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ABSTRACT

Among mobile platforms, Android stands out as the most commonly used platform. It

is an open-source development platform, and many stakeholders, such as researchers

and developers, can contribute their ideas to enhance work processes. Since anyone can

access the code and fix a bug for continuous improvement, new versions or features are

added to the software occasionally. As a result, the rapid change of SDK versions makes

the developers update the apps frequently. Regardless of the code inspection process and

extensive testing before releasing a new app version, the chance of introducing bugs is

still high in Android apps. Moreover, unlike standard Java, Android has several entry

points and an event-driven feature that allows foreground and background concurrently.

Therefore, automated analysis, such as debugging, for Android apps is more difficult

than standard Java. This dissertation tries to answer the question: How can we help

developers to improve the debugging more effectively for Android apps?

We answer this question with two contributions geared towards minimizing the

search space and expediting the debugging process. Firstly, to mitigate the expanded

search space resulting from the lack of awareness regarding asynchronous events and

lifecycle events in debugging Android apps, we introduce ESDroid, an Event-aware

dynamic Slicing technique for AnDroid apps, an approach that combines segment-based

delta debugging with dynamic backward slicing. This technique effectively narrows

down the search space, providing a precise slice, and enhancing bug identification and

resolution. Secondly, we propose a solution called SfR (Slicing for Resources) to address

the limitations of existing static and dynamic slicing techniques for Android apps when
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faults are located in application resources such as layout definitions and user interface

strings. SfR identifies the dependencies between program statements and application

resources, enabling a comprehensive slice that encompasses these crucial components of

Android apps. By addressing the question of how to help developers improve debugging

more effectively for Android apps, we contribute two complementary works to advancing

the state-of-art in Android app development and debugging practices.

Under the umbrella of automated analysis of Android applications, we extend our

work to encompass the automated analysis of unethical behavior in open-source soft-

ware (OSS) projects, including Android projects. Inspired by various stakeholders in

open-source software (OSS) projects, our third contribution focuses on proposing Ethic

detector (Etor), an innovative approach that leverages automated analysis techniques

to detect unethical behavior within the projects. By developing Etor, we aim to help

developers enhance the development process, ensuring improved security, privacy, and

code quality, ultimately establishing a foundation of user trust while making a meaning-

ful contribution to the field of ethical software development and fostering responsible

practices within the OSS community.
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1
INTRODUCTION

Generally, the software system’s quality relies on the assurance that the program will

perform satisfactorily in terms of its functional and nonfunctional specifications within

the expected deployment environments. In a typical commercial software house, deliv-

ering this assurance via proper testing, debugging and verification activities can easily

exceed 50 percent of the total development cost [76].

Among the activities, the global cost of debugging software (i.e., finding and fixing

errors or bugs in the source code) has risen to $312 billion annually, according to a study

from the Judge Business School of the University of Cambridge [1]. Moreover, on average,

software developers spend up to 90 percent of their programming time finding and fixing

bugs [27] because debugging is twice more challenging as writing the program in the

first place [98], and it takes a long time, often more than creating it [185]. Therefore,

finding and fixing bugs faster, especially more predictable and productive debugging, is

consequently crucial for developers and organizations.

When debugging, developers have to find a way to relate an observable failure to the

causing defect in the source code. The distance from defect to failure may be long in space

and time. Therefore, many researchers have proposed automated analysis and debugging

1



CHAPTER 1. INTRODUCTION

techniques [16] [78][116] [151] [153] [172] [174] [44] [30] [173] [93] [115] [146] attempt

to (1) find the causes of a program failure with or without human interactions (2) reduce

the time and effort and (3) improve the software reliability and quality.

Despite significant advancements, the widespread adoption of automated debugging

in practice still requires further improvement [139]. This situation can be attributed

to two primary reasons. Firstly, developers must possess a deep understanding of the

software system and its environment in order to trace the infection chain back to its root

cause [21]. Secondly, the debugging techniques employed should be tailored to the nature

of the software system and its environment to ensure effectiveness.

For example, in mobile applications, the unique software systems have distinct fea-

tures that require developers to adapt their debugging approaches accordingly. Specifi-

cally, unlike traditional desktop applications, mobile apps interact with various hardware

components and utilize specific operating systems, such as Android. Consequently, devel-

opers need to understand the nature of Android apps and the specific tools required to

effectively tackle the debugging challenges posed by this environment. By addressing

these distinctive aspects, developers can enhance the overall efficiency and accuracy of

the debugging process in the context of Android applications.

In recent years, the mobile industry has witnessed explosive growth, and the complex-

ity of mobile applications has increased rapidly. In Quarter 1 of 2023, the Android OS

has taken 71.95% of the smartphone market share [2]. There are more than 2.6 million

Android applications in Google Play. To increase end-users satisfaction, mobile applica-

tion developers must improve the quality of their applications, and mobile debugging is

one important measure to achieve this goal.

Moreover, Android is open-source, allowing stakeholders such as researchers and

developers to participate in enhancing applications; unfortunately, those features trigger

updating software more often and introduce new bugs while enhancing in a short time
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frame. When focusing on updating software to be compatible with SDK, the debugging

process becomes more costly than software which is rarely enhanced.

In addition, the Android framework employs an asynchronous event, a common way

to collect and process data regarding user events. To schedule and execute a user event,

the framework supports the event queue mechanism. Adding an event to and dispatching

an event from the queue are non-deterministic because of arbitrary user interactions.

Moreover, each Android component has its own lifecycle and must follow the prescribed

lifecycle paradigm, which defines how the component is created, operated and destroyed.

Such an event-driven system and lifecycle nature make debugging more difficult than

those in traditional Java programs.

Recently, researchers have introduced the techniques to enhance the debugging pro-

cess for Android apps. AndroidSlicer [23], utilizing the slicing technique, introduced

asynchronous callback constructions to handle control- and data-dependences by defining

callbacks as nodes containing other nodes or a supernode. On the other hand, Mando-

line [22] focused on data-dependences, providing tracking of data propagation through

object fields using low-overhead instrumentation and claiming high slicing accuracy for

Android applications. However, Mandoline lacked a comprehensive understanding of life-

cycle stages and control-dependences among callbacks. Additionally, both AndroidSlicer

and Mandoline overlooked the significance of considering the input, which involves a

sequence of user events, for effective debugging.

Therefore, our research question is, “How can we help developers to improve the

debugging more effectively for Android apps?”. We address this question with two

contributions aimed at reducing the search space and expediting the debugging process

of Android apps by incorporating event and lifecycle awareness in the debugging of

Android apps and analyzing the data-flow to the resources in the apps.

1. Event-aware precise dynamic slicing for Android apps

3



CHAPTER 1. INTRODUCTION

2. Complement of Dynamic Slicing for Android Applications with Def-Use Analysis

for Application Resources

Specifically, the first work introduces an event-aware precise dynamic slicing tech-

nique tailored specifically for Android apps. This approach narrows down the search

space, providing developers with a more focused and precise debugging process. The

second work complements the dynamic slicing technique by incorporating Def-Use anal-

ysis for application resources. This enhancement addresses the limitations of existing

techniques when debugging faults within resources such as layout definitions and user in-

terface strings, ensuring a comprehensive and thorough debugging process. By combining

these two works, we strive to provide developers with advanced tools and methodolo-

gies to improve the efficiency and effectiveness of debugging Android apps, ultimately

advancing the state-of-the-art in Android app development practices.

Under the umbrella of automated analysis of Android applications, we broaden our

focus to encompass the automated analysis of unethical behavior in Android projects,

including open-source software (OSS) projects as well. By extending our work, our aim is

to assist developers in making better software or apps by checking for potential issues

that could harm user security, privacy, or the app’s quality. Therefore, as our third work,

we contribute;

3. Towards automated detection of unethical behavior in OSS projects

Specifically, Etor utilizes automated analysis techniques to identify unethical behav-

ior within OSS projects, including those related to Android. Our goal in developing Etor is

to contribute to the field of ethical software development and foster responsible practices

within the OSS community. This approach combines insights gained from automated

analysis techniques with the collaborative efforts observed in OSS projects, enabling the

detection of unethical behaviors in Android applications and other OSS projects.

4



1.1. RESEARCH AIM AND OBJECTIVES

1.1 Research Aim and Objectives

Among different mobile operating systems, Android is the most popular one [37], and

software evolution is faster than other operating systems because of its open-source

nature. Within the short time frame, the quality of Android apps is questionable and

automated analysis for Android applications becomes in high demand. Therefore, to

help developers speed up the automated analysis (i.e., automated debugging) process for

Android apps, there are two following aims to achieve in our work;

1. To understand the role of asynchronous events that is significant for Android apps

and enables the search space’s size, and

2. To highlight the importance of considering the data flowing through application

resources.

To fulfill the first aim, we developed the tool called ESDroid to reduce the search

space via event awareness. To fulfill the second aim, we implemented the tool called SfR

to complement the slice by providing the connection between statements and resources.

Additionally, both tools have significantly improved the efficiency of automated debugging

for Android apps.

1.2 Contributions

This dissertation makes the following two main contributions.

• We present ESDroid, an Event-aware dynamic Slicing technique for AnDroid

applications. The novelty of our approach lies in the combination of segment-based

delta debugging and backward dynamic slicing to narrow the search space to

produce precise slices for Android. Our experiment across 38 apps shows that

ESDroid can help with slicing buggy code from exception program points. We

5



CHAPTER 1. INTRODUCTION

compare the effectiveness of ESDroid with the state-of-the-art dynamic slicing

tools (AndroidSlicer and Mandoline). ESDroid outperforms both tools by reporting

up to 72% fewer spurious statements than AndroidSlicer, and 50% fewer than

Mandoline in the resulting slice (the number of instructions to be examined).

• We propose a novel approach called SfR (Slicing for Resources), which identifies

the dependences between the program statements and the application resources

to complete the slice for Android applications. We performed the static analysis to

generate the resource dependence graph (RDG), which includes data dependences

on application resources. We integrated RDG in AndroidSlicer and evaluated on 3

Android applications. The result shows that SfR is more efficient in accuracy than

the existing state-of-the-art dynamic slicing technique, AndroidSlicer.

Inspired by automated analysis in software engineering, we also present the following

additional contribution.

• We present a study of the types of unethical behavior in OSS projects in GitHub.

Our study of 320 GitHub issues provides a taxonomy of 15 types of unethical

behavior guided by six ethical principles (e.g., attribution, autonomy). Examples

of unethical behavior include soft forking (copying a repository without forking)

and missing the license file for a repository. We also identify 18 types of software

artifacts affected by the unethical behavior. The diverse types of unethical behavior

identified in our study (1) call for attentions of developers and researchers when

making contributions in GitHub, and (2) point to future research on automated

detection of unethical behavior in OSS projects. Based on our study, we propose

Etor, an approach that can automatically detect six types of unethical behavior

discovered in our study. Etor uses ontological engineering and Semantic Web Rule

Language (SWRL) rules to model GitHub attributes and software artifacts. Our

6
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evaluation on 195,621 GitHub issues (1,765 GitHub repositories) shows that Etor

can automatically detect 552 violations of unethical behavior with an average

of 80.5% true positive rate. This shows the feasibility of automated detection of

unethical behavior in OSS projects.

1.3 Thesis Outline

In Chapter 2, we introduce terminologies and the background of our work. Specifically,

Section 2.1 illustrate the Android framework, the execution of Android apps and their

lifecycle. Section 2.2 represents the delta-debugging technique. Section 2.3 describes the

def-use analysis, while Section 2.4 is about program slicing.

Chapter 3 illustrates the literature review, including the related work and its lim-

itations. Particularly, Section 3.1 discuss the related work of automated debugging in

software engineering, while Section 3.2, and Section 3.2.1 describe the literature re-

view of delta debugging. We discuss the related work of program slicing in Section 3.3,

Section 3.3.1, Section 3.3.2, and Section 3.3.3.

In Chapter 4, we present ESDroid, an Event-Aware precise dynamic Slicing approach

for Android apps, by introducing segment-based delta-debugging into backward dynamic

slicing. We aim to improve the automated debugging process for Android applications,

which is vital for the software maintenance and a topic in scientific research

In Chapter 5, we introduce a new technique called SfR (Slicing for Resources) to

complete the slicing for Android apps by providing resource dependences between the pro-

gram statements and the application resources. Again, we aim to improve the automated

debugging process for Android applications.

In Chapter 6, inspired by the automated analysis, we present a new approach called

Etor, an ontology-based approach that can automatically detect unethical behavior in

OSS projects. We aim to improve the automated analysis for OSS projects and raise

7
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awareness of the importance of understanding ethical issues in OSS projects.

We conclude this dissertation in Chapter 7 with a summary of the contributions and

possible future work.
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BACKGROUND

In this section, we provide the relevant background information for this thesis. First,

we briefly overview the Android platform, its applications and nature, and stress the

necessity of automated software analysis tools for Android apps. Second, we discuss An-

droid application analysis challenges and highlight the need for more efficient debugging

tools for Android apps. Third, we briefly introduce the traditional methodologies (i.e., (1)

delta debugging, (2) def-use analysis, and (3) program slicing) used in our approaches

and present the motivation for choosing these methodologies.

2.1 Android

Android is a popular Linux-based smartphone operating system designed by Google and

released as the Android Open Source Project (AOSP) in 2007. The software can be freely

obtained from a central repository and modified in terms of the license, mostly BSD and

Apache [3]. The openness and extensibility allow developers and researchers to modify

the system, and the development of Android takes place quickly; therefore, a new major

release happens every few months.
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Figure 2.1: Activity Lifecycle.

Android applications (“apps”), written in Java and (optional) C/C++ native code. The

Android software stack comprises a middleware component (i.e., Android Framework

(AF)). It orchestrates control flow and mediates inter- and intra-app communication and

communication between apps and the lower layers. Such oriented features make the

mobile application more complex and the development of apps more difficult. In addition,

applications are generally delivered within a very short time duration in comparison to

desktop applications because the new major releases (major Android versions) come out

every few months, and developers must continuously update their apps to be compatible

with the versions. With a shorter development time for each update, the quality of apps

becomes more difficult to guarantee.

The structure of an Android app is based on the following four basic components.

• Activity dictates the user interface, like a browser window or a settings page, and

handles user interaction with the smartphone screen.

• Service handles background processing associated with an application. For ex-

ample, the user can continue to interact with the activity while the service for

10
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uploading data to a web resource runs because it executes in the background.

• BroadcastReceiver handles communication between Android OS and applica-

tions. For example, in the case of a low battery event, the app can be stopped from

using any backend data polling mechanism because it listens to the low battery

event registered.

• ContentProvider handles data and database management issues.

An application does not necessarily consist of all four components, but there must be at

least one activity to present a graphical user interface.

2.1.1 Challenges of debugging for Android apps

In an Android app, each component follows its lifecycle callbacks (onXYZ() methods),

which are called by the Android system to start/stop/resume the component following

environment needs. For example, onCreate() is the initial method to set up an Activity,

and onDestroy() is the counterpart to onCreate(). Figure 2.1 shows the lifecycle of an

activity, and each method in the figure represents a lifecycle callback. Lifecycle transition

also follows certain principles. For instance, an activity with the paused state (onPause())

could change to the resumed state (onResume()) or the stopped state (onStop()) or be

killed by the Android system to free up RAM. Consequently, these features of Android

apps hinder the soundness of some analysis scenarios because these lifecycle methods

are not directly connected to the execution flow.

Unlike Java programs, Android apps do not have a single main method. Rather, the

apps have multiple entry points (e.g., onCreate() and onResume() methods, which the

Android framework calls at runtime). Therefore, an automated static analyzer must

search for all entry points and build several call graphs without assurance on how these

graphs may be connected.

11
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Moreover, the Android app uses an event-driven model that dictates control flow

via the event queue mechanism to schedule and execute a user event. An event can

be a user action (e.g., touch), the arrival of sensor data (e.g., GPS), a lifecycle event

(e.g., onPause() when the app is paused), and inter- or intra-app messages. All these

traits, from externally orchestrated control flow to time-sensitive sensor input, render

traditional automated analysis approaches, such as automated debugging, inapplicable

to Android. In addition, due to arbitrary user interactions, adding an event to and

dispatching another from the queue is non-deterministic. Such an event-driven system

makes debugging more complicated than traditional Java programs.

2.2 Delta Debugging

A typical problem in debugging is that, given an input, only a small part of that input

may be responsible for the failure or the bug. To address this problem, the researchers

introduced delta debugging to simplify failure-inducing circumstances and isolate failure

causes automatically [184]. It is well-known for failure-inducing program input [186],

failure-inducing changes [154], and failure-inducing user interaction [147] because no

specific prerequisites are required, it is a robust algorithm, and easy to implement and

use.

Delta debugging (DD) divides a test case that causes the program failure (We assume

a test case is a set of changes.) into subsets. It then removes the subsets, which cause

the failure disappears until it gets the smallest subset that causes failure. Initially, DD

performs a binary search on the whole set of changes. Specifically, it first partitions the

set of changes into two subsets and tests each of them individually: if any of the two

subsets produces the failure, DD marks it as a minimal, failure-inducing test case. DD

then recursively continues to search in it for a shorter one. The most straightforward

reduction rule for DD is a classical Divide and Conquer approach.

12
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Figure 2.2: The Divide and Conquer strategy.

Figure 2.2 illustrates the process of the Divide and Conquer for a test case with four

changes that can produce the bug. The first column describes the number of iterations.

The second and third columns show each subset (∆) with the changes included. The

fourth column presents the outcome of each test. At Iteration 1, we divide the test case

into two subsets (i.e., ∆1 and ∆2) and test each of them. We assume the second subset

(i.e., ∆2) makes the test fails. At Iteration 2, DD continues the search in the failing subset

(i.e., ∆2 at iteration 1) by partitioning it into two subsets and testing each. In this way, it

iterates the same procedure to shrink the test case until 1-minimal. We call it 1-minimal

if removing any single change would cause the failure to disappear. In our example, we

got the smallest test case which causes failure after two iterations because each subset

has one change. Note that the granularity for the Divide and Conquer is 2 for every

iteration. Granularity means the number of subsets that the delta debugging divides

the changes into.

In some cases, if none of the subsets produces the failure, DD increases the granularity

by doubling it, and tests each complement (i.e., ▽). This reduction rule results in the

Complement approach. The process is continued until each subset has a size of 1, and

13
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no further reduction is possible. To calculate the granularity, we use two formulas; (I)

min(2n, size) if none of the subsets fails, and (II) max(n−1,2) if any subset fails. size is

the number of changes, and n is the number of subsets.

1

 The test succeeds / PASS
 The test has produced the failure, which is intended to capture/ FAIL
? The test produced indeterminate results / UNRESOLVED

Granularity : max (n-1, 2) if “FAIL” .  min(2n, size) if not “FAIL”. n is number of subsets. 
1-minimal if removing any single change would cause the failure to disappear.

Figure 2.3: The Complement strategy.

14
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We illustrate the process of the Complement approach in Figure 2.3. The first column

describes the number of iterations. The second and third columns show each subset

(∆) or each complement (▽) with the changes included. The fourth column presents the

outcome of each test. At Iteration 1, DD first partitions the whole set of changes into

two subsets (i.e., ∆1 and ∆2), and tests each of them individually. We assume that every

test outcome is unresolved. Therefore, we start applying the Complement strategy, and

increase the granularity from 2 to 4. Note that, since none of the subsets fails, DD uses

the first formula (I) (i.e., min(2n, size)) to calculate the granularity. At Iteration 2, DD

partitions the whole set of changes into four subsets (i.e., ∆1, ∆2, ∆3 and ∆4). Here, we

start testing the complement. For example, the complement of ∆1 is ∆2, ∆3 and ∆4.

We assume the complement of ∆2 (i.e., ▽2) produces the failure, and DD marks it as

a minimal, failure-inducing test case. DD then continues to search in it for a shorter one.

DD uses the second formula (II) (i.e., max(n - 1, 2)) to calculate the granularity (i.e., 3) for

Iteration 3. At Iteration 3, DD divides the failing complement (i.e., ▽2 at Iteration 2) into

three subsets and tests each complement. Again, we assume the complement of ∆2 (i.e.,

▽2) fails, and DD marks it as a minimal, failure-inducing test case. DD then continues

to search in it for a shorter one. Again, DD uses the second formula (II) to calculate the

granularity (i.e., 2) for Iteration 4. At Iteration 4, DD partitions the failing complement

(i.e., ▽2 at Iteration 3) into two subsets, and tests each complement. We assume both

complements could not produce the failure and, DD stops with 1-minimal. We got the

smallest test case (i.e., the complement of ∆2 at Iteration 3) (i.e., ▽2 at Iteration 3) which

causes failure.

Generally, one objection against DD is that achieving the granularity to perform

the actual reduction can take too long. To balance between theoretical guarantees

and performance, some works introduce the split factor [99], and some introduce the

hierarchical-based DD [131]. However, selecting the best value for the split factor is
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non-trivial in practice, and there has yet to be a known formula. Despite its age, DD

is still an inevitable cornerstone of this field of research and is still one of the most

important works in automated test case reduction because of its robust algorithm.

2.3 Def-Use Analysis

A def-use analysis is a data-flow analysis collecting information about how the vari-

ables are defined and used in the program. It establishes a relationship between the

definition statement where a variable is created and each statement where it is used.

With that information, we can automatically detect or collect the statements affected

by the variable. Def-use analysis is well known and has been shown to be useful not

only for debugging [170], software testing [79], but also for program integration [87], and

software maintenance [73].

S1 int a = 1; Def
S2 int b = a + 2; Use

Figure 2.4: Def-Use Analysis.

An example def-use analysis is shown in Figure 2.4. If the statement S2 used the

same object a which is defined as int with value 1 in S1, S1 affects S2. It means there

is the relationship between S1 and S2. In this way, we can track the data flow in the

program and collect the statements affected by variable a.

2.4 Program Slicing

Program slicing is a technique to extract or slice a group of program statements. It is

useful and well-known for program analysis, debugging and understanding. It collects

program statements affecting the point of interest (slicing criteria). Given a program P,

the programmer provides a slicing criterion (l, V ), where l is a location in the program
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Figure 2.5: Data Dependence.

Figure 2.6: Control Dependence.

and V is a set of program variables referenced at l. Slicing operates via a program

dependence graph (PDG), the nodes of the PDG represent statements or basic blocks,

and the edges correspond to data or control dependences between nodes.

• Data dependence is similar to the Def-Use analysis. Recall that, for example,

instruction A is data-dependent on instruction B if B uses the same object defined

at A. Figure 2.5 illustrates the data dependence for a program fragment with two

lines and the corresponding PDG with two nodes. Node 1 represents Line 1, and

Node 2 represents Line 2. In Line 2, a statement utilizes the same object a, which

is defined in Line 1. Therefore, Node 2 is data-dependent on Node 1 in the PDG.

• Control dependence follows initiator-follower rules. For example, an instruction

Y has a control dependency on a preceding instruction X if the outcome of X

determines whether Y should be executed or not. Figure 2.6 shows the control

dependence for a program fragment with two lines and the corresponding PDF with

two nodes. Node 3 represents Line 3, and Node 4 represents Line 4. The execution

of Line 4 depends on the evaluation result in Line 3 (i.e., the boolean outcome/

value of variable f ound). Therefore, Node 4 is control-dependent on Node 3 in the

PDG.
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(a) A program fragment to be sliced and its corresponding program dependence graph (PDG).

(b) Forward slice for the variable x. (c) Backward slice for the variable z.

Figure 2.7: Forward Slicing vs Backward Slicing.

There are two ways of slicing (i.e., forward and backward slicing). While forward

slicing starts from the criteria point onward, backward slicing starts from the criteria

point backward. In other words, forward slicing slices the program’s statements which are

affected by the slicing criteria, while backward slicing collects the program’s statements,

which can have some effect on the slicing criteria.

We present forward and backward slicing examples in Figure 2.7. In Figure 2.7a, we

have a program fragment with five lines and its corresponding PDG consisting of five

nodes (each node represents each program line). In PDG, Node 5 is data-dependent on

Nodes 1 and 2 because z is defined with the summation of x and y at Line 5, while x

is defined at Line 1, and y is defined at Line 2. Similarly, Node 4 is data-dependent on

Node 1 because Line 4 utilizes the variable x defined at Line 1. Node 3 is data-dependent

on Node 2 because Line 3 utilizes the variable y defined at Line 2.

Figure 2.7b shows the forward slicing for variable x while Figure 2.7c shows the

backward slicing for variable z. Since Line 4 and Line 5 utilizes the same object x defined

at Line 1, the forward slice includes Nodes 1, 4 and 5. In other words, the value of x at
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(a) A program fragment to be sliced.

(b) Static slice for the variable y. (c) Dynamic slice for the variable y when n = -5.

Figure 2.8: Static Slicing vs Dynamic Slicing.

Line 1 affects the value of r at Line 4 and z at Line 5. On the other hand, as shown in

Figure 2.7c, the backward slice includes Nodes 1, 2 and 5 because Line 5 utilizes the

same objects x defined in Line 1 and the same object y defined in Line 2. In other words,

the value of z at Line 5 is affected by the value of x defined at Line 1 and the value of y

defined at Line 2.

Slicing can be done dynamically or statically. Static slicing collects program lines

for every possible execution pattern. Thus, static slicing contains all statements that

may have affected the variable’s value at a program point for any arbitrary execution

of the program. On the other hand, dynamic slicing slices run-time effective program

lines for specific input. Therefore, a dynamic slice includes all statements that affect the

value of a variable at a program point for a particular execution of the program.

Figure 2.8 illustrates examples of static and dynamic backward slicing for a program
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fragment with six lines. Specifically, Figure 2.8b shows the static slice for variable y

while Figure 2.8c shows the dynamic slice for variable y if the input value for n is -5.

The blue arrows represent data dependences, and the pink arrows represent control

dependences in the figure. As shown in Figure 2.8b, the static slice includes all program

lines (i.e., Line 1, 2, 3, 4, 5, and 6). In contrast, as shown in Figure 2.8c, the dynamic

slice contains all executed program lines (i.e., Line 1, 2, 5 and 6) if the input value for

n is “-5”. While the static slice has six nodes (i.e., six lines), the dynamic slice has four

nodes (i.e., four lines).

Therefore, static slicing is often conservative, leading to very large static slices, while

dynamic slicing produces more precise slices, and the slice can be significantly reduced,

leading to a finer localization of the criteria point. In addition, dynamic slicing, which

aims to isolate the relevant code and data or control dependence for the execution of

a program, has been shown very useful for debugging [19, 170] and fault localization

[20, 54].
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3
LITERATURE REVIEW

This literature review explores the current state of research on automated analysis and

debugging, focusing on identifying the context and contributions of prior research and

literature relevant to our work. First, we discuss the overview of automated debugging

in software engineering and its challenges. We then describe some studies related to

delta debugging, program slicing and their limitations.

3.1 Automated Debugging

Debugging is a critical process in software engineering, aimed at identifying the causes

of program failures and removing errors from a program. It is time-consuming and

expensive, especially if the search space is big and the software application we debug

is complicated. Therefore, over the decades, numerous works have proposed different

automated debugging approaches [33] [70] [94] [144] [189] [48] [190] to solve this

problem. The primary objective of automated debugging is to reduce the search space,

with or without human interaction, before the actual fault localization is conducted.

In the context of software engineering, there are generally two approaches to debug-
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ging processes. The first approach is backward tracking, which involves tracing the

program execution backward, starting from the point of failure until the faulty statement

is identified [19, 60, 104, 183]. The second approach is known as forward tracing,

which involves tracing the program execution forward, starting from the program entry

point until the faulty statement is identified [47, 92, 186]. Both approaches have their

advantages and disadvantages. In general, backward tracking is considered more effec-

tive for identifying the root cause of the bug, while forward tracing is more useful for

understanding the program flow and behavior.

The effectiveness of debugging approaches also depends on other factors such as the

nature and complexity of the program being debugged, and the debugging expertise of

the developers. For instance, in standard Java, which typically starts from a single entry

point, the first approach of backward tracking can be used to achieve the debugging goal.

However, in Android Java, which has several entry points, the first approach alone may

not be sufficient to identify the root cause of the problem. Similarly, if only the second

approach of forward tracing is used, it may be unable to reach faulty statements if the

test input is invalid.

Automated debugging can be conducted statically [45] [100] [86] or dynamically [110]

[51] [178]. Static analysis provides a comprehensive understanding of the system’s

architecture, which can help limit the search space and identify potential problem areas.

However, static analysis can be time-consuming and may provide additional information

that is not relevant to the debugging process. In contrast, dynamic analysis allows

for a more specific analysis of the system’s behavior during runtime, which can be more

effective in identifying faults. However, dynamic analysis can miss certain problems if

the specific test scenario fails to trigger the desired failure. For example, utilizing only

static analysis would not completely understand the Android apps, and predefined test

cases would not cover handling Android’s events due to non-determinism in execution.

22



3.2. DELTA DEBUGGING

Particularly, to leverage the static analysis, some works use the probability of being

faulty via testing [47, 154] [118] [176] [17]. Nevertheless, similar to other test-based

methods, the accuracy of the results is directly related to the quality of the test cases

used to generate the probabilities. For Android apps, MZoltar [121] offers a dynamic

analysis of mobile apps that provides a diagnostic report to identify possible defects of

an instrumented app via spectrum-based fault localization. However, it relies on the test

suite, including both passed and failed tests for the same scenario, which is limited to

real-world applications’ failure. Moreover, the limited test suite that could cover a wide

range of asynchronous event sequences is questionable.

On the other hand, not to miss the buggy code in dynamic analysis while debug-

ging, researchers introduce the template-based approach [154] for a particular error.

However, the tool’s effectiveness depends on the availability of appropriate templates

(dataset) that accurately capture the relevant characteristics of the targeted errors.

Therefore, it is crucial to consider the nature of the program being analyzed and the

types of bugs it may contain. Moreover, different programs may have different error

patterns, which means that a tool or technique that works well for one program may not

be as effective for another. Thus, researchers need to tailor their analysis methods to the

particular program and the types of errors they are trying to detect and fix.

3.2 Delta Debugging

Delta Debugging (DD) approach introduced by Zeller et al. [186] [80], which can identify

the smallest possible subset of code that can reproduce a given error. We can apply

DD for arbitrary input without prior knowledge about the test case format. It has

been used in various software systems, including traditional desktop applications [182],

compilers [131], browsers [186], Web applications [77], and microservice systems [191].

Some work targeted textual failure-inducing inputs, while some targeted test case
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reduction.

Hodován and Kiss suggested speeding improvements to the original DD algorithm

with parallelization [83] while maintaining its guarantee of 1-minimal. By transforming

the textual inputs to a tree representation and applying the DD algorithm to the levels of

the tree, Misherghi and Su introduced hierarchical DD (HDD) to reduce the syntactically

broken intermediate test cases [131]. However, it still created incorrect test cases because

it removed nodes that caused syntax errors.

Therefore, Hodován and Kiss presented extended context-free grammar (eCFGs)

for the tree-building step of HDD [82], and they achieved smaller outputs with fewer

executed tests via more balanced tree representations. To reuse available non-eCFGs

and balance recursive structures, Hodovàn et al. also proposed a variant of the original

HDD called Coarse HDD [84]. Moreover, they discovered that analyzing the grammar

to avoid excessive removals and using a new caching approach could improve reduction

speed and increase efficiency [85]. All the approaches mentioned above aim at textual

failure-inducing inputs and would not be suited for Android apps with multiple entry

points with asynchronous events.

Some researchers also utilize DD for test case reduction with a broader application

area. Colin et al. [150] minimized faulty event sequences of distributed systems. Fuz-

zSMT worked on finding crashes of SMT solvers for bitvector and array instances [41].

Moreover, DD was used to reduce unit tests [108] [109] or even unit test suites [69].

For example, Hammoudi et al. proposed DD to minimize manually-written test suites

(GUI test cases) for web applications [77]. In addition, some work employs DD by using

historical data. For example, by leveraging the whole evolutionary history of the program,

Artho presented iterative DD [29]. Similarly, to locate the sources of the regression

faults introduced during some software evolution, Yu et al. presented a DD approach that

analyzes traces and looks for the error sources using a defined test suite [182]. However,
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these approaches are not designed for analyzing and handling the Android apps, where

they become ineffective in detecting event sequences.

3.2.1 Delta Debugging for Android Apps

For Android apps, the algorithms based on delta-debugging have been proposed to mini-

mize GUI event sequences for reaching a particular target activity [47] and reproducing

a crash [92]. However, both techniques target to decrease the events in a failure-inducing

input trace. It demands going beyond event sequence minimization to achieve the goal of

aiding developers in locating the root causes of a crash.

3.3 Slicing

Dynamic program slicing was introduced by Korel and Laski [104], and it has been

broadly studied in the literature, mainly for traditional server/ desktop applications [122]

[24] [114]. Agrawal et al. introduced dynamic slicing using graphs of instances [19].

Agrawal et al. also presented dynamic slices to locate reaching definitions of pointers and

to operate across methods for programs with pointers [18]. For multi-threaded programs,

Duesterwald et al. expanded dynamic slicing via data dependencies between inter-

thread [58]. To lessen the runtime overhead, Gupta et al. suggested a hybrid approach

by instrumenting a limited number of statements [74]. Similarly, Tallam et al. presented

a method to collect the traces for threads relevant to the bug [157]. Around the same

time, Zhang et al. proposed an efficient dynamic slicing to find reaching definitions [190].

They first split the trace into chunks and then collected the variables defined in a chunk.
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3.3.1 Slicing for Web Applications

The slicing technique has been presented in Web applications [123] [145] [161]. Although

Web applications share similar event-based execution paradigms with Android apps, the

event’s nature in the Web application and the nature of the event of Android apps are

different. Unlike Web applications, Android apps cause unique challenges to slicing with

(1) life cycle management rules among components (for example, the principles between

fragment and activity), and (2) intercomponent communication employed not only in the

same application but also across different applications.

3.3.2 Slicing for Java

Dynamic slicing for traditional Java programs [169] [156] [168] has been proposed.

However, unlike traditional Java, Android has several entry points via various channels,

and calls to other processes within applications or external applications. It can be

undertaken in both an explicit and implicit way.

3.3.3 Slicing for Android Apps

Unlike Java programs, precise dynamic slicing for Android is inherently more difficult

due to the non-deterministic event interleaving in Android. Dynamic slicing normally

operates on an execution trace from an interesting program point (e.g., a program crash

point) after running a program. For example, a coarse-grained trace would be a stack

trace. However, different from many Java programs that have the unique call stack,

Android’s Inter-Component Communication (ICC) permits each event to have its separate

call stack once it is launched (e.g., startActivity) via the corresponding intent. Then

a call stack of the launched event starts from onCreate according to the life-cycle of

Android’s callback methods. As a result, the ICC feature, together with the event-driven

mechanism, make dynamic slicing more challenging in Android.
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Some prior works use static program slicing for Android apps. For example, Gibler

et al. implemented taint-aware slicing for finding potential privacy leaks in Android

apps [65], while Titze and Schütte provided a slicing tool called Apparecium to stat-

ically detect data flows in Android apps from arbitrary data sources to sinks [160].

Similarly, SAAF [86] performs static slicing to detect suspicious behavior patterns for

malicious Android apps. Those works focus on finding specific issues, such as security

problems [149] [188] and energy consumption [36], rather than detecting the different

types of bugs. They also need to address the precise modeling of Android’s callback

sequences. Moreover, Android has non-deterministic event nature, and conducting static

analysis alone can give extra or imprecise slices.

Some dynamic slicing approaches have been designed for Android Apps. AndroidSlicer

performs dynamic slicing by modeling asynchronous data and the control dependences

of Android apps. Mandoline [22] presents dynamic slicing via alias analysis. However,

there needs to be more consideration of event-based lifecycle awareness for Android apps

and the connection between the statements and application resources such as layout

definitions and user interface strings.
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EVENT-AWARE PRECISE DYNAMIC SLICING FOR

AUTOMATIC DEBUGGING OF ANDROID APPS

To reduce the search space and expedite the debugging process of Android apps, we

present ESDroid: an Event-aware dynamic Slicing technique designed specifically for

AnDroid apps. By incorporating awareness of asynchronous events and lifecycle events,

this innovative technique significantly narrows down the search space, enabling the

generation of precise code slices that greatly enhance the debugging process, leading to

more efficient bug identification and resolution. The novelty of our approach lies in the

combination of segment-based delta debugging and backward dynamic slicing to narrow

the search space to produce precise slices for Android. Our experiment across 38 apps

shows that ESDroid can help with slicing buggy code from exception program points.

We compare the effectiveness of ESDroid with the state-of-the-art dynamic slicing tools

(AndroidSlicer and Mandoline). ESDroid outperforms both tools by reporting up to 72%

fewer spurious statements than AndroidSlicer, and 50% fewer than Mandoline in the

resulting slice (the number of instructions to be examined).
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4.1 Introduction

Program slicing [170] collects the program statements that affect the values computed

at some point of interest (i.e., a particular statement or variable, often referred to as a

slicing criterion). While static slicing evaluates all possible program paths leading to the

slicing criterion, dynamic slicing concentrates on one concrete execution for the given

input [19]. Due to Android’s event-driven nature, slicing for Android is more challenging

than that for traditional Java programs. Its asynchronous events drive the execution

of an app through Inter-Component Communication (ICC). In addition, the Android

framework supports the event queue mechanism to schedule and execute a user event.

Due to arbitrary user interactions, adding an event to and dispatching another from the

queue is non-deterministic. Such an event-driven system makes debugging and fault

localization more complicated than traditional Java programs.

Static slicing techniques perform on a program dependence graph (PDG); the nodes

of the PDG represent statements or a basic block, and the edges correspond to data or

control-dependences between nodes [88]. Specifically, a directed data dependence edge

Si
d−→ S j means any computation performed in Si depends on the computed value at node

S j. A control dependence edge Si
c−→ S j indicates that the decision to execute Si is made

by S j, that is, S j contains a predicate whose outcome controls the execution of Si. The

dynamic PDG, which is a subgraph of the static PDG [60], consists of only those nodes

and edges that are exercised during a particular run. Precisely, a dynamic slicing tool

first collects an execution trace of a program by instrumenting the program. Then, the

tool checks the control and data dependences of the trace statements, determining state-

ments that affect the slicing criterion and omitting the rest. The dynamic slices are more

compact than static ones, making them suitable for debugging activities [19] [18] [104],

program understanding [169] [170], change impact analysis [24], regression test suite

reduction [73], and fault localization [20]. However, dynamic slicing may include redun-
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class SiliCompressor extends Activity {
int width=1;
int height=1;

void widthDecrementClick(View view){
width=width-1;
TextView wt = (TextView)findViewById(R.id.width);
wt.setText(width+"");

}
void heightDecrementClick(View view){

height=height-1;
TextView ht = (TextView)findViewById(R.id.height);
ht.setText(height+"");

}
void compressImageClick(View view){

int maxRatio = width/height;
}

}

1
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(a) App code.
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(d) A randomly generated sequence of user click events.

(e) Stack trace.

java.lang.ArithmeticException: divide by zero
at com.i.sc.SiliCompressor.compressImageClick(SiliCompressor.java:15)

Figure 4.1: Our Motivation. SiliCompressor app. ArithmeticException has thrown while
the program attempted to divide by zero.

dant statements if we do not consider input events, especially in Android apps with an

event-driven nature. Specifically, redundant events with executed statements that do

not affect the point of interest can lead to bigger slice with redundant statements.

Existing Efforts and Limitations. Basically, a backward slice identifies those
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statements that affect the point of interest (i.e., a particular statement or variable, often

referred to as a slicing criterion), and a forward slice identifies those statements that are

affected by the point of interest. Specifically, the backward dynamic slice at instruction

s concerning slicing criterion 〈t, s,value〉 (where t is a timestamp) consists of executed

instructions with a direct or indirect effect on value. More precisely, the transitive

closure over dynamic data and control-dependences in the PDG starts from the slicing

criterion. The primary goal of dynamic slicing is to produce a precise PDG that excludes

as many spurious nodes and edges as possible while soundly preserving the true buggy

statements relevant to the bug-triggering point under a specific program input.

However, these traditional dynamic slicing approaches are inadequate for Android

apps, yielding unsound outcomes (unaware of Android’s ICCs) or imprecise results

(many redundant Android events taken as inputs). Specifically, the input event sequence

impacts the slicing size for Android apps. In this work, we focus on addressing this

challenge, contributing an effective solution for slicing Android mobile apps by isolating

the failure-inducing event sequence. Android slicing was already attempted in the tools

called AndroidSlicer [23] and Mandoline [22]. AndroidSlicer presents asynchronous

callback constructions for control- and data-dependences by defining callbacks as nodes

containing other nodes (i.e., instructions) or a supernode. Mandoline enables tracking

data propagation via object fields with low-overhead instrumentation and claims slicing

accuracy for Android applications. Since Mandoline focuses on data-dependences by

proposing an inter-callback dependency graph, there is no clear explanation for ICC,

lifecycle stages, or control-dependences among callbacks. Moreover, both AndroidSlicer

and Mandoline do not consider the input (i.e., a sequence of user events) for debugging

and still suffer from many redundant or bug-irrelevant nodes on its slice when analyzing

real-world apps. The inputs of an Android app are inherently complex (in the form of

a wide variety of user events), and the slicing results are sensitive to Android events
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and their execution order. Hence, the inputs are crucial for precise slicing in Android.

This work aims to investigate, for the first time, an event-aware slicing approach by

simplifying Android’s input events to produce more precise slicing results.

Consider, for example, the SiliCompressor app in Figure 4.1. SiliCompressor1 is a

Video and Image compression library for Android with 1200 stars in GitHub. It provides

a demo app for illustrating its functionality. The code of the app was simplified for

illustration purposes. We also discuss the example and the slicing algorithm at the

source-code level for simplicity. At the same time, our solution can process apps at

the bye-code level, even when no source code is available. Figure 4.1a is the simplified

app code of SiliCompressor, and Figure 4.1b is the slice produced by AndroidSlicer.

Figure 4.1c shows the activity state changes when the user clicks the event sequences

shown in Figure 4.1d. Figure 4.1d is the randomly generated event sequence that makes

the app fail with ArithmeticException: divide by zero. Figure 4.1e is the stack

trace. In our example app, the method widthDecrementClick of SiliCompressor class

(Lines 4-8) is called when the user clicks “-” for width. This method decreases the value

in width. Similarly, the method heightDecrementClick (Lines 9-13) is called when the

user clicks “-” for height. This method decreases the value in height. If the user clicks

“COMPRESS”, the method compressImageClick (Lines 14-16) is called. This method

calculates maxRatio by dividing width by height.

The app fails when the user decreases the value of height to zero and calculates for

maxRatio, making “divide by zero”, which leads to the ArithmeticException (Line 15).

Regardless of the integer value in the object of width, if the value in the object of height

is zero, the ArithmeticException: divide by zero will be thrown. Consequently, in

the randomly generated event sequence, only two click events (i.e., E299KE3) are failure-

inducing events. Only the statements of the callbacks (i.e., heightDecrementClick,
1https://github.com/Tourenathan-G5organisation/SiliCompressor, https://github.com/Tourenathan-

G5organisation/SiliCompressor/issues/10
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Figure 4.2: Overview architecture of ESDroid

and compressImageClick), enabled by the failure-inducing events, affecting the point

of interest should be in the resulting slice. Specifically, a slice from the faulty line

can help narrow down the program execution only to code relevant to the failure, e.g.,

omitting the code dealing with width (Lines 4-8). However, the state-of-the-art tools

(i.e., AndroidSlicer [23] and Mandoline [22]) do not consider the input events and include

spurious slices, resulting in a larger slice and search space. Thus, it leads to time-

consuming tasks for developers. In our approach, to address this problem, we isolate the

failure-inducing events by using delta-debugging before backward dynamic slicing.

Insights and Challenges. A typical technique to simplify a test input is delta-

debugging, which systematically breaks down the original test input into smaller se-

quences until a minimal failure-inducing sequence is found [186]. The delta-debugging

has been used in dynamic program slicing to narrow down the search space for faulty

code in non-event-based programs [72]. The delta-debugging also has been used to sim-

plify the trace for Android events [47] [92]. These techniques work purely on test inputs,

treat an app as a black box and do not perform code analysis on Android bytecode or

source code. Thus, their end goal is not dynamic slicing whose objective is to extract

precisely the control- and data-dependence at bytecode level. How to incorporate and

simplify the input events to obtain sound and precise dynamic slices for Android apps

using a slicing criterion remains an open research question.

Our Solution. This work presents ESDroid, an Event-Aware precise dynamic Slicing

approach for Android by introducing segment-based delta-debugging into backward dy-
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namic slicing. ESDroid first simplifies program inputs (i.e., the third phase in Figure 4.2)

when exercising Android apps before backward dynamic slicing (i.e., the fourth phase

in Figure 4.2). Thus, ESDroid significantly reduces spurious nodes and edges on the

dynamic PDG. Specifically, ESDroid reduces the event sequence (i.e., program inputs) by

using segment-based delta-debugging and then applies the backward dynamic slicing.

For dynamic slicing, ESDroid builds control and data dependence at both the instruction

and event levels (i.e., the fourth phase in Figure 4.2). ESDroid aims to find a sub-set

of slices produced by the state-of-the-art dynamic slicing technique AndroidSlicer. Our

approach yields a more compact and precise slice than AndroidSlicer through input

events reduction to isolate bug-relevant events further while soundly capturing the same

bug reported by the original event sequence.

Figure 4.2 gives an overview of our approach consisting of four major phases. In the

first phase, ESDroid conducts instrumentation on the target app to log the execution his-

tory so that ESDroid can track UI events plus the underlying methods and instructions

in each activity. To record the number of events triggered and construct the dependences

among events, ESDroid appends eventID to the timestamp and the information of exe-

cuted instructions [23]. Note that we use the timestamp only for the node (instruction)

creation, which is important for detecting dynamic data dependences [169] and distin-

guishing between objects created at the same allocation site. Section 4.3.1 describes this

in detail. In the second phase, ESDroid applies Monkey-style stress testing to generate

random event sequences to exercise an app to trigger a crash/exception. To avoid the

modification of Monkey files [92] in the device, we implement a Python program that

supports different device versions using MonkeyRunner2 to generate random events.

The third and fourth phases together form our main contribution (as highlighted in

Figure 4.2). The third phase accepts a failure-inducing sequence of events (FSoE) and

removes the redundant and/or irrelevant events to produce a minimum failure-inducing
2https://developer.android.com/studio/test/monkeyrunner
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sequence of events (∆FSoE). To get the shortest event sequence, ESDroid adopts two

strategies; (1) Divide and Conquer and (2) Complement. Section 4.3.3 describes this

in detail. The final phase conducts dynamic slicing using ∆FSoE as the input and

produces a precise dynamic slice based on the slicing criteria against the static PDG.

We have evaluated ESDroid using 38 real-world apps. Our results show that ESDroid

outperforms AndroidSlicer in terms of precision by reporting up to 72% ( 27% on average)

less execution of false instructions (i.e., Jimple instructions) on the slices (i.e., dynamic

PDG).

In summary, this work makes the following contributions:

• We present ESDroid, a new event-aware dynamic slicing technique for simplifying

inputs for Android apps.

• We present how to apply delta-debugging in dynamic slicing to yield a more precise

and compact PDG while capturing the same bugs as the state-of-the-art tools

AndroidSlicer, and Mandoline.

• We have implemented ESDroid and evaluated it using 38 real-world apps against

AndroidSlicer, and 10 apps against Mandoline. The results show that ESDroid

outperforms AndroidSlicer and Mandoline by reducing redundant nodes (i.e., up

to 72% fewer than AndroidSlicer, and 50% fewer than Mandoline) on the dynamic

PDG while maintaining all relevant nodes on the PDG. The evaluation data and

the source code for ESDroid are publicly available ( GitHub3, Zenodo4).

4.2 A Motivating Example

This section uses an example bug found in a SiliCompressor from GitHub shown in

Figure 4.3, as our motivating example. We aim to highlight the important insights and
3https://github.com/hsumyatwin/ESDroid-artifact
4https://doi.org/10.5281/zenodo.7074680
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class SiliCompressor extends Activity {
int width=1;
int height=1;

void widthDecrementClick(View view){
width=width-1;
TextView wt = (TextView)findViewById(R.id.width);
wt.setText(width+"");

}
void heightDecrementClick(View view){

height=height-1;
TextView ht = (TextView)findViewById(R.id.height);
ht.setText(height+"");

}
void compressImageClick(View view){

int maxRatio = width/height;
}

}
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(a) App code abstracted from SiliCompressor.
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(b) Slice produced by AndroidSlicer for the exception (i.e., ArithmeticException: divide by zero).
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(c) Slice produced by ESDroid for the same exception (i.e., ArithmeticException: divide by zero).

Figure 4.3: A motivating example (i.e., SiliCompressor app). ArithmeticException has
thrown while the program attempted to divide by zero. The reduction process for event
sequences in Table 4.1.
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motivate our design decisions. We explain the typical challenge (i.e., if more events

are triggered, the larger searching space occurs.) faced by the traditional debugging

techniques. Figure 4.3a gives the code fragment of the demo app. Figure 4.3b shows

a randomly generated sequence of user click events (i.e., FSoE) which triggers an

ArithmeticException at Line 15 and the slice produced by AndroidSlicer. Specifi-

cally, widthDecrementClick callback is invoked upon clicking “-” for width on app

screen. The callback heightDecrementClick is invoked when clicking “-” sign for height.

compressImageClick is invoked upon clicking on “COMPRESS”. Figure 4.3c shows the

simplified failure-inducing event sequence (i.e., ∆FSoE) and the slice produced by ES-

Droid. While AndroidSlicer has three click events and 9 nodes (i.e., statements), ESDroid

has two click events and 6 nodes. The original click event sequence and the simplified

one both trigger the same ArithmeticException. This is because the app will always

crash if height at Line 15 represents a zero value.

Although there are three click events in total for the original event sequence, only

the last two click events (i.e., heightDecrementClick and compressImageClick) are the

failure-inducing events. Thus, the dynamic slice should only include program statements

of these two events affecting the point of interest. Specifically, the resulting dynamic slice

should contain only Lines 2, 3, 10, 11, 12, and 15 shown in Figure 4.3c. With a thinner

slice, the developer will have fewer buggy lines to inspect, which helps reduce the time

and effort in debugging process. Moreover, the shorter event sequence saves developers

time in validating the app’s behavior.

Table 4.1 demonstrates that ESDroid can successfully identify this failure-inducing

event and remove other unrelated occurrences. Compared with the state-of-the-art

dynamic slicing approach AndroidSlicer, ESDroid can produce a much smaller but

more precise backward slice (with only six rather than nine statements) starting from

the exception point. Specifically, our reduction process performs by producing FSoE,
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simplifying FSoE, and conducting backward dynamic slicing after instrumenting the

SiliCompressor app.

4.2.1 Producing FSoE

To produce the event sequence that makes the app crash, ESDroid exercises the instru-

mented app by applying Monkey-style stress testing on it with randomly generated

events until a crash is triggered. We select a scenario where after exercising three click

events, the application failed with an ArithmeticException. This error occurs because

the program attempted to divide by zero value. ESDroid records the executed instructions

together with this failure triggering point into the trace file.

4.2.2 Simplifying FSoE

Our goal is to reduce the size of the event sequence, which triggers an exception, and to

produce a more precise and compact program slice. ESDroid gradually removes some

redundant events from the event sequence using segment-based delta-debugging. This

is done iteratively by exercising a sub-sequence of events on the instrumented app to

check which runs can produce the same exception. Table 4.1 illustrates the iteration

process for the motivating example. The first column describes the number of iterations,

and the second column records the corresponding click event sequence triggered. The

third column presents the value stored in three integer objects (i.e., width, height, and

maxRatio) at the timestamp once the last click event is triggered. “Test result” holds the

outcome of each test.

Iteration 0 is the original FSoE. In Iteration 1, we divide the FSoE into two sub-

sequences. The first sub-sequence contains E1 while the second sub-sequence includes

E2, and E3. The testing is first conducted for the last sub-sequence (E299KE3) because the

sub-sequence which includes the last event of FSoE has a higher chance of triggering
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Table 4.1: Iteration process of simplifying FSoE for Figure 4.3 - Motivating Example.

Ite-

rat-

ion

Sequence of events

Value stored in the object at
the timestamp once after the
last event is triggered.

Test
result

Remarks

width height maxRatio

0 E199KE299KE3 0 0 Arithmetic-
Exception

fail Original FSoE.

1
E299KE3 1 0 Arithmetic-

Exception
fail

Divide the original
event sequence (i.e.,
FSoE) into two sub-
sequences and test
the last sub-sequence
(E299KE3) and the
test failed. Bring the
failed sub-sequence.

E1 - - - -

2
E3 1 1 1 pass

Divide the last failed
event sequence into
two sub-sequences
and test both sub-
sequences. The
reduction finished
with 1-minimal event.
The latest test which
made the app fail is
∆FSoE (E299KE3).

E2 1 0 - pass

the bug [92]. Since the second sub-sequence makes the app crash (i.e., the app crashes

with the same stack trace of the original FSoE), we start the next iteration with the

second sub-sequence. We take the result as “fail” if the event sequence triggers the same

bug with the same stack trace. We describe details in Section 4.3.3. Note that, in our

approach, once we find the event sequence, which causes the app to fail, we start the

next iteration with the last failed event sequence.

In Iteration 2, we divide the failed event sequence of Iteration 1 into two sub-

sequences, and each sub-sequence includes one event (i.e., the first sub-sequence contains

E2, and the second sub-sequence contains E3). Both sub-sequences make the test pass (i.e.,

no bug is triggered), and the reduction process also reaches 1-minimal. The simplified
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event sequence (i.e., ∆FSoE) is generated with two events at Iteration 1 (i.e., E299KE3).

ESDroid can safely exclude the redundant click event (i.e., widthDecrementClick). For-

mally, we define the property as n-minimality: removing up to n events causes the

failure to disappear. Suppose s is |s|-minimal, then s is the minimal number of removed

event/s. A failure-inducing event sequence s composed of |s| events would be 1-minimal

if removing any single event would cause the failure to disappear.

4.2.3 Backward Dynamic Slicing

To obtain the executed instructions that affect the value of maxRatio, we perform back-

ward dynamic slicing on both the original test case (i.e., FSoE) and the simplified test

case (i.e., ∆FSoE). The criteria we used are (1) the timestamp when the exception is

thrown, (2) the object holding error (maxRatio at Line 15), and (3) the instruction at

Line 15 accessing this object. As shown in Figure 4.3b, for the original event sequence

with the three click events produced by AndroidSlicer, the slice has 9 lines (Lines 2, 3,

5, 6, 7, 10, 11, 12, and 15) from the program’s entry to the program failure point (the

point of interest). Figure 4.3c shows that the slice has 6 lines (Lines 2, 3, 10, 11, 12,

and 15) with a simplified sequence of events (i.e, ∆FSoE). ESDroid forms the smaller

slice with six statements by capturing the bug triggering point at Line 15 and the root

cause of the error. We observed that nodes on the original PDG (Lines 5, 6, and 7) are not

required to be examined while determining the source of error; thus, they are irrelevant

to the slicing criteria and irrelevant to include them in the slice. AndroidSlicer includes

these counterfeit nodes because it slices all the executed instructions affecting the failure

point based on the original sequence of events, provided there are control dependences

and data dependences between these nodes based on the static PDG. Therefore, by

considering input events, ESDroid successfully reduces redundant statements and yields

a more compact and precise program slice than AndroidSlicer.
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4.3 Approach

Figure 4.2 shows the overall workflow of ESDroid. Given an app and a slicing criterion,

ESDroid generates a reduced dynamic slice to identify the faulty code block. ESDroid

consists of four phases. First, we instrument an app with each of its bytecode instructions

shadowed with another instruction for runtime bookkeeping. In the second phase, ES-

Droid runs the instrumented app and extracts the event sequence that triggers a crash

(we call this sequence Failure-inducing Sequence of Events (FSoE)). After producing the

FSoE, we perform delta debugging to obtain a minimized FSoE. Finally, ESDroid con-

ducts the dynamical slicing to capture control- and data dependence at both instruction

and event levels by incorporating the reduced FSoE to produce a more precise dynamic

slicing than the state-of-the-art.

4.3.1 Instrumentation

Before running an Android app, ESDroid performs lightweight instrumentation on the

app to collect information on which events are triggered and which statements are

executed during runtime. Specifically, ESDroid instruments the app to produce the trace,

which includes the executed instructions, the information of intent creation, and callbacks.

We use Soot [163] to perform instrumentation, and a new Jimple instruction is injected

for every application instruction to record the execution trace. The inserted instruction is

responsible for bookkeeping the executed application instruction information, including

its line number, corresponding class name, and method name. To construct the call graph

of an Android app, we use FlowDroid [31] by considering the Android’s event-based

life cycle. For each node (i.e., program method) on the call graph, we use EventID to

differentiate Android events. Note that though all the dynamically executed instructions,

including those in the framework, are recorded in our execution log, these framework

instructions do not manifest in the application’s dex code when performing our control-
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and data dependence analysis. Our dynamic slicing is performed at the application level.

ESDroid instruments and numbers an Android event with its corresponding eventID.

ESDroid records the execution information based on the following format.

• Timestamp - time when the particular instruction runs.

• Data - eventID, program line number, class name, event name, and the instruction

including objects if available.

Note that, we use eventID to record the number of events triggered for Section 4.5.2

and construct the dependences among events. The program line number is to map back

the Jimple instruction to the program statement to check the quality of the slice in

Section 4.5.5.

Example 1. The following shows a part of the execution trace after running the instru-

mented SiliCompressor app (i.e., the motivating example). In this recorded trace, for

Line 15 in Figure 4.3, we use a separator _ to denote different types of data. Specifically,

09-21 00:23:51.027 represents the timestamp, ID4 is an auto-incremental unique num-

ber for a callback, and 15 is the program line number. We also record the class name

com.i.sc.SiliCompressor, the callback name compressImageClick, and the executed

instruction (i.e., Jimple instruction) for Line 15 including the objects $r4 (i.e., maxRatio)

and $r2 (i.e., width) , $r3 (i.e., height).

09-21 00:23:51.027 System.out:ESDroid_ID4_15_com.i.sc.SiliCompressor_comp-

ressImageClick_$r4=$r2/$r3;

4.3.2 Producing FSoE

ESDroid generates random events to exercise the instrumented apps until the program

fails. For example, the event sequence E1 99K E2 99K E3 shown in Table 4.1 triggers an
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exception. While SimplyDroid [92] relies on a modified Monkey for each Android version,

we implement a Python program to be compatible with different device versions using

MonkeyRunner. Specifically, we randomly set the (x, y) coordinate, ranging from zero

to the resolution of the emulator (the maximum height and the maximum width), to

avoid generating out-of-bound values for the coordinate (x, y). Note that this way of

generating event sequences simulates clicks, rotations, and drags, and we currently

do not support other complex events like changing the configuration of the phone. The

maximum number of random events for each run is 5,000. We rerun the app ten times

using a newly generated event sequence (with different seed values) if the previous run

is unable to trigger a bug.

4.3.3 Simplifying FSoE

The goal is to eliminate redundant events irrelevant to a program failure and retain

as few relevant events that trigger the same exception as possible. An event on an

event trace t can be safely removed by our delta debugging to produce a simplified trace

t′ only if t and t′ trigger exactly the same bug, i.e., the same exception error and the

same stack trace. For example, in Figure 4.3, although we removed the event which

triggers widthDecrementClick, the remaining two click events still trigger the same

bug because both the original and reduced event sequences feed the invalid values (i.e.,

zero) in height. The reduction process (i.e., segment-based delta-debugging) is repeated

until ESDroid produces a minimum failure-inducing sequence of events (i.e., ∆FSoE),

which is used for the later dynamic slicing because, with a shorter sequence, it is easier

to find the error in terms of debugging process.

To determine whether the current event sequence is failure-inducing, we use the

outcomes of app testing as the selection criteria. Following are four possible outcomes of

app testing.

43



CHAPTER 4. EVENT-AWARE PRECISE DYNAMIC SLICING FOR AUTOMATIC
DEBUGGING OF ANDROID APPS

• The app exited normally without any crash.

• The app crashed with a different error or exception type.

• The app crashed with the same error/exception type but a different stack trace.

• The app crashed with the same error/exception type, and the same stack trace.

Among the above four possible outcomes, we define the first three outcomes as “pass” and

the last as “fail”. We take the event sequence with a “fail” outcome as a failure-inducing

event sequence, and bring it to the next iteration. To mitigate the problem of flaky tests,

(1) we re-run the event sequence under the same system environment, and (2) instead of

only comparing the test outcome, we compare the test result (i.e., exception /error type)

and stack trace for each iteration with the stack trace of the original FSoE. Note that our

current debugging process requires a crash/exception for delta debugging. In the future,

we will enhance ESDroid to handle non-crashing bugs.

Definition 1 (n-minimal sequence). An event sequence s ⊆ s✗ is n-minimal if ∀s'⊂
s· |s| − |s'| ≤n ⇒ (test(s') ̸= ✗) holds, where ✗ is the fail outcome. Consequently, s is

1-minimal if ∀δi ∈ s· test(s − {δi}) ̸= ✗ holds.

Definition 2 (Granularity). Granularity means the number of sub-sequences that

ESDroid divides the sequence of events into.

Definition 3 (Complement Logic). The relative complement or sequence difference

of sequences A and B, denoted A - B, is the sub-sequences x in A that are not in B. In

notation, A - B = {x ∈ A and x ∉ B}.

ESDroid first divides an FSoE into sub-sequences or so-called segments (sub-sequences

of events) based on granularity (i.e., 2 at the beginning of the reduction process). We

choose 2 as the granularity for the first iteration because there is no fixed value or obvi-

ous formula that could give the best split factor (size or performance-wise), and it could
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Table 4.2: Iteration process of simplifying FSoE for Example 2 (The Divide and Conquer
strategy).

Iter-
ation

Sequence of Events Test
result

Remarks

0 E199KE299KE399KE4 fail Original FSoE.

1
E399KE4 fail

Divide the original event sequence (i.e., FSoE)
into 2 sub-sequences, test the second sub-sequence
(E399KE4). The test failed. Bring forward the failed
sub-sequence to the next iteration.

E199KE2 -

3
E4 fail

Divide the last failed sub-sequence into 2 sub-
sequences and test the last sub-sequence (E4). The
test failed. 1-minimal with failed sub-sequence is
∆FSoE.

E3 -

provide the worst and best-case behavior of the delta debugging process [99]. Moreover,

we intend to reduce the slice, and the fundamental strategy of delta debugging is already

robust and effective enough to obtain a significant reduction rate. In each iteration, ES-

Droid follows either of the two strategies for partitioning FSoE (i.e., the input for testing)

to conduct the testing. One is Divide and Conquer, and the other is Complement [186]

based on the results after each iteration. ESDroid applies the Complement strategy once

all sub-sequences do not trigger the same bug and the same stack trace with the original

event sequence. Otherwise, ESDroid uses the Divide and Conquer strategy to narrow

down the failure-inducing events.

For every iteration, ESDroid triggers the last sub-sequence (i.e., the event sequence,

which includes the last event) first because the last sub-sequence has a higher chance

of triggering the bug [92]. In addition, to reduce the iteration process, once ESDroid

finds the failed event sequence, it terminates the current iteration and starts the next

iteration with granularity 2 for the Divide and Conquer and maximum value between

(current granularity-1) and 2 for the Complement.

Example 2. Table 4.2 shows the process of the Divide and Conquer. For the first itera-

tion, ESDroid divides an FSoE into two sub-sequences (i.e., one with E3 99K E4 and the

45



CHAPTER 4. EVENT-AWARE PRECISE DYNAMIC SLICING FOR AUTOMATIC
DEBUGGING OF ANDROID APPS

Algorithm 1: Simplifying failure-inducing sequence of events (FSoE). Input: a
list of events FSoE, the stack trace e of FSoE. Output: a list of statements Tf .
1 Tf ←− {};
2 n ←−2;
3 isFailed ←− false;
4 if FSoE.size() ==1 then
5 (isFailed, Tf ) ←− test( FSoE, e);
6 end
7 while FSoE.size() >=2 do
8 S ←− divide FSoE into n sub-sequences S1, S2, S3,..., Sn;// Divide the event sequence

into n (i.e., granularity) sub-sequences equally. If the number of events in the sequence could
not make sub-sequences equally, we favor the last sub-sequence to have one more event.

9 for each sub-sequence Si in S do
10 if test( FSoE\Si, e) != null then
11 (isFailed, Tf ) ←− test( FSoE\Si, e);
12 end
13 if isFailed then
14 FSoE ←− FSoE\Si;
15 n ←− max(n - 1, 2);
16 break;
17 end
18 end
19 if !isFailed then
20 if n == FSoE.size() then
21 break;
22 end
23 n ←− min(2n, FSoE.size());// Increase granularity and start Complement strategy
24 end
25 isFailed ←− false;
26 end
27 return Tf ;

Procedure: test(list of events St, stack trace e)
28 if St triggers the app crash then
29 x ←− dumpStack();// print stack trace of crash
30 if e == x then
31 Tf ←− logcat();// get all executed program statements
32 return (true,Tf );
33 end
34 end
35 return null;
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Table 4.3: Iteration process of simplifying FSoE for Example 3 (The Complement strategy).

Iter-
ation

Sequence of Events Test
result

Remarks

0 E199KE299KE399KE499K
E599KE699KE799KE8

fail Original FSoE

1
E599KE699KE799KE8 pass

Divide the original event sequence (i.e., FSoE)
into 2 sub-sequences and test both sub-sequences
and both passed. Increase the granularity from
2 to 4.E199KE299KE399KE4 pass

2
E399KE499KE599KE699K
E799KE8

fail
Divide the last failed event sequence into 4 sub-
sequences and test the complement of last sub-
sequence (E399KE499KE599KE699K E799KE8).
The test failed. Bring the failed complement to
the next iteration with granularity 3 (i.e., max(4-
1,2)).

E199KE299KE599KE699K
E799KE8

-

E199KE299KE399KE499K
E799KE8

-

E199KE299KE399KE499K
E599KE6

-

3
E599KE699KE799KE8 -

Divide the last failed event sequence into 3 sub-
sequences and skip the first complement (i.e.,
the second sub-sequence of iteration 1) and test
the second complement (E399KE499KE799KE8).
The test failed. Bring the failed complement to
the next iteration with granularity 2 (i.e., max(3-
1,2)).

E399KE499KE799KE8 fail

E399KE499KE599KE6 -

4
E799KE8 pass Divide the last failed event sequence into 2

sub-sequences and test both complements. Both
passed. Increase the granularity from 2 to 4.E399KE4 pass

5
E499KE799KE8 pass

Divide the last failed event sequence (i.e., second
complement of iteration 3) into 4 sub-sequences
and test all complements. All passed. Termi-
nate the reduction process since 1-minimal sub-
sequence is tested. The latest test which made
the app fail is ∆FSoE (E399KE499KE799KE8).

E399KE799KE8 pass

E399KE499KE8 pass

E399KE499KE7 pass

other with E1 99K E2). We first test for the last sub-sequence (i.e.,E3 99K E4). Since E3 99K

E4 triggers the bug, ESDroid uses it as input for the next iteration. At Iteration 2, ESDroid

divides the latest sub-sequence, which makes the app fail, into 2 sub-sequences (i.e., one

with E4 and the other with E3). ESDroid conducts the testing for the last sub-sequence first

(E4) and the program fails. Since ESDroid iterates the reduction process until 1-minimal
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sub-sequence, it terminates the process and E4 is the event that is responsible for program

failure (i.e., ∆FSoE). Note that the granularity for the Divide and Conquer is 2 for every

iteration.

ESDroid adopts the Complement strategy for the next iteration if neither sub-sequence

produces the bug in the current iteration because the smaller sub-sequences and test-

ing the complement of the smaller sub-sequence gives a higher chance of resulting in

program failure [186].

Example 3. Table 4.3 shows the process of the Complement. There are 8 events in FSoE

and the current granularity is 2 (i.e., 2 sub-sequences with 4 events in each sub-sequence).

At Iteration 1, since both sub-sequences are unable to trigger the same bug with the same

stack trace as that of the FSoE, ESDroid increases the granularity from 2 to 4 (i.e., a

minimum value between 8 events of FSoE and 2 times of current granularity). Therefore,

we have 4 sub-sequences with 2 events in each for Iteration 2. We generate the granularity

with two formulas. We use min(2n, FSoE.size()) to increase the granularity if none of

sub-sequences in the same iteration triggers the app to fail. If one or more sub-sequences

trigger the app to fail, we use max(n - 1, 2). Note that we start the next iteration once one

of the sub-sequences in the same iteration makes the app fail. n is the current granularity.

FSoE.size() is the number of events in the current working event sequence (i.e., the latest

event sequence which makes the app fail). For example, 8 events in Iteration 1. We describe

this in detail in Algorithm 1. At Iteration 2, ESDroid tests for the last complement

(i.e., E3 99K E4 99K E5 99K E6 99K E7 99K E8). Since the current complement triggers the

bug, ESDroid brings the current complement to the next iteration which operates with

granularity 3 (i.e., the maximum value between (current granularity-1) and 2). At Iteration

3, ESDroid skips the last complement because it is the same as the second sub-sequence of

Iteration 1 and is tested for the next complement (i.e., E3 99K E4 99K E7 99K E8). ESDroid

terminates the reduction process if the smallest sub-sequence cannot be further reduced
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(i.e., 1-minimal sub-sequence is tested at Iteration 5) and the failure-inducing complement

(i.e., ∆FSoE) is the last event sequence (i.e., E3 99K E4 99K E7 99K E8) which makes the

program fail.

Algorithm 1 describes the process of simplifying FSoE to the following:

• FSoE: A sequence of events which makes the app fail. Initially, it holds the failure-

inducing sequence of events (FSoE) produced by the second phase.

• Tf : A list of executed program statements when the current FSoE triggers an

instrumented APK (i.e., output). Initially empty.

• S: A list of sub-sequences after dividing current FSoE into n (i.e., granularity)

sub-sequences (Line 8). Each sub-sequence includes the same number of events. If

the sequence’s number of events could not equal the sub-sequences, we favor the

last sub-sequence to have one more event.

Given two inputs: (1) an event sequence which makes the app fail (denoted as FSoE)

and (2) the stack trace of FSoE (denoted as e), ESDroid iterates the reduction process

until the count of events in the sequence is greater than or equal to 2 (Line 7) or the

granularity n reaches 1-minimal sub-sequences (Lines 20, 21 and 22). For the case

where no simplification is needed (FSoE has only one event), our approach collects and

returns the log (Lines 4–6). If the number of events in FSoE is greater than one, we

divide the event sequence into n (i.e., granularity) sub-sequences equally at Line 8. If the

number of events in the sequence could not make sub-sequences equally, we favor the

last sub-sequence to have one more event because the last sub-sequence which includes

the last event of FSoE has a higher chance of triggering the bug [92]. For example, if the

event sequence has three events and the granularity is 2, we split one event for the first

sub-sequence and two events for the second sub-sequence.
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Note that, for the first iteration, the granularity is 2 (Line 2). We select 2 as the

granularity for the first iteration because there is no fixed value or obvious formula that

could give the best split factor in terms of size or performance-wise, and it could provide

the worst and best-case behavior of the delta debugging process [99]. Moreover, we

intend to reduce the slice, and the basic strategy of delta debugging is already reasonable

and practical enough to obtain a considerable reduction rate. ESDroid then extracts

the complement of the current sub-sequence (Note that, since there are only two sub-

sequences for the Divide and Conquer approach, the complement of one sub-sequence

is the other sub-sequence) and conducts the testing (Lines 10–12) (Lines 28–35). If the

current complement makes the program fail with the same stack trace e, we keep the

trace log including the executed statements as the latest (i.e., the output Tf ) (Lines 31,

11) and update FSoE with the current complement (Line 14). The algorithm stops using

the Divide and Conquer strategy and starts using the Complement strategy once none

of the sub-sequences in the same iteration triggers the bug with the same stack trace

(Line 23). We describe details in Example 4. Adjusting granularity n is done at Line

15 for the test failed. For example, (1) For the Divide and Conquer, the granularity is

2 (i.e., 2 = max (2-1,2)). (2) For the Complement, if the current granularity is 4 (i.e., 4

sub-sequences in FSoE for current iteration), granularity for next iteration is 3 (i.e., 3 =

max(4-1,2)) because FSoE is updated with the current complement (i.e., 3 sub-sequences).

Suppose all complements are unable to make the program fail. In that case, increasing

granularity n is done at Line 23 (i.e., a minimum between 2 times of current granularity

and count of events in current FSoE). Note that if the null value returned for Tf at the

end of the algorithm, ESDroid stops at the current phase (i.e., Phase 2) because there is

no input for the next phase (i.e., Phase 3). However, according to our experiment, none of

the traces for all experiment apps is empty.

Example 4. In this example, we demonstrate how Algorithm 1 handles non-adjacent
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failure-inducing events. Assume that we have an original sequence of events E1 99K E2

99K E3 99K E4 and the smallest sub-sequence that triggers a bug is E1 99K E4 (e.g., E1

changes the state in a way where an exception is raised only when E4 executes). In the

first iteration, the algorithm starts with granularity 2 and we have two sub-sequences

(i.e., E3 99K E4, and E1 99K E2 ). None of them makes the app crash with the same stack

trace. The algorithm then starts using the Complement and divides into smaller sub-

sequences with the granularity 4 (i.e., one event in each sub-sequence) (i.e., Line 23 in

Algorithm 1). In the second iteration, we test the complements of each sub-sequence (i.e.,

E2 99K E3 99K E4, E1 99K E3 99K E4, E1 99K E2 99K E4, and E1 99K E2 99K E3). Although

all complements that include E1, E4 could make the app crash with the same stack trace,

our algorithm takes the first failure (i.e., the second complement (E1 99K E3 99K E4)). It

starts the next iteration with the granularity 3 and one event in each sub-sequence (Line

15 in Algorithm 1). In the third iteration, we operate the complement of each sub-sequence

(i.e., E3 99K E4, and E1 99K E4) and the second complement (E1 99K E4) makes the app

crash. The algorithm starts the next iteration with the granularity 2 for the latest failed

complement (E1 99K E4) and one event in each sub-sequence (one sub-sequence includes

E1, and another one includes E4.) (Line 15 in Algorithm 1). In the fourth iteration, none

of them makes the app crash and the algorithm exits since it reaches 1-minimal (Line

21 in Algorithm 1). Therefore, the latest failure-inducing event sequence (i.e., E1 99K E4

at the third iteration) is the simplified failure-inducing event sequence (i.e., ∆ FSoE). In

this way, the algorithm extracts the minimal failure-inducing events (i.e., E1, and E4) for

non-adjacent failure-inducing events.

4.3.4 Backward Dynamic Slicing

This phase conducts the backward dynamic slicing for the reduced event sequence

(∆FSoE), which triggers a bug. Our dynamic slicing captures two levels of control- and
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data-dependence at both the program statement and event levels to leverage the event

information from the inputs. Our dynamic slicing is done by producing a subgraph of

the static PDG by considering only the control- and data-dependence of the executed

statements and their related activities. The following describes the common notation:

d−→ Data dependences.
c−→ Control dependences.

Sit The instance of instruction Si at time t.

Ei The event triggered while i represents the event’s ID.

Data-dependence. There are two data-dependence levels, i.e., the data-dependence

between the program statements and the data-dependence between events. As shown

in Figure 4.4, at Line 5, a statement S2t utilizes the same object o1 which is defined at

Line 3 in S1t and S2t is data-dependent on S1t at time t.

1 c lass Act1 extends Act iv i ty {
2 onClick 1 ( . . . ) { / / E1
3 o1 = 1 ; } / / S1t
4 onClick 2 ( . . . ) { / / E2
5 o2 = o 1 + 2 ; } / / S2t }

S2t
d−→ S1t

E2 d−→ E1

Figure 4.4: Data dependence.

Example 5. To illustrate the data dependences in our approach, let us revisit the example

in Figure 4.3c. The slice of maxRatio at Line 15 includes nodes 2, 3, 10, 11, 12, and

15 because maxRatio is defined with the value of width, and height at Line 15, and where

width is defined with the int value 1 at Line 2. Similarly, height is defined with the

int value height−1 at Line 10 in heightDecrementClick. Therefore, node 15 is data

dependent on node 2, and node 10. The same approach applies to nodes 3, 11, and 12.

For data dependence among the events, as shown in Figure 4.4, event E2 (onClick2

at Line 4) is data-dependent on event E1 (onClick1 at Line 2) because instruction S2t
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in E2 is data-dependent on S1t in E1. But, only because object o2 used in S2t (Line 5)

depends on object o1 defined in S1t (Line 3) at that t time.

Example 6. In our motivating example in Figure 4.3, if widthDecrementClick, and

heightDecrementClick are triggered before triggering compressImageClick, compress-

ImageClick is data-dependent on both widthDecrementClick, and heightDecrementCl-

ick via width, and height respectively. The slice in Figure 4.3c contains node 12 because

compressImageClick is data-dependent on heightDecrementClick via height.

1 i f ( condit ion ) { / / S3t
2 System . out . pr int ln ( " True " ) ; / / S4t } S4t

c−→ S3t

3 c lass Act3 extends Act iv i ty {
4 onCreate ( . . . ) { / / E3
5 i = new Intent ( this , Act 4 . c lass ) ;
6 s tar tAc t iv i ty ( i ) ; } }

7 c lass Act4 extends Act iv i ty {
8 onCreate ( . . . ) { } } / / E4

E4 c−→ E3

9 c lass Act7 extends Act iv i ty {
10 onCreate ( . . . ) {
11 i = new Intent ( this , Act 8 . c lass ) ;
12 s tar tAc t iv i ty ( i ) ; }
13 onPause ( . . . ) { } } / / E7

14 c lass Act8 extends Act iv i ty {
15 onCreate ( . . . ) { } } / / E8

E8 c−→ E7

Figure 4.5: Control dependence.

Control-dependence. As with data-dependence, there are two levels of control de-

pendence at the levels of instruction and event. For the former, as in Figure 4.5, if an

instruction S4t at Line 2 is executed upon only the evaluation result of S3t at Line 1, S4t

is control-dependent on S3t. To clarify, the value of condition (i.e., the predicate) at S3t

determines the execution of S4t. In other words, if S3t can alter the program’s control

and it determines whether S4t executes [60]. Examples of statements that can alter the

control are if and while.
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Because of Android’s life cycle nature, unlike traditional Java, for control dependence

among events, there are two ways to determine the execution of another callback by a

callback.

1. Direct-control dependence: A component’s event directly determines the execution

of another event via an initialized object. For example, as shown in Figure 4.5

(Lines 3–8), onCreate of Act3 has triggered the activity (i.e., initialized object Act4)

context transitions via startActivity at Line 6 and the execution of onCreate of

Act4 (i.e., E4) is directly controlled by onCreate of Act3 (i.e., E3). Therefore, E4 is

direct-control-dependent on E3 (i.e., E4 c−→ E3).

2. Lifecycle-control dependence: An event of a component initiates the execution of

another component’s event because of Android’s component lifecycle. For example,

as shown in Figure 4.5 (Lines 9–15), onPause of Act7 (i.e., E7) determines the

execution of onCreate of Act8 (i.e., E8) by completing itself because E8 will not be

invoked until E7 returns. Therefore, E8 is control-dependent on E7 because of the

lifecycle (i.e., E8 c−→ E7);

Based on the control- and data dependence, ESDroid builds PDG. ESDroid then

maps the executed statements in the simplified trace ∆FSoE to the static PDG by

conducting a backward dynamic slicing. ESDroid finds all the associated control- and

data-dependence statements on the PDG based on a slicing criterion 〈t, s, o〉, where t is

a specified timestamp, s is an error node (an executed instruction) occurring at t, and

o is a sequence of objects holding an error at the node s. Same as AndroidSlicer, the

extracted control- and data- dependence slices are at the application level (manifest in

the application’s dex code generated by Soot [163]) when reporting to users.

Algorithm 2 illustrates our backward dynamic slicing with the data structure;
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Algorithm 2: Backward Dynamic Slicing. Input: an Apk apk, a list of state-
ments Tf , the position idx which is the point of interest in Tf . Output: a list of
statements Sl.
1 Sl ←− ø;
2 isSlice ←−true;
3 while idx>=0 do
4 for each Object o defined at Tf [idx] do
5 if PDGDD .contains(o) then
6 isSlice ←−true;
7 break;
8 end
9 end

10 if PDGCD .contains(Tf [idx]) then
11 isSlice ←− true ;
12 end
13 if isSlice and !Sl.contains(Tf [idx]) then
14 Sl.add(Tf [idx]);
15 end
16 if isSlice then
17 for each Object o used in Tf [idx] do
18 PDGDD .add(o);
19 end
20 end

// check Tf [idx-1] contains a predicate whose outcome controls the execution of Tf [idx]
21 if isSlice and isCD(Tf [idx],Tf [idx-1]) then
22 PDGCD .add(Tf [idx-1]);
23 end
24 if isSlice and Tf [idx]’s method m is callback then

// add the last statement of callback which initiates m
25 PDGCD .add(getS(apk,m));
26 end
27 idx ←− idx-1;
28 isSlice ←−false;
29 end
30 return Sl;

• Tf : A list of executed statements when ∆FSoE is triggered on an instrumented

APK.

• idx: An integer that is the location of the error instruction in Tf (i.e., the last index

of Tf for the app crash because the last index holds the failure point, which is the

point of interest).

• Sl: A list of executed statements affecting the point of interest (i.e., the output).
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Initially empty.

• PDGCD : A list of nodes, which is a dynamic control dependence graph. Initially

empty.

• PDGDD : A list of objects which is a dynamic data dependence graph. Initially

empty.

Given three inputs; (1) instrumented apk (denoted as apk), (2) a trace file (denoted

as Tf ) including the list of statements executed while ∆FSoE is triggered, and (3) the

index of Tf (denoted as idx) in which an executed statement with the object holding

error occurs at the particular timestamp, ESDroid slices the executed statements (i.e.,

the output of slicing process), denoted as Sl, affecting the point of interest until the app

entry point. Note that the pre-conditions of the algorithm are (1) Tf cannot be the empty

set, and (2) idx must be a valid index. We sorted the executed statements according to

the executed order in the execution trace because we use the trace log as input (i.e.,

Tf ) that includes the execution trace. Constructing PDG (denoted as PDGDD for data

dependence and PDGCD for control dependence) is done dynamically at Lines 18, 22

and 25 with the help of static PDG. Specifically, ESDroid collects all the used objects in

the working node (i.e., checking data dependence) at Lines 16–20. To list the nodes for

control dependence, isCD checks whether the execution of the current working node (i.e.,

the node located at the current index idx of Tf ) (denoted as Tf [idx]) is determined by

the previous node (denoted as Tf [idx-1]) for instruction-level control dependence (Lines

21–23). Particularly, isCD examines if the node located at Tf [idx-1] contains a predicate

whose outcome controls the execution of the node located at Tf [idx]. ESDroid further

checks for event-level control-dependences and, it appends PDGCD with the last node

of the method which initiates the method of the current working node (Lines 24–26)

with the help of static PDG if the method of the current working node is the callback.

Specifically, getS in the algorithm helps to get the last node of the method that initiates
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the method of the current working node. If ESDroid finds the current working node in

dynamic PDG (i.e., PDGDD and PDGCD) (Lines 4–12), and ESDroid adds the current

working node to the output after checking for duplicated instructions (Lines 13–15). For

example, when the same instruction occurs in the source code but is executed multiple

times, ESDroid also checks whether the current instruction is dependent on previous

occurrences in the output slice.

4.4 Implementation

We describe the implementation details of the four phases in ESDroid as follows:

Instrumentation and Producing FSoE. ESDroid uses Soot [163] to conduct the in-

strumentation to produce our customized logging information. Regarding producing

FSoE, there are several techniques to generate event sequences to exercise Android

apps. Monkey-style stress testing is considered the most robust and popular approach to

exercise an app based on previous literature [46, 140, 187]. For example, a prior study

states that: “researchers found that Monkey (the most widely used tool of this category in

industrial settings) outperformed all of the research tools in the study” [46]. We choose

to implement a Python program that generates random events using MonkeyRunner.

Our program loads the main activity at the beginning. We did not adopt other similar

techniques for generating events, including Android’s built-in Monkey [140] because

log messages originally generated by Monkey were not easily translatable back to the

corresponding adb command. We did not use RERAN [67] because it generates events

from hexadecimal to decimal based on the information obtained from adb getevent,

and cannot reliably reproduce the same sequence of events, especially when the devices’

resolutions are different.

Simplifying FSoE. To simplify FSoE, we have implemented a standalone tool written
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in Java. Our implementation uses the Runtime.exec(String command) method to exe-

cute the Python script with MonkeyRunner to conduct the testing on Android’s emulator.

To compare the testing result of ∆FSoE with that of the original FSoE, the testing result

includes the exception type information, line number, method name, and class name

produced by adb Logcat 5.

Backward Dynamic Slicing. In this phase, we first built the static PDG. There are

two levels of dependency on the static PDG as described in Section 4.3.4, i.e., the event

level that acquires the control- and data-dependence between Android events, and the

method level that captures the dependence between two instructions. For the instruction

level, we used the static PDG generated by Soot. For the event-level, we leveraged

AndroidSlicer’s event-level PDG to produce the final static PDG. Next, our dynamic

PDG was produced by our dynamic slicing algorithm. This includes only the executed

statements of the static PDG based on the slicing criteria when running the instrumented

app under the test input ∆FSoE.

4.5 Evaluation

Existing automated debugging techniques for Android Apps include (1) MZoltar [121]

that uses spectrum-based fault localization, (2) AndroidSlicer that performs dynamic

slicing, (3) Mandoline that evaluates dynamic slicing with alias analysis. We choose to

evaluate our approach on AndroidSlicer and Mandoline because (1) they are publicly

available (we did not evaluate against MZoltar as it is not publicly available), and (2)

they are state-of-the-art slicing techniques for Android Apps. Our experiments aim to

evaluate the effectiveness of ESDroid by (1) comparing the size of the slices it produces

with those produced by AndroidSlicer and Mandoline, and (2) analyzing the quality of

those slices for debugging.
5https://developer.android.com/studio/command-line/logcat
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Table 4.4: Information of buggy apps and exceptions for RQ1, RQ2, RQ3, and RQ4.

App Dex code size (KB) # of Activities Program Version Exception Type Dataset

Addi 656.9 4 1.98 ActivityNotFoundException [155]

Anymemo 8887.5 27 10.9.922 NullPointerException [155], [158]

APV PDF Viewer 63.1 3 0.2.6 NullPointerException [23]

Bankdroid 5199.7 12 1.9.10.6 IllegalArgumentException [155]

Birthdroid 431.1 3 0.6.3 NumberFormatException [155]

Bites 49.9 5 1.3 NumberFormatException [155]

Calculator 2149.3 1 1 NumberFormatException [4]

CampFahrplan 3223.7 7 1.32.2 IllegalArgumentException [155]

Carnet - Notes app 5053 22 0.24.1 NullPointerException [4]

Cowsay 18.7 1 1.3 CalledFromWrongThreadException [155]

DalvikExplorer 521.6 16 3.4 NullPointerException [92]

Fdroid 5860.0 10 0.98 SQLiteException [158]

FishBun Demo 3293 7 0.6.2 NullPointerException [4]

fooCam 514.9 1 2.0
NullPointerException,

SecurityException
[119]

Geometric Weather 4393 14 2.113 ActivityNotFoundException [4]

GnuCash 7948.0 20 2.1.4 IllegalArgumentException [158]

LibreNews 3637.7 2 1.4 ArrayIndexOutOfBoundsException [155]

Linux Deploy 2156 8 2.6.0 IllegalArgumentException [4]

Man Man 3562 2 2.1.0 ActivityNotFoundException [4]

Mitzuli 3329.7 2 1.0.7 BadTokenException [155]

NPR News 17654.3 14 2.4 NullPointerException [23]

OBSSD - OBS Stream Deck 4085 4 1.2.2 IllegalArgumentException [4]

Official Cambridge Guide to IELTS 42848 2 11.3.0.0 IllegalStateException [4]

Olam 715.4 1 1.0
SQLiteException,

StringIndexOutOfBoundsException
[23], [155]

PasswordMaker 331.68 3 1.1.11 NumberFormatException [155]

Ringdroid 607.0 4 2.6 IllegalStateException [92]

Scale Image View Demo 4277 1 4.0 ActivityNotFoundException [4]

Scribbler 20.4 3 0.1.8 IllegalFormatConversionException [155]

SyncMyPic 231.0 8 0.15 NoClassDefFoundError [92]

Tailscale 2008 1 1.8.3 ActivityNotFoundException [4]

Tickmate 591.9 6 1.2.0 CursorIndexOutOfBoundsException [155]

Tippy 88.0 6 1.1.3 ArithmeticException [92]

Transistor 2993.2 3 1.2.3 RuntimeException [155], [158]

TripSit 2311.7 8 1.0 RuntimeException [155]

Vanilla Music 1408 13 1.1.0
CursorIndexOutOfBoundsException,

ResourcesNotFoundException
[4]

WeightChart 541.6 6 1.0.4 ActivityNotFoundException [92]

WhoHasMyStuff 47.3 4 1.0.7 NullPointerException [92]

Yahtzee 27.4 2 1.1 NumberFormatException [92]

4.5.1 Experiment Setup and Methodology

4.5.1.1 Evaluation datasets

We evaluated ESDroid on 41 defects from 38 open-source Android apps for 17 exception

types. These apps cover a wide range of domains as per listed in Table 4.4. Ten of
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these apps, used in previous literature [23, 92], are available at Google Play (i.e., NPR

News, Olam, Addi, Cowsay, PasswordMaker, Tickmate, TripSit, Transistor, Anymemo

and GnuCash). We evaluated on benchmark apps because we need to manually verify

whether the resulting slice includes the bug location. Table 4.4 lists the information

about the evaluated apps. The “Exception Type” column contains information about the

specific type of exception that causes the crash, whereas the “Dataset” column represents

the dataset or Google Play. Overall, the evaluated datasets contain a wide variety of apps

of various sizes (27–17654 KB of Dex code) with 1 to 27 activities. These datasets have

different types of exceptions that lead to crashes. We selected these defects based on the

following criteria:

C1: Apps from different categories

C2: Crashes with different types of exceptions to check whether ESDroid can capture

the bug for different exception types.

C3: Crashes that our random event sequence generation can reproduce in at least one

of the ten runs.

In addition, we ensured that these defects were obtained from the prior evaluation of

analysis techniques of Android apps. Specifically, we evaluated:

• seven apps (i.e., WeightChart, DalvikExplorer, Ringdroid, SyncMyPix, Tippy,

WhoHasMyStuff and Yahtzee) from the previous evaluation of SimplyDroid [92].

• two apps (i.e., APV PDF Viewer, NPR News) from the previous evaluation of An-

droidSlicer [23].

• four apps (i.e., Fdroid, AnyMemo, GnuCash and Transistor) from Droixbench [158].

• one app (i.e., fooCam) from RelFix [119].
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• 13 apps (i.e., Addi, Bankdroid, Birthdroid, Bites, CampFahrplan, Cowsay, Libr-

eNews, Mitzuli, Passw- ordMaker, Olam, Scribbler, Tickmate and TripSit) from

DroidDefects [155].

To evaluate the applicability of our approach beyond these benchmark apps, we further

evaluated on eleven closed-source apps from Google play (i.e., Calculator, Carnet -

Notes app, FishBun Demo, Geometric Weather, Linux Deploy, Man Man, OBSSD - OBS

Stream Deck, Official Cambridge Guide to IELTS, Scale Image View Demo, Tail-

scale and Vanilla Music). We selected these closed-source apps because (1) they are

diverse in terms of size and functionalities, and (2) they contain crashes that can be

triggered without requiring any additional login information.

Specifically, we excluded 10 defects from the previous evaluation of the fault localiza-

tion application in AndroidSlicer and 11 apps from RelFix because (1) the dataset was not

publicly available, and (2) we failed to find the corresponding apps in GitHub. Moreover,

we exclude 10 apps from Droixbench and 13 apps from DroidDefects in our experiments

because (1) these crashes require complex inputs and specific sequences of events that

cannot be generated automatically by our event sequence generation (does not satisfy

C3), and (2) instrumentation failed because Soot fails to parse the apk (i.e., Dex file

overflow error for Android API 22)6. Although ESDroid operates on the apk file and

supports both open-source apps and closed-source apps, we manually analyzed 27 out

of the 38 apps (i.e., apps from the available datasets) to evaluate ESDroid’s correctness

because (1) we checked the fault location in the source code for verification, and (2) the

available datasets have open-source apps.

4.5.1.2 Methodology

We ran the event sequence generation for 10 runs to produce FSoE. Each run was

terminated after all random events (5,000 events) had been triggered, or when a crash
6https://github.com/secure-software-engineering/FlowDroid/issues/61
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Table 4.5: Comparison of the number (#) and the reduction ratio (%) between the original
event sequence and the event sequence minimized by ESDroid to trigger the same
exception. The app marked by * refers to the defect that throws NullPointerException,
the app marked by ** refers to the defect that throws SecurityException, the app
marked by ∼ refers to the defect that throws SQLiteException, the app marked by ∼∼

refers to the defect that throws StringIndexOutOfBoundsException, the app marked
by ˆ refers to the defect that throws CursorIndexOutOfBoundsException, and the app
marked by ˆ r̂efers to the defect that throws ResourcesNotFoundException.

Apps
# of events # of callbacks # of method calls # of instructions Duration

Original ESDroid (%) Original ESDroid (%) Original ESDroid (%) Original ESDroid (%) (seconds)

Addi 19 3 84 58 15 74 4087 3754 8 136938 79722 42 727.62

Anymemo 22 5 77 85 58 31 6602 5695 13 464816 428269 8 5033.99

APV PDF Viewer 4 2 50 5 2 60 57 21 63 948 347 63 21.57

Bankdroid 236 23 90 23 18 21 45348 30926 31 155151 102113 34 9276.45

Birthdroid 1097 14 98 21 21 0 222 220 1 905 893 1 11462.30

Bites 471 8 98 55 14 74 231 58 74 2109 389 82 1439.24

Calculator 59 1 98 43 2 95 117 7 94 34974 8983 74 295.06

CampFahrplan 333 7 97 220 139 36 50618 16188 68 1250075 268769 78 3209.03

Carnet - Notes app 58 6 89 237 218 8 4809 3149 34 398939 223098 44 1755.83

Cowsay 65 1 98 64 10 84 244 112 54 4345 1610 63 366.16

DalvikExplorer 47 6 87 8 3 62 468 159 66 8502 1011 88 148.53

Fdroid 91 3 96 1095 1065 3 192583 125202 34 2678033 1878576 30 664.77

FishBun Demo 93 3 96 18 7 61 83 20 75 86049 19959 77 1025.91

fooCam* 3 1 66 199 114 42 106 50 52 811 405 50 77.23

fooCam** 148 3 95 153 68 55 131 76 41 909 500 45 563.39

Geometric Weather 66 5 92 197 191 3 48943 22144 54 585048 332065 43 2910.27

GnuCash 35 10 71 15 13 13 287 252 12 936 922 1 13439.05

LibreNews 66 7 89 30 10 66 101831 37414 63 636956 232652 63 1644.62

Linux Deploy 105 6 94 128 101 21 3328 2657 20 1294897 541846 58 2743.71

Man Man 62 3 95 105 52 50 2203 355 83 1176582 121901 90 363.39

Mitzuli 146 5 96 490 167 65 248861 167884 32 1230777 905576 26 1251.34

NPR News 37 2 94 293 38 87 1798 605 66 25597 10107 61 271.44

OBSSD - OBS Stream Deck 94 17 81 55 34 38 851 383 54 4754980 1200819 75 2034.56

Official Cambridge Guide to IELTS 41 10 75 188 177 5 2018 1991 1 537874 355432 34 12278.07

Olam∼ 9 4 55 4 4 0 185 185 0 26597 26597 0 317.31

Olam∼∼ 5 2 60 4 4 0 61 61 0 42324 42324 0 120.50

PasswordMaker 26 10 76 21 10 52 896 387 56 30969 18225 41 3016.59

Ringdroid 135 4 97 45 8 82 4647 188 95 26263 2500 90 1963.55

Scale Image View Demo 238 5 97 203 61 69 2902 352 87 295088 52468 82 464.63

Scribbler 22 2 90 7 4 42 27 19 29 132 83 37 422.98

SyncMyPic 14 1 92 13 6 53 71 53 25 356 275 23 419.29

Tailscale 24 2 91 25 24 4 126 104 17 174283 120950 31 231.67

Tickmate 52 3 94 31 12 61 935 857 8 3491 3093 11 737.23

Tippy 76 12 84 32 17 46 515 330 35 3775 2406 36 12485.64

Transistor 638 2 99 15 10 33 154 118 23 1625 1242 24 1263.84

TripSit 14 1 92 7 4 42 157 107 32 1448 1313 9 178.38

Vanilla Musiĉ 11 2 80 459 453 1 6258 6249 1 92527 83118 10 789.18

Vanilla Musiĉ ˆ 21 4 80 491 468 4 14461 7360 49 153206 93073 39 3776.37

WeightChart 34 3 91 66 12 81 475 115 75 17432 1711 90 822.08

WhoHasMyStuf 1025 26 97 139 8 94 1749 107 93 10820 604 94 19399.56

Yahtzee 131 6 83 2 2 0 5 5 0 33 33 0 18093.75

Mean 143 6 87 130 89 42 18279 10632 42 398720 174780 45 3354
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occurred. We conducted our evaluation to answer the following research questions.

RQ1: What is the effectiveness of ESDroid in reducing the size of the input event

sequence?

RQ2: Which of our key two phases (i.e., Phase 3 = Simplifying FSoE (Segment-based

Delta Debugging), Phase 4 = backward dynamic slicing) contributes more to improve the

debugging process?

RQ3: What is the difference in the size of dynamic slices computed by ESDroid and

AndroidSlicer?

RQ4: Are slices computed by ESDroid and AndroidSlicer correct?

RQ5: What is the difference in the size of dynamic slices computed by ESDroid and

Mandoline?

Specifically, the objective of RQ1 is to find the effectiveness of reducing the search

space with delta debugging for Android apps. RQ2 highlights the phase which contributes

the most to the whole process and the phase which contributes the least, aiming for future

enhancement. RQ3 and RQ5 show the point of narrowing the search space compared to

the state-of-art tools. The purpose of RQ4 is to check our contribution is usable in terms

of quality.

4.5.2 RQ1: Size of input event sequence

RQ1 aims to evaluate our tool’s effectiveness in reducing the input event sequence

(failure-inducing event sequence) by comparing the size of event sequence between the

original event sequence and the simplified event sequence. We use segment-based delta-

debugging to minimize the randomly generated event sequence. Given the input event

sequence Seq, we measure its length using the following metrics:
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# of events: Number of events triggered in Seq

# of callbacks: Number of callback methods invoked in Seq

# of method calls: Number of method calls invoked in Seq

# of instructions: Number of Jimple instructions executed in Seq

Table 4.5 shows the comparison in size between the originally generated event sequence

Seqorig and the minimized event sequence SeqESDroid. Meanwhile, the second and the

third column under the title “# of events” denote the number of events triggered in

Seqorig and SeqESDroid, respectively. The two columns under the title “# of callbacks”

represent the number of callback methods invoked in Seqorig and SeqESDroid, respec-

tively. The two “# of method calls” columns denote the number of methods invoked in

Seqorig and SeqESDroid. (note that “# method calls” counts all method calls, including

all callback methods). The two “# of Instructions” columns denote the number of instruc-

tions executed in Seqorig and SeqESDroid. The “Duration (seconds)” column in Table 4.5

presents the time taken in seconds to perform the minimization using segment-based

delta-debugging. This table shows our segment-based delta-debugging can effectively

minimize the number of events for all evaluated apps (the minimized # of events ranges

from 1–26 compared to the original # of events that ranges from 3–1097). On average,

ESDroid can reduce 87% for # of events, 42% for # of callbacks, 42% for # of method calls

and 45% for # of instructions with the average execution time in 3354 seconds.

We observed that two factors affect the reduction rate: (1) the GUI states, (2) the

redundant events. Firstly, the simplicity of the GUI states is inversely proportioned to

the reduction rate for an app. If the app has many buttons on a single GUI screen, the

probability of triggering the crash that requires specific ordering of event sequences is

low, and the reduction rate for an app is high. In contrast, if an app has fewer buttons

on a single GUI screen, it is easy to trigger the crash and has a lower reduction rate. In
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Table 4.6: Output comparison (#) between three phases in ESDroid (i.e., Phase 2 =
Producing Failure-inducing Sequence of Events (FSoE), Phase 3 = Simplifying FSoE
(Segment-based Delta Debugging), Phase 4 = Backward dynamic slicing). The app
marked by * refers to the defect that throws NullPointerExcep- tion, the app marked
by ** refers to the defect that throws SecurityExcept- ion, the app marked by ∼ refers
to the defect that throws SQLiteException, the app marked by ∼∼ refers to the defect
that throws StringIndexOutOfBoun- dsException, the app marked by ˆ refers to the
defect that throws CursorInde- xOutOfBoundsException, and the app marked by ˆ

r̂efers to the defect that throws ResourcesNotFoundException. The values in the fourth
column with the title (i.e., (%) (1)) and the sixth column (i.e., (%) (2)) are calculated by
using the matrix (4.1) and matrix (4.2), respectively.

Apps
# of instructions

Phase 2 Phase 3 (%) (4.1) Phase 4 (%) (4.2)

Addi 136938 79722 42 721 99

Anymemo 464816 428269 8 2222 99

APV PDF Viewer 948 347 63 49 95

Bankdroid 155151 102113 34 522 99

Birthdroid 905 893 1 100 89

Bites 2109 389 82 91 96

Calculator 34974 8983 74 15 99

CampFahrplan 1250075 268769 78 1010 99

Carnet - Notes app 398939 223098 44 6697 98

Cowsay 4345 1610 63 86 98

DalvikExplorer 8502 1011 88 184 98

Fdroid 2678033 1878576 30 1731 99

FishBun Dem 86049 19959 77 262 99

fooCam* 811 405 50 31 96

fooCam** 909 500 45 132 85

Geometric Weather 585048 332065 43 2036 99

GnuCash 936 922 1 60 94

LibreNews 636956 232652 63 163 99

Linux Deploy 1294897 541846 58 8591 99

Man Man 1176582 121901 90 5980 99

Mitzuli 1230777 905576 26 1203 99

NPR News 25597 10107 61 412 98

OBSSD - OBS Stream Deck 4754980 1200819 75 9821 99

Official Cambridge Guide to IELS 537874 355432 34 1275 99

Olam∼ 26597 26597 0 295 99

Olam∼∼ 42324 42324 0 148 99

PasswordMaker 30969 18225 41 839 97

Ringdroid 26263 2500 90 390 99

Scale Image View Demo 295088 52468 82 182 99

Scribbler 132 83 37 38 71

SyncMyPic 356 275 23 91 74

Tailscale 174283 120950 31 1842 99

Tickmate 3491 3093 11 152 96

Tippy 3775 2406 36 317 92

Transistor 1625 1242 24 104 94

TripSit 1448 1313 9 51 96

Vanilla Musiĉ 92527 83118 10 3171 97

WeightChart 17432 1711 90 292 98

WhoHasMyStuff 10820 604 94 159 99

Yahtzee 33 33 0 21 36

Vanilla Musiĉ ˆ 153206 93073 39 3300 98

Mean 392780 174779 45 1336 94
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Figure 4.6: The reduction rate (in percentage) for the number of instructions
executed in Phase 3 and Phase 4. The app marked by * refers to the defect
that throws NullPointerException, the app marked by ** refers to the defect
that throws SecurityException, the app marked by ∼ refers to the defect that
throws SQLiteException, the app marked by ∼∼ refers to the defect that throws
StringIndexOutOfBoundsException, the app marked by ˆ refers to the defect that
throws CursorIndexOutOfBoundsException, and the app marked by ˆ ˆ refers to the
defect that throws ResourcesNotFoundException.
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other words, if an app’s GUI is designed in a simple way (with fewer GUI components),

the reduction benefit can be less than that of a complex GUI design. Secondly, the

redundant events with executed statements that do not affect the point of interest can

also introduce many spurious nodes and edges on a dynamic PDG. As shown in Table 4.5,

we found that Transistor has the highest reduction rate because the failed test case

for Transistor selects an item from the long options menu that generates redundant

events. Specifically, the original event sequence for Transistor has 15 callback events,

including the callback event (i.e., onOptionsItemSelected) that is repeated six times,

and five of them are redundant. Moreover, the Calculator app has the second-highest

reduction rate because it has only one GUI screen and 18 buttons are occupying almost

one-fourth of the whole screen. Therefore, it is difficult to get the event sequence to

cause the app to crash and generates redundant events. Specifically, the original event

sequence for Calculator has 43 callback events consisting of the callback event (i.e.,

onClickNumber) that is repeated 23 times, and all of them are redundant. Similarly, the

test case for Cowsay has 64 callback events, including the callback event onTextChanged

that is repeated 18 times, and all of them are redundant. Moreover, none of them has the

statements that affect the point of interest.

In contrast, the reduction rate for APV PDF Viewer is the lowest among all evaluated

apps. During our manual analysis, we found that it has one GUI screen with only seven

items in ListView, and it is easy to generate the failing test case with nine input events,

and four of them are failure-inducing events. Specifically, the original event sequence for

APV PDF Viewer has only five callback events, and two of them are required to generate

the failing test case. Moreover, Olam has the second lowest reduction rate. Olam is an

English-Malayalam dictionary and it searches for the definitions of English/Malayalam

words. We found out that it sets focus on EditText and IME keyboard is up when the

app is launched. Therefore, although the IME keyboard occupies half of the GUI screen,
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it is easy to generate the failed test case because the cursor position is already defined

and the crash can be triggered easily. Specifically, the original event sequence for Olam

has four callback events, and all of them are required to cause the app to fail.

In terms of processing time, we observe that it takes a longer time to minimize (1)

if there are many input events in the event sequence in different Activities and (2) if

the failure-inducing events with corresponding GUI states in the event sequence are

in different sub-sequences while the original event sequence is divided. As shown in

Table 4.5, WhoHasMyStuf and GnuCash have the longest processing time for the reduction

in the experiment. Specifically, for WhoHasMyStuf, the original sequence that makes

the app fail has the 26 failure-inducing events, and its corresponding GUI states are

in different sub-sequences. For GnuCash, the originally generated event sequence that

makes the app crash contains six different Activities. However, the basic strategy of

delta debugging is already robust and effective enough to obtain a large reduction rate.

Exercising more strategies (e.g., hierarchical delta debugging) could be an interesting

future topic.

4.5.3 RQ2: Effectiveness of different phases in ESDroid

To evaluate which phases contributed to the overall reduction of our approach (reducing

the search space), we computed the number of executed instructions for each phase in

Figure 4.2. Figure 4.6 shows the reduction results for 41 defects of 38 apps. In Table 4.6,

the second, the third, and the fifth column under the title “# of instructions” denote the

number of instructions executed in phase 2 (i.e., Producing Failure-inducing Sequence

of Events (FSoE)) , phase 3 (i.e., Simplifying FSoE (Segment-based Delta Debugging)),

and phase 4 (i.e., Backward dynamic slicing) respectively. The fourth and sixth columns

describe the reduction rate calculated on the count of instructions executed in phase 2.

For instance, for APV PDF Viewer, 63% of trace was lessened in phase 3 compared to
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trace in Phase 2, while 95% was decreased in phase 4 as opposed to tracing in phase 2.

The reduction for phase 2 is 0%–94% with an average reduction of 45%, whereas phase 3

is 36%–99% with an average reduction of 94%.

To evaluate our phases, we use the following two metrics.

Reduction rate in Phase 3= # of instructions executed in Phase 2−# of instructions executed in Phase 3
# of instructions executed in Phase 2

(4.1)

Reduction rate in Phase 4= # of instructions executed in Phase 2−# of instructions executed in Phase 4
# of instructions executed in Phase 2

(4.2)

The rows of Table 4.6 and Figure 4.6 show that the reduction rate in phase 4 is

higher than in phase 3. At phase 4, the maximum reduction rate is 99% (i.e., Fdroid,

Calculator, FishBun Dem, Geometric Weather, OBSSD - OBS Stream Deck, Official

Cambridge Guide to IELS, Scale Image View Demo) and the minimum is 36% (i.e.,

Yahtzee). At phase 3, 0% reduction rate for two apps (i.e., Olam and Yahtzee) because

the original event sequences and the simplified event sequences in phase 2 and phase 3

are identical, and the number of methods and callbacks invoked are identical. However,

in phase 4, when ESDroid slices all the executed instructions affecting the point of

interest, the reduction rate becomes more than 0% (i.e., 99% for Olam and 36% for

Yahtzee). Therefore, phase 4 contributes more to the overall optimization than phase 3.

4.5.4 RQ3: Difference in the size of dynamic slices computed by

ESDroid and AndroidSlicer

We compare the effectiveness of ESDroid against AndroidSlicer by measuring the sizes

of the dynamic slices produced by the two approaches. Employing the following metrics,

we evaluated the effectiveness of the two approaches:

S1: # of executed Jimple lines: The number of Jimple instructions in the dynamic

slice

S2: Time: Time taken to perform dynamic slicing
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Figure 4.7: The reduction rate (in percentage) for the size of the slices and the time
taken in generating the dynamic slice by ESDroid compared with AndroidSlicer. The app
marked by * refers to the defect that throws NullPointerException, the app marked by
** refers to the defect that throws SecurityException, the app marked by ∼ refers to
the defect that throws SQLiteException, the app marked by ∼∼ refers to the defect that
throws StringIndexOutOfBoundsExce- ption, the app marked by ˆ refers to the defect
that throws CursorIndexOutOf- BoundsException, and the app marked by ˆˆ refers to
the defect that throws ResourcesNotFoundException.
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Figure 4.7a shows the number of Jimple instructions in the generated slice of both

approaches (i.e., AndroidSlicer, and ESDroid), whereas Figure 4.7b compares the time

taken by each approach in generating the dynamic slice. The numbers given beside the

bars in Figure 4.7a and Figure 4.7b show the reduction rate (in percentage) for the size of

the slices and the time taken in generating the dynamic slice, respectively. Overall, our

results in Figure 4.7a show that ESDroid is able to produce a thinner slice compared to

AndroidSlicer for all the evaluated apps, except for APV PDF Viewer, Olam and Yahtzee.

For these apps, ESDroid fails to reduce the slice because the event sequence leading to

the exception has fewer than five extra events, and there is no data or control-dependence

found among these extra event sequences. ESDroid and AndroidSlicer shared common

instrumentation performance by employing the same instrumentation using Soot. We

further analyzed the results reported in Figure 7a using statistical and effect size tests.

In particular, we used the Wilcoxon rank sum test [50] and the Vargha-Delaney’s Â12

effect size [164]. We used the Wilcoxon test to assess whether the differences in the

number of Jimple instructions between AndroidSlicer and ESDroid are statistically

significant. We considered the level of significance to be α = 0.05. According to the

Wilcoxon tests, the slices generated by ESDroid are statistically significant smaller than

the slices generated by AndroidSlicer (p-value < 0.00001). The Vargha-Delaney’s Â12

measure reports a medium effect size Â12 = 0.56.

Although ESDroid can produce a thinner slice than AndroidSlicer, the results in

Figure 4.7b show that the overall time taken by both approaches to perform the dynamic

slicing is similar (i.e., from 0% to 29%). These results illustrate the efficiency of our

algorithm in performing dynamic slicing without incurring too much additional overhead.

In fact, for the Fdroid, ESDroid can generate the dynamic slice faster than AndroidSlicer

because the size of the trace log (i.e., executed instructions) for Fdroid is the largest of

all the apps used in our experiment and the analysis time (i.e., checking against static
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PDG) shows longer duration. In general, the test case with more redundant events with

statements that do not affect the failure point is more likely to include spurious slices

(e.g., Calculator, DalvikExplorer and fooCam). Moreover, even with a smaller number

of callbacks and events in our experiments, ESDroid still reduced a substantial portion

of the redundant PDG nodes. We believe increasing the events will favor ESDroid even

further.

4.5.5 RQ4: Correctness of slices computed by ESDroid and

AndroidSlicer

In this section, we aim to ensure the output of our approach is useful in locating the bug.

Since our approach does not require the source code, we manually examined the apps to

assess precision using bytecode. We decompiled each app to get the Java bytecode and

mapped the Jimple instruction to the program statement via the program line number.

We then manually checked the slices related to the slicing criterion with the following

three steps:

1. Instruction - We checked which instructions were related to the failure point (the

point of interest).

2. Method - We investigated which particular call paths qualified for the above instruc-

tions. Specifically, we examined what corresponding methods were required.

3. Segment - As we recorded the execution history using the segment, we also analyzed

the program by checking which segments enabled the methods mentioned above to

ensure each segment reflected the required state and events for the app’s crashes.

Then, we compared the extracted information with the slice generated by ESDroid. We

checked all generated slices manually to ensure that our slice computation was correct.

In addition, to make sure that the slices produced by ESDroid included the instructions
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Table 4.7: Information of buggy apps and exceptions for RQ5.

App Dex code size (KB) # of Activities Program Version Exception Type

Anki 4490 21 1 FileUriExposedException

Birthdroid 431.1 3 0.6.3 NumberFormatException

Fastadapter 6376 23 2.5.1 NullPointerException

Fdroid 5860.0 10 0.98 SQLiteException

GnuCash 7948.0 20 2.1.4 IllegalArgumentException

K9 4684 29 1 ActivityNotFoundException

Micromath 4927 2 1 NumberFormatException

Newsblur 3828 36 1 NullPointerException

SiliCompressor 2153 1 1.1.0 ArithmeticException

Specialdates 2149 11 1 IllegalFieldValueException

related to the failure point, we manually analyzed the differences between the output

of ESDroid and the output of AndroidSlicer. Our analysis confirmed that the slices

generated by both ESDroid and AndroidSlicer included the statements affecting the

failure point. Since both ESDroid and AndroidSlicer include the instructions related to

the failure point, a thinner slice generated by ESDroid is a better outcome because it

reduces the time taken by the developers to inspect the slice during debugging to state

one enhancement.

4.5.6 RQ5: Difference in the size of dynamic slices computed by

ESDroid and Mandoline

To compare the effectiveness of our approach versus Mandoline, we additionally evalu-

ated our approach against Mandoline for 10 apps (9 apps used in the original experiments

in Mandoline [22], and the motivating example). We exclude one of Mandoline defects be-

cause we cannot reliably reproduce the exception in the Habdroid app after running the

test generation 10 times with different seed values (does not satisfy C3). Table 4.7 shows

the apps we evaluated. The “Exception Type” column contains information about the

specific type of exception that causes the crash. We compare the effectiveness of ESDroid

against Mandoline by measuring the sizes of the dynamic slices produced by the two ap-
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Table 4.8: Comparison of the number (#) of Jimple instructions (JS) on the slice between
Mandoline and ESDroid.

Apps
#JS

Mandoline Mandoline++ ESDroid (%)

Anki NoSuchElementException 3 3 0

Birthdroid NullPointerException 14 7 50

Fastadapter NoSuchElementException 85 85 0

Fdroid NoSuchElementException 447 280 37

Gnucash NoSuchElementException 270 221 18

SiliCompressor 39 39 26 33

K9 NoSuchElementException 120 87 25

Micromath NoSuchElementException 263 263 0

Newsblur NoSuchElementException 138 138 0

Specialdates NoSuchElementException 404 361 10

Mean - 175 145 18

proaches. The available implementation of Mandoline throws NoSuchElementException,

and NullPointerException for some apps because Mandoline does not consider the

control dependence among the lifecycle callbacks. It leads to the unfeasible paths in

the dependence graph. We thus contribute an enhanced version of Mandoline, called

Mandoline++, which addresses the Mandoline implementation issue. Table 4.8 shows

the slice size (#JS) (number of Jimple instructions) for the slice produced by each of the

tools (columns 2, 3, and 4). The column with (%) is the reduction rate from Mandoline++

to ESDroid.

ESDroid outperforms Mandoline++ in terms of reducing the slices in six apps and per-

forms equivalently in the remaining four: Anki, Fastadapter, Micromath and Newsblur.

ESDroid cannot achieve a higher reduction rate for four apps; we observed that the

events in the randomly generated event sequence (i.e., failure-inducing sequence of

events) are the same as the simplified event sequence. Overall, ESDroid can produce up

to 50 % thinner slices than Mandoline. We also observed a similar finding with RQ3 that
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the test case with more redundant events with statements that do not impact the failure

point is more likely to include spurious slices. On average, ESDroid can reduce 18% for

# of Jimple instructions in the slice. We further analyzed the results using statistical

and effect size tests. We used the Wilcoxon test to assess whether the differences in

the number of Jimple instructions between Mandoline++ and ESDroid are statistically

significant. Based on the Wilcoxon test, we found that the result is statistically significant

(p-value < 0.05). The Vargha-Delaney’s Â12 measure reports a medium effect size Â12 =

0.55.

4.5.7 Threats to validity

We identify the following threats to the validity of our evaluation:

Internal validity: For random test case generation, ESDroid supports events that

simulate clicks, rotations, and drags but does not support complex events like GUI text

input and system events. Note that this is not a limitation of our slicer but rather on our

random test generation. Despite the removal of the majority of spurious slices, the preci-

sion of ESDroid depends on the precision of its underlying static analysis. Specifically,

we implemented our instrumentation on top of Soot and FlowDroid [31] so it inherits the

current limitations of these approaches. For example, ESDroid does not support debug-

ging for multi-threading in Android apps due to the lack of sound support in FlowDroid.

Moreover, while there are several slicing approaches, we only compare our approach

against AndroidSlicer, and Mandoline because, to the best of our knowledge, they are the

only dynamic slicing techniques for Android and their tools are publicly available. More-

over, as the available implementation of Mandoline throws NoSuchElementException,

and NullPointerException for some apps, we modified Mandoline (in Mandoline++) to

address the Mandoline implementation issue. The modification could have introduced

defects. We mitigate this threat by making minimal modifications to Mandoline. Further-
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more, we manually evaluate the quality of the generated program slices to ensure that

our generated reduced slices include the program statement triggering the crash. As

our delta-debugging step uses stack trace information to simplify the failure-inducing

sequence of events, our reduced slice is guaranteed to include the statement triggering

the crash by construction. Hence, the manual analysis is a relatively straightforward

check. In addition, our focus is not to tune different delta-debugging strategies but to

make dynamic slicing input-aware. The basic strategy of delta-debugging is already

good enough and exercising more strategies (e.g., hierarchical delta-debugging) is an

interesting future topic.

External validity: Since finding the exception is the prerequisite for dynamic slicing, we

believe that one challenge lies in finding the exception in the first place for an evaluated

app. Moreover, our approach is unable to handle non-crash bugs and also unable to

conduct slicing for obfuscated apps (e.g., whose bytecode is transformed using reflection),

which might lead to imprecise slicing results. In addition, our study is limited to the

evaluated Android apps and our results may not be able to be generalized beyond them.

We mitigate this threat by (1) including closed-source Android apps with bugs, and (2)

obtaining Android apps from five different data sets [23, 92, 119, 155, 158].

4.6 Related Work

Delta-Debugging: Several approaches have applied delta-debugging to identify the

failure-inducing deltas in traditional desktop applications [72, 182], compilers [131],

browsers [186], Web applications [77], and microservice systems [191]. However, these

approaches are not designed for handling the asynchronous event nature of Android

apps, where they become ineffective in detecting event sequences. For Android apps,

several algorithms based on delta-debugging have been proposed to minimize GUI event

sequences for reaching a particular target activity [47], and for reproducing a crash

76



4.6. RELATED WORK

SimplyDroid [92]. The end goal of this work is completely different from SimplyDroid.

The objective of our approach is to conduct more precise dynamic slicing to produce

a more compact and precise program dependence graph, while SimplyDroid aims to

simplify crash traces. Second, SimplyDroid treats an app as a black box and does not

perform code analysis on Android bytecode or source code, while our slicing approach

does. Though both approaches used delta-debugging, we use delta-debugging as a means

to an end, but not an end. This work makes a step forward by introducing segment-based

delta debugging in backward dynamic slicing to reduce search space, yielding a thinner

slice that includes the effective statements on the failure point at the bytecode level.

Slicing for Web applications: Several techniques have been proposed for slicing in Web

applications [123, 161]. Although Web applications share similar event-based execution

paradigms with Android apps, the event’s nature in the Web application and the nature

of the event of Android apps are different. Unlike Web applications, Android apps pose

unique challenges to slicing with (1) life cycle management rules among components (for

example, Fragment and Activity), and (2) intercomponent communication employed not

only in the same application but also across different applications.

Slicing for Java: Slicing for traditional Java programs [169] has been investigated.

Unlike traditional Java, Android has several entry points via various channels, and calls

to other processes within applications or external applications. It can be undertaken

in both an explicit and implicit way. Given an automatic test case (in the form of event

sequences), ESDroid takes account of the characteristics of Android apps to produce a

reduced program slice.

Fault Localization for Android Apps: Traditional spectrum-based fault localization

techniques perform statistical analysis on program execution traces to produce a ranked

list of suspicious statements (i.e., statements that are relevant to the root cause of a

defect) [93, 113, 139, 141, 175]. To handle the unique characteristics of Android apps,
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MZoltar [121] performs spectrum-based fault localization on instrumented apps. Differ-

ent from MZoltar and other spectrum-based fault localization approaches, ESDroid (1)

does not rely on the existence of passing tests (which may not be available for Android

apps) to pinpoint the faulty location, and (2) produces a program slice where each state-

ment within the same slice shared the same rank rather than a ranked list of suspicious

statements.

Slicing for Android Apps: Several slicing approaches have been designed for Android

Apps [22, 23, 86]. SAAF [86] performs static slicing to detect suspicious behavior patterns

for malicious Android apps. Meanwhile, AndroidSlicer performs dynamic slicing by

modeling asynchronous data and the control dependences of Android apps. Mandoline

presents dynamic slicing via alias analysis. In much the same way as AndroidSlicer,

ESDroid uses dynamic slicing to produce the program slices that aid debugging for

Android apps. ESDroid differs from AndroidSlicer, and Mandoline in that (1) it offers

a fully automated approach for minimizing the event sequences to produce the final

program slices, (2) it considers the control dependences among the lifecycle callbacks, (3)

our experiments show that ESDroid can produce a thinner slice than AndroidSlicer, and

Mandoline.

Automated program repair for Android Apps: Many automated techniques have

been proposed to generate patches to fix bugs in Android apps [55, 103, 119, 124, 158,

180]. Our dynamic slicing approach is orthogonal to these automated bug-fixing ap-

proaches and can be combined with them to improve debugging process and subsequently

generate high-quality patches.

4.7 Conclusion and Future Work

We, for the first time, introduce delta-debugging into dynamic slicing for Android to

significantly boost its precision, as confirmed in our experiments. Our dynamic slicing
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supports control- and data-dependence at both the instruction-level and event-level

by leveraging the simplified input event sequence that triggers the same bug using

segment-based delta-debugging. ESDroid is able to produce a more precise but smaller

dynamic PDG with up to 72% (27% on average) fewer false executed instructions than

the state-of-the-art AndroidSlicer, and up to 50% (18% on average) fewer than Mandoline,

while maintaining only the relevant buggy statements to capture precisely the same

bugs as AndroidSlicer and Mandoline. In the future, we plan to enhance ESDroid to

handle non-crashing bugs with oracle by exercising more strategies (e.g., hierarchical

delta debugging), and including test cases with complex interactions such as GUI text

input and system events.
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COMPLEMENT OF DYNAMIC SLICING FOR ANDROID

APPLICATIONS WITH DEF-USE ANALYSIS FOR

APPLICATION RESOURCES

To address the limitations of existing static and dynamic debugging techniques for An-

droid apps, as our second contribution, we propose a novel approach called SfR (Slicing

for Resources), which identifies the dependences between the program statements and

the application resources to complete the slice for Android applications. We performed the

static analysis to generate the resource dependence graph (RDG), which includes data

dependences on application resources. We integrated RDG in AndroidSlicer and evalu-

ated on 3 Android applications. The result shows that SfR is more efficient in accuracy

than the existing state-of-the-art dynamic slicing technique named AndroidSlicer.

5.1 Problem and Motivation

Program slicing [170] is to extract the program statements that affect the values com-

puted at some point of interest (i.e., a particular statement or variable, often referred

as a slicing criterion). While static slicing considers all possible program paths leading
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to the slicing criterion, dynamic slicing focuses on one concrete execution for the given

input [19]. Due to Android’s event-driven nature, dynamic slicing for Android is more

challenging than that for traditional Java programs. Furthermore, mobile apps rely on

application resources, and thus a slicing solution has to consider data flowing through

application resources.

5.2 Background and Related Work

Static slicing techniques typically operate on a program dependence graph (PDG); the

nodes of the PDG represent statements or a basic block, and the edges correspond

to data or control dependences between nodes [88]. The dynamic PDG, which is a

subgraph of the static PDG [60], consists of only those nodes and edges that are exercised

during a particular run. Precisely, a dynamic slicing tool is first to collect an execution

trace of a program by instrumenting the program. Then, the tool checks the control

and data dependences of the trace statements, identifying statements that affect the

slicing criterion and omitting the rest. The dynamic slices are more compact than static

ones, making them suitable for debugging activities [19] [18]. While AndroidSlicer [23]

performs dynamic slicing by modeling asynchronous data and control dependences of

Android apps, [43] presents the dynamic slicing using alias analysis. However, the prior

techniques limit locating the fault in application resources such as layout definitions

and user interface strings. Likewise AndroidSlicer, SfR uses dynamic slicing to produce

the program slices that aid debugging for Android apps. However, SfR differs from

AndroidSlicer in that it can locate the fault if the bug is in application resources by

offering the data dependences on the application resources.
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5.3 Approach and Novelty

SfR consists of three major stages: (1) def-use analysis for application resources, (2)

dynamic backward slicing, (3) slice complement.

Def-Use Analysis for Application Resources. Basically, we use def-use analysis for

data dependences in PDG. If the statement S2 used the same object a which is defined

as int with value 1 in S1, S2 is data-dependent on S1.

S1 int a=1; Def

S2 int b=a+2; Use

Rd
<TextView android: id="@+id / tv "

android : text=" @string / m_t" / >
Def

Su
TextView t = ( TextView )

findViewById (R. id . tv ) ;
Use

In our approach, for data dependences on resources, we use predefined keywords (i.e.,

findViewById for “use” and android:id for “def”), and we use a unique resource name

for the element as a reference. If the statement Su contains the predefined keyword

indicating a “use” of the application resource (i.e., findViewById) with a unique resource

name for the element (i.e., tv) which is defined as TextView with a string value of m_t in

resource Rd, Su is data-dependent on Rd. In this way, engineers can enhance the default

set of keywords characterizing uses and definitions of application resources. Note that

SfR cannot handle different resources with the same resource name (e.g., same resource

name for widgets in different Activities). However, we aim to show the slicing quality

improvement, and SfR is enough to prove it.

In static RDG, a node can be either a tag element or a statement, and an edge

corresponds to data dependence on application resources. By using the “def” keyword,

SfR constructs the mapping (we call rMap) with a reference (i.e., a unique resource

name for the element) and the corresponding tag element, including value and attributes

before generating RDG. SfR builds a static RDG by scanning “use” keywords. If SfR found
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the “use” keyword in a statement, the statement is marked as “use” with a reference to

link to the corresponding tag with the help of rMap.

Dynamic Backward Slicing. A backward dynamic slice is the set of instructions

whose execution affects the slicing criterion (i.e., the instructions on which the slicing

criterion is data or control dependent, either directly or transitively) [104]. Inspired by

AndroidSlicer, SfR generates the backward dynamic slice from the point of interest by

using dynamic PDG that includes asynchronous data and control dependences.

1 −<str ing name="m_t">Themen</ string >

+<str ing name="m_t">Thread </ string > strings.xml

2 <TextView android : id ="@+id / tv "

android : text =" @string / m_t"/ > dx.xml

3 TextView t = ( TextView )

findViewById (R. id . tv ) ;

4 String wt = t . getText ( ) . toString ( ) ; Dj.java
(Input propagation) Line 1 −→ Line 2 −→ Line 3 −→ Line 4

(a) App code.
Instruction number: Instruction
36612: onCreate:...Dj: $r8 = virtualinvoke $r11.<...TextView: ... getText()>()
36611: onCreate:...Dj: $r11 = (...TextView) $r2
36610: findViewById:...: $r1 = virtualinvoke $r2.<...>($i0)

(Value propagation) $r8 −→ $r11 −→ $r2 −→ $i0
(b) Slice generated by AndroidSlicer.

android : id ="@+id / tv " android : text =" @string / m_t" / >

(c) Complement generated by SfR.

Figure 5.1: An example bug found in NewPipe app.

Slice Complement. In this stage, SfR completes the slice by using static RDG. Specifi-

cally, for each instruction in slice generated by the first stage (i.e., dynamic backward
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slicing), SfR checks against the static RDG recursively and extracts the corresponding

tag element. Since the slice generated by AndroidSlicer includes Jimple instructions,

SfR provides the separate output for extracted tag elements. Particularly, we aim to help

developers by providing all statements and application resources affecting the point of

interest.

Figure 5.1 shows an example bug 1, the wrong text (Themen) for label on user interface

(UI), found in the NewPipe app. Specifically, the expected value for wt is Thread, however,

TextView object returns the wrong text (Themen). In Figure 5.1b, AndroidSlicer generated

the slice from the point of interest (i.e., r8 holding wrong value Themen), and it included

Line 4 (Instruction number 36612) and Line 3 (Instruction number 36611 and 36610) and

missed the location of the fault in application resources (i.e., Line 1 and 2). In Figure 5.1c,

SfR generated the complement by using RDG. Specifically, the variable (tv) used at Line

3 is defined at Line 2.

5.4 Results and Contributions

Experiment. We implemented SfR on AndroidSlicer to evaluate the effectiveness of

our approach because (1) it is publicly available, and (2) it is one of the state-of-the-art

slicing techniques for Android apps. Although AndroidSlicer does not target application

resources, we chose AndroidSlicer to compare because (1) we aim to show that SfR

can improve the slicing quality for Android apps, and (2) no slicing tool is available to

compare if the bug is located in Android application resource. Our evaluation studies the

research question RQ: Does SfR help to improve the quality of the slices generated by

AndroidSlicer?

Results and Discussions. Table 5.1 shows the experiment results. We chose the apps

whose traces were small and verifiable within a reasonable effort and manually computed
1https://github.com/TeamNewPipe/NewPipe/issues/5546
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the slices w.r.t. the slicing criterion. We then compare the manual slices with the output

produced by SfR and AndroidSlicer and calculate the recall (R), precision (P), and F-

Measure (F) achieved by each tool to answer RQ. We denoted “instructions in computed

slice” as Ic and “instructions in manual slice” as Im. Our experiments show that using def-

use analysis for application resources is effective and achieves 96% accuracy on average

if the fault location is in application resources. Note that the complement includes the

corresponding elements and slices generated by AndroidSlicer consists of the Jimple

instructions. Hence, we counted an attribute of an element as one instruction to calculate

F-measure.

R = |{Ic}∩ {Im}|
|{Ic}| P = |{Ic}∩ {Im}|

|{Im}| F-measure = 2
R∗P
R+P

Table 5.1: Accuracy. Instructions are denoted as IS.

App Manual AndroidSlicer SfR
#IS #IS R% P% F% #IS R% P% F%

NewPipe 11 8 99 73 84 10 99 91 95
FAST 31 28 99 90 94 30 99 97 98

Simplenote 19 16 99 84 91 18 99 95 97

Conclusion. This study proposes resource dependences to complete the slicing. We

observed improvements in the quality of slices and have evaluated for 3 apps. On

average, the accuracy is 90% for AndroidSlicer and 96% for SfR. This indicates that the

data flow between statements and application resources impacts the accuracy of slicing

tools for Android applications. We intend to build the tool supporting the parent-child

tag element in the future.
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6
TOWARDS AUTOMATED DETECTION OF UNETHICAL

BEHAVIOR IN OPEN-SOURCE SOFTWARE PROJECTS

We expand our work in the realm of automated analysis of Android applications to

encompass the detection of unethical behavior in both Android and open-source software

(OSS) projects. With inspiration from stakeholders in the OSS community, our third

contribution introduces Etor, an innovative approach that utilizes automated analysis

techniques to identify unethical behavior within OSS projects, including Android projects.

Through the development of Etor, we strive to make a valuable contribution to the field

of ethical software development and to foster responsible practices within the OSS

community, aiming to assist developers in creating more reliable software or apps.

Past studies focused on specific ethical issues (e.g., gender bias and fairness in OSS).

There is little to no study on the different types of unethical behavior in OSS projects.

We present the first study of unethical behavior in OSS projects from the stakeholders’

perspective. Our study of 320 GitHub issues provides a taxonomy of 15 types of unethical

behavior guided by six ethical principles (e.g., autonomy). Examples of new unethical

behavior include soft forking (copying a repository without forking) and self-promotion
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(promoting a repository without self-identifying as contributor to the repository). We also

identify 18 types of software artifacts affected by the unethical behavior. The diverse

types of unethical behavior identified in our study (1) call for attentions of developers

and researchers when making contributions in GitHub, and (2) point to future research

on automated detection of unethical behavior in OSS projects.

Based on our study, we propose Etor, an approach that can automatically detect

six types of unethical behavior by using ontological engineering and Semantic Web

Rule Language (SWRL) rules to model GitHub attributes and software artifacts. Our

evaluation on 195,621 GitHub issues (1,765 GitHub repositories) shows that Etor can

automatically detect 552 unethical behavior with 80.5% average true positive rate. This

shows the feasibility of automated detection of unethical behavior in OSS projects.

6.1 Introduction

The advent of Open-Source Software (OSS) has created a large ecosystem of applications,

libraries, and components that are readily available for download. Ethical considerations

have become an important topic with the massive growth of OSS development. For exam-

ple, the recent incident where researchers from the University of Minnesota attempted to

check the feasibility of stealthily introducing vulnerabilities in OSS by making hypocrite

commits (commits that intentionally introduces critical bug into code), has provoked

active discussion among the Linux kernel community, researchers, and other OSS de-

velopers [177]. The Linux developers argued that the “hypocrite commits” experiment

is “not ethical” and is wasting developers’ time reviewing the invalid patches [5]. More

importantly, this incident has revealed an attack on the basic premise of OSS itself

(i.e., the fact that anyone can contribute to the code and any OSS project is susceptible

to a similar incident). Indeed, unethical behavior committed by contributors of OSS

project might lead to broken trust between the OSS community and the contributor,
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Figure 6.1: Overview of our empirical study on unethical behavior.

whereas unethical software development might lead to loss of funding, reputation, or

other resources of the OSS organization involved.

Prior studies discussed ethical issues faced by stakeholders (individuals taking part or

interested in the OSS project, and can either affect or be affected by the OSS project, soft-

ware, or application) in OSS projects [138] [71]. Meanwhile, Gold and Krinke highlighted

several ethical considerations when mining OSS repositories [66]. These studies stress

the importance of considering ethical issues in OSS projects by using various examples

and referring to several ethical principles. Unfortunately, prior study suggests that

explicitly instructing students or professional developers to consider the ACM code of

ethics has no significant impact on their ethical decision-making in software engineering

tasks [128]. A similar argument has been made in AI ethics, which calls for practical

methods to translate principles into practice [132].

To better understand the effects of unethical behavior in OSS projects, the major

research direction mainly focuses on studying the effects of gender bias in OSS [91, 159],

fairness of the code review process [64], and checking for software licensing [111] [166].

Although it is important to study these common types of unethical behavior, it is essential

to thoroughly investigate the types of unethical behavior from stakeholders’ perspectives

to bridge the gaps between general ethical principles and OSS practices. However, to

the best of our knowledge, there is no comprehensive empirical investigation into the

diverse types of unethical behavior, their characteristics, and the corresponding ethical

principles that drive these unethical behavior in OSS projects.
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To the best of our knowledge, we present the first comprehensive taxonomy of the

unethical behavior found in OSS projects. We crawled through GitHub issues/pull re-

quests (PRs), and identified 320 issues that discuss about unethical behavior. Our study

identifies 15 types of unethical behavior, including (1) S1: No attribution to the author

in code, (2) S2: Soft forking, (3) S3: Plagiarism, (4) S4: License incompatibility, (5) S5:

No license provided in public repository, (6) S6: Uninformed License change, (7) S7:

Depending on proprietary software, (8) S8: Self-promotion, (9) S9: Unmaintained project

with paid service, (10) S10: Vulnerable code/API, (11) S11: Naming confusion, (12) S12:

Closing issue/PR without explanation, (13) S13: Offensive language, (14) S14: No opt-in

or no option allowed, and (15) S15: Privacy Violation. The unethical behavior is affecting

18 types of software artifacts.

Inspired by our study, we developed an automatic detection tool, called Ethic detector

(Etor) based on ontological engineering (a description of entities and their properties,

relationships, and behaviors) and Semantic Web Rule Language rules (SWRL rules) to

model GitHub attributes, and software artifacts. In summary, we made the following

contributions:

• To the best of our knowledge, we conducted the first study of the types of unethical

behavior in OSS projects. Our study of 320 GitHub issues/PRs from 305 repositories

reveals that: (1) there are 15 types of unethical behavior in OSS projects, and (2)

these unethical behavior affects 18 different types of software artifacts. The diverse

types of unethical behavior in OSS calls for attention from the developers and project

owners. Identifying the artifacts helps in modeling these behaviors, bringing us one

step closer to designing a tool that can automatically detect the violations of these

issues.

• We propose Etor, a novel ontology-based approach that automatically detects un-

ethical behavior in OSS projects. Our approach models GitHub attributes using
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ontologies, and we design SWRL rules that can check unethical behavior affecting

diverse types of software artifacts.

• Our evaluation on 195,621 GitHub issues/ PRs from 1,765 repos shows that Etor

can automatically detect 552 issues with 80.5% true positive rate on average. The

dataset and the source code for Etor are publicly available at GitHub1.

6.2 Background and Related work

Prior studies on ethical principles in OSS projects mainly focus on six aspects: (1)

accountability, (2) attribution, (3) autonomy, (4) informed consent, (5) privacy, and (6)

trust [162] [62] [42]. Accountability means that an individual is accountable for his/her

actions. Attribution (i.e., intellectual property, copyright, etc.) means giving credit to

authors when the credit is due. Autonomy allows an individual to decide, plan, and act

to achieve their goals. In OSS projects, individuals inherently have autonomy because

they can choose which tasks to perform but may gain or lose autonomy once they agree

to participate. Informed Consent is an agreement between the individual and the

institution maintaining ethical values such as autonomy, and trust. Privacy is a right

or entitlement of a stakeholder on what information another stakeholder can obtain and

communicate to others. Trust refers to expectations between people through goodwill.

Web Ontology Language (OWL) is a standard ontology language endorsed by the

W3C to construct an OWL knowledge model [6] [126] [28]. It is a semantic web lan-

guage designed to represent rich and complex knowledge about things, groups of things,

and relations between things. OWL is a computational logic-based language such that

knowledge expressed in OWL can be exploited by computer programs, e.g., to verify the

consistency of that knowledge or to make implicit knowledge explicit. Thus, we design

our tool based on ontology engineering.
1https://github.com/EtorChecker/Etor
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Semantic Web Rule Language (SWRL) is a language that combines OWL and Rule

Markup Language (RuleML), which can be used to express Horn-like rules and logic [7].

SWRL rules are used to infer new knowledge regarding the individual (instance) by

chains of properties. We choose to model the unethical behavior in OSS projects using

SWRL because (1) its expressiveness [167] is well-suited for modeling unethical behavior

that involves different GitHub attributes and diverse types of software artifacts, and

(2) it has been widely used to model concepts such as privacy for medical data [40] and

access control policy [38, 97]. SWRL rule has the form:

antecedent → consequent

where both antecedent and consequent are conjunctions of atoms written as a1 ∧ ·· ·
∧ an. Variables in SWRL rules are denoted by prefixing them with a question mark (e.g.,

?x). Below is an example showing the syntax:

Person(?p) ∧ hasAge(?p,?age) ∧
swrlb:greaterThan(?age,17) → Adult(?p)

This rule states that if there is a person p whose age is greater than seventeen, then

this person is an adult. In the example, swrlb:greaterThan() is a widely used built-in

function supported in SWRL to increase its expressiveness.

Related Work. Prior studies focus on multiple aspects of ethical concerns for several

domains.

Studies on ethical concerns in Software Engineering. Several studies focus on ethical

concerns for empirical studies in software engineering [26, 32, 152]. Badampudi con-

ducted a study about the reports of the ethical considerations in Software Engineering

publications [32]. Andrews et al. illustrated some of the common approaches to encourage

ethical behavior and their limits for demanding ethical behavior between researchers’

duty and their publishing as well as the companies’ and individuals’ integrity [26]. Singer

et al. introduced their work as a practical guide to ethical research involving humans in
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software engineering [152]. Our study is complementary to these studies as the types

of unethical behavior discovered in our study points to potential violations of ethical

principles that software engineering researchers should consider when their evaluations

of automated tools use OSS projects.

Studies on ethical concerns in OSS. Existing studies of OSS projects focus on issues

related to gender bias [91, 159], fairness of the code review process [64], similar code in

Stack Overflow and GitHub [35, 181], and software licensing [111] [166] [165]. Studies

relating to gender bias in GitHub [91, 159] aims to address the obstacles in improv-

ing gender diversity. Meanwhile, a study of a large industrial open source ecosystem

(OpenStack) shows that unfairness is “starting to be perceived as an issue” in OSS [64].

Several studies investigated code clones between code snippets from Stack Overflow

and projects on GitHub and found a considerable number of non-trivial clones [35, 181].

Although these studies also explored how GitHub stakeholder’s reference code was copied

or adapted from Stack Overflow answers without giving proper credits to the authors

(who wrote the code), they did not consider the scenario where the stakeholder of the code

snippets used in GitHub is the same as the owner of the code in Stack Overflow (in this

case, a credit is not needed). Several techniques have been proposed for the automated

detection of license incompatibility [63, 95, 179]. Although our study identifies license

incompatibility as one of the types of unethical behavior, our study includes more diverse

types of unethical issues related to licensing (missing license, license incompatibility,

and uninformed license change). Nevertheless, all existing studies on ethical concerns in

OSS projects only focus on a few aspects of ethical principles, and they did not conduct

an analysis of the diverse types of ethical violations in OSS projects in GitHub.
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Attribution 
(23%)

Informed
Consent (26%)

Accountability 
(26%)

Autonomy 
(11%)

Privacy (11%)

Trust (3%)

To respect copyright

To allow individuals to choose which tasks to perform 

To help individuals make informed consent decisions easier via 
licensing

To avoid license violation 

To protect the right of an individual of personal information

To be responsible for the project maintenance 

To avoid the fraudulent activities

To be responsible for naming

To be responsible for explaining public actions

To avoid offensive language

To respect expectations between people through goodwill 

(S1) No attribution to the author in code: Stakeholder fails to
give credit properly after copying code
(S2) Soft forking: Stakeholder does not give credit to the
forked repo or hard fork after copying repo
(S3) Plagiarism: Stakeholder copies many words or the entire
product regardless of giving credit

(S4) License incompatibility: Repo includes source code or
text file carrying different license types
(S5) No license provided for public repository: Public repo
does not have any license and stakeholders point it from
transparency
(S6) Uninformed License change: Repo’s license has changed
without notice

(S7) Depending on proprietary software: OSS project relies on
closed-source software

(S9) Unmaintained project with paid service: Repo is not
maintained although it has a paid service

(S10) Vulnerable code/API : Stakeholder provides vulnerable
code/ API

(S11) Naming confusion: Developer provides the name which
has a conflict of interest with other organization or individuals
such as giving same package name already used in Python
command-line interface

(S12) Closing issue/PR without explanation: Contributor does
not provide reasonable explanation of closing issue/ PR

(S13) Offensive language: Stakeholder uses offensive language
in the software artifacts

(S14) No opt-in or no option allowed: Product/system does not
provide user the option to choose from (e.g., withdrawing from
using the product without negative consequence)

(S15) Privacy Violation: Software still collected data, although
users were specifically opt-out via consent, and (or) personal
data leaks regardless of the option (opt-in/out) provided or not

(S8) Self-promotion: Stakeholder promotes his/her service
(product or repo) without mentioning he/she is a contributor to
this service

Figure 6.2: Taxonomy of unethical behavior in OSS projects.

6.3 Study of unethical behavior

To understand different types of unethical behavior in OSS projects, we conducted a study

guided by common principles from prior work [26] [102] [130] [61] [68]. We manually

inspect stakeholders’ discussions on GitHub issues to identify a common set of unethical

behavior or characteristics seen in OSS projects in GitHub. We crawled issues in GitHub

by searching using the keyword “ethic”, and its concepts related to ethics, and synonyms

to “un/ethical” (i.e., “unprofessional”, “unfair”, “right”, “proper”, and “principle”). We
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Table 6.1: Number of issues and affected artifacts of unethical behavior in OSS projects

Type Issues (#) Affected artifacts
S1 49 42 Source code, 6 Configuration files, 1 API
S2 20 20 Projects
S3 6 2 Source code, 2 Data, 1 UI, 1 Project
S4 27 10 Legalese, 7 Source code, 4 README/ CON-

TRIBUTING.md, 3 Configuration files, 1 Im-
age, 1 OS, 1 Website

S5 31 31 Legalese
S6 9 9 CHANGELOGs
S7 16 16 APIs
S8 8 8 PR/Issue comments
S9 11 11 Release histories
S10 26 22 Source code, 4 APIs
S11 21 10 Product names, 8 Source code, 1 UI, 1

Data, 1 Script
S12 16 10 PR/Issue comments, 6 PR/Issue reviews
S13 8 3 UIs, 2 Product names, 1 Source code, 1

README/ CONTRIBUTING.md, 1 Website
S14 36 15 UIs, 11 Software features, 6 Source code,

4 Configuration files
S15 36 12 Source code, 10 APIs, 5 UIs, 5 Software

features, 3 Configuration files, 1 Website
Total 320 320

manually (1) analyzed the discussion by stakeholders if it included unethical behavior in

the collected data, (2) filtered out invalid issues (e.g., issues that mention “ethic”’ but

only involve updating terms and conditions in document2), and (3) further analyzed

subsequent links if we found additional links in the discussion (GitHub links, such

as issue, PRs, repositories, Google Play link, or Stack Overflow link), resulting in 75
2https://github.com/Pryaxis/handbook/issues/3
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additional links. The final output of our crawler is a list of GitHub issues/PRs that

discuss unethical behavior in OSS projects. We started from 1642 GitHub issues/PRs

of 1339 projects submitted by stakeholders. After filtering invalid issues, we obtained a

total of 320 issues related to unethical behavior. For each issue, we attempted to answer

the following two questions:

RQ1: What are the common types of unethical behavior in OSS projects? What are the

ethical principles and ethical guidelines that these unethical behavior violates?

RQ2: For each of these unethical issues, what types of software artifacts are affected?

RQ1 aims to explore the types of unethical behavior in OSS projects in GitHub, whereas

RQ2 investigates the impacted software artifacts to model them for automated detection.

Figure 6.1 shows an overview of our study. When categorizing an issue, we used an open

coding approach [112], a widely-used approach for qualitative research. Two authors of

the work independently analyze the issues by reading their discussion, and meeting to

discuss to resolve any disagreement.

Ethical considerations. Although most empirical studies in Software Engineering

include a survey that asks developers for their opinions on the studied topics, we choose

to observe unethical behavior passively by reading developers’ discussions to avoid

spamming developers [34].

6.3.1 RQ1: Types of unethical behavior

We use a three-step approach to identify the types of unethical behavior in OSS projects.

First, we identified six common ethical principles guiding the action of stakeholders

in OSS inspired by prior work [102] (we exclude “Welfare” because it concerns fair

wages and job security which is generally not discussed in OSS projects). The six ethical

principles include Attribution, Informed Consent, Trust, Accountability, Autonomy, and
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Privacy. Second, we derived ethical guidelines by exploring terms used in existing stud-

ies [71] [64] [162] [62] [42] [130] [101] [75] [8] [137] [39] [148] [96] [57] [143] [135] [129]

[171][52] [133] [49] [56] [120] [117] [107] [53]. This results in 11 ethical guidelines. Third,

we classified unethical behavior by reviewing previous literature on ethical guidelines

and reading comments on GitHub issues. Figure 6.2 shows the 15 types of unethical

behavior in our study. The boxes on the left (e.g., “Attribution”) describes the ethical

principles behind each unethical behavior, whereas the grey heading for the boxes on the

right (e.g., “To respect copyright”) includes the 11 ethical guidelines for the principles,

and the contents present the related types of unethical behavior. We explain the 11

ethical guidelines and the corresponding type of unethical behavior found in our study

below:

1. To respect copyright. We define an issue to be related to copyright if it contains “copy”,

“plagiarism”, “credit”, or “fork”. There are three types of unethical behavior related to

copyright, described below:

We classify an unethical behavior issue as S1: No attribution to the author in

code if the stakeholders failed to credit properly after copying a piece of code because

all derived work must be credited. An example discussion for S1 is “... copied from stack

overflow ... we can ignore the license if we want but it seems a bit unethical to just ignore

it.”3 Likewise, if the copied item is a repository and has not given credit to the forked

repository, we classify it as S2: Soft forking because GitHub encourages forking as the

core of social coding and crediting the original developers [137]. An example discussion

for S2 is (S2) “Unauthorised copy of... unethical... You must delete this repo and fork

from the original...”4

We consider an issue as S3: Plagiarism if the stakeholders were involved in copying

texts (non-source code) or the entire product regardless of giving credit or not [8]. For
3https://github.com/OpenTreeMap/otm-core/issues/400
4https://github.com/biddyweb/yes-cart/issues/33
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example, replicating the website’s text and using it as the content of the interactive book,

which is the majority of the product. An example discussion for S3 is “Interactive book

should be free of plagiarism. By replicating the content used by...unethical.”5

2. To help individuals make informed consent decisions easier via licensing. For each

GitHub issue/PR, we define the issue to be related to licensing if the issue contains

“license”. Specifically, we classify an issue as S4: License incompatibility if the reposi-

tory included source code or text files carrying different license types compared to the

project’s license because stakeholders must ensure license compatibility of the repository.

Example for S4 is “To continue distributing when we know they have incompatible licenses

is unethical.”6.

If the public repository does not have any license and the stakeholders request it, we

classify an issue as S5: No license provided in public repository because licenses

state the official permissions to use a repository, and project owners should provide the

license if the OSS is public for greater transparency. An example comment for S5 is “The

repository is public which implies an intent of being open-source but no license is specified

making review of the code an issue...People get...at the end of the day, but they are funding

this stuff instead of the... developers. That’s unethical but legal.”7.

In terms of transparency concerns, developers of OSS projects should inform the

stakeholders about the license change (via CHANGELOG or PR) prior to changing the

license. We categorize this unethical behavior as S6: Uninformed License change if

the contributors fail to do so. An example comment for S6 is “Sudden, Silent License

change?...I find this silent change unethical.”8

3. To avoid license violation. For each GitHub issue/PR, we define the issue to be related

to license violations if the issue contains “proprietary”, and “closed source” because
5https://github.com/CircuitVerse/Interactive-Book/issues/80
6https://github.com/mpdf/mpdf/issues/15
7https://github.com/pkalogiros/AudioMass/issues/1
8https://github.com/minio/minio/issues/12143
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stakeholders must obey the OSS license agreement and avoid integrating prohibited

licenses that cause violations in license dependency chains [96]. Specifically, we classify

an issue as S7: Depending on proprietary software if the OSS projects rely on

closed-source software. An example comment for S7 is “Since ... is fully open source

software, I believe depending on closed source software is unethical”9.

4. To respect expectations between people through goodwill. Trust is an ethical principle

that refers to respecting expectations between people through goodwill. One of the

unethical behavior that we studied could lead to broken trust between stakeholders in

OSS projects. Specifically, we use the keywords “promote”, “advertise” and “promotion”

to identify S8: Self-promotion (i.e., the stakeholder advertises his or her service, such

as product and repository, without mentioning that he or she is a contributor to this

service). An example comment for S8 is “Seeing him leverage his notability and following

to promote and increase the adoption of ..., which he just released a few days ago, is

unethical.”10

5. To be responsible for the project maintenance. For each GitHub issue/PR, we define

the issue to be related to project maintenance if the issue contains “maintain”, “support”,

“pay”, and “purchase”. We consider an issue to be S9: Unmaintained project with paid

service if the project repository is not actively maintained when it has a paid service. It

is unethical because one of the responsibilities of the project’s owner is to listen to the

users who escalated the bugs, provide support and fix the bugs within a reasonable time.

An example comment for S9 is “I just bought the pro version, and now I’m having this

same problem...definitely unethical.”11

6. To avoid fraudulent activities. We identify an issue to be related to fraudulent ac-

tivities if it contains the keywords “malware”, “vulnerable”, and “hacking”. The issue

is classified as S10: Vulnerable code/API if it describes stakeholders involving in
9https://github.com/wger-project/wger/issues/266

10https://github.com/eslint/eslint/pull/15102
11https://github.com/tranleduy2000/javaide/issues/236
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malicious activities (e.g., contributing malicious code or API). An example comment for

S10 is “Given that ... 2.1.7 has...unfixed security vulnerability, ...continuing to release it is

unethical”12.

7. To be responsible for naming. We define an issue to be related to naming if it contains

the keyword “name”, and we classify it as S11: Naming confusion if it involves the

stakeholders’ duty to give unique names for their artifacts (e.g., packages, variables, and

libraries). Project owners are responsible for identifying unique names before using the

name. An example comment for S11 is “research on the package names before assigning

to the package. There is already a package ’click’ for creating command-line interfaces.

I am using ... package which turns out that it tries to import click package:... your

library does not have a style component and python throws an error...unethical”13. In

this example, developers select the same package name as the Click package, causing a

program failure due to naming conflicts.

8. To be responsible for explaining public actions. We consider S12: Closing issue/PR

without explanation” to be an unethical behavior if the issue/PR is being closed

without providing any explanation because all stakeholders need to receive reasonable

explanations to support informational fairness [49]. An example comment for S12 is

“...It’s a bit unfair to just close something without explaining why?...”14.

9. To avoid offensive language. We define an issue to be related to offensive language if

it contains the keyword “offensive”, and we classify it as S13: Offensive language if

it involves the stakeholders using offensive language because words with subjects that

are considered offensive language might represent unethical behavior [52]. Prior study

states that hate speech (offensive words) might not necessarily be a criminal offense but

it can still harm [133]. An example comment for S13 is “Rename the Scroll of Genocide
12https://github.com/flyingsaucerproject/flyingsaucer/pull/123
13https://github.com/click-llc/click-integration-django/issues/1
14https://github.com/twbs/bootstrap/issues/5632
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to something else...It was never ethical name”15. In this example, the stakeholder thinks

that using inappropriate words (e.g., “Genocide”) to name a scroll in software is unethical.

10. To allow individuals to choose which tasks to perform. We define the issue to be

related to S14: No opt-in or no option allowed if it has the keywords “opt-in”, and

“option”. Specifically, the system does not provide users options such as withdrawing

from using the product and disallowing the permission to save personal data without

negative consequences. For example, no option is available for uninstalling the third-

party library. We focus on issues with “no option” or “no opt-in” because they provide

stronger protections than opt-out [39]. An example comment for S14 is “There should be

an option if someone wants to completely remove ... from the system...I think it’s unethical

to not provide an easy way for a program to be uninstalled”16.

11. To protect the right of an individual of personal information. We define an issue to be

related to privacy if it contains the keyword “privacy”, and we classify it as S15: Privacy

Violation under two common scenarios: (1) if the software still collects data despite

the fact that users have opted-out via consent, and (2) if there exist personal data leaks

regardless of the option (opt-in/out) being provided or not. An example comment for S15

is “Form submitted even if opt-in checkbox is unchecked...Signing people up when they

haven’t opted in is a major enough bug...at least unethical”17.

Table 6.1 presents the numbers of issues we found for each type of unethical behavior.

The “Type” and “Issues (#)” columns represent the types of unethical behavior issue

and the number of issues we found in GitHub, respectively. Overall, our study identifies

15 types of unethical behavior where the most common types of unethical behavior are

related to copyright (S1, S2, and S3) and licensing (S4, S5, and S6). As our study shows

that illegal copying of code (S1) or copying the entire repository (S2), or copying texts

(S3) are common in OSS projects, we hope to raise awareness to stakeholders of OSS
15https://github.com/NetHack/NetHack/issues/359
16https://github.com/EasyEngine/easyengine/issues/488
17https://github.com/katzwebservices/Contact-Form-7-Newsletter/issues/79
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projects that such behavior is considered unethical.

6.3.2 RQ2: Affected software artifacts

Software artifacts are objects made intentionally to achieve some purposes [81]. In our

work, we consider all artifacts appearing in software repositories as software artifacts.

Specifically, we define affected software artifacts as artifacts that violate ethical principles.

Based on prior studies [90, 142], we identify 18 types of artifacts, including (1) source

code, (2) legalese (i.e., licenses, copyright notes or patents), (3) application programming

interface (API), (4) user interface (UI), (5) project, (6) release history, (7) software feature

(i.e., functional or non-functional requirements of a system), (8) product name (i.e., the

affected artifact concerns the product, project, or app name), (9) configuration file, (10)

PR/Issue code review, (11) PR/Issue comment, (12) README / CONTRIBUTING.md,

(13) CHANGELOG, (14) data (i.e., data from database systems like SQLite), (15) image,

(16) operating system (OS), (17) website, and (18) script (i.e., source code in languages ex-

ecuted by an interpreter). As some types of the artifacts are more difficult to understand,

we define these artifacts in the following paragraph:

Source code: If the API is internal, like method within the own package, it should be

source code

Legalese: Legalese refers to licenses, copyright notes, or patents. (e.g., LICENSE, LI-

CENCE COPYRIGHT, or PATENTS).

API: API is about third party (external) library or service.

Software feature: Software feature refers to an observable system behavior (fea-

ture) [59, 89]. An example feature is the ability to unsubscribe from newsletters.

The third column in Table 6.1 presents the affected artifacts for each unethical

behavior. Each number in the column represents the number of GitHub issues with a

particular type of artifact (e.g., “42 Source code” means that there are 42 issues where S1
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Figure 6.3: Overall architecture of Etor (GH denotes GitHub).

is affected by source code). Theoretically, one GitHub issue might contain the discussion

for multiple artifacts but during our analysis, each issue only discusses about one artifact

because we notice that developers prefer to discuss ethical concerns for a particular type

of artifact in a separate GitHub issue. Overall, Table 6.1 shows that source code is still the

most common type of artifacts for unethical behavior in OSS projects (i.e., it affects eight

types of unethical behavior). However, apart from applying program analysis techniques

for detecting unethical behavior involving source code, future research needs to work on

designing a robust tool that can parse and analyze 18 types of artifacts for automated

detection of unethical behavior discovered in our study.

6.4 Methodology

Our study shows that diverse types of unethical behavior exist in OSS projects, and

these unethical behaviors usually involve many different types of software artifacts.

The diversity and the complexity of the rules governing the ethics-related activities in

GitHub motivate the need for a modeling approach that can abstract this complexity and

facilitate its automatic detection. In this section, we first describe how we model unethical

102

CHAPTER 6. TOWARDS AUTOMATED DETECTION OF UNETHICAL BEHAVIOR IN
OPEN-SOURCE SOFTWARE PROJECTS



6.4. METHODOLOGY

Table 6.2: GitHub attributes and types for auto-detection

Attribute Type Description
GHRepository

licenseFile GHContent repo’s license file
readmeFile GHContent readme file
fileCount int # of files in repo
fileContent GHContent file’s content
commitCountByPath int # of commits for spe-

cific file path
commitByPath GHCommit commit for file path
fork GHRepository fork of a repo
forkCount int # of forks of repo
contributor GHUser stakeholder taking

part in GitHub repo
pullRequestCountByCommit int # of PRs which con-

tain specific commit
latestRelease GHRelease the last release in

GitHub history
GHUser

user String GitHub username
GHIssue

issueMessageBody String description of issue
issueOwner GHUser stakeholder who re-

ports issue
GHCommit

commitCodeChange String code change in com-
mit

GHContent
contentCount int # of contents stored in

file’s content
content String content
path String file path
pathCount int # of file paths

GHRelease
publishedDate Date date of release in

GitHub history
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behavior in OSS projects using SWRL rules in Section 6.4.1. Then, in Section 6.4.2, we

explain the overall design and architecture of Etor that incorporates the SWRL rules for

its automatic detection of unethical behavior.

6.4.1 Modeling unethical behavior via SWRL rules

As there are a large number of software artifacts that are stored in repositories in

GitHub [142], we propose using SWRL rules to represent unethical behavior in an OSS

project together with the data stored in the project. SWRL rules allow us to model

software artifacts affected by unethical behavior as hierarchies of classes and properties

to represent the relationships between the affected software artifacts and stakeholders.

Table 6.2 shows the list of GitHub attributes that we used for our modeling. The columns

under “Attribute”, and “Type” explain each attribute and its types (e.g., latestRelease

attribute of GHRepository has the GHRelease type).

For each OSS project, we model it as GHRepository. By referring to the GitHub Repos-

itories API 18, we extract 11 data properties (e.g., latestRelease and licenseFile)

that belong to a GHRepository by excluding properties that are irrelevant for modeling

unethical behavior (e.g., avatar_url that points to the icon for a repository). Apart

from the GHRepository main class, we have derived the following classes to model data

properties of a repository:

GHUser: A GitHub user identified via its username. While GitHub users usually play

different roles in an OSS project, we only model two kinds of users: (1) contributors

(users who are official contributors of a repository) and (2) issue owners (users who report

an issue).

GHCommit: The code changes in a commit.

GHContent: The content (including source code) of a file and its location (file path).
18https://docs.github.com/en/rest/repos

104



6.4. METHODOLOGY

GHIssue: A GitHub issue that describes a bug or a feature. We reuse the same conven-

tion in GitHub Search API by modeling a PR (GHPullRequest) as a subclass of GHIssue

(i.e., GitHub Issue Search API will search for issues and pull requests, essentially

treating a PR as a type of GitHub issue).

GHRelease: The latest releases are represented by the published date of the release.

6.4.2 Automatic detection of unethical behavior

Among 15 types, we identify six types of unethical behavior that can be automatically de-

tected. Specifically, we exclude nine unethical behavior because (1) they involve artifacts

(e.g., product names, software features, and data files) that are difficult to automatically

isolate from other information (we exclude “Plagiarism”, “Naming confusion” and “Of-

fensive language”), (2) they require sophisticated analysis of configuration files, API or

source code (we exclude “License incompatibility”, “Depending on proprietary software”,

“Vulnerable code/API”, “Privacy Violation”, and “No opt-in or no option allowed”), and

(3) their detection requires advanced natural language processing (we exclude Closing

issue/PR without explanation as it is difficult to automatically judge whether the ex-

planation for the decision to close PR/issue exists), and (3) automated approaches for

“License incompatibility” [63, 95, 179] exist so we exclude it to avoid reinventing the

wheels.

Overview of Etor. Figure 6.3 presents the overall architecture of our automatic detection

tool, Etor. Our approach supports detection of unethical behavior for two levels, including:

(1) repository (denoted as repo), and (2) GitHub issue/pull request (we will denote an

issue as issue and a pull request as PR). Given a repo or an issue/PR, and the type of

unethical behavior eType to be checked, the Etor relies on its set of SWRL rules for its

detection, and produces as output whether there is a violation of eType in the given

input. Apart from GitHub attributes listed in Table 6.2 that can be detected using the

105



CHAPTER 6. TOWARDS AUTOMATED DETECTION OF UNETHICAL BEHAVIOR IN
OPEN-SOURCE SOFTWARE PROJECTS

GitHub API, our SWRL rule reasoner uses two additional components for its detection:

(1) license detector that checks for licenses at the repository level, and (2) code similarity

checker that identifies similar code.

Auto-detectable issues. Below are the six types of issues that can be detected automati-

cally:

(S1) No attribution to the author in code. This type checks if an issue or a PR has a Stack

Overflow link representing a reference code, and the code snippet copied from Stack

Overflow cites the reference link. Given an issue/PR as input, Etor checks if a comment

b in the issue/PR posted by a stakeholder u1 contains the Stack Overflow link (w) (we

use regular expression to extract w). Etor reports a potential violation if: (1) u1 is not

the owner of the Stack Overflow comment, (2) the code snippets from Stack Overflow is

found in one of the files in the repository (F) with at least 10% similarity (copyright law

permits the use of up to 10% of work without permission 19), and (3) w is not found in F.

Note that we only check for Stack Overflow links in Etor because we learned from our

study that contributors are required to give credit to authors for the copied code as code

snippets in Stack Overflows are protected by the CC-BY-SA Creative Commons license.

The SWRL rule for S1 is listed below:

GHIssue(?i)∧isIssueMessageBody(?i,?b)∧
swrlb:contains(?b,"https://stackoverflow.com/")∧isWebLink(?b,?w)∧

isIssueOwner(?i,?u1)∧openStream(?w,?s)∧swrlb:booleanNot(contains(?s,
?u1))∧isFileCount(?r,?fc)∧swrlb:greaterThan(?fc,0)∧isFileContent(?r,
?ffct)∧isContentCount(?ffct,?ffctc)∧swrlb:greaterThan(?ffctc,0)∧

isContent(?ffct,?ffcc)∧isSimilarCode(?ffcc,?s)∧
swrlb:booleanNot(contains(?ffcc,?w))∧→S1(?i)

(S2) Soft forking. Given two repositories r1 and r2, Etor compares the contents of all
19https://www.legislation.gov.au/Details/C2017C00180
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source files in the two repositories to check if one repository is a soft-fork (the repository

has the same content but it is not listed as an official fork of another repository) of

another repository. Specifically, we use AC220 to detect the similarities between files. AC2

is a source code plagiarism detection tool that has been widely used by instructors and

graders to detect plagiarism within a group of assignments. We select AC2 for checking

code similarity because (1) it supports many programming languages (e.g., C, C++, Java,

and PHP), (2) it can be run in a local environment without needing to send data to

remote servers, (3) it includes information visualization which makes it easy to visualize

the detection results, and (4) it is quite robust as it incorporates multiple algorithms

found in the scientific literature. Etor reports a violation if it detects: (1) 100% similarity

between r1 and r2, and (2) r2 is not in the fork list of r1. The SWRL rule for S2 is listed

below:

GHRepository(?r1)∧GHRepository(?r2)∧swrlb:isSimilarCode(?r1,?r2)∧
isForkCount(?r1,?fc)∧swrlb:greaterThan(?fc,0)∧isFork(?r2,null)→S2(?r2)

(S5) No license provided in public repository. Given a repository r, Etor detects the

repo-level license by checking if it exists in the: (1) LICENSE file21 in the main directory

of r, (we check only in the main directory to avoid mistakenly finding API license or

package license) or (2) README.md file with license information (we use the list of licenses

provided by GitHub 22 for repo-level license detection). Etor reports a potential violation

if no license is found after searching for the two files. The SWRL rule for S5 is listed

below:

GHRepository(?r)∧isFileCount(?r,?fc)∧swrlb:greaterThan(?fc,0)∧
isLicenseFile(?r,null)∧isReadmeFile(?r,?rmf)∧isContentCount(?rmf,?rmcc)

20https://github.com/manuel-freire/ac2
21https://docs.github.com/en/communities/setting-up-your-project-for-healthy-contributions/adding-a-

license-to-a-repository
22https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-

features/customizing-your-repository/licensing-a-repository
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∧swrlb:greaterThan(?rmcc,0)∧isContent(?rmf,?c)∧
swrlb:booleanNot(contains(?c,[License]))→S5(?r)

(S6) Uninformed License change. We consider a change to be uninformed if (1) it is not

being announced in the CHANGELOG.md or (2) the license change is done via PR. Given

a repository r, Etor checks if the repo-level license has been changed by: (1) extracting

commit lists of the license file, and (2) checking if commit changes include license updates.

If the license changes occur in more than one commit (we ignore the first commit as it is

the initial license creation), Etor checks whether the changes have been announced in

the CHANGELOG.md by checking whether the CHANGELOG.md mentions license information.

If no license information is found in CHANGELOG.md, Etor checks the PR count for the

commit (pullRequestCountByCommit). If the count is less than one, Etor marks it as a

potential violation. The SWRL rule for S6 is listed below:

GHRepository(?r)∧isFileCount(?r,?fc)∧swrlb:greaterThan(?fc,1)∧
isLicenseFile(?r,?lf)∧isContentCount(?lf,?fctc)∧swrlb:greaterThan(?fctc,
0)∧isContent(?lf,?c)∧isPathCount(?lf,?pc)∧swrlb:greaterThan(?pc,0)∧

isPath(?lf,?p)∧isCommitCountByPath(?r,?ctp)∧swrlb:greaterThan(?ctp,1)∧
isCommitByPath(?r,?cl)∧isCommitCodeChange(?cl,?cc)∧swrlb:contains(?cc,

[License])∧swrlb:booleanNot(contains(CHANGELOG,?cc))∧
isPullRequestCountByCommit(?r,?prc)∧swrlb:lessThan(?prc,1)→S6(?r)

(S8) Self-promotion. We consider self-promotion to be the scenario where a contributor

u opens a GitHub issue/PR where the content of the issue/PR includes links to another

repository in GitHub (swrlb:contains(?b,"https://github.com/")) to promote his

or her own repository. Given an issue/PR for r1 as input, Etor first (1) checks that the

issue/PR includes a link L to another repository r2, and (2) identifies the stakeholder

u who opens the issue/PR. Then, it reports a violation if: (1) r1 is not r2, (2) u is not a
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contributor of r1 (i.e., u is an outsider for r1), and (3) u is a contributor of r2. To reduce

false positives, Etor also checks if L includes specific keywords (“\issues\”, “\pull\”,

“\commit\”, “\tree\”, “\releases\”, “\blob\”, and “\runs\”). These keywords usually

indicate that the contributor is sharing the link L for demonstration purposes ([DEMO])

instead of promoting a repository/library. The SWRL rule for S8 is listed below:

GHIssue(?i)∧isIssueMessageBody(?i,?b)∧swrlb:contains(?b,
"https://github.com/")∧isWebLink(?b,?r2)∧swrlb:notEqual(?r1,?r2)∧

isIssueOwner(?i,?u)∧swrlb:booleanNot(isContributor(?r1,?u))∧
swrlb:booleanNot(contains(?b,[DEMO]))∧isContributor(?r2,?u)→S8(?i)

(S9) Unmaintained Android Project with Paid Service. This type checks whether an

Android project offered paid service in Google Play, but stop actively maintaining the

GitHub repository. On average, 115 APIs are updated per month [125], and 49% of app

updates have at least one update within 47 days [127]. Based on the frequency of app

updates, we define an unmaintained Android project to be an Android project where the

latest update released date is less than 0.5 year. Given a r as input, Etor first checks

for unmaintained Android projects by examining whether (1) the latest release date (D)

of r is less than 0.5 year, and (2) r is an original repository (i.e., not forked from other

repositories). Then, it checks whether the app offers a paid service by (1) identifying the

Google Play link l from r, and (2) searching for the “in-app purchase”. The SWRL rule

for S9 is listed below:

GHRepository(?r)∧isLatestRelease(?r,?lr)∧isPublishedDate(?lr,?d)∧
durationGreaterThan(0.5,?d,"Years")∧isFork(?r,null)∧isFileCount(?r,?fc)∧
swrlb:greaterThan(?fc,0)∧isReadmeFile(?r,?rm)∧isContentCount(?rm,?rmcc)

∧swrlb:greaterThan(?rmcc,0)∧isContent(?rm,?c)∧swrlb:contains(?c,
"https://play.google.com")∧isWebLink(?c,?l)∧openStream(?l,?s)∧

swrlb:contains(?s,"in-apppurchase")→S9(?r)
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Table 6.3: Number of issues detected and TP/FP rate

Type
# Unethical Issues True Positive False Positive

Time (s)
# repos or issues / Total # repos or issues / Total % # repos or issues / Total %

(S1) No attribution to the author in code 80 / 195,621 issues 59 / 80 issues 74 21 / 80 issues 26 5.4
(S2) Soft forking 10 / 100 repos 10 / 10 repos 100 0 / 10 repos 0 343.1
(S5) No license provided in public repository 476 / 1,765 repos 426 / 476 repos 89 50 / 476 repos 11 3.1
(S6) Uninformed License change 18 / 1,765 repos 16 / 18 repos 88 2 / 18 repos 11 9.2
(S8) Self-promotion 116 / 195,621 issues 37 / 116 issues 32 79 / 116 issues 68 4.3
(S9) Unmaintained Android Project with Paid Service 4 / 1,765 repos 4 / 4 repos 100 0 / 4 repos 0 5.3
Average - - 80.5 - 19.3 -

6.5 Evaluation

We applied Etor on 195,621 GitHub issues and PRs of 1,765 GitHub repos to address the

following research questions:

RQ3: How many unethical issues can Etor find in OSS projects?

RQ4: What is the effectiveness of Etor in detecting unethical behavior?

By counting the number of unethical issues in OSS projects, RQ3 provides a rough

estimation of the prevalence of each type of unethical behavior in OSS projects. For RQ4,

we measure the effectiveness of Etor by checking for the accuracy and the efficiency of

its detection using the following metrics:

True Positive (TP): Etor classifies an unethical behavior as a potential violation, and

it is a true violation.

False Positive (FP): Etor incorrectly classifies an unethical behavior as a potential

violation, and it is a false violation.

Time: The average time taken (in seconds) to detect a type of unethical behavior across

all the evaluated repositories/issues.

Selection of projects/issues. As there is no prior benchmark for evaluating the detec-

tion of unethical behavior, we construct a dataset by crawling GitHub. Our goal is to

select the most recent popular (most stars and most forks) OSS projects and the GitHub
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issues/PRs from these popular projects for evaluation. We first obtain the list of the top

2,000 OSS projects (we first get the top 1,000 projects with the greatest number of stars,

and then the top 1,000 projects with the greatest number of forks) created last year

(2021). After eliminating duplicated projects, there are 195,621 GitHub issues/PRs of

1,765 projects in our evaluation set. As soft forking requires two repositories as input,

we obtain the pair of repositories (repo1, repo2) by getting repo1 from the top 200

projects (first 100 from most stars, subsequent 100 from most forks) from the initial list

of 2,000 projects. From these 200 projects, our crawler automatically identifies repo2

by searching GitHub for projects with similar names using the name of repo1 as the

query. At this step, our crawler found only 10 out of the 200 projects that have at least

one repository with similar names. For each of these 10 projects, our crawler retrieves

the first 10 repositories from the search results as repo2, leading to a total of 10*10=100

projects for evaluating soft forking.

Ethical considerations. As calling out stakeholders for violations of unethical behavior

could potentially lead to similar ethical concerns in prior work [177], we choose to

evaluate Etor by manually inspecting the reported issues. To reduce author bias in the

manual classification of TP/FPs, we ask for help from a non-author to independently

label each issue.

All experiments are conducted on a machine with Intel(R) Core (TM) i7-7500 CPU

@2.7 GHz and 16 GB RAM. Implementation. We use Protégé 5.5.0 [134] [136] to define

the knowledge model for our work. Our crawler uses the GitHub API (Java version 23,

Python version 24).
23https://github-api.kohsuke.org/
24https://github.com/PyGithub/PyGithub
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6.5.1 RQ3: Number of detected issues

Table 6.3 summarizes the results of our evaluation. The “Type” column denotes the

unethical issue type that Etor detected, whereas the second column is of the form x

/ y where x represents the number of repositories/issues with the unethical behavior

detected and y denotes the total number of repositories/issues in our evaluation dataset.

Overall, Etor has successfully detected at least one violation for all types of unethical

behavior that we studied. As our evaluation dataset is different from the study dataset,

and we have observed the occurrences of unethical behavior in both datasets, this

indicates that different types of unethical behavior is prevalent in OSS projects. Table 6.3

also shows that “No license provided in public repository” is the most common types

among the six types of detected issues. This means that a relatively high percentage of the

evaluated repositories are missing license files (around 24% of the evaluated repositories

if we exclude the false positives). For the issue-level detection, we observe that “No

attribution to the author in code” and “Self-promotion” are the most common ones among

all evaluated issues/PRs. This means that contributors of OSS projects tend to (1) forget to

give credit to the author in their copied code snippets, or (2) promote their own repositories

when contributing code.

6.5.2 RQ4: Effectiveness of Etor

Accuracy. To evaluate the effectiveness of Etor, two raters (one author, and one non-

author who is an undergraduate CS student working as a part-time student assistant)

independently inspect its output. Specifically, for each violation reported by Etor, each

rater determines if the violation is a true violation (TP) or a false violation (FP). We use

Cohen’s Kappa to assess inter-rater agreement, specifically for measuring inter-rater

reliability scores [106] [105] [25]. The initial Cohen’s Kappa was 0.82, which indicates

a high level of agreement. The two raters then meet to resolve any disagreement to
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reach Cohen’s Kappa of 1.0. The “True positive” and “False positive” columns in Table 6.3

show the results for the inspection. On average, the true positive rate is 80.5%, and

the false positive rate is 19.3%. For repository-level detection, although Etor can only

detect a small number of violations for “Soft forking” and “Unmaintained Android Project

with Paid Service”, it can detect these unethical issues with high accuracy (0% FP rate).

For “Soft forking”, as we consider a repository a soft-fork only if all the contents of

the two repositories are the same (100% similarity), this design decision may lead to

fewer violations being found but increase the accuracy of its detection. In future, it is

worthwhile to study the effect of the similarity threshold on the accuracy of its detection.

For issue-level detection, Etor can detect “No attribution to the author in code” with

reasonable accuracy (26% FP rate).

Efficiency. The “Time” column in Table 6.3 shows the average time taken to detect

an unethical behavior. Overall, the average time to analyze a repository is 3.1–343.1

seconds and the average time taken to analyze an issue is 4.3–5.4 seconds. This indicates

that Etor can detect a type of unethical behavior relatively fast. We also observe that “Soft

forking” is the most time-consuming type to detect because Etor needs to check for code

similarities for all source files within the repository.

Reasons behind the inaccurate detection. We manually inspect the reasons behind

the FPs reported by Etor.

Etor reports the highest FP rate for “Self-promotion”. Recall that Etor checks that a

stakeholder St opens an issue/PR I at repository R1, and includes the other repository

(R2) link (L). A true “Self-promotion” only occurs if St did not mention about being a

contributor of R2. We need to manually verify this condition by reading the comments

written in natural language. Hence, FPs may occur if (1) St mentioned that he or she is

a contributor of R2 (e.g., “I am working on a project called the ...” in comment 25) or (2) St

wanted to ask for suggestion in using R1 for R2 (e.g., “I’d like to try your ... module in a
25https://github.com/Anarios/return-youtube-dislike/issues/401
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non-mmdetection repo (...)” [9]).

For “No attribution to the author in code”, we found three main reasons for FPs;

(1) there is no code or idea copied (e.g., the Stack Overflow link was mentioned as

references [10]), (2) Etor checks the exact Stack Overflow link and is unable to detect if

the citation uses the short link of Stack Overflow, and (3) Etor detects the exact GitHub

user name against with Stack Overflow user name, and is unable to detect if the user

name is different (e.g., GitHub user name is devinrhode2 and Stack Overflow user name

is DevinRhode [11]). For “No license provided in public repository”, FPs occur because

the repository (1) has a license file that is not in the main directory (e.g., LICENSE file

in the inner folder [12]), (2) has a disclaimer in README.md (e.g., “This repository is for

personal study and research purposes only. Please DO NOT USE IT FOR COMMERCIAL

PURPOSES.” in README.md [13]), (3) is used for education purposes (we need to manually

exclude repositories for the public schools where the license is not required), (4) has no

source code or data, and (5) is under an organization license and no separate license is

defined for the repository [14].

For “Uninformed License change”, FPs occur because the scenario where the reposi-

tory has restored the old license should not be considered an unethical violation (e.g., the

stakeholder changed the license from “Apache License Version 2.0” to “GNU GENERAL

PUBLIC LICENSE Version 3” on Feb 17 2022, and he/she restored back to “Apache

License Version 2.0” on Feb 18 2022 [15]).

6.6 Discussion and Implications

We discuss practical takeaways and suggestions below:

Types of unethical behavior in OSS projects. Our study revealed several types

of unethical behavior that occur in general setting (e.g., “Plagiarism” and “Offensive

language”), and several types that are unique in the context of OSS projects (e.g., “Soft
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forking” represents ethical concerns when forking, “Closing issue/PR without explanation”

are related to closing GitHub issues/PRs). Although Etor can only detect six out of the

15 studied types using an ontology-based approach, our study points to future direction

of research that designs more sophisticated techniques to automatically detect unethical

behavior in OSS projects.

Software artifacts affected by unethical behavior. Our study shows that model-

ing unethical behavior requires checking for conditions over diverse types of software

artifacts. Although source code is still the most common type of artifacts affected by un-

ethical behavior (Table 6.1), other artifacts in natural language (e.g., PR/Issue comments,

product names, and website) are also common. In future, it is worthwhile to study how

to apply natural language processing techniques to accurately detect unethical behavior

affected by these artifacts.

Challenges in automated detection of unethical behavior. To provide guidelines

for future research on the automated detection of unethical behavior, we discuss several

challenges identified in our study and evaluation:

• As shown in our study in Section 6.3.2, the types of artifacts affected by the unethical

behavior are too diverse. An accurate detection technique needs to support analysis of

various types of artifacts, including source code, data, and websites.

• Within GitHub, we notice that discussion and announcement in GitHub spread across

multiple web pages (issues, PRs, wikis, discussions, and commit logs). With the rapid

growth of different types of web pages in GitHub, it poses additional challenges for

automated approaches to exhaustively analyze all relevant web pages.

• We notice that some discussions of unethical behavior are conducted outside of GitHub

(e.g., personal emails, slack channel). For example, for “Self-promotion”, we cannot check

whether the stakeholder has communicated with the developers in advance through

emails. Without complete information about the discussion, the detection is bound to be
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inaccurate.

• The scope for the detection can be too broad for some types of unethical behavior (e.g.,

“Naming confusion”). Without a predefined scope of detection (package name collision

versus app name collision), we cannot accurately detect the behavior.

• There exist ambiguities for certain unethical behavior, which makes it difficult even

for human beings to reach consensus (e.g., whether the language used is offensive). In

this case, an automated tool can present all relevant information to help stakeholders in

OSS to make more grounded decisions about whether a behavior is ethical or not.

6.7 Threats to validity

External. Our findings of unethical behavior may not generalize beyond the studied OSS

projects and issues/PRs. While other types of unethical behavior discovered in our study

is important, Etor can only detect six of them, and our evaluation is limited to these six

types. Nevertheless, our experiments show that Etor can detect unethical behavior with

relatively high accuracy, which shows the feasibility of having an approach for automated

detection of unethical behavior.

Internal. Our code and scripts may have bugs that can affect our results. To mitigate

this threat, we make our tool and data publicly available for inspection.

6.8 Conclusion and future work

To better understand activities in OSS projects that can lead to ethical concerns, we

conduct a study of the types of unethical behavior in OSS projects. By reading and

analyzing the discussion of stakeholders in OSS projects, our study of 320 GitHub issues

identifies 15 types of unethical behavior. These unethical behaviors are affected by

various types of software artifacts. Inspired by our study, we propose Etor, an ontology-
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based approach that can automatically detect unethical behavior. Our evaluation of Etor

on 195,621 GitHub issues (1,765 GitHub repositories) shows that Etor can automatically

detect 552 issues with 19.3% FP rate on average. As the first study that investigates the

types of unethical behavior in OSS projects, we hope to raise awareness of the importance

of understanding ethical issues in OSS projects. Our tool that uses software artifacts

and data available in GitHub API also lays the foundation for future approaches on

automated detection of unethical behavior. In the future, we plan to enhance Etor to

detect more issue types, and reduce false positives using machine learning techniques.
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In this dissertation, we propose the following two approaches for automated debugging

for Android apps.

1. Event-Aware Precise Dynamic Slicing for Automatic Debugging of An-

droid Applications. We, for the first time, introduce delta-debugging into dynamic

slicing for Android to significantly boost its precision, as confirmed in our exper-

iments. Our dynamic slicing supports control- and data-dependence at both the

instruction- and event-level by leveraging the simplified input event sequence that

triggers the same bug using segment-based delta debugging. Our tool (ESDroid)

can produce a more precise but smaller dynamic PDG with up to 72% (27% on

average) fewer falsely executed instructions than the state-of-the-art AndroidSlicer,

and up to 50% (18% on average) fewer than Mandoline while maintaining only the

relevant buggy statements to capture precisely the same bugs as AndroidSlicer and

Mandoline. In the future, we intend to enhance ESDroid to handle non-crashing

bugs by exercising more strategies (e.g., hierarchical delta debugging), and in-

cluding test cases with complex interactions such as GUI text input and system
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2. Complement of Dynamic Slicing for Android Applications with Def-Use

Analysis for Application Resources. We propose a novel approach called SfR

(Slicing for Resources), which identifies the dependences between the program

statements and the application resources to complete the slice for Android ap-

plications. We observed improvements in the slices’ quality and evaluated for 3

apps. On average, the accuracy is 90% for AndroidSlicer and 96% for SfR. This

shows that the data flow between statements and application resources influences

the accuracy of slicing tools for Android applications. We plan to build the tool

supporting the parent-child tag element in the future.

Inspired by automated analysis, as our third contribution, we study unethical behav-

ior in OSS projects and propose the following approach.

• Towards Automated Detection of Unethical Behavior in Open-source

Software Projects. We, for the first time, conduct a study of the types of unethical

behavior in OSS projects and propose a novel approach that can automatically

detect unethical behavior. By reading and analyzing the discussion of stakeholders

in OSS projects, our study of 320 GitHub issues identifies 15 types of unethical

behavior. These unethical behaviors are affected by various types of software

artifacts. Inspired by our study, we implemented a tool called Etor (an ontology-

based approach) that can automatically detect unethical behavior. Our evaluation

of Etor on 195,621 issues (1,765 repositories) reveals that Etor can automatically

detect 552 issues with 80.5% TP rate on average. As the first study that investigates

the types of unethical behavior in OSS projects, we hope to raise awareness among

OSS stakeholders regarding the importance of understanding ethical issues in

OSS projects. While Etor indicates promising results in automated detection of
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unethical behavior in OSS projects, we intend to enhance Etor in the future to

detect more types and reduce false positives using machine learning techniques.

120



C
H

A
P

T
E

R

8
ETHICAL ISSUES

I have read HREC Guidelines for undergraduate and postgraduate students carefully.

According to this guidance, this research does not need HREC approval. The theory,

model, algorithms and experiments are not involved human. The experimental datasets

are from open source platforms.

121



BIBLIOGRAPHY

[1] Research by Cambridge MBAs for tech firm Undo finds software bugs cost the
industry $316 billion a year. https://www.jbs.cam.ac.uk/insight/2013/

research-by-cambridge-mbas-for-tech-firm-undo-finds-software-

bugs-cost-the-industry-316-billion-a-year/. Accessed: 16/03/2023.

[2] Android vs. Apple Market Share: Leading Mobile Operating Systems
(OS) (Mar 2023). https://www.bankmycell.com/blog/android-vs-apple-

market-share/. Accessed: 05/05/2021.

[3] Android. https://source.android.com/. Accessed: 16/03/2023.

[4] GooglePlay. https://play.google.com/store/apps. Accessed: 01/07/2021.

[5] Report on University of Minnesota Breach-of-Trust Incident. https://lwn.net/ml/

linux-kernel/202105051005.49BFABCE@keescook/. Accessed: 05/05/2021.

[6] OWL Web Ontology Language. https://www.w3.org/2001/sw/#owl. Accessed:

05/05/2022.

[7] SWRL. http://www.w3.org/Submission/SWRL/. Accessed: 05/05/2021.

[8] What is Plagiarism?. https://www.plagiarism.org/article/what-is-

plagiarism. Accessed: 16/03/2023.

[9] CUDA vs Naive Speedup?. https://github.com/d-li14/involution/issues/1.

Accessed: 12/03/2021.

[10] Squeeze tooltip in the sections panel. https://github.com/livebook-dev/

livebook/pull/536. Accessed: 02/09/2021.

[11] Are we correctly handling console.Console in node objectKeys(console)?. https:

//github.com/sindresorhus/ts-extras/issues/50. Accessed: 16/03/2023.

122

https://www.jbs.cam.ac.uk/insight/2013/research-by-cambridge-mbas-for-tech-firm-undo-finds-software-bugs-cost-the-industry-316-billion-a-year/
https://www.jbs.cam.ac.uk/insight/2013/research-by-cambridge-mbas-for-tech-firm-undo-finds-software-bugs-cost-the-industry-316-billion-a-year/
https://www.jbs.cam.ac.uk/insight/2013/research-by-cambridge-mbas-for-tech-firm-undo-finds-software-bugs-cost-the-industry-316-billion-a-year/
https://www.bankmycell.com/blog/android-vs-apple-market-share/
https://www.bankmycell.com/blog/android-vs-apple-market-share/
https://source.android.com/
https://play.google.com/store/apps
https://lwn.net/ml/linux-kernel/202105051005.49BFABCE@keescook/
https://lwn.net/ml/linux-kernel/202105051005.49BFABCE@keescook/
https://www.w3.org/2001/sw/#owl
http://www.w3.org/Submission/SWRL/
https://www.plagiarism.org/article/what-is-plagiarism
https://www.plagiarism.org/article/what-is-plagiarism
https://github.com/d-li14/involution/issues/1
https://github.com/livebook-dev/livebook/pull/536
https://github.com/livebook-dev/livebook/pull/536
https://github.com/sindresorhus/ts-extras/issues/50
https://github.com/sindresorhus/ts-extras/issues/50


BIBLIOGRAPHY

[12] ailab. https://github.com/bilibili/ailab. Accessed: 21/02/2022.

[13] VIP. https://github.com/Oreomeow/VIP. Accessed: 21/02/2022.

[14] DogeBot2. https://github.com/DGXeon/DogeBot2. Accessed: 21/02/2022.

[15] xmm. https://github.com/heiyeluren/xmm. Accessed: 21/02/2022.

[16] R. ABREU, P. ZOETEWEIJ, R. GOLSTEIJN, AND A. J. VAN GEMUND, A practi-
cal evaluation of spectrum-based fault localization, Journal of Systems and

Software, 82 (2009), pp. 1780–1792.

[17] R. ABREU, P. ZOETEWEIJ, AND A. J. VAN GEMUND, On the accuracy of spectrum-
based fault localization, in Testing: Academic and industrial conference practice

and research techniques-MUTATION (TAICPART-MUTATION 2007), IEEE,

2007, pp. 89–98.

[18] H. AGRAWAL, R. A. DEMILLO, AND E. H. SPAFFORD, Dynamic slicing in the
presence of unconstrained pointers, in Proceedings of the symposium on Testing,

Analysis, and Verification, 1991, pp. 60–73.

[19] H. AGRAWAL AND J. R. HORGAN, Dynamic program slicing, ACM SIGPlan Notices,

25 (1990), pp. 246–256.

[20] H. AGRAWAL, J. R. HORGAN, S. LONDON, AND W. E. WONG, Fault localization
using execution slices and dataflow tests, in Proceedings of Sixth International

Symposium on Software Reliability Engineering. ISSRE’95, IEEE, pp. 143–151.

[21] M. AHMADZADEH, D. ELLIMAN, AND C. HIGGINS, An analysis of patterns of
debugging among novice computer science students, in Proceedings of the 10th

annual SIGCSE conference on Innovation and technology in computer science

education, 2005, pp. 84–88.

[22] K. AHMED, M. LIS, AND J. RUBIN, Mandoline: Dynamic slicing of android ap-
plications with trace-based alias analysis, in 2021 14th IEEE Conference on

Software Testing, Verification and Validation (ICST), IEEE, 2021, pp. 105–115.

[23] A. ALAVI, I. NEAMTIU, AND R. GUPTA, Dynamic slicing for android, 2019

IEEE/ACM 41st International Conference on Software Engineering (ICSE),

(2019), pp. 1154–1164.

123

https://github.com/bilibili/ailab
https://github.com/Oreomeow/VIP
https://github.com/DGXeon/DogeBot2
https://github.com/heiyeluren/xmm


BIBLIOGRAPHY

[24] E. ALVES, M. GLIGORIC, V. JAGANNATH, AND M. D’AMORIM, Fault-localization
using dynamic slicing and change impact analysis, in 2011 26th IEEE/ACM

International Conference on Automated Software Engineering (ASE 2011),

IEEE, 2011, pp. 520–523.

[25] A. M. ANDRÉS AND P. F. MARZO, Delta: A new measure of agreement between two
raters, British journal of mathematical and statistical psychology, 57 (2004),

pp. 1–19.

[26] A. A. ANDREWS AND A. S. J. E. S. E. PRADHAN, Ethical issues in empirical
software engineering: the limits of policy, 6 (2001), pp. 105–110.

[27] A. ANG, A. PEREZ, A. VAN DEURSEN, AND R. ABREU, Revisiting the practical use
of automated software fault localization techniques, in 2017 IEEE International

Symposium on Software Reliability Engineering Workshops (ISSREW), IEEE,

2017, pp. 175–182.

[28] G. ANTONIOU AND F. V. HARMELEN, Web ontology language: Owl, in Handbook

on ontologies, Springer, 2004, pp. 67–92.

[29] C. ARTHO, Iterative delta debugging, International Journal on Software Tools for

Technology Transfer, 13 (2011), pp. 223–246.

[30] P. ARUMUGA NAINAR AND B. LIBLIT, Adaptive bug isolation, in Proceedings of the

32nd ACM/IEEE International Conference on Software Engineering-Volume 1,

2010, pp. 255–264.

[31] S. ARZT, S. RASTHOFER, C. FRITZ, E. BODDEN, A. BARTEL, J. KLEIN,

Y. LE TRAON, D. OCTEAU, AND P. MCDANIEL, Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android apps,

Acm Sigplan Notices, 49 (2014), pp. 259–269.

[32] D. BADAMPUDI, Reporting ethics considerations in software engineering publica-
tions, in 2017 ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement (ESEM), IEEE, pp. 205–210.

[33] T. BALL, M. NAIK, AND S. K. RAJAMANI, From symptom to cause: localizing errors
in counterexample traces, in Proceedings of the 30th ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, 2003, pp. 97–105.

124



BIBLIOGRAPHY

[34] S. BALTES AND S. DIEHL, Worse than spam: Issues in sampling software developers,

in Proceedings of the 10th ACM/IEEE international symposium on empirical

software engineering and measurement, 2016, pp. 1–6.

[35] S. BALTES AND S. DIEHL, Usage and attribution of stack overflow code snippets in
github projects, Empirical Software Engineering, 24 (2019), pp. 1259–1295.

[36] A. BANERJEE, L. K. CHONG, C. BALLABRIGA, AND A. ROYCHOUDHURY, Energy-
patch: Repairing resource leaks to improve energy-efficiency of android apps,

IEEE Transactions on Software Engineering, 44 (2017), pp. 470–490.

[37] BANKMYCELL, Android vs. apple market share: Leading mobile operating systems
(os) (jul 2023).

https://www.bankmycell.com/blog/android-vs-apple-market-share/, 2023.

Accessed: 2023-07-15.

[38] D. BEIMEL AND M. PELEG, Using owl and swrl to represent and reason with
situation-based access control policies, Data & Knowledge Engineering, 70

(2011), pp. 596–615.

[39] S. R. BERGERSON, E-commerce privacy and the black hole of cyberspace, Wm.

Mitchell L. Rev., 27 (2000), p. 1527.

[40] H. BOUSSI RAHMOUNI, T. SOLOMONIDES, M. CASASSA MONT, AND S. SHIU,

Modelling and enforcing privacy for medical data disclosure across europe,

in Medical Informatics in a United and Healthy Europe, IOS Press, 2009,

pp. 695–699.

[41] R. BRUMMAYER AND A. BIERE, Fuzzing and delta-debugging smt solvers, in Pro-

ceedings of the 7th International Workshop on Satisfiability Modulo Theories,

2009, pp. 1–5.

[42] M. CENITE, B. H. DETENBER, A. W. KOH, A. L. LIM, N. E. J. N. M. SOON, AND

SOCIETY, Doing the right thing online: a survey of bloggers’ ethical beliefs and
practices, 11 (2009), pp. 575–597.

[43] M. CHEN, K. GOEL, N. S. SOHONI, F. POMS, K. FATAHALIAN, AND C. RÉ, Man-
doline: Model evaluation under distribution shift, in International Conference

on Machine Learning, PMLR, 2021, pp. 1617–1629.

125

https://www.bankmycell.com/blog/android-vs-apple-market-share/


BIBLIOGRAPHY

[44] T. M. CHILIMBI, B. LIBLIT, K. MEHRA, A. V. NORI, AND K. VASWANI, Holmes:
Effective statistical debugging via efficient path profiling, in 2009 IEEE 31st

International Conference on Software Engineering, IEEE, pp. 34–44.

[45] J.-D. CHOI AND J. FERRANTE, Static slicing in the presence of goto statements,

ACM Transactions on Programming Languages and Systems (TOPLAS), 16

(1994), pp. 1097–1113.

[46] S. R. CHOUDHARY, A. GORLA, AND A. ORSO, Automated test input generation for
android: Are we there yet?(e), in 2015 30th IEEE/ACM International Conference

on Automated Software Engineering (ASE), IEEE, 2015, pp. 429–440.

[47] L. CLAPP, O. BASTANI, S. ANAND, AND A. AIKEN, Minimizing gui event traces,

in Proceedings of the 2016 24th ACM SIGSOFT International Symposium on

Foundations of Software Engineering, 2016, pp. 422–434.

[48] H. CLEVE AND A. ZELLER, Finding failure causes through automated testing,

arXiv preprint cs/0012009, (2000).

[49] J. A. COLQUITT, On the dimensionality of organizational justice: a construct
validation of a measure., Journal of applied psychology, 86 (2001), p. 386.

[50] W. J. CONOVER, Practical nonparametric statistics, vol. 350, john wiley & sons,

1999.

[51] M. L. CORLISS, E. C. LEWIS, AND A. ROTH, Low-overhead interactive debugging
via dynamic instrumentation with dise, in 11th International Symposium on

High-Performance Computer Architecture, IEEE, 2005, pp. 303–314.

[52] D. A. DA SILVA, H. D. B. LOURO, G. S. GONCALVES, J. C. MARQUES, L. A. V.

DIAS, A. M. DA CUNHA, AND P. M. TASINAFFO, Could a conversational ai
identify offensive language?, Information, 12 (2021), p. 418.

[53] L. DABBISH, C. STUART, J. TSAY, AND J. HERBSLEB, Social coding in github:
transparency and collaboration in an open software repository, in Proceedings

of the ACM 2012 conference on computer supported cooperative work, 2012,

pp. 1277–1286.

[54] R. A. DEMILLO, H. PAN, AND E. H. SPAFFORD, Critical slicing for software fault
localization, ACM SIGSOFT Software Engineering Notes, 21 (1996), pp. 121–

134.

126



BIBLIOGRAPHY

[55] M. DILHARA, H. CAI, AND J. JENKINS, Automated detection and repair of incom-
patible uses of runtime permissions in android apps, in Proceedings of the 5th

International Conference on Mobile Software Engineering and Systems, ACM,

2018, pp. 67–71.

[56] N. DOORN, D. SCHUURBIERS, I. VAN DE POEL, AND M. E. GORMAN, Early
engagement and new technologies: Opening up the laboratory, vol. 16, Springer,

2014.

[57] R. DUAN, A. BIJLANI, M. XU, T. KIM, AND W. LEE, Identifying open-source
license violation and 1-day security risk at large scale, in Proceedings of the

2017 ACM SIGSAC Conference on computer and communications security,

2017, pp. 2169–2185.

[58] E. DUESTERWALD, R. GUPTA, AND M. L. SOFFA, Distributed slicing and partial
re-execution for distributed programs, Lecture Notes In Computer Science, 757

(1993), pp. 497–511.

[59] T. EISENBARTH, R. KOSCHKE, AND D. SIMON, Locating features in source code,

IEEE Transactions on software engineering, 29 (2003), pp. 210–224.

[60] J. FERRANTE, K. J. OTTENSTEIN, AND J. D. WARREN, The program dependence
graph and its use in optimization, ACM Transactions on Programming Lan-

guages and Systems (TOPLAS), 9 (1987), pp. 319–349.

[61] C. FLICK, Informed consent in information technology: Improving end user licence
agreements, Professionalism in the information and communication technology

industry, (2013), p. 127.

[62] B. FRIEDMAN, P. H. KAHN, A. BORNING, AND A. HULDTGREN, Value sensitive
design and information systems, Springer, 2013, pp. 55–95.

[63] D. M. GERMAN, Y. MANABE, AND K. INOUE, A sentence-matching method for auto-
matic license identification of source code files, in Proceedings of the IEEE/ACM

international conference on Automated software engineering, 2010, pp. 437–

446.

[64] D. M. GERMAN, G. ROBLES, G. POO-CAAMAÑO, X. YANG, H. IIDA, AND K. INOUE,

"was my contribution fairly reviewed?" a framework to study the perception

127



BIBLIOGRAPHY

of fairness in modern code reviews, in 2018 IEEE/ACM 40th International

Conference on Software Engineering (ICSE), IEEE, 2018, pp. 523–534.

[65] C. GIBLER, J. CRUSSELL, J. ERICKSON, AND H. CHEN, Androidleaks: Auto-
matically detecting potential privacy leaks in android applications on a large
scale, in Trust and Trustworthy Computing: 5th International Conference,

TRUST 2012, Vienna, Austria, June 13-15, 2012. Proceedings 5, Springer, 2012,

pp. 291–307.

[66] N. E. GOLD AND J. KRINKE, Ethical mining: A case study on msr mining chal-
lenges, in Proceedings of the 17th International Conference on Mining Software

Repositories, pp. 265–276.

[67] L. GOMEZ, I. NEAMTIU, T. AZIM, AND T. MILLSTEIN, Reran: Timing-and touch-
sensitive record and replay for android, in 2013 35th International Conference

on Software Engineering (ICSE), IEEE, 2013, pp. 72–81.

[68] M. C. GRACE, W. ZHOU, X. JIANG, AND A.-R. SADEGHI, Unsafe exposure analysis
of mobile in-app advertisements, in Proceedings of the fifth ACM conference on

Security and Privacy in Wireless and Mobile Networks, 2012, pp. 101–112.

[69] A. GROCE, M. A. ALIPOUR, C. ZHANG, Y. CHEN, AND J. REGEHR, Cause reduction
for quick testing, in 2014 IEEE Seventh International Conference on Software

Testing, Verification and Validation, IEEE, 2014, pp. 243–252.

[70] A. GROCE, D. KROENING, AND F. LERDA, Understanding counterexamples with
explain, in Computer Aided Verification: 16th International Conference, CAV

2004, Boston, MA, USA, July 13-17, 2004. Proceedings 16, Springer, 2004,

pp. 453–456.

[71] F. S. GRODZINSKY, K. MILLER, AND M. J. WOLF, Ethical issues in open source
software, Journal of Information, Communication and Ethics in Society, (2003).

[72] N. GUPTA, H. HE, X. ZHANG, AND R. GUPTA, Locating faulty code using failure-
inducing chops, in Proceedings of the 20th IEEE/ACM international Conference

on Automated software engineering, 2005, pp. 263–272.

[73] R. GUPTA, M. J. HARROLD, AND M. L. SOFFA, An approach to regression testing
using slicing., in ICSM, vol. 92, 1992, pp. 299–308.

128



BIBLIOGRAPHY

[74] R. GUPTA, M. L. SOFFA, AND J. HOWARD, Hybrid slicing: Integrating dynamic
information with static analysis, ACM Transactions on Software Engineering

and Methodology (TOSEM), 6 (1997), pp. 370–397.

[75] F. HABIBZADEH AND K. SHASHOK, Plagiarism in scientific writing: words or
ideas?, Croatian Medical Journal, 52 (2011), p. 576.

[76] B. HAILPERN AND P. SANTHANAM, Software debugging, testing, and verification,

IBM Systems Journal, 41 (2002), pp. 4–12.

[77] M. HAMMOUDI, B. BURG, G. BAE, AND G. ROTHERMEL, On the use of delta
debugging to reduce recordings and facilitate debugging of web applications,

in Proceedings of the 2015 10th Joint Meeting on Foundations of Software

Engineering, 2015, pp. 333–344.

[78] D. HAO, L. ZHANG, L. ZHANG, J. SUN, AND H. MEI, Vida: Visual interactive de-
bugging, in 2009 IEEE 31st International Conference on Software Engineering,

IEEE, 2009, pp. 583–586.

[79] M. J. HARROLD AND M. L. SOFFA, Interprocedual data flow testing, ACM SIG-

SOFT software engineering notes, 14 (1989), pp. 158–167.

[80] R. HILDEBRANDT AND A. ZELLER, Simplifying failure-inducing input, in Proceed-

ings of the 2000 ACM SIGSOFT international symposium on Software testing

and analysis, 2000, pp. 135–145.

[81] R. HILPINEN, On artifacts and works of art 1, Theoria, 58 (1992), pp. 58–82.

[82] R. HODOVÁN AND Á. KISS, Modernizing hierarchical delta debugging, in Pro-

ceedings of the 7th International Workshop on Automating Test Case Design,

Selection, and Evaluation, 2016, pp. 31–37.

[83] R. HODOVÁN AND A. KISS, Practical improvements to the minimizing delta de-
bugging algorithm., in ICSOFT-EA, 2016, pp. 241–248.

[84] R. HODOVÁN, Á. KISS, AND T. GYIMÓTHY, Coarse hierarchical delta debugging,

in 2017 IEEE international conference on software maintenance and evolution

(ICSME), IEEE, 2017, pp. 194–203.

[85] R. HODOVÁN, Á. KISS, AND T. GYIMÓTHY, Tree preprocessing and test outcome
caching for efficient hierarchical delta debugging, in 2017 IEEE/ACM 12th

129



BIBLIOGRAPHY

International Workshop on Automation of Software Testing (AST), IEEE, 2017,

pp. 23–29.

[86] J. HOFFMANN, M. USSATH, T. HOLZ, AND M. SPREITZENBARTH, Slicing droids:
program slicing for smali code, in Proceedings of the 28th Annual ACM Sympo-

sium on Applied Computing, 2013, pp. 1844–1851.

[87] S. HORWITZ, J. PRINS, AND T. REPS, Integrating noninterfering versions of pro-
grams, ACM Transactions on Programming Languages and Systems (TOPLAS),

11 (1989), pp. 345–387.

[88] S. HORWITZ, T. REPS, AND D. BINKLEY, Interprocedural slicing using dependence
graphs, in Proceedings of the ACM SIGPLAN 1988 conference on Programming

Language design and Implementation, 1988, pp. 35–46.

[89] I. HSI AND C. POTTS, Studying the evolution and enhancement of software features.,
in icsm, 2000, p. 143.

[90] S. F. HUQ, A. Z. SADIQ, AND K. SAKIB, Understanding the effect of developer
sentiment on fix-inducing changes: An exploratory study on github pull requests,

in 2019 26th Asia-Pacific Software Engineering Conference (APSEC), IEEE,

2019, pp. 514–521.

[91] N. IMTIAZ, J. MIDDLETON, J. CHAKRABORTY, N. ROBSON, G. BAI, AND

E. MURPHY-HILL, Investigating the effects of gender bias on github, in 2019

IEEE/ACM 41st International Conference on Software Engineering (ICSE),

IEEE, pp. 700–711.

[92] B. JIANG, Y. WU, T. LI, AND W. K. CHAN, Simplydroid: Efficient event sequence
simplification for android application, in 2017 32nd IEEE/ACM International

Conference on Automated Software Engineering (ASE), IEEE, 2017, pp. 297–

307.

[93] J. A. JONES AND M. J. HARROLD, Empirical evaluation of the tarantula automatic
fault-localization technique, in Proceedings of the 20th IEEE/ACM interna-

tional Conference on Automated software engineering, 2005, pp. 273–282.

[94] J. A. JONES, M. J. HARROLD, AND J. STASKO, Visualization of test information to
assist fault localization, in Proceedings of the 24th international conference on

Software engineering, 2002, pp. 467–477.

130



BIBLIOGRAPHY

[95] G. M. KAPITSAKI, F. KRAMER, AND N. D. TSELIKAS, Automating the license
compatibility process in open source software with spdx, Journal of systems and

software, 131 (2017), pp. 386–401.

[96] G. M. KAPITSAKI, N. D. TSELIKAS, AND I. E. FOUKARAKIS, An insight into
license tools for open source software systems, Journal of Systems and Software,

102 (2015), pp. 72–87.

[97] A. KAYES, W. RAHAYU, T. DILLON, AND E. CHANG, Accessing data from multiple
sources through context-aware access control, in 2018 17th IEEE International

Conference On Trust, Security And Privacy In Computing And Communica-

tions/12th IEEE International Conference On Big Data Science And Engineer-

ing (TrustCom/BigDataSE), IEEE, 2018, pp. 551–559.

[98] B. W. KERNIGHAN AND P. PLAUGER, Programming style, in Proceedings of the

fourth SIGCSE technical symposium on Computer science education, 1974,

pp. 90–96.

[99] A. KISS, Generalizing the split factor of the minimizing delta debugging algorithm,

IEEE Access, 8 (2020), pp. 219837–219846.

[100] D. KOB AND F. WOTAWA, Introducing alias information into model-based debug-
ging, in ECAI, vol. 16, Citeseer, 2004, p. 833.

[101] D. KOCSIS, Exploring Intention to Return to a Crowdsourcing Platform Through
Ethical Considerations, PhD thesis, University of Nebraska at Omaha, 2018.

[102] D. KOCSIS AND G.-J. DE VREEDE, Towards a taxonomy of ethical considerations
in crowdsourcing, (2016).

[103] P. KONG, L. LI, J. GAO, T. F. BISSYANDÉ, AND J. KLEIN, Mining android crash
fixes in the absence of issue-and change-tracking systems, in Proceedings of

the 28th ACM SIGSOFT International Symposium on Software Testing and

Analysis, ACM, 2019, pp. 78–89.

[104] B. KOREL AND J. LASKI, Dynamic program slicing, Information processing letters,

29 (1988), pp. 155–163.

[105] T. O. KVALSETH, A coefficient of agreement for nominal scales: An asymmet-
ric version of kappa, Educational and psychological measurement, 51 (1991),

pp. 95–101.

131



BIBLIOGRAPHY

[106] X.-B. D. LE, L. BAO, D. LO, X. XIA, S. LI, AND C. PASAREANU, On reliability of
patch correctness assessment, in 2019 IEEE/ACM 41st International Conference

on Software Engineering (ICSE), IEEE, 2019, pp. 524–535.

[107] S. B. LEACOCK, Self-promotion in the age of electronic media, ETHICS IN PSY-

CHOLOGY AND THE MENTAL HEALTH PROFESSIONS, p. 349.

[108] Y. LEI AND J. H. ANDREWS, Minimization of randomized unit test cases, in

16th IEEE International Symposium on Software Reliability Engineering

(ISSRE’05), IEEE, 2005, pp. 10–pp.

[109] A. LEITNER, M. ORIOL, A. ZELLER, I. CIUPA, AND B. MEYER, Efficient unit test
case minimization, in Proceedings of the twenty-second IEEE/ACM interna-

tional conference on Automated software engineering, 2007, pp. 417–420.

[110] R. LENCEVICIUS, U. HÖLZLE, AND A. K. SINGH, Dynamic query-based debug-
ging of object-oriented programs, Automated Software Engineering, 10 (2003),

pp. 39–74.

[111] J. LERNER AND J. TIROLE, The scope of open source licensing, Journal of Law,

Economics, and Organization, 21 (2005), pp. 20–56.

[112] S. LEWIS, Qualitative inquiry and research design: Choosing among five ap-
proaches, Health promotion practice, 16 (2015), pp. 473–475.

[113] X. LI, W. LI, Y. ZHANG, AND L. ZHANG, Deepfl: Integrating multiple fault diag-
nosis dimensions for deep fault localization, in Proceedings of the 28th ACM

SIGSOFT International Symposium on Software Testing and Analysis, 2019,

pp. 169–180.

[114] X. LI AND A. ORSO, More accurate dynamic slicing for better supporting software
debugging, in 2020 IEEE 13th International Conference on Software Testing,

Validation and Verification (ICST), IEEE, 2020, pp. 28–38.

[115] B. LIBLIT, Cooperative bug isolation: winning thesis of the 2005 ACM doctoral
dissertation competition, vol. 4440, Springer, 2007.

[116] C. LIU, L. FEI, X. YAN, J. HAN, AND S. P. MIDKIFF, Statistical debugging: A
hypothesis testing-based approach, IEEE Transactions on software engineering,

32 (2006), pp. 831–848.

132



BIBLIOGRAPHY

[117] C. LIU, J. T. MARCHEWKA, J. LU, AND C.-S. YU, Beyond concern: a privacy–trust–
behavioral intention model of electronic commerce, Information & Management,

42 (2004), pp. 127–142.

[118] C. LIU, X. YAN, L. FEI, J. HAN, AND S. P. MIDKIFF, Sober: statistical model-
based bug localization, ACM SIGSOFT Software Engineering Notes, 30 (2005),

pp. 286–295.

[119] J. LIU, T. WU, J. YAN, AND J. ZHANG, Fixing resource leaks in android apps with
light-weight static analysis and low-overhead instrumentation, in 2016 IEEE

27th international symposium on software reliability engineering (ISSRE),

IEEE, 2016, pp. 342–352.

[120] P. LUARN AND H.-H. LIN, A customer loyalty model for e-service context., J. Elec-

tron. Commer. Res., 4 (2003), pp. 156–167.

[121] P. MACHADO, J. CAMPOS, AND R. ABREU, Mzoltar: automatic debugging of an-
droid applications, in Proceedings of the 2013 International Workshop on

Software Development Lifecycle for Mobile, ACM, 2013, pp. 9–16.

[122] X. MAO, Y. LEI, Z. DAI, Y. QI, AND C. WANG, Slice-based statistical fault local-
ization, Journal of Systems and Software, 89 (2014), pp. 51–62.

[123] J. MARAS, J. CARLSON, AND I. CRNKOVIĆ, Client-side web application slicing,
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