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Abstract—The directional loudspeaker array generating sound
beam to the target listener is highly demanded in the appli-
cation. The null-constraint-based differential beamforming has
recently been applied to the loudspeaker line array to produce
a broadside frequency-invariant radiation pattern. However, its
effective frequency range is limited since it only pursues sound
pressure matching in a few directions. In this paper, we develop
the modal matching approach of the null-constrained method
to control the beam pattern better. Specifically, we derive the
modal domain target beam pattern of a broadside differential
loudspeaker array from the information about the nulls. Then,
we use the Jacobi-Anger expansion and modal matching to
optimise the loudspeaker gains in the modal domain. In addition,
a distortionless constraint in the broadside direction is included to
achieve constant performance over the frequency band of interest.
Simulation results show that the proposed method achieved more
than double the effective frequency range with an invariant main
lobe (broadside beam) up to 4 kHz, and better sound attenuation
of the side lobes, compared to the existing methods.

Index Terms—loudspeaker line array, differential beam-
forming, frequency-invariant beamforming, broadside radiation,
Jacobi-Anger expansion

I. INTRODUCTION

Directional loudspeaker arrays have been used in various
scenarios, such as public address systems [1, 2], reducing room
reverberation [3, 4], and creating personalized sound zones
[5-8]. These arrays can be either additive or differential [9,
10]. Additive arrays achieve high directivity by controlling
the interference of the sound fields generated by multiple loud-
speakers. However, due to the diffraction limit, additive arrays
with small aperture sizes cannot generate high directivity at
low frequencies.

On the other hand, differential arrays can radiate a narrow
beam pattern and benefit from small array sizes [11]. Due to
their compact size, frequency-invariant beam pattern, and high
spatial directivity, differential arrays have been widely studied
in microphone array applications over the past few years
[9, 12-17]. Many differential beamforming methods based on
microphone array have been developed, such as multistage
manner [18, 19], null-constrained method [20-22], and series
approximation method [23-25].
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Differential beamformers have also been utilized in loud-
speaker arrays to produce highly directional patterns [10, 11,
26-28]. Choi studied the creation of a second-order differential
broadside beam using a three-element line array for sound
zones in a car cabin [27]. For a higher-order broadside dif-
ferential beam pattern, Wang et al. devised a null-constrained
method [10]. This approach is versatile and easy to use for
designing differential beamformers. However, the frequency-
invariant beam pattern has a limited effective frequency band,
which may be undesirable for some applications.

Our recent research studied the series expansion method
for designing steerable and frequency-invariant beam pat-
terns using a circular loudspeaker array [28]. This method
employed the Jacobi-Anger expansion to approximate the
target beam pattern, which led to better-preserved frequency-
invariant beam patterns across the frequency range of interest.
Nonetheless, this method requires prior knowledge of the
target beam pattern, which may not be feasible in real-world
applications.

This paper develops the series expansion to the null-
constrained method for the broadside differential loudspeaker
line array. Unlike traditional series expansion methods that
use a cardioid or super-cardioid beam pattern as the target,
the proposed method derives the modal domain target beam
pattern of a broadside differential loudspeaker array from
the information about the nulls, offering greater flexibility.
The Jacobi-Anger expansion is used to design the differential
beamformer, allowing for beam pattern matching in the modal
domain rather than just a few directions. Additionally, a
distortionless constraint is applied in the broadside direction
to maintain a constant main lobe over the frequency band of
interest. This method can also be used for designing a linear
differential microphone array with a broadside beam pattern
for high-quality acoustic signal acquisition.

II. RELATED WORK

A. Loudspeaker Line Array

Assume a regularly spaced line array of L loudspeakers
centred at the origin of the polar coordinate system, as shown
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Fig. 1. Broadside beamforming with a differential loudspeaker line array.

in Figure 1. The far-field sound pressure at a listener position
(r, θ) generated by the loudspeaker array is [10, 11]

p(k, r, θ) ≈ eikr

4πr

L0∑
l=−L0

w∗
l (k)e

−ikxl cos θ, (1)

where k is the wave number, the superscript ∗ represents the
complex-conjugate operator, wl(k) denotes the weight of the
l-th loudspeaker at (xl, 0), where xl = lδ, δ is the spacing
between the loudspeakers, the loudspeaker index l ∈[−L0, L0]
and L0 = (L− 1)/2 ≥ 1. For a differential loudspeaker array,
L is an odd number with L > 1, and each loudspeaker acts
as a monopole source for the far-field response.

The directivity pattern of the far-field radiation is

B(k, θ) = p(k, r, θ)/(eikr/4πr)

=

L0∑
l=−L0

w∗
l (k)e

−ikxl cos θ,
(2)

with vector form

B(k, θ) = wH(k)g(k, θ), (3)

where the superscript (·)H is the conjugate-transpose operator,

w(k) = [w−L0
(k), . . . , wL0

(k)]T, (4)

g(k, θ) = [e−ikx−L0
cos θ, . . . , e−ikxL0

cos θ]T, (5)

the superscript (·)T is the transpose operator, and w(k) is the
weighting vector to be designed for a radiation pattern B(k, θ).

B. Target Broadside Radiation Pattern

The broadside loudspeaker line array optimises the weight-
ing vector w(k) to maximise the generated sound energy
at the broadside direction θ′ = π/2. Assuming the spacing
between neighbouring loudspeakers to be much smaller than
the wavelength, the 2N th-order broadside differential beam
pattern is [10]

B(2N)(k, θ) ≈
N∏

n=1

(
1− cos2 θ

β2
n

)
, (6)

where the superscript (·)(2N) denotes the 2N th-order, N is
a positive integer, the tuning parameters βn, n = 1, 2, . . . , N

determine the 2N null directions θ
(2n)
null = ± arccos(βn), n =

1, 2, . . . , N . Equation (6) shows the 2N th-order beam pattern
is mainly determined by the nulls’ directions and is indepen-
dent of the wave number k.

C. Minimum-Norm Method with Additional Constraints

The state-of-the-art method, the Minimum-Norm method
with Additional constraints (MNA) [10], is null-constrained
to design a broadside differential radiation pattern with the
optimization of the loudspeaker weighting w(k). A 2N th-
order broadside differential pattern has 2N distinct nulls and
requires a loudspeaker line array of L > 2N + 1 speakers.
Due to the broadside pattern being symmetric, the minimum
norm (MN) method [10] uses only N distinct nulls {θN,n ∈
[0◦, 90◦) , n = 1, 2, . . . , N} as the 2N + 1 fundamental beam
pattern constraints.

The MNA method additionally applies N ′ more constraints
at θN ′,n′ , where 0◦ ⩽ θN ′,1 < · · · < θN ′,N ′ < 90◦ and θN ′,n′

is different from θN,n, and bn′ is the desired gain at θN ′,n′ .
So the controlled (1 +N +N ′) directions and loudspeakers’
directional responses at those directions are

θ̃ = [90°, θN,1, . . . , θN,N , θN ′,1, . . . , θN ′,N ′ ]T, (7)

G(k, θ̃) = [g(k, 90°),g(k, θN,1), . . . ,g(k, θN ′,N ′)]H. (8)

The optimization problem of the MNA method is

min
w(k)

wH(k)w(k) s.t.G̃(k, θ̃)w(k) = ĩ, (9)

where

G̃(k, θ̃) = [G(k, θ̃);C], (10)

ĩ = [1, 0, . . . , 0, b1, . . . , bN ′ , 0, . . . , 0]T, (11)

C = [I 0 − Ĭ], (12)

where I is an L0×L0 identity matrix, and 0 is an L0 element
all-zero column vector matrix, Ĭ is the flip of the matrix I.
The minimum-norm solution of (9) is

wMNA(k) = G̃H(G̃G̃H)−1 ĩ. (13)

III. PROPOSED DIFFERENTIAL BEAMFORMER DESIGN

We propose an approach based on the series expansion
method to design a differential loudspeaker line array with
a broadside frequency-invariant beam pattern in the modal
domain, including (1) calculating the target radiation pattern
according to the null information from an ideal broadside dif-
ferential pattern, and (2) designing the differential beamformer
using the Jacobi-Anger expansion.



A. Target Broadside Radiation Pattern in the Modal Domain

Equation (6) can be formulated in a sum form

B(2N)(k, θ) =

N∑
n=0

αN,n cos
2n θ, (14)

where

αN,n =


1, n = 0,

(−1)nen(
1
β2
1
, . . . , 1

β2
N
), n = 1, . . . , N.

(15)

where the nth elementary symmetric function [29]

en(
1

β2
1

, . . . ,
1

β2
N

) =
∑

1≤i1<i2...<in≤N

1

β2
i1
. . . β2

in
. (16)

Following (1.320-5) in [30],

cos2n θ =
1

22n

{n−1∑
m=0

(2n
m

)[
ej2(n−m)θ + e−j2(n−m)θ

]
+

(2n
n

)}

=
n∑

m=−n

ηm(n)ej2mθ,

(17)

ηm(n) =
1

22n

(
2n

n− |m|

)
, m = 0,±1, . . . ,±n, (18)

where
(·
·
)

is combinations, and | · | represents absolute value.
Inserting (17) into (14), the 2N th-order broadside differential
beampattern in a symmetrical form is

B(2N)(k, θ) =

2N∑
n=−2N

γne
jnθ, (19)

where

γn =


0, n = ±1,±3, . . . ,±(2N − 1),

N∑
p=|n|/2

αN,pη|n|/2(p), n = 0,±2,±4, . . . ,±2N.

(20)

B. Modal Matching with Jacobi-Anger Expansion and Distor-
tionless Constraint

In the series expansion method, the Jacobi-Anger expansion
translates the resulting beam pattern into the modal domain
to match the target beam pattern in (19). The Jacobi-Anger
expansion is

e−ikx cos θ =

+∞∑
n=−∞

i−nJn(kx)e
inθ, (21)

where Jn(kx) is the nth-order Bessel function of the first kind.
Inserting (21) into the exponential of (2) yields

B(k, θ) =

L0∑
l=−L0

w∗
l (k)

+∞∑
n=−∞

i−nJn(kxl)e
inθ. (22)

To obtain a 2N th-order broadside differential beampattern, the
infinite series is truncated to the order 2N , that

B(k, θ) =

2N∑
n=−2N

einθ
L0∑

l=−L0

i−nJn(kxl)w
∗
l (k). (23)

If the radiation pattern in (23) is consistent with the target
beam pattern in (19), there is

L0∑
l=−L0

i−nJn(kxl)w
∗
l (k) = γn n = 0,±1, . . . ,±2N. (24)

For the design of a broadside differential beamformer, the
distortionless constraint in the broadside direction is required

wH(k)g(k, π/2) = 1. (25)

Combining (24) and (25),

Φw = Υ2N+1, (26)

where

Φ =

 e
ikx−L0

cos(π/2)
. . . e

ikxL0
cos(π/2)

J−2N (kx−L0
) ∗ (i−2N ) . . . J−2N (kxL0

) ∗ (i−2N )

.

.

.
. . .

.

.

.
J2N (kx−L0

) ∗ (i2N ) . . . J2N (kxL0
) ∗ (i2N )

 ,

(27)
Υ2N+1 = [1 γ−2N . . . γ0 . . . γ2N ]T. (28)

Using the symmetric property of the Bessel function,

Φ̃w = Υ̃2N+1, (29)

where

Φ̃ =


eikx−L0

cos(π/2) . . . eikxL0
cos(π/2)

J0(kx−L0 ) ∗ (i0) . . . J0(kxL0 ) ∗ (i0)
...

. . .
...

J2N (kx−L0 ) ∗ (i2N ) . . . J2N (kxL0 ) ∗ (i2N )

 (30)

is a (2N + 2)× L full-rank matrix,

Υ̃2N+1 = [1 γ0 . . . γ2N ]T, (31)

where [γ0 . . . γ2N ] is determined by the nulls of the desired
beam pattern. With the number of loudspeakers L > 2N + 2,
the minimum-norm solution of (29) is

w = Φ̃H(Φ̃Φ̃H)−1Υ̃2N+1. (32)

IV. SIMULATIONS

The simulation assumes a line array of 21 loudspeakers
with a spacing of 0.05 m. Each loudspeaker is modelled
as an ideal point source under the free field condition. The
frequency range of interest is from 100 to 4000 Hz, covering
the frequency range of speech. The simulation considers the
design of a sixth-order broadside differential beam, where the
six positive nulls are set as 10°, 30°, 50°, 130°, 150° and
170°. MNA additionally has a constraint on the angle of 75°,
corresponding to the main lobe’s half-power beamwidth [10].

The evaluation metrics include the white noise gain (WNG)
and the directivity index (DI). WNG represents radiation
efficiency as well as robustness, that

WNG = 10 log10(
|B(k, π/2)|2

wH(k)w(k)
). (33)



DI is the ratio between the power radiated in the broadside
direction and the spatial average of the radiated intensity over
the half-plane where the loudspeaker array is located, that

DI = 10 log10(
π|B(k, π/2)|2∫ π

0
|B(k, θ)|2dθ

). (34)
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Fig. 2. Performance of generating a sixth-order broadside differential pattern
with nulls at 10°, 30°, 50°, 130°, 150° and 170°, regarding (a) white noise
gain (WNG) and (b) the directivity index (DI).

Figure 2 shows the WNG and DI of the proposed method,
compared with the existing methods, DD (combining the
differential and delay-and-sum patterns [11]), MN and MNA.
In Figure 2(a), MN has the maximum WNG in the 100 Hz
- 4000 Hz frequency range. DD has the lowest WNG among
the four methods below 1500 Hz, indicating the worst anti-
perturbation ability at low frequencies. The proposed method
has the same WNG as MNA below 2000 Hz. Although the
WNG of the proposed method is the lowest above 2000 Hz,
the value is still greater than 0 dB, which is considered a
proper level of robustness for practical usage. Figure 2(b)
shows the DI of MN and DD increases with frequency. DI of
MNA maintains almost the same below 2000 Hz, but increases
with frequency when above 2000 Hz where the frequency-
invariant beampattern cannot hold. The DI of the proposed
method can maintain a constant over the frequency range of

interest (100 Hz - 4000 Hz), due to the frequency-invariant
radiation pattern achieved by the proposed method.
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Fig. 3. Radiation patterns for the design of a sixth-order broadside differential
patterns with nulls at 10°, 30°, 50°,130°, 150° and 170°: (a) DD, (b) MN, (c)
MNA, and (d) Proposed method.

Figure 3 shows the radiation patterns obtained with the
four methods over 100 Hz - 4000 Hz, respectively. The main
lobes of the DD and MN methods become narrower as the
frequency increases. Below 2000 Hz, the main lobe of MNA
kept almost the same. However, grating lobes appear above
2000 Hz. In contrast, the proposed method maintained the
frequency-invariant pattern in the evaluated frequency range
of up to 4 kHz.

V. CONCLUSIONS

This paper proposes a new method to design a broadside
frequency-invariant beam pattern with a differential loud-
speaker line array. The proposed method establishes the
relationship between the series expansion method and the
null-constrained method and combines their advantages in
designing a broadside differential beamformer, that allows
flexibility in pattern design as the null-constraint method and
broadband control as the series expansion method. Specifically,
we first calculate the analytic form of the target radiation
pattern according to the null information of an ideal broadside
differential beam pattern, and then design the beamformer
using the Jacobi-Anger expansion method with distortionless
constraint. Simulations show that the proposed method outper-
forms the existing methods and achieves frequency-invariant
broadside beamforming over the frequency range of 100 Hz -
4000 Hz.
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