A Kernel based Study of the Association between Copy Number Variants and Disease-related Traits

by Nastaran Maus Esfahani

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

under the supervision of
Professor Paul Kennedy
and
Professor Daniel Catchpoole

University of Technology Sydney
Faculty of Engineering and Information Technology
October 2022

© Copyright by Nastaran Maus Esfahani, 2022

Certificate of Original Authorship

I, Nastaran Maus Esfahani, declare that this thesis is submitted in fulfilment of the requirements for the award of Doctor of Philosophy in the School of Computer Science, Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

SIGNATURE:	Production Note: Signature removed prior to publication.
	[Nastaran Maus Esfahani]

Date: 16th July, 2023

Place: Sydney, Australia

Acknowledgements

To my mother Nasrin, my father Mahdi and my only brother Saeed, who gave me their endless emotional support during my Ph.D. journey.

To my supervisor Prof Paul Kennedy who taught me the problem-solving skill that I benefit from it not only in my study but also in my personal life.

To my co-supervisor A/Prof Daniel Catchpoole, for his positive attitude and encouragement whenever things got too difficult for me to handle.

To my friends who were always there for me no matter how far away they were from me.

To myself for not giving up on my Ph.D. journey for what happened to me at the beginning stages, which should not happen to any woman anywhere in the world, and starting from square one to achieve one of my life goals.

Contents

Li	st of	Figure	es	viii
Li	st of	Tables	5	xiii
Li	st of	Public	cations	xv
Li	st of	Abbre	eviations and Symbols	xvii
\mathbf{A}	bstra	ct		xix
1	Intr	oducti	ion	1
	1.1	Backg	round	. 1
	1.2	Resear	rch questions	. 3
	1.3	Contri	ibutions to knowledge	. 4
	1.4	Thesis	s structure	. 7
2	$\operatorname{Lit}_{\epsilon}$	erature	e review	9
	2.1	Genet	ic Variations	. 9
		2.1.1	DNA sequence variations	. 9
		2.1.2	Copy Number Variations	. 11
		2.1.3	CNVs and Diseases	. 14
	2.2	Genet	ic Association Studies	. 15
		2.2.1	Collapsing Methods	. 15
	2.3	Challe	enges of Studying CNVs	. 19
	2.4	Metho	ods for Studying CNVs	. 20
		2.4.1	CNV Collapsing Random Effects Test	. 20
		2.4.2	Kernel-based Association Tests	. 21
	2.5	Resear	rch Gaps	. 27

vi *CONTENTS*

3	MC	CKAT, a multi-dimensional copy number variant kernel as-
	soci	iation test
	3.1	Introduction
	3.2	Model Development
		3.2.1 Single-pair CNV Kernel
		3.2.2 Whole Chromosome CNV Kernel
		3.2.3 Kernel-based Association Test
	3.3	Model Evaluation and Simulation Results
	3.4	Real Data Application Results
		3.4.1 Autism and Rhabdomyosarcoma Data
		3.4.2 Real Data Results
	3.5	Discussion
	3.6	Conclusion
4	\mathbf{SM}	ICKAT, a sequential multi-dimensional copy number variant
	ker	nel association test
	4.1	Introduction
	4.2	Model Development
		4.2.1 Pair CNV Group Kernel
		4.2.2 Whole Genome CNV Group Kernel
		4.2.3 Kernel-based Association Test
	4.3	Model Evaluation using Simulated Data
		4.3.1 Simulation Results
	4.4	Real Data Application Results
		4.4.1 CNV Analysis on Rhabdomyosarcoma Data Set
		4.4.2 CNV Analysis on Cytogenetic Bands in RMS
		4.4.3 CNV Analysis on Autism Data Set
	4.5	Discussion
	4.6	Conclusion
5	$\mathbf{C}\mathbf{N}$	V-gene intersection effect on testing the association be-
	twe	een CNVs and disease-related traits
	5.1	Introduction
	5.2	Effects of CNVs on Gene Expressions
	5.3	Simulation studies

vii
V

Bi	blios	graphy	107
7 Appendix		pendix	101
	6.3	Conclusion	100
	6.2	Work Limitations and Future Works	99
		Disease related Traits	98
	6.1	Identifying the Association between Copy number Variants and	
6	Conclusion		
	5.6	Conclusion	95
	5.5	Discussion	94
	5.4	Real data application results	91

List of Figures

Fig	ure	Page
2.1	Single nucleotide polymorphism. A, T, G and C stand for adenine,	
	thymine, guanine and cytosine respectively	10
2.2	Characteristics of copy number variants: type, chromosomal position	
	and dosage	12
2.3	Molecular mechanisms of SNP phenotypes. The paired black lines	
	represent chromosomal regions. Squared brackets ([]) represent the $$	
	CNV region, both black and white squares show a gene, the dotted	
	lines represent deletion or amplification	13
2.4	An overview of the CCRET with the dosage model as an example	
	from (Tzeng et al. 2015). C_{1-4} : cases, N_{1-4} : controls, CNVR: copy num-	
	ber variation region, red rectangle: deletion, blue rectangle: duplication,	
	green rectangle: gene. DS: dosage, Len: length, GI: gene intersection.	
	In part (I), CNVRs are created, in part (II) CNV information fir each	
	subject is stored in a matrix, and in part (III) the association between	
	CNV characteristics and disease related traits is tested	22
2.5	Diagram of copy number profile curves and common area under the	
	curve by Brucker et al. (2020). (a) Example of CNV data describing	
	individuals' CNV profile in chromosome 1. (b) Copy number (CN)	
	profile curves of two individuals with overlapping deletions of dosage	
	0. (c) CN profile curves of two individuals with overlapping with	
	overlapping duplications of dosage 3 and 4. (d) The cAUC between two	
	individuals who have overlapping deletions of dosage 1 and overlapping	
	duplications of dosage 3, so that the cAUC between the individuals is	
	the sum of the two areas	27

3.1	P-value based QQ-plots of MCKAT, CKAT and CONCUR under first	
	(a) and second (b) simulation scenarios	36
3.2	Empirical power of MCKAT and CKAT under first simulation scenario,	
	rare CNV data	37
3.3	Empirical power of MCKAT and CKAT under second simulation	
	scenario, frequent CNV data	38
3.4	Empirical power of MCKAT and CONCUR under first simulation	
	scenario, rare CNV data	38
3.5	Empirical power of MCKAT and CONCUR under second simulation	
	scenario, frequent CNV data	39
3.6	Manhattan plot showing the -log(pvalue) of testing association between	
	CNVs on the chromosome cytogenetic bands and RMS sub types. Those	
	with -log(pvalue) above the threshold line, are significantly associated	
	with the RMS subtype	44
3.7	Chromosomal ideograms showing statistically significant cytogenetic	
	bands that CNVs on them are associated with the RMS subtype for	
	chromosomes 2, 8, 11 and 13	45
3.8	Chromosomal ideograms showing not statistically significant associated	
	CNVs with the RMS subtype on cytogenetic bands for chromosomes	
	1, 3 and 4	48
3.9	Chromosomal ideograms showing not statistically significant associated	
	CNVs with the RMS subtype on cytogenetic bands for chromosomes	
	5, 6 and 7	49
3.10	Chromosomal ideograms showing not statistically significant associated	
	CNVs with the RMS subtype on cytogenetic bands for chromosomes	
	9, 10 and 12	50
3.11	Chromosomal ideograms showing not statistically significant associated	
	CNVs with the RMS subtype on cytogenetic bands for chromosomes	
	14, 15 and 16	51
3.12	Chromosomal ideograms showing not statistically significant associated	
	CNVs with the RMS subtype on cytogenetic bands for chromosomes	
	17, 18 and 19	52

3.13	Chromosomal ideograms showing not statistically significant associated CNVs with the RMS subtype on cytogenetic bands for chromosomes 20, 21 and 22	53
4.1	SMCKAT workflow diagram. Firstly, preparing CNV groups for each CNV profiles and aligning relevant CNV groups of each subject. Secondly, measuring the similarity between CNV groups by the pair CNV group kernel. Thirdly, extracting CNV group series for each subject and measuring the similarity between all CNV profiles by the whole genome CNV group kernel. Finally, testing the association between	
4.0	CNV characteristics and sequential order with disease-related traits.	59
4.2	Generating CNV profile R_i where CNVs are sorted with respect to their chromosomal position. A, B,, and F are arbitrary CNVs at m^{th} ,	
	m^{th+1} ,, and m^{th+n} positions and G_i is a group of CNVs of size n .	59
4.3	Aligning CNVs within two CNV groups of size n , G_i and G_j , to	00
	generate n CNV pairs	60
4.4	Sliding window of size n across CNV profile to extract CNV groups of	
	size n	62
4.5	Aligning G_z^i to either of G_{z-1}^j , G_z^j or G_{z+1}^j of the highest similarity	62
4.6	P-value based QQ-plots of SMCKAT and MCKAT under the first	
	simulation scenario, the rare CNVs application	66
4.7	P-value based QQ-plots of SMCKAT and CONCUR under the first	
	simulation scenario, the rare CNVs application	66
4.8	P-value based QQ-plots of SMCKAT and CKAT under first simulation	
	scenario, the rare CNVs application	67
4.9	P-value based QQ-plots of SMCKAT and MCKAT under the second	
	simulation scenario, the frequent CNVs application	68
4.10	P-value based QQ-plots of SMCKAT and CONCUR under the second	
	simulation scenario, the frequent CNVs application	69
4.11	P-value based QQ-plots of SMCKAT and CKAT under the second	
	simulation scenario, the frequent CNVs application	69
4.12	Empirical power of SMCKAT, MCKAT, CONCUR and CKAT under	
	the first simulation scenario, rare CNV data	70
4.13	Empirical power of SMCKAT, MCKAT, CONCUR and CKAT under	
	the second simulation scenario, frequent CNV data	71

5.1	Scenario 1, no intersections between CNVs and genes. Each row is a	
	CNV profile of a subject. CNVR: copy number variation region, blue	
	rectangle: amplification and red rectangle: deletion	82
5.2	Scenario 2, genes have intersection only with CNVs of amplification	
	type. Each row is a CNV profile of a subject. CNVR: copy number	
	variation region, red rectangle: deletion.	82
5.3	Scenario 3, genes have intersection only with CNVs of deletion type.	
	Each row is a CNV profile of a subject. CNVR: copy number variation	
	region, blue rectangle: amplification.	83
5.4	Scenario 4, genes have intersection with CNVs of both amplification	
	and deletion types. Each row is a CNV profile of a subject. CNVR:	
	copy number variation region, blue rectangle: amplification and red	
	rectangle: deletion	83
5.5	P-value based QQ-plots of MCKAT and SMCKAT under the first	
	simulation scenario, no CNV-gene intersections	86
5.6	P-value based QQ-plots of MCKAT and SMCKAT under the second	
	simulation scenario, only CNV-gene amplification intersections. $\ \ . \ \ .$	87
5.7	P-value based QQ-plots of MCKAT and SMCKAT under the third	
	simulation scenario, only CNV-gene deletion intersections	88
5.8	P-value based QQ-plots of MCKAT and SMCKAT under the fourth	
	simulation scenario, CNV-gene both deletion and amplification inter-	
	sections	88
5.9	Empirical power of MCKAT under CNV-gene intersections and no	
	CNV-gene intersections simulated scenarios	90
5.10	Empirical power of SMCKAT under the CNV-gene intersections and	
	the no CNV-gene intersections simulated scenarios	90

List of Tables

Tab	ple P	age
2.1	Examples of disorders conveyed by CNVs	15
3.1	P-values of testing the association between RMS subtype and CNVs in each chromosome. (*) denotes significant association between RMS subtype and CNVs by MCKAT, CKAT and CONCUR, (#) denotes the total number of CNVs on that chromosome	41
3.2	P-values of the testing association between ASD status and CNVs in each chromosome by MCKAT, CKAT and CONCUR. (*) denotes significant association between ASD and CNVs, (#) denotes the number of total CNVs on that chromosome	43
3.3	P-values of the testing association between RMS subtype and CNVs in each cytogenetic bands of chromosome 8 by MCKAT. (*) denotes significant association between RMS subtype and CNVs, (#) denotes	40
3.4	the number of total CNVs on the band	46 47
4.1	P-values of the chromosomes that their CNV sequential orders are identified significantly associated with the RMS sub types for the different CNV group sizes	72
4.2	P-values of the testing association between RMS subtype and CNVs in the chromosome 8 cytogenetic bands by SMCKAT, MCKAT and CKAT. (*) denotes significant association between RMS subtype and	
	CNVs, $(\#)$ denotes the number of total CNVs on the band	74

xiv LIST OF TABLES

4.3	P-values of testing the association between CNV sequential order and	
	ASD status trying different CNV group sizes	75
5.1	Genes with significant frequency of somatic mutation across RMS	
	patients	84
5.2	Genes reported by Shern et al. (2014) as embryonal and alveolar RMS	
	cancer sub types classifier genes.	91
5.3	P-values of testing the association between RMS subtype and CNVs,	
	both CNV characteristics and CNV-gene intersection, in each chromo-	
	some. $(*)$ denotes significant association identified by MCKAT	93
5.4	P-values of testing the association between RMS subtype and CNVs,	
	both CNV characteristics and CNV-gene intersections, in chromosomes	
	2, 11, 8 and 13 with group size of 5. (*) denotes significant association	
	identified by SMCKAT	93

List of Publications

Listed below are the publications and other outputs associated with the research presented in this thesis.

Maus Esfahani, N., Catchpoole, D., Khan, J., & Kennedy, P. J. (2021). MCKAT: a multi-dimensional copy number variant kernel association test. BMC bioinformatics, 22(1), 1-16. https://bmcbioinformatics.biomedcentral.com/articles/10. 1186/s12859-021-04494-w

Maus Esfahani, N., Catchpoole, D., & Kennedy, P. J. (2021). SMCKAT, a Sequential Multi-Dimensional CNV Kernel-Based Association Test. Life, 11(12), 1302. https://www.mdpi.com/2075-1729/11/12/1302

List of Abbreviations and Symbols

Abbreviation	Description
AS-PCR	allele-specific PCR
ARMS	alveolar rhabdomyosarcoma
ASD	autism spectrum disorder
CAPS	cleaved amplified polymorphic sequence
CCRET	CNV collapsing random effects test
CKAT	CNV kernel association test
CNVRs	CNV regions
CAST	collapsing and summation test
cAUC	common area under the curve
CXN	copy number
CNP	copy number polymorphisms
CONCUR	copy number profile curve-based association test
CNV	copy number variation
dCAPs	derived CAPS
DR	difference from the Reference
ERMS	embryonal rhabdomyosarcoma
FWER	family-wise error rate
MCKAT	multi-dimensional CNV kernel-based association test
NIH	national Institute of Health
PCR	polymerase chain reaction
Q-Q	quantile-quantile
ROI	region of interest
RMS	rhabdomyosarcoma
SMCKAT	sequential multi-dimensional copy number variant kernel association test
SNP	single nucleotide polymorphism
VOUS	Variants of uncertain significance
WS	weighted-sum

Symbol	Description
\overline{X}	a copy number variant
$X^{(1)}$	start chromosomal position
$X^{(2)}$	end chromosomal position
$X^{(3)}$	CNV type
$X^{(4)}$	CNV dosage
K	similarity matrix
K_{ij}	similarity between CNV profile i and j
K_s	single-pair CNV Kernel
R_i	list of a subject's CNV
K_w	whole Chromosome CNV Kernel
y_i	status of the phenotype
Z	covariant matrix
G	CNV group
K_{PG}	pair CNV Group Kernel
P	CNV group series
K_{WG}	Whole Genome CNV Group Kernel

Abstract

Copy number variants (CNVs) are the most common form of structural genetic variation, reflecting the gain or loss of DNA segments compared with a reference genome. Studies have shown that CNVs are linked to various disorders like autism, intellectual disability, and schizophrenia. Consequently, the interest in studying a possible association of CNVs to specific disease traits is growing. However, due to the specific multi-dimensional characteristics of the CNVs, methods for testing the association between CNVs and the disease-related traits are still few and underdeveloped. The research presented in this thesis addresses several aspects of research on the association between CNVs and disease related traits, and the broader concepts of the association between CNV sequential order with adverse phenotype, and the association of the CNV and other genetic variation interactions with disease related traits.

This work makes three contributions to knowledge, relating to the significance of CNVs on some chromosomal regions in association with disease related traits. Contribution 1 proposed a multi-dimensional CNV kernel based association test (MCKAT). MCKAT performs better than the state of the art methods and was evaluated on both simulated and real data. MCKAT can identify chromosomal regions at cytogenetic band level containing CNVs that are significantly associated with disease related traits. MCKAT considers all CNV characteristics in testing the association and can provide strong evidence, small p-values, to accept or reject the association hypothesis. MCKAT is applicable to both frequent and rare CNV data sets.

Contribution 2 is a sequential multi-dimensional CNV kernel based association test (SMCKAT). SMCKAT tests the association between the CNV sequential order and disease related traits. SMCKAT considers not only the CNV characteristics but the CNV sequential order. SMKAT can identify the chromosomal regions that the CNV sequential order is significantly associated with disease related traits.

ABSTRACT

Based on our knowledge, SMCKAT is the first such method to test the association between the CNV sequential order and disease related traits.

Contribution 3 uses our proposed method to demonstrate that considering the CNV-gene intersection along with the CNV characteristics in testing the association between CNVs and disease related traits is informative and can provide more insights about the disease development. This is because CNVs can affect their intersected genes in different way like changing the gene expression or disturbing their function. Our proposed methods can be used not only in testing the association between the dual effect of CNVs and their intersected with disease related traits but any other genetic variations based on data availability.

Overall, this research confirms that having association tests, specific to CNVs and compatible with CNV characteristics, to identify the chromosomal regions which contain CNVs that are significantly associated with disease related traits are of biological significance. This work provides methods that can help biologists to identify CNV hot spots associated with disease related traits without doing extensive investigations at the individual level to find significant CNVs. The results of these methods may also provide them with a better understanding of how the interaction between CNVs and other genetic variations like genes can have association with a disease related traits.