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Abstract

Prokaryotic evolution is influenced by the exchange of genetic information between species

through a process referred to as recombination. The rate of recombination is a useful mea-

sure for the adaptive capacity of a prokaryotic population. We introduce Rhometa (https://

github.com/sid-krish/Rhometa), a new software package to determine recombination rates

from shotgun sequencing reads of metagenomes. It extends the composite likelihood

approach for population recombination rate estimation and enables the analysis of modern

short-read datasets. We evaluated Rhometa over a broad range of sequencing depths and

complexities, using simulated and real experimental short-read data aligned to external ref-

erence genomes. Rhometa offers a comprehensive solution for determining population

recombination rates from contemporary metagenomic read datasets. Rhometa extends the

capabilities of conventional sequence-based composite likelihood population recombination

rate estimators to include modern aligned metagenomic read datasets with diverse

sequencing depths, thereby enabling the effective application of these techniques and their

high accuracy rates to the field of metagenomics. Using simulated datasets, we show that

our method performs well, with its accuracy improving with increasing numbers of genomes.

Rhometa was validated on a real S. pneumoniae transformation experiment, where we

show that it obtains plausible estimates of the rate of recombination. Finally, the program

was also run on ocean surface water metagenomic datasets, through which we demonstrate

that the program works on uncultured metagenomic datasets.

Author summary

Microbes, specifically prokaryotes, are able to exchange DNA between them through a

process called recombination that takes the form of gene-conversion. Recombination

plays a fundamentally important role in microbial speciation and evolution. Metage-

nomics allows us to study microbes in their natural environment as they are via direct

sequencing and analysis of environmental DNA. Indeed, most microbes cannot be cul-

tured and can only be studied in this manner. Metagenomic datasets represent an
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excellent resource for measuring prokaryotic recombination. Rhometa is a new software

program that we have designed to be used to interrogate modern metagenomic shotgun

sequencing read datasets to estimate the population recombination rates. It extends the

composite likelihood approach for population recombination rate estimation, and makes

it applicable to modern aligned metagenomic datasets of various depths. The input for the

program requires little pre-processing and only an aligned BAM and reference FASTA in

the form of a complete sequence or MAG are needed. The program performs well on

large BAM files and the included subsampling functionality ensures that files of arbitrarily

large size are subsampled and analysed. The program has been validated on simulated

datasets and further on experimental and environmental datasets where the amount of

recombination is quantified. Through the validation we show that the program is able to

reliably estimate the recombination rates in simulated and experimental datasets.

Introduction

A primary question in the field of microbial ecology is to understand the rate at which pro-

karyotes evolve and form species in nature. A major driving factor of prokaryotic evolution is

recombination [1]. Within prokaryotes, recombination often takes the form of gene-conver-

sion where homologous sequences of DNA are non-reciprocally transferred and replaced with

another [2,3]. This process can occur between repeated sequences within the same chromo-

some and between homologous chromosomal sequences [3]. Recombination often plays a

greater role than de novo mutation for evolution in prokaryotes [4]. Furthermore, it is thought

that recombination plays an important role in counteracting the effects of Muller’s ratchet, the

theorised process where deleterious mutations inevitably accumulate over time leading to the

irrevocable loss of most mutation free genotypes in a population [5,6]. Therefore, understand-

ing the rate at which recombination occurs within prokaryotic populations can provide us

insight into a crucial biological process that is necessary for their adaptation and survival.

Currently the most viable way to study microbial populations is via metagenomics, which

allows us to study microbes in their natural environment via direct sequencing and analysis of

environmental DNA [7,8]. Shotgun metagenomic sequencing yields fragments of DNA

sequences, referred to as reads, which taken together represent a random sampling of genome

fragments from all the microbes in the environmental sample [9]. These reads can then be

used to estimate the rates of recombination.

The rate of recombination within a population can be inferred using population genetic

models for evolution. The Wright-Fisher model provides an analytical framework that quanti-

fies various forces that can impact the evolution of a population such as random genetic drift

and mutation [10]. Coalescent theory, building on the Wright-Fisher population model, pro-

vides an analytical framework for DNA polymorphism data and can be used to obtain quanti-

tative estimates for recombination and mutation rates [11,12].

Coalescent theory provides the population scaled recombination rate for the gene-conver-

sion model of recombination. It is formulated as ρ = 2Ner, or 2 × “effective population size” ×
“per individual” “per generation” “recombination rate”, respectively [12] as well as the haploid

population scaled mutation rate equation θ = 2Neu, or 2 × “effective population size” × “per
individual” “per generation” “mutation rate”, respectively [12]. It is difficult to estimate r or u
directly without additional prior information, so recombination and mutation rates are typi-

cally computed as the population scaled statistics ρ and θ or simultaneously as the ratio r/u
also denoted as r/m (per site recombination to per site mutation rate) [12,13]. An important
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point of note is that r and u are per site rates. ρ applies to the entire genome, θ on the other

hand is also per site.

Several approaches have been used to estimate the recombination rate ρ. These include

moment estimators, full-likelihood estimators and composite likelihood estimators. Moment

estimators use summary statistics to estimate ρ, but their accuracy is limited by the fact that

they cannot use all the genetic information available [14–16]. Full likelihood estimators are

able to utilise all the genetic information available to them, but are so computationally inten-

sive that their usage is impractical. To mitigate these issues and to make the approach more

computationally tractable, composite likelihood estimators were developed [12,16,17]. With

composite likelihood estimators, the scope of data that is analysed is reduced e.g. to only con-

sider pairs of alleles, this approach is less computationally intensive with only a slight loss in

accuracy compared to the full-likelihood approach [12,16–18].

There are several programs available that implement the composite likelihood approach for

estimating the recombination rate, including LDhat [12,19], LDhelmet [20], LDhot [21], PIIM

[22] and pyrho [23]. Each are excellent for their respective use cases, but have limitations that

make them unsuitable for modern read-based metagenomic datasets.

More specifically, LDhat [12,19], LDhelmet [20] and LDhot [21] were designed for genome

sequence analysis, not metagenomes. PIIM [22] was a pioneering attempt at a metagenomic

read-based population recombination rate estimator which deals with the complexities of such

datasets such as varying depths across loci. While innovative at the time its application is

impractical today. PIIM’s approach included computationally expensive techniques to inte-

grate out uncertainty in low quality base-calls so as to retain as much information as possible

from the scarce data available at the time. Today, deep sequencing is affordable and highly

accurate, such that it’s often more practical to simply discard low quality sequence data rather

than account for it computationally using complex algorithms. As such PIIM’s approach is

impractical for the ever-larger datasets that are generated via modern sequencing techniques.

Furthermore, it lacks support for modern sequence data formats (e.g., BAM), being limited to

the obsolete ACE assembly format that is rarely used today.

pyrho [23] is a recent composite likelihood estimator supporting read based data, however

it is limited to the analysis of diploid genomes, making it unsuitable for the analysis of haploid

genomes (prokaryotes) which commonly dominate metagenomic datasets. Still other pro-

grams exist that calculate the population recombination rate through different approaches

such as LDjump [18] and CodABC [24] which utilise summary statistics [18], and programs

such as ClonalFrameML [25,26] which can provide an estimate of recombination rate relative

to the mutation rate, but is designed around bacterial isolate genomes.

mcorr [27] is a program that can work with metagenomic reads and estimate the relative

rate of recombination to mutation as well as the recombinational divergence. mcorr uses an

alternative mathematical formulation to parameterise the recombination process, with

ϕpool�2Tγ, where T “is the mean pairwise coalescence time across all loci in the bulk pool” and

γ the per base pair (bp) per generation recombination rate, equivalent to r in ρ = 2Ner. Further-

more, the program is limited to coding regions and requires a gene annotation file. It is our

aim to build on methods established in previous composite likelihood estimators for popula-

tion recombination rate estimation to create a tailored solution that is applicable to modern

aligned read-based metagenomic datasets.

Here, we present Rhometa, a software implementation of the composite likelihood based

population recombination rate (ρ = 2Ner) estimation method, which builds upon the methods

introduced in the LDhat pairwise program [12] and can be applied directly to modern aligned

shotgun metagenomic read datasets for prokaryotes. Details of its implementation are
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presented in the methods, while an evaluation of its accuracy on simulated and real data and

comparison to existing tools are presented in the results.

Description of the method

Our approach focuses on advancing the composite likelihood recombination rate estimator

for use with aligned metagenomic read datasets. We have built our metagenomic population

recombination rate estimator program upon the approach introduced in the LDhat program,

specifically the LDhat pairwise module [12]. LDhat is a well-known and used program with

support for microbial datasets, specifically for the gene-conversion type recombination which

occurs in microbes, however, it is limited to aligned genome sequences. We have designed the

program to work with aligned read based metagenomic datasets, where the complication of

varying depths and short reads needs to be addressed. For our implementation, we have also

subsumed features from pyrho [23]. pyrho, while lacking support for microbial (haploid) data-

sets, is a modern composite likelihood estimator implemented in python. Like pyrho, our pro-

gram is also implemented in python and aims to make use of modern libraries and their

features. As a result of this shared implementation approach, we were able to call applicable

functionalities from pyrho, helping avoid unnecessary code rewrites.

User Input

We have endeavoured to make the process of preparing a metagenomic dataset for analysis

with Rhometa straight forward with few pre-processing steps. Short reads can be aligned to

existing reference genomes representing the metagenomic dataset, to reference MAGs (Meta-

genome-Assembled Genome) or pangenomes representative of the microbial community.

Multi sequence references are also supported. The reference genomes provide a scaffold to

align the reads, from which the rates of recombination and mutation are determined. For

input files, the Rhometa pipeline requires a FASTA format reference sequence and a BAM file

of metagenomic reads of interest aligned to the reference. For our pipeline evaluation, we have

used BWA MEM (default parameters) to produce the input BAM file [28] where necessary.

Variant site pairs

The first step of the pipeline involves identifying variant sites (also known as segregating sites).

Our program first filters the user supplied BAM for mapping quality and relative alignment

score and subsequently performs variant calling against the user supplied reference FASTA

using the program freebayes (default parameters with -p (ploidy) = 1) [29]. The resulting VCF

file, containing information on all predicted variant sites, is reduced to only single nucleotide

polymorphisms (SNPs) using bcftools [30].

Rather than individual variant sites, the composite likelihood estimator as implemented in

LDhat considers variant site pairs, tracking count and position within the reference genome’s

coordinate space to estimate the recombination rate. For instance, if variant sites are found at

reference positions 1, 3, and 5 the set of variant site pairs would then be (1, 3), (1, 5), and (3, 5).

Pairwise table

The LDhat pairwise module was designed for genome sequences and considers all possible

variant site pair combinations across the sequences being analysed. Rhometa restricts its con-

sideration to the set of variant site pairs linked by individual reads or read-pairs. For single-

end reads, both sites within a variant pair must fall within the extent of an individual read,

while for paired-end reads variants can fall within the insert length. A separation limit of 1000
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bp is imposed on paired end variant site pairs reflecting a practical upper limit on insert size

for current Illumina short-read sequencing technology [31]. Rhometa performs well with both

single and pair-end reads, with very little difference in the results between the two (S2 Fig).

For all accepted variant site pairs, we construct a pairwise table of observational frequency

(Table 1). The pairwise table allows for the possibility of all 16 combinations for any variant

site pair. The table also captures the fact that multiple reads can align at a position. Instances

where variant site pairs contain an ambiguous base (eg. N) are ignored.

Splitting the pairwise table by depth

In the pairwise table, variant site pair total alignment depth is calculated by row summation

(e.g., For the pair (130, 136) from (Table 1), total depth is 13 + 21 + 10 = 44. For the whole

genome approach of LDhat, this marginal value is a constant, while for metagenomic data

depth of coverage can vary greatly across sites. As such it is necessary to split the pairwise table

into constant depth subtables so that the depth can be taken into account and handled in

downstream processing.

Bi-allelic pairwise table

For each constant depth subtable, sites that do not contain two alleles are excluded (only bialle-

lic sites should be in the pairwise table).

Lookup tables

Lookup tables improve the computational efficiency of the composite likelihood approach by

precomputing the likelihoods for different configurations of sets of allele pairs. Lookup tables

are generated under a fixed population mutation rate and a range of population recombination

rates, typically between 0–100 [12,19]. We use the program LDpop [32] for generating lookup

tables as it is the most feature rich and most efficient program of its kind currently. Details on

how the lookup tables are used can be found in S1 Appendix. It is a standard process for which

we have made use of some functions from pyrho to avoid reimplementation. Generation of

lookup tables with LDpop are parameterised by the number of genomes, range of population

recombination rates, and θ per site. Further, the “approx” option is used which is significantly

faster but still quite accurate when compared to the ldpop’s exact algorithm. This also makes

generation of large lookup tables, as is necessary with Rhometa, more tractable. Generally, the

generation of large lookup tables is a computationally intensive process, more information on

which can be found in the paper associated with LDpop [32].

Watterson’s theta estimate

A subprogram is provided to estimate the population mutation rate (θ = 2Neu), per site. The

formulation is directly based on Watterson’s theta estimate as implemented in LDhat [12],

Table 1. Pairwise table example.

AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT

(130, 136) 0 13 0 21 0 0 0 10 0 0 0 0 0 0 0 0

(130, 143) 13 0 21 0 0 0 10 0 0 0 0 0 0 0 0 0

(130, 169) 0 29 1 3 0 8 0 0 0 0 0 0 0 0 0 0

(130, 311) 2 0 26 0 0 0 9 0 0 0 0 0 0 0 0 0

(130, 358) 0 0 0 19 0 2 0 6 0 0 0 0 0 0 0 0

https://doi.org/10.1371/journal.pgen.1010683.t001
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with some changes on the information used for the input parameter. The program requires

the aligned BAM file and the reference FASTA file and makes use of freebayes to identify vari-

ant sites which is required for the Watterson estimate. θ is a required parameter for lookup

table generation adjusted for read based datasets, the θ estimate is calculated based on dataset

depth–specifically mean and median depth–in place of the number of genomes, as in the origi-

nal formation (S4 Fig). For metagenomic samples where the exact number of genomes is

unknown, the true number of different genomes in a metagenomic sample is likely to be a

large value, as such using the depth value is reasonable and in many cases is likely to be a con-

servative estimate for the number of genomes.

Lookup table and depth

The size of each constant depth pairwise sub-table determines the lookup table to match

against for precomputed negative log-likelihoods. In the context of Rhometa and aligned

reads, the number of genomes parameter used to generate lookup tables is instead taken as

depth. Where the bam file is of a high depth, this can result in pairwise sub-tables of high

depth. In such cases, available lookup tables may not be of high enough depth to cover them. A

subsampling feature is included that is able to automatically downsample the BAM to a given

depth. This ensures that positions with a depth exceeding that of the highest generated lookup

table are still evaluated and are not omitted from consideration. BAM subsampling uses a ran-

dom sampling process and permits a list of seed values for testing and identifying any variance

that can stem from the subsampling. In general, if the depth of the largest available lookup

table is small, an increased need for downsampling could result in a decrease in estimation

accuracy.

Calculating rij
The next step is to calculate recombination rate values for each variant site pairs, these values

are denoted by rij, with i and j referring to the variant sites. The method used for calculation

differs for crossing-over and gene-conversion modes of recombination. prokaryotes undergo

recombination via gene-conversion and the equation used to calculate rij is as follows [12]:

rij ¼ 2ct 1 � e�
dij
t

� �
ð1Þ

For Eq 1, c represents the per base recombination rate, t the mean gene conversion tract

length and dij the distance between a variant site pair. ct is taken together and represents the

range of population recombination rates being evaluated, this is typically between 0–100 and is

the same as the range of ρ values used when generating the lookup tables. The process essen-

tially involves computing rij for each variant site pair for the range of population recombina-

tion rate values.

Final pairwise likelihoods

Next, we bring together the information we have generated thus far: the output of the lookup

table and depth step and calculating rij step. For each variant site pair, we use the correspond-

ing negative log-likelihood values from the lookup table and depth step, and on these apply lin-

ear interpolation to determine the negative log-likelihood values for rij value for that variant

pair configuration. The interpolation is performed against the range of population recombina-

tion rates used to generate the lookup tables. This process is done for all the variant site pairs

and the results are the final negative log-likelihoods for a given range of population recombi-

nation rates being evaluated, which again is typically between 0–100.
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Population recombination rate

Prior to computing the final log-likelihood sums we weight adjust the negative log-likelihoods.

As the number of observations provided at a given depth represents the degree of evidential

support towards the final ρ estimate, we introduce a novel weighting algorithm that accounts

for the additional information in high depth, high observation count site pairs relative to low

depth / low count site pairs. The weighting algorithm is a simple solution to reliably add more

weight to higher depth regions and the number of observations at that depth (there can be

many regions of same depth). The weighting and final negative log-likelihood summation

algorithms are as follows:

wd rð Þ ¼ ln
expTdP
r
expTd

dnd

 !

ð2Þ

rmax ¼ argmax
X

d
wdðrÞ ð3Þ

Here, d represents depths observed in the dataset. Weighting is performed on each per-

depth table denoted by wd(ρ) (Eq 2). In the right side of the Eq 2, Td is the unweighted per-

depth table and nd the number of unique variant site pairs. The reweighted negative log-likeli-

hoods wd(ρ) are collected across depths and summed with respect to the range of population

recombination rates being evaluated. The maximum negative log-likelihood value (closest to

0) then corresponds to the final population recombination rate ρmax (Eq 3) estimate.

Program structure

The program is organised into 4 pipelines, each dedicated to a specific task. These pipelines

are written using nextflow, a framework for pipeline management [33]. All the scripts used in

the individual pipeline steps were written using the python programming language and vari-

ous python libraries. Some python scripts were adapted or used as is from the programs

LDpop [32] and pyrho [23]. Additional programs used in the pipelines include msprime [34],

ART [35], BWA MEM [28], seaborn [36] and samtools [30].

The four pipelines, sim_gen, theta_est, lookup_table_gen and rho_est (Fig 1), correspond

to the nextflow pipeline names, e.g. sim_gen.nf within Rhometa, and perform the functions

defined in the following paragraphs.

Sim_gen (Fig 1A) is used to generate BAM files and FASTA reference files with simulated

reads from bacterial genomes with recombination. The bacterial genomes are simulated using

msprime. This pipeline is primarily included so that the simulated datasets used for this paper

can be reproduced, but is not required to analyse real datasets. It is in a separate repository and

can be accessed at: https://github.com/sid-krish/Rhometa_sim

Theta_est (Fig 1B) is used to determine the population mutation rate per site (θ) based on

the Watterson estimate as implemented in LDhat, details in methods. This pipeline estimates θ
on the dataset of interest, furthermore, θ per site is one of the required parameters for generat-

ing lookup tables. The user has the option to use the estimated θ or a different value when gen-

erating lookup tables.

The Lookup_table_gen (Fig 1C) component of the pipeline makes use of LDpop and pyrho

to generate the lookup tables required for the recombination rate estimator and can be

launched in one of 2 ways. It can either use a pre-generated lookup table for high depth, which

then will be downsampled for each depth from 3 to the depth of the lookup table or the pipe-

line can generate a high depth lookup table from scratch and then perform the downsampling

step. The downsampling algorithm is a part of pyrho, it is significantly faster to generate the
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required smaller lookup tables from a larger table via downsampling and the results are essen-

tially identical.

The rho_est pipeline (Fig 1D) is used to estimate the population recombination rate of

metagenomic read based datasets provided in the form of BAM and reference FASTA files. It

makes use of the lookup tables generated by the lookup_table_gen pipeline.

Rhometa is available at: https://github.com/sid-krish/Rhometa

Our pipelines for evaluating LDHat, the Rhometa_full_genome pipeline and the simulated

dataset generator for these pipelines can be accessed here:

• LDhat Nextflow Pipeline: https://github.com/sid-krish/Nextflow_LDhat

• Rhometa Full Genome Pipeline: https://github.com/sid-krish/Rhometa_Full_Genome

• Nextflow_LDhat_sim (used for both Rhometa Full Genome and LDhat Nextflow Pipeline):

https://github.com/sid-krish/Nextflow_LDhat_Sim

Simulated datasets

The development of our program was performed in two major phases, for the first phase we

endeavoured to create a full genome recombination rate estimation pipeline for bacterial

sequences based on the LDhat methodology (Rhometa_full_genome), once we were certain

that we were able to replicate LDhat’s results exactly we then carefully adapted the program to

work with read based datasets (Rhometa).

To evaluate LDhat and Rhometa_full_genome, we utilised msprime [34] to simulate bacte-

rial sequences with recombination. Our simulations included multiple genomes (5–100

Fig 1. The pipelines that together make up Rhometa. (A) Pipeline for generating simulated metagenomic read datasets. (B) Pipeline for estimating the

population mutation rate (C) Pipeline for generating the lookup tables required for the recombination rate estimator (D) Pipeline for estimating the population

recombination rate.

https://doi.org/10.1371/journal.pgen.1010683.g001
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genomes) of size 25KB, under population recombination rates [5, 12.5, 25, 37.5, 50], mean

recombination tract length 500bp, with 10 replicates (seed values 1–10) and population muta-

tion rate 0.01. Lookup tables for population mutation rate 0.01 and population recombination

rates 0–100 (101 steps) were used.

The LDhat pipeline configured for gene-conversion is available at: https://github.com/sid-

krish/Nextflow_LDhat. Rhometa_full_genome pipeline is available at: https://github.com/sid-

krish/Rhometa_Full_Genome. The full genome simulation pipeline is available at https://

github.com/sid-krish/Nextflow_LDhat_Sim. A point of note is that the θ estimator is imple-

mented separately by us as per [12, Eq 1] in both our LDhat pipeline and Rhometa_full_gen-

ome pipeline. Additionally, all variant sites are used for θ estimation, not just bi-allelic ones.

When simulating the population recombination rate with msprime, the number of samples

(genomes), sequence length, recombination rate (r), mean gene conversion tract length (t),
seed value and mutation rate (u) are provided, the effective population size (Ne) was 1 (default)

and the ploidy (i) was fixed to 1. Default options are used in all other cases. Within msprime,

the population recombination rate ρ is calculated as such: 2 * i * Ne * r * t. The per site popula-

tion mutation rate θ was calculated as such: 2 * i * Ne * u.

Initially the number of genomes was fixed and we varied the length of the genomes, but this

analysis revealed that varying the genome length does not have a significant impact on the

final population recombination rate estimations (S1 Fig). We therefore fixed the genome

length and varied the number of genomes and in doing so we found that as the number of

genomes increased the accuracy and variance of the final estimations also improved (Fig 2).

We took a similar approach to evaluating the read based pipeline Rhometa to that used

with LDhat and Rhometa_full_genome. For the read-based pipeline, the simulated full bacte-

rial sequences, simulated via msprime, are further processed to be in the form of reads using

the read simulator ART [35], which simulates sequencing reads by mimicking real sequencing

processes with empirical error models. The reads were simulated based on the Illumina

HiSeqX TruSeq system. These reads are then aligned to one of the bacterial sequences which

represents the reference FASTA file, the first of the simulated sequences is used for this (Fig

1A). The aligned BAM and reference FASTA are then used for recombination rate estimation.

Fig 2. Comparison of LDhat and Rhometa_full_genome when running on simulated full genomes. (A) LDhat. Simulated vs Estimated population

recombination rate (ρ) for varying number of simulated full bacterial genome sequences. (B) Rhometa_full_genome. Simulated vs Estimated population

recombination rate (ρ) for varying number of simulated full bacterial genome sequences.

https://doi.org/10.1371/journal.pgen.1010683.g002
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The simulation parameters were as follows: the effective population size was 1 (default) and

the ploidy was set to 1, number of genomes 20–200, genome length 100KB, population recom-

bination rates [10.0, 20.0, 30.0, 40.0, 50.0], mean recombination tract length 1000bp, with 20

replicates (seed values 1–20) and population mutation rate of 0.01. Each seed value used

applies to all aspects of the pipeline where a seed is required. The reads were paired-end of

length 150bp, insert length 300bp, standard deviation of 25bp, with window size set to 1000

during analysis and the fold coverage values were [1, 4, 8, 16]. The lookup tables were gener-

ated and used for 3–250 (genomes), generated under population mutation rate 0.01 for popu-

lation recombination rates 0–100 (0–1 in 101 steps plus 1–100 in 100 steps). Bam subsampling

was also automatically applied by Rhometa during analysis if needed.

Additionally for the read-based pipeline, we evaluated the deviation of the estimated results

from the simulated values. The formula used to calculate the deviation is (Estimated ρ (mean)

—Simulated ρ) / Simulated ρ. This makes it easier to gauge the magnitude of deviation from

the expected.

Real Datasets—Transformation experiment

To further evaluate Rhometa we applied our pipeline on the data derived from a previously

published laboratory transformation experiment, where the extent and distribution of recom-

bination events were quantified. In the experiment [37], in vitro recombination through trans-

formation was performed on a S. pneumoniae strain. Transformed isolates were then

sequenced and recombination events were identified. This dataset was also used to evaluate

the mcorr method by its authors and as such it provides us with the opportunity to compare

the results of our pipeline against those published in the mcorr paper.

The transformation experiments were performed with different concentrations of donor

DNA, 5 ng mL-1 and 500 ng mL-1, 5 ng mL-1 and 500 ng mL-1 experiments (S2 Table) had a

similar number of recombination events, with the 5 ng mL-1 having a slightly larger number

of events, the authors state that this indicates a single piece of DNA can act as the origin for

multiple recombination events. The dataset is available in the form of reads, which Rhometa

was designed to analyse. Each 5 ng mL-1 sample from experiment 1 was aligned to S. pneumo-

niae reference sequence ATCC 700669, NCBI accession NC_011900.1 the resulting BAM files

were then merged and analysed with Rhometa.

To analyse the datasets, we first estimated the θ for median depth using the θ estimation

pipeline, from which we obtained θ, that is per site by default. We then generated lookup

tables, based on the θ, for population recombination rates 0–20 in 201 steps for 3–200 genomes

and used the lookup tables for the recombination rate estimation pipeline. Subsampling was

enabled, with a window size of 1000 for paired end reads. As given in the Croucher et al paper

[37], we used the value of t = 2300 bp as the mean tract length for analysis. Additionally, we

used 5 different seed values [0, 1, 2, 3, 4] for the subsampling step to account for any variance

and then took the average of the values for recombination rate estimations.

Using the ρ and θ estimates along with information from the experiment we also calculated

the ρ per site and r/m values. The default ρ estimate, by Rhometa, is a whole-genome estimate.

To obtain ρ per site, the estimated ρ value was divided by the mean tract length of 2300 bp. To

get the r/m value, we used the conversion formula [26]: ρ (per site)/θ (per site) * tract length *
substitution probability. We estimated the substitution probability between the donor and

recipient and found it to be 17534� 385

2221315
¼ 0:00772, where 2221315 is the recipient genome length

and based on the information provided by Croucher et. al (2012) “. . . the donor DNA identi-

fied 17,534 SNPs when aligned to the recipient sequence, of which 385 appeared to be false

positives . . . These positions were excluded from subsequent analyses.” [37].
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We repeated the process above for each 500 ng mL-1 sample from experiment 1 and the

final merged BAM was analysed with Rhometa. Furthermore, the 5 ng mL-1 samples and 500

ng mL-1 samples in experiment 1 were analysed together, corresponding to 84 sequences. We

prepared this dataset by merging the final 5 ng and 500 ng BAMs. We performed this analysis,

to enable comparison with mcorr’s published results. The analysis was performed using the

same process as with the 5 ng mL-1 samples and 500 ng mL-1 samples.

Real datasets—Ocean metagenomic dataset

To evaluate our pipeline on typical metagenomic data we selected 15 publicly available short-

read metagenomic reads-sets (S3 Table) sampled from waters at the Australian Integrated

Marine Observing System (IMOS) Port Hacking National Reference Station (NRS) [38] (S3

Table). These 15 datasets represent 15 consecutive monthly time points (July 2012—September

2013). Next, we assembled a long-read metagenomic read-set (accession: SRR13002033) col-

lected in March 2018 from the location using metaFlye (v2.8.3-b1705) (default options) [39],

Three long contigs (lengths: 0.8–1.0 Mbp) were selected from the assembly to be used as refer-

ences for read-mapping (Table 3). Confident taxonomic assignments were determined for

each contig using MMseqs2 (v14.7e284) (default easy-taxonomy options) [40] against the latest

GTDB taxonomic database (release: R07-RS207) [41]. The 15 read-sets were mapped to each

reference contig using BWA MEM (v0.7.17-r1188) (default options) [28] and the resulting

BAMs merged respectively with samtools (v1.16.1) [30]. CoverM (v.0.6.1) [42] was then used

with the metabat method to determine the coverage for the aligned bams. Lookup tables for

3–250 (genomes), generated under population mutation rate 0.01 for population recombina-

tion rates 0–100 (0–1 in 101 steps plus 1–100 in 100 steps) were used. The tract was fixed at

1000bp as was the window size. As with the transformation experiment analysis we used 5 dif-

ferent seed values [0, 1, 2, 3, 4] for the subsampling step to account for variance and then took

the average of the values for ρ estimations.

Verification and comparison

Evaluation on simulated datasets

We first validated the full genome version of Rhometa (Rhometa_full_genome), which reim-

plements the core LDhat pairwise method to estimate ρ. This was done to ensure accuracy in

reimplantation of core LDhat algorithms which forms the basis for the read based (Rhometa)

implementation. Comparison of estimated population recombination rate (ρ) between LDhat

and our reimplementation (Rhometa_full_genome), using our sweep of simulated genomes,

shows identical results between LDhat (Fig 2A) and our reimplementation (Fig 2B), thus

ensuring that we have captured LDhat’s algorithms accurately. With LDhat and our reimple-

mentation, the number of genomes simulated has a large impact on the accuracy of the esti-

mates, with results improving with higher numbers of genomes, especially at higher

recombination rates.

We next evaluated Rhometa’s performance using our sweep of simulated read-sets. The

number of simulated genomes had a large bearing on estimation accuracy (Fig 3), as also

observed with LDhat, accuracy improved as the number of genomes increased and inter-repli-

cate variance decreased as the coverage (fold_coverage) improved. This is especially evident

for higher recombination rates. Larger population recombination rate values appear to require

a relatively higher number of genomes for accurate estimation. For very low recombination

rates between 0–1 (S3 Fig), the improvement in accuracy was not seen and a tendency to over-

estimate was observed.
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To get a clearer picture of the deviation of the estimated population recombination rate

from the expected result, we calculated the deviation for the read based results (Fig 4). Here

values closer to 0 indicated better performance, while values above 0 are overestimations, and

values below 0 are underestimations (i.e. a deviation value of +/- 0.1 would indicate that the

final result is off by 10%). As the number of simulated genomes increased, the deviation of esti-

mated to expected tended to decrease, achieving a deviation of less than 5–10% in most cases

for a simulated ρ of 50 with 200 genomes and 16x coverage. Such improvement is consistent

with the patterns observed in LDhat. For simulated population recombination rates between

10–50, having greater than 80 genomes produced the least amount of deviation (generally

within 20–30%), with the results significantly improving when more genomes are present. Our

pipeline appears to be robust to variance in fold coverage. The differences between 16x cover-

age and 1x coverage being minor (Fig 3).

Evaluation on Real Datasets—Transformation Experiment

After establishing the performance of Rhometa on simulated datasets, we interrogated its per-

formance on real short-read sequence data from a lab-based experiment designed to track and

study recombination in S. pneumoniae (Table 2), seed averaged values were taken for the final

results, refer to S1 Table for individual seed results.

Fig 3. Simulated vs Estimated population recombination rate (ρ) results for Rhometa. Results for varying numbers

of simulated genomes and fold coverage values for population recombination rates 10.0, 20.0, 30.0, 40.0, 50.0.

https://doi.org/10.1371/journal.pgen.1010683.g003
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To compare the results for the same transformation experiment with those of mcorr, the

estimated r/m values were used. The authors of mcorr provide γ/μ (similar to r/m) for the

evolved strain (reads) representing combined 5 ng mL-1 samples and 500 ng mL-1 samples in

experiment 1 (84 sequences) where they estimate a γ/μ value of 0.93. Due to the nature of the

experiment, it was expected that the rate of recombination would be far higher than the rate of

mutation. As an experiment designed to induce transformation over short timescales, this

should lead to a large excess of substitutions derived from recombination events, relative to de
novo mutation. As such, mcorr potentially significantly underestimated the true value and

Rhometa better reflects our a priori expectation for the 84 sequence dataset with an estimated

r/m ratio of 1922.97.

The 84 sequence dataset was also used to benchmark Rhometa. The bam file for this dataset

is 11.42 GB in size. On a system with 4 CPUs and 32 GB RAM the rho_est pipeline took 1h

45m to complete and the theta_est pipeline took 2h 45m to complete.

Fig 4. Deviation plot for results in Fig 3. Deviation is calculated as (Estimated ρ (median)—Simulated ρ) /

Simulated ρ. Deviation results corresponding to Fig 3 for population recombination rates 10.0, 20.0, 30.0, 40.0, 50.0.

https://doi.org/10.1371/journal.pgen.1010683.g004

Table 2. S. pneumoniae transformation experiment analysis.

ρ ρ
(per site)

θ
(per site)

ρ/θ
(per site)

r/m

5 ng mL-1 5.56 0.00242 1.8e-5 134.4 2386.4

500 ng mL-1 5.22 0.00227 2e-5 113.5 2015.3

84 sequences 4.48 0.00195 1.8e-5 108.3 1922.97

https://doi.org/10.1371/journal.pgen.1010683.t002
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We can calculate the expected average r/m for a genome, as follows. In the Croucher et al

paper [37], they state that the mean proportion in the recipient genome changed due to recom-

bination was 1.4% using which we can estimate the average number of bases changed by

recombination in a single genome as: 2221315 (recipient genome length) * 0.014 * 0.00772

(substitution probability as calculated in methods above) = 240.08. Also, in the paper it is

stated that there were 2,312 polymorphic sites, 59 of which not coming from the donor, 6 of

these sites were false positives, with the others likely being de novo point mutations or intrage-

nomic recombinations. So we can take the upper bound for de novo mutations to be 53, then

to get the average number of de novo mutations per genome we can divide by 84, which is the

total number of sequences in the combined 5 and 500 ng dataset, 53/84 = 0.631.

Using this information derived for the average number of bases changed by recombination

and mutation in a single genome, we can calculate the expected average r/m for a genome as

240/0.631 = 380.3, for the combined 84 sequence dataset. The actual value should be higher

due to the fact that a region can experience multiple recombination events, so this would be a

lower bound estimate. With Rhometa we do observe a value greater than 380.3 of 1922.97 for

the 84 sequence dataset.

Evaluation on Real Datasets—Ocean Metagenomic Dataset

Rhometa was further tested on real datasets, using samples from Port Hacking, Sydney. We

produced estimates using reads mapped to 3 different assembly contigs (Table 3). A point of

note is that within the family Cyanobiaceae, there is a difference in rates of recombination. It is

in such comparisons that Rhometa could prove to be of great value.

Discussion

Recombination plays a crucial role in microbial evolution and speciation [43–45]. Under-

standing the rate at which recombination occurs provides us an insight into the impact of this

process. Metagenomics is the only method that allows us to study recombination in real-world

natural microbial communities without culture bias [46]. However, there are currently no soft-

ware tools to accurately estimate population recombination rates on large metagenomic data-

sets. To fill this gap, we have developed Rhometa, a software implementation that builds on

the composite likelihood estimator for population recombination rate estimation method and

enables interrogation of next generation sequencing reads from shotgun metagenomic

Table 3. Port Hacking analysis.

Contig_ID edge_21626 edge_14330 edge_29441

Lineage Cyanobacteria,

Cyanobacteria,

PCC-6307,

Cyanobiaceae (A)

Cyanobacteria,

Cyanobacteria,

PCC-6307,

Cyanobiaceae (B)

Actinobacteriota,

Acidimicrobiia,

Actinomarinales,

Actinomarinaceae

Coverage depth 40 25 729

Contig length 1029283 bp 926756 bp 797490 bp

ρ (Seed 0) 2.00 0.38 0.18

ρ (Seed 1) 0.96 1.00 0.21

ρ (Seed 2) 0.94 0.41 0.22

ρ (Seed 3) 0.90 0.28 0.17

ρ (Seed 4) 1.00 0.69 0.13

Mean 1.16 0.55 0.18

Stddev 0.47 0.29 0.04

https://doi.org/10.1371/journal.pgen.1010683.t003
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experiments. It is adjusted for gene-conversion type recombination as experienced by prokary-

otic populations.

Composite likelihood population recombination rate estimators are among the most accu-

rate methods known, and our implementation makes these methods available to the wider

metagenomics community. This is significant as most microbes cannot readily be cultured, by

some estimates only 1–15% are readily cultivable in laboratories [47].

Shotgun metagenomics yields reads from microbes taken directly from the natural environ-

ment and mitigates issues related to culture dependent studies. However, there has, until now,

not been a viable approach for quantifying the population recombination rate from these

reads. PIIM [22] and mcorr [27] come closest to being applicable to shotgun metagenomic

datasets, being designed for this use case. However, in the case of PIIM its statistical model

uses a very compute intensive approach to account for low quality data, and missing data,

including missing coverage, making the compute requirements impractical for large modern

datasets.

Meanwhile, with mcorr, the mathematical formulation is distinct from the well-known

population recombination rate (ρ = 2Ner), which may represent challenges for interpretation.

On an experimental dataset where transformation was used to produce a population of recom-

binants for sequencing, the approach implemented in mcorr appears to significantly underesti-

mate the recombination rate. Furthermore, mcorr was evaluated on simulated datasets used to

test for Rhometa (S7 Fig) where we expected to see an increase in the ϕpool estimated as the

simulated ρ increases. However, the results showed no correlation between the recombination

rate inferred by mcorr and the true simulated rate. Additionally, ϕpool, the value for recombi-

nation estimated by mcorr complicates interpretability by not using the standard parameter

for population recombination (ρ). mcorr’s limitation of looking at coding regions provided in

a gene annotation file again complicates analysis as this information is not always available.

Rhometa builds on established methods and theoretical foundations, without the need for

gene annotation files and based on our testing, produces accurate results.

To build our program, our approach was to first reimplement the LDhat pairwise program

for gene conversion. Doing so we were able verify that we accurately captured the core algo-

rithms of LDhat while having a modern and adaptable implementation around it. The simula-

tion results for LDhat and the Rhometa_full_genome (Fig 2A and 2B) show that we were able

to reproduce the LDhat results 1:1. Having validated the reimplementation we then adapted it

for read based datasets. LDhat is effective at detecting changes in the magnitude of the simu-

lated population recombination rates, and produces accurate estimates for cases with large

numbers of genomes (Fig 2A). Our analysis showed a trend where the accuracy and variance

of the estimates improved as the number of genomes increased.

We then evaluated the performance of Rhometa on simulated datasets and the results (Figs

3 and 4) demonstrated that the read-based pipeline performs well and consequently represents

a successful implementation of the composite likelihood population recombination rate esti-

mator for metagenomic read-based datasets. As with LDhat and Rhometa_full_genome, the

performance of the read based pipeline improves with the number of genomes present, having

80 genomes or more produces the best results. However, it should be noted regardless of the

number of genomes there is a bias towards underestimation of ρ, though this is small when

there are many genomes present (Fig 4). Very small ρ values, those between 0–1 (S3 Fig), are

an exception as the implementation has a tendency towards over estimation.

Rhometa was further applied to a S.pneumoniae transformation experiment [37], where the

extent of recombination could be directly quantified. This dataset was also analysed by the

authors of mcorr for their paper, enabling a cross comparison between the two programs. Pre-

paring and analysing the dataset (Table 2, 84 sequences) in a manner performed by mcorr, it
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was found thatRhometa was able to accurately detect the higher rate of recombination relative

to mutation as was expected for the dataset. From direct evidence, based on the information

provided in the transformation experiment paper, we calculate a conservative lower bound for

the ratio of recombination to mutation as r/m> 380.3. Rhometa was able to meet this condi-

tion by estimating a r/m value of 1922.97, while mcorr estimated a r/m value of 0.93, which

suggests that change due to mutation was greater than recombination, which is extremely

unlikely.

Evaluation on real environmental metagenomic samples (Table 3) showed that the program

works on real datasets. While the analysis performed here was purely to test the applicability of

the pipeline, it demonstrates potential for many comprehensive studies. Such as looking at the

rate of recombination of a given species over time or across locations.

Rhometa is well positioned to exploit the abundance of preexisting metagenomic datasets

to enable a thorough first-pass study of recombination rates in microbial communities.

The main difference between the LDhat approach and the read based approach is as follows.

In LDhat the final population recombination rate estimate “is obtained by combining the like-

lihoods from all pairwise comparisons” [12], the likelihoods (negative log-likelihoods) come

from the pregenerated lookup tables as mentioned in methods. For genome sequence datasets

this means we can use a likelihood table generated for the exact number of genomes/depth in a

dataset, the number of genomes represents the depth which is fixed and all pairs of sites we

look at will have this depth. Additionally, LDhat considers all possible variant site pair combi-

nations across the sequences being analysed.

A complication associated with read-based datasets is that the depth can vary greatly from

site to site. We addressed this issue by using an appropriate depth lookup table for the variant

site pairs being considered, the rationale for which is that the negative log-likelihoods for the

variant site pairs considered is obtained individually and then combined for a final composite

negative log-likelihood. Taking into account that the negative log-likelihoods are obtained

individually for each pair of variant sites, the variant pair combinations considered are limited

to the extent of a read for single-end reads, for the insert length in the case of pair-end reads.

This provides a way for us to group the variant sites by depth, following which we use the

appropriate depth negative log-likelihood table to obtain the negative log-likelihoods for each

pair and then finally combine the negative log-likelihoods to get a result for the entire dataset.

Additionally, we have introduced a novel weighted sum when calculating the composite nega-

tive log-likelihood across coverage depth (Eq 2). Rhometa thus enables the application of the

composite likelihood estimator approach for current shotgun metagenomic datasets.

An important advantage of Rhometa and its use of raw reads over a consensus assembly

from each sample, is that the potential microdiversity within each dataset is preserved for

analysis.

As discussed, Rhometa performs better the more genomes there are, it is possible to get a

minimum count for the number of genomes present when simulated under the coalescent

model with recombination. In real metagenomic samples, any single sample may have millions

of genomes of the same species, and across samples there may be significant population struc-

ture that is not captured by the standard coalescent model with recombination. The relation-

ship between the number of metagenomic samples, the depth of sequencing of each sample,

and the genome count in our simulation study is therefore not straightforward.

Limitations and future directions

While we have endeavoured to make a complete package with Rhometa that addresses all

aspects of population recombination rate, there are a few limitations. One such limitation is
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the automatic inference of the tract length, which is also not possible with LDhat [12] or PIIM

[22]. In the context of the composite likelihood approach, the authors of both LDhat and PIIM

suggest that while it may be theoretically possible to co-estimate the population recombination

rate and tract length, in practice it is challenging. Instead, following the examples of LDhat and

PIIM, Rhometa fixes the mean tract length for population recombination rate estimation. As

observed by the authors of PIIM, tract length tends to rescale the population recombination

rate estimate and large misspecifications can cause further deviations [22]. In our tests with

simulated datasets where the tract length was varied, it was found that misspecifying the tract

length tends to linearly scale the final estimates in a predictable manner (S6 Fig). If a fixed

value of tract length is given by the user for all analyses (i.e. an accurate sample-specific tract

length is not provided by the user), then differences in inferred rho among samples could be

due to either a change in the recombination rate or a change in tract length. The user will need

to take this into account when interpreting the results. For instance, if performing same species

comparisons across time and location, the tract length can be fixed to determine relative

changes in the magnitude of recombination.

Furthermore, the nature of our method is not sensitive to very low rates of recombination

as observed when attempting to evaluate rates between 0–1 and we suggest exercising caution

for such fine scale analysis.

Another point of note concerns the generation of the lookup tables for the program. While

it is relatively fast to generate lookup tables due to the incorporation of LDpop, it can still

require substantial time and resources for a high-resolution table with a large number of

genomes. Generation of lookup tables require specification of, in our tests we have found that

Rhometa is fairly robust to misspecifications of θ. It is only extreme misspecifications, such as

misspecifications by a factor of 10, that seem to have a large impact (S5 Fig).

We believe the availability of a tool such as Rhometa, which can be easily applied to current

metagenomic datasets is timely and significantly expands the range of habitats and therefore

microbial communities that can be studied for recombination, giving us an insight into the

extent to which they can adapt and speciate. How ρ varies within environments and between

taxa is unknown, Rhometa can help investigate many such fundamental questions related to

the evolution and survival capacity of microbes. With the aid of data analysis techniques, meta-

genomic datasets can be further combined with environmental and sequencing metadata to

help study the intricacies of recombination. Many ecological factors can modulate and effect

recombination [48]. Synthesis of other data types with the results of our program may yield a

clearer understanding of such relationships. We have built our approach in a modular and

easy to adapt manner making this and similar applications easy to explore in the future.

Supporting information

S1 Fig. Results of varying simulated genome lengths for testing LDhat (number of

genomes fixed at 10, tract length 500).

(TIF)

S2 Fig. Comparing simulated single end and paired end read datasets in Rhometa. (A) Sin-

gle end results. (B) Paired end results.

(TIF)

S3 Fig. Simulated vs Estimated population recombination rate (ρ) results for Rhometa.

Results for varying numbers of simulated genomes and fold coverage values for population

recombination rates 0.0, 0.1, 0.2, 0.3, 0.4, 0.5. The simulation parameters used are the same as

for population recombination rates [10.0, 20.0, 30.0, 40.0, 50.0], except lookup tables for
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population recombination rates 0–2 were used (0–2 in 201 steps) for depths of 3–200.

(TIF)

S4 Fig. Simulated vs Estimated theta per site (θ) results for LDhat and Rhometa. (A)

LDhat. Simulated vs Estimated theta per site (θ) for varying number of simulated bacterial

genomes. (B) Rhometa. Simulated vs Estimated theta per site (θ) for varying number of simu-

lated bacterial genomes.

(TIF)

S5 Fig. Results of analyzing simulated datasets with lookup tables generated under misspeci-

fied θ (genome length fixed at 100,000) (A) Simulated datasets analyzed with true θ (0.01)

lookup tables (B) Simulated datasets analyzed with misspecified θ (0.005) lookup tables (C)

Simulated datasets analyzed with misspecified θ (0.02) lookup tables (D) Simulated datasets

analyzed with misspecified θ (0.1) lookup tables.

(TIF)

S6 Fig. Results of analyzing simulated datasets with misspecified tract lengths (genome

length fixed at 100,000. θ 0.01 lookup tables used) (A) Simulated datasets analyzed with true

tract length 1000 bp (B) Simulated datasets analyzed with misspecified tract length 500 bp (C)

Simulated datasets analyzed with misspecified tract length 2000 bp.

(TIF)

S7 Fig. Mcorr tested using the simulated datasets used for rhometa (Figs 3 and 4). Mcorr

uses bam (aligned reads) and gff (gene annotations) files as inputs. For the gene annotations,

coding regions need to be provided for mcorr. With the simulated data every 1000 bp was

defined as a coding region (CDS). Out of 4000 simulations, some could not be completed and

many extremely large unrealistic realistic values. A filter was used where such instances were

discarded and only phi_pool values < 100 were kept. After filtering there were only 2386/4000

values.

(TIF)

S1 Table. Analysis results of s_pnemoniae transformation. Results for all seed values.

(DOCX)

S2 Table. S.pneumoniae experiment accession codes.

(DOCX)

S3 Table. Accession codes for Port Hacking, Sydney datasets (from SRA run table).

(DOCX)

S1 Appendix. Lookup configuration. Matching against the lookup table.

(DOCX)
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