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ABSTRACT

Some complex intelligent systems such as for tackling the COVID-19 pandemic in-
volve coupled Multivariate Time Series (MTSs), where both target variables (such as
COVID-19 infected, confirmed, and recovered cases) and external factors (such as virus
mutation and infectivity, vaccination, and government intervention influence) are cou-
pled. Forecasting such MTSs with multiple external factors needs to model interactions
within and between MTSs and handle their uncertainty, heterogeneity, and dynamics.
However, existing shallow to deep MTSs modelers, including regressors, deep recurrent
neural networks such as DeepAR, deep state space models, and deep factor models
cannot jointly characterize these issues in a probabilistic manner across coupled MTSs.
Therefore, it raises two main research problems: (1) How to conduct robust probabilistic
forecasting for COVID-19 using coupled MTSs with multiple external factors? (2) how to
explicitly model intra- and inter-MTS couplings and effectively handle volatile covariates
of coupled MTSs?

To tackle the first problem, Chapter 3 proposes an end-to-end deep probabilistic cross-
MTS learning network (MTSNet). It incorporates a tensor input consisting of scaled
targeting and external MTSs. It then vertically and horizontally stacks long-short mem-
ory networks for encoding and decoding target MTSs and enhances uncertainty modeling,
generalization, and forecasting robustness by residual connection, variational zoneout,
and probabilistic forecasting. The tensor input is projected to a probability distribution
for target MTS forecasting. MTSNet outperforms the State-of-the-Art (SOTA) deep prob-
abilistic MTS networks in forecasting COVID-19 confirmed cases and Intensive Care
Unit (ICU) patient numbers for six countries by involving virus mutation, vaccination,
government interventions, and infectivity.

To tackle the second problem, Chapter 4 proposes Deep Spectral Copula Mechanisms
(DSCM). Specifically, DSCM incorporates a Singular Spectral Analysis (SSA) module to
reduce the volatility of multiple covariates. It applies an intra-MTS coupling module to
explicitly model the temporal couplings within a single set of multivariate time series
and transforms target variables into joint probability distributions via Gaussian copula
transformation to establish inter-MTS couplings across multiple multivariate time series.
Substantial experiments on COVID-19 time-series data from multiple countries indicate
the superiority of DSCM over state-of-the-art approaches.

i





DEDICATION

This thesis is dedicated to the most important people in my life: my wife Shengnan and

my parents, Xiaoming and Hongzhen.

To Shengnan, thank you for your unwavering support, love, and encouragement

throughout my academic journey. You have been my rock and my partner in every sense

of the word.

To my parents, Xiaoming and Hongzhen, who have always believed in me and encour-

aged me to pursue my dreams. Their unwavering support and sacrifices have been the

driving force behind my academic success, and I am forever grateful for their love and

guidance.

To my loyal and beloved pets, Brown and Chewy, who have been by my side through

the long hours of research and writing, patiently waiting for me to take breaks and play

with them.

This work is dedicated to you all with deep appreciation and love.

v





ACKNOWLEDGMENTS

I would like to express my deepest appreciation to my academic supervisor, Prof.
Longbing Cao, for his unwavering support, guidance, and mentorship throughout
my thesis journey. His expertise, dedication, and patience have been invaluable in

shaping my research and improving my writing.
I am grateful for the countless hours that Prof. Cao has spent reading, reviewing,

and providing feedback on my drafts, as well as for his encouragement, motivation, and
wisdom. His insightful comments, constructive criticism, and timely advice have pushed
me to be more thoughtful, critical, and rigorous in my research.

I am also grateful to my family and friends for their love, support, and understanding
during this challenging but rewarding journey. Their encouragement and belief in me
have kept me going even in the toughest times.

Thank you all for your contributions and support. This work is a product of your
collective effort and dedication.

vii





LIST OF PUBLICATIONS

Submitted Papers Related to the Thesis :

1. Paper: Deep Probabilistic Cross-multivariate Time Series Modeling with External

Factors for COVID-19.

( Accepted on 03-02-2023, Conference: IJCNN 2023 )

2. Paper: Deep Spectral Copula Mechanisms for Coupled and Volatile Multivariate

Time Series.

(Submitted on 22-05-2023, Conference: DSAA research track 2023)

ix





TABLE OF CONTENTS

List of Publications ix

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Significance of Coupled MTSs Modeling . . . . . . . . . . . . . . . . 1

1.1.2 Motivation of Deep Probabilistic Modeling for Coupled MTSs . . . 2

1.1.3 Challenges of Couple Multivariate Time Series for COVID-19 . . . 3

1.2 Research Problems, Objectives, and Contributions . . . . . . . . . . . . . . 7

1.2.1 Research Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Related Work and Research Gaps 13
2.1 Work Related to COVID-19 Forecasting . . . . . . . . . . . . . . . . . . . . . 13

2.2 Work Related to MTSs Modeling and our study . . . . . . . . . . . . . . . . 15

2.3 Research Gaps in Coupled Multivariate Time Series for COVID-19 . . . . 17

3 Contribution- Probabilistic Forecasting Using Coupled MTSs with Mul-
tiple External Factors 21
3.1 Deep Probabilistic Cross-MTS Network . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.2 The MTSNet Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.3 Scaled Multifactor and Target MTS Tensor . . . . . . . . . . . . . . 23

3.1.4 Residual Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

xi



TABLE OF CONTENTS

3.1.5 Variational Zoneout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.6 Probabilistic Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.7 Probabilistic Projection . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.8 Likelihood Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Experiments and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 The COVID-19 Data with External Factors . . . . . . . . . . . . . . 29

3.2.2 Baseline Models and Settings . . . . . . . . . . . . . . . . . . . . . . 30

3.2.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.4 Result Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.5 Effect of Exogenous Variables . . . . . . . . . . . . . . . . . . . . . . 37

3.2.6 Effect of Variational Zoneout . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Contribution - Explicitly Modeling Intra- and Inter-MTS Coupling with
Volatile Covariates 39
4.1 Deep spectral copula mechanisms . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.2 The DSCM Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.3 The SSA Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.4 The Inter-MTS Coupling Module . . . . . . . . . . . . . . . . . . . . . 43

4.1.5 The Intra-MTS Coupling Module . . . . . . . . . . . . . . . . . . . . 45

4.1.6 Deep Probabilistic Forecasting . . . . . . . . . . . . . . . . . . . . . . 45

4.1.7 Likelihood Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.2 Comparison Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.3 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Conclusion and Plan 57
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A Appendix 61

Bibliography 65

xii



LIST OF FIGURES

FIGURE Page

1.1 Coupled and volatile multivariate time series (CVMTS) . . . . . . . . . . . . . 3

1.2 Correlations between Italy, France, and Portugal in COVID-19 confirmed cases 4

1.3 High levels of volatilities caused by missing samples . . . . . . . . . . . . . . . 5

1.4 Thesis Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Deep probabilistic cross-MTS network(MTSNet) . . . . . . . . . . . . . . . . . . 23

3.2 Prediction of Daily Confirmed Cases in 6 Countries by fMTSNet-Laplace with

exogenous variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Prediction of ICU patients in 6 Countries by fMTSNet-Laplace with exogenous

variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 The framework of Deep Spectral Copula Mechanisms (DSCM) . . . . . . . . . 41

4.2 The Singular Spectral Analysis Module . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Comparison of the CRPS score of 10-day vs 20-day prediction . . . . . . . . . . 50

4.4 Pearson correlation coefficient of 13 European countries. . . . . . . . . . . . . . 51

4.5 Comparison of the Energy score of 10-day vs 20-day prediction. . . . . . . . . . 52

4.6 Visualization of representative prediction results . . . . . . . . . . . . . . . . . 53

xiii





LIST OF TABLES

TABLE Page

2.1 Related Works about MTS Modeling for COVID-19 forecasting . . . . . . . . . 19

3.1 Prediction results for the daily confirmed cases in the next 10 days . . . . . . 36

3.2 Prediction results for the daily ICU patients in the next 10 days . . . . . . . . 36

3.3 Ablation studies of predicting daily confirmed cases for external factors . . . . 36

3.4 Ablation studies of predicting daily ICU patients for external factors . . . . . 36

3.5 Ablation studies of predicting daily confirmed cases for variational zoneout . 36

3.6 Ablation studies of predicting daily ICU patients for variational zoneout . . . 37

4.1 Prediction results for the case number in the next 10 days. Bold values

represent relatively better performance. . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Prediction results for the case number in the next 20 days. Bold values

represent relatively better performance. . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Ablation studies for 10-day prediction of case number. Bold values represent

relatively better performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Ablation studies for 20-day prediction of the case number. Bold values repre-

sent relatively better performance. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

A.1 Notation of Variables and Parameters . . . . . . . . . . . . . . . . . . . . . . . . 62

A.2 Notation of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.3 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xv





C
H

A
P

T
E

R

1
INTRODUCTION

1.1 Background

1.1.1 Significance of Coupled MTSs Modeling

Time series analysis and prediction have been significant in various research topics such

as signal processing, weather forecasting, COVID-19 prediction, finance, transportation,

and any field involving temporal random variables [1, 2]. Based on the number of

temporal observed random variables, time series analysis can be further divided into

univariate and multivariate [3]. Multivariate time series (MTSs) are composed of more

than one set of temporal variables, and each set of temporal variables is not only

related to their historical variables but also has dependencies on each other. The coupled

multivariate time series refers to a set of two or more multivariate time series that

are interdependent and affect each other over time. In other words, the pattern of one

multivariate time series in the set is influenced by the other multivariate time series in

the same set. This coupling can occur either within the same MTSs over time, known

as intra-MTS couplings, or between different MTSs, known as inter-MTS couplings.

Analyzing MTS interactions and handling their uncertainty, heterogeneity, and dynamics

present important challenges and make it critical for understanding complex systems

and making predictions [4, 5].

Coupled MTSs are widely seen in businesses and applications and may present

significant challenges to modeling multivariate time series. COVID-19 presents an

1



CHAPTER 1. INTRODUCTION

imperative challenging use case, which involves two major sets of MTSs: (1) the COVID-

19 case time series, such as confirmed, death, and recovered numbers across multiple

countries (2) the external factors affiliated with COVID-19 case MTSs, such as non-

pharmaceutical interventions (NPIs), vaccination rates, virus mutation rates, virus

infectivity (e.g., by reproduction number), mobility, and weather conditions. These sets

of MTSs could be further united into different forms of MTSs, for example, MTSs of

multiple states or cities in a country, or MTSs from multiple countries with their external

temporal variables. This requires cross-MTSs modeling (also, coupled MTSs modeling),

i.e., modeling the interactions and couplings both within heterogeneous MTSs (e.g.,

case MTSs, or external factor MTSs) and between multiple heterogeneous MTSs (e.g.,

between case and external factor MTSs). Compared to univariate time series analysis,

multivariate time series analysis studies are more challenging [4, 5].

1.1.2 Motivation of Deep Probabilistic Modeling for Coupled
MTSs

Time series forecasting involved either univariate or multivariate needs to develop

a model that predicts the future based on the available observations. Coupled MTSs

modeling involves numerous applications such as finance, economics, meteorology, and

COVID-19 prediction. For example, multivariate time series models are widely used for

forecasting stock prices, portfolio optimization, and risk management, macroeconomic

variables such as GDP, inflation, and unemployment rates. Moreover, coupled multi-

variate time series models can also be used for weather forecasting, analyzing climate

patterns, and COVID-19 predictions. The basic time series model is based on regression

analysis, which constructs a model by considering historical time-series variables to

predict the variables at future time steps. However, the majority of the multivariate

time series regression models applied for the above applications were based on point

forecasting, which means generating a deterministic series of values for the future pe-

riod. These typical methods include the most recurrent neural network (RNN) based

models, autoregressive integrated moving average (ARIMA) based models, etc [6] [7].

Compared with point forecasting, deep probabilistic forecasting for coupled MTSs aims to

predict the probability distribution which can show extra quantitative information using

the extracted non-linear temporal representations [8]. As the prediction of COVID-19

cases has high levels of uncertainty and complexity, deep probabilistic forecasting using

multiple exogenous variables and historical data is more realistic and practical than

2



1.1. BACKGROUND

Figure 1.1: Coupled and volatile multivariate time series (CVMTS) have both intra- and
inter-MTS couplings. The red dashed box denotes a target vector composed of the values
of multivariate time series at time step t, and the yellow dashed box represents the
volatile multiple covariates Ft corresponding to the target multivariate time series. The
blue and red arrows indicate the intra- and inter-MTS couplings across time steps.

point forecasting for the objectives of the task. Therefore, it is necessary to explore and

develop a deep probabilistic forecasting model for coupled MTSs.

1.1.3 Challenges of Couple Multivariate Time Series for
COVID-19

This section discusses the challenges of modeling coupled multivariate time series for

COVID-19 transmission prediction.

(1) Incorporating multiple external factors: Modeling the interactions between

multiple factors and their interconnected influence on COVID-19 transmission and case

movement is crucial. The interdependence among external factors can vary in strength,

which must be taken into account. For example, it shows that NPIs, virus mutations,

and vaccination may interact with each other and jointly influence the case numbers [9].

However, it is still unclear how multiple factors interact with each other and how they

jointly affect the case movement since they may involve various implicit interactions

and couplings [10]. Modeling their interactions and couplings and joint influence on case

time series is difficult since external factors are highly random, diversified, separately or

inconsistently enforced, influence each other differently, and distinctively affect the cases.

3



CHAPTER 1. INTRODUCTION

Figure 1.2: Italy, France, and Portugal have strong inter-MTS couplings in COVID-19
confirmed cases from 10/06/2020 to 10/06/2022, where the Pearson correlation coefficients
reach 0.94, 0.75, and 0.74, respectively. The scatter plot indicates a positive correlation
between the data from the two countries. The right plot visualizes the patterns of these
three countries.

For example, intervention policies can be regarded as discretely sampled at non-equal

time intervals. In addition, the timing of the COVID-19 outbreak and their corresponding

interventions, and their duration periods are also random. Similar randomness also

applies to the mutation of the coronavirus and the vaccination rate.

(2) Modeling uncertainty with multiple external factors: The COVID-19 case

reporting, NPIs, vaccination, and virus mutation all take place at random. Their data is

point-based, and stochastic, incurring high uncertainties of cases and multiple factors,

and challenges in modeling such uncertainties. The existing work mainly makes point

estimations to predict COVID-19 cases by estimating a deterministic series of values

for future case development. Such point estimation methods include various recurrent

neural networks (RNNs), autoregressive integrated moving average (ARIMA), and com-

partmental models in epidemiology [6, 7, 9]. They focus on data point fitting and often

result in undesired results in capturing complex uncertainties. In contrast, probabilistic

models estimate the probability distributions of case movements. Typical methods in

probabilistic case modeling include Bayesian networks [11] and integrating SIR and

statistical models [11]. Few methods involve multiple factors and model the uncertainties

of cases, multiple factors, and their couplings. Although probabilistic forecasting has

4



1.1. BACKGROUND

Figure 1.3: High levels of volatilities caused by missing samples in daily test data (700
days) of Italy, France, and Portugal. The Missing samples make many observations of
the time series to be zero, which can affect the statistical properties of the data and the
estimation of parameters. This could be due to the absence of the phenomenon or event
that the random variable is measuring on the weekend.

shown its strength in capturing uncertainties, thus highly suitable for the very small and

volatile COVID-19 data, it is analytically intractable to directly involve them in classic

probabilistic models. It is even more challenging to model multiple factors and their

coupled effect on the case movement. The work in [9] is the only one jointly modeling

NPIs, virus mutation, and vaccination effect on case movement, which builds an extended

SIR model.

(3) Small COVID-19 datasets lead to overfitting issues: COVID-19 data also

challenges the SOTA neural MTS networks despite their significant progress. DeepAR

[12], Deep State Space Model (DSM) [13], and Deep Factor (DF) [14] represent the SOTA

on neural MTS forecasting. No specific deep probabilistic neural networks are available

to model cross-MTSs with case MTSs and external factor MTSs across countries for

COVID-19 modeling. In addition, MTSs involved in COVID-19 could be a small dataset

that contains less number of samples. There are inherent limitations when using deep

neural networks to fit these MTSs. As the training sets are smaller, this tends to lead to

overfitting issues due to learning from fewer samples.

5



CHAPTER 1. INTRODUCTION

(4) Exploration for the sensitivity to distribution assumptions: Probabilistic

models of time series are usually sensitive to the assumption of different probability dis-

tributions, for example, DeepAR [12] assumes that continuous time variables are based

on Gaussian distributions while discrete-time variables apply binomial distributions.

However, for a global model involving MTSs from COVID-19, there is still a need to

explore and apply an appropriate probability distribution assumption to characterize the

uncertainty of the temporal target variables of MTSs.

(5) Inter-MTS couplings between CVMTS: Cross-country COVID-19 time series

data own complex inter-MTS couplings between multiple multivariate time series. Specif-

ically, the countries with similar NPIs, vaccination rates, and population density likely

have similar patterns of COVID-19 transmission during the outbreak. Furthermore, the

peaks in the epidemics of those countries may occur at the same time. They could have

consistent trends in the epidemic transmission as shown in Figure 1.2. Accordingly, at

each particular time point, there are strong inter-MTS couplings between the COVID-19

data from different countries. Most of the existing deep probabilistic frameworks ig-

nore the inter-MTS couplings. For example, DeepAR [12] can model the COVID-19 data

since it can process multiple multivariate time series. However, it assumes the target

variables of the COVID-19 time series from different countries are independent and

follow a univariate probability distribution during the training and forecasting process.

The parameters of the probability distribution are learned by a global neural network.

Similarly, the Deep State Space Model [13] follows the same assumption and treats

time series independently. DeepVAR [15] partially addresses this issue by implementing

the Gaussian copula assumption to connect with each marginal probability distribu-

tion for multivariate time series. However, DeepVAR cannot adapt to multiple volatile

multivariate time series.

(6) Intra-MTS couplings between CVMTS: For nonstationary COVID-19 case

data, patterns at the previous time step far away from the current time step may have

strong intra-MTS couplings with the present states. Specifically, the random variables at

the current time step are coupled with the variables from multiple previous steps at dif-

ferent strengths, and the couplings exist in each multivariate time series of CVMTS. The

existing deep probabilistic frameworks apply the RNN mechanism [16–18] to consider

the variable dependence, where the current states are conditioned upon the previous

states. However, these frameworks could diminish the influence of multiple previous

steps on the current time step. Specifically, DeepAR [12], Deep State Space Model [13],

and DeepVAR [15] merely apply the RNN mechanism to establish limited temporal

6



1.2. RESEARCH PROBLEMS, OBJECTIVES, AND CONTRIBUTIONS

couplings and cannot consider the impacts from multiple previous steps on the current

time step.

(7) Handling Volatile Covariates: COVID-19 time series data could contain volatile

covariates. They are mainly caused by the complexity and inconsistency of multiple

external factors, unequal sampling time intervals, and missing sampling information.

Figure 1.3 visualizes the daily test numbers over 700 days in three countries as an

example, where the absence of weekend or holiday information results in values close

to zero, causing volatilities in those time series. Complex volatility in multidimensional

covariates have a negative effect on the task of modeling the target variable. Fluctuations

in the multiple covariates may add unnecessary noises and weaken the trend features,

which would decline the modeling performance for target variables. The previous deep

probabilistic frameworks, include DeepAR, merely normalize the covariates and fed them

into RNNs [12, 13], which limits to extract the joint features from the multiple volatile

covariates.

1.2 Research Problems, Objectives, and
Contributions

1.2.1 Research Problems

Here, we summarize two main research problems with associated challenges in modeling

coupled MTSs. These research questions are directly linked to our main topic. Firstly,

accurate forecasting of COVID-19 transmission using coupled MTSs with multiple

external factors is a crucial problem to solve. It involves designing a trainable deep

probabilistic architecture to jointly process the coupled MTSs with multiple external

factors that can enhance the accuracy and performance of forecasting models for various

applications. Secondly, explicitly modeling intra- and inter-MTS couplings and effectively

handling volatile covariates of coupled MTSs is also a significant problem related to our

main topic. Addressing these research questions can provide meaningful insights into

the development of deep probabilistic models for coupled MTSs that can have significant

implications in various areas.

Research Problem (1): How to conduct robust probabilistic forecasting us-
ing coupled MTSs with multiple external factors (COVID-19 data) ? COVID-19

data with multiple external factors including virus mutations, vaccination, government

interventions, and infectivity constitute coupled MTSs. The specific challenges are sum-

7



CHAPTER 1. INTRODUCTION

marized as the following:

• How to incorporate multiple external factors for COVID-19 prediction.

• How to design a trainable deep probabilistic architecture to jointly process the

coupled MTSs with multiple external factors?

• How to tackle the overfitting and gradient vanishing issues caused by limited

MTSs dataset?

• How to model the diverse uncertainties of MTSs and perform probabilistic forecast-

ing?

Research Problem (2): How to explicitly model intra- and inter-MTS cou-
plings and effectively handle volatile covariates of coupled MTSs? The following

summarizes the challenges associated with this research problem:

• How to effectively mitigate the interference caused by volatile covariates and im-

prove the robustness of probabilistic prediction of coupled and volatile multivariate

time series (CVMTS)?

• How to design a trainable deep probabilistic architecture to explicitly model the

intra-MTS couplings of the CVMTS?

• How to establish the inter-MTS correlations of CVMTS?

1.2.2 Objectives

The two primary objectives of the thesis are intended to address the two main research

questions that have been introduced in the previous section.

The first research question motivates us to explore a deep probabilistic framework

using coupled MTSs for COVID-19 prediction. It aims to propose an MTSs-based global

model for probabilistic forecasting of COVID-19 daily confirmed cases and the number

of ICU patients from multiple countries with exogenous variables. And this approach

is flexible and compatible with different assumed probability distributions for robust

prediction. Moreover, the proposed method can not only outperform the SOTA approaches

but also demonstrate the effectiveness of incorporating the exogenous variables.

For the second research question, we aim to propose a deep probabilistic mechanism to

improve the robustness of the probabilistic prediction for CVMTS and explicitly capture

the inter- and intra-MTS couplings of CVMTS. Moreover, the proposed approach can

8



1.2. RESEARCH PROBLEMS, OBJECTIVES, AND CONTRIBUTIONS

not only outperform the SOTA approaches but also demonstrate the effectiveness of the

designed module in probabilistic forecasting for CVMTS.

1.2.3 Contributions

This paper presents two major contributions that relate to the proposed research ques-

tions about deep probabilistic modeling for coupled multivariate time series.

To tackle the first research problem, we propose an end-to-end deep probabilistic cross-

MTS network (MTSNet), designed to utilize the historical time series data and multiple

exogenous variables for probabilistic forecasting. The main contribution of MTSNet is

addressing the four challenges (1) to (4) in section 1.1.3. Specifically, we jointly model

multiple exogenous variables by concatenating them to a normalized second-order tensor.

We design a global model capable of processing multiple time series from different

countries via vertically and horizontally stacked recurrent neural networks to map

hidden states to the assumed probability distribution. To improve the accuracy and

robustness of the probabilistic forecasting, we incorporate the Residual Connection and

Variational Dropout into the MTSnet. To examine the diverse uncertainties caused by

various statistical assumptions, we test different probability distributions including

Laplace distribution, Gaussian distribution, and Student-T distribution. Moreover, we

conduct massive experiments on the data from six countries (UK, US, Canada, France,

Spain, and Italy). The results not only indicate that the proposed method can outperform

the state-of-art models but also compares the difference between various distribution

assumptions. The ablation experiments show the effectiveness of incorporating the

exogenous variables and Variational Dropout.

For the second research problem, we introduce the deep spectral copula mechanisms

(DSCM), which incorporates the Singular Spectral Analysis (SSA) module to reduce

the volatilities of multiple covariates and use an intra-MTS Coupling module to ex-

plicitly model the temporal correlation within a single set of multivariate time series.

The main contribution of DSCM is to tackle the challenges (5) to (7) in section 1.1.3.

Particularly, to establish inter-MTS correlations across multiple multivariate time series,

we transform the target variables into joint probability distributions via Gaussian copula

transformation. The contributions of DSCM are summarized as the following: To reduce

the volatility of covariates in CVMTS and enhance the modeling robustness, DSCM

incorporates a singular spectral analysis (SSA) module to decompose and reconstruct

multiple covariates. DSCM applies an intra-MTS coupling module to capture the tempo-

ral couplings between hidden representations generated by a deep neural network within

9
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Figure 1.4: The diagram provides an overall structure of the thesis and a brief explanation
of each chapter with its relevance to each other.

multivariate time series. To capture the inter-MTS couplings across the coupled multi-

variate time series, DSCM utilizes a Gaussian copula function to connect the various

marginal probability distributions of temporal target variables. The massive experiments

on COVID-19 time-series data from multiple countries indicate the superiority of the

proposed framework over the deep probabilistic SOTA approaches in modeling CVMTS.

1.2.4 Thesis Structure

As shown in Figure1.4, the thesis comprises five chapters, which are connected and serve

a distinct purpose in advancing the research. Chapter 1 provides an introduction to the

research by presenting the background and context of the study, outlining the research

objectives, and identifying the two research problems that the study aims to address.

Additionally, this chapter highlights the challenges that need to be overcome to success-

fully address these research problems in section 1.1.3. Chapters 3 and 4 respectively

describe the two primary contributions in tackling the proposed research problems. Those

10
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chapters provide a detailed description of the proposed algorithms, experimental design,

data sources, and result analysis to address the challenges associated with our research

problems. Finally, Chapter 5 presents a comprehensive summary of the main findings of

the study, compares the results with the existing literature, and discusses the implica-

tions of the findings for future research. This chapter concludes with recommendations

for future work.

11
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RELATED WORK AND RESEARCH GAPS

2.1 Work Related to COVID-19 Forecasting

Since the primary research problems refer to the deep probabilistic modeling for coupled

multivariate time series using COVID-19 data, we review the work related to COVID-19

forecasting, COVID-19 factor modeling, and MTS probabilistic modeling, respectively.

First, COVID-19 forecasting has been intensively studied. They involve topics and

tasks including predicting case movement, transmission, infection, and impact on hospi-

talization and mental health [44]. Most of the methods are built on regression models

without exogenous variables [19–22, 25–27, 29–33, 35–38, 41, 42]. Table 2.1 in Appendix

summarizes the MTS modeling for COVID-19 forecasting and indicates this research

gap. On the other hand, most studies focus on point-based fitting and trend forecasting,

including regression, SIR compartmental models, and DNNs. They thus suffer from the

highly uncertain, noisy, and fluctuating observations in COVID-19 data [45].

Second, COVID-19 transmission is influenced by multiple external factors [44]. They

include NPIs such as travel restrictions, social distancing, and school closures, and

other factors such as healthcare interventions, vaccination effect, and economic response.

Existing work includes modeling the NPI effect such as government interventions by

statistical methods [46, 47], NPIs by multivariate modeling [48], mobility [49, 50], and

other timed interventions [51]. These studies illustrate the necessity of examining the

influence of exogenous variables on COVID-19 transmission. However, most methods

involve none to up to two factors such as weather or mobility on case movement. Few

13
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models take into account multiple external factors. For Example, In [23], CNNs extract

the features about diabetes, smoking, and population information and then feed them

to LSTM networks. In [24], long-short memory neural networks (LSTM) serve as an

encoder of multivariate time series of temperature, rainfall value, population, and

locations. In [51], a heterogeneous autoregression model (HAR) based on multiple linear

regressions predicts COVID-19 confirmed cases with growth rate and vaccination rate.

In [34], ordinary least squares analyze the influence of travel history and contacts. A

graph neural network [43] incorporates the factor of mobility into modeling. In [9], a

new compartmental model integrates multiple factors including NPIs, vaccination, and

mutation to model movements of infected, confirmed, and recovered cases, which shows

significant modeling challenges in MTS forecasting with multifactor context.

Third, typically, MTS forecasting is made by regressors, probabilistic models, and

DNNs. Probabilistic time-series forecasting estimates the probability distribution of

underlying observations over time by involving certain density hypotheses. The para-

meters of density distributions are optimized to fit the entire samples and capture their

uncertainty and development. Bayesian statistics are commonly used in COVID-19

case estimation [11]. A recent focus is on integrating RNNs with temporal probability

distributions to characterize case uncertainties as well as temporal dependencies. For

example, DeepAR [12] does probabilistic MTS forecasting using two layers of RNNs to

extract features and then map the hidden states of the RNN cells to the parameters of

an assumed distribution. In [13], DSM combines a linear state space model with RNNs.

By introducing Gaussian noise, the marginal likelihood function of a linear state space

model forms an analytically tractable loss function to train the neural networks. The

joint probability distribution is obtained after generating the parameters of the state

space model by the RNNs. In addition, DF [14] uses a global time series to represent

the latent representation of each time series and is applied to the state space model and

Gaussian process. However, so far no studies are exploring the SOTA deep probabilistic

methods in predicting the COVID-19 epidemic with multiple exogenous variables.

Lastly, two pieces of work are mostly relevant to the methodology proposed in chapter

3. The work in [9] involves various factors but in a differential compartmental framework.

The second one is DeepAR since our network also uses RNNs as the encoder and maps

the hidden states of RNN cells to the parameters of the probability distribution function

through fully connected layers. The difference lies in (1) DeepAR has not been applied

to COVID-19, while ours is developed for this application; (2) we jointly model multiple

exogenous variables by concatenating them to form the covariates; (3) we incorporate a
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variational zoneout layer and residual connection into a stacked architecture to make

the model fit the COVID-19 uncertainty better. Our model thus shows better capacity in

characterizing four external factors including virus mutation, vaccination, government

interventions, and virus infectivity and probabilistically forecasting COVID-19 confirmed

cases and the number of ICU patients.

2.2 Work Related to MTSs Modeling and our study

Modeling coupled and volatile multivariate time series (CVMTSs) is challenging because

of not only the complicated inter- and intra-MTS couplings inherent in the CVMTS but

also the volatile covariates affecting the model performance. Here, we review the related

work about multivariate time series modeling, deep probabilistic time-series forecasting,

and COVID-19 case series forecasting. Then, we examine the work relevant to our study

and discuss their research gaps.

First, Multivariate time series analysis is a discipline that examines multiple time-

related variables. The objective is to comprehend the connections between these variables

and make predictions about future values. It is used in various areas such as financial

forecasting, climate research, and healthcare data examination. The approaches used

in multivariate time series analysis include vector autoregression (VAR) [52], vector

error correction models (VECM) [53], and dynamic factor models (DFM) [54]. One of

the challenges of this field is the sheer amount of data generated and the need for

specialized software and techniques to handle it. Another challenge is dealing with

non-stationary data which can have an impact on the accuracy of predictions. To address

this, researchers use pre-processing techniques such as detrending or normalization to

stabilize the data. However, all of these traditional approaches could not capture the

nonlinear representations and correlations of multivariate time series.

Second, deep probabilistic time-series forecasting combines statistical methods with

deep neural networks. A typical framework is DeepAR [12]. It assumes target vari-

ables follow a univariate probabilistic distribution at each time point and utilize RNNs

to learn the assumed distribution. In contrast to the traditional point estimation of

time series, deep probabilistic models aim to learn the probabilistic distribution of the

target variables by incorporating the maximum likelihood estimation into backpropa-

gation algorithms. However, DeepAR processes multiple time series independently in

a global framework and ignores the inter-couplings across target variables. Similarly,

the Deep State Space model [13] combines a linear state space model with deep neural
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networks. The independent temporal probability distribution is obtained by optimizing

the parameters of the state space model in recurrent neural networks. Those frameworks

cannot capture the dependencies between temporal sequential observations. Further-

more, DeepVAR [15] combines an RNN with a Gaussian copula process by incorporating

the low-rank covariance structure. This method uses the Copula function to model the

dependencies between target variables from different distributions. However, it ignores

the intra-couplings within a single multivariate time series and does not incorporate

multiple time series covariates.

Third, intensive research has been done on modeling COVID-19 time series [44]. Most

of the sequential models are based on regression using historical data [19–22, 25–27, 29–

33, 35–38, 41, 42]. Those model apply point estimation without considering probabilistic

forecasting. Furthermore, none of them models the CVMTS scenario by considering the

dependencies of multiple covariates on target variables across different countries [45].

Lastly, there are two papers most relevant to our study. From the application perspec-

tive, the work in [9] involves multiple sequential COVID-19 data but in a differential

compartmental framework. From the modeling perspective, DeepVAR [15] is close to

our paper since we also utilize a similar deep Gaussian copula process to handle the

dependencies between the time-series data from various distributions. Our work differs

from DeepVAR significantly: (1) We use the SSA module to decompose and reconstruct

multiple covariates in CVMTS to reduce the volatility and enhance the robustness of

the framework. (2) We design an intra-MTS coupling module to capture the temporal

correlation of the hidden representations generated by the deep neural network within

the correlated multivariate time series. (3) We add statistical features to the time series

embedding to improve the learning ability of neural networks for a certain target time

series of CVMTS.

In Chapter 4, we introduce deep spectral copula mechanisms (DSCM) to conduct

probabilistic forecasting of coupled and volatile multivariate time series. DSCM consists

of the SSA module, the intra-MTS coupling module, and the inter-MTS coupling module.

Furthermore, it also conducts massive comparison experiments and ablation studies

to demonstrate its superiority. Then, Chapter 4 concludes the work and discusses its

limitations.
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2.3 Research Gaps in Coupled Multivariate Time
Series for COVID-19

For COVID-19, with the uncertain spread of COVID-19 worldwide, accurately predicting

their transmissions is critical for informed intervention and healthcare policymaking.

However, COVID-19 modeling [44] is challenging as it involves significant uncertainties

and the influence of multiple external factors such as NPIs, vaccination, and virus mu-

tation on the virus transmission and case series movement [9, 44]. So far, thousands of

references have been reported on engaging epidemiological, statistical, and shallow to

deep learning methods in modeling COVID-19 case movement [44, 45]. Nevertheless,

most of them focus on point-based case data only, and very limited work involves com-

prehensive external factors [47, 49]. Cross-MTSs modeling raises three important yet

challenging perspectives for COVID-19 modeling. One is to couple multifactors with case

MTSs and then jointly model their interactions and coupled effect on case movement. The

second is to extend the point-based case fitting to process-based modeling of COVID-19

cases with multifactor context for better uncertainty modeling of often small, volatile

case data. The third is to jointly model case movement across multiple countries, i.e.,

developing a global model for cross-country MTS modeling.

On the other hand, coupled and volatile multivariate time series (CVMTS) is one

type of multivariate time series, which contains multiple coupled multivariate time

series with volatile covariates at the same length. Specifically, CVMTS is characterized

by intricate inter-MTS couplings that exist between multiple multivariate time series.

These inter-MTS couplings entail complex relationships and dependencies among differ-

ent sets of multivariate time series data. Moreover, CVMTS encompasses the analysis

of intra-MTS couplings, which captures the interconnections and interdependencies

within each individual multivariate time series. These intra-MTS couplings represent

the internal associations and dependencies among the variables within a specific multi-

variate time series. Each set of multivariate time series is composed of target time-series

variables and volatile covariates. The components of CVMTS are illustrated in Figure 1.1.

Accordingly, the challenges of CVMTS include exploring inter- and intra-MTS couplings

and dealing with volatile covariates. A typical example of CVMTS is the COVID-19 case

time series across multiple countries with volatile external factors. Its interested target

variables may include confirmed cases, deaths, and hospital patients. The corresponding

covariates may include daily test number, stringency index, the share of virus variants,

vaccination rate, non-pharmaceutical interventions (NPIs), and virus infectivity. How-
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ever, existing state-of-the-art approaches either model each set of multivariate time

series independently (such as DeepAR, Deep State Space Model, etc.) or process the

multivariate time series without considering their volatile covariates (e.g., DeepVAR,

GPVAR). It is significant to explore a deep multivariate time series modeling approach

for CVMTS to explicitly intra-and inter-MTS correlations.

As the characteristics of CVMTS are widely present in the COVID-19 datasets. it is

urgent to explore a robust model to effectively alleviate the issues in the probabilistic

prediction of CVMTS. In recent years, numerous epidemiological, statistical, and deep

learning approaches have been applied for COVID-19 prediction tasks [44, 45, 47, 49, 55,

56] and examine the importance of considering the covariates in modeling the COVID-19

transmission [48, 50, 51]. However, most of these studies are based on point estimation

and cannot generate a probability distribution to depict the uncertainty in predicting

the future.

Though some deep probabilistic frameworks [12–15] conduct probabilistic forecasting

by combining deep neural networks with statistical approaches, these deep probabilistic

frameworks cannot explicitly model the inter-MTS couplings between and intra-MTS

couplings within multiple countries with similar epidemiological trends. Furthermore,

they cannot effectively process volatile covariates. And in COVID-19 data, incorporating

the covariates of volatile time series may affect the robustness and accuracy of the model.

It is significant to explore an approach to tackle issues of incorporating the volatile time

series into deep multivariate time series modeling. The above reasons motivate us to

conduct this research.
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Approaches Time Series Type Prediction Type Involved Factors
RNN and LSTM [19] Univariate Point Forecasting Historical Cases
Stacked LSTM Networks [20] Univariate Point Forecasting Historical Cases
ANN, LSTM and RNN [21] Univariate Point Forecasting Historical Cases
LSTM-based models [22] Univariate Point Forecasting Historical Cases
Hybrid CNN-LSTM model [23] Multivariate Point Forecasting Historical Cases; Dia-

betic patients; Smok-
ers; Gender; Age

Multivariate stacked LSTM [24] Multivariate Point Forecasting Historical Cases; Tem-
perature; Rainfall Val-
ues; Population; Area

Hybrid deep learning models, CNN,
LSTM [25]

Univariate Point Forecasting Historical Cases

LSTM, GRU and Bi-LSTM [26] Univariate Point Forecasting Historical Cases
LSTM networks [27] Univariate Point Forecasting Historical Cases
LSTM model[28] Univariate Point Forecasting Historical Cases
LSTM networks [29] Univariate Point Forecasting Historical Cases
ARIMA, NARNN and LSTM [30] Univariate Point Forecasting Historical Cases
LSTM networks [31] Univariate Point Forecasting Historical Cases
[32] Univariate Point Forecasting Historical Cases
ARIMA models [33] Univariate Point Forecasting Historical Cases
linear regression models [34] Multivariate Point Forecasting Historical Cases; Trav-

elling History; Contacts
SVR and Stacking-ensemble learn-
ing, ARIMA, CUBIST, RIDGE, and
RF models [35]

Univariate Point Forecasting Historical Cases

LSTM models [36] Univariate Point Forecasting Historical Cases
Hybrid ML and SI method [37] Univariate Point Forecasting Historical Cases
Non-linear growth models (Gom-
pertz, Verhulst) and exponential
model (SIR) [38]

Univariate Point Forecasting Historical Cases

Heterogeneous autoregression mod-
els (HAR) [39]

Multivariate Point Forecasting Historical Cases;
Growth Rates; Vaccina-
tion

Bayesian LSTM[40] Multivariate Point Forecasting Historical Cases; Popu-
lation; Mobility; Loca-
tion

Weighted combining methods [41] Univariate Probabilistic Forecast-
ing

Historical Cases

Statistical Analysis [42] Univariate Probabilistic Forecast-
ing

Historical Cases

Auto-regressive Mixed Density
Dynamic Diffusion Network
(ARM3Dnet) [43]

Multivariate Probabilistic Forecast-
ing

Historical Cases; Mobil-
ity; Location

Proposed Model (MTSNet) Multiple Multivariate Probabilistic Fore-
casting

Historical Cases;
Virus Mutation;
Vaccination; Gov-
ernment Interven-
tions;Virus Infectiv-
ity)

Table 2.1: Related Works about MTS Modeling for COVID-19 forecasting: The majority
of research papers focus on point-based forecasting instead of probabilistic forecasting
and most deep models for COVID-19 prediction involved limited historical factors.
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3
CONTRIBUTION- PROBABILISTIC FORECASTING USING

COUPLED MTSS WITH MULTIPLE EXTERNAL FACTORS

3.1 Deep Probabilistic Cross-MTS Network

3.1.1 Introduction

Given the examination of background and research questions related to COVID-19

modeling in the previous chapters, it is evident that COVID-19 forecasting is a complex

challenge due to high levels of uncertainty caused by various external factors. Although

many algorithms have been proposed to predict confirmed cases, most previous studies

focused on point forecasting rather than probabilistic forecasting. Moreover, none of these

studies have investigated the probabilistic prediction using coupled MTSs with multiple

external factors simultaneously, including virus mutations, vaccination, government

interventions, and infectivity.

To tackle the first research questions, this chapter proposes an end-to-end model,

namely MTSNet, designed to utilize the above four types of exogenous variables and

historical time-series data for probabilistic forecasting. This approach is a global model

capable of processing multiple time series from different countries via stacked recurrent

neural networks to learn a normalized and concatenated tensor and map hidden states

to an assumed probability distribution. In addition, Residual Connection and Variational

Dropout are implemented in the architecture to improve the accuracy and robustness.

Massive experiments on the data from six countries (UK, US, Canada, France, Spain, and
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Italy) indicate that the proposed method can outperform the state-of-art models for prob-

abilistic forecasting. The ablation experiments show the effectiveness of incorporating

the exogenous variables.

3.1.2 The MTSNet Architecture

This section introduces the architecture of MTSNet for modeling coupled MTSs with

multiple external MTS factors. MTSNet stacks an encoder-decoder sequence-to-sequence

learning framework, as shown in Fig. 3.1. In a single sequence-to-sequence network

[57], an encoder aims to map the input sequence to their associated hidden states which

will then be fed into a decoder to generate the output sequence. MTSNet consists of an

encoder network that learns the interactions and representations of target and external

MTSs over history (i.e., t = 1 to t = t0 −1) and then learns the embedding of the last

time step (t = t0). The decoder network incorporates the external MTSs and sampled

target of the last time to decode and produce the embedding of every next time step (t)
progressively to forecast the target variables over the next time steps (i.e., t = t0 +1 to

t = t0 +m).

MTSNet has residual connections and variational zoneout to capture sequential

time-series dependencies and cross-MTS couplings both within and between target MTSs

and multifactor MTSs and the MTS uncertainty. In addition, MTSNet builds upon the

DeepAR model [12] to learn probabilistic projection mechanisms and encoding process.

Differing from the traditional sequence-to-sequence networks and DeepAR, MTSNet has

a vertically and horizontally stacked LSTM architecture with multiple layers for residual

connection and variational zoneout. Its second layer applies residual connection to modify

its output for robust forecasting and preventing gradient vanishing. The variational

zoneout is implemented in the third layer to extend modeling uncertainty and alleviate

overfitting. The projection layer of MTSNet projects the hidden states to the assumed

probability distribution.

MTSNet has stacked LSTM layers. To avoid repeating their architectures and module

formulation, we assume that readers are familiar with LSTM. Otherwise, interested

readers can refer to the basic feed-forward neural networks [16], simple RNN [17], and

LSTM [18] for more information. DNNs such as RNNs hold nonlinear and determin-

istic characteristics to fit time-series data [58]. LSTM further alleviates the gradient

vanishing and exploding problems during its optimization process.
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Figure 3.1: Deep probabilistic cross-MTS network with vertically and horizontally
stacked LSTMs, residual connection, variational zoneout, and probabilistic forecast-
ing over the target and multifactor MTSs. During the training process, both target
observations xi,t and external factors Fi,t (1≤ t ≤ t0+m) are available at each time step to
train the encoder and decoder. At the prediction stage, the target value xi,t (t0 < t ≤ t0+m)
for the decoder will be sampled from the predicted distribution of the previous time step
(red dashed box).

3.1.3 Scaled Multifactor and Target MTS Tensor

MTSs for target input and external factors are often diversified with heterogeneous value

ranges and follow different distributions. To fit them to a global network well and neu-

tralize their contributions in the neural transformations, an appropriate transformation

could improve the computational efficiency and accuracy of prediction results [59]. Here,

we apply the min-max scaling to normalize all time-series data into the range of [0, 1].

Fi, j,t ∈R is a single value of factor j (e.g., reproduction rate) at time step t for a source

i (e.g., a country). Let vector Fi, j denote a time series from source i for factor j and of

length t, then the min-max normalization is given in Eq. (3.1):

(3.1) F′i, j,t =
Fi, j,t −min(Fi, j)

max(Fi, j)−min(Fi, j)
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We obtain the normalized value F′i, j,t for each input and then combine these values into

a vector F′i,t, which represents the integration of all factors j at time t from source i.

(3.2)
F′i,t = [F′i,1,t,F

′
i,2,t, . . . ,F

′
i, j,t]

T

F′t = [F′1,t,F
′
2,t, . . . ,F

′
i,t]

T

To accelerate the convergence of gradient descent and improve the computational

efficiency, we also use the Min-Max scaling to process all target time series [59]. Another

reason is that Min-Max scaling can alleviate the issue caused by the heterogeneous value

ranges between MTSs.

(3.3)
x′i,t =

xi,t −min(xi)
max(xi)−min(xi)

x′
t = [x′1,t, x′2,t, . . . , x′i,t]

T

where x′i,t and xi,t represent the normalized value and original value of the target time

series. Let vector xi denote a time series from source i, then it uses the normalized target

value x′i,t to form a new vector x′
t.

To model the joint effect of multiple external factors F′i,t on the underlying time series

x′
t, we concatenate the vectors F′i,t of all sources to a second-order tensor F′t as shown in Fig.

3.1. F′t is the global representation of temporal exogenous variables with the information

from all sources, which is fed to the MTSNet network as input. The interactions between

the concatenated multifactors F′t and between the multifactors and their underlying time

series x′
t are captured by multi-layer nonlinear neural transformations in MTSNet. The

hidden representations are further characterized by the parameters of prior probability

distribution in probabilistic forecasting.

3.1.4 Residual Connection

To enhance the stability of nonlinear transformations in MTSNet, we incorporate residual

connection [60] into the second layer of MTSNet. As shown in Fig. 3.1, the updated output

of the LSTM cells in layer 2 is equal to the input element-wisely added to the original

output of this cell through residual connection. Let LSTM2 and LSTM3 denote the neural

operations of layers 2 and 3 in Fig. 3.1, h2
i,t, c2

i,t and z1
i,t represent the hidden states,

memory states, and input of LSTM cells in layer 2, respectively. The residual connection
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applied in MTSNet is formulated below in Eq. (3.4).

(3.4)

h2
i,t,c

2
i,t =LSTM2

(
h2

i,t−1,c2
i,t−1,z1

i,t;W
2
)

z2
i,t =h2

i,t +z1
i,t

h3
i,t,c

3
i,t =LSTM3

(
h3

i,t−1,c3
i,t−1,z2

i,t;W
3
)

z2
i,t is the input to layer 3, equalling z1

i,t element-wisely added to h2
i,t. According to

[60], the residual connection can lift neural learning robustness and mitigate gradient

vanishing.

3.1.5 Variational Zoneout

To tackle the challenges of small data on network overfitting and enhance network

generalization, zoneout techniques are used as a regularization mechanism. However,

traditional naive dropout in RNNs could weaken the significant information when

processing time series and result in deteriorated performance because these techniques

apply different masking mechanisms to inputs and outputs at each time step. Moreover,

the traditional naive zoneout cannot incorporate the masks into recurrent connections

[61, 62]. To alleviate these issues in traditional methods, in MTSNet, we further add

variational zoneout [63] as a regularization mechanism in the architecture. As shown in

Fig. 3.1, we apply variational zoneout in Layer 3, where z2
i,t⊙sz and h3

i,t−1⊙sh represent

the zoneout processes illustrated by the dashed green and blue arrows across all time

steps. sx and sh denote the random initialized masks applied on the input z2
i,t and hidden

states h3
i,t−1, respectively. Then Eq. (3.5) illustrates the gating mechanism of the LTSM

cell in layer 3.

(3.5)

It = sigmoid
(
WI

(
z2

i,t ⊙sz

)
+UI

(
h3

i,t−1 ⊙sh

)
+bI

)
ft = sigmoid

(
W f

(
z2

i,t ⊙sz

)
+U f

(
h3

i,t−1 ⊙sh

)
+b f

)
ot = sigmoid

(
Wo

(
z2

i,t ⊙sz

)
+Uo

(
h3

i,t−1 ⊙sh

)
+bo

)
gt = tanh

(
Wg

(
z2

i,t ⊙sz

)
+Ug

(
h3

i,t−1 ⊙sh

)
+bg

)
where It,ft,ot and gt represent input gate, forget gate, output gate, and input modula-

tion of LSTM cell in the Layer 3, respectively. sigmoid and tanh denote the sigmoid
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activation function and hyperbolic tangent function.

(3.6)

c3
i,t = ft ⊙c3

i,t−1 +It ⊙gt

h3
i,t = ot ⊙ tanh

(
c3

i,t

)
z3

i,t =h3
i,t

According to Eq. (3.6), we can obtain the input of the projection layer, which is denoted

by z3
i,t.

3.1.6 Probabilistic Forecasting

The probabilistic forecasting of multiple time series by MTSNet is defined as follows.

Given a set of time series
{
xi,t

}N
i=1 from N sources with the source index i = 1,2. . . , N,

where xi,t ∈R denotes the value of target multiple MTSs in source i at time t. Assume the

current time point is at t0, the historical time series values (e.g., COVID-19 case numbers)

are denoted by xi,1:t0 and the future values are xi,t0+1:t0+m. The goal of multifactor

probabilistic forecasting is to model the conditional probability distributions of the

future values xi,t0+1:t0+m, given their historical data of the target time series xi,1:t0 and

exogenous variables Fi,1:t0+m. The probabilistic forecasting is represented by Eq. (3.7).

(3.7) P
(
xi,t0+1:t0+m | xi,1:t0 ,Fi,1:t0+m,Θ

)
where Θ denotes the parameters of the global neural network, which is learnable and

shared with all time series from N sources. We set the time range {1,2, . . . , t0} to be

the conditioning range for training and the prediction range as {t0 +1, t0 +2, . . . , t0 +m},

m ∈N.

Solving Eq. (3.7) requires inferring a joint distribution over a period of time condi-

tional on its past period, external factors, and modeling parameters. Assume the time

series points are i.i.d. drawn from an underlying distribution, then it can be converted to

the multiplication of past state probabilities:

(3.8)
P

(
xi,t0+1:t0+m | xi,1:t0 ,Fi,1:t0+m,Θ

)=
t0+m∏
t=t0

P
(
xi,t+1 | xi,1:t,Fi,1:t,Θ

)
As z3

i,t is generated by the neural network as shown in Eq. (3.6), then z3
i,t can be

written as the function of variables xi,1:t and Fi,1:t in Eq. (3.9), where h(.) denote the
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transformation of stacked LSTM (Layer 1, Layer 2 and Layer 3 as shown in Fig. 3.1). Θh

represents their learnable parameters.

(3.9) z3
i,t = h

(
xi,1:t,Fi,1:t,h3

i,t−1,Θh

)
One approach to solve Eq. (3.8) is to treat it as the product of likelihood functions and

then use the maximum likelihood estimation for solutions. Accordingly, it assumes xi,t+1

is fixed and the parameters of the likelihoods are determined by a function k
(
z3

i,t,Θk

)
.

k(.) denotes the projection layer (the orange arrows in Fig. 3.1) with their parameters

Θk and the input is z3
i,t containing the information of the past target MTS values and

exogenous factors. Then Eq. (3.8) can be converted to the product of the likelihood

functions ℓ
(
xi,t+1 | k

(
z3

i,t,Θk

))
in Eq. (3.10), as the global parameters Θ consists of Θh in

h(.) and Θk in k(.).

(3.10)

t0+m∏
t=t0

P
(
xi,t+1 | xi,1:t,Fi,1:t,Θ

)
=

t0+m∏
t=t0

ℓ
(
xi,t+1 | k

(
z3

i,t,Θk

))
Therefore, MTSNet makes multiple steps of transformations to generate their hidden

representation z3
i,t and then uses k(.) to map it to the unknown parameters of the

likelihood functions.

3.1.7 Probabilistic Projection

In probabilistic modeling, different distributions determine the dynamics and trends

of underlying factors. Their likelihood function generates target values by sampling

from the distributions. The statistical properties of the training data are sensitive to the

assumed probability distribution. Numerical MTSs like COVID-19 confirmed cases follow

continuous probability distributions. Since MTS and its external multifactors may follow

different distributions, we test three probability distributions: Gaussian, Laplace, and

Student’s t-distribution. Eq. (3.11), Eq. (3.12) and Eq. (3.13) represent their likelihood

functions (ℓL(.), ℓG(.), ℓS(.)) and the corresponding formula of its projection layer (kL(.),

kG(.), kS(.)) for Laplace, Gaussian, and Student’s t distribution, respectively.

(3.11)

ℓL(xi,t |µ,σ)= 1
2σ

exp
(
−|xi,t −µ|

σ

)

kL(z3
i,t)=

 µ
(
z3

i,t

)
=wT

µ z3
i,t +bLµ

σ
(
z3

i,t

)
= log

(
1+exp

(
wT

σz3
i,t +bσ

))
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(3.12)

ℓG(xi,t |µ,σ)= 1p
2πσ2

exp

(
− (xi,t −µ)2

2σ2

)

kG(z3
i,t)=

 µ
(
z3

i,t

)
=wT

µ z3
i,t +bµ

σ
(
z3

i,t

)
= log

(
1+exp

(
wT

σz3
i,t +bσ

))

(3.13)

ℓS(xi,t | ν,µ,σ)= Γ
(
ν+1

2

)
Γ

(
ν
2

)p
πνσ

(
1+ 1

ν

( xi,t −µ

σ

)2)− ν+1
2

kS(z3
i,t)=


µ

(
z3

i,t

)
=wT

µ z3
i,t +bµ

σ
(
z3

i,t

)
= log

(
1+exp

(
wT

σz3
i,t +bσ

))
ν

(
z3

i,t

)
= 2+ log

(
1+exp

(
wT

ν z3
i,t +bν

))
The projection layer kL(.), kG(.) and kS(.) map the hidden representation z3

i,t to the

corresponding parameters of assumed distribution. The calculation of their standard

deviation is slightly different from their mean. Specifically, we apply a Softplus activation

function to generate their positive values for the standard deviation. According to [12],

this projection layer can facilitate a fast convergence. For the additional parameter ν

in Student’s t-distribution, which denotes the degree of freedom, we apply a similar

approach to let ν ≥2 in Eq. (3.13).

With the above distributional assumptions and the mechanism of the projection layer,

we can establish the connection between the DNNs and the probability distribution.

Further, it aims to define a likelihood function and calculate the gradients of the loss.

Then, the parameters of MTSNet are optimized by backpropagation.

3.1.8 Likelihood Loss

After specifying the conditional distribution of target data, we apply maximum likelihood

estimation to the loss function to update the parameters of MTSNet. The loss function is

shown in Eq. (3.14), where we use the negative log-likelihood. As the previously defined

likelihood functions meet all the requirements for calculating the gradients in Eq. (3.14),

it further can be optimized by stochastic gradient descent directly.

(3.14) L =−
N∑

i=1

t0+m∑
t=t0

logℓ
(
xi,t | k

(
z3

i,t

))
During the training process, both the conditioning range [1,2, . . . , t0] and the predic-

tion range [t0 +1, t0 +2, . . . , t0 +m] are available. However, in the prediction process, xi,t

28



3.2. EXPERIMENTS AND EVALUATION

is only available in the conditioning range. We use xi,t (t ≤ t0) as input for training and

x̃i,t (t > t0) is drawn from the distribution p
(· |Θi,t

)
. Then x̃i,t is used to generate the

next distribution and conduct the sampling again until t = t0+m. After repeating this

process, we can get a set of x̃i,t in the time range [t0 +1, t0 +m] by ancestral sampling

from the estimated probability distributions as shown in Eq. (3.15).

(3.15) x̃i,t0+1:t0+m ∼ P
(
xi,t0+1:t0+m | xi,1:t0 ,Fi,1:t0+m,Θ

)
Then, we use these samples to calculate the quantiles and other indices of the posterior

distribution in the future time period.

3.2 Experiments and Evaluation

3.2.1 The COVID-19 Data with External Factors

Here, we focus on COVID-19 time-series cases and their affiliated external factors, in-

cluding the proportion of Omicron, vaccine booster rates, Stringency Index [46], and

reproduction number. They represent the factors of virus mutation, vaccination, govern-

ment interventions, and virus infectivity, respectively. We choose this COVID-19 data

from six representative countries: UK, US, Canada, France, Spain, and Italy. These

countries are chosen because their COVID-19 epidemic showed distinct characteristics

and they took different NPI strategies in mitigating COVID-19.

• Historical cases: The COVID-19 case data includes daily confirmed cases and the

number of ICU patients, acquired from Johns Hopkins University’s COVID-19 data

repository. The UK, US, Canada, France, Spain, and Italy data from March 13,

2020 to February 15, 2022 are crawled. Our model works as a global one to fit the

data from different countries, which thus illustrates the generalization capability

of the model.

• Virus mutation: We use the proportion of Omicron variants in the UK, US, Canada,

France, Spain, and Italy. This data was obtained from the GISAID initiative1.

• Vaccination: We use the rate of vaccine booster, which is derived from the total

number of applied vaccine boosters divided by the total population of the country.

The data is cumulative and the time interval is one day2.
1The data is available at covariants.org.
2The full dataset is available at: https://github.com/owid/covid-19-

data/tree/master/public/data/vaccinations
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• Government interventions: For quantitative information about a government’s

NPIs on COVID-19, we use the Stringency Index [46] of the six countries from

March 13, 2020, to February 15, 2022. The Stringency Index is calculated on nine

different policy indicators: school closing, workplace closing, canceling public events,

restrictions on gathering size, closed public transport, stay-at-home requirements,

restrictions on internal movement, restrictions on international travel, and public

information campaigns. The data is available at the Oxford Covid-19 Government

Response Tracker.

• Infectivity: Our model also involves the daily reproduction rate [64] from different

countries to represent the infectivity of the virus3.

We extract the COVID-19 data from 13/03/2020 to 15/02/2022 for training to predict

the daily confirmed cases and daily ICU patient number in the coming 10 days. At this

moment, we cannot find other time-series data with multiple external factors like the

COVID-19 problem for the experiments and evaluating our design.

3.2.2 Baseline Models and Settings

We compare our proposed model MTSNet with SOTA RNN networks for probabilistic

forecasting, including DeepAR, Deep State Space Model (DSM), and Deep Factor (DF).

We do not compare MTSNet with classic methods including ARIMA and ETS and

DNNs including RNN and LSTM since they have been shown incapable of competing

with DeepAR, DSM, and DF and they focus on point-based rather than probabilistic

forecasting.

• DeepAR [12]: It contains two layers of RNNs to extract features and then maps the

hidden states of the RNN cells to the parameters of an assumed distribution of the

input.

• DSM [13]: It combines a linear state space model with RNNs. By introducing

Gaussian noise, the marginal likelihood function of the linear state space model

can be analytically tractable, which is used in the loss function to train the neural

networks.

• DF [14]: It uses RNNs to process global time series and generate the latent rep-

resentation of each time series. Then the Kalman filter and other two likelihood
3The data is available at:https://github.com/crondonm/ TrackingR/tree/main/Estimates-Database
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function estimation techniques based on the assumption of a Gaussian distribution

are tested in this study.

For MTSNet, we create its variants for testing the effect of different distributions

and for the ablation study of involving external factors or not in the network.

• fMTSNet-Laplace: referring to the MTSNet incorporated with Laplace distribution

and external factors;

• vMTSNet-Laplace: referring to the MTSNet incorporated with Laplace distribution

without variational zoneout;

• MTSNet-Laplace: referring to the MTSNet incorporated with Laplace distribution

without external factors;

• fMTSNet-Gaussian: referring to the MTSNet incorporated with Gaussian distribu-

tion and external factors;

• vMTSNet-Gaussian: referring to the MTSNet incorporated with Gaussian distribu-

tion without variational zoneout;

• MTSNet-Gaussian: referring to the MTSNet incorporated with Gaussian distribu-

tion without external factors;

• fMTSNet-StudenT: referring to the MTSNet incorporated with Student’s t-distribution

and external factors;

• vMTSNet-StudenT: referring to the MTSNet incorporated with Student’s t-distribution

distribution without variational zoneout;

• MTSNet-StudenT: referring to the MTSNet incorporated with Student’s t-distribution

distribution without external factors.

The probabilistic baseline models are based on MXNet [65] and Gluon Time Series

Toolkit [66]. All experiments are undertaken with the same CPU. We set the length of

context windows t0 and prediction windows length m to be 5 : 1. All models initially

optimize hyperparameters through a back-test strategy before we make the prediction.

Accordingly, 100 samples are drawn from the decoder to generate future results. The

above settings are also applied in the baseline models. In addition, we also conduct a

comprehensive ablation study to gauge the effect of incorporating the exogenous variables

for COVID-19 prediction.
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3.2.3 Evaluation Metrics

Metrics including normalized deviation (ND), root mean square error (RMSE), and

weighted quantile loss (WQL) are used to gauge the performance of MTSNet and its

baselines. We apply them to comparing the gaps between observations xi,t and the

predicted values x̃i,t at time t for country i.

ND is defined in Eq. (3.16). It measures the overall deviation of the predicted results

from the true values in terms of the sum of error between observations and predicted

results, divided by the sum of observations. A lower value of ND indicates better perfor-

mance.

(3.16) ND=
∑

i,t
∣∣xi,t − x̃i,t

∣∣∑
i,t

∣∣xi,t
∣∣

RMSE, defined in Eq. (3.17), calculates the root of the sum of squared errors. In

comparison with ND, RMSE is more sensitive to the deviation between predicted values

and true values. n refers to the number of time series, i.e., n = 6 for six countries. T
refers to the number of time steps for prediction.

(3.17) RMSE=
√

1
nT

∑
i,t

(
x̃i,t − xi,t

)2

ND and RMSE only use the median value of the predicted distribution, they are

thus limited in evaluating the accuracy of the probability distribution. Alternatively,

we calculate the weighted quantile loss (WQL) of the results at different quantiles in

the assumed distribution. WQL is defined in Eq. (3.18), where τ represents a quantile,

which is set to [0.1,0.5,0.9] in our experiments. q(τ)
i,t denotes the value at τ-quantile

of the predicted probability distribution. WQL measures the accuracy of probabilistic

forecasting at a given quantile.

(3.18)

WQL[τ]= 2

∑
i,t Q(τ)

i,t∑
i,t

∣∣xi,t
∣∣

Q(τ)
i,t =

 (1−τ)
∣∣∣q(τ)

i,t − xi,t

∣∣∣ , if q(τ)
i,t > xi,t

τ
∣∣∣q(τ)

i,t − xi,t

∣∣∣ , otherwise

To report the overall performance of a model over all quantiles [0.1,0.5,0.9], we calculate

the mean weighted Quantile Loss, mWQL, which is the mean of WQL at all quantiles.
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3.2.4 Result Analysis

We compare the three variants of MTSNet with DeepAR, DSM, and DF. The experimental

results on the next 10-day confirmation cases and ICU patients are shown in Table 3.1

and Table 3.2, respectively.

The results indicate the effectiveness of MTSNet in competing with the baselines in

probabilistic forecasting. In terms of both ND and RMSE, the MTSNet with Student’s

t-distribution achieves the best performance for daily confirmed case prediction. The

MTSNet with the Laplace distribution reaches the best RMSE results for ICU patient

prediction, whereas DSM has the best ND for this task.

Specifically, as shown in Table 3.1, MTSNet variants improve the performance by at

least 10.12%, 1.79%, and 10.5% over the baseline models in terms of mWQL, RMSE, and

ND, respectively. In Table 3.2, the fMTSNet-Laplace outperforms the baseline models

in terms of most metrics except ND. Although the MTSNets based on the Gaussian

and Laplace distribution outperform all baselines well, they achieve similar results as

DeepAR and DSM but better results than DF.

Among the variants of MTSNet, the model that performs well in predicting daily

confirmed cases cannot guarantee consistent performance in forecasting ICU patients.

This result may be owing to the different underlying distributions between cases and

ICU patient number. Accordingly, a probability distribution characterizes the case time

series well and does not capture the uncertainty of ICU patient number over time. As

indicated in Table 3.1 and Table 3.2, the experimental results are very sensitive to the

probability distribution. For example, the MTSNet with Gaussian distribution achieved

the best WQL[0.9] in predicting daily confirmed cases, which, however, performs poorly

in predicting the number of ICU patients. This finding shows the challenge in forecasting

heterogeneous MTS and in designing a both flexible and general MTS model fitting all

MTSs. The MTSNet architecture allows to incorporate different probability distributions

for heterogeneous MTSs.

Fig. 1.1 further shows the predicted daily confirmed cases in the next 10 days from

06-02-2022 to 15-02-2022 by MTSNet-Laplace. We show the median value, and value at

50% and 90% confidence intervals, respectively. The results show, while it is promising

to capture the case movement by deep neural probabilistic forecasting, it is indeed very

challenging to have a model reliable and general for small data with high uncertainty

and inconsistency across multiple countries.

Fig. 3.3 further shows the forecasted number of daily ICU patients in the next 10

days by fMTSNet-Laplace from 06-02-2022 to 15-02-2022. Due to the high dimensionality
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Figure 3.2: Prediction of Daily Confirmed Cases in 6 Countries by fMTSNet-Laplace
with exogenous variables.
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Figure 3.3: Prediction of ICU patients in 6 Countries by fMTSNet-Laplace with exoge-
nous variables.

of the prediction results from multiple countries, it is infeasible to compare them by

plotting them in a single graph. Here, we select the probabilistic forecasting results from

fMTSNet-Laplace as an example to visualize the predictions in median, 50%, and 90%

confidence intervals respectively. The results show that our network is promising in

capturing the ICU patient occupancy trend in general. However, it is challenging to fit

all countries well in one model in the small COVID-19 ICU data.
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Table 3.1: Prediction results for the daily confirmed cases in the next 10 days

Metrix fMTSNet-Laplace fMTSNet-Gaussian fMTSNet-StudentT DeepAR DF DSM

WQL[0.1] 0.1461 0.1741 0.1613 0.3107 0.3850 0.6970
WQL[0.5] 0.3401 0.3676 0.3395 0.5403 0.4727 0.6599
WQL[0.9] 0.2692 0.2324 0.2817 0.2353 0.2627 0.2781

mWQL 0.2518 0.2580 0.2608 0.3621 0.3735 0.5450
RMSE 0.1046 0.1173 0.1031 0.1351 0.1450 0.1858

ND 0.3401 0.3676 0.3395 0.5403 0.4727 0.6599

Table 3.2: Prediction results for the daily ICU patients in the next 10 days

Metrix fMTSNet-Laplace fMTSNet-Gaussian fMTSNet-StudentT DeepAR DF DSM

WQL[0.1] 0.0682 0.0804 0.0709 0.0993 0.2529 0.1269
WQL[0.5] 0.1388 0.1950 0.1794 0.1311 0.1720 0.1157
WQL[0.9] 0.0542 0.1196 0.1005 0.0721 0.0817 0.0745

mWQL 0.0871 0.1317 0.1169 0.1008 0.1689 0.1057
RMSE 0.0934 0.1328 0.1210 0.0942 0.1318 0.1346

ND 0.1388 0.1950 0.1794 0.1311 0.1720 0.1157

Table 3.3: Ablation studies of predicting daily confirmed cases for external factors

Metrix fMTSNet-Laplace MTSNet-Laplace fMTSNet-Gaussian MTSNet-Gaussian fMTSNet-StudentT MTSNet-StudentT

WQL[0.1] 0.1461 0.2731 0.1741 0.2899 0.1613 0.3847
WQL[0.5] 0.3401 0.4491 0.3676 0.5644 0.3395 0.4754
WQL[0.9] 0.2692 0.3835 0.2324 0.3860 0.2817 0.2733

mWQL 0.2518 0.3686 0.2580 0.4134 0.2608 0.3778
RMSE 0.1046 0.1394 0.1173 0.1747 0.1031 0.1409

ND 0.3401 0.4491 0.3676 0.5644 0.3395 0.4754

Table 3.4: Ablation studies of predicting daily ICU patients for external factors

Metrix fMTSNet-Laplace MTSNet-Laplace fMTSNet-Gaussian MTSNet-Gaussian fMTSNet-StudentT MTSNet-StudentT

WQL[0.1] 0.0682 0.1222 0.0804 0.1296 0.0709 0.0719
WQL[0.5] 0.1388 0.1985 0.1950 0.2637 0.1794 0.2209
WQL[0.9] 0.0542 0.1271 0.1196 0.1563 0.1005 0.1123

mWQL 0.0871 0.1493 0.1317 0.1832 0.1169 0.1350
RMSE 0.0934 0.1305 0.1328 0.1918 0.1210 0.1655

ND 0.1388 0.1985 0.1950 0.2637 0.1794 0.2209

Table 3.5: Ablation studies of predicting daily confirmed cases for variational zoneout

Metrix fMTSNet-Laplace vMTSNet-Laplace fMTSNet-Gaussian vMTSNet-Gaussian fMTSNet-StudentT vMTSNet-StudentT

WQL[0.1] 0.1461 0.1597 0.1741 0.1591 0.1613 0.1815
WQL[0.5] 0.3401 0.3305 0.3676 0.3947 0.3395 0.3545
WQL[0.9] 0.2692 0.2728 0.2324 0.3022 0.2817 0.2720

mWQL 0.2518 0.2543 0.2580 0.2853 0.2608 0.2693
RMSE 0.1046 0.1063 0.1173 0.1219 0.1031 0.1119

ND 0.3401 0.3305 0.3676 0.3947 0.3395 0.3545
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Table 3.6: Ablation studies of predicting daily ICU patients for variational zoneout

Metrix fMTSNet-Laplace vMTSNet-Laplace fMTSNet-Gaussian vMTSNet-Gaussian fMTSNet-StudentT vMTSNet-StudentT

WQL[0.1] 0.0682 0.0907 0.0804 0.1210 0.0709 0.0650
WQL[0.5] 0.1388 0.1548 0.1950 0.2212 0.1794 0.2024
WQL[0.9] 0.0542 0.0768 0.1196 0.0818 0.1005 0.1330

mWQL 0.0871 0.1074 0.1317 0.1413 0.1169 0.1335
RMSE 0.0934 0.1072 0.1328 0.1738 0.1210 0.1500

ND 0.1388 0.1548 0.1950 0.2212 0.1794 0.2024

3.2.5 Effect of Exogenous Variables

Here, we evaluate the effect of concatenating external variables on forecasting the

COVID-19 confirmed cases and ICU patient number in the next 10 days. We conduct an

ablation study by comparing each MTSNet variant using external variables with the

variant without these variables, i.e., fMTSNet-Laplace vs. MTSNet-Laplace, fMTSNet-

Gaussian vs. MTSNet-Gaussian, and fMTSNet-StudenT vs. MTSNet-StudenT. The ex-

perimental results are presented in Table 3.3 and Table 3.4. Overall, they show the effect

of incorporating exogenous variables for COVID-19 probabilistic forecasting.

Specifically, Table 3.3 for predicting daily confirmed cases shows that the networks

with exogenous variables achieve superior results with an improvement of at least

11.68%, 3.48%, and 10.90% in terms of mWQL, RMSE, and ND, respectively. Further-

more, all networks using exogenous variables outperform their corresponding ones

without these variables regarding WQL at [0.1], [0.5], [0.9]-quantile for this task.

In Table 3.4 for predicting the number of ICU patients, the MTSNet variants with

exogenous variables improve the performance by at least 1.809%, 4.45%, and 4.14%

in terms of mWQL, RMSE, and ND, respectively. A notable point is that the overall

improvement is not as significant as for case forecasting. This may be because the case

time series may be more strongly correlated with the external variables than the ICU

patient number.

3.2.6 Effect of Variational Zoneout

Tables 3.5 and 3.6 report the results of the ablation study by comparing each MTSNet

variant using the variational zoneout (fMTSNet-Laplace, fMTSNet-Gaussian, fMTSNet-

StudenT) with the variant without the variational zoneout (vMTSNet-Laplace, vMTSNet-

Gaussian, vMTSNet-StudenT). All of the MTSNet variants incorporate external factors

for comparison. Although several indicators such as WQL[0,1] and WQL[0.5] have

not improved in some model variants (fMTSNet-Laplace, fMTSNet-Gaussian), most

indicators for the overall performance demonstrate the contribution of incorporating the
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variational zoneout in the two tasks. We note that all networks using variational zoneout

outperform the variants without using it regarding mWQL, RMSW, and ND.

3.3 Summary

Modeling coupled multivariate time series is crucial in solving the problem of accurately

forecasting COVID-19 transmission using multiple external factors. Due to the high-level

uncertainty of COVID-19 transmission caused by various external factors. It is necessary

to develop a probabilistic forecasting model capable of handling multiple exogenous

variables. However, the majority of the existing studies focus on point-based estimation

instead of investigating probabilistic prediction using multiple external factors including

virus mutations, vaccination, government interventions, and infectivity. In this chapter,

we propose a global model for probabilistic forecasting of COVID-19 daily confirmed cases

and the number of ICU patients from multiple countries using exogenous variables. And

this approach is flexible and compatible with different assumed probability distributions.

We utilize a stacked RNN structure to learn a compound tensor and generate the

parameters of the assumed probability distribution. And the Residual Connection and

Variational Dropout are implemented to improve the robustness. The experimental

results demonstrate the superiority of the model and the effectiveness of incorporating

the exogenous variables.

The Deep Probabilistic Cross-MTS Network presents notable limitations that merit

careful consideration. Firstly, the inherent complexity of its model architecture entails

challenges in terms of interpretability and scalability, necessitating substantial com-

putational resources and training efforts. Secondly, the assumptions regarding data

distribution, often relying on certain probabilistic distribution assumptions, may not

adequately capture the intricate nature of real-world data, potentially compromising the

model’s performance. Furthermore, while MTSNet has demonstrated promise in specific

domains, its generalizability to diverse contexts remains an open question, urging further

investigation. Addressing these limitations is imperative for refining the robustness,

scalability, and applicability of MTSNet in the analysis of coupled multivariate time

series data.
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4
CONTRIBUTION - EXPLICITLY MODELING INTRA- AND

INTER-MTS COUPLING WITH VOLATILE COVARIATES

4.1 Deep spectral copula mechanisms

4.1.1 Introduction

As the previous chapters introduce a research question concerning modeling coupled and

volatile multivariate time series, this chapter proposes deep spectral copula mechanisms

(DSCM) to tackle this problem with a focus on its challenges (5)-(7).

Firstly, DSCM incorporates a singular spectral analysis (SSA) module to reduce

the volatility of multiple covariates. Secondly, it applies an intra-MTS coupling module

to explicitly model the temporal couplings within a single set of multivariate time

series; Thirdly, DSCM transforms target variables into joint probability distributions

via Gaussian copula transformation to establish inter-MTS couplings across multiple

multivariate time series. Substantial experiments on COVID-19 time-series data from

multiple countries indicate the superiority of DSCM over state-of-the-art approaches.

4.1.2 The DSCM Architecture

DSCM aims to tackle the challenges of modeling Coupled and volatile multivariate

time series (CVMTS). As depicted in Figure 4.4, to handle volatile covariates, DSCM

implements the SSA Module to extract the trend features of the volatile covariates and
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input them into the neural network to obtain hidden representations. To capture the

temporal intra-couplings within multiple multivariate time series, DSCM utilizes a deep

neural network to learn the weights of hidden representations at each time step. To

model the inter-couplings between multiple multivariate time series, DSCM incorporates

Gaussian copula probabilistic transformation into the algorithms. The copula function

connects multiple target time series at each time step to form a joint multivariate

probabilistic distribution.

Coupled and volatile multivariate time series (CVMTS) consisting of target variables

time-series x and multiple volatile covariates time-series F have both inter- and intra-

MTS couplings as shown in Figure 1.1. For the consider COVID-19 data, we assume xt

represents a target vector composed of the values of the multivariate time series at time

step t, e.g., confirmed cases from N countries. Ft represents the volatile multiple covari-

ates corresponding to the target multivariate time series, e.g., test number, stringency

index, the share of virus variants, vaccination rate, non-pharmaceutical interventions

(NPIs), and virus infectivity from N countries.

The deep probabilistic forecasting and projection mechanisms in DSCM follow the

DeepVAR framework [15]. The difference lies in that we incorporate the volatile co-

variates of multivariate time series and the intra-coupling module into the DSCM.

DSCM aims to tackle the challenges of modeling CVMTS. It characterizes the CVMTS

forecasting problem in Eq. (4.1),

(4.1) p
(
xt0+1:t0+m | x1:t0 ,F1:t0+m,Θ

)
,

where Θ denotes the parameters of DSCM, the historical time series steps are {1,2, . . . , t0},

and the prediction time length is m ∈N. DSCM models the conditional joint multivariate

probability distributions of the future multivariate time series xt0+1:t0+m, given the

historical multivariate time series x1:t0 and their volatile covariates F1:t0+m.

4.1.3 The SSA Module

The SSA module serves the purpose of trend extraction and volatility reduction. It has

been experimentally proven that eliminating the volatility caused by random fluctuations

in multiple covariates can improve the overall robustness of the framework. In addition,

the trend characteristics of covariates also facilitate long-term probabilistic forecasting.

The research work [67–70] reveals that SSA can improve smoothing, trend feature

extraction, and volatility reduction for time series through decomposition and reconstruc-

tion. Accordingly, we apply a similar approach to the fluctuated covariates. The difference
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Figure 4.1: The framework of Deep Spectral Copula Mechanisms (DSCM). (1) It incorpo-
rates a singular spectral analysis (SSA) module to reduce the fluctuation of covariates.
(2) It applies an intra-MTS coupling module to explicitly learn the temporal couplings
inside a single set of multivariate time series. (3) To establish inter-MTS couplings across
the correlated multivariate time series, the target variables are converted into joint
probability distributions using the Gaussian copula transformation.

is that we use multiple reconstructed covariates vectors to construct a two-dimensional

tensor as input. The SSA Module includes trajectory matrix embedding, decomposition,

and multiple covariates reconstruction.

4.1.3.1 Trajectory Matrix Embedding and Decomposition

Let fi = (
f i
1, f i

2, . . . , f i
T

)
denote a covariates time series (e.g., test number of country

i), where f i
t ∈ R is a single value at time t. In order to perform the singular value

decomposition (SVD) on a time series, we first need to construct a Hankel matrix,

Hi ∈RK×L, which contains L lagged vectors with K = T −L+1 window size as shown in
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Eq. (4.2).

(4.2)

Hi =
[

f i
1, f i

2, . . . , f i
K

]

=



f i
1 f i

2 f i
3 . . . f i

K

f i
2 f i

3 f i
4 . . . f i

K+1

f i
3 f i

4 f i
5 . . . f i

K+2
...

...
... . . . ...

f i
L f i

L+1 f i
L+2 . . . f i

T


.

In the trajectory matrices with a stacked Hankel structure, the elements along the

antidiagonal are equal to each other. And the multiple covariates are represented by

those Hankel matrices, which will be decomposed using SVD and formulated as,

(4.3) Hi =UΣVT,

Where U ∈ RK×K and V ∈ RL×L are the matrices composed of the singular vectors. Σ ∈
RK×L is a rectangular matrix in which the diagonal elements are all the singular values

of the trajectory matrix Hi. Then it can be written in the form of the sum of linearly

independent matrices G j ( j = 1, . . . , r),

(4.4) Hi =
r∑

j=1
σ ju jvT

j =G1 +G2 + . . .+Gr,

which can be represented by the singular values σi, vector ui and vi (eigentriple). r is

the total number of decomposed components.

4.1.3.2 Multiple Covariates Reconstruction

After the SVD decomposition, we select a group of decomposed components to reconstruct

the multiple time series. Traditionally, the grouping process divides the selected basic

matrices G j into a number of groups and then adds the submatrices together in each

group. Here, we assume each non-zero singular value is grouped individually. We then

choose v components to reconstruct the covariates.

To reconstruct the time series using selected components, we calculate each anti-

diagonal average gi over Gi as shown in Eq. (4.5),

(4.5) g j
k =


1
k
∑k

m=1 G j
m,k−m+1, 1≤ k < L∗ =min{L,K}

1
L∗

∑L∗
m=1 G j

m,k−m+1, L∗ ≤ k ≤ K∗ =max{L,K}
1

T−k+1
∑T−K∗+1

k−K∗+1 G j
m,k−m+1, K∗ < k ≤ T

,
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where G i
m,k−m+1 denotes the elements of row m and column k−m+1 of the matrix Gi.

The aim of Eq. (4.5) is to calculate the anti-diagonal average for each selected component.

Then, g j
k is used to construct a vector g j

(4.6)
g j =

[
g j

1, g j
2, . . . , g j

T

]T
,

f̂i =
v∑

j=1
g j,

which has the same length as the original covariates. Further, we sum up all the compo-

nents to obtain a single reconstructed vector. Finally, for the multiple volatile covariates

time-series F, its reconstructed multiple covariates tensor F̂ can be obtained through a

concatenation operation over these vectors,

(4.7) F̂=
[
f̂1, f̂2, . . . , f̂i

]
.

Figure 4.2 uses the test number data of Italy to illustrate the effects of volatility reduction

and trend feature extraction in this module.

4.1.4 The Inter-MTS Coupling Module

The inter-MTS coupling module in DSCM implements the Gaussian copula function.

It transfers the multiple marginal probability distributions of the target random vari-

ables at each time step to a joint probabilistic distribution. The marginal probability

distribution is assumed to be a multivariate Gaussian distribution as described in [15].

Given the observations xi,t from target time series i at the time point t, we assume

that the set
{
xi,t

}N
i=1 follows a joint probability distribution. According to Sklar‚Äôs

theorem [71], the joint cumulative distribution Q(.) can be represented by a copula

function C(.) and their marginal distribution P(.).

(4.8) Q
(
x1,t, . . . , xN,t

)= C
(
P1

(
x1,t

)
, . . . ,PN

(
xN,t

))
.

To make the joint probability distribution tractable, we assume the copula function is

a multivariate Gaussian. As illustrated in Eq. (4.9), Φµ,Σ denotes a multivariate Gaussian

distribution with mean µ, variance Σ, and I is standard univariate normal cumulative

distribution function (CDF). I−1 indicates the standard inverse transformation, which

aims to obtain the intermediate variables following a univariate Gaussian distribution.

(4.9)
C

(
P1

(
x1,t

)
, . . . ,PN

(
xN,t

))
=Φµ,Σ

(
I−1 (

P1
(
x1,t

))
, . . . ,I−1 (

PN
(
xN,t

)))
.
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Figure 4.2: The SSA Module in DSCM. We visualize the Italian covariate (daily test
number) for SSA decomposition and reconstruction as an example. The four graphs
represent the different numbers v of decomposed components selected for reconstruction.

We then apply the same method described in [72] to estimate the empirical CDF of the

marginal distributions Pi. This is a nonparametric, frequency-based approach to obtain

the empirical distribution function Pi. Let Ti =I−1Pi(·) represent this transformation,

we can have the joint cumulative distribution,

(4.10)
Q

(
x1,t, . . . , xN,t

)
=Φµ,Σ

(
T1

(
x1,t

)
,T2

(
x2,t

)
, . . . ,TN

(
xN,t

))
.

Accordingly, let the vector xt represent target variables
{
xi,t

}N
i=1, we can obtain joint

emission distribution in Eq. (4.11), where the variables from the originally observed

time series follow a temporal multivariate Gaussian probability distribution N at time

t. Moreover, the corresponding likelihood function can be derived [15],

(4.11) p (xt)=N
([

T1
(
x1,t

)
,T2

(
x2,t

)
, . . . ,TN

(
xN,t

)]T
)
.
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4.1.5 The Intra-MTS Coupling Module

The intra-MTS coupling module of DSCM captures the intra-couplings cross time length

Tx within a single set of multivariate time series.

Specifically, h1
i,t captures the hidden states generated by the first LSTM layer in

Figure 4.1,

(4.12) h1
i,t =LSTM1

(
xi,t, f̂i

t,h
1
i,t−1

)
,

which contains the nonlinearly transformed information of both the target variables

xi,t and the reconstructed covariates f̂i
t at time t. Then, h1

i,t is fed into the intra-MTS

coupling module, which consists of a dense layer and a softmax layer to compute the

vector αt,

(4.13) αt =Softmax
(
Dense

(
h1

i
))

.

As shown in Figure 4.1, each element αt,t′ in vector αt represents the weights of the

corresponding hidden states indexed by t′. The sum of αt,t′ is equal to 1. It is noted that

each hidden state hi,t′ has its time-step related weight αt,t′ . We then use the following

method to combine the weights with the hidden states to obtain h2
i,t,

(4.14) h2
i,t =

Tx∑
t′=1

αt,t′h1
i,t′ .

Further, Eq. (4.15) uses the current hidden states h2
i,t and the previous hidden states

h3
i,t−1 to obtain the hidden states h3

i,t. h3
i,t will subsequently map to the parameters of

the previously established joint probability distribution via projection layers,

(4.15) h3
i,t =LSTM2

(
h2

i,t,h
3
i,t−1

)
,

where LSTM2(·) represents the second LSTM layer of the DSCM in Figure 4.1.

4.1.6 Deep Probabilistic Forecasting

As DSCM essentially follows the Seq2Seq architecture and we further assume the

target variables are i.i.d. drawn from an underlying joint distribution. Considering the

reconstructed covariates F̂ from SSA of the volatile covariates F, Eq. (4.1) can be written

as,

(4.16) p
(
xt0+1:t0+m | x1:t0 ,F̂1:t0+m,Θ

)= t0+m∏
t=t0

p
(
xt | x1:t,F̂1:t,Θ

)
.
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As stated in the previous studies [12, 13, 15], an approach to tackle Eq. (4.16) is

to use the maximum likelihood estimation for solutions. Accordingly, it assumes the

observations are fixed and the parameters of the likelihoods are determined by functions

µ
(
h3

i,t

)
and Σ

(
h3

i,t

)
, which denote the low-rank projection operations described in [15].

Since the hidden states h3
i,t generated by the neural networks containing the information

of x1:t and F1:t as shown in Eq. (4.12-4.15), the global parameters Θ in Eq. (4.17) can be

learned and updated by the gradient descent algorithm when the assumed likelihood

loss function is tractable,

(4.17) p
(
xt0+1:t0+m | x1:t0 ,F̂1:t0+m,Θ

)= t0+m∏
t=t0

p
(
xt |µ

(
h3

i,t

)
,Σ

(
h3

i,t

)
,Θ

)
.

Consequently, DSCM obtains hidden representation h3
i,t after multiple nonlinear transfor-

mations using the target variable and the reconstructed covariates by a neural network

and an intra-MTS coupling module. Then, we use low-rank projection functions µ
(
h3

i,t

)
and Σ

(
h3

i,t

)
to map the hidden representation h3

i,t to the unknown parameters of the

likelihood functions,

(4.18)

Σ
(
h3

i,t

)
=Dt +VtVT

t ,

di,t

(
h3

i,t

)
= log

(
1+exp

(
Wd(h3

i,t

))
,

vi,t

(
h3

i,t

)
=Wvh3

i,t,

µ
(
h3

i,t

)
=WT

µ h3
i,t.

The low-rank projection functions are the same as that of DeepVAR. It uses the sum

of a diagonal matrix Dt and a low-rank matrix Vt to replace the covariance matrix of the

assumed joint distribution. Specifically, di,t

(
h3

i,t

)
and vi,t

(
h3

i,t

)
calculate each diagonal

element of Dt and the elements of low-rank matrix Vt, respectively. They will be used to

calculate the Σ
(
h3

i,t

)
subsequently.

4.1.7 Likelihood Loss

In Section 4.1.4, we obtain the joint probability distribution of the target variables

through the marginal distribution transformations and Gaussian Copula assumptions.

The likelihood function of this joint probability distribution is approachable [15] and

meets the requirements for gradient descent optimization. Hence, it can be directly used

as an objective function of DSCM. As we need to implement the maximum likelihood
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estimation to update the parameters of DSCM, the objective function is in the form of a

negative log-likelihood,

(4.19) L =−
t0+m∑
t=t0

log p
(
xt |µ

(
h3

i,t

)
,Σ

(
h3

i,t

))
.

The prediction process of DSCM follows the DeepAR and DeepVAR architecture[12,

15]. Specifically, we use xt (t ≤ t0) as input, and the predicted value xt (t > t0) at the next

time step can be obtained via ancestral sampling from the generated distribution. After

repeating this process, we can get a set of predicted values at the prediction time length.

Then, we use these samples for evaluation.

4.2 Experiments

To verify the effect of the proposed DSCM method on CVMTS data, we perform exper-

iments on COVID-19 data and compare it with the state-of-the-art multivariate time

series methods.

4.2.1 Setup

4.2.1.1 Coupled and Volatile Multivariate Time Series Data

The considered COVID-19 case data consists of multiple target time series and covariates

time series from 13 European countries. Specifically, the target time series (e.g., confirmed

cases, deaths, and hospital patients) are acquired from the COVID-19 data repository of

Johns Hopkins University between June 10th, 2020 and June 10th, 2022. The covariates

(i.e., daily test number, reproduction number, vaccine rates, and the Stringency Index)

time series are obtained from the GISAID initiative1 and Github 2 for the same period.

We calculate the Pearson correlation coefficient [73] to analyze the inter-MTS cou-

plings of COVID-19 cases data from 13 European countries. As shown in Figure 4.4,

France, Italy, and Portugal show strong couplings with Pearson coefficients 0.87, 0.72,

and 0.68, respectively. In addition, the most correlated covariates are the daily test

number with a coefficient at 0.55. In this study, we leave the test on other time series

data for future work as we are still struggling in constructing such multiple correlated

multivariate time series with volatile external covariates like COVID-19.
1The data is available at covariants.org.
2The full dataset is available at: https://github.com/owid/covid-19-

data/tree/master/public/data/vaccinations
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4.2.1.2 Deep Probabilistic Models as Baselines

The considered deep probabilistic models in the experiment include DeepAR, Deep State

Space Model (DSM), Deep Factor (DF), DeepVAR, and GPVAR, which are from MXNet

[65] and Gluon Time Series Toolkit [66]. The experiments run via the same CPU. Let m
be the prediction length (window size), and all models initially receive time series data

with t0 length to tune hyperparameters using a back-test method. We test two tasks

with window size m set to 10 and 20, respectively. After the optimal hyperparameters

have been identified, all models will be assessed on the prediction results from the time

step t0+1 to t0+m. We then calculate metrics for each of these training runs using 100

samples from the validation set.

4.2.1.3 Evaluation Metrics

To evaluate the performance of DSCM and the other deep probabilistic models, the

adopted metrics include the continuous ranked probability score (CRPS), weighted

quantile loss (WQL), and root mean square error (RMSE). To test the comprehensive

performance of DSCM at various forecasting lengths, we calculate these metrics for

10-day prediction and 20-day prediction, respectively.

CRPS is a primary performance metric for probabilistic predictions. It is a measure-

ment of the discrepancy between the empirical cumulative distribution function (CDF)

of the observation and the predicted CDF. The continuous ranked probability score is

defined as:

(4.20) CRPS(P,x)=
∫∞

−∞
(P(y)−1{y≥ xi,t})2 dy,

where P denotes the cumulative distribution function. 1{y≥ xi,t} and xi,t represent the

indicator function and observations.

The Energy Score [74] is a metric for measuring multivariate probability distribution.

A smaller Energy Score indicates a more accurate predicted distribution. Unlike CRPS,

the Energy Score is more sensitive to the correlation with the outgoing variables. The

Energy Score is defined as:

(4.21)

Energy({x̃t, xt})= E
x̃t
∥x̃t − xt∥βFro

− 1
2

E
x̃t,x̃′t

∥∥x̃t − x̃′t
∥∥β

Fro ,

where xt denotes the observed value in the form of a matrix, x̃t and x̃′t are two independent

variables in matrix forms sampled from a predicted probability distribution, β represents

a parameter set to 1, and ∥.|For∥ denotes the Frobenius matrix norm.
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Table 4.1: Prediction results for the case number in the next 10 days. Bold values
represent relatively better performance.

Metrics DSCM DeepAR DeepVAR DSM GPVAR DF

CRPS 0.2609 0.3785 0.3147 0.4210 0.3019 0.4743
WQL[0.1] 0.1221 0.1617 0.1276 0.3395 0.1155 0.2374
WQL[0.5] 0.3643 0.5093 0.3689 0.4645 0.3323 0.4818
WQL[0.9] 0.2417 0.3573 0.3728 0.4684 0.4425 0.7027

RMSE 0.0944 0.1138 0.1051 0.1097 0.0948 0.1286

Table 4.2: Prediction results for the case number in the next 20 days. Bold values
represent relatively better performance.

Metrics DSCM DeepAR DeepVAR DSM GPVAR DF

CRPS 0.3716 0.4285 0.4254 0.6274 0.5466 0.5003
WQL[0.1] 0.2126 0.1276 0.2182 0.4670 0.2174 0.4104
WQL[0.5] 0.5177 0.3689 0.5402 0.6856 0.6540 0.5866
WQL[0.9] 0.2422 0.5124 0.3679 0.7324 0.6713 0.5019

RMSE 0.1384 0.1587 0.1520 0.1719 0.1566 0.1433

Weighted quantile loss measures the accuracy of probabilistic forecasting at various

quantiles, which can be applied to the predicted probability distribution. RMSE measures

the accuracy of the probability distribution using the median value of the predicted

samples. Both WQL and RMSE are defined in Chapter 3.

4.2.2 Comparison Results

We compare DSCM with the SOTA deep probabilistic models, including DeepAR, Deep

State Space Model (DSM), Deep Factor (DF), DeepVAR, and GPVAR, to verify their

capable of generating probability distributions. Point estimation models such as ARIMA,

ETS, RNNs and other DNN-based models are not considered in the experiments because

they cannot conduct probabilistic forecasting and evaluate the probabilistic performance.

We introduce DeepAR, DSM, and DF in Chapter 3. The details of the DeepVAR, and

GPVAR are shown below,

• DeepVAR [15] uses a Gaussian Copula function to represent the joint probabil-

ity distribution of the multivariate time series. The parameters are solved by a

gradient descent algorithm.
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Figure 4.3: Comparison of the CRPS score of 10-day vs 20-day prediction. The figure
shows that the overall CRPS is more accurate for a 10-day forecast than a 20-day forecast.
In addition, the DSCM model performs the best in both 10-day and 20-day predictions,
with CRPS values of 0.2609 and 0.3716, respectively. This indicates that short-term
prediction can be better than long-term prediction

• GPVAR [15] uses a low-rank approximation to eliminate issues caused by a large

number of parameters in a full covariate matrix. The Gaussian process is imple-

mented for parameter optimization.

Table 4.1 and 4.2 report the comparison results. The results demonstrate that DSCM

outperforms the SOTA models in the probabilistic forecasting tasks at different time

lengths. The overall prediction performance is gauged by CRPS and RMSE, which

represents the accuracy of the overall predicted probability distribution and the error

between the predicted mean and test data, respectively. Specifically, for the 10-day

prediction as shown in Table 4.1, DSCM improves the performance over the SOTA

models by at least 10.12% and 10.5% over the SOTA models in terms of CRPS and

RMSE respectively. For the 20-day prediction in Table 4.2, DSCM outperforms the

other deep probabilistic models by at least 10.12% and 10.5% in terms of CRPS and

RMSE, respectively. We note that all models perform better on the 10-day prediction

than the 20-day prediction. This demonstrates that it is more challenging in long-term

forecasting than short-term forecasting for such non-stationary and volatile data. Some

deep probabilistic models, such as GPVAR and DeepAR, achieve the best scores in terms

of WQL[0.1] and WQL[0.5]. However, these metrics do not provide sufficient evidence

for the overall performance. Overall, DSCM achieves the best WQL[0.1] and WQL[0.5]
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Figure 4.4: Pearson correlation coefficient of COVID-19 case data from 13 European
countries. France, Italy, and Portugal show strong couplings with Pearson coefficients
0.87, 0.72, and 0.68 between them, respectively.

Table 4.3: Ablation studies for 10-day prediction of case number. Bold values represent
relatively better performance.

Metrics DSCM DSCM-Intra DSCM-SSA

CRPS 0.2609 0.2952 0.3122
WQL[0.1] 0.1221 0.1225 0.1351
WQL[0.5] 0.3643 0.3760 0.3640
WQL[0.9] 0.2417 0.3304 0.2596

RMSE 0.0944 0.1051 0.1018

and outperforms the other probabilistic models in other metrics, such as CRPS and

RMSE. These results demonstrate that the proposed model is more robust to the CVMTS

probabilistic prediction task.

4.2.3 Ablation Study

For the ablation study, three DSCM variants are adopted to evaluate the effectiveness of

the respective modules, including the SSA and intra-MTS coupling modules.
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Figure 4.5: Comparison of the Energy score of 10-day vs 20-day prediction. The Figure
displays Energy scores for five models, namely DSCM, DSCM-Intra, DSCM-SSA, GPVAR,
and DeepVAR. The Energy score is a metric that can only assess multivariate probability
distributions, not univariate ones. Therefore, we computed the Energy score for methods
that can generate such probability distributions.

Table 4.4: Ablation studies for 20-day prediction of the case number. Bold values represent
relatively better performance.

Metrics DSCM DSCM-Inta DSCM-SSA

CRPS 0.3716 0.4366 0.4081
WQL[0.1] 0.2126 0.2351 0.2003
WQL[0.5] 0.5177 0.5453 0.4913
WQL[0.9] 0.2422 0.2629 0.2537

RMSE 0.1384 0.1471 0.1378
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Figure 4.6: Visualization of representative prediction results showing the performance of
DSCM for 10-day and 20-day prediction. As the forecasting results are multidimensional
and there are 100 samples per time point, it is not feasible to plot all the model results
together for comparison.
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DSCM-SSA refers to DSCM with the singular spectral analysis (SSA) module only.

DSCM-Intra incorporates an intra-MTS coupling module, explicitly capturing temporal

couplings within a single set of multivariate time series. Finally, DSCM incorporates

both the intra-MTS coupling and SSA modules, offering a comprehensive approach for

exploring inter- and intra-MTS couplings and handling volatile covariates in CVMTS

forecasting.

Tables 4.3 and 4.4 report the performance of the ablation experiments for the 10-day

and 20-day prediction tasks, respectively. It shows that the DSCM with both intra-MTS

coupling and SSA modules performs better than other DSCM variants on an overall

basis. The results in terms of WQL[0.1] and WQL[0.5] of DSCM are higher than that

of DSCM-SSA for the task of 20-day prediction. However, WQL only represents the

accuracy of a certain quantile of the predicted samples, which is limited to gauging the

whole forecasting results. The underperformance of the proposed DSCM with both SSA

and Intra modules compared to DSCM-SSA and DSCM-Intra in terms of WQL[0.1] and

WQL[0.5] could be attributed to the increased complexity introduced by the combination

of these modules. The additional complexity may lead to overfitting and potential conflicts

or redundancy in the information extracted, resulting in less accurate predictions for

extreme quantiles. Fine-tuning the model’s design and parameters and optimizing the

interaction between the modules could help address this underperformance.

The CRPS score reflects the overall accuracy of the probabilistic prediction, which

illustrates that DSCM outperforms DSCM-SSA. Specifically, the CRPS score of DSCM

achieves an improvement of 3.4% and 5.1% over DSCM-Intra and DSCM-SSA for the

10-day prediction, respectively. Moreover, the CRPS score of DSCM improves over the

variants DSCM-Intra and DSCM-SSA in predicting 20-day case numbers by 6.5% and

3.6%, respectively. In Figure 4.3, we note that all model variants perform better on the

10-day prediction task than on the 20-day task. In addition, for the 20-day prediction

task, the CRPS score of DSCM-SSA is 2.8% better than the DSCM-Intra model. This

may indicate that the trend features of covariates extracted by the SSA module might

contribute more to long-term forecasting than the intra-MTS coupling module. Figure 4.5

compares the Energy scores of five models including DSCM, DSCM-Intra, DSCM-SSA,

GPVAR, and DeepVAR. Since this metric is merely suitable for measuring multivariate

probability distributions and not univariate probability distributions, we calculate the

Energy score of the approaches that can generate such probability distributions. Fig-

ure 4.5 reports that the Energy scores for the 10-day prediction are generally better than

the 20-day prediction. Moreover, DSCM achieves the best values of 0.3184 and 0.3547 in
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the task of 10-day prediction and 10-day prediction, respectively. The Energy score also

demonstrates the superiority of our approach in multivariate probabilistic forecasting.

In Figure 4.3, we note that all model variants perform better on the 10-day prediction

task than on the 20-day task. In addition, for the 20-day prediction task, the CRPS

score of DSCM-SSA is 2.8% better than the DSCM-Intra model. This may indicate that

the trend features of covariates extracted by the SSA module might contribute more to

long-term forecasting than the intra-MTS coupling module.

4.3 Summary

Coupled and Volatile Multivariate Time Series (CVMTS) widely exist in many industries.

Cross-country COVID-19 modeling is a typical application of CVMTS, where multiple

COVID-19 time series contain high levels of volatility caused by various underlying

factors. To explore the inter- and intra-MTS couplings and handle volatile covariates for

CVMTS forecasting, we propose Deep Spectral Copula Mechanisms (DSCM).

DSCM includes a singular spectral analysis module to extract information from

volatile variables. Additionally, an intra-MTS coupling module explicitly captures the

temporal couplings inside a single set of multivariate time series, and Gaussian copula

transformation is applied to convert target variables into joint probability distributions

for exploring inter-MTS couplings between multivariate time series. Numerous exper-

iments on COVID-19 time-series data from 13 countries show that DSCM achieves

superior performance in predicting the probability distribution of CVMTS. Furthermore,

ablation experiments demonstrate the effectiveness of different designed modules in

DSCM.

DSCM proposed for handling Coupled and volatile multivariate time series, par-

ticularly in the context of cross-country COVID-19 modeling, demonstrates promising

capabilities. However, it is important to consider certain limitations associated with

the approach. One notable limitation is its reliance on supervised learning algorithms,

which may have inherent constraints in capturing complex relationships and dynamics

within the data. These algorithms heavily depend on the quality, representativeness,

and quantity of the training data, which can potentially lead to issues of overfitting or

underfitting. As a result, the model’s ability to generalize to unseen data or different

contexts may be compromised.

Furthermore, the generalization ability of DSCM might be a concern when applying

the model to diverse scenarios beyond COVID-19 time series. While the model has demon-
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strated superior performance in predicting the probability distribution of CVMTS using

COVID-19 data from multiple countries, the underlying assumptions and characteristics

specific to COVID-19 might not hold true for other types of multivariate time series.

Therefore, it is necessary to thoroughly validate and assess the model’s performance in

various domains to ensure its broader applicability.

In order to mitigate these limitations, future iterations of DSCM should consider

integrating domain knowledge and expertise into the modeling process. By leveraging a

hybrid approach that combines data-driven techniques with domain-driven insights, the

model can enhance its robustness and generalizability. This integration would enable a

more comprehensive understanding of the complex interdependencies within CVMTS

and improve the accuracy and practicality of the model’s predictions.
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5.1 Conclusion

Deep probabilistic modeling for coupled multivariate time series has been significant in

various fields such as finance, economics, weather forecasting, and COVID-19 transmis-

sion prediction. The challenges come from modeling the interactions within and between

coupled MTSs, and the uncertainty, heterogeneity, and dynamics. COVID-19 cases and

external factors present an imperative use case for this type of research issue. Deep

probabilistic modeling is thus essential to address the complexity of the problem and to

model the uncertainty of the predictions in reality.

The proposed methods, MTSNet and DSCM, offer innovative solutions to these prob-

lems by incorporating advanced techniques. Particularly, MTSNet shows promising

potential in the case study of forecasting COVID-19 confirmed cases and ICU patient

numbers. MTSNet serves as a global model to jointly predict them in six countries

by involving temporal external factors including virus mutations, vaccination, govern-

ment interventions, and infectivity. MTSNet stacks LSTM vertically and horizontally,

improving prediction accuracy and robustness by residual connection and variational

zoneout. Experimental results demonstrate the accuracy and effectiveness of our method

in the COVID-19 multivariate time series modeling task. On the other hand, DSCM

incorporates the Singular Spectral Analysis (SSA) module to reduce the volatilities

of multiple covariates and utilizes an intra-MTS Coupling module to explicitly model

the temporal correlation within a single set of multivariate time series. To establish
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inter-MTS correlations across multiple multivariate time series, it transforms the target

variables into joint probability distributions via Gaussian copula transformation. The

massive experiments on COVID-19 time-series data from multiple countries indicate the

superiority of DSCM over the deep probabilistic SOTA approaches (DeepAR, DeepVAR,

Deep State Space Model, Deep Factor Model, and GPVAR) in modeling CVMTS.

Overall, in the broader context of deep probabilistic modeling for coupled multivariate

time series in COVID-19 prediction, Chapter 3 introduces MTSNet while Chapter 4 intro-

duces DSCM, both of which offer encouraging resolutions to the challenges encountered

in this domain. These contributions collectively showcase the efficacy of the proposed

algorithms in effectively addressing the intricacies associated with coupled multivariate

time series. Moreover, the implications of the findings presented in this thesis are an-

ticipated to have substantial significance across diverse domains that incorporate the

analysis of coupled multivariate time series.

5.2 Future Work

There are several possible directions for future work. First, all experiments in this thesis

focus on the COVID-19 pandemic, but the proposed methods are applicable to a wide

range of coupled multivariate time series. It is worth investigating their performance on

other datasets from different domains, such as finance, energy, and transportation.

Second, both MTSNet and DSCM follow Seq2Seq, which may cause accumulated

errors for long-term multivariate time series prediction. Specifically, the next time step

will use the value sampled from the previously generated multivariate probabilistic

distribution. Repeating this process will increase the accumulated errors. It is worth

exploring alternative architectures or optimization techniques to reduce the error ac-

cumulation for long-term predictions. Some possible directions include introducing a

feedback mechanism to adjust the predicted values, incorporating external information

or expert knowledge to improve the model’s performance, or designing a hierarchical

structure that decomposes the CVMTS into sub-series for better prediction accuracy.

These potential directions could enhance the robustness and accuracy of the proposed

methods, and extend the scope of the research to address long-term multivariate time

series prediction issues in a wider range of applications.

The last future research direction is from the perspective of epidemic modeling.

although COVID-19 is no longer receiving much attention as before, infectious disease

modeling is still important because we may meet new or unknown outbreaks in the
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future. So we may focus on modeling epidemic transmission at an earlier stage with

limited data and labels. Some possible directions include exploring an unsupervised

learning algorithm for a small dataset of an unknown disease based on the previous

outbreak and incorporating the domain knowledge of epidemiology into deep learning

algorithms instead of pure data-driven approaches.
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APPENDIX A. APPENDIX

Table A.1: Notation of Variables and Parameters

Symbol:
xi,t original target time series value from source i at time t
x′i,t normalized target time series value from source i at time t
xi target time series vector from source i in the time range [1,2, ..., t]
x′

i normalized target time series vector from source i in the time
range [1,2, ..., t]

xt target time series vector from all sources at time t
x′

t normalized target time series vector from all sources at time t
Fi, j,t original value of factor j at time t from source i
F′i, j,t normalized value of factor j at time t from source i
Fi,t original vector of all factors at time t from source i
F′i,t normalized vector of all factors at time t from source i
Ft original second-order tensor of all factors and sources at time t
F′t normalized original second-order tensor of all factors and sources

at time t
Ft original vector of volatile covariates from all sources at time t
F original tensor of volatile covariates
F̂ reconstructed tensor of volatile covariates
f i

t value volatile covariates from source i at time t
U ∈RK×K ,V ∈RL×L the matrices composed of the singular vectors
Hi trajectory matrices with a stacked Hankel structure
σi singular values
ui, vi eigentriple vectors
r total number of decomposed components
Σ ∈RK×L rectangular matrix (the diagonal elements are all the singular

values of trajectory matrices)
G j ( j = 1, . . . , r) linearly independent matrices
hl

i,t hidden states at time t in the layerl
cl

i,t memory states at time t in the layerl
zl

i,t hidden representations at time t in the layerl
It input gate of LSTM cell
ft forget gate of LSTM cell
ot output gate of LSTM cell
gt input modulation of LSTM cell
WI ,W f ,Wo,Wg learnable parameter matrix
UI ,U f ,Uo,Ug learnable parameter matrix
sx random initialized masks applied on the input of LSTM
sh random initialized masks applied on the hidden states of LSTM
Θ global parameters of networks
Θh learnable parameters of stacked LSTM layers
Θk learnable parameters of projection layers
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Table A.2: Notation of Functions

Symbol:
ℓL(.) likelihood function of Laplace distribution
ℓG(.) likelihood function of Gaussian distribution
ℓS(.) likelihood function of Student’s t distribution
sigmoid(.) sigmoid activation function
tanh(.) hyperbolic tangent function
Q(.) multivariate probability distribution
C(.) copula function
P(.) univariate marginal distribution
Φµ,Σ(.) multivariate Gaussian distribution (CDF) with mean µ, variance

Σ

I (.) standard univariate normal cumulative distribution function
(CDF)

I−1(.) standard inverse transformation
N (.) multivariate Gaussian distribution(PDF)
Softmax(.) softmax layer operation

Table A.3: Abbreviations

MTSs multivariate time series
CVMTS coupled and volatile multivariate time series
MTSNet deep probabilistic cross-MTS networks
DSCM deep spectral copula mechanisms
LSTM long short-term memory networks
RNN recurrent neural networks
CNN convolutional neural network
SSA singular spectral analysis
DSM deep state space model
DF deep factor model
CDF nonpharmaceutical Interventions
PDF nonpharmaceutical Interventions
CRPS continuous ranked probability score
ND normalized deviation
WQL weighted quantile loss
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