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Abstract

As more and more jurisdictions transition from LIBOR–type interest rate bench-
marks to new riskfree rate (RFR) benchmarks based on overnight rates, such as SOFR
in the US, it is important to adapt interest rate term structure models to reflect this.
In particular, overnight rates are largely driven by monetary policy and thus display
dynamics that are (at least to first order) piecewise constant between central bank
rate decisions, while forward rates continue to evolve in a more diffusive fashion. We
construct a tractable multifactor, stochastic volatility term structure model which in-
corporates these features. Calibrating to prices for options on SOFR futures, we achieve
a good fit to the market across available maturities and strikes in a single, consistent
model. The model also provides novel insights into SOFR term rate behaviour (and im-
plied volatilities) within the SOFR term rate accrual periods, as well as into empirical
mean reversion dynamics.
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1 Introduction

Gellert and Schlögl (2021) proposed a model inspired by the empirical behaviour of short
rates, where the primary driver is the piecewise constant Fed Funds target rate changing on
predictable dates1, whereas the expectations of those changes embedded in the forward rates
evolve in a continuous (i.e., diffusive) manner. This is achieved by defining volatilities for
instantaneous forward rates within the Heath, Jarrow and Morton (1992) (HJM) framework
in terms of indicator functions dependent on the number of meeting dates between the
current and forward time. In the present paper, we extend this model based on further
consideration of both empirical time series data as well as cross–sectional calibration to
interest rate options. Examining the empirical dynamics of the factors driving the evolution
of the term structure of interest rates, one finds evidence of excess kurtosis, which motivates
a stochastic volatility extension of the model. In addition to stochastic volatility, in turns
out that mean reversion is an important feature to include in the extended model. We also
revisit the empirical behaviour of SOFR to find that based on most recent data, it now
appears to be driven primarily by the Fed Funds target rate.

The model proposed in this paper endows each factor with its own stochastic volatility
and mean reversion. One could label this a “Heston/Hull–White” dynamic. In literature,
“Heston/Hull–White” usually refers to Heston (1993) stochastic volatility equity models
with an interest rate driven by a Hull and White (1990) model, see for example Grzelak,
Oosterlie and Weeran (2008). In the present paper, we instead consider a Markovian (in a
small number of state variables), exponential affine interest term structure term structure
model where the stochastic volatility follows a Heston–type dynamic, and which in the one–
factor, deterministic volatility case collapses back to a Hull/White model. As in Gellert
and Schlögl (2021), we use indicator functions in the instantaneous forward rate volatilities
to obtain piecewise constant paths of the short rate, while maintaining diffusive dynamics
of forward rates maturing beyond the next central bank meeting date.

Several papers consider various empirical aspects of SOFR. Skov and Skovmand (2021)
use an arbitrage–free, diffusion–based model of interest rate term structures of the Nelson
and Siegel (1987) type, and demonstrate it can, to a degree of accuracy, reflect SOFR futures
prices, albeit without taking into account the piecewise constant nature of the underlying
SOFR rate. Andersen and Bang (2020) address SOFR spikes in their proposed model also
without considering the SOFR rate as being driven by the piecewise constant target rate.
Heitfield and Park (2019) perform cross-sectional calibration to futures only and without
considering stochastic dynamics of SOFR or forward rates. The model presented in the
present paper is motivated by the empirical behaviour of SOFR and SOFR forward rates
implied from futures, and we conduct a cross–sectional calibration to both futures and
options.

The proposed model performs well in cross–sectional calibration due to having a suf-
ficient amount of variables which control various aspects of model behaviour. This allows
the model to be calibrated across different maturities, underlying futures accrual periods
and option strikes. This flexibility in the context cross–sectional calibration is similar to

1Federal Open Market Committee (FOMC) meeting dates
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prominent models deployed in practice: The SABR model, introduced in Hagan, Kumar,
Lesniewski and Woodward (2002), can be calibrated to implied volatility convexity and skew
across strikes, but generally requires a new calibration per option expiry (and swap/forward
rate tenor). Short rate models, such as Hull and White (1990), are usually calibrated to
only co-terminal swaptions chosen to match an underlying trade2 and a singular strike per
swaption. The lognormal LIBOR Market Model model3 (LMM) is well suited for simulta-
neously calibrating to at the money swaptions across expiries and tenors. Most comparable
in terms of ability to calibrate across expiry, underlying tenor and strike are stochastic
volatility extensions to the LMM, see for example Piterbarg (2015) or Karlsson, Pilz and
Schlögl (2017).

We also present an analysis of the model–implied behaviour of options in the accrual
period. Interest in this behaviour is mostly driven by the practicalities of adapting existing
LIBOR–based modelling to SOFR and therefore requires casting option behaviour in the
accrual period to the behaviour of the dynamics of partially set forward term rates. In this
context, we find that under simplifying assumptions our model is consistent with Lyashenko
and Mercurio (2019). However, the model presented in this paper handles the case of
partially set forwards more naturally than that paper, and also provides more granular
insight into the decay characteristics of implied volatility within the accrual period.

Additionally, the proposed model has revealed a connection between forward rate em-
pirical behaviour and short rate mean reversion. In the HJM framework, mean reversion
is usually embedded a priori as a decay function of forward rate volatilities. We include
both a decay function and a piecewise constant component4 in the HJM volatility function.
However, remarkably we find that the piecewise component derived directly from empirical
data without any shape restrictions closely resembles the decay function associated with
mean reversion. We discuss the implication from this result in detail in Section 4.

The rest of the paper is organised as follows. The motivation based on empirical (time
series and cross–sectional) evidence is discussed in Section 2. The model is formulated in
Section 3. The resulting term rate dynamics in the context of accrual period behaviour,
mean reversion and option calibration are examined in Section 4. Cross–sectional calibra-
tion results are presented in Section 5. Section 6 concludes the paper.

2 Motivation

Three components can been seen to contribute to changes in SOFR:5 spikes, a spread
between the target policy rate and SOFR, and the policy rate itself. All three components
historically contributed substantially to the observed daily variance of SOFR.

Spikes have been a well publicised feature of SOFR and reflect imbalances in the un-
derlying overnight repo market. Spikes used to occur regularly at the end of the month

2for example call dates in a callable note
3See Brace, Gatarek and Musiela (1997), Miltersen, Sandmann and Sondermann (1997) and Jamshidian

(1997).
4This is in order to achieve a piecewise constant forward rate structure corresponding to FOMC meeting

dates.
5For a more detailed analysis, see Gellert and Schlögl (2021).
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Figure 1: SOFR v FOMC target rate history May 2020 to August 2022

and occasionally on non-end–of–month dates. A very large spike in SOFR in September
2019 motivated the Federal Reserve to take action to effectively stabilise this rate. Since
that time, as can be seen in Figure 1, spikes are no longer a feature of SOFR. The variance
in SOFR is now dominated by changes in the policy target rate (around 99% of variance),
with the remainder of the variance explained by a SOFR to target rate spread, see Figure
3. Consequently, the present paper focuses on modelling the policy target rate component.

Motivation for the construction of our model are the empirical dynamics of the forward
rate states, extracted from the data assuming term structure which are piecewise flat be-
tween FOMC dates, without any assumptions regarding the driving stochastic dynamics.
Applying principal component analysis to obtain orthogonal factors, the time series of these
factors clearly fail tests for normality. The quantile/quantile (QQ) plots in Figure 2 com-
pare the expected quantile values for a normal distribution (red line) against the empirical
value (blue dots). The dominant three PCA factors shown exhibit clear leptokurtosis, with
excess kurtosis of 63, 10 and 2, respectively. The stochastic volatility is a common and
parsimonious modelling choice to reproduce this feature.

One of the consequences of linking the model to FOMC dates is that some of the
empirical results have a direct economic interpretation. As explained in Gellert and Schlögl
(2021), the first factor focuses the dynamics on policy rate changes at the upcoming FOMC
meeting, while the higher–order factors tend to focus on FOMC meetings beyond the next
one. Excess kurtosis is notably highest for the first factor, suggesting a possible economic
link between high leptokurtosis and the next FOMC meeting. This is in line with evidence
from interest rate options, which imply a higher stochastic volatility for shorter expiry
options. Anecdotally, interest rate market participants tend to focus on the next FOMC
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Figure 2: empirical factor states quantile quantile plots

meeting date and the Federal Reserve tends to focus on managing the expectations related
to the next FOMC date. This tends to make the expectations related to the next FOMC
date most susceptible to news and changing economic circumstances, which offers a possible
explanation of the excess kurtosis term structure.

Another important aspect to consider is calibration to interest rate options. In general,
calibration to interest rate options requires some degrees of freedom to calibrate the skew-
ness and convexity of implied volatilities for a range of strikes. Interest rate options also
tend to imply a term structure of volatility, skewness and convexity for a range of expiries
and forward terms. Embedding stochastic volatility into each factor provides the ability to
calibrate convexity and skewness6 in addition to volatility level, with some control of the
term structure of those features.

3 Model

3.1 Reconciling piecewise constant short rates with diffusive forward
rates

The modelling aim is to reflect the observation that real–world policy targets for the
overnight rate are constant between central bank decision dates, the timing of which is
typically known beforehand. The literature refers to jumps with deterministic jump times
as stochastic discontinuities, see for example Kim and Wright (2014), Keller-Ressel, Schmidt
and Wardenga (2018), and Fontana, Grbac, Gümbel and Schmidt (2020). In addition, the
model should produce forward rates which for maturities beyond the next central bank
decision date exhibit a diffusive dynamic. As in Gellert and Schlögl (2021), this is achieved
within the HJM framework by specifying instantaneous forward rate volatilities in terms of
indicator functions based on the number of decision dates scheduled between the current

6Skewness is impacted by the correlation of stochastic volatility to forward rate changes.
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Figure 3: SOFR breakdown in vertical order (i) target rates (ii) SOFR-Target Rate spread (iii)
variance contribution

(“calendar”) time t and the forward rate maturity T . Here, we adapt this approach to the
case of stochastic volatility. Starting point is the standard HJM result for forward rate
dynamics with N factors under the spot risk–neutral measure:

f(t, T ) = f(0, T ) +

N∑
j=1

t∫
0

σj(u, T )

T∫
u

σj(u, s)dsdu+

N∑
j=1

t∫
0

σj(s, T )dWj(s) (1)

Define σj(t, T ) as a piecewise constant function between FOMC meeting dates:

σj(t, T ) = σj

n∑
i=1

γi,j1(i ≤ At,T ) (2)

where n is the total number of meetings dates and At,T reflects the number of meeting
dates between t and T :

At,T :=
∣∣{x1, ..., xm|t < xi ≤ T}

∣∣ (3)

σj and γi,j scale the volatility loading of each component of the driving (vector–valued)
Brownian motion. σj allows control of the overall level of variance and is the key variable
used in calibration to option prices. γi,j scales the volatility based on the number of FOMC
meeting dates between t and T . It can be empirically derived to reflect the covariance
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structure between forward rates.7 Solving the stochastic integral yields:

f(t, T )− f(0, T ) =
n∑
j=1

n∑
q=1

n∑
i=1

σ2
j γq,jγi,j

t∫
0

1(q ≤ Au,T )

T∫
u

1(i ≤ Au,s)dsdu

+

n∑
j=1

n∑
i=1

σjγi,j1(i ≤ A0,T )Wj(t ∧ xı̄(T ))

(4)

where ı̄(T ) = A0,T − i + 1. The solution reveals that the total variance is an increasing
function of the number of meeting dates between 0 and T , up to the minimum of t and the
last meeting date before T . This implies that the variance of the forward rate is zero if the
forward date occurs prior to the next meeting date.

3.2 Introducing stochastic volatility

We introduce stochastic volatility into the model in a way that is inspired by what can be
called a Heston/Hull–White (HHW) “quasi-Gaussian” model. This builds on the Gaussian
Hull–White model by adding a Heston–type stochastic volatility component. Start with
a one–factor quasi-Gaussian model (QG1) with the volatility function of instantaneous
forward rates given by

σ(t, T ) = χ(t)φ(T ) (5)

where χ(t) is generally stochastic. Under the spot risk–neutral measure we can write the
dynamics of the instantaneous forward rates as

df(t, T ) = F (t, T )dt+ σ(t, T )dW (t) where F (t, T ) = σ(t, T )

T∫
t

σ(t, u)du (6)

=⇒ f(t, T )− f(0, T ) =

t∫
0

F (s, T )ds+ φ(T )

t∫
0

χ(s)dW (s) (7)

Then set T = t and differentiate with respect to t to express the spot rate r(t) in the form

r(t)− f(0, t) = x(t) =

t∫
0

F (s, t)ds+ φ(t)

t∫
0

χ(s)dW (s), x(0) = 0

dx(t) =
d

dt

{ t∫
0

F (s, t)ds

}
dt+ φ′(t)

t∫
0

χ(s)dW (s) + φ(t)χ(t)dW (t)

=
d

dt

[ t∫
0

F (s, t)ds

]
dt+

φ′(t)

φ(t)

[
x(t)−

t∫
0

F (s, t)ds

]
dt+ σ(t, t)dW (t)

(8)

7This is derived in Gellert and Schlögl (2021) using principal component analysis (PCA) and in fact
corresponds to the PCA eigenvectors.
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Define

φ(T ) = exp
(
−

T∫
0

λ(v)dv

)
=⇒ φ′(t)

φ(t)
= −λ(t) (9)

χ(t) = σ(t)exp
( t∫

0

λ(v)dv

)
=⇒ σ(t, T ) = χ(t)φ(T ) = σ(t)exp

(
−

T∫
t

λ(v)dv

)
(10)

therefore

F (t, T ) = σ2(t)exp
(
−

T∫
t

λ(v)dv

) T∫
t

exp
(
−

u∫
t

λ(v)dv

)
du, F (t, t) = 0 (11)

Hence σ inherits the stochasticity of χ, σ(t, t) = σ(t) and the SDE changes to

dx(t) =

{
d

dt

[ t∫
0

F (s, t)ds

]
+ λ(t)

t∫
0

F (s, t)ds

}
dt− λ(t)x(t)dt+ σ(t)dW (t) (12)

in which the part of the drift term involving F (t, T ) simplifies to

Φ(t) = F (t, t) +

t∫
0

∂

∂T
F (s, T )

∣∣∣∣
T=t

ds+ λ(t)

t∫
0

F (s, t)ds

=

t∫
0

σ2(s)exp
(
− 2

t∫
s

λ(v)dv

)
ds =

t∫
0

σ2(s, t)ds

(13)

The volatility σ(.) is made stochastic by incorporating a Heston process v(.) in it:

σ(t)→ σ(t)
√
v(t) (14)

which results in an affine system of stochastic differential equations, which can be expressed
under the spot risk–neutral measure as

dx(t) = [Φ(t)− λ(t)x(t)]dt+ σ(t)
√
v(t)dW (t), x(0) = 0

dΦ(t) = [σ2(t)v(t)− 2λ(t)Φ(t)]dt, Φ(0) = 0

dv(t) = θ(t)(1− v(t))dt+ α(t)
√
v(t)dU(t), v(0) = 1

(15)

with

〈dW (.), dU(.)〉(t) = ρdt (16)
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Bond price dynamics can be written as follows (see Appendix A for derivation):

B(t, T ) = exp
(
−
∫ T

t
f(t, u)du

)
=
B(0, T )

B(0, t)
exp
(
− Λ(t, T )y(t)− 1

2
Φ(t)Λ2(t, T )

)
(17)

where:

Λ(t, T ) =

∫ T

t
exp
(
−
∫ u

t
λ(v)dv

)
du (18)

Φ(t) =

∫ t

0
σ2(s)exp

(
− 2

∫ t

s
λ(v)dv

)
ds (19)

3.3 Piecewise constant short rates with diffusive forward rates under
stochastic volatility

Merging the modelling of Sections 3.1 and 3.2, assume now that each factor evolves with
its own, independent Heston–type stochastic volatility. That is, each factor in the model
of Section 3.1 is extended in the same manner as the single factor in Section 3.2. This
model thus inherits the piecewise constant short rates with diffusive forward rates, but
with stochastic volatility dynamics.

This set–up provides ample flexibility to calibrate to the volatility term structure (since
each factor impacts different aspects of the forward rate term structure), as well as option–
implied volatility skew and smile across different expiries. The level of flexibility is regulated
by the number of factors and degree of time–dependence of the model parameters.

Starting point is again the standard HJM result for forward rate dynamics with N
factors under the spot risk–neutral measure:

f(t, T ) = f(0, T ) +
N∑
j=1

t∫
0

σj(u, T )

T∫
u

σj(u, s)dsdu+
N∑
j=1

t∫
0

σj(s, T )dWj(s) (20)

We define the j-th component of the instantaneous forward rate volatility function as fol-
lows:

σj(t, T ) =
n∑
i=1

I{i≤A(t,T )}χj(t)φj(T )γi,j (21)

where

φj(T ) = exp
(
−
∫ T

0
λj(s)ds

)
(22)

and

χj(t) = σj(t)
√
vj(t)exp

(∫ t

0
λj(s)ds

)
(23)
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v(t) evolves with a Heston–type dynamic:

dv(t) = θ(t)(1− v(t))dt+ α(t)
√
v(t)dU(t), v(0) = 1 (24)

with

〈dWj(.), dUj(.)〉(t) = ρjdt (25)

and

〈dWi(.), dUj(.)〉(t) = 0, for i 6= j (26)

The bond price dynamics for a single factor8 can be written as (see Appendix A for deriva-
tion):

B(t, T ) = exp
(
−
∫ T

t
f(t, u)du

)
(27)

=
B(0, T )

B(0, t)
exp
(
−
η(t)−2∑
b=0

Λxη(T )−1
(xb+1, T )yη(T )−1(xb+1)− Λxη(T )−1

(t, T )yη(T )−1(t)

−
η(T )−2∑
k=η(t)

η(t)−2∑
b=0

Λxk(xb+1, xk+1)yk(xb+1)−
η(T )−2∑
k=η(t)

Λxk(t, xk+1)yk(t)

− 1

2

η(t)−2∑
b=0

η(T )−1−b∑
i=1

η(T )−1−b∑
j=1

γiγjΦ(xb, xb+1){Λ2(xb+1, T )− Λ2(xb+1, xη(T )−1)}

− 1

2

η(T )−η(t)∑
i=1

η(T )−η(t)∑
j=1

γiγjΦ(xη(t)−1, t){Λ2(t, T )− Λ2(t, xη(T )−1)}

−
η(T )−2∑
k=η(t)

1

2

η(t)−2∑
b=0

k−b∑
i=1

k−b∑
j=1

γiγjΦ(xb, xb+1){Λ2(xb+1, xk+1)− Λ2(xb+1, xk)}

−
η(T )−2∑
k=η(t)

1

2

(k−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγjΦ(xη(t)−1, t){Λ2(t, xk+1)− Λ2(t, xk)}
)

(28)

3.4 SOFR term rates

The transition of the key (US dollar) interest rate index from LIBOR to SOFR (with similar
transitions for many other curencies) imposes on the market a change from benchmark rates
set for a longer term (usually three months) to rates with an effective term of one business
day. Transitioning to daily frequency for derivative instruments would not be desirable for
many reasons, including burdening the system with a large increase in transaction volumes

8Since the model specification results in driving factors which are mutually independent, the generali-
sation of this expression to the multifactor case is straightforward, though notationally tedious.
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to settle daily flows. Instead, the market is adopting an approach where instruments are
still defined with longer term rates, but those term rates are now calculated using either a
compounding or averaging of SOFR over the term. This is what is typically called “term
SOFR.”9

A LIBOR term would be defined by the start date Ti and an end date Tk of the period
over which it applies. A SOFR term for the corresponding dates is defined as a set of
discrete dates {Ti, , , Tk} on which SOFR is observed. The most common definition of term
SOFR is based on compounding over the term (usually 3m):

S(Ti, Tk) = τi,k

[ k∏
j=i

(1 + s(Tj)δj)− 1

]
(29)

where τi,k is the year fraction of the term length and s(t) is the SOFR observed set for Tj .
δj is the year fraction for the period between Tj and Tj+1, in order to account for days on
which SOFR is not observed (weekends and holidays). For the empirical results presented
in this paper, we make the assumption that the daily SOFR rate is approximated by the
continuous short rate r(t).

3.5 Pricing Futures

Define a 3M SOFR futures contract F (Ti, Tk) with accrual period starting at Ti and ending
at Tk, with payoff measurable at Tk:

F (Ti, Tk) = 100

(
1− S(Ti, Tk)

)
(30)

where δi,k is the year fraction between Ti and Tk. Using the generic futures pricing theorem,
the time t futures price F (t, Ti, Tk) is given by the expected value at t under spot risk–neutral
measure, i.e.

F (t, Ti, Tk) = Eβ

[
F (Ti, Tk)|Ft

]
(31)

3.6 Pricing Options on Futures

Options on 3M SOFR futures exist for a variety of strikes and expiries. They are specified
with American–style exercise, but we use them to approximate European–style implied
volatilities, as is common in practice. We do not address the impact of the American
exercise in this paper, instead we use these options to demonstrate the ability of the model
to calibrate to a variety of strikes and expiries. The value of a call option at time t,

9If one takes into account the “multicurve” phenomenon observed in interest rate markets, these “SOFR
term rates” are more akin to rates implied by overnight index swaps (OIS) than actual term rates such
as LIBOR, see Alfeus, Grasselli and Schlögl (2020) and Backwell, Macrina, Schlögl and Skovmand (2019).
However, here we only consider instruments referencing SOFR, so this distinction is not needed in the
present paper.
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expiring at Te < Ti with strike K, on the futures contract, can be expressed as the expected
discounted payoff under the spot risk–neutral measure:

C(t, Te, F (Ti, Tk),K) = Eβ

[
1

β(Te)
(F (Ti, Tk)−K)+|Ft

]
(32)

3.7 Simulating the model

As an initial proof of concept, particularly the ability of the model to calibrate to options
on SOFR futures, we price options by Monte Carlo simulation.10 For the stochastic integral
component in Equation (20), we have:

t∫
0

σj(s, T )dWj(s) =
n∑
i=1

I{i≤A(t,T )}γi,jφj(T )

t∫
0

σj(s)
√
vj(s)exp

(∫ s

0
λj(q)dq

)
dWj(s)

(33)

Setting constant parameters σj(s) = σj and λj(q) = λj :

t∫
0

σj(s)
√
vj(s)exp

(∫ s

0
λj(q)dq

)
dWj(s) = σj

t∫
0

√
vj(s)e

sλjdWj(s) (34)

The stochastic component is approximated as follows:

t∫
0

√
vj(s)e

sλjdWj(s) ≈
1

N

N∑
p=1

g(t) (35)

where

gj(t) =

t∫
0

√
vj(s)e

sλjdWj(s) (36)

calculated with Euler discretisation:

∆gj(s) =
√
vj(s)e

sλj∆Wj(s) (37)

where ∆Wj(s) ∼ N(0,
√

∆t), vj(s) = vj(s−∆t) + ∆vj(s) and:

∆vj(s) = θ(1− vj(s−∆t))∆t+ α
√
vj(s−∆t)∆Uj(s), vj(0) = 1 (38)

where ∆Uj(s) ∼ N(0,
√

∆t) and 〈∆Wj(.),∆Uj(.)〉(s) = ρj∆t

10The HHW stochastic volatility dynamics assumed in our model would permit the derivation of semi-
analytical option pricing formulae using Fourier transform techniques, but we leave such derivations to
future work.
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4 Term rate dynamics

4.1 Accrual period

A prevalent approach in the LIBOR to SOFR transition, as reflected in literature (see
Lyashenko and Mercurio (2019)), is the adaptation of existing LIBOR–based modelling
to SOFR. A highly practical problem stemming from this approach is the behaviour of
options in the accrual period of the SOFR term rate, i.e. for term forwards S(Ti, Tk) at
time Ti < t ≤ Tk. This occurs when the expiry of the option is set past the beginning of
the accrual period.

Examples of impacted options are in–arrears SOFR caps and exchange–traded options
on 1M SOFR futures.11 Options on averaging and compounding SOFR term rates can be
simply thought of as average rate options on the short rate. However, existing LIBOR–
based pricing models require an artificially induced decay of the “SOFR term rate” volatility
within its accrual period. To this effect, Lyashenko and Mercurio (2019) suggest implied
volatility as a linearly decaying function of the accrual time.

In contrast, the model proposed in this paper handles the case of partially set forwards
naturally and also provides an alternative insight into the decay characteristics of implied
volatility within the accrual period. In such a factor model of SOFR forward rates the entire
term structure is available at any forward simulation point without additional simulation
cost. The appropriate dynamics are embedded in the partially set term forwards by evolving
each SOFR forward rate up to its observation/accrual time. As shown in Figure 4, setting
a constant volatility level σ and removing the indicator functions in the HJM volatility
function results in a linearly decaying implied volatility. This is consistent with the ad
hoc assumption in Lyashenko and Mercurio (2019), but here it results directly from model
behaviour.

However, a different behaviour of implied volatility appears when forward rate volatility
is driven by FOMC meetings and therefore there is zero volatility in the period between the
end of the accrual period and the last FOMC meeting within the accrual period. As shown
in Figure 4, this results in an accelerating decay in implied volatility to zero at the final
meeting date prior to the end of the accrual period. Note that this analysis does ignore
volatility of the SOFR to policy target rate spread, but this is a second order effect. Spread
volatility contributes relatively little to the variance of SOFR, suggesting the implication
on the accrual period dynamics is likely to be accurate — a prediction of the model which
can be verified once options on 1M SOFR futures become sufficiently liquid in the market.

11Options on 3M futures expire prior to the accrual period, hence are not impacted by behaviour during
the accrual period.
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Figure 4: Accrual period term volatility comparison

4.2 Mean reversion

Mean reversion is embedded in the model in the definition of σj(t, T ) which can be rewritten
as follows:

σj(t, T ) = σj(t)
√
vj(t)exp

(
−
∫ T

t
λj(s)ds

) n∑
i=1

I{i≤A(t,T )}γi,j (39)

On the one hand, mean reversion is reflected in the term exp
(
−
∫ T
t λj(s)ds

)
, resulting

in the volatility of instantaneous forward rates decaying as a function of time to maturity
(T − t). On the other hand, the γi,j vector scales the volatility function based on the
number of FOMC meetings between t and T and as such has an inherent dependence on
T − t. Therefore, for a given λj(s) function, it is possible to define γi,j such that:

n∑
i=1

I{i≤A(t,T )}γi,j ≈ exp
(
−
∫ T

t
λj(s)ds

)
(40)

That is, it is possible to set λj = 0 and mimic mean reverting dynamics with the appropriate
choice of γi,j . In Gellert and Schlögl (2021), γi,j is derived from PCA of forward states
implied from SOFR and Fed Funds futures. The states are derived assuming piecewise flat
structure between FOMC dates without any assumptions regarding the driving dynamics, in
turn allowing for empirical assessment of the state dynamics. The first factor, i.e for j = 1,
explains a large proportion (around 80%) of the forward state variance. It has a clear
economic interpretation of focusing forward rate dynamics on the changing expectations
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Figure 5: Comparison of exp
(
−
∫ T

t
λj(s)ds

)
(red) and

∑n
i=1 I{i≤A(t,T )}γi,j(black)

related to the change in policy rate at the FOMC date immediately following t. This in itself
is an intuitively agreeable insight: forward rate dynamics are largely driven by changing
expectations of the next move in the policy rate. However, it is critical to mimicking mean
reverting behaviour in this way that γi,j has the opposite sign between γ1,1 and γi,1 for
i > 1. Inspection of the empirically derived γi,j vector for j = 1, reveals that it is now
possible to choose λj(s) such that:

exp
(
−
∫ T

t
λj(s)ds

)
≈

n∑
i=1

I{i≤A(t,T )}γi,j (41)

by setting:

λj(s) =

{
0.9, s− t < 0.5

0.08, otherwise
(42)

which results in the comparison shown in Figure 5, demonstrating it how it is possible to
obtain the behaviour implied by the (PCA–derived) γ from an appropriate choice of λj(s).
It is clear that most of the difference stems from the continuous and piecewise definitions,
but both approaches are very similar in terms of embedding mean reversion dynamics. Thus
the estimation of the proposed model creates an implicit connection between forward rate
dynamics driven by the next policy rate change and mean reverting behaviour of the short
rate.
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Figure 6: (LHS) Implied volatility for different values of σ. (RHS) ATM implied volatility sensi-
tivity across contracts to changes in σ.

4.3 Factor Sensitivities

Calibration to interest rate options requires the model to fit the first four moments of
terminal distributions across different expiries and tenors. The moments of a terminal dis-
tribution at a specific expiry are usually characterised in terms of implied volatilities across
different strikes. In this representation the first moment corresponds to a horizontal shift
in the implied volatilities (across strikes), second moment a vertical shift (across all implied
volatilities), third moment a gradient shift and the fourth moment a shift in convexity. Us-
ing this characterisation we demonstrate the flexibility of the model proposed in this paper
to control the moments of the distribution as well as their term structures across different
expiries.

Using a model calibration on the 10-June-2022 to the first four quarterly SOFR options,
including all available strikes, we study the sensitivity of implied volatilities to the model
parameters. Starting with σ, see Figure 6, it is apparent that changing this variable results
in a parallel shift in the implied volatilities, thereby controlling the second moment. The
table in Fig.6, shows how different factors impact different expiries with factor 1 focused
on short expiries, while factors 2 and 3 increasingly focus on the longer expiries, providing
calibration flexibility across the term structure.

The α parameter determines the level of stochastic volatility in the models, usually
associated with the fourth moment. As shown in Figure 7, changing the α parameter results
in a change in convexity as well as the level of volatilities. Control of just convexity, without
changing ATM volatilities, is possible by combining offsetting changes in the σ parameter.
The table in Figure 7 shows different impact on convexity from different factors across
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Figure 7: (LHS) Implied volatility for different values of α. (RHS) Implied volatility convexity
sensitivity across contracts to changes in α.

expiries, enabling the model to calibrate to different stochastic volatility term structures.
The ρ parameter determines the correlation between stochastic volatility and the for-

ward rates. As can be seen in Figure 8, changing the ρ parameter results in a gradient
change in implied volatilities, corresponding to a change in the third moment. Similarly to
the other parameters, the impact on implied volatility skewness varies for different factors
across expiries, allowing the model be calibrated to different correlation term structures.

λ and θ are two variables associated with mean reversion. The λ parameter controls
mean reversion of the forward rates while the θ parameter controls the mean reversion of the
stochastic volatility. From an implied volatility perspective, as shown in Figure 9, the mean
reversion parameters work in reverse to their corresponding volatility parameters. The λ
parameters offset the impact from σ and result in a parallel change in implied volatility with
the opposite sign to the change in the parameter. The θ parameter reverses the α parameter
and therefore results in both a level and convexity change in the implied volatilities.

Thus the model proposed has the flexibility to attempt simultaneous calibration to
option–implied volatilities across both strikes and expiries. Additional flexibility for cal-
ibration comes from the ability to define the variables as functions of time. In the next
section, we demonstrate the model’s ability to calibrate to market data on options on SOFR
futures.
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Figure 8: (LHS) Implied volatility for different values of ρ. (RHS) Implied volatility skew sensi-
tivity across contracts to changes in ρ.

Figure 9: Varying lambda and theta.

5 Calibration to options

The ability to calibrate to cross sectional option data is an important feature of interest rate
models. Although it violates the model assumptions, it is standard practice in industry to
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Figure 10: Calibration with constant parameters.

recalibrate interest rate models on a daily basis to vanilla instruments such as swaptions and
caps. Calibration using options on futures is less common, but options on SOFR futures
have been one of the first SOFR–related option instruments to trade since the inception of
the new benchmark. These are also the only SOFR–related options traded directly on an
exchange, meaning that the price information is widely available for research purposes.

At the time of writing, most of the market liquidity in options on SOFR futures is
concentrated on the front four options on 3M SOFR futures. Arguably, shorter expiry
interest rate options are the most difficult to fit, due to steep and highly variable term
structures in implied volatilities and implied kurtosis, as is evident in the data set used for
this section. This makes calibration to these options a good proof–of–concept test to assess
the model’s calibration capability.

For the calibration we take the γ parameters from the empirical estimation performed
in Gellert and Schlögl (2021). The remaining parameters σ, α, λ, θ and ρ are calibrated
to option prices. In the calibration, σ controls the general level of volatility, and the mean
reversion parameter λ gives some control of volatility levels across expiries. α controls the
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parameters σ1 σ2 σ3 λ1 λ2 λ3 α1 α2 α3 ρ1 ρ2 ρ3 θ1 θ2 θ3

constant 0.0081 0.006 0.0041 0.01 0 0.16 1.57 0.82 0 -0.2 0 0 0 0 0
time dependent 0.00663 0.00587 0.00447 0.02 0.004 0.35 [3.142, 1.35, 3.2, 0.86] [0.76, 0.66, 0.6, 0.22] [3.0, 0.6, 0.5, 4.1] -0.14 -0.025 -0.83 0.1 0 11.0

Table 1: parameter table

level of kurtosis, and the stochastic volatility mean reversion parameter α gives some control
of kurtosis across expiries. The correlation parameter ρ controls the implied volatility skew.

Each of the model calibration parameters can be defined as a function of time. Combined
with the ability to choose the number of HJM factors, this provides significant flexibility
in the model for calibration. We begin by performing the calibration with the parameters
constant across time before adding time dependent parameters. The results are presented as
a comparison of normal (i.e., “Bachelier”) volatilities implied from the bid/offer prices taken
from settlement price information on the 10-June-2022, with the 5% confidence interval for
the calibrated model price based on simulation results.

The calibration results shown in Figure 10 show that the model can be fitted to general
volatility levels, skew and convexity, though insufficiently to match market–implied volatil-
ities. The main features of market–implied volatilities is the sharply declining convexity
as a function of expiry. Another feature is the term structure in skew slightly declining as
a function of expiry. As can be seen in Table 1, with constant parameters the calibration
focuses on α0, which is the stochastic volatility parameter associated with the first factor.
This understates the convexity on the first expiry and overstates for the longest expiry,
thus effectively freezing factor 2 and 3 stochastic volatility (α1, α2) at zero. These results
suggest the introduction of time dependent stochastic volatility parameters.

We define stochastic volatility as a function of t, with parameters piecewise constant
between the option expiry dates. As shown in Figure 11, this change provides enough
flexibility across different expiries to results in a large improvement in model fit. With the
added time dependence, the first stochastic volatility parameter α0 has increased for short
expiries and decreased for longer expiries, as opposed to the results obtained with constant
parameters.

This example demonstrates the flexibility of the model. Based on the calibration with
constant parameters, we were able to make an informed choice with respect to which param-
eters could be made time dependent to benefit the calibration. We only had to change three
of the fifteen available parameters to achieve a much better calibration results, albeit for
a limited set of calibration instruments. We believe this same approach could be repeated
for a larger set of more traditional calibration instruments, making other parameters time
dependent or increasing the number the factors if required.

6 Conclusion

The model proposed in this paper is an outcome of a data–driven approach focused on the
new SOFR benchmark. Primarily, it accounts for the (to first order) piecewise constant
nature of SOFR by using a stochastic volatility model in which the short rate r(t) picks up
the underlying driving randomness (modelled as a diffusion) only on central bank meeting
(FOMC) dates, resulting in “stochastic discontinuties” (i.e., jumps at known times). These
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Figure 11: Calibration with time dependent parameters.

empirically inspired features also allow the model to be calibrated to interest rates options
across different expiries, forward times and strikes.

Thus the model is directly connected to FOMC meeting dates, the regular economic
event most important for US interest rate options markets. Arguably, other significant
economic events and data funnel into FOMC policy rate decisions, as well as into mar-
ket expectations of these decisions reflected in derivative pricing. The calibration of this
stochastic discontinuity feature to a history of SOFR futures prices has revealed a connec-
tion between interest rate mean reversion and FOMC policy rate expectations. It turns
out that the piecewise constant volatility component mimics instantaneous forward rate
volatility decaying function in time to maturity and therefore has a similar effect as tradi-
tional mean reversion in the model. This reveals a direct connection between the evolution
of FOMC policy rate expectations reflected in SOFR futures prices and traditional mean
reverting stochastic dynamics.

The primary driver of SOFR futures prices are changes in expectations related to the
next FOMC meeting, which in turn tends to be negatively correlated with changes in
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expectations for subsequent meetings, creating variance decay as a function of time to
maturity. Historically, the Federal Reserve in managing economic cycles acts to mean
revert interest rates. The market expects the Federal Reserve to continue to act this way
and using our modelling set–up this expectation is actually detectable in the evolution of
SOFR futures prices.

In the context of cross–sectional calibration, stochastic volatility allows the model to fit
skewness and convexity across strikes, a prominent feature in interest rate options prices.
We demonstrated this on options on SOFR futures. The model also could be adapted to
other calibration instruments, such as caps and swaptions.

Our research approach has been to allow empirical data to inform our modelling choices.
The aim of the approach was to identify and create a model which reflects key empirical
features of SOFR. The resulting model accommodates cross–sectional calibration arguably
better than leading industry models, in addition to providing genuine economic insights
related to the evolution of interest rates.

Appendix A

A.1 Single dimensional case

Define the following:

σ(t, T ) = χ(t)φ(T ) (43)

φ(T ) = exp
(
−
∫ T

0
λ(v)dv

)
(44)

χ(t) = σ(t)exp
(∫ t

0
λ(v)dv

)
(45)

Λ(t, T ) =

∫ T

t
exp
(
−
∫ u

t
λ(v)dv

)
du (46)

Φ(t) =

∫ t

0
σ2(s)exp

(
− 2

∫ t

s
λ(v)dv

)
ds (47)
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HJM result:

f(t, T ) = f(0, T ) +

∫ t

0
σ(s, T )

∫ T

s
σ(s, u)duds+

∫ t

0
σ(s, T )dW (s)

= f(0, T ) +

∫ t

0
χ(s)φ(T )

∫ T

s
χ(s)φ(u)duds+

∫ t

0
χ(s)φ(T )dW (s)

= f(0, T ) +

∫ t

0
σ(s)exp

(∫ s

0
λ(v)dv

)
exp
(
−
∫ T

0
λ(v)dv

)
×
∫ T

s
σ(s)exp

(∫ s

0
λ(v)dv

)
exp
(
−
∫ u

0
λ(v)dv

)
duds

+

∫ t

0
σ(s)exp

(∫ s

0
λ(v)dv

)
exp
(
−
∫ T

0
λ(v)dv

)
dW (s)

= f(0, T ) +

∫ t

0
σ2(s)exp

(
−
∫ T

s
λ(v)dv

)∫ T

s
exp
(
−
∫ u

s
λ(v)dv

)
duds

+

∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s)

= f(0, T ) +

∫ t

0
σ2(s)exp

(
−
∫ T

s
λ(v)dv

)
Λ(s, T )ds+

∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s)
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let y(t) =
∫ t

0 σ
2(s)exp

(
−
∫ t
s λ(v)dv

)
Λ(s, t)ds+exp

(∫ T
t λ(v)dv

)∫ t
0 σ(s)exp

(
−
∫ T
s λ(v)dv

)
dW (s)

substitute
∫ t

0 σ(s)exp
(
−
∫ T
s λ(v)dv

)
dW (s) =

y(t)−
∫ t
0 σ

2(s)exp

(
−
∫ t
s λ(v)dv

)
Λ(s,t)ds

exp

( ∫ T
t λ(v)dv

)

f(t, T ) = f(0, T ) +

∫ t

0
σ2(s)exp

(
−
∫ T

s
λ(v)dv

)
Λ(s, T )ds+

∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s)

= f(0, T ) + exp
(
−
∫ T

t
λ(v)dv

)
y(t) +

∫ t

0
σ2(s)exp

(
−
∫ T

s
λ(v)dv

)
Λ(s, T )ds

− exp
(
−
∫ T

t
λ(v)dv

)∫ t

0
σ2(s)exp

(
−
∫ t

s
λ(v)dv

)
Λ(s, t)ds

= f(0, T ) + exp
(
−
∫ T

t
λ(v)dv

)
y(t) + exp

(
−
∫ T

t
λ(v)dv

)
×
∫ t

0
σ2(s)

{
exp
(∫ T

t
λ(v)dv

)
exp
(
−
∫ T

s
λ(v)dv

)
Λ(s, T )− exp

(
−
∫ t

s
λ(v)dv

)
Λ(s, t)

}
ds

= f(0, T ) + exp
(
−
∫ T

t
λ(v)dv

)
y(t) + exp

(
−
∫ T

t
λ(v)dv

)
×
∫ t

0
σ2(s)exp

(
−
∫ t

s
λ(v)dv

){
Λ(s, T )− Λ(s, t)

}
ds

= f(0, T ) + exp
(
−
∫ T

t
λ(v)dv

)
y(t)

+ Λ(t, T )exp
(
−
∫ T

t
λ(v)dv

)∫ t

0
σ2(s)exp

(
− 2

∫ t

s
λ(v)dv

)
ds

= f(0, T ) + exp
(
−
∫ T

t
λ(v)dv

)
y(t) + Φ(t)Λ(t, T )exp

(
−
∫ T

t
λ(v)dv

)
therefore:∫ T

t
f(t, u)du =

∫ T

t

(
f(0, u) + exp

(
−
∫ u

t
λ(v)dv

)
y(t) + Φj(t)Λ(t, u)exp

(
−
∫ u

t
λ(v)dv

))
du

=

∫ T

t
f(0, u)du+ y(t)

∫ T

t
exp
(
−
∫ u

t
λ(v)dv

)
du+ Φ(t)

∫ T

t
Λ(t, u)exp

(
−
∫ u

t
λ(v)dv

)
du

=

∫ T

t
f(0, u)du+ Λ(t, T )y(t) + Φ(t)

∫ T

t
Λ(t, u)dΛ(t, u)

=

∫ T

t
f(0, u)du+ Λ(t, T )y(t) +

1

2
Φ(t)Λ2(t, T )

Therefore, the bond price is given by

B(t, T ) = exp
(
−
∫ T

t
f(t, u)du

)
=
B(0, T )

B(0, t)
exp
(
− Λ(t, T )y(t)− 1

2
Φ(t)Λ2(t, T )

)
(48)
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A.2 Single dimensional case with piecewise continuous short rate

Define the following:

σ(t, T ) =

n∑
i=1

I{i≤A(t,T )}χ(t)φ(T )γi (49)

φ(T ) = exp
(
−
∫ T

0
λ(v)dv

)
(50)

χ(t) = σ(t)exp
(∫ t

0
λ(v)dv

)
(51)

Λ(t, T ) =

∫ T

t
exp
(
−
∫ u

t
λ(v)dv

)
du (52)

Λa(t, T ) =

∫ T

a
exp
(
−
∫ u

t
λ(v)dv

)
du (53)

Φ(t) =

∫ t

0
σ2(s)exp

(
− 2

∫ t

s
λ(v)dv

)
ds (54)

A.2.1 trivial case t < T < x1

HJM result:

f(t, T ) = f(0, T ) +

∫ t

0
σ(s, T )

∫ T

t
σ(s, u)duds+

∫ t

0
σ(s, T )dW (s) = f(0, T ) (55)

∫ T

t
f(t, u)du =

∫ T

t
f(0, u)du (56)

Therefore, the bond price is given by

B(t, T ) = exp
(
−
∫ T

t
f(t, u)du

)
=
B(0, T )

B(0, t)
(57)
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A.2.2 basic case t < x1 < T < x2∫ T

t
f(t, u)du =

∫ x1

t
f(t, u)du+

∫ T

x1

f(t, u)du (58)

=

∫ x1

t
f(0, u)du+

∫ T

x1

f(t, u)du (59)

To solve
∫ T
x1
f(t, u)du, restrict T ∈ [x1, x2] and t < x1, HJM result:

f(t, T ) = f(0, T ) +

∫ t

0
σ(s, T )

∫ T

s
σ(s, u)duds+

∫ t

0
σ(s, T )dW (s)

= f(0, T ) +

∫ t

0

n∑
i=1

I{i≤A(s,T )}χ(s)φ(T )γi

∫ T

s

n∑
j=1

I{j≤A(s,u)}χ(s)φ(u)γjduds

+

∫ t

0

n∑
i=1

I{i≤A(s,T )}χ(s)φ(T )γidW (s)

= f(0, T ) +

∫ t

0
χ(s)φ(T )γ1

∫ T

s
I{s<x1}I{u>x1}χ(s)φ(u)γ1duds+

∫ t

0
χ(s)φ(T )γ1dW (s)

= f(0, T ) + γ2
1

∫ t

0
χ(s)φ(T )I{s<x1}

∫ T

s
I{u>x1}χ(s)φ(u)duds+ γ1

∫ t

0
χ(s)φ(T )dW (s)

= f(0, T ) + γ2
1

∫ t

0
χ(s)φ(T )

∫ T

s
I{u>x1}χ(s)φ(u)duds+ γ1

∫ t

0
χ(s)φ(T )dW (s)

= f(0, T ) + γ2
1

∫ t

0
χ(s)φ(T )

∫ T

x1

χ(s)φ(u)duds+ γ1

∫ t

0
χ(s)φ(T )dW (s)

= f(0, T ) + γ2
1

∫ t

0
σ(s)exp

(∫ s

0
λ(v)dv

)
exp
(
−
∫ T

0
λ(v)dv

)
×
∫ T

x1

σ(s)exp
(∫ s

0
λ(v)dv

)
exp
(
−
∫ u

0
λ(v)dv

)
duds

+ γ1

∫ t

0
σ(s)exp

(∫ s

0
λ(v)dv

)
exp
(
−
∫ T

0
λ(v)dv

)
dW (s)

= f(0, T ) + γ2
1

∫ t

0
σ2(s)exp

(
−
∫ T

s
λ(v)dv

)∫ T

x1

exp
(
−
∫ u

s
λ(v)dv

)
duds

+ γ1

∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s)

= f(0, T ) + γ2
1

∫ t

0
σ2(s)exp

(
−
∫ T

s
λ(v)dv

)
Λx1(s, T )ds+ γ1

∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s)

let

y(t) = γ2
1

∫ t

0
σ2(s)exp

(
−
∫ t

s
λ(v)dv

)
Λx1(s, t)ds+ exp

(∫ T

t
λ(v)dv

)
γ1

∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s)

(60)
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substitute

γ1

∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s) =

y(t)− γ2
1

∫ t
0 σ

2(s)exp
(
−
∫ t
s λ(v)dv

)
Λx1(s, t)ds

exp
(∫ T

t λ(v)dv

)

f(t, T ) = f(0, T ) + γ2
1

∫ t

0
σ2(s)exp

(
−
∫ T

s
λ(v)dv

)
Λx1(s, T )ds+ γ1

∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s)

= f(0, T ) + exp
(
−
∫ T

t
λ(v)dv

)
y(t) + γ2

1

∫ t

0
σ2(s)exp

(
−
∫ T

s
λ(v)dv

)
Λx1(s, T )ds

− γ2
1exp

(
−
∫ T

t
λ(v)dv

)∫ t

0
σ2(s)exp

(
−
∫ t

s
λ(v)dv

)
Λx1(s, t)ds

= f(0, T ) + exp
(
−
∫ T

t
λ(v)dv

)
y(t) + γ2

1exp
(
−
∫ T

t
λ(v)dv

)
×
∫ t

0
σ2(s)

{
exp
(∫ T

t
λ(v)dv

)
exp
(
−
∫ T

s
λ(v)dv

)
Λx1(s, T )− exp

(
−
∫ t

s
λ(v)dv

)
Λx1(s, t)

}
ds

= f(0, T ) + exp
(
−
∫ T

t
λ(v)dv

)
y(t) + γ2

1exp
(
−
∫ T

t
λ(v)dv

)
×
∫ t

0
σ2(s)exp

(
−
∫ t

s
λ(v)dv

){
Λx1(s, T )− Λx1(s, t)

}
ds

= f(0, T ) + exp
(
−
∫ T

t
λ(v)dv

)
y(t) + γ2

1Λ(t, T )exp
(
−
∫ T

t
λ(v)dv

)∫ t

0
σ2(s)exp

(
− 2

∫ t

s
λ(v)dv

)
ds

= f(0, T ) + exp
(
−
∫ T

t
λ(v)dv

)
y(t) + γ2

1Φ(t)Λ(t, T )exp
(
−
∫ T

t
λ(v)dv

)
therefore:∫ T

x1

f(t, u)du =

∫ T

x1

(
f(0, u) + exp

(
−
∫ u

t
λ(v)dv

)
y(t) + γ2

1Φ(t)Λ(t, u)exp
(
−
∫ u

t
λ(v)dv

))
du

=

∫ T

x1

f(0, u)du+ y(t)

∫ T

x1

exp
(
−
∫ u

t
λ(v)dv

)
du+ γ2

1Φ(t)

∫ T

x1

Λ(t, u)exp
(
−
∫ u

t
λ(v)dv

)
du

=

∫ T

x1

f(0, u)du+ Λx1(t, T )y(t) + γ2
1Φ(t)

∫ T

x1

Λ(t, u)dΛ(t, u)

=

∫ T

x1

f(0, u)du+ Λx1(t, T )y(t) +
1

2
γ2

1Φ(t){Λ2(t, T )− Λ2(t, x1)}

therefore:∫ x1

t
f(t, u)du+

∫ T

x1

f(t, u)du =

∫ T

t
f(0, u)du+ Λx1(t, T )y(t) +

1

2
γ2

1Φ(t){Λ2(t, T )− Λ2(t, x1)}
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Therefore, the bond price is given by

B(t, T ) = exp
(
−
∫ T

t
f(t, u)du

)
=
B(0, T )

B(0, t)
exp
(
− Λx1(t, T )y(t)− 1

2
γ2

1Φ(t){Λ2(t, T )− Λ2(t, x1)}
)

(61)

A.2.3 more general case t < x1 < T

In general we will need
∫ T
xa
f(t, u)du where T < xa+1, therefore restrict T ∈ [xa, xa+1] and

t < x1, HJM result:

f(t, T ) = f(0, T ) +

∫ t

0
σ(s, T )

∫ T

s
σ(s, u)duds+

∫ t

0
σ(s, T )dW (s)

= f(0, T ) +

∫ t

0

n∑
i=1

I{i≤A(s,T )}χ(s)φ(T )γi

∫ T

s

n∑
j=1

I{j≤A(s,u)}χ(s)φ(u)γjduds

+

∫ t

0

n∑
i=1

I{i≤A(s,T )}χ(s)φ(T )γidW (s)

= f(0, T ) +

∫ t

0
χ(s)φ(T )

a∑
i=1

γi

∫ T

s

n∑
j=1

I{j≤A(s,u)}χ(s)φ(u)γjduds+

∫ t

0
χ(s)φ(T )

a∑
i=1

γidW (s)

Now ∫ T

s

n∑
j=1

I{j≤A(s,u)}χ(s)φ(u)γjdu = χ(s)
n∑
j=1

γj

∫ T

s
I{j≤A(s,u)}φ(u)du (62)

∫ T

s
I{j≤A(s,u)}φ(u)du =

∫ x1

s
I{j≤A(s,u)}φ(u)du+

a−1∑
k=1

∫ xk+1

xk

I{j≤A(s,u)}φ(u)du+

∫ T

xa

I{j≤A(s,u)}φ(u)du

=

a−1∑
k=1

∫ xk+1

xk

I{j≤A(s,u)}φ(u)du+

∫ T

xa

I{j≤A(s,u)}φ(u)du

Therefore:
n∑
j=1

γj

∫ T

s
I{j≤A(s,u)}φ(u)du =

n∑
j=1

γj

a−1∑
k=1

∫ xk+1

xk

I{j≤A(s,u)}φ(u)du+
n∑
j=1

γj

∫ T

xa

I{j≤A(s,u)}φ(u)du

=
a−1∑
j=1

γj

∫ xa

xj

φ(u)du+

a∑
j=1

γj

∫ T

xa

φ(u)du

=

a−1∑
j=1

γj

∫ T

xj

φ(u)du+ γa

∫ T

xa

φ(u)du

=

a∑
j=1

γj

∫ T

xj

φ(u)du
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Therefore:

f(t, T ) = f(0, T ) +

∫ t

0
χ(s)φ(T )

a∑
i=1

γi

∫ T

s

n∑
j=1

I{j≤A(s,u)}χ(s)φ(u)γjduds+

∫ t

0
χ(s)φ(T )

a∑
i=1

γidW (s)

= f(0, T ) +

∫ t

0
χ(s)φ(T )

a∑
i=1

γiχ(s)
a∑
j=1

γj

∫ T

xj

φ(u)duds+

∫ t

0
χ(s)φ(T )

a∑
i=1

γidW (s)

= f(0, T ) +

a∑
i=1

a∑
j=1

γiγj

∫ t

0
χ(s)φ(T )

∫ T

xj

χ(s)φ(u)duds+

a∑
i=1

γi

∫ t

0
χ(s)φ(T )dW (s)

= f(0, T ) +

a∑
i=1

a∑
j=1

γiγj

∫ t

0
σ(s)exp

(∫ s

0
λ(v)dv

)
exp
(
−
∫ T

0
λ(v)dv

)

×
∫ T

xj

σ(s)exp
(∫ s

0
λ(v)dv

)
exp
(
−
∫ u

0
λ(v)dv

)
duds

+
a∑
i=1

γi

∫ t

0
σ(s)exp

(∫ s

0
λ(v)dv

)
exp
(
−
∫ T

0
λ(v)dv

)
dW (s)

= f(0, T ) +
a∑
i=1

a∑
j=1

γiγj

∫ t

0
σ2(s)exp

(
−
∫ T

s
λ(v)dv

)∫ T

xj

exp
(
−
∫ u

s
λ(v)dv

)
duds

+
a∑
i=1

γi

∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s)

= f(0, T ) +
a∑
i=1

a∑
j=1

γiγj

∫ t

0
σ2(s)exp

(
−
∫ T

s
λ(v)dv

)
Λxj (s, T )ds

+

a∑
i=1

γi

∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s)

Let

ya(t) =
a∑
i=1

a∑
j=1

γiγj

∫ t

0
σ2(s)exp

(
−
∫ t

s
λ(v)dv

)
Λxj (s, t)ds

+ exp
(∫ T

t
λ(v)dv

) a∑
i=1

γi

∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s)

Substitute

a∑
i=1

γi

∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s) =

ya(t)−
∑a

i=1

∑a
j=1 γiγj

∫ t
0 σ

2(s)exp
(
−
∫ t
s λ(v)dv

)
Λxj (s, t)ds

exp
(∫ T

t λ(v)dv

)
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f(t, T ) = f(0, T ) +
a∑
i=1

a∑
j=1

γiγj

∫ t

0
σ2(s)exp

(
−
∫ T

s
λ(v)dv

)
Λxj (s, T )ds

+

a∑
i=1

γi

∫ t

0
σ(s)exp

(
−
∫ T

s
λ(v)dv

)
dW (s)

= f(0, T ) + exp
(
−
∫ T

t
λ(v)dv

)
ya(t) +

a∑
i=1

a∑
j=1

γiγj

∫ t

0
σ2(s)exp

(
−
∫ T

s
λ(v)dv

)
Λxj (s, T )ds

−
a∑
i=1

a∑
j=1

γiγjexp
(
−
∫ T

t
λ(v)dv

)∫ t

0
σ2(s)exp

(
−
∫ t

s
λ(v)dv

)
Λxj (s, t)ds

= f(0, T ) + exp
(
−
∫ T

t
λ(v)dv

)
y(t) +

a∑
i=1

a∑
j=1

γiγjexp
(
−
∫ T

t
λ(v)dv

)

×
∫ t

0
σ2(s)

{
exp
(∫ T

t
λ(v)dv

)
exp
(
−
∫ T

s
λ(v)dv

)
Λxj (s, T )− exp

(
−
∫ t

s
λ(v)dv

)
Λxj (s, t)

}
ds

= f(0, T ) + exp
(
−
∫ T

t
λ(v)dv

)
ya(t) +

a∑
i=1

a∑
j=1

γiγjexp
(
−
∫ T

t
λ(v)dv

)

×
∫ t

0
σ2(s)exp

(
−
∫ t

s
λ(v)dv

){
Λxj (s, T )− Λxj (s, t)

}
ds

= f(0, T ) + exp
(
−
∫ T

t
λ(v)dv

)
ya(t)

+
a∑
i=1

a∑
j=1

γiγjΛ(t, T )exp
(
−
∫ T

t
λ(v)dv

)∫ t

0
σ2(s)exp

(
− 2

∫ t

s
λ(v)dv

)
ds

= f(0, T ) + exp
(
−
∫ T

t
λ(v)dv

)
ya(t) +

a∑
i=1

a∑
j=1

γiγjΦ(t)Λ(t, T )exp
(
−
∫ T

t
λ(v)dv

)
Therefore:∫ T

xa

f(t, u)du =

∫ T

xa

(
f(0, u) + exp

(
−
∫ u

t
λ(v)dv

)
ya(t) +

a∑
i=1

a∑
j=1

γiγjΦ(t)Λ(t, u)exp
(
−
∫ u

t
λ(v)dv

))
du

=

∫ T

xa

f(0, u)du+ ya(t)

∫ T

xa

exp
(
−
∫ u

t
λ(v)dv

)
du

+

a∑
i=1

a∑
j=1

γiγjΦ(t)

∫ T

xa

Λ(t, u)exp
(
−
∫ u

t
λ(v)dv

)
du

=

∫ T

xa

f(0, u)du+ Λxa(t, T )ya(t) +

a∑
i=1

a∑
j=1

γiγjΦ(t)

∫ T

xa

Λ(t, u)dΛ(t, u)

=

∫ T

xa

f(0, u)du+ Λxa(t, T )ya(t) +
1

2

a∑
i=1

a∑
j=1

γiγjΦ(t){Λ2(t, T )− Λ2(t, xa)}
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Define η(t) = min{k|xk > t}, now:

∫ T

t
f(t, u)du =

∫ xη(t)

t
f(t, u)du+

∫ T

xη(T )−1

f(t, u)du+

η(T )−2∑
k=η(t)

∫ xk+1

xk

f(t, u)du

=

∫ T

t
f(0, u)du+ Λxη(T )−1

(t, T )yxη(T )−1
(t)

+
1

2

xη(T )−1∑
i=1

xη(T )−1∑
j=1

γiγjΦ(t){Λ2(t, T )− Λ2(t, xη(T )−1)}

+

η(T )−2∑
k=η(t)

(
Λxk(t, xk+1)yk(t) +

1

2

k∑
i=1

k∑
j=1

γiγjΦ(t){Λ2(t, xk+1)− Λ2(t, xk)}
)

Therefore, the bond price is given by

B(t, T ) = exp
(
−
∫ T

t
f(t, u)du

)
=
B(0, T )

B(0, t)
exp
(

Λxη(T )−1
(t, T )yxη(T )−1

(t) +
1

2

xη(T )−1∑
i=1

xη(T )−1∑
j=1

γiγjΦ(t){Λ2(t, T )− Λ2(t, xη(T )−1)}

+

η(T )−2∑
k=η(t)

(
Λxk(t, xk+1)yk(t) +

1

2

k∑
i=1

k∑
j=1

γiγjΦ(t){Λ2(t, xk+1)− Λ2(t, xk)}
))

A.2.4 general case t < T

In general we will need
∫ T
xa
f(t, u)du where T < xa+1, therefore restrict T ∈ [xa, xa+1] and

t < T . Define η(t) = min{b|xb ≥ t}, now HJM result:

f(t, T ) = f(0, T ) +

∫ t

0
σ(s, T )

∫ T

s
σ(s, u)duds+

∫ t

0
σ(s, T )dW (s)

= f(0, T ) +

∫ t

xη(t)−1

σ(s, T )

∫ T

s
σ(s, u)duds+

η(t)−2∑
b=0

∫ xb+1

xb

σ(s, T )

∫ T

s
σ(s, u)duds

+

∫ t

xη(t)−1

σ(s, T )dW (s) +

η(t)−2∑
b=0

∫ xb+1

xb

σ(s, T )dW (s) (63)
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Therefore, in general we need to solve
∫ t
xb
σ(s, T )

∫ T
s σ(s, u)duds and

∫ t
xb
σ(s, T )dW (s) where

t ∈ [xb, xb+1]. Now:∫ t

xb

σ(s, T )dW (s) =

∫ t

xb

n∑
i=1

I{i≤A(s,T )}χ(s)φ(T )γidW (s)

=

∫ t

xb

χ(s)φ(T )
a−b∑
i=1

γidW (s)

=
a−b∑
i=1

γi

∫ t

xb

σ(s)exp
(∫ s

0
λ(v)dv

)
exp
(
−
∫ T

0
λ(v)dv

)
dW (s)

=

a−b∑
i=1

γi

∫ t

xb

σ(s)exp
(
−
∫ T

s
λ(v)dv

)
dW (s)

Also:∫ t

xb

σ(s, T )

∫ T

s
σ(s, u)duds =

∫ t

xb

n∑
i=1

I{i≤A(s,T )}χ(s)φ(T )γi

∫ T

s

n∑
j=1

I{j≤A(s,u)}χ(s)φ(u)γjduds

=

∫ t

xb

χ(s)φ(T )

a−b∑
i=1

γi

∫ T

s

n∑
j=1

I{j≤A(s,u)}χ(s)φ(u)γjduds

=

∫ t

xb

χ(s)φ(T )

a−b∑
i=1

γiχ(s)

n∑
j=1

γj

∫ T

s
I{j≤A(s,u)}φ(u)duds

Now, implicitly with s ∈ [xb, t]:∫ T

s
I{j≤A(s,u)}φ(u)du =

∫ x1

s
I{j≤A(s,u)}φ(u)du+

a−1∑
k=1

∫ xk+1

xk

I{j≤A(s,u)}φ(u)du+

∫ T

xa

I{j≤A(s,u)}φ(u)du

=

a−1∑
k=b+1

∫ xk+1

xk

I{j≤A(s,u)}φ(u)du+

∫ T

xa

I{j≤A(s,u)}φ(u)du

Therefore:
n∑
j=1

γj

∫ T

s
I{j≤A(s,u)}φ(u)du =

n∑
j=1

γj

a−1∑
k=b+1

∫ xk+1

xk

I{j≤A(s,u)}φ(u)du+

n∑
j=1

γj

∫ T

xa

I{j≤A(s,u)}φ(u)du

=

a−b−1∑
j=1

γj

∫ xa

xb+j

φ(u)du+

a−b∑
j=1

γj

∫ T

xa

φ(u)du

=

a−b−1∑
j=1

γj

∫ T

xb+j

φ(u)du+ γa−b

∫ T

xa

φ(u)du

=

a−b∑
j=1

γj

∫ T

xb+j

φ(u)du
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Therefore:∫ t

xb

σ(s, T )

∫ T

s
σ(s, u)duds =

∫ t

xb

χ(s)φ(T )
a−b∑
i=1

γiχ(s)
n∑
j=1

γj

∫ T

s
I{j≤A(s,u)}φ(u)duds

=

∫ t

xb

χ(s)φ(T )

a−b∑
i=1

γi

a−b∑
j=1

γj

∫ T

xb+j

χ(s)φ(u)duds

=

a−b∑
i=1

a−b∑
j=1

γiγj

∫ t

xb

χ(s)φ(T )

∫ T

xb+j

χ(s)φ(u)duds

=

a−b∑
i=1

a−b∑
j=1

γiγj

∫ t

xb

σ(s)exp
(∫ s

0
λ(v)dv

)
exp
(
−
∫ T

0
λ(v)dv

)

×
∫ T

xb+j

σ(s)exp
(∫ s

0
λ(v)dv

)
exp
(
−
∫ u

0
λ(v)dv

)
duds

=
a−b∑
i=1

a−b∑
j=1

γiγj

∫ t

xb

σ2(s)exp
(
−
∫ T

s
λ(v)dv

)∫ T

xb+j

exp
(
−
∫ u

s
λ(v)dv

)
duds

=
a−b∑
i=1

a−b∑
j=1

γiγj

∫ t

xb

σ2(s)exp
(
−
∫ T

s
λ(v)dv

)
Λxb+j (s, T )ds

Rewrite (63):

f(t, T ) = f(0, T ) +

∫ t

0
σ(s, T )

∫ T

s
σ(s, u)duds+

∫ t

0
σ(s, T )dW (s)

= f(0, T ) +

η(t)−2∑
b=0

{∫ xb+1

xb

σ(s, T )

∫ T

s
σ(s, u)duds+

∫ xb+1

xb

σ(s, T )dW (s)

}

+

∫ t

xη(t)−1

σ(s, T )

∫ T

s
σ(s, u)duds+

∫ t

xη(t)−1

σ(s, T )dW (s)

= f(0, T ) +

η(t)−2∑
b=0

{ a−b∑
i=1

a−b∑
j=1

γiγj

∫ xb+1

xb

σ2(s)exp
(
−
∫ T

s
λ(v)dv

)
Λxb+j (s, T )ds

+
a−b∑
i=1

γi

∫ xb+1

xb

σ(s)exp
(
−
∫ T

s
λ(v)dv

)
dW (s)

}

+

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγj

∫ t

xη(t)−1

σ2(s)exp
(
−
∫ T

s
λ(v)dv

)
Λx(η(t)−1+j)

(s, T )ds

+

a−η(t)+1∑
i=1

γi

∫ t

xη(t)−1

σ(s)exp
(
−
∫ T

s
λ(v)dv

)
dW (s)
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Let

ya(t) =

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγj

∫ t

xη(t)−1

σ2(s)exp
(
−
∫ t

s
λ(v)dv

)
Λx(η(t)−1+j)

(s, t)ds

+ exp
(∫ T

t
λ(v)dv

) a−η(t)+1∑
i=1

γi

∫ t

xη(t)−1

σ(s)exp
(
−
∫ T

s
λ(v)dv

)
dW (s)

Substitute

a−η(t)+1∑
i=1

γi

∫ t

xη(t)−1

σ(s)exp
(
−
∫ T

s
λ(v)dv

)
dW (s)

=

ya(t)−
∑(a−η(t)+1)

i=1

∑(a−η(t)+1)
j=1 γiγj

∫ t
xη(t)−1

σ2(s)exp
(
−
∫ t
s λ(v)dv

)
Λx(η(t)−1+j)

(s, t)ds

exp
(∫ T

t λ(v)dv

)
Define

Φ(u, t) =

∫ t

u
σ2(s)exp

(
− 2

∫ t

s
λ(v)dv

)
ds (64)
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Therefore

a−b∑
i=1

a−b∑
j=1

γiγj

∫ xb+1

xb

σ2(s)exp
(
−
∫ T

s
λ(v)dv

)
Λxb+j (s, T )ds+

a−b∑
i=1

γi

∫ xb+1

xb

σ(s)exp
(
−
∫ T

s
λ(v)dv

)
dW (s)

= exp
(
−
∫ T

xb+1

λ(v)dv

)
ya(xb+1) +

a−b∑
i=1

a−b∑
j=1

γiγj

∫ xb+1

xb

σ2(s)exp
(
−
∫ T

s
λ(v)dv

)
Λxb+j (s, T )ds

−
a−b∑
i=1

a−b∑
j=1

γiγjexp
(
−
∫ T

xb+1

λ(v)dv

)∫ xb+1

xb

σ2(s)exp
(
−
∫ xb+1

s
λ(v)dv

)
Λxb+j (s, xb+1)ds

= exp
(
−
∫ T

xb+1

λ(v)dv

)
ya(xb+1) +

a−b∑
i=1

a−b∑
j=1

{
γiγjexp

(
−
∫ T

xb+1

λ(v)dv

)

×
[ ∫ xb+1

xb

σ2(s)

{
exp
(∫ T

xb+1

λ(v)dv

)
exp
(
−
∫ T

s
λ(v)dv

)
Λxb+j (s, T )

− exp
(
−
∫ xb+1

s
λ(v)dv

)
Λxb+j (s, xb+1)

}
ds

]}
= exp

(
−
∫ T

xb+1

λ(v)dv

)
ya(xb+1) +

a−b∑
i=1

a−b∑
j=1

γiγjΛ(xb+1, T )exp
(
−
∫ T

xb+1

λ(v)dv

)

×
∫ xb+1

xb

σ2(s)exp
(
− 2

∫ xb+1

s
λ(v)dv

)
ds

= exp
(
−
∫ T

xb+1

λ(v)dv

)
ya(xb+1) +

a−b∑
i=1

a−b∑
j=1

γiγjΦ(xb, xb+1)Λ(xb+1, T )exp
(
−
∫ T

xb+1

λ(v)dv

)
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and

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγj

∫ t

xη(t)−1

σ2(s)exp
(
−
∫ T

s
λ(v)dv

)
Λx(η(t)−1+j)

(s, T )ds

+

a−η(t)+1∑
i=1

γi

∫ t

xη(t)+1

σ(s)exp
(
−
∫ T

s
λ(v)dv

)
dW (s)

= exp
(
−
∫ T

t
λ(v)dv

)
ya(t) +

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγj

∫ t

xη(t)−1

σ2(s)exp
(
−
∫ T

s
λ(v)dv

)
Λx(η(t)−1+j)

(s, T )ds

−
(a−η(t)+1)∑

i=1

(a−η(t)+1)∑
j=1

γiγjexp
(
−
∫ T

t
λ(v)dv

)∫ t

xη(t)−1

σ2(s)exp
(
−
∫ t

s
λ(v)dv

)
Λx(η(t)−1+j)

(s, t)ds

= exp
(
−
∫ T

t
λ(v)dv

)
ya(t) +

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

{
γiγjexp

(
−
∫ T

t
λ(v)dv

)

×
[ ∫ t

xη(t)−1

σ2(s)

{
exp
(∫ T

t
λ(v)dv

)
exp
(
−
∫ T

s
λ(v)dv

)
Λx(η(t)−1+j)

(s, T )

− exp
(
−
∫ t

s
λ(v)dv

)
Λx(η(t)−1+j)

(s, t)

}
ds

]}

= exp
(
−
∫ T

t
λ(v)dv

)
ya(t) +

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγjΛ(t, T )exp
(
−
∫ T

t
λ(v)dv

)

×
∫ t

xη(t)−1

σ2(s)exp
(
− 2

∫ t

s
λ(v)dv

)
ds

= exp
(
−
∫ T

t
λ(v)dv

)
ya(t) +

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγjΦ(xη(t)−1, t)Λ(t, T )exp
(
−
∫ T

t
λ(v)dv

)
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Therefore:

f(t, T ) = f(0, T ) +

η(t)−2∑
b=0

{ a−b∑
i=1

a−b∑
j=1

γiγj

∫ xb+1

xb

σ2(s)exp
(
−
∫ T

s
λ(v)dv

)
Λxb+j (s, T )ds

+
a−b∑
i=1

γi

∫ xb+1

xb

σ(s)exp
(
−
∫ T

s
λ(v)dv

)
dW (s)

}

+

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγj

∫ t

xη(t)−1

σ2(s)exp
(
−
∫ T

s
λ(v)dv

)
Λx(η(t)−1+j)

(s, T )ds

+

a−η(t)+1∑
i=1

γi

∫ t

xη(t)−1

σ(s)exp
(
−
∫ T

s
λ(v)dv

)
dW (s)

= f(0, T ) +

η(t)−2∑
b=0

{
exp
(
−
∫ T

xb+1

λ(v)dv

)
ya(xb+1)

+
a−b∑
i=1

a−b∑
j=1

γiγjΦ(xb, xb+1)Λ(xb+1, T )exp
(
−
∫ T

xb+1

λ(v)dv

)}

+ exp
(
−
∫ T

t
λ(v)dv

)
ya(t) +

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγjΦ(xη(t)−1, t)Λ(t, T )exp
(
−
∫ T

t
λ(v)dv

)

= f(0, T ) +

η(t)−2∑
b=0

exp
(
−
∫ T

xb+1

λ(v)dv

)
ya(xb+1) + exp

(
−
∫ T

t
λ(v)dv

)
ya(t)

+

η(t)−2∑
b=0

a−b∑
i=1

a−b∑
j=1

γiγjΦ(xb, xb+1)Λ(xb+1, T )exp
(
−
∫ T

xb+1

λ(v)dv

)

+

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγjΦ(xη(t)−1, t)Λ(t, T )exp
(
−
∫ T

t
λ(v)dv

)
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Therefore:∫ T

xa

f(t, u)du =

∫ T

xa

(
f(0, u) +

η(t)−2∑
b=0

exp
(
−
∫ u

xb+1

λ(v)dv

)
ya(xb+1) + exp

(
−
∫ u

t
λ(v)dv

)
ya(t)

+

η(t)−2∑
b=0

a−b∑
i=1

a−b∑
j=1

γiγjΦ(xb, xb+1)Λ(xb+1, u)exp
(
−
∫ u

xb+1

λ(v)dv

)

+

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγjΦ(xη(t)−1, t)Λ(t, u)exp
(
−
∫ u

t
λ(v)dv

))
du

=

∫ T

xa

f(0, u)du+

η(t)−2∑
b=0

ya(xb+1)

∫ T

xa

exp
(
−
∫ u

xb+1

λ(v)dv

)
du+ ya(t)

∫ T

xa

exp
(
−
∫ u

t
λ(v)dv

)
du

+

η(t)−2∑
b=0

a−b∑
i=1

a−b∑
j=1

γiγjΦ(xb, xb+1)

∫ T

xa

Λ(xb+1, u)exp
(
−
∫ u

xb+1

λ(v)dv

)
du

+

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγjΦ(xη(t)−1, t)

∫ T

xa

Λ(t, u)exp
(
−
∫ u

t
λ(v)dv

)
du

=

∫ T

xa

f(0, u)du+

η(t)−2∑
b=0

Λxa(xb+1, T )ya(xb+1) + Λxa(t, T )ya(t)

+

η(t)−2∑
b=0

a−b∑
i=1

a−b∑
j=1

γiγjΦ(xb, xb+1)

∫ T

xa

Λ(xb+1, u)dΛ(xb+1, u)

+

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγjΦ(xη(t)−1, t)

∫ T

xa

Λ(t, u)dΛ(t, u)

=

∫ T

xa

f(0, u)du+

η(t)−2∑
b=0

Λxa(xb+1, T )ya(xb+1) + Λxa(t, T )ya(t)

+
1

2

η(t)−2∑
b=0

a−b∑
i=1

a−b∑
j=1

γiγjΦ(xb, xb+1){Λ2(xb+1, T )− Λ2(xb+1, xa)}

+
1

2

(a−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγjΦ(xη(t)−1, t){Λ2(t, T )− Λ2(t, xa)}
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Now ∫ T

t
f(t, u)du =

∫ xη(t)

t
f(t, u)du+

∫ T

xη(T )−1

f(t, u)du+

η(T )−2∑
k=η(t)

∫ xk+1

xk

f(t, u)du

=

∫ T

t
f(0, u)du+

η(t)−2∑
b=0

Λxη(T )−1
(xb+1, T )yη(T )−1(xb+1) + Λxη(T )−1

(t, T )yη(T )−1(t)

+
1

2

η(t)−2∑
b=0

η(T )−1−b∑
i=1

η(T )−1−b∑
j=1

γiγjΦ(xb, xb+1){Λ2(xb+1, T )− Λ2(xb+1, xη(T )−1)}

+
1

2

η(T )−η(t)∑
i=1

η(T )−η(t)∑
j=1

γiγjΦ(xη(t)−1, t){Λ2(t, T )− Λ2(t, xη(T )−1)}

+

η(T )−2∑
k=η(t)

[ η(t)−2∑
b=0

Λxk(xb+1, xk+1)yk(xb+1) + Λxk(t, xk+1)yk(t)

+
1

2

η(t)−2∑
b=0

k−b∑
i=1

k−b∑
j=1

γiγjΦ(xb, xb+1){Λ2(xb+1, xk+1)− Λ2(xb+1, xk)}

+
1

2

(k−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγjΦ(xη(t)−1, t){Λ2(t, xk+1)− Λ2(t, xk)}
]

=

∫ T

t
f(0, u)du

+

η(t)−2∑
b=0

Λxη(T )−1
(xb+1, T )yη(T )−1(xb+1)

+ Λxη(T )−1
(t, T )yη(T )−1(t)

+

η(T )−2∑
k=η(t)

η(t)−2∑
b=0

Λxk(xb+1, xk+1)yk(xb+1)

+

η(T )−2∑
k=η(t)

Λxk(t, xk+1)yk(t)

+
1

2

η(t)−2∑
b=0

η(T )−1−b∑
i=1

η(T )−1−b∑
j=1

γiγjΦ(xb, xb+1){Λ2(xb+1, T )− Λ2(xb+1, xη(T )−1)}

+
1

2

η(T )−η(t)∑
i=1

η(T )−η(t)∑
j=1

γiγjΦ(xη(t)−1, t){Λ2(t, T )− Λ2(t, xη(T )−1)}

+

η(T )−2∑
k=η(t)

1

2

η(t)−2∑
b=0

k−b∑
i=1

k−b∑
j=1

γiγjΦ(xb, xb+1){Λ2(xb+1, xk+1)− Λ2(xb+1, xk)}

+

η(T )−2∑
k=η(t)

1

2

(k−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγjΦ(xη(t)−1, t){Λ2(t, xk+1)− Λ2(t, xk)}
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Therefore, the bond price is given by

B(t, T ) = exp
(
−
∫ T

t
f(t, u)du

)

=
B(0, T )

B(0, t)
exp
(
−
η(t)−2∑
b=0

Λxη(T )−1
(xb+1, T )yη(T )−1(xb+1)

− Λxη(T )−1
(t, T )yη(T )−1(t)

−
η(T )−2∑
k=η(t)

η(t)−2∑
b=0

Λxk(xb+1, xk+1)yk(xb+1)

−
η(T )−2∑
k=η(t)

Λxk(t, xk+1)yk(t)

− 1

2

η(t)−2∑
b=0

η(T )−1−b∑
i=1

η(T )−1−b∑
j=1

γiγjΦ(xb, xb+1){Λ2(xb+1, T )− Λ2(xb+1, xη(T )−1)}

− 1

2

η(T )−η(t)∑
i=1

η(T )−η(t)∑
j=1

γiγjΦ(xη(t)−1, t){Λ2(t, T )− Λ2(t, xη(T )−1)}

−
η(T )−2∑
k=η(t)

1

2

η(t)−2∑
b=0

k−b∑
i=1

k−b∑
j=1

γiγjΦ(xb, xb+1){Λ2(xb+1, xk+1)− Λ2(xb+1, xk)}

−
η(T )−2∑
k=η(t)

1

2

(k−η(t)+1)∑
i=1

(a−η(t)+1)∑
j=1

γiγjΦ(xη(t)−1, t){Λ2(t, xk+1)− Λ2(t, xk)}
)
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