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Abstract

Recommender system is an intelligent decision making system that adopts machine

learning technology to recommend relevant contents to users based on the analysis

of users’ interests and preferences. It can help users find appropriate contents within

a reasonable time and has been proved to be an effective means to deal with the

problem of information overload. At present, although the recommender system

has been widely used in various social fields, there are still many problems in the

existing recommender system. For example, data sparsity, cold start, long tail items

are difficult to be recommended, and graph structure data cannot be effectively

processed, resulting in low recommendation performance and poor user experience,

which restricts the development of personalized recommender system. In recent

years, with the rapid development of the theory and technology of deep learning,

the study on personalized recommendation on deep neural networks has been paid

more and more attention by the industry and academia. How to use the principles

and techniques of deep learning to alleviate and overcome the problems in the

existing personalized recommender system, so as to improve the performance of

the recommender system, is a topic worthy of research.

The main work of this thesis for deep learning-based personalized recommen-

dation methods is as follows:



To model the conception of fashion and visual factors on the fashion

recommendation task, we propose a cross-domain recommendation method based

on visual collocation knowledge transfer. First, we extract visual collocation

knowledge of fashion items from images on a popular fashion website and even

street photography, and incorporate the learnt knowledge to the recommender

system through transfer learning. By collecting cross-domain information and

updating visual collocation knowledge, the accuracy of clothing recommendation

is improved.

To overcome the difficulty of accurately extracting latent features of new users

and non-popular products, we propose a recommendation method based on deep

graph convolutional neural network. Different with the conventional methods

which consider the low-order similarity only, we learn the representation of users

and items from the high-order similarity between users and items. We treat the

recommendation task as an edge prediction problem on a bipartite graph. It inherits

the advantages of graph convolutional neural network to quickly combine local

information on the graph, so that we can obtain the node embedding which consists

of the node’s information, neighbors’ information and local structure information.

At the same time, for the over-smoothing problem caused by the multi-layer graph

convolutional neural network, we propose an information propagation method based

on the attention mechanism, which can effectively alleviate the over-smoothing

problem when the graph convolutional neural network is too deep.

To solve the problem that the user’s preference is affected by the environment

and changes with time, we propose a recommendation method based on the

user’s long-term and short-term preference. In one session, the products browsed

by the user have a certain continuity. This method models the user’s current

vi



shopping intention through the items that the user has browsed in the current

session. At the same time, the method also combines the user’s long-term stable

preferences contained in the user’s historical records to provide users with in-time

recommendations. The method can quickly adapt to the changes of the user’s

current interests caused by changes of the context and improve users’ stickiness to

shopping websites.

To solve the problem of data sparsity, we propose a recommendation method

based on generative adversarial strategy. The algorithm generates a user’s latent

feature vector by training a generator network with a denoising autoencoder,

which generates recommendations for the user accordingly, while training a

discriminant network to distinguish the recommendation prediction generated by

the generating network from the user’s real transaction records. The adversarial

training between the discriminating network and the generating network helps

to push recommendation predictions closer to the real transaction records.

Through continuous iterative adversarial training between generation network and

discriminant network, the two networks are mutually promoted. Therefore, the final

recommendation is improved.
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