

Enhanced Recommender Systems with Deep Neural Networks

by Ruiping Yin

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of A./Professor Guangquan Zhang and Distinguished Professor Jie Lu

University of Technology Sydney Faculty of Engineering and Information Technology

September, 2022

Certificate of Original Authorship

I, Ruiping Yin, declare that this thesis is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of the requirements for a degree at any other academic institution except as fully acknowledged within the text. This thesis is the result of a Collaborative Doctoral Research Degree program with Beijing Institute of Technology.

This research is supported by the Australian Government Research Training Program.

Production Note: Signature removed prior to publication. Ruiping Yin

20/9/2022 September 2022

Acknowledgements

First and foremost I would like to express my sincere thanks to both my principal supervisor A./Professor Guangquan Zhang and co-supervisor Distinguished Professor Jie Lu. Without their patience and encouragement, I would not have been able to finish my PhD journey. Their strict academic attitude and respectful personality has benefited my PhD study and will be a great treasure throughout my life. I have learnt so much from them. During my doctoral research, they gave me countless guidance and help which inspired me in many aspects including research methodology, experiments, writting skills. and even the sentence structure and mathematical formulas and greatly improved my thesis quality.

Then I would like to express my gratitude to every member of the Decision Systems & e-Service Intelligence Lab (DeSI). Thank you for your care and help. I have benefited a lot from the time I spent with you. I would like to especially thank Qian Zhang for the discussion on my research.

Next I am grateful to the the School of Software, Faculty of Engineering and Information Technology, University of Technology, Sydney for their support. I am also grateful for the financial support I received from the Vice-Chancellor's Postgraduate Conference Fund.

Finally, I would like to express my gratitude to my family who have been supporting and encouring me. I would like to thank my father, my mother and my wife for their care and support, and to all of my friends who have helped me and cared about me. Love you guys.

Abstract

Recommender system is an intelligent decision making system that adopts machine learning technology to recommend relevant contents to users based on the analysis of users' interests and preferences. It can help users find appropriate contents within a reasonable time and has been proved to be an effective means to deal with the problem of information overload. At present, although the recommender system has been widely used in various social fields, there are still many problems in the existing recommender system. For example, data sparsity, cold start, long tail items are difficult to be recommended, and graph structure data cannot be effectively processed, resulting in low recommendation performance and poor user experience, which restricts the development of personalized recommender system. In recent years, with the rapid development of the theory and technology of deep learning, the study on personalized recommendation on deep neural networks has been paid more and more attention by the industry and academia. How to use the principles and techniques of deep learning to alleviate and overcome the problems in the existing personalized recommender system, so as to improve the performance of the recommender system, is a topic worthy of research.

The main work of this thesis for deep learning-based personalized recommendation methods is as follows: To model the conception of fashion and visual factors on the fashion recommendation task, we propose a cross-domain recommendation method based on visual collocation knowledge transfer. First, we extract visual collocation knowledge of fashion items from images on a popular fashion website and even street photography, and incorporate the learnt knowledge to the recommender system through transfer learning. By collecting cross-domain information and updating visual collocation knowledge, the accuracy of clothing recommendation is improved.

To overcome the difficulty of accurately extracting latent features of new users and non-popular products, we propose a recommendation method based on deep graph convolutional neural network. Different with the conventional methods which consider the low-order similarity only, we learn the representation of users and items from the high-order similarity between users and items. We treat the recommendation task as an edge prediction problem on a bipartite graph. It inherits the advantages of graph convolutional neural network to quickly combine local information on the graph, so that we can obtain the node embedding which consists of the node's information, neighbors' information and local structure information. At the same time, for the over-smoothing problem caused by the multi-layer graph convolutional neural network, we propose an information propagation method based on the attention mechanism, which can effectively alleviate the over-smoothing problem when the graph convolutional neural network is too deep.

To solve the problem that the user's preference is affected by the environment and changes with time, we propose a recommendation method based on the user's long-term and short-term preference. In one session, the products browsed by the user have a certain continuity. This method models the user's current shopping intention through the items that the user has browsed in the current session. At the same time, the method also combines the user's long-term stable preferences contained in the user's historical records to provide users with in-time recommendations. The method can quickly adapt to the changes of the user's current interests caused by changes of the context and improve users' stickiness to shopping websites.

To solve the problem of data sparsity, we propose a recommendation method based on generative adversarial strategy. The algorithm generates a user's latent feature vector by training a generator network with a denoising autoencoder, which generates recommendations for the user accordingly, while training a discriminant network to distinguish the recommendation prediction generated by the generating network from the user's real transaction records. The adversarial training between the discriminating network and the generating network helps to push recommendation predictions closer to the real transaction records. Through continuous iterative adversarial training between generation network and discriminant network, the two networks are mutually promoted. Therefore, the final recommendation is improved.

Table of Contents

CF	ERTI	FICATE OF ORIGINAL AUTHORSHIP	ii
Ac	know	ledgements	iii
Ab	ostrac	t	v
Li	st of H	ligures	xiii
Li	st of 7	Fables	XV
1	Intro	oduction	1
	1.1	Motivation	1
	1.2	Research Questions and Objectives	4
	1.3	Research Significance	7
		1.3.1 Theoretical Significance	7
		1.3.2 Practical Significance	8
	1.4	Thesis Structure	8
	1.5	Publications Related to This Thesis	10
2	Lite	rature Review	12
	2.1	Recommendation Techniques	13

		2.1.1	Collaborative filtering-based recommendation algorithm .	14
		2.1.2	Generic Feature-based recommendation algorithm	25
	2.2	Deep L	earning Techniques	27
		2.2.1	Multi-layer Perceptron	27
		2.2.2	Autoencoder	28
		2.2.3	Convolutional neural network	28
		2.2.4	Recurrent neural network	29
	2.3	Deep L	earning-based Recommender Systems	29
		2.3.1	Embedding Techniques for Recommender Systems	31
		2.3.2	Models using Deep Learning Technique for Latent Rela-	
			tionship Modeling	35
3	Enh	ancing l	Fashion Recommendation with Visual Compatibility Rela-	
•				
	tions	hin		13
	tions	hip		43
	tions 3.1	h ip Introdu	letion	43 43
	tions 3.1 3.2	hip Introdu Notatic	ection	43 43 46
	tions 3.1 3.2 3.3	hip Introdu Notatic Visual	Inction	43 43 46 47
	tions 3.1 3.2 3.3	hip Introdu Notatic Visual 3.3.1	Inction	43 43 46 47 49
	tions 3.1 3.2 3.3	hip Introdu Notatic Visual 3.3.1 3.3.2	Action	43 43 46 47 49
	tions 3.1 3.2 3.3	hip Introdu Notatic Visual 3.3.1 3.3.2	action	 43 43 46 47 49 51
	tions 3.1 3.2 3.3 3.4	hip Introdu Notatic Visual 3.3.1 3.3.2 Experin	action	 43 43 46 47 49 51 53
	tions 3.1 3.2 3.3 3.4	hip Introdu Notatic Visual 3.3.1 3.3.2 Experin 3.4.1	action	 43 43 46 47 49 51 53 54
	tions 3.1 3.2 3.3 3.4	hip Introdu Notatic Visual 3.3.1 3.3.2 Experin 3.4.1 3.4.2	action	 43 43 46 47 49 51 53 54 55
	tions 3.1 3.2 3.3 3.4	hip Introdu Notatic Visual 3.3.1 3.3.2 Experin 3.4.1 3.4.2 3.4.3	action	 43 43 46 47 49 51 53 54 55 57

4	A D	eeper G	raph Neural Network for Recommender Systems	60
	4.1	Introd	uction	60
	4.2	.2 Problem Formulation and Motivation		
		4.2.1	Recommendation and Link Prediction in Bipartite Graphs	63
		4.2.2	Factorization Models	64
		4.2.3	Graph Neural Network	66
	4.3	Graph	Neural Network-based Collaborative Filtering	67
		4.3.1	General framework	67
		4.3.2	Node embedding via Graph Neural Network	69
		4.3.3	Attention Mechanism	70
		4.3.4	Model Training	71
	4.4	Experi	ments	72
		4.4.1	Experimental Settings	72
		4.4.2	Performance Comparison	74
		4.4.3	Discussion	76
	4.5	Summ	ary	77
5 Long. and Short-term User Interest Network for Personalized E		Short-term User Interest Network for Personalized Recom	-	
-	men	dation		79
	5.1	Introd	uction	79
	5.2	Prelim	inaries and Problem Formulation	84
	5.3	3 Methodology		85
		5.3.1	Long-term User Interest Network	87
		5.3.2	Short-term User Interest Network	89
		5.3.3	Long- and short-term interest fusion and recommendation	91
		5.3.4	Loss function	92

	5.4	Experiments			92
		5.4.1 Dataset and Da	ata Preparation		93
		5.4.2 Evaluation met	trics		94
		5.4.3 Baseline Methe	ods		95
		5.4.4 Experimental S	Setup		97
		5.4.5 Comparison w	ith baseline methods		97
		5.4.6 Components A	nalysis		100
	5.5	Summary			108
6	Rsy	GAN: Generative Adve	rsarial Network for Recommender	Systems	s109
	6.1	Introduction			109
	6.2	Preliminaries and Prob	lem Formulation		111
	6.3	Generative Adversaria	l Network for Recommender System	s	112
		6.3.1 Proposed Mod	el		112
		6.3.2 Loss Function			115
		6.3.3 Optimization A	Algorithm		116
	6.4	Experiments			117
		6.4.1 Datasets			117
		6.4.2 Evaluation for	Recommendation		118
		6.4.3 Performance C	Comparison		119
		6.4.4 Components in	n RsyGAN		122
	6.5	Summary			127
7	Con	clusion and Future Res	search		128
	7.1	Conclusions			128
	7.2	Future Study			132

Bibliography	134
Abbreviations	157

List of Figures

1.1	Thesis structure	9
2.1	Framework of recommender systems(Covington et al., 2016)	14
2.2	Illustration of AE-based Recommendation model	39
3.1	Examples of compatible and incompatible outfits	44
3.2	The proposed framework of our method	48
3.3	The illustration of our model for learning compatibility knowledge.	50
3.4	Performance of VBPR, DVBPR and CO-BPR with varying	
	dimensionality measured by AUC	59
4.1	Illustration of the bipartite graph of a user-item interaction matrix.	62
4.2	Illustration of the proposed framework.	68
4.3	Performance of HR@10 and NDCG@10 with different numbers of	
	latent factors on ML-1M	76
4.4	Performance of HR@10 and NDCG@10 with different numbers of	
	latent factors on ML-10M.	76
4.5	Performance of HR@10 and NDCG@10 with different numbers of	
	latent factors on Taobao dataset.	77
4.6	Performance of HR@10 with different numbers of hidden layers	77

4.7	Performance of NDCG@10 with different numbers of hidden layers. 78
5.1	Overall framework of the proposed LSRec method
5.2	Illustration of long-term interest network
5.3	Performance comparison with different number of Graph Convolu-
	tional Layers
5.4	Experimental results of the dimension's effects on Diginetica dataset.103
5.5	Experimental results of the dimension's effects on Retailrocket
	dataset
5.6	Performance over Retailrocket dataset with a different user-item
	interaction sparsity
5.7	Performance over Retailrocket dataset with a different average
	length of sessions
6.1	The architecture of the RsyGAN model
6.2	MAP@k of RsyGAN showing variations in the number of hidden
	units
6.3	The effects of parameter λ_D
6.4	Learning curves of RsyGAN on MovieLens 10M

List of Tables

3.1	Major Notations Used in This Chapter	47
3.2	Dataset statistics	54
3.3	Recommendation Performance in Terms of AUC and Diversity	
	with different sparsity	56
4.1	Statistics of the two datasets	73
4.2	Recommendation Performance in Terms of AUC and Diversity	75
5.1	Notations	85
5.2	Statistics of datasets used in the experiments	93
5.3	The performance of different methods on the two datasets	98
5.4	The performance of nonanonymous and anonymous users	100
5.5	Experimental results of LSREC with side information	103
6.1	Statistics of the two datasets	117
6.2	Recommendation Performances in Terms of Precision and Recall .	121
6.3	Performance comparison of the activations function on MovieLens	
	1M	123
6.4	Performance comparison of the activations function on MovieLens	
	10M	123

6.5 Performance comparison of the activation functions on Taobao . . 123