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Abstract

Topic modelling is a popular task of natural language processing (NLP) aimed to

automatically discover the main, shared topics of a given collection of documents. In

addition, topic modelling is able to determine the topic proportions of each individ-

ual document in the collection, which can help with their categorization and organi-

zation. Over the years, topic models have found application and proved useful for a

broad variety of fields including business, finance, healthcare, education, the media

industry, social media, digital agriculture and many others. Like many other appli-

cations of NLP and machine learning, in recent times topic models have substantially

improved their effectiveness thanks to the integration with deep learning—and deep

generative models in particular—which has gained them the collective appellation

of neural topic models. However, many improvements are still possible and needed,

and this thesis has aimed to make significant contributions in this direction. As a

first contribution, we have explored the use of reinforcement learning for refining

the training of the models. To this aim, we have proposed novel training objectives

based on the policy gradient theorem and contemporary gradient estimators such as

REINFORCE with baseline, the Gumbel-Softmax and REBAR. The experimental

results over several topic modelling datasets have invariably shown the improved per-

formance of the models. As a second contribution, we have explored how to integrate

the powerful, contextualized document representations (i.e., Transformer-based em-

beddings) in the training objective of the model. This, too, has led to marked

performance improvements over probing datasets. Eventually, we have extended

the investigation to dynamic topic models, which are models capable of analyzing

time-stamped document collections and extracting sets of topics that adapt over
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time. For these models, we have proposed a modification of the topic distributions

which allows controlling their sparsity, thus adjusting to the characteristics of the

collection to be analyzed. Once more, the experimental results have given evidence

to the effectiveness of the proposed approach.
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Chapter 1

Introduction

Natural Language Processing (NLP) is a major field of Artificial Intelligence that

enables machines to read, understand and derive meaning from human language to

some extent. It is also the backbone of an increasingly natural interaction between

humans and computers, which are nowadays able to generate meaningful and en-

gaging text (in dialogue systems, virtual assistants, chatbots and so forth). Thanks

to the increased availability of data and better algorithms, NLP has fully evolved

from a simple keyword- and rule-based technology (the old-fashioned, “mechanical”

way) to a sophisticated technology that can deal with the meaning and nuances of

human language (the “semantic” way).

One of the most successful applications of NLP to date is known as topic modelling

[1]. A topic model analyses large collections, or corpora, of documents, and auto-

matically discovers the topics of the whole collection and topic proportions of the

individual documents. Such an analysis can prove very useful to gain an overall

understanding of the contents of a given collection, and also to categorise, group

and cluster the individual documents. Topic modelling is a form of unsupervised

(and, predominantly, probabilistic) learning since it uses machine learning and NLP

techniques to discover the topics from large amounts of unannotated text. A topic is

typically represented as a probability distribution over a given vocabulary, assuming

that each specific topic would exhibit characteristic frequencies in the use of words

2



Figure 1.1: An illustration of a probabilistic topic model (from David M. Blei:
Probabilistic topic models. Commun. ACM 55(4): 77-84, 2012). The identified
topics are on the left (note that they do not have explicit names, but can be named
post-hoc) while the parts of the document that come from each topic are highlighted
with the corresponding colour.

(for instance, words such as “stumps”, “bails” and “wickets” in a topic on cricket).

At their turn, documents can be hard-clustered or soft-clustered based on their sim-

ilarity to the topics. In essence, a topic model can take a possibly huge collection

of documents as input, discover all its “template” distributions over the words (i.e.

the topics) and simultaneously cluster all the documents into topics based on var-

ious notions of similarity. Such an analysis has been validated as useful by many

end users in the most diverse fields [2]–[9]. To illustrate the key concepts, Figure

1.1 shows a schematic of topic modelling reproduced from [1]. On the left, one can

see the topics, which are probability distributions over each word in the vocabulary.

The probabilities have been ranked in descending order, and only the top few words,

which characterise each topic, are displayed. Based on such top words, one can also

attempt to label each topic with a name. For instance, the topmost topic could

be called “genetics”, the second could be called “biology” or “life science”, and so

forth. In the middle, the figure displays one of the documents, where the individual

words have been tagged with the topic that they most belong to. Finally, to the

right, the figure displays the histogram with the total counts of the words in each

topic, i.e. the “topic proportions” for the document.
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Topic modelling first came into the picture around 1990 as a text mining and infor-

mation retrieval technique. Initially, an algorithm called Latent Semantic Analysis

(LSA), also equally known as Latent Semantic Indexing (LSI), was presented by

Deerwester et al. [10] in 1990. This algorithm clusters a given corpus of documents

based on the assumption that documents with similar frequencies of words should be

clustered together. As framework, it makes use of a matrix decomposition technique,

the singular value decomposition (SVD). Later, another algorithm called Probabilis-

tic Latent Semantic Indexing/analysis (pLSI/pLSA) was proposed by Hoffmann in

1999 [11]. This algorithm introduced probabilistic assumptions in the decomposi-

tion, and proved to give better results than LSA/LSI in many cases. In turn, a

generalization of pLSA called Latent Dirichlet Allocation (LDA) was introduced by

Blei, Ng and Jordan in 2002 [12]. LDA is a probabilistic modelling technique to

simultaneously measure the probability distribution of the topics for each document

and the probability distributions of the words for each topic under Dirichlet priors

assumptions. A huge number of variants have been proposed over the years such

as the hierarchical latent tree analysis (HLTA) [13] developed by Liu, Zhang and

Chen, where word occurrence using a tree of latent variables is used to discover

meaningful topics and form soft clusters of documents. In more recent years, neu-

ral topic models have come onto the scene by combining deep neural networks and

LDA. Deep generative models such as the Variational Autoencoder (VAE) [14][15]

[16] have proved to be promising for the automatic discovery of the latent structure

in the corpus. Given the tremendous momentum still experienced by deep learning,

the area of neural topic modelling is in continuous evolution.

1.1 Research Objectives and Questions

Topic modelling is a mature technology and topic models have helped both re-

searchers and data scientists to automatically extract useful information from un-

structured textual data. They have been successfully applied in many domains such

as finance, health, social media, agriculture etc. However, one can argue that there

are still some standing limitations in this technology. One, for instance, is that con-
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ventional topic models struggle to usefully model short documents such as personal

messages and social media posts. Due to their general assumptions over the nature

of the documents, conventional models reportedly tend to identify too many topics

per document. Another limitation is that, in principle, updating the models to new

data requires learning them afresh from scratch. This is certainly not suitable for

massive-size corpora that receive continuous updates such as, for instance, collections

of social media posts. A last limitation that we highlight is that most existing topic

models are simply trained with a so-called maximum-likelihood objective. While

this is effective to an extent, it misses on the features provided by other learning

approaches such as reinforcement learning and exploration-exploitation trade-offs.

For these and other reasons, my thesis focuses on topic modelling and aims to

provide significant improvements to existing, state-of-the-art neural topic models.

As corpora, I have leveraged both widespread benchmarks such as the 20 Newsgroups

and Wiki20K datasets, and more recent collections such as the CORD-19 dataset

[17]. In addition, since my doctoral stipend has been provided by the Food Agility

Cooperative Research Centre (FACRC), I have also partially explored the agrifood

domain using the Amazon Fine Food Reviews dataset [18]. As a potential future

application, all the developed models could be used to identify the main topics in

agrifood by periodically browsing social media posts in chosen geographical areas.

In addition, they could be used to provide a timely discovery of “new” trends, either

by comparing topic models at different points in time or by using a dynamic topic

model such as that we propose in Chapter 7. The sudden emergence of new trends in

agrifood is not uncommon: for example, the demand for camel milk spiked suddenly

in the EMEA countries around 2016-2017, and the market value of the “keto” diet

has grown by more than a billion dollars in the last five years. As such, we speculate

that the timely discovery of emerging food topics by topic modelling may be able

to provide the partners of the FACRC and the Australian agrifood industry with a

novel, AI-based competitive edge.
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Research Questions

The research questions that I have addressed in my thesis are:

1. Can we improve the performance of neural topic models by suitably leveraging

the framework of reinforcement learning? (mainly, Chapters 3 and 5)

2. Can we improve the performance of neural topic models by suitably control-

ling aspects of the model such as the sparsity of the topics and the topic

proportions? (mainly, Chapters 4 and 7)

3. Can we improve the performance of neural topic models by better leveraging

existing resources such as pre-trained language models? (mainly, Chapters 6)

The justification for my first research question mainly lies in the great success that

reinforcement learning has experienced as a framework for improving the perfor-

mance of machine learning models, including in NLP. The key strengths of reinforce-

ment learning are its ability to leverage both differentiable and non-differentiable

“rewards” to guide the training of the models, jointly with its use of sampling to

increase the exploration of the parameter space. Despite the richness of the topic

model literature, the field had made limited use of reinforcement learning and my

research has aimed to fill this gap.

The justification for my second research question is that some aspects of the topic

models, such as the higher or lower degree of sparsity of both the shared topic

distributions and the topic proportions of the individual documents, are likely to

have a substantial influence on the models’ final performance. For this reason,

throughout my experiments I have incorporated “temperature” parameters in the

models to control the sparsity trade-off, and assessed their impact on the model’s

performance.

Eventually, my last research question stems from the impact that pre-trained lan-

guage models have had in virtually every other field of NLP. To date, topics models

have mostly leveraged the simple “bag-of-words” representation to represent the

individual documents, while pre-trained language models permit alternative, much

richer, “contextualized” representations that may be able to lead to significant per-
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formance improvements.

Overall, I believe that the experimental results presented in this thesis answer all

these questions in the affirmative.

1.2 Publications

The following are the publications completed during my PhD:

Journals:

• Topic-document inference with the Gumbel-Softmax distribution: Amit Ku-

mar, N. Esmaili, M. Piccardi, IEEE Access (IF 4.640), vol. 9, pp. 1313-1320,

2021, doi: 10.1109/ACCESS.2020.3046607

• Neural Topic Model Training with the REBAR Gradient Estimator: Amit

Kumar, N. Esmaili, M. Piccardi, The ACM Transactions on Asian and Low-

Resource Language Information Processing (TALLIP), vol. 21, no. 5, pp.

1-18, 2022, doi: 10.1145/3517336

• The Contextualized Regressive Topic Model: Amit Kumar, N. Esmaili, M.

Piccardi, to be submitted to Computer Speech and Language, Elsevier (planned

for February 2023)

Conference proceedings:

• A REINFORCEd Variational Autoencoder Topic Model: Amit Kumar, N.

Esmaili, M. Piccardi, Proceedings of the 28th International Conference on

Neural Information Processing (ICONIP 2021), CCIS vol. 1516, pp. 360–369,

doi: 202110.1007/978-3-030-92307-5 42

• A Temperature-Modified Dynamic Embedded Topic Model: Amit Kumar,

N. Esmaili, M. Piccardi, Proceedings of the 20th Australasian Data Mining

Conference (AusDM 2022), CCIS vol. 1741, pp. 15-27, 2022, doi: 10.1007/978-

981-19-8746-5 2

All the authors of the above publications have agreed that I am to be recognized as
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their main author.

1.3 Thesis Structure

CHAPTER 1 provides an introduction to my work and presents my research objec-

tives and questions, my publications and the thesis structure (this section).

CHAPTER 2 starts with a description of the topic modelling task and the key

concepts of a topic model. This is followed by a description of the data and the pre-

processing steps which are required to prepare the input for the model. The chapter

continues with a presentation of the main topic models, with focus on probabilistic

and neural approaches. This includes a review of Latent Semantic Indexing (LSI),

probabilistic Latent Semantic Indexing (pLSI), Latent Dirichlet Allocation (LDA),

and autoencoder-based neural topic models. To facilitate the comprehension, the

chapter also briefly reviews deep generative models such as the Variational Autoen-

coder (VAE) and Generative Adversarial Networks (GANs). Finally, the datasets

and the evaluation metrics used in the experiments are presented.

CHAPTER 3 introduces a neural topic model integrating a variational autoencoder

(VAE) topic model and the REINFORCE gradient estimator. This unit of research

leverages the neural topic model proposed by Srivastava and Sutton [14] which aug-

mented LDA with a variational autoencoder and established state-of-the-art perfor-

mance for the field. However, at the beginning of our research we noted that the

field of topic modelling had made very limited use of the framework of reinforce-

ment learning, which had instead proved beneficial for so many other fields. For

this reason, in this chapter we propose a topic model that uses the policy gradient

theorem and the REINFORCE algorithm [19] to learn an effective policy over the

topics. Extensive experimental results show that the proposed model has been able

to achieve a marked performance improvement.

In a similar vein, CHAPTER 4 integrates the Gumbel-Softmax distribution in a

VAE topic model. In specific, we propose modelling the topic proportions of the

individual documents using the Gumbel-Softmax distribution [20], [21] which is a
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soft alternative to a standard categorical distribution. By using Gumbel-Softmax

samples instead of categorical samples we can 1) further diversify the model during

training and inference, and 2) influence the sparsity of the topic proportions by a

hyperparameter called the pseudo-temperature which allows us to control the ex-

pected number of the topics for each document. In our model, the Gumbel-Softmax

is integrated into a state-of-the-art topic model, the autoencoding variational infer-

ence for topic models (AVITM) of Srivastava and Sutton, outperforming its baseline

in all metrics.

To explore reinforcement learning further, CHAPTER 5 integrates the recently-

proposed REBAR gradient estimator in a VAE topic model. The approach is similar

to that of the previous chapter, but is able to amend an intrinsic limitation of the

Gumbel-Softmax, i.e. the biasedness of the gradient estimator. To remove the

bias, in this chapter we leverage the REBAR gradient estimator [22], which is both

unbiased and low-variance by design. The estimator is integrated in the state-of-

the-art deep variational-autoencoder topic model of Srivastava and Sutton [14], once

again displaying remarkable performance.

The conclusion of this chapter also briefly compares the three approaches proposed

across chapters 3-5.

CHAPTER 6 takes the research in a different direction: exploring the potential of

contextualized representations such as BERT embeddings for topic modelling. To

this aim, the chapter presents a novel, contextualized regressive topic model which

exploits BERT embeddings in the training objective. The experimental results show

that this model has been able to outperform its strong baseline.

Finally, CHAPTER 7 explores extensions of topic modelling to corpora of times-

tamped documents. These extensions are known as dynamic topic models since

they are able to extract sequences of topics from the successive timestamps, giv-

ing an idea of the temporal evolution of the topics in the corpus. In specific, the

chapter presents the Dynamic Embedded Topic Model with Temperature (DETM-

tau), which is an augmentation of the Dynamic Embedded Topic Model of Dieng et

al. [23] with a temperature hyperparameter controlling the sharpness/smoothness
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trade-off of the word distributions. The experimental results show that the proposed

model has been able to achieve a remarkable performance over challenging datasets

of timestamped documents.

For clarity, chapters 3 to 7 have been reproduced from the corresponding publica-

tions with minimal rewording. This means that some of the contents are repeated

across the chapters, but we have preferred to keep them self-contained to permit

reading in any order. The conclusion of chapter 5 also contains an unpublished

table comparing the performance of models across chapters 3 to 5.

The thesis is eventually concluded by conclusions derived from the work conducted

and suggestions of possible future extensions.
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Chapter 2

Literature Review and

Background

In this chapter, I concisely review all the main topics that form the background for

my research. The chapter opens with a high-level framing of machine learning and

then introduces the concept of topic model. After a review of the standard data

preparation steps, it then covers key topic models such as LSI, pLSI and LDA. More

advanced topic models based on variational autoencoders and generative adversarial

networks are described next. Eventually, the chapter concludes with a review of

popular datasets and evaluation metrics.

2.1 Machine Learning

Machine learning is a field of Artificial Intelligence (AI) concerned with automati-

cally learning from and finding patterns in data [24]. Machine learning then uses the

unhidden patterns to make predictions over future data and support decision pro-

cesses, even under uncertainty. In contrast with conventional programming where

data and rules are manually defined, machine learning uses data and algorithms

to automatically infer sets of rules that work well for a chosen task. In the real

world, the data generated from a variety of sources are predominantly unstructured

(i.e., they don’t fit neatly and spontaneously into organized databases), “messy”,
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and hard to manipulate. Yet, such data are said to represent approximately 80

percent of the data available in the world. Therefore, machine learning offers a

natural fit to help identify structure in such data. As a learning approach, it can

be broadly subdivided into three main styles: supervised learning, unsupervised

learning and semi-supervised learning. In supervised learning the goal is to learn a

predictive model based on a given training set of annotated input-output examples.

In unsupervised learning the goal is to identify patterns and trends based solely

on unannotated data. Semi-supervised learning is an intermediate case where the

goal is to learn a model from a limited amount of annotated input-output examples

alongside lots of other unannotated data. All these three styles have found exten-

sive application in research and professional practice. Given that the scope of my

thesis is to derive “topic models” from large collections of documents, unsupervised

learning is its case of reference.

2.2 Topic Models

The motivation for topic modelling comes from the more general notion of text

mining which refers to any process aimed to extract meaningful information from

documents. Typically, text mining techniques are subdivided over the fields of In-

formation Retrieval (IR) and Natural Language Processing (NLP), but it is common

to have applications spanning both fields. In turn, NLP encompasses many, diverse

tasks such as text classification, sentiment analysis, part-of-speech tagging, chunk-

ing, named-entity recognition, relation extraction, and many more all the way up to

high-level tasks such as automated question answering and conversational agents.

Among them, my thesis has focussed on topic modelling.

A topic model is an unsupervised machine learning approach applied heavily in

NLP that parses and analyzes a document collection in order to 1) extract its main,

shared topics and 2) map each individual document to the extracted topics. This

can be useful for two fundamental reasons: to gain a quick, synoptic understanding

of the entire collection; and to categorize and organize the individual documents

according to their topic proportions. In order to provide this information, topic
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models often make simplifying assumptions in the representation of the documents:

for instance, they ignore the order of the documents’ words as it is often irrelevant

to the determination of the topic; likewise, they dismiss the tense of verbs, the

number of nouns (singular vs plural) and so forth. The input to a topic model is

typically a so-called term-document matrix which is a matrix where the rows cor-

respond to the distinct words of a chosen vocabulary and the columns correspond

to the documents in the given collection. Each element of this matrix typically just

stores the count of the occurrences of a particular word in a specific document. For

instance, if word “cat” has row index i and appears three times in the document of

column index j, matrix(i, j) = 3. This representation for the individual documents

is also known as “bag-of-words” (BoW) where “bag” refers to the dismissal of the

word order information. Several variants also exist which mainly leverage weighting

and normalization to emphasize the “informativeness” of specific words. Among

them, the most popular is undoubtedly TF-IDF (term frequency/inverse document

frequency) [25]. Often, the vocabulary used for the matrix is simply the list of the

unique words appearing in the given collection, but it can also be externally pro-

vided. In general, the vocabulary has to abide by some size constraint to limit the

computational complexity, so the least frequent terms may be omitted. Likewise,

at times the most frequent terms are omitted if they appear to be overly generic

and uninformative (unless preprocessing has already removed them). In terms of

models, really many different topic models have been proposed to date and it is

challenging to hint at them all. A first cut could be distinguishing between non-

probabilistic and probabilistic topic models. Non-probabilistic topic models were

the first to appear in the early 1990s and are mainly based on various matrix factor-

ization approaches; champions are Latent Semantic Analysis (LSA) (also known as

Latent Semantic Indexing (LSI) when employed for information retrieval) and Non-

negative Matrix Factorization (NMF). Conversely, probabilistic topic models have

appeared later to provide a more principled and versatile underpinning to the mod-

els. The most famous probabilistic topic models include Probabilistic LSI (pLSI)

and Latent Dirichlet Allocation (LDA); and, in more recent years, all those based

on the so-called deep generative models such as variational autoencoders (VAEs)
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and generative adversarial networks (GANs).

To recap, the typical assumptions made by a large majority of the existing topic

models are:

• A document collection with D documents is provided.

• Given a vocabulary of size V, we pre-compute the bag-of-word (BoW) repre-

sentation of each document.

• We concatenate all such BoWs into a large V x D matrix (the term-document

matrix ).

• V is typically in the 2K-50K range, while D can go from a few thousand to a

million or more.

2.3 Data Preparation

The overall aim of data preparation is to create a representation for the documents

which can enable effective and efficient topic modelling. In this process, we typically

aim to remove all the textual elements that do not convey topical information,

while at the same time amending the noise, errors and missing values that typically

affect real-world documents. As such, data preparation plays a key role in removing

undesirable words, headers, footers, symbols, punctuation, suffixes, stopwords etc,

and eventually convert the document into a suitable representation such as BoW or

TF-IDF. Hereafter, we present a brief review of the most common text preprocessing

and feature extraction techniques employed in the field.

Tokenization is the process of splitting a paragraph or sentence into words, char-

acters or some meaningful text units known as tokens and is the founding step of

virtually any NLP tasks. For example, a sentence such as “Topic modelling is one of
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the most widely known techniques in NLP!” may be tokenized as: “Topic”, “mod-

elling”,” is”, “one”, “of”, “the”, ”most”, ”widely”,“known”, “techniques”, ”in”,

“NLP”, “!”.

Normalization is the process of converting the tokens to some “standardized” form

to reduce the size of the token space while retaining meaning and semantics. This

helps both the effectiveness and the efficiency of the modelling stage. Using linguistic

terminology, normalization can be defined as the process of converting a token to its

base form by removing all its inflectional elements. Stemming and lemmatization

are the two most common components of normalization.

Stemming is a rule-based process for removing inflection from a given token. For

example, words such as playing, played, and plays will all become play after the

stemming process. This can be useful for topic modelling since it can drastically

reduce the size of the vocabulary while aggregating all the counts of words of equiv-

alent topical value. However, stemming has at times to be used carefully to not

introduce undesirable artifacts. As a paradox, if all ending “s” characters were to

be blindly removed, a word such as “his” would turn into “hi” with a completely

different meaning. Fortunately, robust tokenizers exist for English and many other

language families.

Lemmatization is the process of removing the suffix of a given word to reduce it

to its base form, known as lemma. For example, a verbal form such as “went” will

be turned into “go”. This is similar to stemming, but somehow more general. A

lemmatization algorithm typically makes use of word structure, grammar, vocabu-

lary and part-of-speech tagging. This allows it to distinguish it between cases such

as the word ‘working’ used as a verb, which will will be turned into “work”, and

word ‘working’ used as a noun, which will remain unchanged.

Stopword removal consists of removing commonly occurring words such as ”and”,

“is”, “an”, “the”,” are” and so forth which are assumed to convey little or no

meaning in topic modelling. All the popular NLP libraries such as NLTK or spaCy

contain comprehensive built-in lists of stopwords; however, the list of stopwords can

also be customized at will.
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Document representation is the process of representing an individual document

in a vector format so that it can be understandable by the machine. Popular rep-

resentations used in topic models are the bag-of-words (BoW) and TF-IDF. The

BoW representation only stores the number of occurrences of each word in each

document, dismissing the sequential order. The intuition behind a simple represen-

tation such as BoW is that documents containing similar word counts are indeed

similar in content. To discount the impact of the length of the document, the BoW

counts can also be normalized by dividing them by the total number of the words

in the given document, turning them into term frequencies (TFs). An alternative

representation is TF-IDF which is formed by multiplying the TF (term frequency)

by the IDF (inverse document frequency). The IDF calculates the importance of a

word by checking in how many documents it appears. If the word appears in many

documents, it is assumed to be uninformative and is assigned a low IDF. Conversely,

if it appears in only one or a few documents it is assumed to be informative and

is assigned a high IDF. Quantitatively, the IDF is defined as the logarithm of the

ratio between the total number of the documents and the number of the documents

in which the word appears at least once (NB: many variants have been proposed).

2.4 Latent Semantic Analysis/Indexing

Latent Semantic Analysis (LSA) or, interchangeably, Indexing (LSI) [10] is often

cited as the first, actual topic model. This model learns the hidden topics by carrying

out a matrix decomposition on the term-document matrix with the singular value

decomposition (SVD). SVD is a dimensionality reduction technique which factorizes

the input matrix in an approximate way to reduce the number of the columns while

maintaining the similarity structure among the rows (or vice versa, depending on

the input shape). To better understand this factorization, let us introduce the

following notations: K is the number of topics in the whole corpus, V is the size of

the vocabulary, D is the number of documents in the corpus, and W is the term-

document matrix of size V x D. With these notations, the LSI factorization can be

expressed as:
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Figure 2.1: LSA as matrix factorization.

W ≈ βθ (2.1)

where β represents the term-topic matrix of size V x K and θ represents the topic-

document matrix of size K x D. Fig. 2.1 depicts the factorization. With this factor-

ization, each column of matrix β represents one topic as a distinctive set of weights

for each word in the vocabulary, while each column of matrix θ represents one doc-

ument as a distinctive set of weights for each topic. Lastly, each row of matrix β

can be seen as a low-dimensional “embedding” of a vocabulary word.

It is worth noting that the representations obtained from a topic model also permit

measurements of similarity between any two documents, topics and words. To quan-

tify the similarity one can use, for instance, the cosine similarity, where values close

to 0 denote very different vectors while values close to 1 denote high similarity. This

can be useful for comparisons, information retrieval, word and topic embedding, and

several other tasks.

2.5 Probabilistic Latent Semantic Analysis

The earliest topic models (LSA/LSI, NMF etc) made use of classic matrix decom-

position approaches, such as singular value decomposition and non-negative matrix

factorization, to identify the hidden topics. However, these approaches were not able
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to derive proper probability distributions that could, for instance, be composed by

Bayes’ theorem, marginalized or sampled. For this reason, the further development

of this field has seen a dominance of probabilistic approaches. Probabilistic topic

model are based on the following assumptions:

1. Each document is generated from an underlying distribution over the set of

the latent topics.

2. In turn, the words in the document are generated from the topics, which are

distributions over the words in the given vocabulary.

These two assumptions are also called a “generative model”, in the sense that, given

the parameters for all the involved distributions, they could be used to sample new,

synthetic “documents” (i.e., their BoWs) that abide by those distributions. This is

obviously different from what we are interested in real life, that is, given a collection

of actual documents, to infer the optimal parameters for the distributions. However,

it is a very useful formalization of the model. In terms of matrix representations,

the basic idea is to generate the term-document matrix from a probabilistic model

with latent topics such that for any document d and vocabulary word w, p(w|d) is

an element in the matrix. In turn, an observed term-document matrix is the basis

for estimating the model’s probability distributions. A probabilistic version of LSA,

known as probabilistic latent semantic analysis (pLSA, or pLSI), was proposed by

[11] to improve the LSA model. Compared to LSA, pLSA introduces the constraint

that the elements of β and θ must each be >= 0 and <= 1 as for the probabilities

of a categorical distribution, and that each column must add up to 1 (a constraint

also known as the simplex constraint). By noting an index on the topics as z, it is

easy to see that the columns of β can now be noted as p(w|z) (the probability of

the words in the vocabulary for a given topic) while the columns of θ can be noted

as p(z|d) (the probability of the topics for a given document).

Given the notations already introduced, pLSA can be expressed as:

p(w|d) =
K∑
z=1

p(w|z)p(z|d) w = 1 . . . V, d = 1 . . . D (2.2)
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where p(w|d) is the probability of word w in document d, p(w|z) is the probability

of word w in topic z, and p(z|d) is the probability of topic z in document d. The

equality is obtained by applying Bayes’ rule and marginalizing variable z. A prior

over the document index, p(d), can also be added.

2.6 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) [12] is a generalized version of pLSA that adds

prior probabilities (in the form of Dirichlet distributions) to the columns of θ (the

topic proportions per document) and optionally to the columns of β (the topics).

LDA is widely regarded as the reference model in the field of topic modeling. We

briefly describe it hereafter, also introducing the following notations:

• With wd,n we denote the n-th word in the d-th document in the given corpus.

We use the term “word“ to refer to a categorical value in a chosen vocabulary

of size V (NB: the “surface form” of the word, i.e., its string of characters, is

irrelevant).

• With wd we note the set of all the words in document d.

• Each word, wd,n, is assigned to a corresponding topic, zd,n. Also the topics

are categorical variables, and we note the set of their possible values simply

as indexes 1 . . . K.

LDA’s main distributional assumptions are:

• The topic variables for a given document d are independently and identically

distributed (i.i.d.) according to a multinomial distribution of parameter vector

θd, Mult(zd,n|θd).

• In turn, the parameter vector, θd, of the multinomial distribution is distributed

according to a Dirichlet prior, Dir(θd|α), parametrized by a K-dimensional

integer vector, α, shared by the entire corpus.

• The model also includes a set of K multinomial distributions over the vocabu-
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lary, one per topic. Each such distribution is parametrized by a V -dimensional

probability vector, noted as βk, k ∈ [1 . . . K].

• Each word in a given document is distributed according to one of these distri-

butions, indexed by its topic variable, as in wd,n ∼ Mult(wd,n|βzd,n).

Variable zd,n can be marginalized analytically since both wd,n and zd,n are multino-

mially distributed. This allows us to rewrite the probability of wd,n as:

wd,n ∼ Mult(wd,n|βθd) (2.3)

where matrix β = [β1 . . . βK ] is V ×K, and vectors θd and βθd are K × 1. We can

then express the joint probability of word wd,n and its topic vector, θd, as:

p(wd,n, θd|α, β) = Mult(wd,n|βθd)Dir(θd|α), (2.4)

and the probability of all the N words in document d and their topic vector as:

p(wd, θd|α, β) =
N∏

n=1

p(wd,n, θd|α, β) (2.5)

The training goal for this model is to estimate θd, α and β that maximize (2.5) over

the given collection. Typical training algorithms leverage variational approximations

and Markov chain Monte Carlo [12]. Once the model is trained, the topic vectors

for any given new document can be inferred by keeping parameters α and β fixed.

As said in the opening, LDA is widely regarded as the reference model for the field

and as such has also been used as the base to build a large number of extensions

and variants. A non-exhaustive list of these extensions include: class-supervised

versions [26], sparse versions [27]–[31], sequential versions [32], hierarchical versions

[13], [33], [34], and many more.
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2.6.1 Parameter estimation in LDA

Parameter estimation in LDA can be performed with different approaches. Since in

this thesis we limit ourselves to using existing approaches, we only briefly sketch the

main in the following.

Gibbs sampling is a Markov chain Monte Carlo (MCMC) algorithm [35] and is one

of the approaches that can be used to learn the parameters of this model. In a

nutshell, it is a method for generating samples from a complex joint distribution

when variables are actually sampled from conditional distributions. It runs through

every document and assigns each word in the document to one of the K topics.

Such an assignment provides a topic representation for all the documents and for

the word distributions of all the topics. This initial representation is then improved

upon iteratively.

Expectation-maximization (EM) is another approach used for estimating parameters

when the model depends on latent variables. It is used to find the argmax of the

model (i.e. the best parameters in a maximum-likelihood sense) when they cannot be

found analytically in closed form. Calculating a likelihood solution involves taking

a lower bound, then finding its gradient and optimizing upon it. EM consists of two

steps: in the first step (E step) the expectation of the log likelihood is estimated

based on the last parameters known, and in the second step (M step) the parameters

are optimized.

Variational inference [36] is the third approach used to approximate intractable

integrals used for intricate statistical models consisting of given observed data and

unobserved variables (unidentified parameters and latent variables). It mainly serves

two objectives: 1) to provide an approximate solution to the posterior probability

of the unobserved variables for inference purpose, and 2) to come up with a lower

bound for the marginal likelihood of the given data. It serves as an alternative to

MCMC algorithms and, like them, it leverages a fully Bayesian approach.
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2.7 Overview of Deep Generative Models

Generative models are a very useful approach to understand the latent structure

of observations such as images, text and audio. A generative model is a statistical

model consisting of joint probability distribution p(x, y) given observation x and

target variable y. The name “generative” comes from the fact that one can obtain

samples of the observations by sampling this model, and is contrasted to “discrimi-

native” models such as p(y|x) that cannot be used to sample x (because they treat

x only as a conditioning input and do not model its probability). With the popu-

larity of deep learning, a new wave of generative models has been proposed under

the collective name of deep generative models (DGMs), which are basically combina-

tions of deep neural networks and generative models. The most popular DGMs are

the Variational Autoencoders (VAEs) [15] and the Generative Adversarial Networks

(GANs) [37]. These DGMs have proved effective at discovering and learning the

hidden structure and patterns of the data by generating samples from the learned

observation distributions.

In particular, VAEs supersede some of the drawbacks of other deep models in learn-

ing to approximate and maximize the log likelihood of the observations. A VAE is

a generalization of the basic autoencoder that removes some of its limitations by

modelling the probability distribution of the hidden variables; say, z. In turn, a ba-

sic autoencoder consists of two networks: first, the encoder, which takes in input an

observation and produces in output the latent variable z through some constraint

such as dimensionality reduction; second, the decoder which tries to reconstruct

the input as exactly as possible from z. A VAE extends these two networks in a

probabilistic sense. In the following, we describe it in greater detail.

2.8 The Variational Autoencoder

2.8.1 Motivation for generative models

The past decade has seen some remarkable discoveries in the area of machine learn-

ing, and generative and discriminative models have been the subject of much re-
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search in these recent years. While a discriminative model is based on learning the

conditional distribution of the target variables given the observed data, a generative

model is based on learning the joint distribution of the observed and target variables.

Generative models try to simulate data close to the real data and have been attrac-

tive in a variety of ways. First, it is not too difficult to model the observed variables

and all other unobserved variables in a probabilistic manner. Secondly, these mod-

els may be used to explore causal relationships allowing some generalization to new

situations. Thirdly, in semi-supervised settings, generative models can be used to

improve the accuracy of classification by generating a number of “virtual” samples

that can help with the training process (Kingma et al., 2014 [38]). As a natural

evolution, the advent of deep learning has made generative models “deep”, taking

advantage of the increasing model complexity, training data size, and computational

capabilities. In research and also the commercial space, such deep generative mod-

els had initially been proposed and used for processing images, including generating

new synthetic images, compressing images, looking for new image representations

and more so. Later, they have been extended and extensively applied also to text

data, including topic modelling. For this reason, we review two key deep generative

models (VAE and GAN) hereafter.

2.8.2 Autoencoder

An autoencoder (AE) consists of a neural network capable of learning represen-

tations for data compression in an unsupervised manner. Basically, the encoder

compresses the input data by some dimensionality reduction technique, while the

decoder later tries to decompress the compressed data to be as close as possible

to the input. In other words, an autoencoder is basically the combination of two

networks concatenated with each other, with a bottleneck where the input, x, goes

through the encoder to become a latent representation, z, and then an x̂ vector

is reconstructed from z by the decoder. The loss function to minimize is the norm

|x− x̂|, or a more general objective function L = |x− x̂| + regularizer. The rationale

for using an autoencoder in the first place is that the reconstructed vector, x̂, or

even the latent representation, z, can prove more effective than the original input
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in downstream tasks of pattern recognition. As a necessary condition, the input

data are expected to possess some “structure” (i.e. internal correlation), otherwise

it would be challenging to compress them and later reconstruct them to be similar

to the input.

Adding more layers to an autoencoder makes it a deep autoencoder. Many other

variations to the basic autoencoder exist including, amongst others, the sparse au-

toencoder, the denoising autoencoder, the contractive autoencoder, and the vari-

ational autoencoder. A sparse autoencoder is a type of autoencoder often having

more hidden nodes than the input and capable of learning representations that boost

sparsity, allowing only a small number of hidden units to be active at a particular

instant. The loss function is built to penalize a hidden layer if this activates more

than a few units. This leads to a form of regularization where the weights of the

network are regularized rather than the activation functions.

A different variation of the basic autoencoder is the denoising autoencoder. Here

some noisy data are first fed as corrupted input to the encoder, then pass through the

bottleneck, and eventually the decoder tries to obtain back the initial, undistorted

data. A denoising autoencoder is practically used for cleaning noisy data fed as

input. It does this by deriving the features that represent a “reliable structure“ in

the distribution, thus trying to achieve an improved representation of the data.

An autoencoder that is robust to small changes of the input data is called a contrac-

tive autoencoder. This feature is obtained by adding a regularizer to the objective

function, forcing the model to learn a representation that does not change by minor

changes in the input. Here the model is trained to learn a contractive representation

during training, since the regularizer is only applied on the training data.

Eventually, the variational autoencoder is explained in detail in the next subsection.

2.8.3 Variational autoencoder

The motivation for the variational autoencoder [15] stems from the standard au-

toencoder, but in this case the encoder and decoder map probability distributions
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rather than deterministic values. VAEs are probabilistic graphical models where

the parameters of the distributions of the latent variables are obtained using deep

neural networks. This feature makes VAEs belong to the class of the deep generative

models, joining the properties of graphical models and deep learning architectures.

These deep generative models significantly differ from other popular deep networks

such as CNNs, RNNs and so forth which are all, in a sense, standard discriminative

classifiers.

2.8.4 Statistical motivation

A variational autoencoder is a combination of graphical models and neural networks,

and learning to approximate the latent variables is done using variational inference.

The variational autoencoder needs to sample the latent variable, z, conditional to

observation x as its encoder step. This requires modelling probability p(z|x) which

can be expressed as:

p(z|x) = p(z, x)

p(x)
=

p(x|z)p(z)∫
p(x|z)p(z)dz

(2.6)

Here, x denotes the observed variable while z denotes the hidden variable for which

we aim to model the distribution. Unfortunately, computing the p(x) term is chal-

lenging as it is a marginal distribution (
∫
p(x|z)p(z)dz) and solving its integral is

intractable in many cases. However, it can be approximated by Monte Carlo sam-

pling (an unbiased estimate with high variance) or variational inference (a biased

estimate with low variance). To this aim, distribution p(z|x) is replaced by another

distribution, qϕ(z|x), which attempts to generate samples that can well justify the

observations, while at the same time remaining close to its prior, pθ(z), where ϕ

and θ denote the parameters of the encoder and the prior, respectively. Figure 2.2

depicts the main blocks of a VAE.
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Figure 2.2: Neural network mapping from x to latent space z and back to x̂.

2.8.5 Training objective

The training objective of a VAE is to maximize the probability of the observations,

p(x). However, as we have said above, this term is normally intractable. Therefore,

the approach attempts to maximize a lower bound for p(x). For clarity, a lower

bound is a quantity that is guaranteed to always be ≤ than the target quantity.

This means that if we are able to raise the lower bound up to a certain value, the

target quantity will be at least at that same value. In other words, we indirectly

raise the value of the target quantity by directly raising the value of its lower bound.

The lower bound is obtained very simply by first applying Bayes’ theorem:

p(x) = p(x|z)p(z)/p(z|x)

→ log p(x) = log p(x|z) + log p(z)− log p(z|x)
(2.7)

Then we add and subtract the same quantity, q(z|x) (the encoder distribution), to

the right hand side, which leaves the equality unvaried, and regroup the terms:

log p(x) = log p(x|z) + log p(z)− log p(z|x) + log q(z|x)− log q(z|x)

= log p(x|z) + log
q(z|x)
p(z|x)

− log
q(z|x)
p(z)

(2.8)
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Eventually, we compute an expectation of all the terms on the left and right hand

sides using q(z|x) as the probability distribution. This, too, leaves the equality

unvaried. Before we do, we have to note two things: 1) log p(x) does not depend

on z, and is therefore equal to its own expectation; 2) an expectation of the form

−Eq[log
q
p
] is equal to the famous Kullback-Leibler divergence, DKL(q∥p). Therefore,

we obtain the following equality:

log p(x) = Eqϕ(z|x)[log p(x|z)] +DKL(q(z|x)∥p(z|x))−DKL(q(z|x)∥p(z)) (2.9)

Now, any Kullback-Leibler divergence is provenly always ≥ 0. Thus, if we take away

one term from the right hand side, we obtain the following inequality:

log p(x) ≥ Eqϕ(z|x)[log p(x|z)]−DKL(q(z|x)∥p(z)) (2.10)

The term to the right hand side is the lower bound that we were seeking (the

Evidence Lower BOund, or ELBO for short). By making the parameters explicit

in the notation, the training objective of the VAE [36] is to maximize the following

function:

L(φ, ϕ, θ,x) = Eqϕ(z|x)[log pφ(x|z)]−DKL(qϕ(z|x)∥pθ(z)) (2.11)

We can, likewise, turn the ELBO into a cost function to be minimized by simply

changing the sign to the right hand side. The intuition of equation (2.11) can be

given in these terms: the training attempts to 1) find an encoder, qϕ(z|x), which,

at the same time, can provide good samples to the encoder and stay close to its

prior, pθ(z); and 2) find a decoder, pφ(x|z), that can give high probability to the

observations based on the samples received from the encoder. Note that the KL

divergence is a measure of the difference between two distributions (qϕ(z|x) and
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pθ(z) here) and as such is one of the terms of the minimization. In addition, we

remark that the prior is trainable together with the encoder and decoder: training

it simply means finding the best parameters for a probability distribution over z

which is independent of x (i.e. does not have x in input) over the entire training

set.

2.8.6 VAE as a topic model

A VAE can be easily adapted to become a topic model. While we provide full details

in the following chapters 3-7, here we highlight the main assumptions: variable x will

map the observation for a given document (i.e., its BoW) and variable z will map

its topic proportions. The overall model expresses the ability of the VAE to both

1) extract a good set of topics for the entire collection and 2) assign a good vector

of topic proportions to the given document, such that the document can be closely

reconstructed from them. The actual models vary in the distributional assumptions

for the encoder, decoder and prior, and, possibly, a number of other assumptions

and approximations.

2.9 The Generative Adversarial Network

A generative adversarial network (GAN) is a deep generative model consisting of

two modules: a generator and a discriminator, generally implemented by neural

networks. The generator neural network attempts to generate synthetic samples

which are as similar as possible to the distribution of the true examples, and could

be confused with them. The discriminator neural network typically consists of a

binary classifier, trying to discriminate the generated samples from the true samples

as accurately as possible. Further, a better generator and discriminator can be

obtained by training them against each other. The optimization of GANs is a

minimax optimization problem that terminates at a saddle point, minimizing when

updating the generator and maximizing when updating the discriminator. The

ultimate goal is to reach the Nash equilibrium [39]. If this happens, the generator

can be regarded as having captured the actual distribution of the true samples.
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Figure 2.3: A schematic of the GAN with focus on its two neural net-
works: the generator and the discriminator. The source of this fig-
ure is: https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-
generative-models-and-adversarial-training-upc-2016.

Fig. 2.3 shows a schematic of the GAN. Its main elements are as follows:

• x denotes the real samples.

• z is a latent variable derived from the observations that is used to control the

behavior of the generator.

• G is the generator which generates “fake” (i.e., synthetic) samples, noted as

G(z), which are as similar as possible in distribution to the real samples.

• D is the discriminator which receives as input both the generated and the real

samples and tries to correctly classify both. The probability of the real samples

to be true is noted as D(x) (NB: high is desirable), while the probability of

the fake samples to be true is noted as D(G(z)) (NB: low is desirable).

The general idea of the training of a GAN is that the updates of the generator should

make G(z) as close possible to x (in distributional sense), while the updates of the

discriminator should increase its ability to tell apart G(z) from x. More details are

provided in the following subsection.

2.9.1 Training objective

The training objective of a GAN can be expressed as:
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V (D,G) = Ex∼p(x)[logD(x)] + Ez∼q(z)[log(1–D(G(z)))] (2.12)

In Equation 2.12, we have introduced the additional notations of p(x) for the distri-

bution of the real samples and q(z) for the distribution of the latent variables that

control the generator. The first term in the equation is the log-likelihood of the

discriminator’s positive class (D) for the real samples (the higher, the better). The

second term is the log-likelihood of the discriminator’s negative class (1−D) for the

fake samples (the higher, the better from the point of view of the discriminator, while

vice versa from that of the generator). When training the discriminator’s parameters

we attempt to maximize V (D,G) (keeping the generator’s parameters fixed), while

when training the generator’s parameters we attempt to minimize V (D,G) (like-

wise, keeping the discriminator’s parameters fixed). These “conflicting objectives”

result in a minimax game which is expressed by Equation 2.13:

min
G

max
D

V (D,G) (2.13)

By now noting with x all the samples (real and fake), the Nash equilibrium of this

particular game is achieved when:

p(x) = q(x) ∀x

D(x) = 1/2 ∀x
(2.14)

The alternation of the minimization and maximization of Equation 2.12 does not

always bring the model to a satisfactory equilibrium because log(1–D(G(z))) may

rapidly saturate in the early stage of training, making D easily reject G(z) because

of their low quality. The lack of gradient from the discriminator prevents further

improvement of G, stranding the model on a poor operating point.
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2.9.2 GAN as a topic model

GANs, too, can be easily recast as topic models. An example is the GANTM of

[40] where the model behaves as follows: the generator receives in input the topic

proportions of an actual document, z, and attempts to generate its BoW represen-

tation as output; at its turn, the discriminator tries to assign it a low probability.

During training, the generator tries to become better and better at reproducing the

BoW vector, while the discriminator tries to remain able to tell apart the generated

BoWs from the real ones. The main difference with the VAE is that the latter, too,

tries to make the generated samples as similar as possible to the real ones; yet, it

does not attempt to discriminate them.

2.10 Interpreting the Topics

It is important to note that the number of topics in a topic model is fundamentally

arbitrary, in that there is no right or wrong value for it. Choosing a large number of

topics will lead to more granular topics, while choosing a small number will lead to

coarser topics. Some heuristics based on the quality of fit of the model such as the

“elbow method” are in common use. In addition, principled approaches have been

developed to estimate the optimal number of the topics directly from the data (for

instance, the famous Hierarchical Dirichlet Process topic model [41]), but they are

regarded as computationally-heavy and rarely used in practice.

Once the topics have been extracted, it is also difficult to characterise them concisely.

A “topic” is often nothing more than a categorical distribution over the words in

the vocabulary and as such is of large size (2K+). To describe a topic, one typically

uses its 5 or 10 most-frequent words. Clearly, the number of employed words has

an impact on the description, but it is equally arbitrary. However, some techniques

have been develop to “label” the topics in a more principled way (e.g., [42]).

As an example, Table 2.1 displays the top words for two of the topics extracted

with three different topic modelling techniques from a corpus of COVID-19 news.

In the table, each line corresponds to a topic and each topic is denoted by its top
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Table 2.1: Examples of topics extracted from a COVID-19 news dataset (out of 50
total topics).

LDA: itali countri franc europ european spain italian germani measur lockdown
new york citi state cuomo san governor mayor francisco andrew

ProdLDA: rub sampl mer nasal patient symptom cough lung genet molecular
diamond passeng disembark repatri dock princess liner hubei aboard cruis

ProdLDA-GS: symptom cough respiratori patient ill nose hospit infect doctor sneez
democrat biden sander republican trump voter vote senat sen nomin

10 words. By looking at each set of words, one can infer the key thematic of the

respective topic. For LDA, the first topic clearly covers the lockdown measures taken

by various European countries during COVID; the second names the then New York

State Governor Andrew Cuomo and the mayor of San Francisco, but fails to include

a clear “reason” for their mention. It could be argued that it covers politicians

prominent during COVID. For the model called ProdLDA, the first topic refers to

COVID symptoms and testing (word “mer” is the stemmed version of “MERS”);

the second refers to the case of the Diamond Princess cruise ship. For ProdLDA-GS,

the first example clearly refers to COVID symptoms and the risk of infection for the

doctors; the second, to the US presidential primaries which were held during the

observation period. These concise descriptions can help the users understand the

coverage of the collection, and in some cases even help with the further classification

and clustering of the documents.

2.11 Performance Evaluation of Topic Models

Topic modelling is a unsupervised NLP task aiming to produce a useful description

of a selected document collection. As such, its evaluation differs substantially from

that of conventional predictive models such as classifiers and regression models. In

the first place, it is important to evaluate the model’s performance on the training

set itself (“Is the description extracted satisfactory?”) with a range of measures.

It is also possible to perform an evaluation over a held-out test set by keeping

the extracted topics fixed and only inferring the topic proportions for the held-

out documents. This evaluation can still be useful to help prevent overfitting the

training set, given that both the training and test sets are expected to respect the
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same distributional assumptions. In addition, a held-out evaluation can be useful

for “open” collections where new documents may be added at later stages, but still

being expected to come from the same distributions and fit in the trained model.

Otherwise, it would probably be more appropriate to re-run the model’s training to

adapt it to the changed contents.

A number of evaluation measures are available for topic modelling, but hereafter we

limit ourselves to the most widespread: quantitative metrics such as the perplexity

and the topic coherence, and qualitative assessment based on human judgement.

2.11.1 Perplexity

The perplexity is an evaluation metric commonly used for evaluating the perfor-

mance of topic models and also other NLP tasks such as language models. The

perplexity of a model over a given dataset S is defined as:

perplexity(S) = exp(−L(S)/(no. of tokens in S)).

In the general case, L denotes the log-likelihood of the data, but for the variational

methods, it is given by the ELBO in (2.11). The perplexity is a measure of the

“poorness of fit” of the model onto the data; as such, the lower, the better. It can

be measured either on the training set itself or on an independent test set; however,

given that it is closely related to the training objective, it is generally advisable to

measure it over an independent test set.

2.11.2 Topic coherence

Topic coherence aims to quantify the “coherence” of the extracted topics, as a way

to assess the effectiveness of the topic modelling exercise. The coherence can be

described in these terms: the top N words of a topic, which somehow “represent”

it, should co-occur often within the individual documents. If they instead rarely

appear together in the same document, it is questionable that they form a cohesive

topic. As an example, imagine that we have extracted a topic post-labelled as “pets”
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whose top two words are “dogs” and “cats”. If half of the documents only contain the

word “dogs” and the other half only “cats”, we would better have two separate topics

called “dogs” and “cats”, respectively. The topic coherence is typically measured

over the training set itself since this guarantees the presence of all the top words

of all topics. In addition, as a measure it is not directly related to the training

objective and is unlikely to overfit. It is still possible to measure the topic coherence

over a held-out set, but some workarounds need to be introduced.

The topic coherence has had several definitions in the literature, and we have used

the normalized pointwise mutual information (coher-NMPI) [43] and the CV co-

herence (coher-Cv) [44] in their Gensim implementation for evaluation throughout

this thesis. For all the experiments, N has been set to 10. For all the variational

methods, the top words per topic have been selected as those with the highest prob-

abilities in the term-topic matrix. For LSI, they have been selected as those with

the highest weights in the term-topic matrix (which is not normalized to probabil-

ity values). For the GANTM approach, they have been selected as those with the

highest weights in the discriminator’s decoder network (equivalent to the term-topic

matrix of LSI).

2.11.3 Qualitative evaluation using human judgment

Topic modelling is an unsupervised task and as such there is no gold standard list

of topics to compare against for any given corpus. Topic evaluation using human

judgement can be performed as either an observation-based approach, inspecting the

top N words in a topic, or somehow interpretation-based. Some possible elements

to consider in the evaluation are:

• Word intrusion: the topic is presented in terms of its N top words and appears

reasonably coherent overall, but the user has to find words that seem out of

place, i.e., intruders.

• Topic intrusion: The user has to find topics that do not seem coherent/con-

sistent/cohesive.
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Table 2.2 shows how the topics are presented to the user. The topics that seem

incoherent to a human evaluator have been highlighted in red.

Table 2.2: Topics discovered from the 20 Newsgroups dataset (50 topics). Seemingly
incoherent topics are highlighted in red.

LDA:
monitor keyboard event appl mac usa ibm adapt use multi
date paper star robert confer divis surface mean june present
know say dont week white go your think year that

AVITM:
car bike ride honda bmw gear motorcycle rear dod ford
game team baseball player pitcher braves hitter score pitch fan
sea newspaper mountain april ii times angeles york francisco cambridge

AVITM-REINF:
windows microsoft memory setup mode modem nt port video vga
clinton congress economic government bush country administration economy american billion
laboratory nasa shuttle lab space engineering flight institute solar spacecraft

2.12 Datasets Used in this Thesis

Hereafter, I provide a description of the datasets that I have used in my thesis:

• 20 Newsgroups: The 20 Newsgroups dataset [45] is a collection of approx-

imately 18, 747 newsgroup documents, partitioned (nearly) evenly across 20

different newsgroups. The reason for using this dataset is that it has been

used by virtually every research paper on topic modelling to date and it can

thus be regarded as a benchmark. The training set consists of 11, 259 docu-

ments and the test set consists of 7, 488 documents (40% of the whole dataset).

All our experiments have used these splits. In the dataset, column “filenames”

contains the actual text and has been used for our experiments. The average

number of tokens per document in this corpus, after preprocessing and tok-

enization, is approximately 86. The following example gives an idea of the

nature of the documents:

“Hi, I have a problem, I hope some of the ‘gurus’ can help me solve. Back-

ground of the problem: I have a rectangular mesh in the uv domain, i.e the

mesh is a mapping of a 3d Bezier patch into 2d. The area in this domain
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which is inside a trimming loop had to be rendered. The trimming loop is a

set of 2d Bezier curve segments. For the sake of notation: the mesh is made

up of cells. My problem is this: The trimming area has to be split up into

individual smaller cells bounded by the trimming curve segments. If a cell is

wholly inside the area...then it is output as a whole, else it is trivially rejected.

Does anybody know how this can be done, or is there any algo, somewhere for

doing this. Any help would be appreciated. Thanks, Ani.”

• Amazon Fine Food Reviews: The Amazon Fine Food Reviews dataset [18]

consists of food reviews of fine foods from Amazon, with 568, 454 reviews from

a period of 10 years (up to October 2012). The reviews include product and

user information, ratings, and a plain-text review. The main reason for my

using this dataset is that it is relevant to the domain of the Food Agility CRC

that has sponsored my scholarship. In addition, it consists of predominantly

short documents, which has allowed us to experiment with this scenario. The

training set consists of 454, 763 reviews whereas the test set consists of 113, 691

reviews (20% of the total). In our experiments, we have made use of the

plain-text field, but the title field could also be used. The average number of

tokens per document for the plain-text field is approximately 36. The following

example gives an idea of the nature of these documents:

“I have bought several of the Vitality canned dog food products and have

found them all to be of good quality. The product looks more like a stew

than a processed meat and it smells better. My Labrador is finicky and she

appreciates this product better than most.”

• Wiki20K: The Wiki20k dataset [46] consists of approximately 20, 000 English

Wikipedia abstracts. The average number of tokens per document in the cor-

pus, after preprocessing and tokenization, is approximately 49. The following

example gives an idea of the nature of the documents:

“The Mid-Peninsula Highway is a proposed freeway across the Niagara Penin-

sula in the Canadian province of Ontario. Although plans for a highway con-

necting Hamilton to Fort Erie south of the Niagara Escarpment have surfaced
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for decades, it was not until The Niagara Frontier International Gateway Study

was published by the Ministry [. . . ]”

• COVID-19 News: The COVID-19 News dataset (also known as CORD-19)

[17] is a large-scale news dataset consisting of over 1, 500, 000 news articles

related to the pandemic published since the outbreak took place in late 2019.

This dataset is interesting to use as it is a large-scale, recently-collected dataset

on a contemporary topic. However, for computational reasons we have carried

out our experiments using a corpus subset of 528, 838 documents, with the

training set of size 423, 078 and the test set of size 105, 770 (20% of the entire

subset). In the dataset, the field that we have employed is the “text” field.

The average number of tokens per document in this dataset is approximately

240. The following example gives an idea of the nature of these documents:

“On Sunday, British Prime Minister Boris Johnson was hospitalized “for tests”

because of “persistent” COVID-19 symptoms 10 days after he tested positive,

CNN reports. Johnson reportedly went to the unspecified London hospital

after his doctor advised him to do so. A press release from his office called the

move “precautionary.” On March 26, Johnson revealed he had tested positive

and that he had been dealing with symptoms since that date. Britain had gone

into lockdown two days earlier. Since the 26th, Johnson has been quarantined

at his Downing Street residence. He is the first known world leader to have

contracted the virus. Roughly a month ago, right around the time the U.K.

started dealing with an outbreak, Johnson garnered media coverage for saying

he’d shook hands with coronavirus patients during a hospital visit. “I shook

hands with everybody, you will be pleased to know, and I continue to shake

hands,” Johnson said during a press conference that took place on March 3.

His positive test was registered 23 days later. On Saturday, Johnson’s fiancée,

Carrie Symonds, tweeted out that she’d spent a week in bed with coronavirus

symptoms. She had not officially been tested for the disease, but said she felt

“stronger” and “on the mend” following the week of rest.”

• UNGDC: the United Nation General Debate Corpus (UNGDC) [47] consists
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of the texts of the UN General Debate statements from 1970 to 2015 annotated

by country, session and year. We have used this dataset only for experiments

on dynamic topic modelling, splitting it into yearly slices.

• ACL dataset: The ACL dataset [48] includes 10, 874 title and abstract pairs

from the ACL Anthology Network which is a repository of computational

linguistics and natural language processing articles. With this dataset, too,

we have only carried out experiments on dynamic topic modelling, splitting it

into yearly slices from 1973 to 2006 (NB: three years are missing).
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Chapter 3

A REINFORCEd Variational

Autoencoder Topic Model

Topic modeling is an unsupervised natural language processing approach for au-

tomatically extracting the main topics from a large collection of documents, and

simultaneously assigning the individual documents to the extracted topics. While

many algorithms for topic modelling have been proposed in the literature, to date

there has been little use of the popular reinforcement learning framework for this

task. For this reason, in this chapter we leverage two pillars of reinforcement learning

– the policy gradient theorem and the REINFORCE algorithm – to define a novel

loss function for training topic models. In the chapter, the loss function is applied

to a state-of-the-art topic model based on a variational autoencoder. Experimental

results on two social media datasets have shown that the proposed approach has

been able to outperform the original variational autoencoder and other baselines in

terms of evaluation measures such as model perplexity and topic coherence.

3.1 Introduction and Related Work

The continued growth of digital data sources, and especially social media, has led

to an unprecedented rise in the volume of available text documents. This presents

a major challenge for the systematic analysis of their contents, together with their
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management and organisation. While until the recent past these tasks could be

undertaken based on human annotation, nowadays there is a compelling need for

computational tools that can automatically extract topics and patterns from docu-

ment collections and organise them accordingly.

In recent years, topic models have emerged as a powerful, unsupervised tool for

identifying useful structure in such vast amounts of unstructured text data.

In technical terms, a topic model is an algorithm that can efficiently discover the

main topics of a potentially large corpus of documents, and assign the individ-

ual documents to the topics. A “topic” is commonly intended as a characteristic

probability distribution over the words of a vocabulary. For example, a topic like

“computers” can be described by a probability distribution where words such as

“motherboard,” “CPU”, “monitor,” “mouse” and the like have the highest proba-

bilities. In turn, individual documents can be assigned to multiple topics in specific

proportions. Topic models have proved useful for the analysis of a variety of data,

from scientific publications to user posts on social media [1].

Many topic models have been proposed over the years, primarily based on techniques

such as non-negative matrix factorization and variational inference. Latent semantic

indexing (LSI) is generally regarded as the first “proper” topic model [10]. However,

the most widespread topic model is likely the latent Dirichlet allocation (LDA) [12].

LDA’s basic components are: 1) the word distributions of each topic, and 2) the topic

proportions of each document. Since both are modeled as multinomial distributions,

LDA conveniently uses an eponymous Dirichlet distribution as their prior. The

conjugacy between the multinomial and the Dirichlet makes it easy to derive the

posteriors and support inference (more details are provided in the following section).

In addition, many LDA derivatives have been proposed over time, including, among

others, sparse [27], sequential [32], and hierarchical [34] versions.

Recently, neural topic models have started to appear in the literature, joining the

benefits of traditional models such as LDA with those of deep generative models

[14], [16], [40], [49], [50]. Some neural topic models have made use of generative

adversarial networks (GANs) [40], [50] and convolutional neural networks (CNNs)
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[49]. However, the most effective neural topic models seem to be those based on

variational autoencoders (VAEs) [14], [16]. Miao et al. in [16]. have proposed a

VAE based neural topic model using the logistic normal distribution and the stick-

breaking construction to infer the topic proportions. More recently, Srivastava and

Sutton in [14] have proposed a neural topic model integrating LDA with a variational

autoencoder, establishing state-of-the-art performance on all the tested datasets.

Despite the many available models, to date topic modeling has made limited use

of the popular reinforcement learning framework [51]. Reinforcement learning of-

fers the potential to leverage both differentiable and non-differentiable “rewards” to

guide the extraction of the topics. An example of topic modeling with reinforce-

ment learning has been presented in [52], leveraging word-reweighting rewards to

encourage within-topic coherence and between-topic separation. However, we are

not aware of any model that has used reinforcement learning to learn an effective

policy over the topics. For this reason, in this chapter we propose a topic model that

uses the policy gradient theorem and the REINFORCE algorithm [19] to improve

learning of an effective topic model.

Experiments performed over two challenging datasets (20 Newsgroups and Amazon

Fine Food Reviews, both collected from social media) have shown that the proposed

approach has achieved a better performance than all the compared approaches in

terms of topic coherence and model perplexity in a large majority of cases.

3.2 Methodology

Here, we present an overview of variational autoencoders for topic modeling followed

by the proposed approach.

3.2.1 Topic modeling with variational autoencoders

In recent years, deep generative models have gained widespread adoption in the deep

learning community, thanks to their effective integration of features of generative

models, Bayesian inference and deep neural networks. In particular, variational
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autoencoders (VAEs) have proven specially effective at learning representations for

latent variables [15], making them appealing for topic modeling.

A VAE is basically a generalized version of an autoencoder, which is a neural net-

work subdivided into an encoder and a decoder. The encoder takes in input a

multidimensional measurement, and produces a latent representation in output. In

turn, the decoder takes in input the latent representation and produces a “recon-

struction” of the original measurement. In the case of a VAE, the reconstruction is

simply meant as the probability of the measurement in the parametrized decoder.

When VAEs are used for topic modeling, the measurement in input is a document

representation, w (typically, a bag-of-words or a TF-IDF vector), while the latent

variable is its topic vector, θ. In turn, the likelihood of the document representation,

w, can be obtained by marginalizing the topic vector, θ, as in:

p(w|α, β) =
∫
θ

p(w, θ|α, β)dθ (3.1)

where α is the parameter of the prior probability over the topics, β is the matrix of

the word distributions for all the topics, and p(w, θ|α, β) is the joint probability of

the document representation and the topic vector.

The training of a VAE aims to maximize (3.1) over the given document collection.

However, this is typically impossible to perform directly. Therefore, the VAE sets

to maximize a tractable lower bound (the evidence lower bound, or ELBO) [15]:

L(w|α, β) =Eq(θ|w)

[
log p(w|θ, β)

]
−DKL(q(θ|w)∥p(θ|α)) (3.2)

Hereafter, we briefly describe the meaning of the terms in (3.2); further details

can be found in [15]. Term q(θ|w) (the ”encoder”) estimates the probability of

the topic vector for the given document. Term log p(w|θ, β) (the ”decoder”) is the

log-probability of the document given its topic vector and the word distributions;

its expectation over q(θ|w), Eq(θ|w)

[
log p(w|θ, β)

]
, is the “reconstruction term”. Fi-
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nally, term p(θ|α) is a trainable prior over the topic vectors. During training, (3.2)

trades off increasing the reconstruction term against reducing the Kullback-Leibler

divergence (DKL) between the encoder and the prior.

To facilitate the reparametrization of the encoder and the prior, Srivastava and

Sutton in [14] have proposed replacing the usual Dirichlet distribution with a lo-

gistic normal distribution. Samples of a logistic normal distribution, LN (µ,Σ),

can be conveniently obtained by applying the softmax operator to samples of a

Gaussian distribution of equal parameters, N (µ,Σ). In turn, the Gaussian distri-

bution can be reparametrized with the common inverse transform approach. Sri-

vastava and Sutton’s model [14], called AVITM (from autoencoding variational

inference for topic models), models the prior as p(θ|α) = LN (θ|µ(α),Σ(α)), where

µ(α) and Σ(α) are closed-form expressions for the mean and the variance ob-

tained with a Laplace approximation [53]. In turn, the encoder is modeled as

q(θ|w) = LN (θ|µ(w, ϕ1),Σ(w, ϕ2)), where ϕ1 and ϕ2 are the parameters of two

feed-forward neural networks that infer, respectively, the mean and covariance of

the encoder. Finally, the decoder is given by:

p(w|θ, β) = Mult(w | softmax(β)θ) (3.3)

where Mult() denotes the multinomial distribution, and the word distributions are

parametrized as logits rather than probabilities to bypass the simplex constraint

during gradient descent. A second version of the decoder, inspired by products-of-

experts and nicknamed ProdLDA, first computes the product, and then the softmax:

p(w|θ, β) = Mult(w | softmax(βθ)). (3.4)
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3.2.2 The proposed approach: a VAE topic model with RE-

INFORCE

Reinforcement learning has become increasingly popular in recent years thanks to

its ability to train models beyond conventional maximum-likelihood approaches.

The main advantages of reinforcement learning are its ability to minimize non-

differentiable training objectives and its use of sampling, which permits a certain

degree of exploration in the parameter space. In the case of our model, the loss

function in (3.2) is an expectation over θ, the topic vector for the document, and

should therefore not depend on it. However, since the expectation is empirical and

based on typically only one sample per document, some dependence on θ persists,

and we emphasize it by noting the loss as L(θ) in the following. To improve the

estimate of the encoder distribution, q(θ|w), we choose to minimize the predictive

risk :

R = Eq(θ|w)

[
L(θ)

]
=

∫
θ

L(θ)q(θ|w)dθ (3.5)

which is the expectation of the loss function, L(θ), over the probability of variable

θ, the document’s topic vector. In order to minimize (3.5), training will attempt

to assign high probability to values of θ that cause low values of the loss, and the

vice versa, thus promoting an effective encoder. The minimization of (3.5) can be

performed using the policy gradient theorem [19], which ignores the indirect depen-

dence of the loss on the model’s parameters and only differentiates the probability

distribution in its own parameters, ϕ:

∂

∂ϕ
R =

∫
θ

L(θ) ∂

∂ϕ
q(θ|w)dθ

=

∫
θ

L(θ) ∂

∂ϕ
log q(θ|w)q(θ|w)dθ

= Eq(θ|w)

[
L(θ) ∂

∂ϕ
log q(θ|w)

] (3.6)
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As common in practice, we compute the resulting expectation empirically from a

single sample:

∂

∂ϕ
R ≈ L(θ) ∂

∂ϕ
log q(θ|w), θ ∼ q(θ|w) (3.7)

The above estimator of the gradient of the predictive risk is the popular REIN-

FORCE, a fundamental approach of reinforcement learning which has been applied

successfully in many fields [19]. However, the REINFORCE estimator typically suf-

fers from high variance, often affecting the stability of training. This issue can be

mollified by subtracting a baseline, b, from the loss (an approach known as REIN-

FORCE with baseline):

∂

∂ϕ
R ≈

(
L(θ)− b

) ∂

∂ϕ
log q(θ|w), θ ∼ q(θ|w) (3.8)

With this modification, a training iteration will decrease q(θ|w) only if the loss,

L(θ), is greater than b (i.e., a remarkably bad value). Otherwise, it will increase it

or leave it unchanged. In addition, from the gradient estimator we can derive an

expression for a loss that can be automatically differentiated by common autodiff

tools1:

LREINF =
(
L(θ)− b

)
nograd

log q(θ|w) (3.9)

where subscript nograd prevents differentiating the subscripted term.

The VAE loss (3.2) and the REINFORCE loss (3.9) can also be conveniently mixed,

to explore trade-offs between the two. We therefore define the overall loss as:

Loverall = L(w|α, β) + ϵLREINF (3.10)

1http://www.autodiff.org/, https://www.tensorflow.org/guide/autodiff.
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3.3 Experiments and Results

3.3.1 Datasets

The experiments have been carried out over two probing datasets, 20 Newsgroups

(a benchmark for the field) and Amazon Fine Food Reviews. The 20 Newsgroups

dataset comprises 18, 846 documents from news shared on social media, while Ama-

zon Fine Food Reviews consists of 568, 454 user-posted food reviews. For 20 News-

groups, we have used the 1, 995 most-frequent words publicly shared by [14] as

vocabulary and the same pre-processing for direct comparability of the results. For

Amazon Fine Food Reviews, the raw documents have been preprocessed with a com-

bination of tokenization, stopword removal, stemming and lemmatization; special

characters and punctuation have also been removed, and the pre-processed docu-

ments have been converted to NumPy arrays for input into the various topic models.

These datasets are very challenging because of their great variety of topics and their

utmost diversity of authors.

3.3.2 Experiments

As models, we have compared the proposed approach against two strong baselines

(LDA and LSI) and the state-of-the-art topic model of Srivastava and Sutton, in

its two versions AVITM and ProdLDA. For this reason, we present the results for

the corresponding versions of our model, AVITM-REINF and ProdLDA-REINF.

As hyperparameters, for those shared with the model of Srivastava and Sutton we

have used the same values. For the loss balance parameter, ϵ, we have carried

out a preliminary evaluation and chosen ϵ = 10−15 since the scale of LREINF is

much larger. To set the baseline, b, we have first trained the models without the

REINFORCE loss and recorded the value of their loss at convergence, noted as l;

then, we have set b in the range [l, l ± 25, l ± 50], using only the training set for

the selection. As a number of topics to explore, we have used the oft-used values

of 20 and 50. For performance evaluation, we have adopted two popular measures,

the perplexity and the topic coherence. The perplexity measures how poorly the
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Table 3.1: Results on the 20 Newsgroups dataset with 20 topics.

Metrics LDA LSI AVITM ProdLDA AVITM-REINF ProdLDA-REINF

Perplexity 1480.3 — 1140.2 1173.3 1137.8 1167.8

Coher-NPMI -0.033 -0.053 0.094 0.141 0.131 0.153

Coher-Cv 0.309 0.371 0.671 0.779 0.734 0.786

Table 3.2: Results on the 20 Newsgroups dataset with 50 topics.

Metrics LDA LSI AVITM ProdLDA AVITM-REINF ProdLDA-REINF

Perplexity 2389.6 — 1133.1 1159.9 1132.1 1162.8

Coher-NPMI -2.346 -0.062 0.117 0.111 0.115 0.141

Coher-Cv -0.053 0.294 0.704 0.751 0.699 0.763

Table 3.3: Results on the Amazon Fine Food Reviews dataset with 20 topics.

Metrics LDA LSI AVITM ProdLDA AVITM-REINF ProdLDA-REINF

Perplexity 1480.3 — 1000.9 1099.7 1137.8 1091.4

Coher-NPMI 0.047 0.004 0.144 0.066 0.131 0.105

Coher-Cv 0.493 0.395 0.707 0.651 0.734 0.676

Table 3.4: Results on the Amazon Fine Food Reviews dataset with 50 topics.

Metrics LDA LSI AVITM ProdLDA AVITM-REINF ProdLDA-REINF

Perplexity 2697.3 — 1008.6 1012.5 1008.3 1009.0

Coher-NPMI 0.033 -0.008 0.144 -0.048 0.155 0.036

Coher-Cv 0.470 0.359 0.682 0.430 0.699 0.588

model fits a given set of data (NB: lower values are better); to assess the models’

ability to generalize, we have measured it over the test sets. The topic coherence

measures the internal “coherence” of the extracted topics (NB: higher values are

better). Since coherence can be quantified in different ways, we report both the

normalized pointwise mutual information (coher-NMPI) [43] and the CV coherence

(coher-Cv) [44]. Unlike the perplexity, the coherence is computed over the training

set itself to ensure that all of the topics’ M most-frequent words are present in the

set. In all the experiments, M has been set to 10. Given the significantly different

nature of the perplexity and the topic coherence, some disagreement in their ranking

of the models is to be expected.

3.3.3 Results

Tables 3.1 and 3.2 show the experimental results for the 20 Newsgroups dataset for 20

and 50 topics, respectively. Due to the different architecture and amount of degrees

of freedom, the perplexity values for LDA cannot be directly compared to those of

47



0.65

0.66

0.67

0.68

0.69

0.7

0.71

580 605 630 655 680

Co
he

r-C
V

b

Coher-CV over the test set

ProdLDA-REINF ProdLDA

Figure 3.1: Comparison of coher-CV on the test data for ProdLDA and ProdLDA-
REINF (20 Newsgroups, 50 topics) by varying the baseline, b.

the autoencoder models; for this reason, we display them in italics. At its turn, LSI is

not a probabilistic model and the perplexity values are not defined. When compared

to the variational autoencoder approaches in terms of coherence, both LDA and

LSI have reported significantly worse results and cannot be considered competitive.

AVITM has achieved better perplexity values than ProdLDA, but ProdLDA has

achieved higher coherence values in most cases, so there is no clear winner between

them. However, both our proposed variants have been able to gain improvements

over AVITM and ProdLDA, respectively: compared to AVITM, AVITM-REINF has

achieved better perplexity and coherence in the case of 20 topics, and coherence in

the case of 50 topics; compared to ProdLDA, ProdLDA-REINF has achieved better

perplexity as well as coherence in the case of 20 topics, and coherence in the case of

50 topics. Overall, AVITM-REINF has achieved the best perplexity of all compared

models, and ProdLDA-REINF the best coherence.

Tables 3.3 and 3.4 show the results for the Amazon Fine Food Reviews dataset with

20 and 50 topics, respectively. Again, LDA and LSI have reported significantly lower

coherence values than all the autoencoder models and cannot be regarded as compet-

itive. For this dataset, AVITM has neatly outperformed ProdLDA in both perplexity

and coherence. At its turn, our proposed AVITM-REINF has outperformed AVITM

in 4 out of 6 measures across 20 and 50 topics, and should be deemed as the best

performing model for this dataset. In addition, ProdLDA-REINF has improved in

all measures compared to the original ProdLDA. Overall, we can conclude that our

REINFORCE-based models have led to marked improvements over both datasets.
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As further analysis, we have explored the sensitivity of the topic coherence to the

value of the baseline, b, using the test set to simultaneously probe generalization.

To this aim, Figure 3.1 plots the values of the CV coherence for ProdLDA-REINF

(20 Newsgroups, 50 topics) over the range of the baseline values. The coherence

value for ProdLDA is also displayed for comparison. In this experiment, the loss at

convergence without REINFORCE has been l = 630, and the best coherence value

over the training set has been obtained for b = l − 25 = 605. Figure 3.1 shows that

this has also been the best value for the test set, showing excellent generalization.

In addition, ProdLDA-REINF has achieved better coherence values than ProdLDA

for all values of the baseline.

Finally, for a qualitative analysis of the results, Table 3.5 displays a few examples of

topics extracted from the 20 Newsgroups dataset. The first topic extracted by LDA

is clearly meaningful, but the other two (highlighted in red) seem incoherent. The

third topic extracted by AVITM also seems, at least, uninformative. Conversely, all

the examples of topics extracted by AVITM-REINF seem consistent and properly

descriptive.

Table 3.5: Topics discovered from the 20 Newsgroups dataset (50 topics). Seemingly
incoherent topics are highlighted in red.

LDA:
monitor keyboard event appl mac usa ibm adapt use multi
date paper star robert confer divis surface mean june present
know say dont week white go your think year that

AVITM:
car bike ride honda bmw gear motorcycle rear dod ford
game team baseball player pitcher braves hitter score pitch fan
sea newspaper mountain april ii times angeles york francisco cambridge

AVITM-REINF:
windows microsoft memory setup mode modem nt port video vga
clinton congress economic government bush country administration economy american billion
laboratory nasa shuttle lab space engineering flight institute solar spacecraft

3.4 Conclusion

This chapter has presented a novel training loss function for VAE topic models based

on the reinforcement learning framework. In the proposed approach, we leverage the
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predictive risk and the REINFORCE algorithm to learn an effective policy over the

topic vectors. The experimental results over two social media datasets have shown

that the proposed approach has been able to attain a strong performance as mea-

sured by perplexity and topic coherence, with improvements of up to 2.4 percentage

points in NPMI coherence and 2.7 percentage points in CV coherence compared to

the runner-up. In addition, the model has given evidence of good generalization

over new documents. In the near future, we plan to explore other architectures for

the implementation of the model’s neural networks, possibly including transformers

and document embeddings.
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Chapter 4

Topic-Document Inference with

the Gumbel-Softmax Distribution

Topic modeling is an important application of natural language processing (NLP)

that can automatically identify the set of main topics of a given, typically large,

collection of documents. In addition to identifying the main topics in the given

collection, topic modeling infers which combination of topics is addressed by each

individual document (the so-called topic-document inference), which can be useful

for their classification and organization. However, the distributional assumptions

for this inference are typically restricted to the Dirichlet family which can limit the

performance of the model. For this reason, in this chapter we propose modeling

the topic-document inference with the Gumbel-Softmax distribution, a distribution

recently introduced to expand differentiability in deep networks. To set up a per-

forming system, the proposed approach integrates Gumbel-Softmax topic-document

inference in a state-of-the-art topic model based on a deep variational autoencoder.

Experimental results over two probing datasets show that the proposed approach has

been able to outperform the original deep variational autoencoder and other popular

topic models in terms of test-set perplexity and two topic coherence measures.
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4.1 Introduction

Unstructured textual data are growing by the day in the form of news, press releases,

blogs, social media posts and others. The possibility for humans to annotate such

documents is limited since manual annotation is labor-intensive and time-consuming.

Therefore, there is an urgent and widespread need for automated, unsupervised anal-

ysis tools that can provide an understanding of such data and work at scale [54].

Topic modeling is an unsupervised, probabilistic approach of natural language pro-

cessing (NLP) that is capable of discovering the main topics of large amounts of

unstructured text,and presenting them to a user in succinct and comprehensible

forms. It has established a strong reputation as a useful text analytics technique

and has found application in fields ranging from business and finance to healthcare

and scientific corpora analysis [2]–[6], [9], [55]. In topic modeling, a topic is typi-

cally represented by the set of its most-frequent words. For instance, a topic such

as “cricket” may be represented by words such as “innings”, “stump”, “wicket” and

all the other typical terminology of cricket commentaries. As a more sobering exam-

ple, a topic such as “pandemic” may be represented by words such as “infection”,

“intensive care”, “death”, “recovery” and so forth. In more general terms, a topic

can be seen as a probability distribution over the words of an available vocabulary,

where the words that are distinctive for that topic are characterized by the highest

probabilities.

Topic modeling is able to parse a whole corpus of documents and identify the most

common topics “shared” by these documents. Simultaneously, it is able to determine

what proportion of topics is addressed by each individual document. The existing

approaches for topic modeling are predominantly based on non-negative matrix fac-

torization and probabilistic inference, and the most famous is undoubtedly the latent

Dirichlet allocation (LDA) of Blei, Ng and Jordan [12]. In this approach and many

of its derivatives, the topic proportions of the individual documents are modeled

using the Dirichlet distribution which is a convenient conjugate prior for the topic

frequencies. However, limiting the models to this assumption may be restrictive,

since other distributions over the topic proportions may be able to achieve better
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performance figures for the derived topic models.

For this reason, in this chapter we propose modeling the topic proportions of the

individual documents using the Gumbel-Softmax distribution [20], [21]. This dis-

tribution has been recently introduced to expand the applicability of backpropa-

gation in deep learning models with latent categorical variables, where it is used

to replace non-differentiable, categorical samples with “soft” samples from a differ-

entiable transformation. The main expected advantage of using this distribution

for topic modeling is that it can effectively control the sparsity of its samples by a

pseudo-temperature hyperparameter, and can thus be able to control the expected

number of topics of each individual document during the so-called topic-document

inference. To set up a performing system, we have integrated this distribution into

the sampling step of a state-of-the-art topic model, the autoencoding variational

inference for topic models (AVITM) of Srivastava and Sutton [14].

Experiments have been carried out on two challenging text datasets: the popular

20 Newsgroups dataset [45], consisting of 18,846 user-posted documents from news-

groups, and the recent, large-scale COVID-19 news dataset1, aggregated by AYLIEN

using their news API on more than 400 different sources. The experimental results

show that the proposed topic-document inference approach has been able to achieve

higher topic coherence and lower perplexity than all the other compared approaches.

The rest of this chapter is organized as follows: Section 4.2 presents the related work.

Section 4.3 presents the proposed model, preceding it with a concise review of LDA

and a state-of-the-art variational topic model. Section 4.4 describes the experiments,

and presents and discusses the results. Section 4.5 concludes the chapter.

4.2 Related Work

Topic modeling is unarguably one of the most researched areas of natural language

processing. Its aim is to find concise descriptors for a typically-large (> 10, 000

documents) given corpus and for its individual documents. This is generally achieved

1https://aylien.com/resources/datasets/coronavirus-dataset
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by introducing a set of latent variables, known as the “topics”, which are shared

across the corpus and describe it, while simultaneously determining the proportions

of the topics in each document. The input to topic modeling is typically a simplified

representation of the documents in the corpus known as the term-document matrix.

Topic modeling has found application in a large number of areas including news [9],

social media [6], [8] finance [5], [6], healthcare [2]–[4] and many others.

Among the many techniques proposed over the years, latent semantic indexing (LSI,

also known as latent semantic analysis, or LSA) is credited as the first explicit topic

model [10]. It consists of the factorization of the term-document matrix in a low-rank

latent space by means of a singular value decomposition.

To more clearly explain this factorization, which will also be useful for the remainder

of the chapter, let us introduce the following notations: V is the size of the given

vocabulary, D is the number of documents in the given corpus, K is the number of

topics chosen to describe the corpus, and W is the term-document matrix, of V ×D

size. The LSI factorization can then be expressed as:

W ≈ βθ (4.1)

where β is a V × K matrix usually referred to as the term-topic matrix, and θ is

a K ×D matrix referred to as the topic-document matrix. The values for β and θ

can be obtained by applying singular value decomposition to W , and incorporating

the resulting eigenvalues into either of the other two factors. This ensures that βθ is

the best possible approximation of W in a least-square sense. For this factorization

to be of any practical utility, the chosen number of topics, K, must satisfy K ≪ D.

However, since K is typically chosen in a range such as [20, 100] and the corpora are

large, this condition is always easily met. Among various uses, the LSI factorization

can be used to compare, cluster and classify documents (e.g. [56]); to extract the

top words of each topic; and even to compare and cluster words.

Probabilistic latent semantic analysis (pLSA, or, analogously, pLSI) [11] has overlaid

a probabilistic interpretation to the LSI factorization: the first factor, the term-topic
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matrix, is interpreted as the probability of a word, w, in a given topic, t, while the

second factor, the topic-document matrix, is interpreted as the probability of a

topic, t, in a given document, d. Both probabilities are modeled as multinomial

distributions. The computation of the factorization is similar to that of LSI, but the

elements of the factor matrices must all belong to interval [0, 1], and the relevant

columns and rows must abide by a sum-to-one constraint (the simplex domain).

The multinomial distributions of the term-topic matrix, p(w|t), are concisely called

the “topics”, as they express how probable it is that any of the words in the given

vocabulary will appear in text from a given topic. The multinomial distributions

in the topic-document matrix, p(t|d), are called the “topic vectors” and express the

mixture of topics covered by a given document. A highly popular generalization of

pLSA called latent Dirichlet allocation (LDA) adds prior probabilities to both the

topics and the topic vectors in the form of Dirichlet distributions [12]. Since the

Dirichlet distribution is conjugate to the multinomial, the posterior probabilities

can be computed analytically, allowing for efficient inference algorithms. We review

LDA in detail in Section 4.3.1. LDA has also spawned a large number of extensions

and variants, including hierarchical versions[13], [33], sequential versions [32], class-

supervised versions [26], sparse versions [28]–[30], and many others.

In recent years, neural topic models have come into the spotlight by combining the

advantages of deep neural networks and LDA. Deep models based on variational

autoencoders (VAEs) such as [14], [16], [38], [57] have proved effective at automatic

discovery of the latent topics in the corpus, and deep models based on CNNs have

been used for topic-based document classification and non-negative matrix factor-

ization [49], [58]. Recently, Srivastava and Sutton [14] have proposed a topic model

that joins the properties of LDA with the strong representational power of a deep

variational autoencoder. This approach has proved to clearly outperform LDA both

quantitatively and qualitatively, and can be regarded as one of the current state-of

the-art approaches. In addition, various deep topic models have been proposed based

on generative adversarial networks (GANs). Among them, [40] uses a denoising au-

toencoder to implement the discriminator network, under the expectation that the

discriminator should achieve a small reconstruction error on the documents in the
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corpus, while a large reconstruction error on the synthetic documents generated by

the generator network. The main aim of this GAN-based topic model is to provide

effective topic vectors for document classification [40]. However, it can also be used

for extracting the top words of the topics, and vector representations for the words.

4.3 Methodology

In this section, we present the proposed methodology, preceded by an overview of

latent Dirichlet allocation and variational autoencoders for topic modeling.

4.3.1 Latent Dirichlet allocation

Latent Dirichlet allocation (LDA), proposed by Blei, Ng and Jordan in 2003 [12], is

probably the reference model for the field of topic modeling. To briefly describe it

hereafter, let us introduce the following notations:

• wd,n is the n-th word in the d-th document in the corpus. By “word” we mean

a categorical value in the corpus’ vocabulary (essentially, an index). The size of

the vocabulary is noted as V . Wherever unambiguous, we omit the document

index for brevity.

• wd is the set of all the words in document d (again, where possible, we omit

the document index).

• Each word, wd,n, is assigned to a corresponding topic, zd,n. A topic, too, is

a categorical variable taking values in a set of 1 . . . K possible values (NB:

the topics are “nameless”, but can be later assigned meaningful names with a

post-analysis). This correspondence means that, for example, a word such as

“bat” can be assigned to topic “mammals” in one instance and “cricket” in

another.

The model makes the following distributional assumptions:
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• The topic variables for a given document are independently and identically dis-

tributed according to a multinomial distribution, Mult(zd,n|θd), parametrized

by a K-dimensional probability vector, θd.

• At its turn, vector θd is distributed according to a Dirichlet distribution,

Dir(θd|α), parametrized by a K-dimensional integer vector, α, shared by the

whole corpus. (The conjugacy between the multinomial and Dirichlet eases

the computation of the required posteriors.)

• The words in the corpus are distributed according to a set of K multino-

mial distributions, parametrized by K corresponding V -dimensional probabil-

ity vectors, β = β1, . . . βK . Each word in a given document is independently

distributed according to one of these distributions, indexed by its topic vari-

able, as in Mult(wd,n|βzd,n).

All these assumptions can be concisely noted in a “generative” model, that is a

model that allows sampling an entire synthetic corpus from these distributions:

∀d = 1 . . . D :

θd ∼ Dir(θ|α)

∀n = 1 . . . N :

zn ∼ Mult(zn|θd)

wn ∼ Mult(wn|βzn)

(4.2)

which also corresponds to the following factorization:

p(wn, zn, θd|α, β)

= Mult(wn|βzn)Mult(zn|θd)Dir(θd|α)
(4.3)

Since both wn and zn are multinomially distributed, it is also possible to dispose
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of zn altogether by marginalizing it analytically. In this case, the generative model

simplifies to:

∀d = 1 . . . D :

θd ∼ Dir(θ|α)

∀n = 1 . . . N :

wn ∼ Mult(wn|βθd)

(4.4)

where with βθd we have noted the product between V × K matrix β and K × 1

vector θd. The corresponding factorized probability is:

p(wn, θd|α, β) = Mult(wn|βθd)Dir(θd|α) (4.5)

and the probability for all the words in a document can be simply expressed as:

p(w, θd|α, β) =
N∏

n=1

p(wn, θd|α, β) (4.6)

The inference problem for this model consists of maximizing (4.6) by estimating

θd, β and α over a given training corpus of documents. In essence, answering these

questions: what is the distribution of words in each of these topics? (β = β1, . . . βK);

what are the proportions of the topics in each of these documents? (θ = θ1, . . . θD);

and what are the proportions of the topics across the whole corpus? (α). For

new/test documents given after training is complete, β and α are kept unchanged

and only their topic vectors are inferred.

4.3.2 Variational autoencoders for topic modeling

Since the ascendance of deep learning, a fresh wave of models best known as deep

generative models (DGM) have come into existence, fundamentally a blend of deep

neural nets, generative models and Bayesian inference. Among them, variational
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a qd zd,n wd,n bk

Figure 4.1: The graphical model of LDA. The meaning of the notations is as follows:
α denotes the parameter vector for the Dirichlet prior over the topic vectors (i.e. the
topic proportions per document), unique for the corpus. θd is the topic vector of the
d-th document, sampled from Dir(θd|α). For each document, N topics, zd,n, are then
sampled from Mult(zd,n|θd). Finally, the corresponding N words, wd,n are sampled
from a multinomial distribution over the vocabulary, Mult(wd,n|βzd,n); its parameter
vector, βzd,n , is chosen from a set of K parameter vectors, β = {β1, . . . βk . . . βK},
based on the value of topic zd,n.

autoencoders (VAEs) have proved very effective for models that contain latent vari-

ables (in our case, the topics) [15]. VAEs are able to efficiently maximize the log-

likelihood of the observed data even when this function is not directly optimizable,

making them widely applicable in all fields of big data including, among others,

signal processing, computer vision, natural language processing and transactional

data analytics.

A VAE is essentially a generalization of a traditional autoencoder, which is a neural

network consisting of two sub-networks: an encoder and a decoder. The encoder

receives a multidimensional measurement in input, and outputs a latent represen-

tation for it; the decoder receives the latent representation in input, and outputs a

“reconstruction” of the original measurement. Through this process, the model is

able to generate latent representations and reconstructed measurements which are

often more useful than the original measurements in downstream tasks of pattern

recognition (e.g. [59]).
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A variational autoencoder is a probabilistic extension of an autoencoder where both

the measurement and the latent representation are treated as random variables, and

therefore the encoder and the decoder are treated as probability distributions. The

“reconstruction” of the original measurement is meant in a probabilistic manner in

terms of log-likelihood maximization. In the case of our topic model, the aim of the

VAE is to maximize the log-likelihood of the words of each document:

p(w|α, β) =
∫
θ

p(w, θ|α, β)dθ (4.7)

However, the above objective is too complex to be maximized directly, and therefore

the VAE establishes an approachable lower bound for the log-likelihood known as

the Evidence Lower Bound, or ELBO, and sets to maximize it [15]. In the case of

the topic model, the ELBO has the following form:

L(w|α, β) =Eq(θ|w)

[
log p(w|θ, β)

]
−DKL(q(θ|w)∥p(θ|α))

(4.8)

The terms in (4.8) have the following meaning: 1) q(θ|w) is an estimator for the

probability of the topic proportions for a given document (represented by its words,

w) and is known as the ”encoder”; 2) log p(w|θ, β) is the log-probability of the

given document given its topic proportions and is known as the ”decoder”; 3)

Eq(θ|w)

[
log p(w|θ, β)

]
is the expectation of this quantity over q(θ|w) and is known

as the ”reconstruction term”; 4) p(θ|α) is a learnable prior probability for the topic

proportions that is shared by the entire corpus. The rationale for (4.8) is twofold:

first, it is a proven lower bound for (4.7), that is the target of the maximization; sec-

ond, it consists of a trade-off between two terms that can be interpreted intuitively:

the model is rewarded for either improving the reconstruction term, or for keeping

the encoder close to the prior.

Srivastava and Sutton in [14] have proposed a VAE for topic modeling (AVITM) that
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leverages a Laplace approximation of the usual Dirichlet prior to permit its integra-

tion into the autoencoder. In AVITM, both the prior and the encoder are modeled

as logistic normal distributions: the prior is modeled as p(θ|α) = LN (θ|µ(α),Σ(α)),

and the encoder is modeled as q(θ|w) = LN (θ|fµ(ϕ,w), fΣ(ϕ,w)), where ϕ are the

internal parameters of two neural networks that predict the mean and covariance

of the encoder, respectively. The expectation in (4.8) is computed by sampling

q(θ|w), which in turn is performed through reparametrization. The decoder takes

the following form:

p(w|θ, β) = Mult(w|σ(β)θ) (4.9)

where σ() is the softmax operator and the word distributions are parametrized in

the softmax basis rather than the simplex to remove unnecessary constraints during

backpropagation. The authors have also proposed a second, heuristic version of the

decoder, called ProdLDA, that performs the product before the softmax:

p(w|θ, β) = Mult(w|σ(βθ)) (4.10)

As shown in [14], both AVITM and ProdLDA have outperformed a number of com-

pared topic model approaches by large margins, and can be regarded as state-of-

the-art approaches for this task.

4.3.3 The proposed approach: VAE topic models with the

Gumbel-Softmax

The Gumbel-Softmax distribution, co-credited to [20] and [21], has channeled much

attention from the deep learning community in recent years. This distribution

models “soft” categorical variables (categorical variables that are not restricted

to have one-hot values) and has been introduced to circumvent issues related to

backpropagation in models with latent categorical variables. Many deep learning

models (prominently, variational autoencoders and generative adversarial networks,
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or GANs) need to sample from distributions, and sampling is a non-differentiable

operation that breaks the backpropagation chain. The Gumbel-Softmax distribu-

tion is an alternative to the multinomial distribution that allows sampling of quasi-

categorical variables and is differentiable via reparametrization. Given a multino-

mial distribution, Mult(z|θ), withK possible values, samples from the corresponding

Gumbel-Softmax distribution, GS(z̃|θ, τ), can be obtained as:

z̃ = σ
(
[log θ − log(− log u)]/τ

)
u ∼ U(0, 1)K

(4.11)

where u is a vector of K random variables each sampled from the uniform distri-

bution over (0, 1), and τ is a hyperparameter (referred to as “temperature”) that

controls the sparsity of z̃ (the lower τ , the more the samples resembles one-hot

values; the larger, the more the samples become uniform). Note that the sampled

distribution is fixed and does not need gradient updates, and the functions in (4.11)

are all differentiable.

To take advantage of its properties, we propose sampling the topic vector from

a Gumbel-Softmax distribution. The modified decoder (nicknamed AVITM-GS )

becomes:

p(w|θ, β) = Mult(w|σ(β) z̃), z̃ ∼ GS(θ, τ) (4.12)

and in the case of ProdLDA (ProdLDA-GS ) it becomes:

p(w|θ, β) = Mult(w|σ(βz̃), z̃ ∼ GS(θ, τ) (4.13)

Please note that the number of trainable parameters is the same as in the original

decoders, with the exception of the scalar hyperparameter τ that we can use to

control the sparsity of the inferred topic vectors.
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4.4 Experiments and Results

4.4.1 Datasets

As datasets for the experiments, we have used the popular 20 Newsgroups dataset

(a de-facto benchmark for the field) and a 500K-document subset of AYLIEN’s re-

cently released COVID-19 news dataset. 20 Newsgroups consists of 18,846 news

documents posted by users, split over 11,314 as training set and 7,532 as test set.

The average length of these documents is 311 words. To be consistent with the

experiments carried out in [14], we have used the preprocessed version publicly re-

leased by the authors2 which uses a vocabulary of 1,995 words. The COVID-19 news

dataset is a dataset aggregated by AYLIEN using their News Intelligence Platform

from November 2019 to July 2020 from approximately 440 different sources. For our

experiments, we have used the first 500K documents (over 7 GB of uncompressed

text) split over 400K as training set and 100K as test set since this size could still be

managed by a PC with 16 GB of RAM. The documents were preprocessed with to-

kenization, stop-word elimination, stemming and lemmatization, and encoded with

a vocabulary formed by the most-frequent 5,000 unique words.

4.4.2 Experimental set-up

To probe the comparative performance of the proposed approach, we have inte-

grated it in both AVITM and ProdLDA, and compared these versions with the

original versions. In the following, we refer to them as AVITM-GS and ProdLDA-

GS, respectively. We have also included LDA and LSI from Gensim [60] in the

comparison as baselines, and the GAN-based topic model from [40] that we refer to

as GANTM in the following. As learning rate for the variational autoencoders, we

have used the rather standard value of 0.001. Any other hyperparameters were left

to their default values. For the temperature of the Gumbel-Softmax distribution, τ ,

we have carried out a preliminary sensitivity analysis and chosen to run experiments

with τ ∈ [1.5 − 2.5] in steps of 0.25. This range corresponds to moderately-sparse

to dense topic vectors. As number of topics, we have used both 50 and 100 top-

2Available at: https://github.com/akashgit/autoencoding vi for topic models.
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ics for both datasets. We have also initially carried out multiple runs per model,

and realised that the performance did not vary significantly (< 0.5% in all cases).

Therefore, in Section 4.4.3 we report results from single runs of each model.

As an unsupervised technique, the performance evaluation of a topic model is non-

trivial. For our work, we have used two common measures:

• perplexity over the test set : the perplexity of a model over a set S is defined as:

perplexity(S) = exp(−L(S)/(number of tokens in S)). In the general case, L

denotes the log-likelihood of the data, but for the variational methods (all

except LSI and GANTM in our case), it is given by the ELBO in (4.8). The

perplexity is a measure of the “poorness of fit” of the model on the data (the

lower, the better) and, as such, it is important that it is measured over an

independent test set for realistic generalization.

• topic coherence: topic coherence quantifies the coherence of a topic by mea-

suring how often its top K words co-occur within a text window that slides

across the documents (the higher the co-occurrence, the better). Since this

measure is not uniquely defined, we report both the normalized pointwise

mutual information (coher-NPMI) [43] and the CV coherence (coher-Cv) [44]

from their Gensim implementation. The coherence is typically measured on

the training set itself since this guarantees the presence of all the top words.

For the experiments, K has been set to 10. For the variational methods, the

top words per topic have been selected as those with highest probability in

the term-topic matrix. For LSI, they have been selected as those with high-

est weight in the term-topic matrix (which is not normalized to probability

values). For GANTM, they have been selected as those with highest weight

in the discriminator’s decoder network (equivalent to the term-topic matrix of

LSI).

Given their significantly different nature, some disagreement in model ranking be-

tween perplexity and topic coherence is to be expected. Perplexity is, essentially, a

measure of fit of the model, while topic coherence is a measure of quality of the ex-
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Table 4.1: Results with 50 topics on 20 Newsgroups.

Measure/Model LDA LSI GANTM ProdLDA AVITM ProdLDA-GS AVITM-GS

Perplexity 2389.6 — — 1159.9 1133.0 1136.6 1110.6

Coher-NPMI -2.346 -0.062 -0.234 0.111 0.117 0.148 0.104

Coher-Cv -0.053 0.294 0.247 0.751 0.704 0.806 0.638

Table 4.2: Results with 100 topics on 20 Newsgroups.

Measure/Model LDA LSI GANTM ProdLDA AVITM ProdLDA-GS AVITM-GS

Perplexity 4857.1 — — 1147.1 1128.0 1136.1 1111.4

Coher-NPMI -0.063 -0.071 -0.223 0.114 0.085 0.117 0.079

Coher-Cv 0.296 0.267 0.259 0.742 0.650 0.763 0.616

Table 4.3: Results with 50 topics on COVID-19.

Measure/Model LDA LSI ProdLDA AVITM ProdLDA-GS AVITM-GS
Perplexity 1130.0 — 2178.7 1909.0 1957.7 1850.5
Coher-NPMI 0.086 -0.008 0.076 0.180 0.170 0.175
Coher-Cv 0.589 0.310 0.682 0.760 0.787 0.744

Table 4.4: Results with 100 topics on COVID-19.

Measure/Model LDA LSI ProdLDA AVITM ProdLDA-GS AVITM-GS
Perplexity 1119.2 — 2251.7 1904.3 1855.2 1855.7
Coher-NPMI 0.090 -0.017 0.049 0.177 0.174 0.158
Coher-Cv 0.581 0.271 0.652 0.736 0.765 0.700

tracted topics and may better reflect the user’s perception of performance. For this

reason, for comparing the models we resort to a majority criterion, with emphasis

on the topic coherence.

4.4.3 Results

Tables 4.1 and 4.2 report the results over the 20 Newsgroups dataset for 50 and 100

topics, respectively. In terms of test-set perplexity, it is evident that the proposed

approach has been able to improve over the original variational autoencoder, both

for ProdLDA and AVITM. In these and the following tables, we report the perplexity

also for LDA, but the scale of its ELBO is not directly comparable with that of the

autoencoder techniques; for this reason, its values are marked in italics and not

commented further. For LSI and GANTM, the perplexity is simply not available
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Table 4.5: Results for ProdLDA-GS (50 topics, 20 Newsgroups) with varying tem-
perature hyperparameter, τ .

Measure/τ 10−5 1.5 1.75 2.0 2.25 2.5 10
Perplexity 1131.7 1180.0 1161.1 1145.4 1136.6 1124.7 1099.7
Coher-NPMI -0.224 0.126 0.131 0.125 0.148 0.148 0.010
Coher-Cv NaN 0.788 0.780 0.785 0.806 0.799 0.638

Table 4.6: Examples of topics extracted from the COVID-19 dataset (50 topics).

LDA: itali countri franc europ european spain italian germani measur lockdown
new york citi state cuomo san governor mayor francisco andrew
south korea japan africa countri north tokyo korean japanes brazil

ProdLDA: rub sampl mer nasal patient symptom cough lung genet molecular
diamond passeng disembark repatri dock princess liner hubei aboard cruis
trophi leagu europa juventus hudson champion coach footbal munich albert

ProdLDA-GS: symptom cough respiratori patient ill nose hospit infect doctor sneez
democrat biden sander republican trump voter vote senat sen nomin
crude barrel oil opec investor output price brent bpd yield

since they are not probabilistic models. In terms of coherence, ProdLDA-GS has

been able to achieve significantly higher values than all the other techniques in both

coherence metrics. In addition, the two topic model baselines, LDA and LSI, and

the GANTM model have scored significantly lower values of topic coherence than

all the variational autoencoder approaches. Overall, ProdLDA-GS has achieved the

best performance in 4 cases out of 6 (combined number of topics/metrics) and can

be regarded as the best-performing technique overall.

In turn, Tables 4.3 and 4.4 report the results over the COVID-19 dataset for 50

and 100 topics, respectively. In terms of test-set perplexity, the proposed approach

has again been able to improve over the original variational autoencoders. In terms

of coherence, the original AVITM has achieved the highest values for coher-NPMI,

while ProdLDA-GS has achieved the highest values for coher-Cv. Again, all the

variational autoencoder approaches have scored significantly higher coherence values

than both the LDA and LSI baselines. GANTM generated an out-of-memory error

while training over larger training sets, and is therefore not reported. Overall,

ProdLDA-GS has achieved the best performance in 3 cases out of 6 and may still

be regarded as the best-performing overall.

As expected, the choice of the temperature hyperparameter, τ , in the Gumbel-
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Figure 4.2: Comparison of coher-NPMI on the test set for ProdLDA and ProdLDA-
GS (50 topics, 20 Newsgroups) with varying temperature hyperparameter, τ .

Softmax distribution has a major impact on the performance as it substantially

changes the shape of the samples (from almost one-hot to almost uniform). Since

the coherence measures are to be computed on the training set, it is legitimate to

choose the value of τ that empirically maximizes them. Conversely, the perplexity

is a test-set measure and the optimal τ should be chosen on the training set or a

separate validation set. In all cases, the different measures may be maximized by

different values of τ , and a trade-off between them is required. To illustrate this

dependence, Table 4.5 shows the results with varying τ for ProdLDA-GS with 50

topics on 20 Newsgroups. With τ = 10−5 (almost one-hot samples), the model has

achieved a very low coherence. At the other end of the spectrum, with τ = 10

(almost uniform samples), the coherence has been again very low. The equal-best

coher-NPMI coherence values have been achieved with τ = 2.25 and 2.5, and the

best value for coher-Cv has been achieved with τ = 2.25, so we have used these

results for the comparison in Table 4.1. To further evaluate the model’s quality with

varying τ , we have also measured the topic coherence (coher-NPMI) of ProdLDA-

GS over the test set, using ProdLDA as the reference. Figure 4.2 shows that τ

has played a key role also for this measure: for τ ∈ [1.5 − 2.5], the topic coherence

of ProdLDA-GS has been invariably higher than that of Prod-LDA, while it has

noticeably deteriorated for more “extreme” values (0.1, 10).
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In terms of qualitative analysis of the extracted topics, all approaches seem to have

performed well overall. The extracted topics are presented to the user as the lists

of their K = 10 top words, and such lists must appear informative and coherent.

Examples for LDA, ProdLDA and ProdLDA-GS from the COVID-19 topic models

are displayed in Table 4.6. For LDA, the first example clearly addresses the lockdown

measures taken by various European countries; the second names New York State

Governor Andrew Cuomo and the mayor of San Francisco, but fails to include the

“reason” for their mention; and the last is simply a list of countries, again with no

explicit mention of the COVID outbreak. For ProdLDA, the first example refers to

COVID symptoms and testing (word “mer” is the stemmed version of “MERS”);

the second refers to the case of the Diamond Princess cruise ship; and the last

addresses football news from the observation period. For ProdLDA-GS, the first

example clearly refers to COVID symptoms and the risk of infection for the doctors;

the second to the recent US presidential primaries, which were held during the

observation period; and the last to economic news. Their lists of top words seem very

consistent and descriptive. A possible limitation of both ProdLDA and ProdLDA-

GS, and possibly of all autoencoding methods which are based on sampling, is the

presence of a number of repeated topics. However, it should be easy to prune them

post-hoc.

4.5 Conclusion

This chapter has presented an approach for topic modeling based on the Gumbel-

Softmax distribution and variational autoencoders. During the step of topic-document

inference, the topic proportions of the current document are sampled in the autoen-

coder from a Gumbel-Softmax distribution with appropriate temperature. The sam-

ples are then used to mix either the topic distributions (AVITM-GS) or their logits

(ProdLDA-GS). To validate the proposed approach, experiments have been carried

out on two challenging datasets, the well-known 20 Newsgroups and a recently-

released, large-scale COVID-19 news dataset. The experimental results have shown

that the proposed approach has been able to outperform the original variational
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autoencoders and two significant baselines in terms of topic coherence, and achieve

the best trade-off across two coherence metrics and the test-set perplexity. In ad-

dition, a qualitative analysis of the extracted topics has shown that they appear

informative and consistent. In the near future, we plan to extend our research to

other distributional models and reparametrization approaches.
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Chapter 5

Neural Topic Model Training with

the REBAR Gradient Estimator

Topic modelling is an important approach of unsupervised machine learning that al-

lows automatically extracting the main ”topics” from large collections of documents.

In addition, topic modelling is able to identify the topic proportions of each indi-

vidual document, which can be helpful for organizing the collections. Many topic

modelling algorithms have been proposed to date, including several that leverage

advanced techniques such as variational inference and deep autoencoders. However,

to date topic modelling has made limited use of reinforcement learning, a framework

that has obtained vast success in many other unsupervised learning tasks. For this

reason, in this paper we propose training a neural topic model using a reinforcement

learning objective, and minimizing the objective with the recently-proposed REBAR

gradient estimator. Experiments performed over two probing datasets have shown

that the proposed model has achieved improvements over all the compared models

in terms of both model perplexity and topic coherence, and produced topics that

appear qualitatively informative and consistent.

70



5.1 Introduction

The recent years have witnessed an astonishing growth of unstructured text data

in the form of blogs, social media posts, web pages, speech-to-text transcriptions,

automated translations, and so forth. Manually analyzing such vast amounts of

text data is simply prohibitive, and it is therefore necessary to turn to machine

learning and text analytics to set up some form of automated analysis. However,

standard machine learning approaches such as classification and regression expect

that a significant amount of training data be manually annotated, thus reintroducing

a “human bottleneck”. Given the typical size and diversity of the relevant datasets,

the most suitable candidates for this type of tasks are unsupervised or few-shot

machine learning approaches [54].

Within the unsupervised machine learning domain, topic modelling is a popular

approach for the identification of the thematic content of a collection of documents.

The goal of topic modelling is to automatically discover the main topics of typically-

large document collections, and simultaneously identify the topic proportions in

each of their documents. Its fundamental assumptions are that each document is

thought of as deriving from a combination of topics, and each topic is represented

by characteristic frequencies of words in a vocabulary. For instance, a topic such

as “neurology” may be characterized by the frequent occurrence of words such as

“aphasia”, “cortex” and so forth, and a topic such as “education” by words such

as “tutorial”, “exam” etc. Therefore, a document representing an assignment in a

neurology course could be associated with these two topics in specific proportions.

Topic modelling is a very well established approach for the analysis of document

corpora and has found copious application in domains as diverse as healthcare [2]–

[4], finance [5], [6], agriculture [7], social media [6], [8], news [9] and many others.

Topic modelling approaches revolve around the concepts of topics, documents and

words. The topics are typically treated as a set of latent categorical values; the doc-

uments are treated as either sets or sequences of words; and the words are treated

as either categorical values out of a given vocabulary, or as word embeddings. For

instance, the popular latent Dirichlet allocation (LDA) treats the words as categor-
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ical values, and assumes Dirichlet priors over their multinomial distributions [12].

Conversely, Gaussian-LDA treats words as embedding vectors, and models them

with multivariate Gaussian distributions [61], [62]. In all cases, most topic mod-

elling approaches are probabilistic, since probabilistic framings allow for a flexible

and effective treatment of latent variables. The number of approaches proposed to

date is remarkable, and we concisely review the main in the next section.

However, despite the many approaches proposed in the literature, topic modelling

has to date made limited use of reinforcement learning. Reinforcement learning is

a widely adopted framework for unsupervised tasks, since it can exploit a variety

of reward functions to drive the model toward effective parametrizations [51]. An

example of application of reinforcement learning to topic modelling is [52], that has

proposed word weighting rewards to encourage within-topic coherence and discour-

age topic overlapping. However, no approaches we are aware of have used reinforce-

ment learning to learn an effective “policy” over the topics themselves. For this

reason, in this chapter we propose an approach to topic modelling that leverages

the policy gradient theorem [19], [51] to learn the topic distributions. The gradient

of the objective function is estimated using the recently-proposed REBAR gradient

estimator [22] that has a number of attractive properties, including being unbiased

with respect to the exact gradient and enjoying a low-variance design. To compose

a performing solution, we have integrated the reinforcement learning objective and

the REBAR gradient estimator in the state-of-the-art deep variational-autoencoder

topic model of Srivastava and Sutton [14]. Experiments performed on two prob-

ing document datasets – 20 Newsgroups [45], consisting of 18, 747 documents from

newsgroups, and Amazon Fine Food Reviews [18], consisting of 568, 454 food re-

views from 256, 059 users of diverse background – have shown improvements over all

the compared models in terms of both model perplexity and topic coherence. The

main contributions of our chapter can be summarized as follows:

• the use of a reinforcement learning objective (i.e., the predictive risk) for train-

ing a deep variational autoencoder for topic modelling (Section 5.3.4);

• the adoption of a recently-proposed gradient estimator (REBAR [22]) that is
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both unbiased and low-variance to minimize the objective based on the policy

gradient theorem (Section 5.3.5);

• positive experimental results showing that the proposed approach has been

able to outperform standard baselines, a Bayesian nonparametric topic model

[41], and a state-of-the-art neural topic model [14] (Section 5.4).

The rest of this chapter is organized as follows: the related work is presented in

Section 5.2. A brief summary of LDA and a state-of-the-art variational-autoencoder

topic model are presented in Section 5.3. The proposed model is presented in Section

5.3.3, while the experiment and experimental results are described in Section 5.4.

Finally, concluding remarks are addressed in Section 5.5.

5.2 Related Work

Topic modelling is a well-established unsupervised technique for identifying the main

topics in a collection of unstructured text documents. Concurrently to identifying

the topics, topic modelling extracts the topic proportions of each individual docu-

ment, which can be useful for their categorization and organization. The input data

for a topic modelling algorithm are typically arranged as a term-document matrix,

where the rows are the words in the vocabulary, the columns are the documents in

the collection, and the individual elements are the number of occurrences of each

vocabulary word in each document. Before being converted into the term-document

matrix, the documents are usually pre-processed by steps such as punctuation and

stopword removal, stemming, lemmatization, and various others [63]. In addition,

in order to curb complexity and increase robustness, the vocabulary is typically lim-

ited to the words with highest frequency in the collection. As a versatile natural

language processing technique, topic modelling has found successful application in

a number of areas including marketing, finance, social media, healthcare, news and

several others [2], [3], [5], [6], [8], [9].

Many topic modelling approaches have been proposed over the years, but we limit

this brief review to the techniques which are needed to position the proposed ap-
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proach. Latent semantic indexing (LSI) (also known as latent semantic analysis

(LSA)) [10] is considered as the first, proper topic model. LSI learns the hidden

topics by carrying out a matrix decomposition of the term-document matrix us-

ing singular value decomposition (SVD). SVD is a low-dimensional factorization of

the original matrix that drastically reduces the total number of degrees of freedom,

while ensuring minimum mean square error (MSE) with respect to the original ma-

trix. To describe LSI more precisely, let us note the size of the vocabulary (i.e. the

number of distinct words) as V ; the number of documents in the collection as D;

the chosen number of hidden topics as K, with K ≪ D; and the term-document

matrix (a V ×D matrix) as W . With these notations, the factorization of LSI can

be expressed as:

W ≈ βθ (5.1)

where β is a V ×K matrix known as term-topic matrix and θ is a K × D matrix

known as topic-document matrix. The product of β and θ approximates W in an

MSE sense. In addition, the columns of β can be interpreted as the “weights” of

the various words in each of the K topics, and the columns of θ can be interpreted

as the weights of the various topics in each of the D documents.

Probabilistic latent semantic analysis (pLSA, or pLSI) [11] improves the interpre-

tation of LSI by adding a proper probabilistic modelling for the terms. First, the

columns of W are normalized to add up to one, so that they can be interpreted

as the probability of the words in the given document, p(w|d). Then, simplex con-

straints are imposed on the columns of β and θ, so that they can be interpreted as

the probability of the words in a given topic, p(w|t), and the probability of the topics

in a given document, p(t|d), respectively. For brevity, we refer to the columns of β

as the “word distributions”, and to the columns of θ as the “topic vectors”. Both

these distributions are conventional multinomial distributions. With these positions,

pLSA can be expressed as:

p(w|d) =
K∑
t=1

p(w|t)p(t|d) w = 1 . . . V, d = 1 . . . D (5.2)
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Latent Dirichlet allocation (LDA), a generalization of pLSA proposed by Blei, Ng

and Jordan in 2003 [12], is a highly popular probabilistic generative model that

incorporates prior probabilities from the Dirichlet family for both the word distri-

butions and the topic vectors. Since the Dirichlet distribution is conjugate to the

multinomial, it is analytically possible to derive the posterior probabilities. More

details of the model will be provided in Section 5.3.1. Over the years, LDA has

proved an extremely successful approach and has spawned many variants and ex-

tensions, including sparse [27]–[31], hierarchical [13], [33], [34], [41], sequential [32]

and class-supervised [26] LDA.

More recently, several topic models have been proposed that integrate features of

LDA with those of deep generative models [64]. Among them, [14], [16], [38], [57]

have all used variational autoencoders (VAEs) to build topic models for large doc-

ument collections. Other deep topic models have employed generative adversarial

networks (GANs) [40], [50] and CNNs [49], [58]. In particular, Srivastava and Sutton

in [14] have proposed a neural topic model that combines LDA with a deep varia-

tional autoencoder and has achieved state-of the-art performance in both qualitative

and quantitative evaluations. For this reason, we have adopted it as the base model

for our approach and for performance comparison.

The typical training objectives of topic models are differentiable functions that can

be minimized by gradient descent. However, some training objectives may contain

non-differentiable terms. In this case, reinforcement learning and the policy gradient

theorem can be used for their minimization [51]. The most well-known approach

based on the policy gradient theorem is REINFORCE [19]. However, REINFORCE

is a sampling-based algorithm that suffers from very high variance, and for this

reason several reduced-variance estimators such as actor-critic algorithms [65] and

the Gumbel-Softmax [21] have been proposed. An example of use of a low-variance

estimator is [66], where Gumbel-Softmax sampling has been added to a deep varia-

tional topic model. However, the Gumbel-Softmax and many REINFORCE variants

suffer, in turn, from bias, i.e. an average difference from the exact gradient of the

target objective, which can lead to sub-optimal parametrizations. For this reason,
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Tucker et al. have recently introduced REBAR [22], a gradient estimator for the

training objective which is simultaneously low-variance and unbiased. To reduce the

variance, REBAR uses a control variate that is aptly sampled from a conditional,

truncated Gumbel distribution and exhibits high correlation with the training ob-

jective. We will describe this estimator in detail in Section 5.3.5. To the best of

our knowledge, ours is the first attempt to leverage the policy gradient theorem and

REBAR in topic modelling.

5.3 Methodology

In this section, we cover the background needed to understand the proposed model,

namely LDA (subsection 5.3.1) and variational-autoencoder topic models (subsec-

tion 5.3.2).

5.3.1 Latent Dirichlet allocation

Latent Dirichlet allocation (LDA) [12] is to date the reference model for the field

of topic modeling. To briefly describe it hereafter, let us introduce the following

notations:

• wd,n is the n-th word in the d-th document in the corpus. By “word” we mean

a categorical value in the corpus’ vocabulary (essentially, an index). The size

of the vocabulary is noted as V .

• wd is the set of all the words in document d.

• Each word, wd,n, is assigned to a corresponding topic, zd,n. The topic is another

categorical variable, simply taking values in an index set, 1 . . . K (once all the

words have been assigned to their topics, the “scope” of each topic can be

determined by analyzing its word distribution).

The model makes the following distributional assumptions:

• The topic variables for a given document are independently and identically dis-
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tributed according to a multinomial distribution, Mult(zd,n|θd), parametrized

by a K-dimensional probability vector, θd.

• At its turn, vector θd is distributed according to a Dirichlet distribution,

Dir(θd|α), parametrized by aK-dimensional integer vector, α, shared at corpus

level. Since the Dirichlet distribution is a conjugate prior for the multinomial,

posteriors can be computed in closed form.

• The words in the corpus are distributed according to a set of K multinomial

distributions, one per topic. Each such distribution is parametrized by a V -

dimensional probability vector, noted as βk, k ∈ [1 . . . K]. Each word in a

given document is distributed according to one of these distributions, indexed

by its topic variable, as in wd,n ∼ Mult(wd,n|βzd,n).

Fig. 5.1 shows the overall model as a graphical model. Since both wd,n and zd,n are

multinomially distributed, it is possible to marginalize zd,n analytically. This allows

us to rewrite the probability of wd,n as:

wd,n ∼ Mult(wd,n|βθd) (5.3)

where βθd stands for the product between V ×K matrix β = [β1 . . . βK ] and K × 1

vector θd. Eventually, this allows us to derive the posterior probability of the word

and the topic vector as:

p(wd,n, θd|α, β) = Mult(wd,n|βθd)Dir(θd|α) (5.4)

and the probability of all the words in a document and their topic vector can be

simply expressed as:

p(wd, θd|α, β) =
N∏

n=1

p(wd,n, θd|α, β) (5.5)

The training objective for this model consists of maximizing Equation (5.5) by esti-
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a qd zd,n wd,n bk

Figure 5.1: The graphical model of LDA. Notations are as follows: α denotes the
parameter vector for the Dirichlet prior over the topic vectors (i.e. the topic pro-
portions per document), unique for the corpus. θd is the topic vector of the d-th
document, sampled from Dir(θd|α). For each document, N topics, zd,n, are sampled
from Mult(zd,n|θd). Finally, the corresponding N words, wd,n are sampled from a
multinomial distribution over the vocabulary, Mult(wd,n|βzd,n); its parameter vector,
βzd,n , is chosen from a set of K parameter vectors, β = {β1, . . . βk . . . βK}, based on
the value of topic zd,n.

mating α, β, and the θd vector of every document over a given training corpus. In

essence, estimating: the word distributions in each of the topics, β1, . . . βK ; the topic

proportions in each of the documents, θ1, . . . θD; and the topic proportions across

the whole corpus, α. For new/test documents given after training is complete, α

and β are kept unchanged, and only their topic vectors are inferred.

5.3.2 Variational-autoencoder topic models

In recent years, variational autoencoders (VAEs) have established themselves as very

effective and flexible models for problems that include latent variables [15]. These

features make them attractive for topic modelling, where both the topics and the

topic proportions are to be treated as latent variables. Another appealing feature

of VAEs is that they are able to maximize the log-likelihood of a given training

set even when this function is not directly optimizable, by maximizing an analytical

lower bound. In addition, VAEs integrate features of deep learning by modelling the

parameters of their distributions via neural networks of arbitrary complexity that

can be tailored to the needs of the application at hand. For these reasons, they have

found wide adoption over a range of tasks in computer vision, signal processing,
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natural language processing and many other fields.

A VAE is essentially a generalization of a conventional autoencoder, which is a neu-

ral network split over two sub-networks: an encoder and a decoder. The encoder

receives a multidimensional measurement in input, and outputs a latent represen-

tation for it, typically much smaller in dimension; the decoder receives the latent

representation in input, and outputs a “reconstruction” of the original measurement.

Through this process, the model is able to generate latent representations and recon-

structed measurements which are often more useful than the original measurements

in downstream tasks of pattern recognition.

A variational autoencoder is a probabilistic extension of an autoencoder where both

the measurement and the latent representation are treated as random variables, and

therefore the encoder and the decoder are treated as probability distributions. The

“reconstruction” of the original measurement is meant in a probabilistic manner in

terms of log-likelihood of the measurement. In the case of topic models, the aim of

the VAE is to maximize the log-likelihood of the words of each document1:

log(w|α, β) = log

∫
θ

p(w, θ|α, β)dθ (5.6)

However, Equation (5.6) is too complex to be maximized directly, and therefore the

VAE establishes an approachable lower bound for the log-likelihood known as the

evidence lower bound, or ELBO, and sets to maximize it [15]. In the case of the

topic model, the ELBO has the following form:

L(w, α, β) = Eq(θ|w)

[
log p(w|θ, β)

]
−DKL(q(θ|w)∥p(θ|α))

(5.7)

The terms in Equation (5.7) have the following meaning:

• q(θ|w) is an estimator for the probability of the topic proportions for a given

1In this section, we omit the document index to avoid unnecessarily cluttering the notations.
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document (represented by its words, w), and is known as the ”encoder”;

• log p(w|θ, β) is the log-probability of the document given its topic proportions

and the word distributions, and is known as the ”decoder”;

• Eq(θ|w)

[
log p(w|θ, β)

]
is the expectation of this quantity over q(θ|w) and is

known as the ”reconstruction term”;

• p(θ|α) is a learnable prior probability for the topic proportions that is shared

by the entire corpus.

The rationale for Equation (5.7) is twofold: first, it is a proven lower bound for

Equation (5.6), that is the target of the maximization; second, it consists of a trade-

off between two terms that can be interpreted intuitively: the model is rewarded

for either improving the reconstruction term, or for keeping the encoder close to the

prior.

Srivastava and Sutton in [14] have proposed a VAE for topic modeling (AVITM) that

leverages a Laplace approximation of the usual Dirichlet prior to permit its integra-

tion into the autoencoder. In AVITM, both the prior and the encoder are modeled

as logistic normal distributions: the prior is modeled as p(θ|α) = LN (θ|µ(α),Σ(α)),

and the encoder is modeled as q(θ|w) = LN (θ|fµ(ϕ,w), fΣ(ϕ,w)), where ϕ are the

internal parameters of two neural networks that predict the mean and covariance of

the encoder, respectively. The expectation in Equation (5.7) is computed by sam-

pling q(θ|w), which in turn is performed through reparametrization. The decoder

takes the following form:

p(w|θ, β) = Mult(w|σ(β)θ) (5.8)

where σ() is the softmax operator, and the word distributions are parametrized as

logits rather than in the simplex to remove unnecessary constraints during backprop-

agation. The authors have also proposed a second, heuristic version of the decoder,

called ProdLDA, that performs the product before the softmax:
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p(w|θ, β) = Mult(w|σ(βθ)) (5.9)

As shown in [14], both AVITM and ProdLDA have outperformed a number of com-

pared topic model approaches by large margins, and can be regarded as state-of-

the-art approaches for this task.

5.3.3 The proposed approach: model training with the RE-

BAR gradient estimator

Reinforcement learning has the potential to improve the performance of models

beyond what can be achieved by the optimization of conventional loss functions.

The main advantages of reinforcement learning are its ability to deal with non-

differentiable objectives and its use of sampling, which allows exploring regions

of the parameter space that may not otherwise be traversed by the optimization

process. In the case of topic modelling, one way to leverage reinforcement learning

is to introduce an additional variable in the model and attempt to learn an effective

“policy” (a conditional probability) for it. To this aim, we introduce a new random

variable, y, which is meant to represent the “main” topic of a given document (we

will relax this hard assumption later in the section). With variable y, the ELBO in

Equation (5.7) is changed to:

L(w, y, α, β) = Eq(θ|w)

[
log p(w|y, β)

]
−DKL(q(θ|w)∥p(θ|α)),

y ∼ p(y|θ) = Mult(y|θ)

(5.10)

where, with a slight abuse of notations, we have noted the sample and the random

variable with the same symbol, y. In essence, in Equation (5.10) we sample a

categorical variable, y, from a multinomial distribution of parameters θ, and we use

it in lieu of θ to mix (i.e. select) the word distributions in Equations (5.8-5.9).
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5.3.4 REINFORCE

The training objective of reinforcement learning is the expected risk :

R(w, α, β) = Ep(y|θ)
[
L(w, y, α, β)

]
=

∑
y

L(w, y, α, β)p(y|θ) (5.11)

which is the expectation of the loss function, L(w, y, α, β), over the probability of

variable y, the document’s main topic. In order to minimize Equation (5.11), train-

ing will attempt to assign high probability to values of y that cause low values of the

loss, L(w, y, α, β), and vice versa, thus enforcing an effective policy. The minimiza-

tion of Equation (5.11) can be performed using the policy gradient theorem [19],

which ignores the dependency of the loss on the parameters and only differentiates

the policy:

∂

∂θ
R(w, α, β) =

∑
y

L(w, y, α, β) ∂
∂θ

p(y|θ)

=
∑
y

L(w, y, α, β) ∂
∂θ

log p(y|θ)p(y|θ)

= Ep(y|θ)
[
L(w, y, α, β) ∂

∂θ
log p(y|θ)

]
(5.12)

The resulting expectation is computed empirically, often from a single sample. With

these approximations, we have:

∂

∂θ
R(w, α, β) ≈ L(w, y, α, β) ∂

∂θ
log p(y|θ), y ∼ p(y|θ) (5.13)

The above gradient estimator is the popular REINFORCE, a key approach of rein-

forcement learning that does not require differentiation of the loss function in the

parameters, making it applicable to a wide variety of scenarios [19]. However, RE-

INFORCE is known for its high variance, which often compromises the stability

of training. For this reason, many revised estimators have been proposed in the

literature such as REINFORCE with baseline [19], actor-critic algorithms [65] and
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the Gumbel-Softmax [21]. However, many of these algorithms introduce a bias, i.e.

an average difference with respect to the exact gradient. Recently, Tucker et al.

in [22] have proposed an alternative gradient estimator – REBAR – that is both

low-variance and unbiased, and has empirically outperformed other, state-of-the-art

biased and unbiased estimators. For this reason, we have adopted it in this work to

boost the performance of topic modelling.

5.3.5 The REBAR gradient estimator

To introduce the REBAR gradient estimator, we first streamline the notations of the

loss function and probability distribution as L(y) and p(y), respectively, keeping the

dependency on the parameters implicit and leaving only the required dependencies

explicit. Next, we make use of the “Gumbel-Max trick” to obtain the samples for

y [67], [68]. The Gumbel-Max trick allows sampling categorical variables such as y

by manipulating samples of the Gumbel distribution, which in turn can be obtained

from an inverse transform of uniform samples. Concisely, the following properties

hold:

y = argmax(s)

s = σ
(
[log θ − log(− log u)]/τ

)
u ∼ U(0, 1)K

(5.14)

Operationally, in Equation (5.14) we first sample a vector of K uniformly-distributed

numbers in the (0, 1) interval. Then, via an inverse transform and a softmax with

temperature (noted as σ(·/τ )), a “soft” version of variable y is obtained, s, encoded

as a vector of K values in the K−1-simplex. Eventually, y = argmax(s) returns the

index of the largest value of s, which is provenly equivalent to directly sampling y

from Mult(y|θ). The reason for this seemingly complex manipulation is that variable

s, obtained as a by-product, will be utilized in the REBAR gradient estimator.

The standard REINFORCE estimator can be improved by introducing a suitable
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“baseline” to condition the sign and magnitude of the gradient updates. By referring

to the baseline as b, REINFORCE with baseline can be expressed as:

∂

∂θ
R(w, α, β) =

∂

∂θ
E[L(y)− b+ b]

≈ [L(y)− b]
∂

∂θ
log p(y) +

∂

∂θ
E[b]

(5.15)

The first term in (5.15) determines the sign of the gradient for the policy update:

only if the loss caused by y, L(y), is greater than b (i.e. a particularly bad value),

the training iteration will decrease p(y). Otherwise, it will increase it or leave it

unchanged. The second term ensures that the estimator is unbiased, i.e. has the

same expected value as the exact gradient.

The intuition behind REBAR is that an effective baseline can be obtained by “re-

laxing” the mixing variable, y, conditionally to its observed value. The relaxed

variable, noted as s̃, is sampled from a truncated Gumbel distribution:

s̃ ∼ p(s̃|y) = σ(TruncatedGumbel(θ, T )/τ)

v ∼ U(0, 1)K
(5.16)

In Equation (5.16) we, again, first sample a vector of K uniformly-distributed num-

bers in the (0, 1) interval. Notation TruncatedGumbel(θ, T ) denotes a sample from

a truncated Gumbel distribution of mean θ and threshold T . The threshold at which

the Gumbel distribution is truncated is T = − log(− log vy)), where vy is the element

of v at index y. This truncation ensures that argmax(s̃) = y by construction, as

required by the conditional probability p(s̃|y). For the full details of the derivation

of s̃, we refer the reader to [22], [69].

Once y, s and s̃ have all been derived, the REBAR gradient estimator can be finally

computed as:
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[L(y)− ηL(s̃)] ∂
∂θ

log p(y) + η
∂

∂θ
[L(s)− L(s̃)] (5.17)

In (5.17), term ηL(s̃) is the baseline, with η a positive hyperparameter tunable by

cross-validation. The second term in the equation, η ∂
∂θ
[L(s) − L(s̃)], ensures the

unbiasedness of the overall estimator [22], [69]. From the gradient estimator, we can

also backderive an expression for a loss that can be used with common automatic

differentiation and backpropagation tools:

LREBAR = [L(y)− ηL(s̃)]nogr log p(y) + η[L(s)− L(s̃)] (5.18)

where subscript nogr states that the subscripted term should not be differentiated.

The original VAE loss (5.7) and the REBAR loss (5.18) can also be conveniently

mixed, to explore trade-offs between the two. We therefore define the overall loss

as:

Loverall = L(w, α, β) + ϵLREBAR (5.19)

with ϵ a positive hyperparameter tunable with validation techniques.

5.3.6 Summary of the operational steps

For clarity, the following boxed list recapitulates all the main steps of the proposed

approach:
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Operational steps

1. Sample u and v, two vectors of random numbers from the uniform distribution
in (0,1), each with a number of elements equal to the number of topics, K.

2. Obtain the “soft” prediction for the topic of the current document, s, by
computing:

s = σ
(
[log θ − log(− log u)]/τ

)
where:

• θ are the probabilities of the topics for the current document, sampled
from the encoder network, q(θ|w);

• τ is the chosen temperature;
• σ is the softmax operator;
• s is a vector of K elements in the probability simplex, ∆K−1.

3. Obtain the actual prediction for the topic of the current document, y, by
computing:

y = argmax(s)

where y is the index of the largest value of s.

4. Obtain the “soft” prediction conditioned on y for the topic of the current
document, s̃, by computing:

s̃ = σ(TruncatedGumbel(θ, T )/τ)

where distribution TruncatedGumbel(θ, T ) uses vector v as input and param-
eter T as threshold. By construction, argmax(s̃) = y. All the details of this
manipulation can be retrieved from [69], Appendix B.

5. Compute objective L(·) in Equation (5.10) with arguments y, s, and s̃, respec-
tively.

6. Compose the REBAR loss function:

LREBAR = [L(y)− ηL(s̃)]nogr log p(y) + η[L(s)− L(s̃)]

where η is a positive coefficient, p(y) is the value of θ indexed by y, and
subscript nogr states that the subscripted term should not be differentiated.

7. Combine the REBAR loss function with the original VAE loss (5.7):

Loverall = L(w, α, β) + ϵLREBAR

with ϵ a positive trade-off coefficient.

8. Lastly, automatically differentiate Loverall with any common autodiff libraries
such as TensorFlow, PyTorch or JAX [70]–[72].
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5.4 Experiments and Results

5.4.1 Datasets

For the experiments, we have employed two popular document datasets, namely

20 Newsgroups (regarded as a standard benchmark for the field) and Amazon Fine

Foods Reviews. The 20 Newsgroups dataset consists of 18, 747 documents collected

from twenty different newsgroups and split over 11, 259 documents as training set

and 7, 488 as test set. The average number of tokens per document for this dataset

is approximately 86.5. As the vocabulary, we have used the 1, 995 most-frequent

words publicly shared by [14] and the same pre-processing for direct comparability

of the results. Amazon Fine Foods Reviews is a much larger dataset consisting

of 568, 454 food reviews posted by Amazon users and collected over a period of

10 years (up to October 2012). For our experiments, we have used the plain-text

review field, with 454, 763 reviews as training set and 113, 691 reviews as test set.

The average number of tokens per document for this dataset is approximately 36.3.

As vocabulary, we have retained the most-frequent 5, 000 words. For this dataset,

the raw documents have been preprocessed with a combination of tokenization,

stopword removal, stemming and lemmatization; special characters and punctuation

have also been removed, and the pre-processed documents have been converted to

NumPy arrays for input into the various topic models. All models have been coded

in Python 3, and the variational-autoencoder topic models have been implemented

in the TensorFlow 1.X framework. For processing, we have used an Intel Xeon node

with 8 cores and 64 GB of RAM.

5.4.2 Experimental set-up

To evaluate the comparative performance of the proposed approach, we have in-

cluded: 1) LDA and LSI from Gensim [60] as baselines; 2) the hierarchical Dirichlet

process (HDP), a much-cited, hierarchical, Bayesian nonparametric topic model

[41]; and 3) the state-of-the-art AVITM and ProdLDA models [14]. In this section,

we compare these methods with corresponding versions of our REBAR approach,
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namely AVITM-REBAR and ProdLDA-REBAR.

For training our model, we have used the following values for the hyperparameters:

the learning and dropout rates have been set to the same values (0.001 and 0.25,

respectively) used in [14]. The temperature hyperparameter, τ , has been set to

the same value (2.25) used in [66]. For the other two hyperparameters, η and

ϵ, we have chosen ranges and values based on an initial sensitivity analysis. For

η, we have explored values in the [0.5, 2.5] range in 0.5 steps, and reported the

results for η = 2.0. For ϵ, we have used values {1e − 10, 1e − 12, 1e − 14} since

the reinforcement learning objective, LREBAR, is much larger in scale than the VAE

objective, and reported the results for ϵ = 1e − 12. As number of training epochs,

for the 20 Newsgroups dataset we have used the same number (200) used in [66],

while for Amazon Fine Food Reviews we have limited it to 40, as the training

set is much larger and each epoch takes about 100x a 20 Newsgroups epoch. To

explore the impact of initialization and sampling, we have also initially carried out

multiple training runs for a few of the models, and noted that the variations on all

performance figures were within 0.5 pp in all cases, thus not altering the ranking of

the compared approaches.

For performance evaluation of the trained models, we note that it is common prac-

tice for the topic modelling field to report performance also over the training set

themselves. This is because topic modelling is quintessentially a descriptive (rather

than predictive) task that aims to best describe an assigned collection of documents.

However, in addition to the results over the training sets, in this section we also in-

clude performance measures and results over the given test sets. As number of

topics, we have used the rather common values of 20 and 50 for both datasets. For

performance evaluation, we have used two widely-used measures:

• perplexity : the perplexity of a model over a set S is defined as:

perplexity(S) = exp(−L(S)/(number of tokens in S)). In the general case, L

denotes the log-likelihood of the data, but for the variational methods (all

except LSI in our case), it is given by the ELBO in Equation (5.7). The

perplexity is a measure of the “poorness of fit” of the model on the data
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(the lower, the better). To assess the models’ generalization, we report the

perplexity over the test sets.

• topic coherence: topic coherence quantifies the coherence of a topic by mea-

suring how often its top K words co-occur within a text window that slides

across the documents (the higher the co-occurrence, the better). Since this

measure is not uniquely defined, we report both the normalized pointwise

mutual information (Coher-NPMI) [43] and the CV coherence (coher-Cv) [44]

using their Gensim implementation. The coherence is typically measured on

the training set itself since this guarantees the presence of all the top words.

For the experiments, K has been set to 10. For all the variational methods,

the top words per topic have been selected as those with highest probability in

the term-topic matrix. For LSI, they have been selected as those with highest

weight in the term-topic matrix.

Perplexity is, essentially, a measure of fit of the model, while topic coherence is

a measure of the quality of the extracted topics and may better reflect the user’s

perception of performance. Given their significantly different nature, some disagree-

ment in model ranking between perplexity and topic coherence is to be expected.

For this reason, for comparing the models we resort to a majority criterion, with

emphasis on topic coherence.

5.4.3 Main results

Tables 5.1 and 5.2 show the results for the 20 Newsgroups dataset for 20 and 50

topics, respectively. In the tables, the perplexity values for LDA cannot be directly

compared with those of the autoencoder models because of the differing architec-

ture and number of degrees of freedom; therefore, they are marked in italics. LSI is

not a probabilistic model, so its perplexity values are unavailable, and also the log-

likelihood returned by the HDP is not easily convertible to a perplexity. In terms of

performance, both LDA and LSI have reported much lower coherence compared to

the other models, and therefore cannot be regarded as competitive. The HDP has
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Table 5.1: Results on the 20 Newsgroups dataset with 20 topics (suffix “REBAR”
is abbreviated as “RB”).

Measure/Model LDA LSI HDP AVITM ProdLDA AVITM-RB ProdLDA-RB

Perplexity 1516.2 — — 1140.2 1173.3 1139.7 1165.5

Coher-NPMI -0.060 -0.060 0.027 0.094 0.141 0.133 0.147

Coher-Cv 0.383 0.356 0.448 0.671 0.779 0.742 0.805

Table 5.2: Results on the 20 Newsgroups dataset with 50 topics.

Measure/Model LDA LSI HDP AVITM ProdLDA AVITM-RB ProdLDA-RB

Perplexity 2531.4 — — 1133.1 1159.9 1130.2 1160.9

Coher-NPMI -0.084 -0.062 0.017 0.117 0.111 0.104 0.143

Coher-Cv 0.348 0.351 0.432 0.704 0.751 0.693 0.778

Table 5.3: Results on the Amazon Fine Food Reviews dataset with 20 topics.

Measure/Model LDA LSI HDP AVITM ProdLDA AVITM-RB ProdLDA-RB

Perplexity 1426.0 — — 1000.9 1099.7 1000.2 1098.3

Coher-NPMI 0.081 0.004 0.011 0.144 0.066 0.152 0.118

Coher-Cv 0.564 0.395 0.419 0.707 0.651 0.715 0.710

Table 5.4: Results on the Amazon Fine Food Reviews dataset with 50 topics.

Measure/Model LDA LSI HDP AVITM ProdLDA AVITM-RB ProdLDA-RB

Perplexity 2789.9 — — 1008.6 1012.5 1007.3 1009.0

Coher-NPMI 0.076 -0.009 0.011 0.144 -0.048 0.149 0.047

Coher-Cv 0.551 0.360 0.420 0.682 0.430 0.691 0.585
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achieved higher coherence than both LDA and LSI, but still substantially lower than

all the variational autoencoder models. Between AVITM and ProdLDA, AVITM

has achieved better (i.e., lower) perplexity values, while ProdLDA has achieved

better (i.e., higher) coherence values in the majority of cases. Notably, our RE-

BAR models have been able to attain a marked improvement over both AVITM

and ProdLDA: compared to AVITM, AVITM-REBAR has improved both perplex-

ity and coherence in the case of 20 topics, and perplexity in the case of 50 topics;

compared to ProdLDA, ProdLDA-REBAR has improved both perplexity and co-

herence in the case of 20 topics, and coherence in the case of 50 topics. In addition,

AVITM-REBAR and ProdLDA-REBAR have achieved the overall best perplexity

and coherence, respectively.

In turn, Tables 5.3 and 5.4 show the results on the Amazon Fine Food Reviews

dataset for 20 and 50 topics, respectively. Again, LDA, LSI and the HDP have

achieved markedly lower coherence values than the autoencoder models. However,

on this dataset LDA has performed better than both LSI and the HDP, reach-

ing a Coher-NPMI value even higher than that of ProdLDA. Between AVITM and

ProdLDA, AVITM has achieved the best results in terms of both perplexity and

coherence. However, AVITM-REBAR has outperformed AVITM in all measures for

both 20 and 50 topics, and achieved the best performance of all models. Based on

the results on both 20 Newsgroups and Amazon Fine Food Reviews, we can conclude

that our REBAR-based models have outperformed all the compared models.

5.4.4 Ablation, sensitivity and qualitative analysis

As an ablation analysis, we compare the performance of the proposed model with

that of two ablated versions:

1. a standard implementation of the REINFORCE gradient estimator, without

any baseline: L(y)nogr log p(y);

2. an implementation of REINFORCE with the same baseline used by REBAR

to limit the variance, but without the offset term that maintains the gradient
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Table 5.5: Ablation analysis for ProdLDA-REBAR (20 Newsgroups dataset, 50
topics).

Measure/model REINFORCE REINFORCE (baseline) REBAR
Perplexity 1163.5 1161.4 1160.9
Coher-NPMI 0.106 0.112 0.143
Coher-Cv 0.724 0.742 0.778

Table 5.6: Ablation analysis for AVITM-REBAR (20 Newsgroups dataset, 50 top-
ics).

Measure/model REINFORCE REINFORCE (baseline) REBAR
Perplexity 1133.6 1131.7 1130.2
Coher-NPMI 0.110 0.094 0.104
Coher-Cv 0.687 0.665 0.693

0

0.01

0.02

0.03

0.04

0.05

0.06

0.5 1 1.5 2 2.5

C
o

h
er

-N
P

M
I

η

Coher-NPMI over the test set

ProdLDA-REBAR ProdLDA

Figure 5.2: Comparison of coher-NPMI on the test set for ProdLDA and ProdLDA-
REBAR (20 Newsgroups, 50 topics) by varying hyperparameter η.

estimator unbiased:

[L(y)− ηL(s̃)]nogr log p(y).

Tables 5.5 and 5.6 show the results of the ablation analysis for ProdLDA-REBAR

and AVITM-REBAR, respectively, over the 20 Newsgroups dataset with 50 topics.

The results show that the complete approach has outperformed the ablated versions

in almost all cases. The addition of the baseline to REINFORCE has generally

improved the performance of ProdLDA-REBAR, but not of AVITM-REBAR. This

is evidence that the gradient estimator benefits from being both low-variance and

unbiased, as ensured by REBAR [22].

As sensitivity analysis, we have repeated the experiments with ProdLDA-REBAR
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Table 5.7: Results for ProdLDA-REBAR on the 20 Newsgroups dataset with 50
topics, with variable η hyperparameter.

Measure/η 0.5 1.0 1.5 2.0 2.5
Perplexity 1161.9 1163.3 1161.7 1159.1 1159.2
Coher-NPMI 0.112 0.129 0.117 0.137 0.118
Coher-Cv 0.732 0.777 0.750 0.780 0.750

Table 5.8: Results for ProdLDA-REBAR on the 20 Newsgroups dataset with 50
topics, with variable temperature hyperparameter, τ .

Measure/τ 10−5 1.5 1.75 2.0 2.25 2.5 10
Perplexity 1162.9 1160.2 1162.9 1163.3 1163.7 1162.6 1161.6
Coher-NPMI 0.111 0.100 0.123 0.129 0.137 0.105 0.121
Coher-Cv 0.734 0.720 0.764 0.760 0.772 0.724 0.768

on the 20 Newsgroups dataset for 50 topics by varying the values of the η and τ

hyperparameters. Table 5.7 shows the results with η varying in the [0.5, 2.5] range

in 0.5 steps. Interestingly, the model has achieved both the best perplexity and

the best coherence for η = 2.0. However, the results have proved very sensitive to

the η value, and there is a risk that the coherence would drop if measured over an

independent test set. For this reason, in Fig. 5.2 we report the values of the CV

coherence over the test set for the same values of η. The plot shows that the best CV

coherence has been attained for η = 2.0, the same value as the best CV coherence

for the training set. We regard this result as encouraging evidence of generalization.

In turn, Table 5.8 shows the results with ProdLDA-REBAR for the temperature

hyperparameter, τ , varying in the [1.5, 2.5] range in 0.25 steps, and for values 10−5

(approximately one-hot samples) and 10 (approximately uniform samples). The

best result in terms of coherence have been obtained with τ = 2.25, alongside a

very modest worsening of the perplexity, confirming the indications from [66]. To

further probe the generalization of the model, Figure 5.3 compares the behavior

of the training loss, Loverall in Equation (5.19), at successive training epochs with

that of the perplexity over the test set at the same epochs. The plots show that

the perplexity over the test set nicely decreases as training progresses, showing no

evidence of overfitting. This confirms that the proposed training objective has been

able to achieve good generalization over unseen data.
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Figure 5.3: Comparison of the behavior of the training loss and the test-set per-
plexity (20 Newsgroups, 50 topics). Left: The values of the training loss function,
Loverall, at successive training epochs. Right: The values of the test-set perplexity
at the same epochs.

Table 5.9: Examples of topics extracted from the Amazon Fine Food Reviews dataset
(50 topics).

LDA:
chip bag potato open plant come vinegar small littl kettle
gum fun shoot counter respons bewar edg xylitol wide buyer
coffe cup tast like flavor good strong brew pod great

AVITM:
snack chip salti salt cracker bag jerki potato theyr crunchi
salt chip salti jerki potato cracker sea bbq vinegar spici
coffe cup brew pod roast keurig bean machin bold maker

AVITM-REBAR:
sauc soup cook noodl spici salad dish rice pepper pasta
chip salt salti popcorn pop cracker potato vinegar sea cheddar
coffe cup bold keurig roast bitter brew smooth strong french

Finally, for a qualitative analysis, Table 5.9 shows the top K = 10 words for a few

example topics extracted by LDA, AVITM and AVITM-REBAR (the best model in

terms of quantitative measures) from the Amazon Fine Food Reviews dataset with

50 topics. For LDA, word “kettle” in the first topic seems to be an outlier. In addi-

tion, the second topic seems of very difficult interpretation and might be regarded as

an example of unsuccessful extraction. For AVITM, the extracted topics look gen-

erally good; however, word “theyr” in the first topic seems to be an uninformative

outlier. In the case of AVITM-REBAR, all the example topics look informative and

consistent. While this analysis is not exhaustive, it shows a promising alignment

between strong quantitative measures and appealing qualitative results.
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Table 5.10: Comparison of the various improvements over ProdLDA.

Model Perplexity Coher-NPMI Coher-CV
ProdLDA-REINF (Ch. 3) 1162.8 0.141 0.763
ProdLDA-GS (Ch. 4) 1136.6 0.148 0.806
ProdLDA-RB (Ch. 5) 1160.8 0.143 0.778

5.5 Conclusion

In this chapter, we have proposed an approach for neural topic modelling that lever-

ages a reinforcement learning objective (i.e., the predictive risk) and the recently-

proposed REBAR gradient estimator. The predictive risk objective has allowed us

to make use of the reinforcement learning framework, while the REBAR gradient

estimator has provided us with a solution that is both low-variance and unbiased.

The proposed approach has been integrated in a deep variational-autoencoder topic

model (AVITM/ProdLDA) that can be regarded as the previous state of the art

[14]. Experiments carried out over two topic modelling datasets (20 Newsgroups

and Amazon Fine Food Reviews) have given evidence to the strong comparative per-

formance of the proposed approach, with marked improvements in all the reported

measures (perplexity, normalized pointwise mutual information, and CV coherence)

for both datasets. As future work, we plan to explore the use of the REBAR gradi-

ent estimator for other NLP tasks that are mainly unsupervised such as taxonomy

extraction, ontology creation and knowledge graph construction.

5.5.1 Comparison across chapters: REINFORCE vs Gumbel-

Softmax vs REBAR

In this and the previous two chapters, we have proposed three independent improve-

ments over the state-of-the-art model ProdLDA. Within the fuller scope of the thesis,

it is certainly worth comparing them where possible. To this aim, Table 5.10 shows

the results for REINFORCE, Gumbel-Softmax and REBAR over 20 Newsgroups

with 50 topics (the only case in common). It is interesting to see that the Gumbel-

Softmax has quite neatly outperformed the other two. Assuming that this result
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can be extrapolated to other cases, it would show that the simple Gumbel-Softmax,

despite its bias as a gradient estimator, has proved more effective than the unbiased

and more sophisticated REBAR. A possible way to improve the latter could then be

to experiment with various values of its Gumbel-Softmax’ temperature parameter.

We leave this to future work.
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Chapter 6

The Contextualized Regressive

Topic Model

Topic modelling is a popular natural language processing task which automatically

extracts the main topics from a collection of documents, concurrently identifying the

topic proportions of each document. For simplicity and efficiency, most conventional

topic models still use the bag-of-words (BoW) representation to represent the docu-

ments, but more recent models have started to leverage embedded document repre-

sentations to capture their context more fully. However, none of the existing models

has incorporated the embedded representations directly in the training objective of

the topic model. For this reason, in this chapter we propose training a state-of-

the-art variational autoencoder topic model by simultaneously reconstructing the

BoW and a BERT-based embedded representation of the documents. Experiments

performed over three diverse datasets have shown that the proposed model — nick-

named the Contextualized Regressive Topic Model (CRTM) — has been able to

outperform its BoW counterpart and well-established baselines on all datasets and

performance measures.
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6.1 Introduction

The recent years have witnessed a rapid increase in the amounts of textual data,

which are no longer generated only by conventional sources such as publications

and documents, but also by digital sources such as podcasts, blogs, social media

posts, speech-to-text converters and so forth. This growth has led to substantial

challenges in their analysis, exploration, manipulation, and eventual organization.

While all these tasks could theoretically be performed by manual annotators, they

are prohibitively time-consuming, subjective to a significant extent, and prone to

distraction and fatigue errors. Therefore, computational approaches, preferably un-

supervised or weakly supervised, are more needed than ever to tackle the complexity

of large textual data collections.

Amongst the unsupervised approaches, topic models have established a strong rep-

utation for their ability to identify meaningful patterns in large amounts of unstruc-

tured textual data. In simple words, a topic model extracts the shared “topics”

from a given document collection, and simultaneously assigns each document in the

collection to its respective topics in proportion. The extracted topics help the users

understand the overall focus of the collection, while the topic memberships assigned

to the individual documents assist their categorization and organization. Thanks

to their flexibility and effectiveness, topic models have found useful application in

domains as diverse as healthcare [2]–[4], finance [5], [6], agriculture [7], social media

[6], [8], news [9] and many others.

Many topic models have been proposed to date, the most famous of which is prob-

ably the Latent Dirichlet Allocation (LDA) of Blei et al. [12], a probabilistic model

where both the shared topics and the topic proportions of the individual documents

are modelled with Dirichlet distributions. Many topic models have evolved from

LDA, including models based on variational autoencoders [14], [16], [73] which cur-

rently hold the state of the art in performance. All these models typically convert

the individual documents into a so-called bag-of-words (or BoW, concisely) repre-

sentation, which is simply a histogram of the occurrences in the document of the

distinct words of a given vocabulary. While such a representation is able to “cap-
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ture” the fundamental information of a document, it neglects both the order and

the context in which the document’s words appear. For this reason, more recent

approaches such as the contextualized topic model (CTM) of Bianchi et al. [46]

have enriched the representation of the individual documents with contextualized

embeddings obtained from language models such as BERT [74], showing remarkable

performance improvements. The goal of our chapter is to explore how contextual-

ized representations can be more fully integrated into topic models. In detail, the

main contributions of our chapter are:

• We propose a novel training objective that minimizes the distance between a

pre-computed embedding for the document and an embedding predicted by

the topic model.

• We explore the effectiveness of different distance functions in the training ob-

jective, including the Euclidean distance, the Manhattan distance, the Minkowski

distance of order three, and the cosine distance.

• We apply the proposed training objective to a state-of-the-art variational en-

coder topic model, CTM [46], and carry out extensive experiments over three

topic modelling datasets (Wiki20K, 20 Newsgroups, and Amazon Fine Food

Reviews). The experimental results show that the proposed approach has

invariably led to performance improvements over the compared approaches.

The remainder of this chapter is organized as follows: the related work is presented

in Section 6.2, including a brief review of the main topic models. Variational au-

toencoder topic models are recapped in greater detail in Section 6.3.1, while the

proposed approach is presented in Section 6.3.2. The experiments and results are

presented in Section 6.4. Eventually, the conclusion is given in Section 6.5.

6.2 Related work

In this section, we first review the topic models that are closely related to the

proposed work, and then we review contextual representations and their prior use

in topic modelling.
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The fundamental quantities in topic modelling are the given collection of D docu-

ments and the chosen vocabulary of V distinct words. The documents are tokenized,

and the n-th word in the d-th document is noted as wd,n and treated as a categor-

ical variable in index set [1 . . . V ]. With these assumptions, topic modelling can be

framed in either of two equivalent ways: as a matrix factorization problem, or as a

statistical model. In the matrix factorization view, a bag-of-words (the histogram of

occurrences of the V distinct words) is first formed for each document, and then the

bags-of-words of all documents are concatenated together into a matrix of V × D

size, known as the term-document matrix. The goal of topic modelling is to fac-

torize the term-document matrix into two matrices: the term-topic matrix, β, of

size V ×K, where K ≪ D is the chosen number of topics, and the topic-document

matrix, Θ, of size K ×D. The K columns of β are interpreted as the “topics” (i.e.,

specific weights over the vocabulary), and the D columns of Θ as the topic pro-

portions for each of the individual documents. In the statistical view, the columns

of β and Θ are constrained to be proper categorical probability distributions (i.e.,

elements bound between 0 and 1, and sum equal to 1; the “simplex” domain). In

addition, it is possible to include prior distributions over the columns of both β

and Θ. The famous Latent Dirichlet Allocation (LDA) uses Dirichlet priors over Θ

and, optionally, over β. The Dirichlet distribution is conjugate to the categorical

distribution, and therefore the posterior distributions can be conveniently computed

in closed form. LDA has established a strong reputation for performance and has

de-facto become a “workhorse” for the field. It has also spawned a huge number

of extensions and variants, including class-supervised versions [26], hierarchical ver-

sions [13], [33], sequential versions [26], sparse versions [28]–[30], and many others.

However, the extensions that are most relevant to our work are those based on vari-

ational autoencoders and contextual representations [14], [16], [46]. For this reason,

we briefly review them hereafter.

A variational autoencoder (VAE) is a generalization of an autoencoder, an unsuper-

vised neural network containing an encoder and a decoder [15]. The encoder takes a

measurement, x, in input and generates a latent representation, z, as output, while

the decoder takes z as input and generates a “reconstruction” of the input measure-
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ment, x̃. In general, x̃ is not identical to x because the latent representation is not

invertible. The rationale of an autoencoder is that the reconstructed measurement,

x̃, or even the latent representation itself, z, can lead to higher accuracies than the

original measurement, x, in downstream tasks. VAEs have been successfully em-

ployed in a range of domains, including for topic modelling, where both the topics

and the topic proportions are mapped to latent variables. Miao et al. in [16] have

introduced a VAE topic model that uses a Gaussian distribution as the prior over

the logits of the topic proportions. In turn, Srivastava and Satton in [14] have pro-

posed an improvement over [16] using an approximation of a Dirichlet prior. Their

model, called ProdLDA, is still one of the state-of-the-art models for the field.

In general, topic models have proved to be an effective and viable technology. How-

ever, a standing limitation is their prevalent use of BoW representations as input,

which dismisses both the order and the context of the words in the document. In

addition, categorical representations of words fail to capture the similarity between

words of similar meaning. To leverage contextuality in topic modelling, it is pos-

sible to represent the words with popular embeddings such as word2vec, GloVe,

fastText and others [75]. These embeddings ensure that words of similar meaning

have similar representations, and they are able to capture an average context. For

instance, [76] has proposed factorizing the term-topic matrix, β, into a word and

topic embeddings matrices. In the more recent years, contextualized embeddings such

as ELMo, FLAIR, BERT and others have been able to also capture the context at

word level and have become dominant choices for the representation of text [77]. In

particular, the Bidirectional Encoder Representations from Transformers (BERT)

pre-trained language models [74] have achieved state-of-the-art results in a range of

NLP application for their ability to embed both the sequential and the contextual

information of the words. Another key advantage of these models is that they can

be pre-trained in a completely unsupervised way on large amounts of unannotated

text, while at the same time being easily fine-tunable for specific downstream tasks.

However, there has been little research to date integrating contextualized embed-

dings and topic models. As an exception, the contextualized topic model (CTM) of

Bianchi et al. [46] has integrated Sentence-BERT [78], a sentence-embedding ver-
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sion of BERT, with ProdLDA, reporting significant performance improvements over

ProdLDA itself. For this reason, we use it in this work as our baseline.

6.3 Methodology

6.3.1 Variational autoencoder topic models: ProdLDA

ProdLDA is a state-of-the-art topic model based on variational autoencoders [14].

Like all other probabilistic topic models, ProdLDA can be best described in the

form of a generative model, i.e. a model that, in principle, can be used to generate

“synthetic” documents by sampling from the model’s distributions. In practice,

the generative model is only used to describe the model, and a separate training

procedure is responsible for fitting the model’s parameters onto the given document

collection. The generative model of ProdLDA can be expressed as:

• For the d-th document, draw aK-dimensional vector, θd, from aK-dimensional

Gaussian distribution:

θd ∼ N (θ|µ(α),Σ(α))

where vector θd represents the topic proportions of the d-th document in logit

scale, and α is a reparametrization for the mean and covariance of the Gaussian

distribution described later in the section.

• For each word in the d-th document, draw the word from a multinomial distri-

bution over the vocabulary obtained by mixing the term-topic matrix β with

vector θd and then applying the softmax operator, σ():

wd,n ∼ Mult(w|σ(βθd))

The ideal training objective of a topic model such as ProdLDA would be to maximize

the log-likelihood of the given documents in the model’s parameters. However, this

objective is very challenging to be optimized directly, and it is therefore customary

to maximize an approachable lower bound, known as the Evidence Lower Bound,
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or ELBO [15]. The ELBO for a single training document can be expressed as:

L(w, α, β) = Eq(θ|w)

[
log p(w|θ, β)

]
−DKL(q(θ|w)∥p(θ|α)) (6.1)

The terms in equation (6.1) have the following meaning:

1. q(θ|w) is an estimator for the probability of the topic proportions for the

document (represented by its bag-of-words, w) and is known as the “encoder”;

2. log p(w|θ, β) is the log-probability of the document given its topic proportions,

θ, and the word distributions, β, and is known as the “decoder”;

3. Eq(θ|w)

[
log p(w|θ, β)

]
is the expectation of this quantity over q(θ|w) and is

known as the “reconstruction term”;

4. p(θ|α) is a learnable prior probability for the topic proportions that is shared

by the entire corpus;

5. DKL is a Kullback-Leibler divergence that acts as a regularizer to keep q close

to p.

In ProdLDA, both the prior and the encoder are, de facto, modeled as Gaussian

distributions: the prior is modeled as p(θ|α) = N (θ|µ(α),Σ(α)), where α is derived

from a Laplace approximation to the Dirichlet distribution (see [14] for details);

and the encoder is modeled as q(θ|w) = N (θ|fµ(ϕ,w), fΣ(ϕ,w)), where ϕ are the

internal parameters of two neural networks that predict its mean and covariance,

respectively. The expectation in (6.1) is approximated by sampling from q(θ|w).

Eventually, the decoder takes the following form:

p(w|θ, β) = Mult(w|σ(βθ)) (6.2)

where the word distributions for each topic, stored in the columns of matrix β, are

parametrized as logits rather than probabilities to remove domain constraints during

backpropagation.
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Given a collection of documents, ProdLDA uses a VAE training procedure to extract

the shared topics, in the form of matrix β, and to identify the topic proportions of

each document, in the form of matrix θ (and, indirectly, the learnable parameters

ϕ and α) [14]. The trained model can also be used to infer the topic proportions of

new documents by only inferring θ and leaving all other parameters unchanged.

6.3.2 The proposed approach: the contextualized regressive

topic model

As mentioned in the previous sections, conventional topic models use a BoW rep-

resentation for the input document, which is simply a histogram of the number

of occurrences of each distinct word in the document. While this representation

captures all the words in the document and their frequencies, it fails to account

for the sequentiality and contextuality of the words themselves. For this reason,

Bianchi et al. [46] have proposed extending the BoW representation with a docu-

ment embedding obtained from BERT, and consequently named their approach the

Contextualized Topic Model (CTM). The document embedding is a 768-D vector

computed by pooling all the hidden states from the final layer of a BERT models

that receives the document in input [78].

However, while [46] has usefully extended the input representation, it has kept the

decoder and the reconstruction term of ProdLDA unchanged, still measuring the

expected probability of the BoW vector alone. For this reason, in our approach we

propose incorporating a BERT embedding in the decoder and the reconstruction

term. In our model — named the Contextualized Regressive Topic Model (CRTM)

— the V -dimensional βθ vector of equation (6.2) is linearly transformed to a 768-D

vector. The linear transformation, noted as T , is therefore an additional matrix of

V × 768 learnable parameters. The output of this transformation is the embedding

“predicted” by the topic model for the input document, x̄BERT , that we can compare

to the actual BERT embedding for the document, xBERT , in the training objective

using a chosen distance measure. With these notations, the new reconstruction term

can be expressed as:
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x̄BERT = T βθ

LBERT = dist(x̄BERT , xBERT )

(6.3)

where as dist() we have used four different distance measures: Euclidean (or L2),

Manhattan (or L1), Minkowski of order three, and the cosine distance [79].

Finally, the ProdLDA objective of equation (6.1), changed in sign, and the BERT

loss of equation (6.3) can be combined with a positive coefficient, ϵ, into an overall

loss to explore trade-offs between the two terms:

LCRTM = −L(w, α, β) + ϵLBERT (6.4)

In addition to training the model with a contextualized representation, the main

advantages of the proposed approach are that it is fully differentiable like the original

ProdLDA objective, and that its only new parameter is matrix T , with the remaining

network parameters being shared and co-trained by both losses.

6.4 Experiments and Results

6.4.1 Experimental set-up

For the experiments, we have used three diverse document datasets, namely 20

Newsgroups [45] (a benchmark for the field), Amazon Fine Food Reviews [18] and

Wiki20K [46]. The 20 Newsgroups dataset consists of 11, 300 documents from news

shared on social media, while Wiki20K is a collection of 20,000 English Wikipedia

abstracts. Amazon Fine Food Reviews is a much larger dataset consisting of 568, 454

user-posted food reviews. Their main statistics are reported in Table 6.1, showing

that the Amazon dataset is much larger in size, but 20 Newsgroups’ documents

are longer on average. To obtain the BoW representation for the documents, the
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Table 6.1: Main statistics of the datasets used for the experiments (NB: number of
tokens computed after preprocessing and with the given vocabulary size).

Datasets Size Avg # tokens
Wiki20K 20,000 49
20NG 11,300 134
Amazon 568,454 36

same preprocessing pipeline has been applied to all the datasets, including removing

digits, punctuation, stopwords, and infrequent words, and reducing the vocabulary

to a manageable size of V = 2, 000 unique words. The BERT representation1 has

instead been computed directly from the unpreprocessed text. For performance

evaluation, we have compared the proposed model against established topic models

such as LDA, Latent Semantic Indexing (LSI) and the Hierarchical Dirichlet Process

(HDP), as well as the state-of-the-art Contextualized Topic Model (CTM) of Bianchi

et al. [46]. LSI [80] is a popular topic model that dispenses with probabilistic

assumptions, while the HDP [41] is a sophisticated probabilistic model which can

automatically determine the optimal number of the topics within a given bound. As

performance metrics, we have used the topic coherence which is the de-facto standard

for this task. The topic coherence measures the “coherence” of the extracted topics

by computing the co-occurrence of the top N words of each topic within single

documents, and should be as high as possible. Given that multiple definitions for

the topic coherence exist, for the evaluation we have used both the coherence NPMI

[43] and the coherence Cv [44]. As number of topics, we have used K = 20 and

K = 50 since they are common choices in the literature. As number of top words

per topic, we have set N = 10. The key hyperparameter of the proposed approach,

ϵ in equation 6.4, has been explored in the range [0− 25] in 2.5 steps. All the other

hyperparameters have been left to their default values.

6.4.2 Results

Tables 6.2 and 6.3 show the results over the three datasets for 20 and 50 topics,

respectively. The results show that the proposed CRTM model has obtained both

1https://huggingface.co/sentence-transformers/paraphrase-distilroberta-base-v1.
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Table 6.2: Results on the three datasets with 20 topics (L2 distance).

Dataset Wiki20K Wiki20K 20NG 20NG Amazon Amazon
Coherence NPMI Cv NPMI Cv NPMI Cv
LDA 0.004 0.449 -0.006 0.456 0.034 0.462
LSI 0.008 0.392 -0.015 0.435 0.020 0.447
HDP 0.022 0.398 0.016 0.427 0.011 0.418
CTM 0.171 0.711 0.096 0.652 0.147 0.673
CRTM 0.187 0.739 0.153 0.712 0.148 0.672

Table 6.3: Results on the three datasets with 50 topics (L2 distance).

Dataset Wiki20K Wiki20K 20NG 20NG Amazon Amazon
Coherence NPMI Cv NPMI Cv NPMI Cv
LDA 0.031 0.521 0.024 0.496 0.040 0.498
LSI -0.037 0.328 -0.068 0.354 -0.009 0.362
HDP 0.011 0.378 0.024 0.443 0.012 0.423
CTM 0.181 0.714 0.096 0.652 0.129 0.641
CRTM 0.182 0.731 0.133 0.711 0.134 0.649

the highest coherence NPMI and coherence Cv in all but one settings. The CTM

model has obtained the second-best results, while the values for LDA, LSI and

the HDP have been comparatively much lower. These results confirm the impor-

tance of using contextualized representations for topic modelling, and show that the

proposed training objective has noticeably improved the performance of the orig-

inal CTM which only uses the BoW in the training objective. The performance

improvement has been more limited for the largest dataset (Amazon Fine Food Re-

views), suggesting that the proposed training objective has acted as a “regularizer”

for the standard BoW objective, and that the benefit becomes more pronounced for

datasets of smaller size.

As a second experiment, we have performed a comparison of four distances for the

objective of equation (6.3), namely the Manhattan distance (L1), the Euclidean

distance (L2), the Minkowski distance of order 3 (L3) and the cosine distance. To

make the comparison less dependent on the dataset size, in this experiment we have

limited the size of the Amazon dataset to 20K documents. Tables 6.4 and 6.5 report

the results for 20 and 50 topics, respectively. With 20 topics, L2 has performed the

best in the majority of cases, followed by either L3 or L1 depending on the dataset,
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Table 6.4: Comparison of different distances on the three datasets with 20 topics
(NB: 20K documents for Amazon).

Dataset Wiki20K Wiki20K 20NG 20NG Amazon Amazon
Coherence NPMI Cv NPMI Cv NPMI Cv
L1 Distance 0.170 0.712 0.145 0.709 0.080 0.589
L2 Distance 0.187 0.739 0.153 0.712 0.118 0.638
L3 Distance 0.185 0.730 0.129 0.693 0.118 0.646
Cosine Dist. 0.146 0.678 0.100 0.650 0.098 0.634

Table 6.5: Comparison of different distances on the three datasets with 50 topics
(NB: 20K documents for Amazon).

Dataset Wiki20K Wiki20K 20NG 20NG Amazon Amazon
Coherence NPMI Cv NPMI Cv NPMI Cv
L1 Distance 0.197 0.746 0.146 0.715 0.034 0.489
L2 Distance 0.182 0.731 0.133 0.711 0.093 0.575
L3 Distance 0.184 0.736 0.119 0.676 0.102 0.582
Cosine Dist. 0.186 0.732 0.118 0.679 0.108 0.603

while for 50 topics, L1 has performed the best for two datasets and the cosine

distance for another. These results show that the selection of the best distance for a

given dataset can have a significant impact on the coherence of the extracted topics.

To explore the sensitivity of the topic coherence to the ϵ hyperparameter, Fig. 6.1

shows a plot of the topic coherence for the proposed model as a function of hyper-

parameter ϵ for two Amazon subsets with 20K and 100K documents (20 topics, L2

distance). The plots show that the value of ϵ has a major impact on the coherence,
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Figure 6.1: Topic coherence for the proposed model as a function of the ϵ hyperpa-
rameter (Amazon 20K and 100K, 20 topics, L2 distance). Left: coherence NPMI;
right: coherence Cv.
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Figure 6.2: Topic coherence for the proposed model and CTM for increasing dataset
sizes (Amazon dataset, 20 topics, L2 distance). Left: coherence NPMI; right: co-
herence Cv.

and that larger values are better for the smaller dataset, confirming the “regulariz-

ing” behavior of the proposed loss. In addition, the best values of ϵ for the coherence

NPMI and the coherence Cv are similar (17.5-20 for Amazon 20K, 0-5 for Amazon

100K), making it easy to select a value that is near-optimal for both. In turn, Fig.

6.2 explores the sensitivity of the topic coherence to the dataset size by plotting the

coherence of the proposed model and CTM for the Amazon dataset at an increasing

number of documents, from 10K to full size (20 topics, L2 distance). The plots show

that the coherence of the proposed model has been higher than that of CTM for all

dataset sizes, and, as expected, that the difference in performance between the two

models has been larger for smaller dataset sizes.

6.5 Conclusion

This chapter has presented the Contextualized Regressive Topic Model (CRTM), a

novel topic model which extends the conventional BoW training objective of most

topic models with an objective leveraging an embedded representation of the docu-

ment. Experiments performed over three diverse datasets (Wiki20K, 20 Newsgroups

and Amazon Fine Food Reviews) have shown that the proposed model has been able

to outperform its BoW counterpart and other established topic models such as LDA,

LSI and the HDP in all cases. The performance improvement has been more marked

for smaller dataset sizes, suggesting that the extra objective has acted as a regu-

larizer on the model’s learning. Additional experiments over the distance function
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used in the objective have shown that tuning the distance to each specific dataset

can further increase the performance. In the future, we plan to investigate the use

of embeddings from multilingual language models such as mT52 and XLM-R3 to

explore the potential for multilingual extensions.

2https://huggingface.co/docs/transformers/model doc/mt5.
3https://github.com/facebookresearch/XLM.
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Chapter 7

A Temperature-Modified Dynamic

Embedded Topic Model

Topic models are natural language processing models that can parse large collections

of documents and automatically discover their main topics. However, conventional

topic models fail to capture how such topics change as the collections evolve. To

amend this, various researchers have proposed dynamic versions which are able to

extract sequences of topics from timestamped document collections. Moreover, a

recently-proposed model, the dynamic embedded topic model (DETM), joins such

a dynamic analysis with the representational power of word and topic embeddings.

In this chapter, we propose modifying its word probabilities with a temperature

parameter that controls the smoothness/sharpness trade-off of the distributions in

an attempt to increase the coherence of the extracted topics. Experimental results

over a selection of the COVID-19 Open Research Dataset (CORD-19), the United

Nations General Debate Corpus, and the ACL Title and Abstract dataset show that

the proposed model – nicknamed DETM-tau after the temperature parameter – has

been able to improve the model’s perplexity and topic coherence for all datasets.
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7.1 Introduction

Topic models are natural language processing (NLP) models which are able to ex-

tract the main topics from a given, usually large, collection of documents. In ad-

dition, topic models are able to identify the proportions of the topics in each of

the individual documents in the given collection, which can be useful for their cat-

egorization and organization. As a machine learning approach, topic models are

completely unsupervised and, as such, they have proved a very useful tool for the

analysis of large amounts of unstructured textual data which would be impossible

to tackle otherwise. Thanks to their flexibility and ease of use, topic models have

found application in domains as diverse as finance [5], [6], news[9], agriculture [7],

social media [6], [8], healthcare [2]–[4] and many others.

Among the topic models proposed to date, latent Dirichlet allocation (LDA)[12] is

broadly regarded as the most popular. Its simple, fundamental assumption is that

every word in each document of the given collection is associated with a specific

“topic”. In turn, a topic is represented simply as a dedicated probability distribution

over the words in the given vocabulary. Completed by a Dirichlet prior assumption

over the topic proportions of each document, LDA has proved at the same time

accurate and efficient. However, conventional topic models such as LDA are unable

to analyse the sequential evolution of the topics over different time frames. This

could be important, instead, for collections that exhibit substantial evolution over

time. For instance, a collection of COVID-19-related articles may predominantly

display topics such as “outbreak” and “patient zero” in its early stages, “lockdowns”

and “vaccine development” in later stages, and “vaccination rates” and “boosters”

in the present day.

To analyze the topics over time, one could in principle just partition the document

collection into adequate “time slices” (e.g., months or years), and apply a con-

ventional topic model separately over each time slice. However, this would fail to

capture the continuity and the smooth transitions of the topics over time. For this

reason, Lafferty and Blei in [81] have proposed a dynamic topic model (DTM) which

is able to extract the topics from each time slice while taking into account the topics’
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continuity and temporal dynamics. Motivated by the representational power of word

embeddings in NLP, Diang et al. in [23] have recently proposed a dynamic embedded

topic model (DETM) which integrates DTM with embedded word representations.

Since word embeddings can be pre-trained in a completely unsupervised way over

large amounts of text, an embedded model such as DETM can take advantage of

the information captured by the word embeddings’ pre-training.

However, a common limitation for all these topic models is that they cannot be easily

tuned to explore improvements of the performance evaluation measures. For this

reason, in this chapter we propose adding a tunable parameter (a “temperature”)

to the word distributions of DETM to attempt increasing the model’s performance.

We have tested the proposed model, aptly nicknamed DETM-tau, over three diverse

and probing datasets: a time-sliced subset of the COVID-19 Open Research Dataset

(CORD-19) [17], the United Nations (UN) General Debate Corpus [47], and the ACL

Title and Abstract Dataset [48], comparing it with the best dynamic topic models

from the literature such as DTM and DETM. The experimental results show that

the proposed model has been able to achieve higher topic coherence and also lower

test-set perplexity than both DTM and DETM in all cases.

The rest of this chapter is organized as follows: the related work is presented in

Section 7.2, including a concise review of the key topic models. DETM is recapped

in Section 7.3.1, while the proposed approach is presented in Section 7.3.2. The

experiments and their results are presented in Section 7.4. Eventually, the conclusion

is given in Section 7.5.

7.2 Related Work

In this section, we review the topic models that are closely related to the proposed

work, such as latent Dirichlet allocation (LDA), dynamic topic models, and topic

models based on word and topic embeddings.

Let us consider a document collection, D, with an overall vocabulary containing

V distinct words. In LDA, the generic n-th word in the d-th document can be
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noted as wd,n, and simply treated as a categorical variable taking values in index

set [1 . . . V ]. One of the key assumptions of LDA is that each such word is uniquely

assigned to a corresponding topic, zd,n, which is another categorical variable taking

values in set [1 . . . K], where K is the number of topics that we choose to extract

from the collection. In turn, each topic has an associated probability distribution

over the words in the vocabulary, βk, k = 1 . . . K, which accounts for the word

frequencies typical of that specific topic. The full model of LDA can be precisely

formulated and understood in terms of the following generative model, which is a

model able to generate “synthetic” documents by orderly sampling from all the

relevant distributions:

• For the d-th document, draw a K-dimensional vector, θd, with its topic pro-

portions:

θd ∼ Dir(θd|α)

• For each word in the d-th document:

Draw its topic: zd,n ∼ Cat(θd)

Draw the word from the topic’s word distribution:

wd,n ∼ Cat(βzd,n)

In the above model, the first step for each document is to sample its topic pro-

portions, θd, from a suitable Dirichlet distribution, Dir(θd|α). Once the topic pro-

portions are given, the next step is to sample all of the document’s words, by first

sampling a topic, zd,n, from categorical distribution 1 Cat(θd), and then sampling

the corresponding word, wd,n, from the word distribution indexed by zd,n, Cat(βzd,n).

Overall, LDA is a computationally-efficient model that can be used to accurately

extract the topics of a given training set of documents, and simultaneously identify

the topic proportions of each individual document. LDA can also be applied to a

1Otherwise known as the multinomial distribution. The recent literature on variational inference
seems to prefer the “categorical distribution” diction.
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given test set ; in this case, the parameters of the Dirichlet distribution, α, and the

word distributions, β, are kept unchanged, and only the topic proportions for the

given test documents are inferred. LDA has also spawned a large number of exten-

sions and variants, including hierarchical versions[13], [33], sequential versions[26],

class-supervised versions [26], sparse versions [28]–[30], and many others. However,

the extensions that are closely relevant to our work are the dynamic topic model

(DTM) [81], the embedded topic model (ETM) [76], and the dynamic embedded

topic model (DETM) [23]. We briefly review DTM and ETM hereafter, while we

recap DETM in greater detail in Section 7.3.

DTM is a topic model that captures the evolution of the topics in a corpus of doc-

uments that is sequentially organized (typically, along the time dimension). The

corpus is first divided up into “time slices” (i.e., all the documents sharing the same

time slot), and then the topics are extracted from each slice taking into account a

dynamic assumption. For reasons of inference efficiency, DTM uses a logistic nor-

mal distribution, LN (θ|α), instead of a Dirichlet distribution to model the topic

proportions of the individual documents. In addition, the samples of the logistic

normal distribution are obtained by explicitly sampling a Gaussian distribution of

equivalent parameters, and then applying the softmax operator, σ(·), to the Gaus-

sian samples. The sequential dependencies between the time slices are captured by

a simple dynamical model:

αt ∼ N (αt−1, δ2I)

βt ∼ N (βt−1, σ2I)
(7.1)

where αt are the parameters of the logistic normal distribution over the topics at

time t, and βt is the matrix of all the word distributions (in logit scale), also at time

t. The rest of the generative model for slice t can be expressed as:

• For the d-th document, draw its topic proportions (logit scale):

115



θd ∼ N (αt, a2I).

• For each word in the d-th document:

Draw its topic: zd,n ∼ Cat(σ(θd))

Draw the word from the topic’s word distribution:

wd,n ∼ Cat(σ(βzd,n))

DTM has proved capable of good empirical performance, and its inference is provided

by efficient variational methods [81]. However, both LDA and DTM might lead to

poor modelling in the presence of very large vocabularies, especially if the corpus

is not sufficiently large to allow accurate estimation of the word probabilities. A

possible mollification consists of substantially pruning the vocabulary, typically by

excluding the most common and least common words. However, this carries the risk

of excluding important terms a priori. The embedded topic model (ETM) [76] aims

to overcome the limitations of categorical word distributions such as those of LDA

and DTM by leveraging word embeddings [82], [83].

In ETM, each distinct word in the vocabulary is represented as a point in a standard

word embedding space (typically, 300-1024D). Each topic, too, is represented as a

point (a sort of “average”) in the same embedding space. The compatibility between

a word and a topic is then simply assessed by their dot product, and the probability

of the word given the topic is expressed as in a common logistic regression classifier.

The full generative model of ETM can be given as:

• For the d-th document, draw its topic proportions (logit scale):

θd ∼ N (0, I)

• For each word in the d-th document:

Draw its topic: zd,n ∼ Cat(σ(θd))

Draw the word from the topic’s word distribution:
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wd,n ∼ Cat(σ(ρ⊤ηzd,n))

In the above, we have noted as ρ the word embedding matrix, which contains the

embeddings of all the words in the given vocabulary. Assuming a dimensionality of

L for the embedding space, ρ’s size is L × V . In turn, with notation ηk we have

noted the embedding of the k-th topic. Therefore, the dot product ρ⊤ηk evaluates

to a V -dimensional vector which, suitably normalised by the softmax, returns the

probabilities for the word distribution of topic k.

The ETM is a powerful topic model that joins the advantages of LDA with the well-

established word embeddings. The main benefit brought by the word embeddings

is that they can be robustly pre-trained using large amounts of unsupervised text

from a relevant domain (potentially, even the collection itself). During training of

the ETM, a user can choose to either 1) use the pre-trained word embeddings, keep-

ing them fixed, or 2) load them as initial values, but update them during training. In

alternative, a user can also choose to update the word embeddings during training,

but initialise them from arbitrary or random values (in this case, not taking advan-

tage of pre-training). Dieng et al. in [76] have shown that the ETM has been able

to achieve higher topic coherence and diversity than LDA and other contemporary

models. While the ETM, like LDA, is limited to the analysis of static corpora, it

can also be extended to incorporate dynamic assumptions. This is the aim of the

dynamic embedded topic model (DETM) that we describe in the following section.

7.3 Methodology

In this section, we first describe our baseline, the dynamic embedded topic model

(7.3.1), and then we present the proposed approach (7.3.2).

7.3.1 The dynamic embedded topic model

The dynamic embedded topic model (DETM) joins the benefits of DTM and ETM,

allowing the model to capture the topics’ evolution over time while leveraging the

representational power of word embeddings. The dynamic assumption over the topic
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proportions is the same as for the DTM:

αt ∼ N (αt−1, δ2I) (7.2)

but a dynamic prior is now assumed over the topic embeddings:

ηt ∼ N (ηt−1, γ2I) (7.3)

The rest of the generative model for slice t is:

• For the d-th document, draw its topic proportions (logit scale):

θd ∼ N (αt, a2I).

• For each word in the d-th document:

Draw its topic: zd,n ∼ Cat(σ(θd))

Draw the word from the topic’s word distribution:

wd,n ∼ Cat(σ(ρ⊤ηtzd,n))

The training of DETM involves maximizing the posterior distribution over the

model’s latent variables, p(θ, η, α|D). However, maximizing the exact posterior is

intractable. Therefore, the common approach is to approximate it with variational

inference [84] using a factorized distribution, qv(θ, η, α|D). Its parameters, noted

collectively as v, are optimized by minimizing the Kullback-Leibler (KL) divergence

between the approximation and the posterior, which is equivalent to maximizing the

following expectation lower bound (ELBO):

L(v) = E[log p(θ, η, α,D)− log qv(θ, η, α|D)] (7.4)

The implementation of qv relies on feed-forward neural networks to predict the

variational parameters, and on LSTMs to capture the temporal dependencies; we
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Table 7.1: Key sizes of the datasets used for the experiments.

Dataset Training set Validation set Test set Timestamps Vocabulary
CORD-19TM 15,300 900 1,800 18 70,601
UNGDC 1,96,290 11,563 23,097 46 12,466
ACL 8,936 527 1,051 31 35,108

refer the reader to [23] for details.

7.3.2 The proposed approach: DETM-tau

The fundamental evaluation measure for a topic model is the topic coherence [43].

This measure looks at the “top” words in the word distribution of each topic, and

counts how often they co-occur within each individual document. The assumption is

that the higher the co-occurrence, the more “coherent” is the extracted topic model.

However, topic models cannot be trained to optimize the topic coherence. In the first

place, the coherence is a counting measure that depends on the outcome of a ranking

operation (a top-K argmax), and it is therefore not differentiable in the model’s

parameters. In the second place, it is evaluated globally over the entire document

set. As a consequence, alternative approaches based on reinforcement learning [51]

would prove excruciatingly slow, and would not be able to single out and reward the

contribution of the individual documents (the so-called “credit assignment” problem

[85]).

For this reason, in this work we attempt to improve the topic coherence by utilizing

a softmax with temperature [86] in the word distributions. The inclusion of a tem-

perature parameter can make the word distributions “sharper” (i.e. the probability

mass more concentrated in the top words, for temperatures < 1) or smoother/more

uniform (for temperatures > 1). We expect this to have an impact on the final word

ranking, as high temperatures will make mixing more pronounced during training,

while low temperatures may “freeze” the ranking to an extent. With the addition

of the temperature parameter, τ , the word distributions take the form:

w ∼ Cat(σ(ρ⊤ηz/τ)) (7.5)
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While parameter τ can be optimized with the training objective like all the other

parameters, we prefer using a simple validation approach over a small, plausible

range of values to select its optimal value.

7.4 Experiments and Results

7.4.1 Experimental set-up

For the experiments, we have used three popular document datasets: the COVID-19

Open Research Dataset (CORD-19) [17], the United Nation General Debate Corpus

(UNGDC) [47] and the ACL Title and Abstract Dataset (ACL) [48]. CORD-19 is

a resource about COVID-19 and related coronaviruses such as SARS and MERS,

containing over 500,000 scholarly articles, of which 200,000 with full text. For our

experiments, we have created a subset organized in monthly time slices between

March 2020 and August 2021, limiting each slice to the first 1,000 documents in

appearance order to limit the computational complexity. We refer to our subset

as CORD-19TM, and we release it publicly for reproducibility of our experiments.

UNGDC covers the corpus of texts of the UN General Debate statements from

1970 to 2015 annotated by country, session and year. For this dataset, we have

considered yearly slices. The ACL dataset [48] includes 10,874 title and abstract

pairs from the ACL Anthology Network which is a repository of computational

linguistics and natural language processing articles. For this dataset, too, we have

considered yearly slices, with the years spanning from 1973 to 2006 (NB: three years

are missing). As in [23], the training, validation and test sets have been created by

splitting the datasets into 85%, 5% and 10% splits, respectively. All the documents

were preprocessed with tokenization, stemming and lemmatization, eliminating stop

words and words with document frequency greater than 70% and less than 10%, as

in [23].

As models, we have compared the proposed DETM-tau with: the original DETM,

DTM, and LDA applied separately to each individual time slice. As performance

metrics, we have used the perplexity and the topic coherence which are the de-facto
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standards for this task. The perplexity is a measure derived from the probability

assigned by the model to a document set, and should be as low as possible. It

is typically measured over the test set to assess the model’s generalization. The

topic coherence is a measure of the co-occurrence of the “top” K words of each

topic within single documents, and should be as high as possible. It is typically

measured over the training set to assess the explanatory quality of the extracted

topics. Several measures for the topic coherence have been proposed, and we use

the NPMI coherence [43] with K = 10, as in [23]. As number of topics, we have

chosen 20 and 40 which are commonly-used values in the literature 2. For the

selection of the temperature parameter, τ , we have used range [0.25 − 2.25] in 0.5

steps. All other hyperparameters have been left as in the corresponding original

models.

7.4.2 Results

Tables 7.2 and 7.3 show the results over the CORD-19TM dataset with 20 and 40

topics, respectively. In terms or perplexity, the proposed DETM-tau has neatly

outperformed the original DETM for both 20 and 40 topics (NB: the perplexity is

not available for the LDA and DTM models). In terms of topic coherence, DETM-

tau has, again, achieved the highest values. The second-best results have been

achieved in both cases by DTM, while DETM and LDA have reported much lower

scores. In particular, the very poor performance of LDA shows that applying a

standard topic model separately on each time slice is an unsatisfactory approach,

and musters further support for the use of dynamic topic models for timestamped

document analysis.

Tables 7.4 and 7.5 show the results over the UNGDC and ACL datasets, respectively.

For these datasets, we have not carried out experiments with DTM as it proved

impractically time-consuming, and we omitted LDA outright because of its non-

competitive performance. On both these datasets, too, DETM-tau has been able

to achieve both lower perplexity and higher coherence than the original DETM. We

2We also experienced computational issues with larger number of topics with the DTM models
on some datasets, and we therefore capped the number to 40.
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Table 7.2: Results on the CORD-19TM dataset with 20 topics

Model LDA DTM DETM DETM-tau
Perplexity — — 15548.8 14379.2
Coher. NPMI -0.049 0.114 0.059 0.129

Table 7.3: Results on the CORD-19TM dataset with 40 topics

Model LDA DTM DETM DETM-tau
Perplexity — — 14966.3 13129.7
Coher. NPMI -0.047 0.081 -0.043 0.093

Table 7.4: Results on the UNGDC dataset with 20 and 40 topics

Model DETM DETM-tau DETM DETM-tau
# topics 20 40
Perplexity 3032.8 3023.5 2798.9 2782.0
Coher. NPMI 0.121 0.129 0.048 0.124

Table 7.5: Results on the ACL dataset with 20 and 40 topics

Model DETM DETM-tau DETM DETM-tau
# topics 20 40
Perplexity 5536.4 5421.1 4360.0 4169.6
Coher. NPMI 0.150 0.179 0.153 0.174

believe that these results provide clear evidence of the importance of controlling the

sharpness-smoothness trade-off of the word distributions.

To explore the sensitivity of the results to the temperature parameter, τ , Fig. 7.1

plots the values of the perplexity and the topic coherence of DETM-tau (CORD-

19TM, 20 topics) for various values of τ , using DETM as the reference. It is clear that

setting an appropriate value is important for the model’s performance. However,

the plots show that the proposed model has been able to outperform DETM for an

ample range of values. In addition, Fig. 7.2 plots the values of the perplexity and

the topic coherence at successive training epochs. The plots show that both metrics

improve for both models as the training progresses. Given that the topic coherence

is not an explicit training objective, its increase along the epochs is remarkable and

gives evidence to the effective design of both models.

Eventually, we present a concise qualitative analysis of the extracted topics through
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Figure 7.1: Perplexity and topic coherence for DETM-tau for various values of the
temperature parameter, τ (CORD-19TM, 20 topics). The value for DETM is used
for comparison.
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Figure 7.2: Perplexity and topic coherence for DETM and DETM-tau at successive
training epochs (CORD-19TM, 20 topics).

Figure 7.3: Evolution of the probability of a few, selected words within their topics
for the DETM-tau model with the CORD-19TM dataset, 20 topics.
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Table 7.6: Examples of topics extracted by DETM-tau from the CORD-19TM
dataset (20 topics) at different time slices.

Time slice Examples of topics
0 zikv cytokine proinflammatory resuscitation ferritin antitumor exosomes thoracic evidencebased patienten

cells infection cell virus blood disease protein tissue infected receptor
patients patient health clinical care hospital months disease years therapy

10 exosomes copd frailty mgml tavi absorbance biofilm sigmaaldrich evidencebased virulence
social education research health people services industry culture educational providers

macrophages antibacterial antioxidant kshv mmp lmics propolis sdgs inactivation hydrogel
patients studies health care patient clinical treatment disease population risk

17 nanoparticles proinflammatory bioactive antifungal inhospital coagulation angiogenesis inflammasome
cells cell blood disease tissue cancer infection protein proteins metabolism

patients health patient social education hospital clinical people care population

Table 7.6 and Fig. 7.3. Table 7.6 shows a few examples of the topics extracted

by DETM-tau from the CORD-19TM dataset (20 topics) at time slices 0, 10 and

17. Each topic is represented by its ten most frequent words. Overall, all the

examples seem to enjoy good coherence and descriptive power. For instance, the

first topic at time slice 0 could be titled “immune response analysis” or something

akin; the last topic at time slice 17 could be titled “population health”; and so forth.

Therefore, the automated categorization of the articles into such topics seem to

provide a useful, and completely unsupervised, analysis. In turn, Fig. 7.3 shows the

temporal evolution of the frequency of a few, manually selected words within their

respective topics. The left-most topic, which we have labelled as “virus name”, shows

that referring to COVID-19 by the names “coronavirus” and “sarscov” was popular

during 2020; conversely, as of January 2021, the name “covid” has become dominant.

The right-most topic shows that words such as “blood”, “infection” and “tissue”

have decreased their in-topic frequency over time, possibly in correspondence with

an increased understanding of the disease. These are just examples of the insights

that can be obtained by dynamic topic models.

7.5 Conclusion

This chapter has presented a temperature-modified dynamic embedded topic model

for topic modelling of timestamped document collections. The proposed model uses

a softmax with temperature over the word distributions to control their sharpness/s-

moothness trade-off and attempt to achieve a more effective parameterization of
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the overall topic model. Experiments carried out over three timestamped datasets

(a subset of the CORD-19 dataset referred to as CORD-19TM, the United Na-

tion General Debate Corpus (UNGDC) and the ACL Title and Abstract Dataset

(ACL)) have showed that the proposed model, suitably nicknamed DETM-tau, has

been able to outperform the original DETM model by significant margins in terms

of both perplexity and topic coherence. In addition, DETM-tau has performed re-

markably above the other compared models. A qualitative analysis of the results

has showed that the proposed model has generally led to interpretable topics, and

can offer insights into the evolution of the topics over time.
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Chapter 8

Conclusions and Future Work

To restate the motivations for our work, let us once more acknowledge a key, standing

limitation of topic models: the main metric used for their performance evaluation –

the topic coherence – is a countable metric and, as such, is not optimizable during

training (similarly to the accuracy in supervised classification, or the BLEU score in

summarization, and so forth). The surrogate measure used for training the models

– the document likelihood (or, in the case of VAEs, the ELBO) – only rewards the

fitting of the individual documents to the model and is very different from the topic

coherence. In the absence of correctives, there is an inherent risk that training will

overfit the training objective and perform poorly on the evaluation measure.

On the other hand, reinforcement learning has proved a very powerful framework

to train models to perform better. Its general appeal lies in its ability to lever-

age both differentiable and non-differentiable “rewards” to guide the training of the

models, jointly with its use of sampling to increase the exploration of the parameter

space. Despite the many existing topic models, until this present work the field had

undeniably made limited use of reinforcement learning. In our case, we have set

our focus on the probability of the topic proportions of the individual documents

as our policy, and designed different rewards for it. Unfortunately, the topic co-

herence is unsuitable even as a non-differentiable reward simply because it is way

too computationally-heavy to be evaluated repeatedly during training. Therefore,
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we have designed our rewards around the ELBO itself, including baselines, sam-

pling, “temperatures”, and ensuring that the gradient estimators be unbiased and

low-variance (both highly desirable properties). By adding the reinforcement learn-

ing objective to the conventional training objective, we have obtained a form of

“regularization” that has led to sizable improvements of the topic coherence in all

cases.

The first, specific contribution of this thesis has been the use of the REINFORCE

algorithm over the topic proportions generated by a state-of-the-art variational au-

toencoder topic model. In the conventional configuration, the training of this model

only minimizes the training loss, while in the proposed configuration it also di-

rectly rewards the generation of suitable topic proportions (the “policy”). This has

proved able to achieve remarkable experimental results. In the next two units of

work, we have introduced the assumption that each individual document would be

generated by a single, “main” topic. While this assumption can seem restrictive,

we have immediately relaxed it in two different ways. The first has been the use

of the Gumbel-Softmax distribution in place of the categorical distribution to 1)

diversify the topic vectors by sampling and 2) control their sparsity by the Gumbel-

Softmax’ temperature parameter. This has worked well, with valuable experimental

results. However, the Gumbel-Softmax introduces a bias in the gradient estimator

compared to the exact gradient. For this reason, as a second approach we have ex-

perimented with the REBAR gradient estimator, which has a number of attractive

properties, including being unbiased with respect to the exact gradient and enjoy-

ing a low-variance design. This modification has also led to marked performance

improvements. However, as shown in Section 5.5.1, the Gumbel-Softmax approach

has performed better, suggesting that suitably adjusting the temperature parameter

within REBAR may be a way to achieve the best of both approaches.

Topic models normally convert the individual documents into a bag-of-words (BoW)

representation, which is simply a histogram of the frequencies of the vocabulary

words in the document. While informative, this representation neglects both the

order and the context in which the document’s words appear and for this reason
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some recent work has proposed augmenting it with Transformer-based embeddings

[46]. However, no work to date had used these representations as training objective,

and for this reason we have proposed a novel training objective that minimizes the

distance between a pre-computed embedding for the document and an embedding

predicted by the topic model. To this aim, we have also compared the effectiveness of

different distance functions such as the Euclidean distance, the Manhattan distance,

the Minkowski distance of order three and the cosine distance.

Conventional topic models fail to capture the continuity and the smooth transitions

of the topics over time. For this reason, Lafferty and Blei have proposed a dynamic

topic model (DTM) which is able to extract the topics from each time slice while

taking into account the topics’ continuity and temporal dynamics, and Diang et

al. have recently proposed a dynamic embedded topic model (DETM) which inte-

grates DTM with embedded word representations. However, a limitation of these

topic models is that they cannot be easily tuned to explore improvements of the

performance evaluation measures. For this reason, we have proposed adding a tun-

able parameter (a “temperature”) to the word distributions of DETM to attempt

increasing the model’s performance. The experimental results have again been very

encouraging.

While we are satisfied with these contributions, we believe that there is still ample

room for future work. Within it, we believe that it would be worth exploring other,

more flexible gradient estimators. An example is RELAX [69] which enjoys some

principled advantages over REBAR: while REBAR uses the loss function itself as

the baseline, RELAX can use any arbitrary, trained neural network as the baseline.

This adds flexibility to the baseline and the training objective overall, and could

potentially lead to performance improvements.

Another interesting direction to explore could be the integration of the various re-

inforcement learning objectives used in this thesis (Gumbel-Softmax, REBAR, RE-

INFORCE), and possibly others, with both the contextualized representations pro-

posed in Chapter 6 (both as input and as training objective) and the dynamic topic

model proposed in Chapter 7. While the computational complexity would have to
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be carefully monitored, it should be feasible now or in the near future thanks to the

constant increase of GPUs’ memory and speed.

A last, promising area to explore could be that of flow-based deep generative models

which overcome some of the standing limitations of variational autoencoders by flow

normalization, a powerful statistics tool for density estimation. Normalizing flow

transforms a simple distribution into a complex distribution by applying a sequence

of invertible transformation functions, where the variable is substituted repeatedly

with a new one according to the change of variables theorem to eventually obtain

the probability distribution of the target variable. In this way, normalizing flow

somehow combines the best of both worlds, allowing both deep feature learning and

tractable marginal likelihood estimation.
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