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Abstract—Deep learning algorithms have become essential in
Assembly Action Recognition (AAR) for driving advancements
in intelligent manufacturing. While numerous sensor systems
and algorithms are developing, their real-world applicability and
robustness within the manufacturing sector need validation. Arti-
ficial intelligence (AI) applications in manufacturing have gained
significant attraction in both academic and industrial circles.
One key aspect of future smart manufacturing is identifying
the actions of manufacturing workers, particularly monitoring
repetitive assembly tasks, to guide them and improve efficiency.
This recognition facilitates real-time efficiency measurement
and evaluation of workers while providing augmented reality
instructions to enhance their performance on the job. This paper
introduces a hybrid deep-learning approach combining 3D CNN
and ConvLSTM2D models to monitor assembly tasks to recognize
human actions within the manufacturing context. The model’s
performance is evaluated through simulations conducted on the
HA4M dataset, comprising diverse multimodal data-capturing
actions executed by various individuals constructing an Epicyclic
Gear Train (EGT). The proposed hybrid model demonstrated
superior performance on the HA4M dataset relative to baselines.

Contribution of the Paper: A novel hybrid deep learning
model that outperforms multiple state-of-the-art models for
assembly action recognition.

Index Terms—Deep Learning, Human Activity Recognition,
Convolutional Neural Networks, Smart Manufacturing

I. INTRODUCTION

Assembly action recognition in manufacturing is the process
of automatically identifying and classifying the actions of
workers during the assembly process. This can be done using
a variety of sensors, such as cameras, depth sensors, and
inertial measurement units (IMUs). The goal of assembly
action recognition is to improve manufacturing efficiency and
quality by providing real-time feedback to workers, identifying
errors, and tracking productivity. Recently, there has been
growing interest in research on assembly task monitoring
and workers’ activity recognition that can potentially im-
prove human-robot collaboration, task efficiency, and real-
time instruction provision using augmented reality. Workers
are involved in operations such as assembling manufacturing
products that are mostly harmonious and symmetric [1].
Manufacturing industries increasingly use industrial robots
to improve efficiency and reduce risks for human opera-
tors [2]. Different communication protocols, including wired,
wireless, and remote approaches, have been developed to
increase manufacturing output. Some researchers have even
developed remote-controlled robots that users can operate from
a distance [3], [4]. However, comprehensively monitoring all
aspects of the manufacturing environment is a complex phe-

nomenon. Recognizing the activities of manufacturing workers
requires a deep understanding of context and the ability to
track objects in real time. This task is difficult in industrial
assembly settings, which are constantly changing [1], [5]. As
a result, identifying different activities becomes even more
challenging when tracking workers’ movements and visually
discerning their actions. This research highlights the need for
more research on monitoring the activities of manufacturing
workers.

Therefore, the main goal of this study is to develop a deep
learning-based smart manufacturing workers’ action recog-
nition system that can recognize the actions of assembly
tasks. This paper presents three outlines for assembly action
recognition in manufacturing.

• First, we explore the performances of four baseline
deep learning algorithms on the HA4M dataset. These
algorithms are convLSTM, LSTM with VG16, LRCN,
and 3D CNN.

• Second, we design a hybrid model combining
ConvLSTM and 3D CNN. In this model, we use
the output of ConvLSTM as input of 3D CNN. We also
simplify the model to reduce its complexity and improve
its performance.

• Third, we propose a hybrid model using 3D CNN and
ConvLSTM. In this model, the output of the 3D CNN
layer is used as input of the ConvLSTM layer. The
proposed hybrid model outperforms the baseline models.

The proposed hybrid assembly action recognition approach
can revolutionize manufacturing by enhancing workers’ effi-
ciency, flexibility, and sustainability, all of which are the cen-
tral objectives of Industry 4.0. Their practical implementation
in manufacturing settings aligns with the vision of a more
intelligent, connected, and agile manufacturing industry. The
remainder of this paper is organized as follows: Section II
presents the related literature on assembly action recognition;
Section III provides an elaborated description of the HA4M
dataset and proposed approach to developing the hybrid model;
Section IV and Section V assesses the training and testing
performance of the baseline models and proposed hybrid
models; Finally, Section VI summarizes the conclusions of
the study and outline the future research directions.

II. RELATED WORK

Deep learning and machine learning are now essential tools
for identifying human actions. This field has grown in popu-
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larity, as evidenced by the increasing amount of research on
the topic. The development of observation systems for various
applications, such as video surveillance, safety, smart home
security, ambient assisted living, and healthcare, has been
driven by technological advancements such as the availability
of low-cost sensors and video camera-based systems. These
systems can detect and analyze human actions, providing
valuable information to improve safety, security, and well-
being. Despite this progress, there still needs to be more
research on manufacturing worker activity recognition [5]–[8],
and the lack of public datasets is hindering the development
and comparison of new methods [1]. In computer vision,
deep learning methods have been extensively researched, and
recent advancements have made it possible to detect human
activity in images and videos with exceptional accuracy [9].
However, visual-based recognition accuracy can be reduced by
occlusion.

The study of action recognition within manufacturing as-
sembly is a emerging research area and encompasses various
innovative methodologies to date, notably hybrid models, deep
learning frameworks, multimodal sensor integration, and com-
puter vision techniques. One such hybrid model [10] adeptly
merges a convolutional neural network (CNN) and variable-
length Markov modeling (VMM), achieving 94.7% accuracy
in action recognition and effective collaboration context com-
prehension. Rigorous assessments within simulated assembly
environments validate its robust accuracy. Ultrasonic and IMU
sensor-based assembly action recognition systems [11] intro-
duce for the maintenance of bicycles using the Hidden Markov
Model classifier, where an unsupervised measurement method
utilizes to estimate lead time for factory work using signals
from a smartwatch with an IMU sensor. Another investigation
employed numerous IMU sensors to partition and categorize
worker actions in car manufacturing operations. Additionally,
a wrist-worn IMU sensor was employed to record arm motions
and categorize five distinct activities within the setting of
industrial assembly lines [12]. Moreover, [6] employs deep
learning via YOLOv3 and CPM algorithms to discern re-
curring assembly actions and anticipate operation durations.
Notably, action recognition achieves 92.8% accuracy, while
operating time estimation attains 82.1%. Additionally, Al-
Amin et al. [13] introduce a method for assembly action
recognition by fusing data from IMUs, EMG sensors, and
vision sensors, yielding a notable 92.8% accuracy—similarly,
another research introduced by this author in [5] using deep
learning with CNNs tailored to individual workers, achieving
an impressive 94% accuracy in recognizing assembly tasks.

More recently, deep learning techniques have been intro-
duced to recognize worker activity in studies on human-
robot collaboration [14]. In the context of human-robot col-
laboration, [15] highlights Hidden Markov Models (HMMs)
efficacy, tracking worker movements via camera data to en-
hance action recognition. Intriguingly, layered HMMs model
basic movements while calculated trajectories optimize effi-
ciency. Duarte Moutinho et al. [16] present a system using
ResNet and LSTM networks to comprehend human actions in

Fig. 1. Three distinct phases of assembling an Epicyclic Gear Train (EGT) [1]

collaborative assembly, attaining 96.65% accuracy. Transfer
learning is featured in [17], leveraging a pre-trained Kinetics
model for human-robot collaborative assembly, resulting in a
92.8% accuracy post-fine-tuning. Furthermore, a human-robot
collaborative assembly system proposed by H. Goto et al. [18]
employs real-time human action recognition, enhancing as-
sembly efficiency and safety through FSM task models and
vision-based recognition. An assembly-plan-from-observation
(APO) technique [19] captures fundamental task represen-
tations by recovering assembly relations from human tasks,
enabling the generation of robot programs. Similarly, using
graph and temporal convolution networks, a spatiotemporal-
based approach [20] significantly enhances action segmen-
tation accuracy. Lastly, a novel assembly action recognition
architecture [21] involving multi-camera setups and LSTM
networks outperforms previous methods, meticulously analyz-
ing assembly actions and human-object relationships. How-
ever, [22]’s computer vision algorithm for tracking manual
assembly tasks faces limitations in accommodating real-world
illumination variations.

III. METHODOLOGY

This section describes the HA4M [1] dataset and deep
learning techniques used for assembly action recognition in
manufacturing. Subsections 3.1 and 3.2 introduce the dataset
properties and facilitate the methodological analysis.

A. Dataset Description

In this study, we used RGB data of the HA4M [1] dataset for
simulating models. This dataset consists of 217 videos captur-
ing the process of assembling an Epicyclic Gear Train (EGT)
by 41 participants, comprising 15 females and 26 males. The
dataset was meticulously crafted to evaluate the performance
of individuals with varying skill levels, encompassing intricate
tasks executed diversely by individuals of differing ages and
competencies. It offers a diverse range of multi-modal data
capturing the activities associated with EGT assembly in a
controlled laboratory environment, featuring six distinct types
of data: RGB images, Depth maps, IR images, RGB-to-Depth-
Aligned images, Point Clouds, and Skeleton data. Precisely, 41
subjects undertook numerous assembly attempts, performing
12 distinct actions. The data collection process employed a
Microsoft Azure Kinect, which integrates an RGB camera,
a depth camera, and InfraRed (IR) emitters. The HA4M



dataset is an invaluable resource for researchers engaged in
developing and assessing assembly action recognition systems.
It furnishes a realistic and challenging dataset that serves
as a robust benchmark for evaluating the efficacy of various
methodologies.

1) Overview of assembling an Epicyclic Gear Train (EGT):
The process of assembling an Epicyclic Gear Train (EGT)
comprises three distinct phases, as depicted in Figure 1.
The initial stages involve the separate assembly of Blocks
1 and 2, followed by the eventual integration of these two
blocks. The configuration of the EGT entails a total of 13
constituent components, encompassing eight elements for the
construction of Block 1, four elements for Block 2, and a
cover responsible for linking Blocks 1 and 2. Upon completing
the individual blocks, the secure attachment of both blocks
is achieved by using two screws and an Allen key, thereby
finalizing the EGT assembly process. Furthermore, Figure 1
provides a visual representation of the incorporation of two
supports strategically designed to facilitate the assembly of
each respective block.

2) Actions description: The HA4M dataset consists of 12
distinct actions divided into three phases: the first four actions
are for making Block 1; the following four actions are for
creating Block 2, and the final four actions involve putting the
two blocks together to complete the EGT.

• Phase 1: The initial action entails picking up and placing
the Carrier, denoted as action 1. Subsequently, action 2
involves picking up three Gear Bearings one by one and
arranging them onto the Carrier. It is followed by action
3, which consists of picking up and placing down three
Planet Gears. Concluding the assembly of Block 1 is
action 4, where the Carrier Shaft is picked up and placed.

• Phase 2: Pick up and place the Sun Shaft in its place,
denoted as action 5. After that, pick up and put down
the Sun Gear, action 6. Then, pick up and set down the
Sun Gear Bearing, action 7. To complete Block 2, pick
up and place the Ring Bear, action 8.

• Phase 3: Pick up Block 2 and put it on Block 1. This
is action 9. Then, lift and put down the Cover, which
is action 10. After that, pick up and place two Screws,
which is step 11. Finally, pick up the Allen Key, turn both
screws, put the Allen Key back, and finish assembling the
EGT.

B. Methodological Analysis

We employed four baseline models for recognizing man-
ufacturing assembly actions on the HA4M dataset: ConvL-
STM2D, LSTM with VG16, LRCN, and 3D CNN. Later we
designed two hybrid models using the baseline models. We
combined ConvLSTM2D and 3D CNN for the first hybrid
model and then simplified it to reduce the complexity of the
model and improve performance. In the second hybrid model,
we combined 3D CNN and ConvLSTM2D. The baseline
model and the hybrid model descriptions are as follows:

1) ConvLSTM2D: The model’s architecture comprises four
ConvLSTM2D layers, succeeded by a flatten layer, and ul-
timately a dense layer featuring softmax activation. The
initial ConvLSTM2D layer employs four filters and a (3,
3) kernel size and applies the tanh activation function. A
recurrent dropout parameter of 0.2 is employed, and the
return sequences parameter is set to True, aligning with the
ConvLSTM2D layer’s recurrent nature designed for sequen-
tial data processing. In the subsequent ConvLSTM2D layers,
specifically the second, third, and fourth ones, filter counts of
8, 16, and 32 are employed correspondingly. MaxPooling3D
layers are incorporated after each ConvLSTM2D layer, halving
the output tensor’s dimensions to control the model’s com-
plexity and prevent overfitting. The model integrates TimeDis-
tributed layers, a key element enabling the application of
ConvLSTM2D operations to every frame of the assembly
action. Meanwhile, Dropout layers are thoughtfully integrated
within the ConvLSTM2D layers to stochastically deactivate
certain neurons, thus safeguarding against overfitting the train-
ing and testing dataset. The Dense layer within the model
undertakes the classification of assembly actions into one of
the 12 predefined categories. The softmax activation function
is adopted in conjunction with this dense layer.

2) LSTM with VG16: Initially, the model employs a pre-
trained VGG16 architecture to extract features from assembly
action video frames. This VGG16 model is applied in a
TimeDistributed manner, enabling individual processing of
each frame. Subsequently, the outcome of the VGG16 model
is passed through a Flatten layer, converting the output tensor
into a flattened vector. This vector is subsequently forwarded
to an LSTM layer with 128 neurons. The LSTM layer is
succeeded by a Dropout layer, strategically introduced to avert
potential overfitting of the LSTM layer on the training data.
Following the LSTM stage, the resultant output advances to
a Dense layer boasting a dozen neurons. The output of the
LSTM layer is then passed to a Dense layer with 12 neurons.
The softmax activation function is used in the last Dense layer.

3) LRCN: The model comprises four Conv2D layers with
(3, 3) kernels, padding as same, ReLU activation, and filter
counts: 16, 32, 64, and 64, respectively. Following each
Conv2D layer, a MaxPooling2D layer with (4, 4) pooling and
a Dropout layer dropping 25% of neurons are incorporated. A
Flatten layer follows, transforming the output tensor into a flat
vector. Subsequently, the Flatten layer’s output is directed to
an LSTM layer with 32 neurons. This LSTM output, in turn,
advances to a Dense layer of 12 neurons, employing softmax
activation for the final classification outcomes.

4) 3D CNN: The 3D convolutional neural network (3D
CNN) architecture comprises a pair of Conv3D layers, each
defined by a kernel size of (3, 3, 3) and employing the ReLU
activation function. The initial Conv3D layer is configured
with 32 filters, while the subsequent layer uses 64 filters,
enhancing the network’s feature extraction capacity. After each
Conv3D layer, a singular MaxPooling3D layer, characterized
by a pool size of (2, 2, 2), is incorporated to achieve effective
spatial dimension reduction. The fifth layer in the network



Fig. 2. Hybrid deep learning model combining ConvLSTM2D and 3D CNN

is the Flatten layer, strategically employed to transform the
output tensor into a flattened vector form. For assembly
action classification into one of the predefined 12 categories,
the architecture incorporates two Dense layers featuring 128
and 12 neurons, respectively. The softmax activation func-
tion is employed within the terminal Dense layer, ensuring
the model’s output conforms to a well-structured probability
distribution.

5) ConvLSTM2D+3D CNN: This hybrid model in Figure 2
merges ConvLSTM2D and 3D CNN techniques, intertwining
their strengths. The model combines two ConvLSTM2D lay-
ers, two 3D CNN layers, four MaxPooling3D layers, a Flatten
layer, and two dense layers. The second ConvLSTM2D output
serves as input for the inaugural 3D CNN layer.

The first ConvLSTM2D layer applies four filters with a
(3, 3) kernel, employs tanh activation and recurrent dropout
set 0.2, and return sequences is True. A MaxPooling3D
layer (pool size: 1x2x2) follows, curtailing complexity. In-
corporated Dropout layers within ConvLSTM2D randomly
deactivate neurons. The second ConvLSTM2D layer mirrors
the first, utilizing eight filters. Employing MaxPooling3D
(pool size: 1x2x2) and Dropout (20%) comes next. Subse-
quently, Conv3D layers follow, each with a (3, 3, 3) kernel
and ReLU activation. The first layer incorporates 32 filters;
the next 64 enhance feature extraction. After each Conv3D,
MaxPooling3D (pool size: 2x2x2) ensures compactness. The
fifth layer is the Flatten layer. For assembly action classifica-
tion (12 categories), two Dense layers (128 and 12 neurons)
are implemented. Softmax activation in the terminal Dense
layer guarantees a coherent probability distribution.

6) Simplified ConvLSTM2D+3D CNN: To simplify the
ConvLSTM2D+3D CNN model, we excluded the second
convolutional LSTM layer with max pooling 3D from the
2D convolutional LSTM part and the second convolutional
layer with Maxpooling3D from the 3D CNN segment. We
tried to reduce the model’s complexity and make it more
computationally efficient.

7) 3D CNN+ConvLSTM2D: The hybrid model in Figure 3
combines the performance strengths of 3D CNNs and Con-
vLSTM2Ds. It has two 3D CNN layers, two ConvLSTM2D

layers, four MaxPooling3D layers, a Flatten layer, and two
Dense layers. The output of the second 3D CNN layer is used
as input to the first ConvLSTM2D layer. Within the Conv3D
layers, a (3, 3, 3) kernel and ReLU activation are employed.
The first layer integrates 32 filters, while the subsequent
enhances feature extraction with 64 filters. After each Conv3D
operation, MaxPooling3D (pool size: 2x2x2) is utilized for
compactness. Subsequently, the first ConvLSTM2D layer uses
a (3, 3) kernel, applies tanh activation, and incorporates a
recurrent dropout rate of 0.2, while return sequences is set
to True. A MaxPooling3D layer (pool size: 1x2x2) follows,
managing intricacy. Within ConvLSTM2D, Dropout layers are
strategically placed to deactivate neurons probabilistically. The
second ConvLSTM2D layer employs eight filters, succeeded
by MaxPooling3D (pool size: 1x2x2) and Dropout (20%). The
architecture continues with a Flatten layer. For classifying
assembly actions into 12 categories, two Dense layers (128
and 12 neurons) are employed. The terminal Dense layer’s
softmax activation ensures a coherent and structured probabil-
ity distribution.

IV. TRAINING AND PERFORMANCE ANALYSIS

To train and test the deep learning models described in
section III-B, we used RGB data from the HA4M dataset.
We split the dataset into the following directories, as shown
in Figure 4. We split the entire dataset into three segments
before training the models: training, validation, and test, where
80% of the dataset was used for training and validation.
The remaining 20% of the dataset was used for final testing.
Training parameters for evaluated baseline and hybrid models
are illustrated in Table I.

The test performance is shown in Table II. However, the
3D CNN model achieved the best performance (95.57%)
compared to all baselines, followed by the ConvLSTM2D
model, the LRCN model, and the LSTM with the VG16
model.

The training progress of the hybrid models, namely ConvL-
STM2D + 3D CNN, simplified ConvLSTM2D + 3D CNN and
3D CNN + ConvLSTM2D, is depicted in Figure 5, 6,and 7,



Fig. 3. Hybrid deep learning model combining 3D CNN and ConvLSTM2D

Fig. 4. Dataset directory for training and testing: 12 distinct actions, each
action folder contain 217 videos (sequence of RGB frames) to perform
assembly task by 41 subjects

Fig. 5. Training and validation history of ConvLSTM2D + 3D CNN: (a)
Training loss vs Validation loss, (b) Training accuracy vs Validation accuracy

Fig. 6. Training and validation history of simplified ConvLSTM2D + 3D
CNN: (a) Training loss vs Validation loss, (b) Training accuracy vs Validation
accuracy

Fig. 7. Training and validation history of 3D CNN + ConvLSTM2D: (a)
Training loss vs Validation loss, (b) Training accuracy vs Validation accuracy

TABLE I
MODEL TRAINING PARAMETERS DESCRIPTION

Parameters Value
Input shape (Number of frames, Frame
Height, Frame Width, Number of chan-
nels)

40, 112, 112, 3

Batch size 32
Epochs 50
Optimizer Adam



(a) (b)

(c) (d)

(e) (f)

Fig. 8. Confusion matrix of Assembly Action Recognition for: (a) convLSTM2D (b) LSTM with VG16 (c) LRCN (d) 3D CNN (e) ConvLSTM2D + 3D
CNN (f) ConvLSTM2D + 3D CNN (Simplified)



TABLE II
EVALUATING PERFORMANCE OF VARIOUS APPROACHES FOR ASSEMBLY ACTION RECOGNITION

Model Precision Recall F1 Score Test Accuracy (%)
ConvLSTM2D 0.94738 0.94615 0.94579 94.61
LSTM with VG16 0.84097 0.817731 0.81868 81.73
LRCN 0.86606 0.86538 0.86532 86.53
3D CNN 0.95161 0.95577 0.95594 95.57
ConvLSTM2D + 3D CNN 0.8774 0.87308 0.8736 87.30
ConvLSTM2D + 3D CNN (Simplified) 0.94357 0.94231 0.94208 94.23
3D CNN + ConvLSTM2D 0.99445 0.99423 0.99423 99.42

Fig. 9. Confusion matrix of Assembly Action Recognition for proposed
hybrid model (3D CNN + ConvLSTM2D)

respectively. The initial hybrid model did not perform satisfac-
torily compared to its baseline models. However, significant
improvement was observed in its simplified variant, elevating
the accuracy from 87.30% to 94.23%. The hybrid model em-
ploying 3D CNN and ConvLSTM2D yielded an outstanding
test performance, attaining an accuracy of 99.42%.

V. RESULTS AND DISCUSSION

We evaluated the performance of four baselines and two
hybrid models for recognizing manufacturing assembly actions
on the HA4M dataset. Figure 8 represents the recognition sum-
mary of (a) convLSTM2D (b) LSTM with VG16 (c) LRCN (d)
3D CNN (e) ConvLSTM2D + 3D CNN (f) ConvLSTM2D +
3D CNN (Simplified) and figure 9 summarize the performance
of the proposed hybrid model. The test evaluation is shown
in Table II to measure the precision, recall, F1 score and
test accuracy. Various approaches for action recognition were
evaluated, and their performance metrics were assessed. The
results indicate that 3D CNN + ConvLSTM2D achieved the
highest precision (0.99445) and recall (0.99423), resulting in
an impressive F1 Score of 0.99423. ConvLSTM2D and 3D
CNN also demonstrated strong performance, while LSTM with
VG16 had comparatively lower scores. These metrics offer
valuable insights into the effectiveness of different methods
for recognizing assembly actions, with the F1 Score serving
as a comprehensive measure of overall performance.

The results of this study show that hybrid models are better
suited for recognizing manufacturing assembly actions than
baseline models. The reason to perform better is that hybrid

models can better capture the temporal dependencies between
video frames. The 3D CNN + ConvLSTM2D model performed
the best because it combines the strengths of two different
types of neural networks: 3D CNNs and ConvLSTM2Ds.
3D CNNs are good at extracting spatial features from video
frames, while ConvLSTM2Ds extract temporal relationships
from special features. Combining these two types of neural
networks, the 3D CNN + ConvLSTM2D model can better
capture the full range of features relevant to recognizing
manufacturing assembly actions. The simplified version of the
ConvLSTM2D + 3D CNN model performed well compared
to its first version. It is possible to simplify the hybrid models
without significantly impacting their performance. This is im-
portant because it can make the models more computationally
efficient and easier to train. The results of this study provide
a valuable starting point for future research on manufacturing
assembly action recognition.

VI. CONCLUSION

The growing importance of deep learning algorithms in
human activity recognition has driven progress in intelligent
manufacturing. The integration of artificial intelligence in
manufacturing has gained attention in academic and industrial
circles. Accurately recognizing assembly actions in smart
manufacturing is essential for real-time efficiency assessment
and monitoring. Despite limited research, recognizing hu-
man actions remains crucial to achieving Industry 4.0-aligned
manufacturing goals. This study introduces a hybrid deep-
learning model for monitoring assembly tasks and recognizing
human actions in manufacturing. The model’s performance
is rigorously evaluated on the HA4M dataset, encompassing
diverse actions in constructing an Epicyclic Gear Train. The
research is organized into three domains: evaluating baseline
models, developing a hybrid model combining convLSTM and
3D CNN, and introducing an efficient architecture using both
networks. The outcome is an impressive 99.42% accuracy,
highlighting the hybrid approach’s potential for advancing
understanding in intelligent manufacturing.

One drawback of utilizing RGB data to identify assembly
actions is the substantial computational time required to train
and test deep-learning models. Prospective research avenues
encompass the following directions: (i) Hybrid models could
be applied to alternative relevant datasets like IKEA ASM
Dataset [23] and Assembly101 [24], etc., enabling the eval-
uation and comparison of model performance and efficacy.
(ii) Developing a comprehensive multimodal deep learning



framework could yield a robust assembly action recognition
system capable of accommodating diverse data sources. (iii)
Incorporating attention mechanisms and self-learning AI into
assembly action recognition can potentially enhance future
intelligent manufacturing endeavors. This enhancement could
increase productivity, efficiency, sustainability of manufactur-
ing, and human-robot collaboration in manufacturing.
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