in Figure 6.1 (right). 
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Figure 6.3 and Figure 6.4 shows the Plan and Elevation for the extension unit in detail. 

It consists of one Additional Bedroom with a window, a door to a balcony and a toilet. 

 

Figure 6.3 Plan for the Extension Unit in Detail 

 

Figure 6.4 Elevation for One Floor 

6.2 DATASET DETAILS: 

For this study, only the ground floor structure was considered. The data was collected 

in the following five stages: 
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1. Plinth beam completion stage 

2. Columns first lift completion stage 

3. Columns second lift completion stage 

4. Slab completion stage 

5. Incomplete brickwork stage 

These stages are shown in the Table 6.1 below. 

Table 6.1 Point Cloud Data Captured at different Stages of the Construction Project 

Sl. No. Stages Point Cloud Collected 

1 

Zero Progress - 

Casted PPC for 

Plinth Beam 
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Sl. No. Stages Point Cloud Collected 

2 

Columns Erected 

First Lift 

 

 

3 

Columns Erected 

Second Lift 
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Sl. No. Stages Point Cloud Collected 

4 

Slab Casted 

 

 

5 

Incomplete 

Brickwork 

 

 

6 Completed NA 

 

The data was collected using a hand-held device, iPad M1 Pro (Apple MHWC3HN/A 

11' iPad Pro WIFI + Cellular, Space 1 TB). The LiDAR sensor in this iPad is used to 

capture the point clouds. This sensor works Direct Time of Flight (FTOF) ranging 

principle. Other details about the collected data are shown in Table 6.2. 
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Table 6.2 Details about the data acquired 

Description Details 

Acquisition Dates  19th March 2022, 27th March 2022, 2nd April 2022, 2nd May 2022, 15th 
May 2022 

Acquisition Time All the data was collected during 10AM to 11 AM to nullify the effect of 
variable sunlight. 

Weather The data was collected on clear sunny weather for all the five stages. 

Data Volume 2.01 GB (Raw Point Clouds) 

Application for Data Acquisition 3D Scanner (IOS) 

Acquisition Device  iPad M1 Pro (Apple MHWC3HN/A 11' iPad Pro WIFI + Cellular, Space 1 
TB) 

Acquisition Settings  High Resolution 

Application of Data Processing Cloud Compare 

 

6.3 REVIT MODELLING 

For reference and visualisation, Revit modelling was performed for the project and its 

various stages at which the site data was captured. The below Table 6.3 shows the 

stagewise models. 

Table 6.3 As-built Revit BIM Model at different Stages of the Construction 

Sl. No. Stages As-Designed Revit Model 

1 

Zero Progress - Casted PPC for 

Plinth Beam 
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Sl. No. Stages As-Designed Revit Model 

2 

Columns Erected First Lift 

 

 

3 

Columns Erected Second Lift 

 

 

4 

Slab Casted 
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Sl. No. Stages As-Designed Revit Model 

5 

Incomplete Brickwork 

 

 

6 Completed 

 

 

6.4 ANNOTATING THE DATASET FOR TESTING 

To validate the method the data needs to be annotated to compare the predicted results 

to the ground truth. The following Table 6.4 shows the annotated dataset. 
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Table 6.4 Annotated Point Cloud Data at different Stages of the Construction 

Sl. No. Stages Annotated Model 

1 

Zero Progress - Casted PPC for 

Plinth Beam 

 

 

2 

Columns Erected First Lift 

 

 

3 

Columns Erected Second Lift 
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Sl. No. Stages Annotated Model 

4 

Slab Casted 

 

 

5 

Incomplete Brickwork 

 

 

6 Completed NA 

 

6.5 IMPLEMENTING CONPRO-NET 

The stagewise unlabelled point cloud data as input, various steps of the developed 

method were performed sequentially as shown in Figure 6.5.  
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The best possible threshold of 0.9m was selected using the method described in section 

3.3.3. However, by selecting this value, the merging of a few column elements with the 

slab and the merging of a few elements beams with the slab could not be avoided. 

The developed hybrid-self supervised pipeline was executed using these five-point 

clouds as inputs and finally the corresponding five segmented and classified labelled 

point clouds were obtained as the outputs. 

Figure 6.6 shows the visual results obtained by implementing the developed method 

using the hybrid features. Table 6.5 shows the combined confusion matrix for the case-

study dataset with the three variations of, without handcrafted features, only 

handcrafted features, and hybrid features. Table 6.6, shows the results and accuracy 

obtained using each of these features. 

From the results obtained it can be interpreted that: 

• From Table 6.5 and Table 6.6 it can be observed that the results from the hybrid 

features outperforms the individual results by without handcrafted features and 

only handcrafted features. 

• The overall accuracy obtained by Hybrid features is 80.95% which is slightly 

better than the accuracy obtained on the S3DIS dataset. This can be due to the 

size of the data being tested is small as compared to that of S3DIS data or the 

performance of the hybrid features is better in the mid-construction 

environment as they are designed for. 

• From Figure 6.6 and Table 6.5, it can be seen that in Stage 4 and Stage 5, few 
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Table 6.5 Overall Confusion matrix for classification pipeline, with deep learning 
features, handcrafted features, and hybrid features for the entire Residential 

Project Data (Stage 1 to Stage 5) 

Without Handcrafted Features 

  Wall Slab Beam Column 

Wall 10 0 1 1 

Slab 1 14 2 0 

Beam 0 2 5 0 

Column 1 5 4 17 

      

Only Handcrafted Features 
  Wall Slab Beam Column 

Wall 9 0 0 3 

Slab 2 14 0 1 

Beam 0 0 7 0 

Column 0 0 12 15 

      

Hybrid Features 

  Wall Slab Beam Column 

Wall 10 0 0 2 

Slab 1 15 0 1 

Beam 0 1 6 0 

Column 0 1 6 20 

 

Table 6.6 Combined results for deep learning, handcrafted features, and hybrid features 

for the entire Residential Project Data (Stage 1 to Stage 5) 

 

Color coding for Table 6.6 

• 0% to 33.33% - Red (Low Score) 

Features Without Handcrafted Features Only Handcrafted Features Hybrid Features 
Object 
Class Precision Recall F1-

score Precision Recall F1-
score Precision Recall F1-

score 
Wall 83.33% 83.33% 83.33% 81.81% 75.00% 78.26% 90.90% 83.33% 86.95% 

Slab 66.66% 82.35% 73.68% 100.00% 82.35% 90.32% 88.23% 88.23% 88.23% 

Beam 41.66% 71.42% 52.63% 36.84% 100.00% 53.84% 50.00% 85.71% 63.15% 

Column 94.44% 62.96% 75.55% 78.94% 55.55% 65.21% 86.95% 74.07% 79.99% 

Overall 
Accuracy 73.01% 71.42% 80.95% 
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• 33.33% to 66.66% – Yellow (Medium Score) 

• 66.66% to 100% – Green (High Score) 

6.7 LIMITATIONS AND FUTURE WORK 

The present study introduces a prospective hybrid self-supervised pipeline, called 

ConPro-NET, which can be employed for progress monitoring of building structures. 

However, there exist a few limitations in the proposed method, which need to be 

addressed. Below are the limitations alongside with potential future directions: 

• Dataset: Currently, the dataset utilized for pre-training is the S3DIS dataset, 

which comprises completed elements. In future, to enhance accuracy in tracking 

incomplete components, a significant amount of mid-construction data will be 

captured and utilized. Also, the use of synthetic data which can be extracted 

from the as-planned BIM seems promising and will be explored in future. 

• Process: The current methodology for merging planes in a new dataset involves 

manual threshold estimation. However, in future research, we aim to develop an 

automated algorithm that utilizes as-planned BIM to determine the optimal 

threshold value that maximizes overall accuracy. 

• Learning Algorithm: Currently only two parts are used in learning. Objects can 

be split in multiple parts with multiple views and contrastive loss can be used 

for learning representations without having to label them. In real-world 

scenarios, point clouds are often captured alongside other modalities such as 

images or videos. Developing methods that can effectively learn from these 
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multi-modal sources could help improve the quality and robustness of 

unsupervised or self-supervised learning of point clouds. 

• Loss Function: Contrastive loss function can be used in place of cross-entropy 

loss as contrastive loss considers the distance between the positive parts and 

negative part to learn the matching or non-matching pairs. Hence it can be 

efficiently used with unlabelled data in place of cross entropy loss. 

• Feature Engineering: Furthermore, this study introduces a set of handcrafted 

features and utilizes them according to their calculated feature importance score. 

However, in the future, the individual contribution and computation time of 

these handcrafted features towards the overall accuracy will be evaluated and 

documented to ensure a balanced and optimized selection. In addition to this, 

other derived semantic features will be explored and their performance on the 

classification accuracy will be evaluated. 

• Experimental Testbed: Here, the data was acquired using a low-cost hand-held 

device to show the method's applicability and robustness, it will be interesting 

to conduct experiments using high precision terrestrial laser scanners, which 

might result in better classification accuracy. 



192 

 

CHAPTER 7.  

CONCLUSIONS 

This chapter summarizes the research findings, presents the contributions, and 

highlights the future direction of research. 

7.1 SUMMARY AND CONCLUSIONS 

The main goal of this work is to explore the use of computer vision for construction 

progress monitoring. To achieve this goal, this study established three research 

objectives with sub-objectives and conducted several tasks to achieve them. Here, the 

research objectives have been translated in form of questions and conclusions drawn 

from these objectives are made. 

Questions from Research Objective 1: What is the state of the art of progress 

monitoring in construction industry, in practice as well as in literature? What factors a 

construction firms should consider while selecting an appropriate progress monitoring 

technology for projects?  

To seek the answer to this question, first a broad review of literature on progress 

monitoring methods available was conducted using a PRISMA methodology. Then 

these technologies were classified into six broad categories and evaluated for their 

advantages and disadvantages from an application perspective. Next, a systematic 

questionnaire survey was conducted with the participants from the industry (India and 

UAE). The questionnaire was designed to deduce the progress monitoring technologies 
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being implemented on the projects and the challenges these technologies face for 

progress monitoring. Finally, after understanding the literature as well as practice, 

factors affecting selection of progress monitoring technologies were identified and 

reported. A method to use these factors as a basis for objectively selecting the 

technology for a specific project was also presented. A RII score was calculated for 

these factors based on a questionnaire survey. These factors with their importance can 

be evaluated and it can help in selecting a progress monitoring technology for a 

particular project. 

Conclusions from Research Objective 1: Currently the state of art of progress 

monitoring at sites lags with the progress made in the literature. This is evident from 

the results of the survey-based study, which shows that construction sites still rely on 

excel-sheet based methods of manual progress estimation and other technologies are 

being sparsely used on sites. This gap is due to several reasons and challenges as 

highlighted for on-site implementation. As an attempt to explore the individual progress 

monitoring technologies were classified and analysed both of their advantages and 

disadvantages. Next, the method for progress monitoring technology selection at 

construction sites does not follow a scientific approach. Through a structured and 

systematic approach this study identifies the key factors for the selection and identifies 

their relative importance which will support in decision making. The most important 

factor was found to be the project type and characteristic which should be considered 

for progress monitoring technology selection. However, these importance values are 

the preliminary research findings, more in-depth work is required for their validation in 

future. 
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Question from Research Objective 2: What are the key components of a Computer-

Vision Based Pipeline for Construction progress monitoring? 

This question was answered by assembling an integrated CV-CPM framework that 

captures the process requirements of construction progress monitoring and enables the 

characterization and categorization of current and future work in the area. Next, this 

CV-CPM framework was utilized to position and compare various concepts and tools 

adopted by published research studies. After the framework was published, an attempt 

was made to position the new studies on CV-CPM along the framework. Finally, areas 

and strategies for future work using the framework were identified. A key area proposed 

was the need of benchmarking for the various tools, techniques, algorithms of the CV-

CPM pipeline. 

Conclusions from Research Objective 2: CV-CPM has the potential of creating an 

immense impact by providing real-time, accurate, reliable information to construction 

managers. Though a significant amount of work has been done in the last decade, 

specific challenges remain due to the construction industry's dynamic nature and 

complexities at sites. Some of these challenges have been addressed; however, 

significant gaps need to be filled to make pipelines accurate and automated to meet 

rising user expectations of real-time feedback.  

It was found that the four levels of progress monitoring identified in this study strongly 

influence the technology selection for the pipeline at each stage. For implementing 

progress monitoring on a construction project, it is recommended that the pipeline and 

components required are selected based on the chosen level. Among several potential 
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research areas, advancements in the as-built modelling stage are required to facilitate 

the quantification of progress. To enable this, exploring a hybrid approach that 

combines learning with heuristics is recommended. Addressing the requirements and 

following a well-developed roadmap in this area is essential to move CV-CPM research 

from laboratory studies to field applications.  

Question from Research Objective 3: Can a hybrid approach increase the accuracy of 

un-supervised / self-supervised learning methods to be utilized to make CV-CPM 

feasible to construction progress monitoring?  

For this, the research proposed a ConPro-NET, hybrid self-supervised approach for CV-

CPM. This approach is the first application of unsupervised segmentation and self-

supervised classification which is curated specifically to detect elements from 

construction point cloud data for progress quantification. This pipeline performed with 

high level of accuracy on the S3DIS dataset as well as an under-construction dataset as 

compared to the other supervised approaches from literature. A hybrid self-supervised 

approach was adopted which uses the mix of features obtained using a deep learning 

based contrastive approach as well as specific handcrafted features for construction 

elements. This method using hybrid features is a key to obtaining a reasonably good 

overall accuracy even from a self-supervised approach. 

Conclusions from Research Objective 3: The key reasons for the existing learning 

based and heuristic based approaches of element identification not being used at 

construction sites is the ineffectiveness of these methods individually. The former 

requires large, labelled datasets as it is dependent on supervised models of learning and 
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the later requires a significant amount of hard coding and domain knowledge. The 

labelling of point clouds acquired from construction site is a highly tedious and labour-

intensive task. Also, there are so many variations of the types of components used at 

construction site, therefore a project specific labelled dataset is difficult to obtain. Even 

the components on under-construction site are mostly grey and therefore traditional 

segmentation techniques cannot be applied. Therefore, the direction of research is to 

utilize the unsupervised and self-supervised methods, which do not require large, 

labelled datasets. Also, the strengths of both learning and heuristics-based approaches 

were complimented by the use of hybrid feature vector. It can be concluded that the 

hybrid features performed the best among the three different feature sets used in the 

pipeline. 

7.2 THESIS CONTRIBUTION 

The detailed contribution of individual objectives has already been discussed at the end 

of each chapter. Here is a broad summary of the following scientific contributions that 

are achieved by this research: 

1. Evaluated the State of the art of construction progress monitoring in 

construction. 

Evaluated the state of the art of progress monitoring of construction, from literature and 

practice. Evaluated and classified various progress monitoring technologies available 

for construction. Identified various factors that affect selection of progress monitoring 

technologies for construction project. The relative importance index of these factors 

was obtained, and the critical factors were identified. These factors are initial steps in 
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the direction of making the selection process objective and scientific and can be utilized 

by the decision makers to select the progress monitoring technology for a project. 

2. Developed a comprehensive framework capturing end to end process of 

computer vision-based construction progress monitoring from data 

acquisition to progress estimation. 

Developed an integrated framework for Computer Vision-Based Construction Progress 

Monitoring (CV-CPM) (The acronym CV-CPM was coined in this research). 

Introduced the four Levels of Progress monitoring (LPM) for categorization of on-site 

progress monitoring requirements and associating these with the various processes of 

CV-CPM framework. Through the framework several future research areas have been 

identified. The framework can be used to develop a roadmap for future work in CV-

CPM. 

3. Developed ConPro-NET - a novel hybrid self-supervised approach utilizing the 

handcrafted features which performs equally par with supervised approach 

with less labelling effort requirements. 

The thesis proposed ConPro-NET, a novel hybrid self-supervised approach for 

computer vision-based construction progress monitoring. The pipeline consists of a 

customized unsupervised segmentation approach and a self-supervised contrastive 

learning for classification of construction elements. The proposed method for 

construction progress monitoring outperforms the existing approaches in terms of the 

effort put in as it is a self-supervised approach. 
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7.3 FUTURE RESEARCH DIRECTIONS 

An extensive discussion on future works is presented appropriately in each chapter. 

This section highlights the summary of future research directions. The future research 

direction can be in the broad CV-CPM framework or in the niche area of hybrid self-

supervised pipeline. These have been highlighted separately in the following sub-

sections. 

7.3.1 Future Research Directions: Progress Monitoring Technology Selection in 
Construction 

There need to be separate framework for selection of progress monitoring technology 

based on the project type and it characteristic. Same technology cannot be used at every 

project. The framework can be a decision framework which will depend on many other 

factors. Also, there in future there should be a validation study of the ranking of factors 

that have been identified in this research. 

7.3.2 Future Research Directions: CV-CPM 

The CV-CPM research can be extended in the following directions. This section 

highlights potential research questions within the three stages of the CV-CPM 

framework. Several of these questions can be addressed through benchmarking studies, 

while others require exploration of new concepts. 

7.3.2.1 Areas within the three stages of the framework 

Stage 1: Data acquisition and 3D reconstruction 
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• How to objectively assess the factors affecting data acquisition technology and 

sensor mounting method shown in Figure 4.2? 

• What are the appropriate sensing technology and mounting method for data 

acquisition based on project types and project characteristics (ex., Linear, 

underground, elevated etc.)? 

• Based on factors identified in Figure 4, How to decide on using SfM and SLAM for 

a specific project? 

• Vision-based data is usually enormous, and storage requirements are high. How 

sparse can data be without impacting the output? 

Stage 2: As-built modelling 

• How can the data be effectively pre-processed to meet the point cloud quality 

requirements for an as-built model generation? 

• How can a hybrid of heuristics and learning-based approaches be deployed, such 

that it exploits the advantages and overcomes the shortcomings of each? 

• How can cognitive computing be successfully implemented to recognise and 

measure complex geometries at reduced computational cost accurately? 

Stage 3: Progress Monitoring 

• How to objectively compare the computational requirements and output accuracy 

for the level of progress monitoring based on the type of as-built models as shown 

in Figure 4.4? 
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• How can virtual and physical environments be seamlessly connected to improve 

visualisation? 

• How to select an appropriate as-built model and progress quantification technique 

based on project characteristics and the trade-off mentioned in Figure 4.4? 

• How to generate automatic schedules update and control suggestions by applying 

cognitive computing techniques to the progress data produced by CV-CPM? 

7.3.2.2 Digital Twins for CPM 

In addition to the specific areas identified above, the CV-CPM framework is also 

relevant to supporting emerging areas of research and development, such as Digital 

Twin. 

Digital Twin technologies enable the built facility’s virtual representation to mirror and 

predict the state/behaviour of the physical facility. Key technologies for Digital Twin 

implementation include: 

1. continuous streaming and processing of sensing data,  

2. threaded models and simulations for current/future state/behaviour of the facility,  

3. formulating/implementing interventions to limit future state/behaviour within 

specified limits.  

 Studies have envisioned the utility of Digital Twin in all phases of a construction 

project lifecycle. However, details on twinning an under-construction facility are 
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limited. Commercial platforms such as Autodesk Tandem (“Autodesk Tandem,” 2021) 

and Bentley iTwin (Bentley, 2021) are available for creating Digital Twin solutions. 

However, technological features available in these platforms are currently in the early 

stages and focus on the operations and maintenance phase of the built asset. 

 A key issue in creating a Digital Twin for construction progress monitoring is that the 

geometry of the facility keeps expanding; hence the corresponding sensor positioning 

is also dynamic. In this context, computer vision-based sensing would be the most 

appropriate input to capture geometrical attributes directly and rapidly. The proposed 

CV-CPM framework identifies the essential technologies to embed progress monitoring 

capabilities in a Digital Twin. 

Pipelines that can stream and process the progress data accurately and rapidly to mirror 

the progress in the virtual model will support Digital Twinning for progress monitoring. 

For this, the process within and across the stages of the CV-CPM framework needs to 

be optimised for real-time updates. 

In addition to mirroring the progress, a Digital Twin can forecast construction progress 

as well as simulate and evaluate control measures to bring the project back on track. As 

the usage of autonomous construction equipment increases, the control measures can 

be transmitted from the Digital to the physical world to be implemented by the 

equipment. 
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7.3.3 Future Research Directions: Hybrid Self-Supervised Pipeline 

There are few current limitations of the existing pipeline, that should be researched in 

future.  

7.3.3.1 Automatic algorithm for threshold selection 

Currently, the method for threshold selection for clubbing the individual planes for the 

unsupervised segmentation is not automatic. In future, an automated algorithm to find 

the exact threshold value which gives the maxima for overall accuracy will be 

developed for simplifying the step for a new dataset. 

7.3.3.2 Feature Engineering 

A set of handcrafted features have been introduced in this paper and have been used 

according to the calculated feature importance score. In future, the individual 

contribution, and the computation time for the various handcrafted features to the 

overall accuracy will be evaluated and documented for a balanced and optimized 

selection. 

There can be more innate features of the elements, for example, the topographic and 

morphological features which depends on the geometric shape and morphology of the 

object. Currently only the direct features were used, in future these derived features 

can be computed and tested to see how they contribute to the classification accuracy. 
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7.3.4 Future Research Directions: Benchmarking Studies 

The integrated CV-CPM framework and the guidelines proposed for each stage is 

expected to assist in developing a strategy and a roadmap for benchmarking. Also, there 

are various parameters and hyperparameters which could be benchmarked in the 

developed hybrid-self supervised approach. As a wide range of studies is required, the 

technology roadmap needs to be developed collaboratively by the research community. 

A starting point for these studies can be to investigate the subjective ratings proposed 

in this study and quantify these ratings through controlled experimental testbeds as 

discussed in detail in section 4.5.1. The CV-CPM framework can help in structuring 

and prioritising the areas to be explored in developing a roadmap so that they form a 

standard reference for benchmarking studies. 
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APPENDIX A.  
QUESTIONNAIRE SURVEY – PROGRESS MONITORING TECHNOLOGIES ON 

CONSTRUCTION PROJECTS 
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APPENDIX B.  
QUESTIONNAIRE SURVEY – RANKING FACTORS AFFECTING PROGRESS 
MONITORING TECHNOLOGY SELECTION ON CONSTRUCTION PROJECTS 
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