
Enhanced Recommender Systems
with Deep Neural Networks

by Ruiping Yin

Thesis submitted in fulfilment of the requirements for
the degree of

Doctor of Philosophy

under the supervision of A./Professor Guangquan Zhang
and Distinguished Professor Jie Lu

University of Technology Sydney
Faculty of Engineering and Information Technology

September, 2022

Certificate of Original Authorship

I, Ruiping Yin, declare that this thesis is submitted in fulfilment of the requirements

for the award of Doctor of Philosophy, in the Faculty of Engineering and

Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowl-

edged. In addition, I certify that all information sources and literature used are

indicated in the thesis.

This document has not been submitted for qualifications at any other academic

institution.

I certify that the work in this thesis has not previously been submitted for a

degree nor has it been submitted as part of the requirements for a degree at any

other academic institution except as fully acknowledged within the text. This thesis

is the result of a Collaborative Doctoral Research Degree program with Beijing

Institute of Technology.

This research is supported by the Australian Government Research Training

Program.

Ruiping Yin

September 2022

Production Note:
Signature removed prior to publication.

Acknowledgements

First and foremost I would like to express my sincere thanks to both my principal

supervisor A./Professor Guangquan Zhang and co-supervisor Distinguished

Professor Jie Lu. Without their patience and encouragement, I would not have

been able to finish my PhD journey. Their strict academic attitude and respectful

personality has benefited my PhD study and will be a great treasure throughout my

life. I have learnt so much from them. During my doctoral research, they gave me

countless guidance and help which inspired me in many aspects including research

methodology, experiments, writting skills. and even the sentence structure and

mathematical formulas and greatly improved my thesis quality.

Then I would like to express my gratitude to every member of the Decision

Systems & e-Service Intelligence Lab (DeSI). Thank you for your care and help. I

have benefited a lot from the time I spent with you. I would like to especially thank

Qian Zhang for the discussion on my research.

Next I am grateful to the the School of Software, Faculty of Engineering and

Information Technology, University of Technology, Sydney for their support. I

am also grateful for the financial support I received from the Vice-Chancellor’s

Postgraduate Conference Fund.

Finally, I would like to express my gratitude to my family who have been

supporting and encouring me. I would like to thank my father, my mother and my

wife for their care and support, and to all of my friends who have helped me and

cared about me. Love you guys.

iv

Abstract

Recommender system is an intelligent decision making system that adopts machine

learning technology to recommend relevant contents to users based on the analysis

of users’ interests and preferences. It can help users find appropriate contents within

a reasonable time and has been proved to be an effective means to deal with the

problem of information overload. At present, although the recommender system

has been widely used in various social fields, there are still many problems in the

existing recommender system. For example, data sparsity, cold start, long tail items

are difficult to be recommended, and graph structure data cannot be effectively

processed, resulting in low recommendation performance and poor user experience,

which restricts the development of personalized recommender system. In recent

years, with the rapid development of the theory and technology of deep learning,

the study on personalized recommendation on deep neural networks has been paid

more and more attention by the industry and academia. How to use the principles

and techniques of deep learning to alleviate and overcome the problems in the

existing personalized recommender system, so as to improve the performance of

the recommender system, is a topic worthy of research.

The main work of this thesis for deep learning-based personalized recommen-

dation methods is as follows:

To model the conception of fashion and visual factors on the fashion

recommendation task, we propose a cross-domain recommendation method based

on visual collocation knowledge transfer. First, we extract visual collocation

knowledge of fashion items from images on a popular fashion website and even

street photography, and incorporate the learnt knowledge to the recommender

system through transfer learning. By collecting cross-domain information and

updating visual collocation knowledge, the accuracy of clothing recommendation

is improved.

To overcome the difficulty of accurately extracting latent features of new users

and non-popular products, we propose a recommendation method based on deep

graph convolutional neural network. Different with the conventional methods

which consider the low-order similarity only, we learn the representation of users

and items from the high-order similarity between users and items. We treat the

recommendation task as an edge prediction problem on a bipartite graph. It inherits

the advantages of graph convolutional neural network to quickly combine local

information on the graph, so that we can obtain the node embedding which consists

of the node’s information, neighbors’ information and local structure information.

At the same time, for the over-smoothing problem caused by the multi-layer graph

convolutional neural network, we propose an information propagation method based

on the attention mechanism, which can effectively alleviate the over-smoothing

problem when the graph convolutional neural network is too deep.

To solve the problem that the user’s preference is affected by the environment

and changes with time, we propose a recommendation method based on the

user’s long-term and short-term preference. In one session, the products browsed

by the user have a certain continuity. This method models the user’s current

vi

shopping intention through the items that the user has browsed in the current

session. At the same time, the method also combines the user’s long-term stable

preferences contained in the user’s historical records to provide users with in-time

recommendations. The method can quickly adapt to the changes of the user’s

current interests caused by changes of the context and improve users’ stickiness to

shopping websites.

To solve the problem of data sparsity, we propose a recommendation method

based on generative adversarial strategy. The algorithm generates a user’s latent

feature vector by training a generator network with a denoising autoencoder,

which generates recommendations for the user accordingly, while training a

discriminant network to distinguish the recommendation prediction generated by

the generating network from the user’s real transaction records. The adversarial

training between the discriminating network and the generating network helps

to push recommendation predictions closer to the real transaction records.

Through continuous iterative adversarial training between generation network and

discriminant network, the two networks are mutually promoted. Therefore, the final

recommendation is improved.

vii

Table of Contents

CERTIFICATE OF ORIGINAL AUTHORSHIP ii

Acknowledgements iii

Abstract v

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Motivation . 1

1.2 Research Questions and Objectives 4

1.3 Research Significance . 7

1.3.1 Theoretical Significance 7

1.3.2 Practical Significance . 8

1.4 Thesis Structure . 8

1.5 Publications Related to This Thesis 10

2 Literature Review 12

2.1 Recommendation Techniques . 13

Table of Contents

2.1.1 Collaborative filtering-based recommendation algorithm . 14

2.1.2 Generic Feature-based recommendation algorithm 25

2.2 Deep Learning Techniques . 27

2.2.1 Multi-layer Perceptron 27

2.2.2 Autoencoder . 28

2.2.3 Convolutional neural network 28

2.2.4 Recurrent neural network 29

2.3 Deep Learning-based Recommender Systems 29

2.3.1 Embedding Techniques for Recommender Systems 31

2.3.2 Models using Deep Learning Technique for Latent Rela-

tionship Modeling . 35

3 Enhancing Fashion Recommendation with Visual Compatibility Rela-

tionship 43

3.1 Introduction . 43

3.2 Notations and Problem Formulation 46

3.3 Visual Compatibility Relationship Modeling and Recommendation 47

3.3.1 Learning visual compatibility knowledge from fashion items 49

3.3.2 Fashion recommender system with visual compatibility

knowledge . 51

3.4 Experiments and Analysis . 53

3.4.1 Datasets and evaluation metrics 54

3.4.2 Experimental settings and baselines 55

3.4.3 Results . 57

3.5 Summary . 58

ix

Table of Contents

4 A Deeper Graph Neural Network for Recommender Systems 60

4.1 Introduction . 60

4.2 Problem Formulation and Motivation 63

4.2.1 Recommendation and Link Prediction in Bipartite Graphs 63

4.2.2 Factorization Models . 64

4.2.3 Graph Neural Network 66

4.3 Graph Neural Network-based Collaborative Filtering 67

4.3.1 General framework . 67

4.3.2 Node embedding via Graph Neural Network 69

4.3.3 Attention Mechanism . 70

4.3.4 Model Training . 71

4.4 Experiments . 72

4.4.1 Experimental Settings 72

4.4.2 Performance Comparison 74

4.4.3 Discussion . 76

4.5 Summary . 77

5 Long- and Short-term User Interest Network for Personalized Recom-

mendation 79

5.1 Introduction . 79

5.2 Preliminaries and Problem Formulation 84

5.3 Methodology . 85

5.3.1 Long-term User Interest Network 87

5.3.2 Short-term User Interest Network 89

5.3.3 Long- and short-term interest fusion and recommendation 91

5.3.4 Loss function . 92

x

Table of Contents

5.4 Experiments . 92

5.4.1 Dataset and Data Preparation 93

5.4.2 Evaluation metrics . 94

5.4.3 Baseline Methods . 95

5.4.4 Experimental Setup . 97

5.4.5 Comparison with baseline methods 97

5.4.6 Components Analysis 100

5.5 Summary . 108

6 RsyGAN: Generative Adversarial Network for Recommender Systems109

6.1 Introduction . 109

6.2 Preliminaries and Problem Formulation 111

6.3 Generative Adversarial Network for Recommender Systems . . . 112

6.3.1 Proposed Model . 112

6.3.2 Loss Function . 115

6.3.3 Optimization Algorithm 116

6.4 Experiments . 117

6.4.1 Datasets . 117

6.4.2 Evaluation for Recommendation 118

6.4.3 Performance Comparison 119

6.4.4 Components in RsyGAN 122

6.5 Summary . 127

7 Conclusion and Future Research 128

7.1 Conclusions . 128

7.2 Future Study . 132

xi

Table of Contents

Bibliography 134

Abbreviations 157

xii

List of Figures

1.1 Thesis structure . 9

2.1 Framework of recommender systems(Covington et al., 2016) . . . 14

2.2 Illustration of AE-based Recommendation model. 39

3.1 Examples of compatible and incompatible outfits. 44

3.2 The proposed framework of our method. 48

3.3 The illustration of our model for learning compatibility knowledge. 50

3.4 Performance of VBPR, DVBPR and CO-BPR with varying

dimensionality measured by AUC. 59

4.1 Illustration of the bipartite graph of a user-item interaction matrix. 62

4.2 Illustration of the proposed framework. 68

4.3 Performance of HR@10 and NDCG@10 with different numbers of

latent factors on ML-1M. 76

4.4 Performance of HR@10 and NDCG@10 with different numbers of

latent factors on ML-10M. 76

4.5 Performance of HR@10 and NDCG@10 with different numbers of

latent factors on Taobao dataset. 77

4.6 Performance of HR@10 with different numbers of hidden layers. . 77

xiii

List of Figures

4.7 Performance of NDCG@10 with different numbers of hidden layers. 78

5.1 Overall framework of the proposed LSRec method. 86

5.2 Illustration of long-term interest network 88

5.3 Performance comparison with different number of Graph Convolu-

tional Layers. 102

5.4 Experimental results of the dimension’s effects on Diginetica dataset.103

5.5 Experimental results of the dimension’s effects on Retailrocket

dataset. 104

5.6 Performance over Retailrocket dataset with a different user-item

interaction sparsity. 106

5.7 Performance over Retailrocket dataset with a different average

length of sessions. 107

6.1 The architecture of the RsyGAN model 113

6.2 MAP@k of RsyGAN showing variations in the number of hidden

units . 124

6.3 The effects of parameter λD . 124

6.4 Learning curves of RsyGAN on MovieLens 10M 126

xiv

List of Tables

3.1 Major Notations Used in This Chapter 47

3.2 Dataset statistics . 54

3.3 Recommendation Performance in Terms of AUC and Diversity

with different sparsity . 56

4.1 Statistics of the two datasets . 73

4.2 Recommendation Performance in Terms of AUC and Diversity . . 75

5.1 Notations . 85

5.2 Statistics of datasets used in the experiments 93

5.3 The performance of different methods on the two datasets. 98

5.4 The performance of nonanonymous and anonymous users 100

5.5 Experimental results of LSREC with side information. 103

6.1 Statistics of the two datasets . 117

6.2 Recommendation Performances in Terms of Precision and Recall . 121

6.3 Performance comparison of the activations function on MovieLens

1M . 123

6.4 Performance comparison of the activations function on MovieLens

10M . 123

xv

List of Tables

6.5 Performance comparison of the activation functions on Taobao . . 123

xvi

Chapter 1

Introduction

1.1 Motivation

Recommendation technology is a system that gives consumers recommendations

for consumption. Given the explosive growth of information available on the web,

consumers may face countless popular products, movies or meals in their daily lives.

Therefore, personalized recommendation is the basic strategy to give consumers a

better user experience. Today’s recommender systems play a vital role in various

information access systems to facilitate the user’s decision-making process. As

such, recommender systems are widespread in many areas such as e-commerce or

media websites.

In recent years, deep learning has achieved remarkable results in many aspects

such as natural language processing, image recognition, and scholars have continued

to try other areas to solve complex problems that are difficult to solve with traditional

methods. Deep learning has also become a popular branch in the entire field of

machine learning algorithms. And major domestic and foreign companies have

1

1.1 Motivation

increased their research and investment in deep learning, and many companies have

achieved fruitful results in the research and development of artificial intelligence

commercial products.

The theory of Deep Learning was proposed by Hinton and other masters in

2006. It is essentially derived from the development of artificial neural networks.

Through the study and learning of shallow networks, features are extracted from

them, and then integrated, and finally formed deeper features can be used in the

field of classification prediction. In the beginning, deep learning mainly used

Deep Belief Networks (DBN) for unsupervised greedy training layer by layer,

and later developed to use more complex multi-layer autoencoders for training

and feature extraction. The essence of deep learning is still a neural network,

but the difference is that it contains many hidden layers, and these hidden layers

are constructed, and then in training, a large amount of data is referenced, so

that the model can learn more multi-dimensional features of the data , In order

to improve the classification accuracy and improve the accuracy of prediction.

Deep learning not only has excellent automatic feature extraction capabilities, but

also the ability to automatically learn multi-level and multi-dimensional abstract

feature representations, as well as the ability to learn heterogeneous or cross-domain

content information. On the one hand, deep learning strengthens the learning of

features. On the other hand, it also increases the number of layers of the neural

network. The features are converted from layer to layer, thereby converting the

feature representation of the sample in the original space into a new spatial structure.

Finally, classification or prediction becomes easier. At the same time, using a large

amount of data for training can better characterize the data-rich internal information.

2

1.1 Motivation

In view of the fact that deep learning technology has achieved good application

results in many fields, in the field of recommender systems, experts are gradually

exploring deep learning technology. The introduction of deep learning technology

into the field of recommender systems makes the recommender system more

intelligent and can provide users with recommendation services. In 2016, ACM

RecSys organized the first deep learning and recommender system conference

RecSys 2016, and emphasized that the recommender system will be better

developed with the help of deep learning. Subsequently, RecSys 2018 and RecSys

2019 were held in Vancouver, Canada and Copenhagen, Denmark, and RecSys

2020 will also be held in Rio de Janeiro, Brazil. In recent years, deep learning

technology has been studied and tried as much as possible in the recommender

system, and many positive results have been obtained. In the field of recommender

systems, deep learning will gradually develop into a pivotal professional field.

In recent years, the research of personalized recommendation based on deep

learning has attracted more and more attention from many scholars. Deep learning

can realize the automatic extraction of features, which has changed the way that

traditional machine learning methods require manual feature extraction. At the

same time, this feature extraction method of deep learning can be integrated into the

established model process, thereby reducing feature extraction. At the same time of

difficulty, it also reduces the incompleteness of feature acquisition when relying

on human design features (Singhal et al., 2017). For example, 80% of the online

viewing of movies on the Netflix website comes from recommendations(Gomez-

Uribe and Hunt, 2015), and 60% of video clicks on the YouTube website come from

recommendations on the homepage of the website(Davidson et al., 2010). Many

companies use deep learning principles and techniques to improve the quality of

3

1.2 Research Questions and Objectives

recommendations(Chen et al., 2019). Different from the previous recommendation

technology, the existing recommendation technology using the deep neural network

structure has achieved very good recommendation performance, and its application

range is becoming more and more extensive. Zeynep Batmaz, Ali Yurekli and

others(Batmaz et al., 2019) gave the main distribution of the current application

fields of deep learning recommender systems, such as online movies, books, news,

music and other e-commerce fields and social network industries.

At present, although personalized recommendation based on deep learning has

achieved certain results from both academic and industrial perspectives, it does

not meet the further and deeper social needs. In existing recommender systems,

there is still a widespread recommendation process data sparseness, cold start, long

tail items are difficult to be recommended, and graph structure data is difficult

to process(Wu et al., 2020), even in the recommender system supported by some

current deep learning methods such as Convolutional Neural Network (CNN) and

Recurrent Neural Network (RNN). Therefore, how to use the latest theories and

techniques of deep learning, such as the neural network Graph Neural Network

(GNN), to solve or alleviate these problems in the existing recommender systems

to improve the performance of the recommender systems, has become an important

and urgent problem to be solved.

1.2 Research Questions and Objectives

This research aims to enhance recommender systems by developing a set of

recommendation approaches with deep neural networks. To summarize, the

following research questions will be answered by this research:

4

1.2 Research Questions and Objectives

QUESTION 1. How to take advantage of rich multimedia information, for example,

the images of products in online stores?

QUESTION 2. How to make use of high-order similarity information in the

user-item interaction graph?

QUESTION 3. How to incoporate the long- and short-term user preferences in

recommender systems?

QUESTION 4. How to effectively optimize the recommendation model when the

data is too sparse?

To answer these research questions, this research aims to achieve the following

objectives:

OBJECTIVE 1. To propose a cross-domain recommendation approach based on

visual collocation knowledge transfer to model the influence of fashion trends and

visual factors on the recommendation of fashion items.

This objective corresponds to research question 1. Recommender systems often

suffer from data sparsity and cold start problem. Ultilizing side information shows

promising performance increasing in some situations. With the development of deep

learning techniques, we can extract rich information from various of multi-media

data sources, such as natural language, images and videos. However, with such a

huge dataset, we cannot label them to train our recommendation model. Thus, how

to ultilize these unlabeled data is curitical today. We proposed a promising domain

adaptation method to transfer fashion collocation knowledge to the recommendation

senarios. Based on the domain adapation method, a recommender system is built to

ultilize clothing collocation knowledge to improve the recommendation accuracy.

5

1.2 Research Questions and Objectives

OBJECTIVE 2. To develop an Graph Convolutional Neural Network-based rec-

ommendation approach which is able to leverage high-order neighbour information

in user-item interaction history.

This objective corresponds to research question 2. Following the definition in

objective 2, we survey and analysis the tranditional factorization based method. We

found that in these method, only low-level neighbour information is used. Therefore,

we built an GNN-based recommendation method, through information broadcast

and aggregation, we are able to get more information in the recommendation stage.

OBJECTIVE 3. To develop a long- and short-term based recommendation

approach which considers both long and short user preferences.

This objective corresponds to research question 3. We aim to build a model

that integrates long- and short-term user interests. The model can learn the user’s

long-term interests and current intentions at the same time. When generating the

recommendation list, according to the user’s current intentions, the user’s long-

term interests are combined with context information to generate more accurate

recommendations.

OBJECTIVE 4. To develop a new optimization method which alleviates the

problem of insufficient user samples.

This objective corresponds to research question 4. For cold-start users,

recommender systems cannot obtain enough information to generate accurate

recommendations for them. In other words, in the optimization process, it is

difficult for users with insufficient samples to have sufficient influence on the

optimization process. Therefore, we try to propose a new optimization method to

increase the influence of cold-start users on the optimization process, and improve

the recommendation effect of the entire system ultimately.

6

1.3 Research Significance

1.3 Research Significance

1.3.1 Theoretical Significance

Theoretically, the research develops a set of recommendation methods and solves

the two following issues in recommender systems:

• Feature representation. This research solves the visual knowledge modeling

problem to take visual complementary information into consideration. We

first use a triple network to supervised learning domain knowledge of clothing

matching from a clothing matching dataset. Then, the learned collocation

knowledge is applied to the target domain that needs to be recommended

through the domain adaptation strategy to alleviate the distribution difference

between the source domain and the target domain.

• Model construction. In this research, two deep learning-based recommenda-

tion models were developed to solve the problem of insufficient utilization of

collaborative information in recommender systems. The first is to use a graph

convolutional neural network to increase the receptive field of the model in

the recommendation process, so that the recommender system can use more

information to make decisions. The second is to integrate the user’s long and

short-term interests, so that the recommender system can focus on the current

context to generate recommendations.

• Optimization algorithm. This research provides a framework for generative

adversarial optimization method. This complements and improves the whole

methodology of deep learning-based recommendation techniques.

7

1.4 Thesis Structure

1.3.2 Practical Significance

In practical terms, this research provides guidelines on how to improve the

performance of recommendation by addressing the following two problems:

• Recommendation accuracy. Data uncertainty and scarcity is very common

in real-world recommender system applications. This research provides

various ways to improve the accuracy of recommendation and provides users

with better decision-making support. In particular, the proposed system and

the new users who have recently entered the system can benefit from this

research.

• Recommendation diversity. There are many online systems that sell

different types of goods. The historical records of users are across

different categories. This research provides a way to satisfy the demand

for recommendation across domains. Since recommendations can be made

in different categories of goods, the potential diversity of recommendations

is improved.

1.4 Thesis Structure

The logical structure of this thesis and the relationship between the chapters are

shown in Figure 1.1. The main contents of each chapter are summarized as follows:

Chapter 2 presents a systematic literature review related to this research. In

this chapter, first we give a general introduction of recommendation techniques,

followed by a classification of recommendation techniques. Then, a systematic

review of deep learning technology is presented together with recent research

8

1.4 Thesis Structure

development of this area. Finally, deep learning-based recommender systems are

reviewed. Related methods and techniques are classified into three groups according

to the different deep learning techniques. After this comprehensive review, the

current research gaps are discussed and summarized.

Chapter 3 proposes a novel method for the fashion recommendation task

with learning compatibility knowledge in visual aspect. In this chapter, A triplet

network is used to learn compatibility knowledge from an external dataset. Domain

adaptation strategy is used to alleviate the distribution gap between source domain

and target domain. Empirical experiments are conducted on serveral real-world

datasets. The results show that the proposed approach improves the performance of

recommender systems.

Figure 1.1 Thesis structure

Chapter 4 develops a general framework, named Graph neural network-based

Collaborative Filtering (GCF), and an information propagation-based graph neural

network. We conducted experiments on several real-world datasets to reveal the

relationship between the number of iterations of information propagation and the

9

1.5 Publications Related to This Thesis

recommendation performance. The experimental results show that the proposed

method outperforms all the other models.

Chapter 5 develops a recommendation method, named Long- and Short-term

user interest network for personalized recommendation (LSREC), based on long-

and short-term user interest. Specifically, the proposed method is composed of three

components: Long-term User Interest Network (L-UIN) for learning long-term

user interest from historical behaviors and user profiles, Short-term User Interest

Network (S-UIN) for modeling short-term uesr interest from sesssion sequence,

and combination for recommendation generating. We particularly devise a graph

convolutional neural network to enrich the user’s local sturcture information by

considering the high order neighbors in L-UIN. We have further developed an

attention based RNN to learn short-term user interest in S-UIN. The experimental

results on two datasets have demonstrated the superiority of LSREC over methods

considering short-term user interest and long-term interest.

Chapter 6 summarizes the contributions of this research and discusses research

issues for further study.

1.5 Publications Related to This Thesis

Following is a list of the refereed international journal and conference papers during

my PhD research that have been published:

Published:

1. R. Yin, K. Li, G. Zhang and J. Lu. “Enhancing Fashion Recommendation

with Visual Compatibility Relationship.” The World Wide Web Conference

on - WWW ’19, ACM Press, 2019.

10

1.5 Publications Related to This Thesis

2. R. Yin, K. Li, G. Zhang and J. Lu. “A Deeper Graph Neural Network for

Recommender Systems.” Knowledge-Based Systems, vol. 185, no. 105020,

2019, p. 105020.

3. R. Yin, K. Li, G. Zhang and J. Lu. “RsyGAN: Generative Adversarial

Network for Recommender Systems.” 2019 International Joint Conference

on Neural Networks (IJCNN), IEEE, 2019.

4. Y. Zhang, R. Yin*, Z.Yang. "Data Poisoning Attacks to Session-Based

Recommender Systems." 2022 International Conference on Communication

and Network Security (ICCNS). ACM Press, 2022.

5. R. Yin, K. Li, G. Zhang and J. Lu. “Detecting Overlapping Protein

Complexes in Dynamic Protein-Protein Interaction Networks by Developing

a Fuzzy Clustering Algorithm.” 2017 IEEE International Conference on

Fuzzy Systems (FUZZ-IEEE), IEEE, 2017.

11

Chapter 2

Literature Review

This chapter presents a literature review of relevant studies in connection with this

research. In recent years, recommender systems have become one of the most

important research areas in academia and industry. For different recommendation

scenarios, the design of recommendation models and algorithms are also different.

This research focuses on how to design personalized recommendation methods with

deep learning techniques to improve the performance of recommender systems in

terms of accuracy. In this chapter, we review the research related to the three aspects

of the above issue: recommendation techniques, deep learning techniques and deep

learning-based recommender systems. In Section 2.1, we briefly introduces the

technical development in the field of recommender systems. This is followed by

a review of deep learning techniques related to recommender systems in Section

2.2. Finally, in Section 2.3, we reviews different methods that are related to this

research.

12

2.1 Recommendation Techniques

2.1 Recommendation Techniques

In recommender systems, the user’s preferences are usually implicitly reflected

in the user’s behavioral records, demographic information, and the context of the

current interaction with the system. The recommended items can be commodities,

news, movies, short videos, friend relationships, etc.

The input of a typical recommender system includes the user’s behavior

records (e.g., clicking, purchasing, etc.), the side information of the user and

the recommended item in the system, the output of the recommender system is

aimed at the target user, producing a personalized recommendation list containing

the items that the user is most likely to interact with next. The essence of the goal

is to calculate the user’s preference for all items in the system for the target user,

and sort all items in descending order of preference. Finally, the K head items in

this ordered list are used as the user’s preference. Personalized recommendation

list, hence also called TOP-K recommendation.

User attribute information includes user ID, age, gender, income level, etc.; item

attribute information includes item ID, description, picture, category information,

price, and the like. In real-world recommendation scenarios, there is little or

no overlap between user attributes and product attributes. This creates the first

challenge in recommender systems: the semantic gap between users and items, i.e.

users and items are two different types of entities with different types of attributes.

A typical recommender system can be represented by Figure 2.1.

Currently popular recommendation algorithms can be basically divided into

two categories: recommendation algorithms based on Collaborative Filtering (CF)

and recommendation algorithms based on general features.

13

2.1 Recommendation Techniques

Figure 2.1 Framework of recommender systems(Covington et al., 2016)

2.1.1 Collaborative filtering-based recommendation algorithm

The use of the term Collaborative Filtering can be traced back to 1992. Goldberg

first proposed a personalized mail recommender system based on collaborative

filtering, Tapestry(Goldberg et al., 1992). The system requires users to mark

the mails they have read, and then other users select the mails they need

based on these marks. Tapestry requires users to enter some query keywords,

such as sender, send date, email subject, etc., before the system can give

corresponding recommendations. Therefore, in a sense, Tapestry is a semi-

automated recommender system.

1994 was a milestone year for the recommender systems. The GroupLens

project team published its famous research results (Resnick et al., 1994), in which

the first collaborative filtering algorithm applied to news recommendation was

proposed. The algorithm is used to filter out the news that users may be interested

in from a large amount of news content. The basic idea is to assume that the user’s

interest remains stable for a certain period of time, and predict the news content that

the user will like in the future based on the user’s previous interest. In the GroupLens

system, users rate the news that they have browsed. The scoring mechanism is

similar to the current most popular 5-star rating system. GroupLens calculates the

similarity between users based on the user’s rating of news content, and selects

14

2.1 Recommendation Techniques

a group with the target Users with the most similar user interests can predict the

target user’s interest in new content through collective voting. GroupLens laid

the foundation for the development of collaborative filtering technology. Since

then, the recommender system has received extensive attention from industry and

academia, and a large number of well-known domestic and foreign scholars, experts

and industrial researchers have participated in related research on the recommender

system. In the mid-1990s, recommender systems have become an independent

research field.

A basic assumption of the collaborative filtering-based recommendation

algorithm is that users with common interests will tend to choose similar items.

Therefore, the most important thing for a collaborative filtering-based recommender

system is to find people who have common interests and preferences with

the target user. According to the development process of recommendation

algorithms and the different technologies used, recommendation algorithms based

on collaborative filtering can be divided into three categories: memory-based

collaborative filtering recommendation algorithms, model-based collaborative

filtering recommendation algorithms, and deep learning-based collaborative filtering

recommendation algorithms algorithm.

(1) Memory-based collaborative filtering algorithm

The memory-based collaborative filtering algorithm is the earliest recommen-

dation algorithm based on collaborative filtering, which uses heuristic algorithms

to calculate the similarity between users or items. Memory-based collaborative

filtering algorithms are divided into two categories: user-based collaborative

filtering and item-based collaborative filtering(Deshpande and Karypis, 2004). The

core algorithm of the memory-based collaborative filtering algorithm is the Nearest

15

2.1 Recommendation Techniques

Neighbor Algorithm. The target user’s preferences for different items are calculated

based on the degree of preference of his neighbors for these items. This algorithm

is widely accepted because of its simplicity, effectiveness and interpretability in a

certain sense. A typical memory-based collaborative filtering algorithm includes

the following steps(Su and Khoshgoftaar, 2009):

a. Similarity calculation

Before predicting the score, it is necessary to calculate the weight of each

user/item based on the distance to the target user/item. The significance

of calculating this weight is to select the K nearest neighbors of the target

user/commodity in the entire data set. This step is very important for the

final recommendation accuracy. Therefore, researchers have proposed various

measurement methods for how to calculate the distance between user-user or item-

item.

Correlation-based similarity was first proposed (Billsus et al., 1998; Lang,

1995). Denote the user’s rating matrix for items as X ∈ RM×N , which means that

M users and N items are in this matrix. The items i and j can be replaced by the

corresponding columns in the matrix, that is, the vector formed by each user’s

rating. The similarity between two vectors can be calculated using cosine similarity.

The cosine similarity between items i and j can be calculated using the following

formula:

W cos
(i, j) =

∑u∈Ui∩U j ru,i × ru, j√
∑u∈Ui∩U j r2

u,i ×
√

∑u∈Ui∩U j r2
u, j

(2.1)

Among them, Ui is the set of all users who have rated the item i, and U j is the

set of all users who have rated the item j. Ui ∩U j represents the set of users who

16

2.1 Recommendation Techniques

have jointly rated the items i and j. ru,i and ru, j are the ratings of user u on items i

and j respectively.

Cosine similarity is generally used in item-based collaborative filtering

algorithms, and is rarely used in user-based collaborative filtering algorithms,

because it does not take into account that the mean and variance of scores are

different between users. The Pearson Correlation Coefficient (PCC) solves this

problem well. This metric can be used in both item-based collaborative filtering

algorithms and user-based collaborative filtering algorithms. In the user-based

collaborative filtering algorithm (Sarwar et al., 2001), the Pearson correlation

distance between users u and v can be expressed as:

W PCC
u,v =

∑i∈Iu∩Iv(ru,i − r̄u)× (rv,i − r̄v)√
∑i∈Iu∩Iv(ru,i − r̄u)2 ×

√
∑i∈Iu∩Iv(rv,i − r̄v)2

(2.2)

Among them, Iu is the set of all items rated by user u, and Iv is the set of all

items rated by user v. Iu ∩ Iv is a collection of items rated by users u and v at the

same time. r̄u and r̄v are the mean values of all ratings on Iu ∩ Iv for user u and user

v respectively.

For item-based collaborative filtering algorithm (Resnick et al., 1994), the

Pearson correlation distance between items i and j can be expressed as:

W PCC
i, j =

∑u∈Ui∩U j(ru,i − r̄i)× (ru, j − r̄ j)√
∑u∈Ui∩U j(ru,i − r̄u)2 ×

√
∑u∈Ui∩U j(ru, j − r̄ j)2

(2.3)

Among them, Ui is the set of all users who have rated the item i, and U j is the

set of all users who have rated the item j. Ui ∩U j represents the collection of all

users who have reviewed the item i and the item j. r̄i and r̄ j are the average values

of the scoring of items i and j by users in Ui ∩U j respectively.

17

2.1 Recommendation Techniques

b. Score calculation

After the calculation of the weight matrix is completed, the target user u’s rating

ru,i for the item i can be predicted. The main basis for prediction is the neighbors

of the target user/item. In the item-based collaborative filtering algorithm, the

calculation method can be expressed as the following form (Sarwar et al., 2001):

ru,i =
∑ j∈Iu ru, j ×Wi, j

∑ j∈Iu |Wi, j|
(2.4)

Among them, Iu is the set of all rated items of user u except item i, Wi, j is the

target item i obtained in the previous step and another known rating The distance

between the items j.

In the user-based collaborative filtering algorithm, the target user’s rating of the

item calculated according to the Pearson correlation coefficient can be expressed as

(Resnick et al., 1994):

ru,i = r̄u +
∑v∈Ui (rv,i − r̄v)×Wu,v

∑v∈Ui |Wu,v|
(2.5)

Among them, Ui is the set of all users who have rated the item i, and Wu,v is

between the target user u and another user v who has rated the item i The similarity.

c. Generate recommendations

Whether it is item-based recommendation or user-based recommendation, the

k most similar users/items are selected by the weights in the formula 2.1. Then,

these k nearest neighbors are used to calculate each user’s rating for each unrated

item. Then the predicted scores are sorted in descending order, and the K items

with the highest scores are recommended to users as a recommendation list. This

recommendation is also called TOP-K recommendation.

18

2.1 Recommendation Techniques

Although the memory-based collaborative filtering algorithm has been widely

used because of its ease of use and relative effectiveness, the technology still

has some weaknesses that cannot be ignored(Adomavicius and Tuzhilin, 2005).

First of all, the technology cannot handle the cold start problem. When a new

user/item is added to the system, there is no relevant score in the system to predict

the user/item’s score. Second, if an item is not new, but is a non-popular item

that is rarely visited, then there will not be enough ratings from users to make

predictions. The memory-based collaborative filtering system will always avoid

recommending unpopular items to users. Therefore, the range of recommended

items will be limited. Third, memory-based collaborative filtering cannot provide

real-time recommendations. When the user-item matrix is very large, the heuristic

calculation process takes a lot of time to generate recommendations. In item-based

collaborative filtering, pre-calculating and storing the weight matrix can alleviate

this problem to a certain extent, but the scale of the entire system still cannot meet

the needs of the current real scene.(Deshpande and Karypis, 2004).

(2) Model-based collaborative filtering recommendation algorithm

Model-based collaborative filtering is different from the memory-based heuristic

methods discussed earlier, but uses machine learning or data mining methods to

build a model to predict users’ ratings of items. This type of method was originally

established to solve some problems in memory-based collaborative filtering, but

it has been widely used to solve various problems in some specific fields. In

addition to the user-item rating matrix, other additional information is also taken

into account, such as location information, tags and comments, etc.(Shi et al., 2014).

Model-based collaborative filtering technology is a good choice to combine the

scoring matrix with additional information. In the following content, three types of

19

2.1 Recommendation Techniques

recommender systems based on collaborative filtering are introduced: recommender

systems based on matrix factorization, recommender systems based on graphs, and

recommender systems based on context.

a. recommender system based on matrix factorization

The first appearance of matrix factorization is the application of probabilistic

Latent Sematic Analysis (pLSA) to the recommender system (Hofmann, 2004). In

2008, in the recommendation algorithm competition (Koren, 2008) held by Netflix,

matrix factorization began to gain people’s attention with its excellent performance.

To this day, it has been one of the most popular models in the recommender system

field. This model is also called Singular Value Decomposition (SVD)(Koren et al.,

2009). This method maps users and items to the same Latent Factor space so that

they can be compared with each other. After that, the probabilistic explanation

of the matrix factorization method was also given. (Salakhutdinov and Mnih,

2009). The popularity of matrix factorization technology benefits from its three

advantages. First of all, through matrix decomposition, the dimension of the user-

item matrix can be significantly reduced, which greatly reduces the scale of the

entire system, which is more suitable for the current increasingly large-scale data.

Secondly, the process of matrix decomposition produces a dense hidden factor

matrix, so the problem of data sparseness is alleviated to a certain extent.(Luo

et al., 2016). Compared with the memory-based collaborative filtering algorithm,

the recommendation algorithm based on matrix factorization enables users with

only a small number of ratings to obtain relatively more accurate recommendation

results. Finally, matrix factorization is very suitable for integrating additional

information into the model(Liu et al., 2015). This can help the system understand

20

2.1 Recommendation Techniques

the user’s preferences in more detail, thereby improving the effectiveness of the

recommendation.

McAuley and Leskovec combined the dense features obtained after the scoring

matrix decomposition with the topic features in the review data, and learned

user preferences through the comments generated by the user. They proposed

a method combining matrix decomposition and topic models, and obtained A

better effect(McAuley and Leskovec, 2013b). With the help of sentiment analysis

technology, Diao et al. proposed an unsupervised method to learn users’ interests

and opinions on movie ratings(Diao et al., 2014). Qian et al. explained the

user’s behavior from a probabilistic point of view by mining the attributes and

tags of items(Qian et al., 2014). McAuley et al. modeled people’s visual

perception of pictures into the recommender system, and applied it to the clothing

recommendation(He and McAuley, 2016a; McAuley et al., 2015). Yang et al. used

the trust relationship between users as the weight of the influence of the user’s

opinion on other users and applied it to the matrix factorization technology(Yang

et al., 2017). All these works show that matrix factorization technology is a basic

stepping stone in the field of recommender systems and has great advantages in

combining additional information.

b. Graph-based recommender system

A graph G is a non-empty finite set V , which contains all the nodes on the

graph, and a possibly empty set E, which contains all the edges on the graph. In the

graph-based model, users and items are represented as vertices, and the interaction

between users and items is represented as edges on the graph. Therefore, the

relationship between users and items in the recommender system can be constructed

as a bipartite graph. Among them, the node set V can be divided into two non-

21

2.1 Recommendation Techniques

empty sets Vuser and Vitem represent the user set and the item set (He et al., 2017a)

respectively. The weight on the edge represents the distance relationship between

the two vertices. In the recommender system, it is usually directly replaced by score

(Gori and Pucci, 2007) or similarity (Han et al., 2017).

Since users and items and their relationships are suitable for describing with

graph models, various theoretical methods based on graphs can also be applied

to recommender systems. One such attempt is to use a probability graph model.

In this model, the ranking of recommended items depends on the probability of

reaching a vertex during a random walk on the graph. Many well-known algorithms

such as PageRank(Page et al., 1998), or their variants (Gori and Pucci, 2007; Mao

et al., 2017; Yildirim and Krishnamoorthy, 2008) are used in the recommendation

model. In addition to the similarity of scores, other relationships such as trust

degree (Jamali and Ester, 2009), label and classification (Liang et al., 2010), etc.

are also included in the graph-based model.

c. Context-based recommender system

The traditional recommender system ignores the user’s environment when

making the recommendation, which is called Context. Contextual information,

such as mood, location, time, equipment, etc., is very important for providing users

with accurate recommendations(Adomavicius and Tuzhilin, 2015). recommender

systems that incorporate context are called Context-aware Recommender Systems.

For example, recommending a city center restaurant to a person who is active in the

country is an inappropriate recommendation. In addition, there are a large number

of examples showing that user preferences are also affected by context: for example,

users’ preferences on weekends may be different from those on weekdays; users

may be alone with themselves when they are with friends Preferences are different;

22

2.1 Recommendation Techniques

users may choose different readings before eating breakfast and preparing for bed.

Therefore, it is very important to understand the user’s preferences that change with

context for designing a good recommender system(Panniello et al., 2014; Wang

et al., 2016b).

According to previous research, time is an important factor in contextual

information (Hong et al., 2012). By using the time information in the recom-

mendation process, the performance of the recommender system can be improved

to a certain extent(Campos et al., 2014). A well-known model is the winning

model timeSVD++(Koren, 2010) in the 2010 Netflix recommendation competition.

Similar to context-aware recommender systems, this type of recommender system

is called time-aware recommender systems, because time information is used as

context information here. The time-aware recommender system has attracted a large

number of researchers because the timestamp information is very easy to obtain and

does not require additional actions by the user. Therefore, from a theoretical and

practical perspective, time information should be paid attention to and meaningful

when designing a recommender system. According to the different ways of using

time information in recommender systems, time-aware recommender systems

can be divided into two categories(Campos et al., 2014): categorical time-aware

methods and time adaptive methods.

In the category time perception method, time information appears as a discrete

variable. Baltrunas et al. designed some contextual variables, such as dividing the

time of day into morning and evening categories, dividing the time within a week

into working days and rest days, and dividing seasonal variables into hot seasons and

Two categories in cold season etc. When the time-related information is expressed

as categories, pre-filtering technology and post-filtering technology will apply these

23

2.1 Recommendation Techniques

time variables to the recommender system(Panniello et al., 2009; Rendle, 2010b).

This kind of method is suitable for modeling periodic or periodic user preferences,

but it is difficult to deal with the dynamic changes of user preferences.

Different from the category time perception method, in the time adaptive method,

time information is used as a continuous variable. This type of method assumes

that the user’s current preferences are related to their recent behavior records in

the system. The records closer to the current time reflect the user’s preferences,

and their weights should be greater. Most of the research in this area is related

to Concept Drift, such as instance selection and time decay technology (Tsymbal,

2004). Ding and Li proposed exponential time screening weights on time series

data (Ding and Li, 2005). Cao et al. proposed a dynamic model of user preferences

to detect changes in user preferences on the sequence data of personal ratings(Cao

et al., 2009). McAuley and Leskovec defined user records as time-based categorical

variables, and proposed a method to simulate changing user preferences through

user-contributed comments in a continuous time series(McAuley and Leskovec,

2013a). A temporal dynamic model is proposed to capture changes in context and

user preferences to generate recommendations for social media (Yin et al., 2015).

Zhang et al. used a transition matrix to model the drift of user preferences and

applied it to the Bayesian matrix factorization model(Zhang et al., 2014). In some

recommendation scenarios, such as music recommendation, users are more inclined

to have periodic behaviors. This kind of scenario is closely related to the time-aware

recommender system, because it needs to update the prediction of the next song

the user wants to listen to in real time based on the user’s feedback. In order to

make the recommender system have the ability to model this periodic behavior,

Du et al. proposed a time-sensitive recommender system model in 2015, which

24

2.1 Recommendation Techniques

generates reasonable recommendations by linking the self-excited point process

with the low-rank model. Du2015. Another method predicts when they will visit

again by analyzing frequently visited items in user behavior and combining their

disappointment and rebuilding interest.(Kapoor et al., 2015).

To sum up, user preferences tend to change over time, but these changes happen

for various reasons. However, up to now, time-sensitive recommender systems

rarely detect and utilize changes in user interests. They are more inclined to

model and adapt to the variable interests of individual users. However, a time-

sensitive recommender system should give more consideration to the reasons that

cause changes in user interests. These reasons can be user statistics, item attribute

information, or context information. With the emergence of more recommendation

intentions and application scenarios, in order to be able to model more fine-grained

user interest drift, these influencing factors should all be taken into consideration.

2.1.2 Generic Feature-based recommendation algorithm

The recommendation algorithm based on general features regards the recommen-

dation algorithm as a classification problem in traditional machine learning. Its

input features include the behavior record of the user’s access to the item, the

attribute information of the user and the item, and the context information of the

current recommendation. It can be simply divided into methods based on traditional

machine learning and methods based on deep learning.

Recommendation algorithms based on general features in the pre-deep learning

era basically belong to the world of generalized linear models. Logistic Regression

(LR) as a simple and effective classification model has achieved good results in the

field of recommender systems. In 2010, the factorization machine (Factorization

25

2.1 Recommendation Techniques

Machine, FM) (Rendle, 2010a) is proposed to solve the problem of manual feature

cross relying heavily on the prior knowledge of the model designer, complex model

adjustment and lag. The LR+GBDT model proposed by Facebook (He et al., 2014)

uses a gradient boosting tree (Gradient Boosting Decision Tree, GBDT) to combine

and filter features, and further achieve more accurate recommendation results in the

production environment.

Since 2015, the blossoming of deep learning in various fields has enabled

researchers in the field of recommender systems to get a lot of inspiration for

improving current models. Deep learning technology has also achieved unparalleled

advantages in the field of recommendation, and various model frameworks are

emerging in endlessly. In order to enhance the generalization ability of the model,

the researchers introduced a deep neural network to map the high-dimensional

sparse features to the low-dimensional dense feature space. However, due to the

unbalanced data distribution, the dense features of users and items in the long tail

cannot be fully learned, leading to the problem of over-generalization.

In 2016, Google proposed the Wide&Deep model(Cheng et al., 2016), which

combines the linear model with the deep neural network, while taking into account

the generalization and memory of the model, and has become a classic model in the

recommendation field. On the basis of Wide&Deep, the literature (Guo et al., 2017)

replaced the shallow model with the factorization machine model, and proposed

the DeepFM model, which enables the recommender system to automatically learn

cross-features, thereby avoiding the original model The operation of manual feature

engineering. At the same time, the model uses the original features as the common

input of the shallow model part and the deep model part, ensuring the accuracy and

consistency of the model features.

26

2.2 Deep Learning Techniques

2.2 Deep Learning Techniques

Deep learning technology has always been regarded as a subarea of machine

learning. The main feature of deep learning is to learn representations from data,

which can understand user needs, project characteristics, and historical interactions

through the extraction of latent features from the data. Research have found that

as long as the data sample size is large enough and the deep learning network

layers are deep enough, even without data pre-training, deep learning technology

can be used to obtain good experimental results. The most representative deep

neural networks are convolutional neural networks, recurrent neural networks and

multilayer perceptrons. In addition, in order to improve performance, a variety of

neural networks will be combined into a hybrid neural network.

2.2.1 Multi-layer Perceptron

Multi-layer Perceptron (MLP) is one of the feedforward neural networks with one

or more hidden layers between input layer and output layer. Here, the perceptron

can employ arbitrary activation function and does not necessarily represent strictly

binary classifier. The structure of the shallow network is a single-layer input layer-

hidden layer output layer. Shallow neural network is regarded as the simplest MLP,

which is the structural basis of deep network. The difference between deep neural

network and shallow neural network is that there is no specific layer limit for the

middle hidden layer. The same point is that there is only one input layer. and the

output layer.

Multilayer perceptrons can be used to solve linear inseparable problems, and the

learning process is as follows. (1) The data is input through the input layer, and the

27

2.2 Deep Learning Techniques

output is calculated through the forward propagation of the network. (2) Calculate

the error according to the actual value. (3) Back propagation calculates the error,

and updates the weight of each layer of the network according to the obtained error

value.

2.2.2 Autoencoder

Autoencoder (AE) is an unsupervised model attempting to reconstruct its input

data in the output layer. In general, the bottleneck layer is used as a salient feature

representation of the input data. Autoencoder can be seen as a variant of the

traditional multi-layer perceptron, first proposed by Rumelhart et al. (1986).

Autoencoder reconstructs the input data to learn the latent feature of the data

through coding and decoding process. Autoencoder consists of a three-layer

network in which the number of neurons in the input layer is equal to the number

of neurons in the output layer, and the number of neurons in the middle layer is less

than that of the input layer and the output layer. During network training, for each

training sample, a new signal is generated at the output layer through the network.

The purpose of network learning is to make the output signal and input signal

as similar as possible. This similarity is represented by the reconstruction error.

Autoencoder can form a deep structure by cascading and layer-by-layer training.

After trained the deep model by layer-by-layer optimization, fine tuning can also be

performed by allowing the entire network to reconstruct the input signal.

2.2.3 Convolutional neural network

Convolutional Neural Network (CNN) (De Andrade, 2019) is a special kind of

feedforward neural network with convolution layers and pooling operations. It is

28

2.3 Deep Learning-based Recommender Systems

capable of capturing the global and local features and significantly enhancing the

efficiency and accuracy. It performs well in processing data with grid-like topology.

2.2.4 Recurrent neural network

Recurrent Neural Network RNN is a deep network structure commonly used to

process time series data. RNN can not only perform feedforward calculation, but

also maintain the information of the previous moment, and use historical state data

and current state to predict output(Medsker and Jain, 1999), so sequence data such

as text and audio can be processed.

In order to solve the problem of information loss and gradient disappearance

and explosion caused by too long time interval, a new variant Long Short-Term

Memory (LSTM) (Hochreiter and Schmidhuber, 1997) and Gated Recurrent Unit

(GRU) (Cho et al., 2014) are constructed. In the recommendation system , the

recurrent neural network can be used for session-based recommendation, based on

the user’s current session behavior, learning the user’s interest transfer process, and

predicting the user’s next possible interaction item

2.3 Deep Learning-based Recommender Systems

Recently, deep learning has been revolutionizing the recommendation architectures

dramatically and brings more opportunities in reinventing the user experiences for

better customer satisfaction. Recent advances in deep learning based recommender

systems have gained significant attention by overcoming obstacles of conventional

models and achieving high recommendation quality. Deep learning is able to

effectively capture the non-linear and non-trivial user-item relationships, and enable

29

2.3 Deep Learning-based Recommender Systems

the codification of more complex abstractions as data representations in the higher

layers. Furthermore, it catches the intricate relationships within the data itself, from

abundant accessible data sources such as contextual, textual and visual information.

Existing studies can be classified into two categories based on the types of employed

deep learning techniques: models using single deep learning technique and deep

composite model(Zhang et al., 2017b).

Deep learning has been revolutionizing the recommendation architectures

dramatically and brings more opportunities in reinventing the user experiences for

better customer satisfaction (Mu, 2018). Recent advances in deep learning based

recommender systems have gained significant attention by overcoming obstacles of

conventional models and achieving high recommendation quality. Deep learning

is able to effectively capture the non-linear and non-trivial user-item relationships,

and enable the codification of more complex abstractions as data representations in

the higher layers. Furthermore, it catches the intricate relationships within the data

itself, from abundant accessible data sources such as contextual, textual and visual

information.

The power of deep learning algorithms is that they can learn and deal with

complex problems like human beings. In the face of complex data, they can analyze

and calculate linear or nonlinear feature sequences from multiple dimensions,

and can automatically learn from massive data. The characteristics of user needs

have been successfully applied in image recognition, speech recognition, natural

language processing and other fields with good results. More and more researchers

are also trying to apply deep learning in recommendation systems. The effective

combination and in-depth study of deep learning technology and recommendation

technology has become a new research direction. Existing studies can be classified

30

2.3 Deep Learning-based Recommender Systems

into two categories based on the purposes of employed deep learning techniques:

models using deep learning technique for feature representation and models using

deep learning technique for latent relationship modeling.

2.3.1 Embedding Techniques for Recommender Systems

Recommender systems usually use embedding technique to represent an entity with

a low-dimensional dense vector, which can be an item, a user, etc. Embedding

technique has become an indispensable component in recommender systems which

mainly dealing with sparse features and inputting it into the neural network to train

the model. It is also possible to use the relationship between these vectors, as a

recall strategy, to filter out candidate items that match user interests(Jiang et al.,

2022; Liu et al., 2022; Yu et al., 2022).

Grbovic and Cheng (2018) applied the embedding technique to characterize

users and recommendation lists on Airbnb platform. On the basis of Skip-Gram,

the embedding vectors of lists and users were designed for the platform in search

ranking and real-time recommendation personalization. The data is used as similar

sequence information, and the embedding vector of each listing is learned by using

the word vector method, which effectively characterizes the multiple characteristics

of the listing, and combines the actual business scenarios to accurately recommend

high-quality listings to users.

Alibaba (Zhao et al., 2018) used embedding technology to learn the representa-

tion of ID type data, which is used for recommendation in e-commerce scenarios,

including user ID, product ID, category ID, etc. The traditional one-hot encoding

method will lead to too sparse data, and The potential relationship between objects

cannot be represented. In the e-commerce platform, the ID data is very sparse, often

31

2.3 Deep Learning-based Recommender Systems

reaching hundreds of millions of dimensions. It is necessary to use low-dimensional

vectors to efficiently express the ID data. This paper proposes an embedding-based

framework based on Item2Vec(Barkan and Koenigstein, 2016) , by collecting the

ID sequence of user behavior, combined with the structured relationship between

IDs, a low-dimensional vector can be learned for different types of IDs to represent.

On this basis, Alibaba (Wang et al., 2018) proposed a graph-based embedding. The

method is used in the recommendation system, in order to solve the problem of

sparse data, large amount of data and the existence of cold start of products in

Alibaba’s e-commerce. The method first constructs a directed graph of products

based on sessions, and constructs behaviors that interact with products based on the

graph. Sequence, combining the features to generate the graph embedding vector

of the item, and weighting the features of each vector. This algorithm is mainly

used in the recall phase, based on the products that have interacted with the user,

recall the relevant candidate items.

Hidasi et al. (2015) proposed the SR-GNN model, considering the complex

process of converting items into vectors, and proposed a new embedding method,

which uses graph data structure to model user sessions, and uses graph neural

network to learn graph nodes and embedding vector. Finally, each session is

represented by the attention mechanism as the composition of the interest of the

current session and the global interest, and based on each session, the interaction

probability of the next item is predicted. The model overcomes the difficulty of

representing items with latent vectors, using The graph-structured model generates

accurate item embedding vectors, providing a new method for session-based

recommendation scenarios.

32

2.3 Deep Learning-based Recommender Systems

Feature representation refers to learning features from content, which is

generally used in content-based recommender systems. The performance of content-

based recommendation methods heavily depends on efficient data feature extraction.

The biggest advantage of deep learning is that it can learn data features through a

general end-to-end process, and automatically obtain high-level representations of

data without relying on artificially designed features. Therefore, deep learning is

mainly used in content-based recommendation to extract the latent representation

of the item from the content information of the item, and then generate the

recommendation by calculating the matching degree between the user and the

item based on the latent representation. Under the assumption that users and items

carry auxiliary information, deep neural network models are used as effective

feature extraction tools.

The convolution and pooling of convolutional neural network mainly learns

the local features of data(Wang et al., 2020a), can extract unstructured multimedia

data, and perform representation learning on multi-source heterogeneous data. The

network can integrate diverse information, such as item images and comments, and

is able to extract user visual interests or user preferences from text information.

Convolutional neural network improves the scalability of the model, and integrating

more information allows the model to capture user interests from more aspects. In

recommender systems, convolutional neural networks Neural networks are suitable

for multimodal recommendation, image recommendation and text recommendation

tasks.

Usually users’ behavior is easily affected by images, and bright product pictures

can often attract users’ attention. Zhou et al. (2016) tried to capture and analyze

users’ favorite images with convolutional neural networks to extract user visual

33

2.3 Deep Learning-based Recommender Systems

interest portraits. The system By calculating the cosine similarity of the visual

interest vector, find the housing that matches the user’s visual interest. The model

is applied to the hotel reservation system, using image features to predict the

user’s favorite housing style, and realize personalized recommendation. Tang

and Wang(Tang and Wang, 2018) proposed convolution The sequence embedding

recommendation model regards the items that the user has interacted with in the

past as a sequence, and predicts the items that the user may interact with in the

future. Local features of images. The model uses convolutional neural networks to

learn sequence features and latent factor models to learn user features.

Some related studies use convolutional neural networks to extract text features,

integrate the model into textual information, and recommend relevant textual content

of interest to users. Shen et al. (2016) used CNN for online learning resource

recommendation, and the model used convolutional neural The project features

are extracted from the text information such as the introduction and content of the

learning resources, the language model is used for the input, and the latent factor

model regularized by the L1 norm is used for the output. Gong and Zhang (2016)

used CNN with attention to deal with the label recommendation problem. The

whole model consists of two parts. The former part is used to obtain text features,

and the latter part performs Softmax multi-label classification on the representation

of each text. The CNN The model convolutional layer is applied to the pre-trained

word vector, and the attention mechanism is added, and the attention layer is used

to generate the weight of a word relative to its surrounding words.

Zheng et al. (2017) build a DeepCoNN model to jointly model user behavior

and item attributes using textual reviews. An additional shared layer on top of

the two neural networks connects the two parallel networks, so user and item

34

2.3 Deep Learning-based Recommender Systems

representations can interact with each other to predict clicks The whole model

consists of 3 layers, the Lookup layer, the CNN layer, and the output layer. The

Lookup layer converts user reviews and product reviews into corresponding word

vectors, input them into CNN, and finally outputs the prediction results, and trains

the model to reduce the error.

In 2020, JD.com proposed the CSCNN model Liu et al. (2020), which effectively

utilizes the rich commodity category information in the e-commerce platform,

uses convolutional neural networks to extract image information, and innovatively

uses commodity information and commodity main images as the image feature

extraction module. Input, extract the rich visual features in the main image of the

product, effectively mine the visual attributes of the product, learn the impact of

the product image on user behavior, and improve the accuracy of click probability

prediction.Wu et al. (2021) leverage the stability of graph structure to incorporate

a contrastive learning framework to assist representation learning. The proposed

method is able to capture high-order similarity among users and items as well as

structural connetivity. In this way, the semantics that users with similar interactions

will have similar preferences are extended through multiple times of information

propagation.

2.3.2 Models using Deep Learning Technique for Latent Rela-

tionship Modeling

Collaborative filtering is a widely used approach in recommender systems to solve

many real-world problems. Traditional CF-based methods employ the user-item

matrix which encodes the individual preferences of users for items for learning

to make recommendation. In real applications, the rating matrix is usually very

35

2.3 Deep Learning-based Recommender Systems

sparse, causing CF-based methods to degrade significantly in recommendation

performance. Some improved CF methods utilize the increasing amount of side

information to address the data sparsity problem as well as the cold start problem.

However, the learned latent factors may not be effective due to the sparse nature of

the user-item matrix and the side information. Some researchers utilize advances

of learning effective representations in deep learning, propose deep learning-based

collaborative filtering methods, which is a kind of model based collaborative

filtering recommendation methods for latent relationship modeling.

(1) Multilayer Perceptron-based recommendation

MLP can easily model the non- linear interactions between users and items.

In 2016, the YouTube team (Covington et al., 2016) applied DNN to the video

recommendation service, used neural networks to predict and score candidate

videos, and generated a recommendation list according to the scores. The whole

system is divided into a matching stage and a sorting stage. The matching stage

uses an efficient recall strategy. Recalling candidate items that may be of interest to

users from a video library with a scale of millions The neural network integrates

user features, video attributes and scene information into the model, and predicts

the score of candidate videos, sorts according to the scores, and selects high-scoring

videos as the recommendation list.

Cheng et al. (2016) proposed a Wide & Deep model. The model consists

of a Wide part and a Deep part. The Wide part uses a linear model to extract

the first-order features of the data, and the Deep part uses neural The network

automatically learns high-order features to improve the generalization ability, and

finally integrates the results of the two parts through the Sigmoid activation function

and outputs the prediction result. The Wide part in the model corresponds to the

36

2.3 Deep Learning-based Recommender Systems

memory ability of the model, and finds the difference between the features from

the user’s data. Relevance, which is biased towards recommending content related

to user historical behavior. The Deep part corresponds to the generalization ability

of the model. The sparse feature forms a low-dimensional dense vector through the

embedding layer and is input into the hidden layer, using the learning ability of the

neural network to capture new potential The combination of high-order features,

the generalization ability is conducive to the personalization of the recommendation

results, so that the recommendation results have diversity.

The multi-layer perceptron model is widely used in click-through rate estimation

tasks. It can make full use of user portrait features, item attribute features and

context information for feature extraction, and can alleviate the problems of data

sparseness and high-order feature combination. The multi-layer perceptron and The

combination of factorization machines can make up for the disadvantage that the

feature combination in the FM and FFM models cannot be extended to third-order

and above. Usually, after the sparse features are converted into low-dimensional

vectors through the embedding layer, low-order cross-feature combinations are

performed and DNN is used to extract high-level features. First-order feature

combination, output click probability through Sigmoid function, such as DeepFM

(Guo et al., 2017), FAT-DeepFFM (Zhang et al., 2019), NFM (He and Chua, 2017)

and other models. Collaborative filtering is combined with neural network to

alleviate the difficulty of training caused by sparse features, He et al. (2017b)

proposed a neural collaborative filtering model, which combines the processing

method of matrix decomposition with deep learning. The neural collaborative

filtering model mainly models the implicit feedback data and uses embedding

vectors to represent users and items which input these features into a multi-layer

37

2.3 Deep Learning-based Recommender Systems

neural network, and get the output layer predictions of user ratings, and uses a

square loss function to train the model. This method uses the neural network to

learn latent vectors to represent the potential relationship between users and items,

and maps users and items to the latent vector space. The distance between vectors

reflects the potential relationship between users and items, which can be used in the

recall stage to calculate the correlation recall and the set of item candidates related

to the target user.

Wang et al.(Wang et al., 2020b) discussed the impact of normalization operations

on the CTR prediction effect, such as layer normalization, batch normalization, and

variance-only normalization, for the CTR estimation task. Through comparative

experiments , will normalize the vectorized features, use layer normalization for

continuous numerical features, batch normalization for sparse categorical features,

and use bias normalization in multilayer perceptrons to improve click-through rates

Prediction accuracy. Huang et al.(Huang et al., 2020) borrowed the gate mechanism

in computer vision and natural language processing to improve the trainability of

non-convex neural networks, and added a gate mechanism in the embedding layer

to select more important features from features. The hidden layer joins the gate

mechanism to filter more important feature interactions and pass them to the deeper

network. The idea of the gate mechanism is similar to the attention mechanism,

which enhances effective features and suppresses data noise.

(2) Autoencoder-based recommendation

Autoencoder (AE) is an effective tool for learning low-dimensional feature

representation, which can learn richer feature information and has been widely used

in recommender systems. In the field of recommendation, the combined application

38

2.3 Deep Learning-based Recommender Systems

Figure 2.2 Illustration of AE-based Recommendation model.

of autoencoders and collaborative filtering methods can effectively alleviate the

data sparsity problem.

Sedhain et al.(Sedhain et al., 2015) developed an autoencoder-based collabora-

tive filtering recommendation method(AutoRec), the input of model is user based

ratings or item-based ratings in the rating matrix *R*, produces an output through

encoding and decoding process and optimizes the model parameters by minimizing

the reconstruction error.

Figure 2.2 presents an example of AE-based collaborative filtering model. The

grey entries indicate that the user has rated that item as the corresponding rating. The

cost function of autoencoder-based collaborative filtering recommendation method

aims at reducing the mean squared error. The rating prediction of autoencoder

based collaborative filtering recommendation method is calculated by summarizing

each entry of , then scaled by the maximum rating K. It uses RBM to pretrain

the parameters as well as to avoid local optimum. Stacking several autoencoders

together also enhances the accuracy slightly. However, there are two demerits of

autoencoderbased collaborative filtering recommendation method: it fails to deal

with non-integer ratings; the decomposition of partial observed vectors increases

the sparseness of input data and leads to worse prediction accuracy.

39

2.3 Deep Learning-based Recommender Systems

The Collaborative Deep Learning (CDL) model (Wang et al., 2015) is a

classic hybrid recommendation model that effectively combines Stacked Denoising

AutoEncoder (SDAE) and Probabilistic Matrix Factorization (PMF) methods .

SDAE is responsible for integrating auxiliary content information in the whole

model, and the combination with PMF effectively balances the influence of auxiliary

information and interaction data, and improves the recommendation accuracy of

the model. This model alleviates the sparsity problem in collaborative filtering well

and bridges the gap between autoencoders and collaborative filtering. However, the

implementation environment of the model is severe, and the dependence on auxiliary

information makes the load of the model face challenges. Based on the above

model, Zhang et al.(Zhang et al., 2016) proposed the Collaborative Knowledge

based Embedding (CKE) model. The model structure of CKE incorporates 3 types

of auxiliary information. In order to fully learn auxiliary information features, the

model uses the Bayesian embedding model to learn the vector representation of

structural information, the Bayesian stack noise reduction autoencoder to learn

the vector representation of text information, and the Bayesian stack volume

Stacked Convolutional AutoEncoder (SCAE) learns vector representations of image

information.

(3) Sequential recommendation

Sequential recommendation approaches utilize the sequential data to predict

the users next action based on the last few actions. Depending on how these user

historical behaviors are organized, sequential recommendations can be divided

into two categories, user-based sequential recommendation and session-based

recommendation.

40

2.3 Deep Learning-based Recommender Systems

User-based sequential recommendation treats user’s complete historical behav-

iors as a sequence to generate recommendation. Some early machine learning

methods can be adapted to perform user-based sequential recommendation. For

example, some researchers try to model the user behavior sequence by Markov

chains or Markov decision process. (Cheng et al., 2013) proposed extended

factorized personalized Markov chain (FPMC) into FPMC-LR model to perform

POI recommendation by adopting Bayesian Personalized Ranking (BPR) on a

user-location matrix. They model the sequential data via a stochastic process over

discrete random variables. As known, the Markov property limits the dependencies

of the process to a finite history. For example, in first-order Markov chains, the

transition probability only depends on the previous state. That is to say, the next user

action only depends on the previous one. Besides, the effectiveness and efficiency

are hindered by the data sparsity and the explosion of the state space.

Despite these methods show promising results by utilizing users’ sequential

behaviors, which reflect users’ dynamic and evolving interests, these methods

overlook the intrinsic that the sequences are composed of sessions.

Different from above approaches, session-based recommendation regards the

sequence of historical behavior in a continuous period of time as a session, and

generates the recommendation result according to the state of the current session.

In this setting, the users are usually assumed to be anonymous, and the personalized

preferences (such as user profiles and ratings) are not provided explicitly(He et al.,

2016).

In recent years, deep learning techniques have shown their promising effects

on the accuracy of recommendations. Some researchers proposed to model the

user behavior sequence by recurrent neural networks. For example, Hidasi et al.

41

2.3 Deep Learning-based Recommender Systems

(2015) proposes a recommender system based on Gated Recurrent Neural Network

Architecture (GRU4Rec), which builds a ranking algorithm to model the user’s

historical behavior sequence. In subsequent papers, various variants of recurrent

neural networks are proposed to improve the performance of GRU4Rec and

adopt in many different scenarios. Some of these variants consider auxiliary

information, e.g., personalized information (Quadrana et al., 2017), attribute

information (Gu et al., 2016) and context information (Smirnova and Vasile, 2017).

Some other variants introduce attention mechanism (Cui et al., 2019; Li et al.,

2017) and different ranking loss functions (Hidasi and Karatzoglou, 2018) to

improve the performance of recommendation task. In addition to recurrent neural

networks, some approaches solved user-based sequential recommendation based on

convolutional neural networks. Caser(Tang and Wang, 2018) is proposed to apply

convolutional neural network instead of recurrent neural network to compress a

sequence of items’ embeddings into a low-dimension vector. Tuan and Phuong

(2017) proposed using CNNs to learn feature representations form item content

information (e.g., name, descriptions, identifier and category) to enhance the

accuracy of session based recommendation. Pang et al. (2022) proposed to construct

a heterogeneous graph in which the item transitions are captured by two types of

item-item edge: in-type and out-type. Pan et al. (2022) also proposed to construct a

global-level graph and a session-level graph, but it considers the learning on two

graphs as two tasks, based on which multi-task learning is adopted.

42

Chapter 3

Enhancing Fashion Recommendation

with Visual Compatibility

Relationship

3.1 Introduction

A large portion of sales in the e-commerce are affected by fashion and lifestyle,

which constitute apparel, footwear, bags, accessories, etc. Intelligent fashion

recommendation received a lot of attention in computer vision and machine learning

community (Ge et al., 2017; Kang et al., 2017; Wang et al., 2017). They have huge

potential profits for the fashion industry. A lot of companies have established

their own recommender systems to give users advice to enhance their shopping

experience, such as Amazon, Alibaba and eBay (Mao et al., 2019; Wu et al., 2015).

Many approaches have been proposed to analyze user preferences on fashion

criterion and generate personalized recommendation. Most of fashion recommen-

43

3.1 Introduction

(a) Compatible outfits.

(b) Incompatible outfits.

Figure 3.1 Examples of compatible and incompatible outfits.

dation approaches take into account characteristics of image, as visual information

is one of the most important factor in describing fashion items (He and McAuley,

2016b; Kang et al., 2017; Lynch et al., 2016). Such approaches can substantially

improve recommendation accuracy than others without visual information.

However, a few of them considers the problem of compatibility of fashion

items. We know that when we choose a piece of clothing, it is not just a matter of

considering the style of the dress. We also need to consider its effect with other

clothes we wear. Some examples of compatibility and incompatibility outfits have

been shown in Figure 3.1. Normally one would not pair a red T-shirt with green

pants. Moreover, a black robe is incompatible with a pair of pink running shoes.

This is partially because it is difficult to model compatibility relationship between

fashion items.

When designing this recommendation system, we mainly consider the problem

of learning visual compatibility relationship of items on pixel level. The

44

3.1 Introduction

visual compatibility relationship that needs to be learnt is whether fashion

matching between one item and another item conforms to the human aesthetic

by understanding the picture. In the traditional fashion recommendation, authors

often only consider the styles and categories of clothes and ignore the sense of

harmony between items as an outfit. In this chapter, our approach considers visual

compatibility relationship to recommend fashion items, which is closer to the actual

needs of people.

In order to learn the knowledge of the matching model between fashion items,

we face two challenges: 1) How to learn the common domain knowledge about

fashion compatibility relationship between items. In other words, there are a few

of outfits that we observed on the online shopping website for a single person and

fashion concept is often subtle and subjective for different customers. 2) How

to incorporate the learnt domain knowledge into our recommender system. For

the first challenge, we propose a novel method to incorporate the compatibility

relationship knowledge into the image representation. Our method allows learning

an embedding from the images of the fashion items to a latent space, so that two

items that is a good match are close in this latent space and items that don’t match

are far apart. An external dataset which contains a number of outfits being given

by experts is also been used to train our model. For the second challenge, we

adjust the popular BPR (Rendle et al., 2012) model to include the compatibility

relationship knowledge that we learnt. Moreover, because we use the external

dataset to learn the domain knowledge between the items in order to solve the

problem of the distribution gap between the source domain and target domain, we

propose a domain adaptation method to alleviate this difference.

In this chapter, the main contributions are summarised as follows::

45

3.2 Notations and Problem Formulation

• Proposing a fashion compatibility relationship learning method that incor-

porates visual compatibility relationships as well as style information into a

visual embedding.

• Proposing a fashion recommendation method with domain adaptation strategy

to alleviate the distribution gap between the items in target domain and the

items of external compatible outfits.

• Conducting a case study to illustrate how our method understands images.

Furthermore, through an extensive set of experiments on several datasets,

we demonstrate our method significantly outperforms several alternative

methods.

3.2 Notations and Problem Formulation

We first explain the symbols used in this chapter. We will consider U be the set of

all users and I the set of all items. For each item, we have a corresponding images

Vi which can represent this product. R ⊆ len(U)× len(V) is the implicit feedback

matrix whose rows correspond to customers and whose columns correspond

to products. This means that Rui = 1 stands for user u has bought item i,

and 0 otherwise. We also have a hand-crafted clothing collocation dataset

X = {x1,x2, ...,xn} labelled by experts which contains a set of clothing images and

a clothing collocation pair list C = {(xi,x j)|xi,x j ∈ X}. Note that despite in the item

set V and clothing collocation set X are both contains clothing images, the images

in this two datasets are differences and no overlapped items. Furthermore, we can

incorporate additional information like category data of products or demographic

data about customers. However, we just focus on sales and visual information which

46

3.3 Visual Compatibility Relationship Modeling and Recommendation

Table 3.1 Major Notations Used in This Chapter

Notation Description

U ,I user set, item set
V image set of items
R implicit feedback matrix
X the set of images in clothing collocation dataset
C clothing collocation pair list
Pu,Vu,Tu positive item set of user u in training/validation/test sets
fi image representation vector of image i
γu,γi latent features of user u, item i
θu,θi visual features of user u, item i
Wenc,Wdec weights of encoders and decoders, respectively

is very important in fashion recommendation. Table 3.1 lists the major notations

used throughout this chapter.

The fashion recommendation task with visual compatibility relationship to be

solved in this chapter is to provide a personalized ranking list to each user with

the help of visual information. First, given a set of fashion items X = {x1,x2, ...}

and collocations using these items C, learning visual compatibality knowledge is to

learn an embedding F where the distance between item i and j, d(F(xi),F(xi)),

is as small as possible if (xi,x j) ∈C. After that, with user interaction records and

item images, we try to learn the user’s preference towards collaborative information

and visual information to generate a ranking list for each user.

3.3 Visual Compatibility Relationship Modeling and

Recommendation

We propose a fashion recommendation method which considers compatibility

relationship between fashion items. In this method, we combine the collaborative

47

3.3 Visual Compatibility Relationship Modeling and Recommendation

Figure 3.2 The proposed framework of our method.

information among users and items with compatibility knowledge. In order to

allow the algorithm to understand the aesthetics of humans, we carefully construct

an image representation model, through which we can determine what kind of

information the resulting representation contains. This makes the computer learn

the compatibility knowledge that people understand. After that, we incorporate the

generated compatibility knowledge into our recommendation framework with a

domain adaptation strategy. The framework of the entire recommender system is

shown in Figure 3.2.

48

3.3 Visual Compatibility Relationship Modeling and Recommendation

3.3.1 Learning visual compatibility knowledge from fashion

items

In this section, our goal is to learn the visual compatibility relationships between

fashion items. Conventional methods are mostly relying on category information to

learn image representations. Instead of annotating images with labels or categories,

which is costly, we leverage the weakly-labeled web data provided by the external

dataset to learn compatibility knowledge.

Since there is no fixed category for the tasks we are going to perform, we cannot

use the softmax-based cross entropy loss function for training. So, we chose triplet

network to learn the image representation. The advantage of the triplet network is

the distinction of details, that is, when the two inputs are similar, the triplet network

can better model the details, which is equivalent to adding two measures of the

difference of the input differences to learn a better representation of the input. The

structure of the network is shown in the Figure 3.3.

In our task, we take the first item in an item pair in list C as an anchor, the

second item as a positive sample, and select an item that is not in the list as the

negative sample. More specifically, we can’t randomly select negative samples

on the entire candidate set, because this will cause d(A,N) to be much larger than

d(A,P), which will make the model unable to fully train and enter the prematurely.

The state of the joint. So at each training, we need to choose a negative sample with

d(A,P) as close as possible to d(A,N). This may make the model as difficult as

possible to reduce the risk of overfitting.

Given a fashion image set, X = {x1,x2, ...}, xi is a picture containing the t-th

item. Also give a list C = {(xi,x j)|xi ∈ X} which denotes clothing collocation

pairs. We need to learn a xi to fi mapping function, so that xi and x j are as close

49

3.3 Visual Compatibility Relationship Modeling and Recommendation

Figure 3.3 The illustration of our model for learning compatibility knowledge.

as possible, if the two items have good compatibility, and by contrast, the distance

between fi and f j is as far as possible is i and j are not good compatibility. In other

words, we try to learn a new representation of images. More formally, we minimize

the following objective function:

L(A,P,N) = max(||F(A)−F(P)||2 −||F(A)−F(N)||2 +α,0) (3.1)

where F is the mapping function. A is the anchor item, P is the item which have

good compatibility with A, and N is not a good compatibility. α is the threshold

parameter.

As shown in Figure 3.3, the network contains three sub-networks which shares

weights with each other. In each sub-network, we encode the item image with

50

3.3 Visual Compatibility Relationship Modeling and Recommendation

Convolutional Neural Networks. There are many ConvNets architectures to choose

from, and we use a variant of AlexNet for simplicity. The AlexNet variant, is the

same as the original, except that we do not use pretrained weights and we replace

local response normalization with batch normalization. We use the output of the

fc6 layer as the encoding feature of the input image. The dimension of the image

encoding is 4096.

Using more powerful architectures (e.g. Szegedy et al. (2017)), may achieve

better performance; however, we found that AlexNet is sufficient to show the

effectiveness of our method. Because this network has fewer parameters, it can be

trained more easily and reduces the risk of overfitting during training.

3.3.2 Fashion recommender system with visual compatibility

knowledge

As mentioned above, the recommendation task can be regard as a ranking problem

according to the user’s preference. Our preference predictor is based on the basis of

Matrix Factorization, which is the most promising model for rating prediction as

well as modeling implicit feedback. The most related work to this problem is the

VBPR model proposed in He and McAuley (2016b), which learns the visual user

preference predictor using a pairwise ranking optimization framework.

We conduct our model based on pairwise learning. We defined the preference

predictor as same as VBPR except for the reduce dimension method. To avoid

missing information, we use an autoencoder to process dimension reducing. The

formulation of encoder and decoder of autoencoder are as follows:

Enc(I) =Wenc ·F(I)+benc (3.2)

51

3.3 Visual Compatibility Relationship Modeling and Recommendation

Dec(I) =Wdec ·Enc(I)+bdec (3.3)

Thus, the final preference predictor are as follows:

r̂u,i = α +βu +βi + γ
T
u γi +θ

T
u Enc(fi) (3.4)

For this implicit feedback ranking problem, we conduct the pairwise ranking

optimization framework to train the model. The objective is as follows:

max
θ

∑
(u,i, j)∈DS

lnσ
(
r̂ui j
)
−λΘ∥Θ∥2 + || fi − f̂i||2 + || f j − f̂ j||2 (3.5)

where r̂ui j = r̂u,i − r̂u, j.

Because the compatibility knowledge is learned from an external dataset also

called source domain, images from the external dataset and the target dataset belong

to different feature space. For example, in our experiments, the backgrounds of

images in the source domain are very excursive. But in the target domain, the

backgrounds are very clean and neat. Thus, we propose a domain adaption method

which uses the domain adaptation technique to ensure that knowledge extracted

from the source domain is consistent with the target domain and that knowledge

transfer is positive.

When two items are bought by a customer at the same time, it regards as a

co-occurrence pair. Most of the time, in the domain of fashion recommendation, we

can assumption that the co-occurrence items should be a good clothing matching.

Thus, we add the co-occurrence similarity into the objective above as follows to

52

3.4 Experiments and Analysis

alleviate the distribution gap between source domain and target domain:

Di, j = Frequenti, j ∗ ||Enc(fi − f j)|| (3.6)

where Frequenti, j is the frequency of co-occurrence in the train set. When item i

and item j are bought in a same bundle, we assume that they are a good match, and

the distance between them should be very closer.

In the training procedure, the training set DS consists of triples in the form

of (u, i, j,c), where u denotes the user and item i which they expressed positive

feedback, and a non-observed item j. c is the co-occurrence frequency. It can be

formalized by:

DS = (u, i, j,c)|i ∈ I+u ∧ j ∈ I+u (3.7)

The final formulation is as follows:

∑
(u,i, j)∈DS

lnσ
(
r̂ui j
)
−λΘ∥Θ∥2 + || fi − f̂i||+ || f j − f̂ j||+Di, j (3.8)

3.4 Experiments and Analysis

We perform experiments on several datasets to evaluate the performance of the

proposed method. All experiments were conducted on a workstation with a 6-core

Intel CPU and two Titan-X (Pascal) graphics cards. Although there is a huge

number of images and transaction records, it is still possible to train our model in

half of day.

53

3.4 Experiments and Analysis

3.4.1 Datasets and evaluation metrics

The first dataset was provided by Taobao.com which is one of the most famous

Chinese website for online shopping. It consists of clothing collocation suggestions

from fashion experts, image data of Taobao items, and user behavior data. In

this dataset, each line represents an item list which delimited by semicolon, every

semicolon refers to a Collocation set. Every collocation set includes several goods,

delimited by comma. We formatted this dataset into a pair-wise format, which

means these two items is a good matching.

Another group of datasets contains user transaction records from two different

sources. The first one were introduced in He and McAuley (2016b) and consist

of reviews of clothing items crawled from Amazon.com. It was separated into 4

subcategories, named Amazon Fashion, Amazon Women and Amazon Men. The

other one was crawled from Tradesy.com, which includes serveral kinds of feedback,

like clicks, purchases, sales, etc.

The statistical information for the four datasets is provided in Table 3.2.

Table 3.2 Dataset statistics

Dataset Users Items Interactions

Amazon Fashion 64,583 234,892 513,367
Amazon Women 97,678 347,591 827,678
Amazon Men 34,244 110,636 254,870
Tradesy.com 33,864 326,393 655,409

We measure recommendation performance of our method by calculating AUC

and diversity. The AUC measures the quality of a ranking based on pairwise

comparisons. Formally, we have

54

3.4 Experiments and Analysis

AUC =
1
|U| ∑

u∈U

1
|Du| ∑

(i, j)∈Du

ξ
(
ru,i > ru, j

)
(3.9)

where Du = {(i, j)|(u, i) ∈ Tu ∧ (u, j) /∈ (Pu ∪Vu ∪Tu)}. In other words, we are

calculating the fraction of times that the ’observed’ items i are preferred over

’non-observed’ item j.

AUC is a typical metric to assess the recommendation performance in

reproducing known user opinions that have been removed from the test dataset. The

risk of such a metric is that, with recommendations based on similarity and overlap,

customers will be exposed to a narrowing band of popular commodities. In other

words, we also need other metrics to evaluate the recommendation performance.

Personalization, also named Inter-user diversity, considers the uniqueness of

different customers’ recommendation list. Given two users i and j, the different

between their recommendation lists can be measured by the inter-list distance,

hi j(L) = 1−
qi j(L)

L
(3.10)

where qi j(L) is the number of common items in the top L places of the both lists:

if the two lists are identical, qi j(L) = 0 will equals 0 whereas completely different

lists have qi j(L) = 1.

Averaging hi j(L) over all pairs of users we obtain the mean distance h(L), for

which greater or lesser values mean, respectively, greater or lesser personalization

of users’ recommendation lists.

3.4.2 Experimental settings and baselines

55

3.4
E

xperim
ents

and
A

nalysis

Table 3.3 Recommendation Performance in Terms of AUC and Diversity with different sparsity

AUC Diversity

D=0.0010 D = 0.0005 D = 0.0001 D=0.0010 D = 0.0005 D = 0.0001

Amazon Fashion

POPRANK 0.5553 0.5627 0.6298 0.0000 0.0000 0.0000
BPR-MF 0.5866 0.5951 0.6163 0.5621 0.5285 0.3093
VBPR 0.6953 0.7116 0.7503 0.9715 0.9861 0.9945
DVBPR 0.6134 0.6199 0.6497 0.9826 0.9920 0.9856
CO-BPR 0.7126 0.7242 0.7723 0.9806 0.9891 0.9926

Amazon Women

POPRANK 0.5534 0.5897 0.6426 0.0000 0.0000 0.0000
BPR-MF 0.5884 0.6176 0.6437 0.6335 0.5548 0.3786
VBPR 0.6747 0.6861 0.7161 0.9777 0.9868 0.9935
DVBPR 0.6209 0.6305 0.6714 0.9859 0.9890 0.9871
CO-BPR 0.6792 0.6901 0.7295 0.9952 0.9921 0.9898

Amazon Men

POPRANK 0.5607 0.6118 0.6538 0.0000 0.0000 0.0000
BPR-MF 0.5969 0.6269 0.6447 0.5655 0.4583 0.3501
VBPR 0.6754 0.6857 0.7164 0.9716 0.9760 0.9870
DVBPR 0.6270 0.6471 0.6726 0.9796 0.9788 0.9797
CO-BPR 0.6815 0.6982 0.7358 0.9836 0.9902 0.9961

Tradesy.com

POPRANK 0.4105 0.3939 0.4756 0.0000 0.0000 0.0000
BPR-MF 0.5830 0.5763 0.5317 0.8522 0.8813 0.8694
VBPR 0.6553 0.6819 0.6927 0.9923 0.9964 0.9931
DVBPR 0.6134 0.6199 0.6497 0.9826 0.9920 0.9856
CO-BPR 0.6718 0.6873 0.7106 0.9874 0.9901 0.992056

3.4 Experiments and Analysis

We compared the proposed method in terms of accuracy and diversity against

the following baselines:

• PopRank: Always recommends the top-k most popular items to users.

• BPR-MF (2009): This is a content-free algorithm based on matrix factoriza-

tion which is designed for top-k recommendation tasks Rendle et al. (2012).

It optimizes pair-wise preferences between observed and unobserved items.

• VBPR (2016): It is a state-of-the-art image-based recommender system

proposed by He and McAuley (2016b) for implicit feedback. The authors

incorporate visual information provided by a pre-trained CNN.

• DVBPR (2017): This is the extension of VBPR by learning ’fashion aware’

image representations directly (Kang et al., 2017).

• CO-BPR: Our method proposed in this chapter.

We carefully choose the hyper-parameters and tuned them via grid search for

each baseline method. For BPR-MF, VBPR, DVBPR and CO-BPR, we used a

mini-batch size of 32 for all experiments. The number of latent factor selected from

{6,8,10,12,14,16,18,20}. We set it to be 12 in all experiments.

3.4.3 Results

We evaluated our proposed method by comparing it to state-of-the-art methods

using some real-world datasets. We report recommendation performance in terms

of the AUC and diversity in Table 3.3. Data with three sparsity ratios in target

domain are chosen as training set. Comparing all the methods on these four datasets,

we make the following observations:

57

3.5 Summary

1) Compared with POPRANK method on Amazon datasets, the value of AUC

increase with the increase of sparsity ratio. It tells us that customer more likely to

purchase popular items on Amazon. However, on Tradesy.com, customers prefer to

choose unpopular items.

2) Compared with methods without visual information, we can see that visual

information substantially improve recommendation accuracy and diversity.

3) Compared with VBPR and DVBPR, we can see that learning visual

compatibility relationship from an external dataset is very effective. Our proposed

method CO-BPR outperforms all the comparison methods on all the four datasets.

This demonstrates the significant benefits of generating recommendations with

visual compatibility relationship.

Furthermore, to investigate the dimensionality sensitivity, we illustrate the

performance of VBPR, DVBPR and CO-BPR with varying dimensionality in

Figure 3.4. It is clear that both latent dimensionality and visual dimensionality are

note very sensitive.

3.5 Summary

In this chapter, we have introduced a novel method for the fashion recommendation

task with learning compatibility knowledge in visual aspect. A triplet network is

used to learn compatibility knowledge from an external dataset. Domain adaptation

strategy is used to alleviate the distribution gap between source domain and target

domain. The experimental results show that our method is superior to several

baselines in the AUC and diversity indicators.

58

3.5 Summary

(a) latent dimensionality

(b) visual dimensionality

Figure 3.4 Performance of VBPR, DVBPR and CO-BPR with varying
dimensionality measured by AUC.

59

Chapter 4

A Deeper Graph Neural Network for

Recommender Systems

4.1 Introduction

Recommender systems have become increasingly important in recent years due

to the problem of information overload. Recommender systems allow individuals

to acquire information more effectively by filtering information. Over the

years, collaborative filtering has become the most successful and widely used

recommendation technique (Shi et al., 2014). The core assumption is that users

who have expressed similar interests in the past will share similar interests in the

future. Popularized by the Netflix Prize, Matrix Factorization (MF) has become the

de facto approach to collaborative filtering-based recommendation. Much research

effort has been devoted to enhancing the MF method, one of the most powerful

collaborative filtering techniques, such as integrating it with neighbor-based models

(Koren, 2008), extending it to factorization machines for the generic modeling of

60

4.1 Introduction

features (Rendle, 2010a), and optimizing it with Bayesian personalized ranking

objective to adapt it to implicit feedback recommendation (Rendle et al., 2012).

However, despite these efforts, sparsity is still one of the most challenging issues

facing us today.

Recent years have seen a surge in research on graph neural networks, leading to

substantial improvements in the performance of tasks with graph-structured data,

which is fundamental for recommendation applications. One of the most prominent

approaches is Graph Convolutional Network (GCN) (Defferrard et al., 2016). The

core idea behind GCNs is finding a way to iteratively aggregate feature information

about graph structure and the structure of the node’s local graph neighborhood into a

machine learning model. The goal is to learn a mapping that embeds nodes as points

in a low-dimensional vector space Rd . The primary contribution of representation

learning approaches is that of finding a way to represent, or encode graph structure

which geometric relationships in the embedding space reflect the structure of the

original graph. However, GCNs need to operate on the Laplacian eigenbasis which

leads to a huge time consumption on large graphs.

In this chapter, we view the recommendation task as a link prediction problem

on a bipartite graph: the interaction data in collaborative filtering-based methods

can be represented by a bipartite graph between user and item nodes as shown

in Figure 4.1. The MF approaches can then be considered as learning a mapping

from users/items to a low-dimensional vector, where the interaction information is

contained in the vectors.

We propose a general framework named GCF, short for Graph neural network-

based Collaborative Filtering, which builds on recent progress in graph neural

networks. The framework contains a larger receptive field with iterative information

61

4.1 Introduction

Figure 4.1 Illustration of the bipartite graph of a user-item interaction matrix.

propagation enabling our method to access more information in the process of

making decisions. The concept of receptive field on graph neural networks will be

given in the following section.

We present an attention-based message-passing method to carry out the

information propagation process. In the recommendation task, the variable size

input for each layer is a challenge, because the number of neighbors for each node

is different. To solve this problem, we assign different weights for neighbors.

The main contributions of this chapter are summarised as follows:

• Presenting a general framework GCF to model the latent features of users

and items. We also show that MF is a special case of GCF when the number

of hidden layers is no more than one.

• Proposing an attention-based message-passing method to solve the variable

size input problem.

62

4.2 Problem Formulation and Motivation

• Performing extensive experiments on three real-world datasets to demonstrate

the performance of our GCF method. The results show that the proposed

method outperforms the state-of-the-art methods in terms of HR@k and

NDCG@k.

4.2 Problem Formulation and Motivation

In this section, We formalize the problem and discuss existing solutions for

collaborative filtering with implicit feedback.

4.2.1 Recommendation and Link Prediction in Bipartite Graphs

Let Nu and Nv denote the number of users and items, respectively. We define the

user–item interaction matrix Y ∈ {0,1}Nu×Nv from users’ implicit feedback, where

yui equals 1 if interaction (user u, item i) is observed, 0 otherwise. Here yui = 1

indicates that there is an interaction between user u and item i. This means that user

u likes item i. However, a value of 0 does not necessarily mean that user u does not

like item i, it can be that the user is not aware of the item.

The recommendation problem with implicit feedback is formulated as the

problem of estimating the scores of unobserved entries in Y . Formally, they can be

abstracted as learning ŷui = f (u, i | θ), where ŷui is the predicted score of interaction

yui, θ denotes the model parameters, and f denotes the function that maps the model

parameters to the predicted score.

We can also treat the user-item interaction matrix as a bipartite graph, where

users and items are nodes in the graph as shown in Figure 4.1, and interactions are

edges in the graph. The edge between node u and node i indicates that an interaction

63

4.2 Problem Formulation and Motivation

between user u and item i is observed, and vice versa. Thus, the recommendation

problem can be represented by the problem of predicting the probability of an edge

between a user node and an item node. Formally, the users’ implicit feedback can

be represented by an undirected graph G = (U ,V,E), where ui ∈ U is a collection

of user nodes with i ∈ {1, ...,Nu}, and v j ∈ V is a collection of user nodes with

j ∈ {1, ...,Nv}. The edge (ui, v j) ∈ E denotes that the interaction (user u, item i)

is observed, and vice versa.

4.2.2 Factorization Models

Machine learning algorithms in recommender systems are typically classified into

three categories: content-based, collaborative filtering-based and hybrid methods.

Content-based methods follow the assumption that a user prefers items that have

similar attributes to items previously preferred by that user. In contrast, collaborative

filtering-based methods do not rely on item content description, but generate

recommendations according to users who have shared similar interests in the past

(Mao et al., 2017). Hybrid methods combine both content-based and collaborative

filtering-based methods. Collaborative filtering-based methods have been widely

used because they enable users to discover new content that is dissimilar to items

viewed in the past. In this study, we also concentrate on collaborative filtering-based

techniques.

The factorization model is one of the most promising categories of collaborative

filtering-based recommendation. One of the most famous methods used in the

context of recommendations and usually referred to as "SVD" is not strictly

speaking the mathematical Singular Value Decomposition of a matrix but rather

an approximate way to compute the low-rank approximation of the matrix by

64

4.2 Problem Formulation and Motivation

minimizing the squared error loss. The basic idea is to decompose the original and

very sparse matrix into two low-rank matrices that represent user factors and item

factors (Koren, 2009). User and item factors are simply multiplied to predict the

score of interaction yui.

ŷui = bu +bi + pT
u qi (4.1)

where bu and bi is the bias of user u and item i, pu is the user latent factors of user

u and qi is the item latent factors of item i.

Another well-known algorithm is SVD++, which is the enhanced model of SVD

(Koren, 2008). In this method, user latent factors are combined with item latent

factors. This is because the author believes that a user-rated item is in itself an

indication of preference. This has a positive effect on new users for whom there

might not be enough data points to generate good user factors. The formulation of

this method is as follows:

ŷui = bu +bi +qT
i

(
pu + |N(u)|−1/2

∑
j∈N(u)

yi

)
(4.2)

where N(u) is the positive feedback of user u and yi is the personalized preference

bias of who likes item i.

SVD and SVD++ are the simplest algorithms of collaborative filtering-based

methods. The matrix factorization methods have been proven to be efficient and

effective in many situations (Koren et al., 2009; Symeonidis, 2016; Wang et al.,

2016a). However, one of the challenges of these methods is the sparsity problem. As

a result of this problem, the collaborative filtering-based method cannot find enough

similar users to support the decision-making process. At present, a large number of

methods based on the idea of matrix decomposition (Bobadilla et al., 2013; Lu et al.,

65

4.2 Problem Formulation and Motivation

2015) have been proposed to address this problem. A non-uniform item sampler

has been proposed to address the problem in which the convergence of stochastic

gradient descent learning algorithms slows down if the item popularity has a tailed

distribution (Rendle and Freudenthaler, 2014). Because a good recommender

particularly emphasizes accuracy near the top of the ranked list, a new pairwise

ranking loss has been proposed to reduce computational complexity (Yuan et al.,

2016). A series of cross-domain techniques have been proposed to utilize data from

an external domain to alleviate the sparsity problem (Zhang et al., 2018, 2017a).

All of these methods attempt to address the sparsity problem in different aspects.

4.2.3 Graph Neural Network

Our work builds upon a number of recent advancements in deep learning methods

for graph-structured data. Graph neural networks consist of an iterative process,

which propagates the node information until equilibrium and produces an output

for each node based on its information. It was first outlined in (Gori et al., 2005)

and further elaborated on in (Scarselli et al., 2009). (Bruna et al., 2013) proposed a

graph convolution based on spectral graph theory. Following on from this work, a

number of authors have proposed improvements, extensions, and approximations

of these spectral convolutions (Bronstein et al., 2017; Defferrard et al., 2016)

which have proved the effectiveness on node classification and link prediction,

as well as recommender systems (Monti et al., 2017). These approaches have

consistently outperformed techniques based upon matrix factorization or random

walks. However, the learnt filters in the spectral approaches depend on the Laplacian

eigenbasis and spectral decomposition, which is prohibitively expensive on large

graphs.

66

4.3 Graph Neural Network-based Collaborative Filtering

There are also several non-spectral approaches (Atwood and Towsley, 2016;

Duvenaud et al., 2015), which define convolutions directly on the graph. (Hamilton

et al., 2017) introduced GraphSAGE, a method for computing node representations

in an inductive manner. This approach has yielded impressive performance across

several large-scale inductive benchmarks, however, the technique only deals with a

fixed size neighborhood of each node.

4.3 Graph Neural Network-based Collaborative Fil-

tering

In this section, we first present the general GCF framework. We then show that

SVD and SVD++ can be expressed under GCF with node embedding via graph

neural network. To address the problem of dealing with variable size inputs in

the information propagation process, we propose a new method with an attention

mechanism which assigns different weights to the neighbors of each node.

4.3.1 General framework

Factorization models essentially learn the representation of users pu and the

representation of items qi with a distance metric d to represent the similarity

between pu and qi. Recommendations are then generated based on the similarity

ranking.

In this chapter, we use a graph neural network to learn pu and qi. In Figure

4.2, the boxes represent users and the circles represent items. A bipartite graph

consists of two parts: node information, also known as latent factors and structural

67

4.3 Graph Neural Network-based Collaborative Filtering

Figure 4.2 Illustration of the proposed framework.

information. We use pu and qi to represent the node information in the graph, and a

user-item interaction matrix to represent the structure information of the graph.

The node information can be broadcasted along the edges on the graph. In the

first step, as shown in Figure 4.2, the user node receiving a message from the item

nodes means that the items related to the user also represent the user’s preference.

The latent factors of these items are therefore contained in the user’s latent factors.

At the same time, item nodes in the graph also receive a message from the user

nodes for the same reason. In the second step, the user receives a message from

the related items again, but the message not only contains the latent factors of

items but also the latent factors of users related to this item. Node information will

be broadcasted several times on the graph with multiple message-passing layers.

Finally, we can obtain pu and qi with a wider scope of information by integrating

the messages from the user nodes and the item nodes.

In convolutional neural network, the receptive field is defined as the region in

the input space that a particular CNN’s feature is looking at. A larger receptive

field means that more information is integrated into the particular feature. In the

same situation, the concept of receptive field in graph neural network is defined

as the region on the graph that the target node receives messages from. With a

68

4.3 Graph Neural Network-based Collaborative Filtering

larger receptive field on graphs, representations of nodes are able to integrate more

information.

4.3.2 Node embedding via Graph Neural Network

The core of our framework is how to aggregate information from a local graph

region using neural networks. We know from the previous section how to predict

the interaction score between user u and item i in SVD and SVD++. In SVD, the

interaction score is directly calculated by the inner product of the latent factors of

users and items. It is a special case of GCF without aggregating information from

local graph regions. SVD++ incorporates the information from neighborhoods of

users to its latent factors on the basis of SVD. This operation can be regarded as a

process in which information propagation occurs from items to users, which can be

formulated as pu + |N(u)|−1/2
∑ j∈N(u) yi.

Based on this idea, we consider aggregating feature information iteratively

from local graph neighborhoods, so that information from larger regions can be

incorporated into latent factors. A node receives messages from its neighbor nodes

and incorporates them into itself as new latent factors. The formulation can be

expressed as:

h(k+1)
i = hk

i + |N(i)|−1/2
∑

j∈N(i)
hk

j (4.3)

where hk
i is the latent factors of node i in layer k. Note that there are also some

differences between one-layer GCF and SVD++. In SVD++, yi are independent

parameters, meaning that they are an indication of preference. However, in our

method, yi equals to qi. Another difference is that messages are only passed from

items to users in SVD++, but in our method, messages are passed to both sides.

69

4.3 Graph Neural Network-based Collaborative Filtering

In the above formula, we hypothesize that user latent factors and item latent

factors are in the same feature space, and that the corresponding dimensions in both

feature spaces have the same meaning, so their corresponding dimensions can be

directly summed. However, latent factors in these two features space may not have

the same meaning. Therefore, we concatenate the user latent factors with the item

latent factors, then add a linear transform and use a nonlinear activation function

to ensure they are transformed to the same feature space. The final formula is as

follows:

h(k+1)
i = σ(W k × concat(hk

i , |N(i)|−1/2
∑

j∈N(i)
hk

j)) (4.4)

where W k is the linear transformation matrix in layer k. Weights in the

transformation matrix will be shared on all nodes. σ is the activation function

such as ReLU(·) = max(0, ·).

4.3.3 Attention Mechanism

Attention mechanism has become one of the most important elements in many

sequence-based tasks, because it allows for dealing with variable size inputs, focus-

ing on the most relevant parts of the input to make decisions. In recommendation

tasks, the node degree on the bipartite graph is variable. We introduce an attention-

based architecture to handle this problem.

We add a measure of the importance of the neighbor nodes to each node to

replace the fixed experienced number |N(i)|−1/2, as shown in the following formula:

αi j =
exp(ei j)

∑k∈N(i) exp(eik)
(4.5)

where ei j = a · concat(hi,h j) and a ∈ R2F , F is the dimension of latent factors.

70

4.3 Graph Neural Network-based Collaborative Filtering

The message passing layer can be expressed as:

h(k+1)
i = σ(W k × concat(hk

i , |N(i)|−1/2
∑

j∈N(i)
αi jhk

j)) (4.6)

4.3.4 Model Training

As previously indicated, it is only positive classes in the data are observed in

implicit feedback recommendation systems. The remaining data is a mixture of

negative classes and missing values. In our method, we use item pairs as training

data to optimize a pair-wise ranking list. The basic idea is to maximize the distance

between a positive example and a negative example for each item pair in the training

data. The loss function is as follows:

L = max
θ

∑
(u,i, j)∈DS

lnδ
(
ŷui − ŷu j

)
−λθ∥θ∥2 (4.7)

where δ is the logistic sigmoid function, δ (x) = 1
1+exp−x , θ is all the trainable

parameters in our method, and DS is the sampled data point, which means that

(user u, item i) is observed in the datasets and (user u, item j) is the missing value.

We assume that the user prefers the positive items over all other non-observed items.

For items that both appear as positive classes, we cannot infer any preference. The

same is true for two non-observed items.

Algorithm 4.1 details how optimization can be achieved by performing

stochastic gradient descent. We first initialize the parameters with random values in

the model. The parameters include the user latent factors pu, the item latent factors

qi, weights of linear transform W k and weights of attention mechanism a. Then we

71

4.4 Experiments

compute the loss value for each example and apply the stochastic gradient descent

strategy.

Algorithm 4.1: Optimization
1 htb

Input:
Set of training data (u, i, j) ∈ DS;
Hyper-parameters: dimension of latent factors, number of hidden layers, λθ

Output:
An optimized model

Initial parameters in the model;
repeat

for each (u, i, j) ∈ DS do
for each layer in hidden layers do

for each node on the graph do
Compute forward propagation on the graph hk

i ;
end for

end for
Compute loss value for current example L(u, i, , j);
Apply stochastic gradient descent to optimize parameters;

end for
until convergence

The process of generating recommendations is detailed in Algorithm 4.2. It

shows how to obtain the ranking list of all the items about each user.

4.4 Experiments

4.4.1 Experimental Settings

Experiments are conducted on three datasets namely MovieLens 1M, MovieLens

10M and Taobao. The basic statistics are listed in Table 4.1. We select 60% of

records as the training set. Some records contain explicit feedback such as ratings.

72

4.4 Experiments

Algorithm 4.2: Generating recommendations
1 htb

Input:
User id: u;
optimized model;

Output:
Ranking list for user u

for each item i ∈ V do
Perform forward propagation to obtain the representation of user u and
item i;
Compute score ŷui;

end for
Ranking according to scores;
Recommend the top K items for user u;

As our focus is on the implicit feedback task, we remove the ratings from these

datasets.

Table 4.1 Statistics of the two datasets

users items feedback sparsity

ML-1M 6,040 3706 939,809 0.9580
ML-10M 69,878 10,677 104,000,054 0.9865
Taobao 8,349 5,701 321,976 0.9932

MovieLens is a common benchmark dataset which consists of user ratings for

items. Many versions have been released on the GroupLens website. We select

MovieLens 1M (ML-1M) and MovieLens 10M (ML-10M) to evaluate our method.

Taobao is a dataset for competitively matching clothing on the Tianchi platform.

It contains basic item data and data on the historical behavior of users. We use only

the historical behavior data to make recommendations. We remove users with less

than 10 items (|N(u)|< 10) and items with less than 20 users (|N(i)|< 20) from

this dataset.

73

4.4 Experiments

For the recommendation task with implicit feedback, we evaluate the perfor-

mance of each method using the following metrics averaged over all users:

• Hit ratio at K (HR@K) that is equal to 1/K if the test item appears in the top

K list of recommended items.

• Normalized Discounted Cumulative Gain (NDCG@K) favors higher ranks

of the test item in the list of recommended items.

4.4.2 Performance Comparison

In this subsection, we compare the proposed model with the methods below.

• ItemPop: Always recommends the top-k most popular items to users.

• SVD: The most famous matrix factorization method which maps the

interaction between users and items to a latent space of lower dimension.

• SVD++: The enhanced model of SVD.

• GCF-NA: The proposed model without attention mechanism.

• GCF-YA: The proposed model with attention mechanism.

To ensure all these experiments are evaluated equally, they are all conducted

under the Bayesian personalized ranking optimization framework. The hyper-

parameters for each baseline method are carefully chosen. The number of layers in

both GCF-NA and GCF-YA is set to three to balance efficiency and effectiveness.

The overall performance of the compared approaches is shown in Table 4.2.

Comparing all the methods on these four datasets, we make the following

observations:

74

4.4 Experiments

Table 4.2 Recommendation Performance in Terms of AUC and Diversity

@1 @5 @10

HR NDCG HR NDCG HR NDCG

ML-1M

ItemPop 0.1611 0.1308 0.3679 0.2727 0.5003 0.3899
SVD 0.2465 0.2032 0.5885 0.3956 0.7510 0.4574
SVD++ 0.2522 0.2082 0.5972 0.4029 0.7690 0.4646
GCF-NA 0.2591 0.2128 0.6029 0.4143 0.7656 0.4724
GCF-YA 0.2763 0.2158 0.6150 0.4394 0.7818 0.4873

ML-10M

ItemPop 0.1427 0.1277 0.3485 0.2621 0.4507 0.3463
SVD 0.2550 0.2090 0.5308 0.3439 0.7219 0.4077
SVD++ 0.2657 0.2130 0.5249 0.3575 0.7485 0.4249
GCF-NA 0.2886 0.2279 0.5404 0.3782 0.7525 0.4432
GCF-YA 0.2982 0.2293 0.5673 0.3893 0.7642 0.4677

Taobao

ItemPop 0.0191 0.0113 0.0354 0.0182 0.0542 0.0259
SVD 0.0900 0.0699 0.2148 0.1317 0.3011 0.2048
SVD++ 0.1246 0.1051 0.2352 0.1405 0.3310 0.2200
GCF-NA 0.1309 0.1150 0.2465 0.1558 0.3361 0.2254
GCF-YA 0.1562 0.1264 0.2888 0.1819 0.3662 0.2491

• The collaborative filtering methods are more effective than ItemPop.

• The proposed GCF method has obvious advantages over the SVD method.

This indicates that aggregating information on a larger regional scope on the

graph is effective.

• It is evident that GCF-YA is 6% better than SVD on ML-1M, 14% on ML-

10M, and 20% on the Taobao dataset, which means that the proposed method

is more powerful in dealing with sparse data.

• Comparing GCF-YA and GCF-NA, it is clear that attention mechanism has

certain advantages.

75

4.4 Experiments

4.4.3 Discussion

Figure 4.3 Performance of HR@10 and NDCG@10 with different numbers of
latent factors on ML-1M.

Figure 4.4 Performance of HR@10 and NDCG@10 with different numbers of
latent factors on ML-10M.

The dimension analysis is shown in Figure 4.3, 4.4 and 4.5. We evaluate the

performance with HR@10 and NDCG@10 on three datasets. The best dimension

is set up to 64. It is clear that GCF-YA outperforms all the other models on all

dimensionalities. The results also indicate that our method is not sensitive to

dimensionality.

76

4.5 Summary

Figure 4.5 Performance of HR@10 and NDCG@10 with different numbers of
latent factors on Taobao dataset.

Figure 4.6 Performance of HR@10 with different numbers of hidden layers.

We also analyze the impact of the number of hidden layers in terms of HR@10

and NDCG@10. The results are shown in Figures 4.6 and 4.7 and show that GCF-

YA achieves better results than GCF-NA, especially when the number of hidden

layers increases.

4.5 Summary

In this study, we have introduced a general framework GCF and an information

propagation-based graph neural network. GCF is a representation learning

framework for learning a mapping that embeds users and items as points in a low-

77

4.5 Summary

Figure 4.7 Performance of NDCG@10 with different numbers of hidden layers.

dimensional vector space with geometric relationships in the embedding space that

reflect the preference relationship between users and items. To address the problem

of variable size inputs for each node on a bipartite graph, we have proposed an

attention-based information propagation method. The primary contribution of GCF

is that a larger receptive field size can be used to obtain more information to support

the users’ decision process. We also proved that SVD and SVD++ can be expressed

under GCF with node embedding via graph neural network. We conducted

experiments on several real-world datasets to reveal the relationship between

the number of iterations of information propagation and the recommendation

performance. The experimental results show that the proposed method outperforms

all the other models.

78

Chapter 5

Long- and Short-term User Interest

Network for Personalized

Recommendation

5.1 Introduction

Recommender systems have been studied by many researchers and companies as

an effective way to alleviate the information overloading. Recommender systems

learn diverse personalized interest from historical behaviors and select items that

the user may like for target user in numerous of goods or services. It is well known

that there are two types of user interest: long-term user interest and short-term user

interest(Guo et al., 2019). The former refers to users’ inherent and stable interest

contained in the user’s inherent attributes and historical behaviors. For example,

the interest related to the users’ gender and occupation are long-term interests. The

short-term user interest convey users’ purchasing intention in a relatively short

79

5.1 Introduction

period. It is affected by incidentally transient events, such as the fashion trends

change or different personal mood.

According to different assumptions of user interests, recommendation ap-

proaches can be classified into two categories: traditional recommendation ap-

proaches and sequential recommendation approaches. Traditional recommendation

approaches mainly focuses on the long-term user interest. These methods treat all

the user’s historical behaviors as an unordered collection, and treat all the records

in the collection equally. MF is one of the most famous methods in recommender

systems(Rendle et al., 2012). By learning latent user factors and item factors

directly, MF achieves good performance in many different scenarios. SVDFeature

(Chen et al., 2012) incorporates side information into matrix factorization to predict

the bias term and to reweight the matrix factorization. Wide&Deep(Cheng et al.,

2016) considering low- and high-order feature interactions simultaneously brings

additional improvement. However, these approaches cannot fully exploit contextual

information which is important to identiy users’ intention. These approaches also

assumpt that user interests are stable, they cannot adaptive user’s interests changes

with time.

Different from traditional recommendation approaches, sequential recommen-

dation provides an effective way to model the sequential relationship between

historical behaviors of users and generate personalized recommendation lists for

them. Sequential recommendation approaches assume that the more recent items in

a sequence have a larger impact on the next item. FPMC(Rendle et al., 2010) uses

the Markov chains to model the sequence data, so as to calculate the next click action

through the state transition probability, and combines the matrix decomposition

algorithm to learn the latent factors of users and items. In recent years, with

80

5.1 Introduction

the development of deep learning, more and more sequential recommendation

algorithms based on deep learning have been proposed. Caser(Tang and Wang,

2018) uses a convolutional neural networks to learn the sequential patterns. It

effectively solves the problem that markov chain approaches failed to model union-

level sequential patterns and did not allow skip behaviors in the item sequences.

However, in the real-world recommender systems, the number of items is often very

large, the number of states will increase exponentially with the number of items.

Sequential recommendation approaches also cannot effectively use all the historical

information of users, because it always relies on the recent user behavior data and

ignores the long dependencies in long sequences.

Session-based recommendation approaches is a subarea of sequential recom-

mendation. A session is a list of user behaviors that occur within a given time frame.

These methods divide the user’s complete historical behavior sequence into multiple

sessions which consist of consequent items in a short period. In this setting, the

recommender systems make recommendations based only on the behavior of users

in the current browsing session. Session-based recommendation approaches pay

more attention to the short-term user interest, not only because the user ID cannot

be obtained in many scenarios, but also by analyzing and using the user’s short-term

interests, the user’s specific needs in the current context can be better obtained.

Benefit from the sequential modeling capability of RNN, Gated Recurrent Unit

(GRU) is widely used in session-based recommender systems. GRU4REC (Hidasi

et al., 2015) is the earliest attempt to apply RNN with GRU to the session-based

recommender system. They treat items in the session as a sequence, and introduce

session-parallel mini-batch, mini-batch based output sampling and ranking loss

function into session modeling and achieve better performance than conventional

81

5.1 Introduction

methods. (Wu et al., 2019) are the first to introduce GCN into recommender

systems. They use GNN to capture complex transition relationships in session

sequences. Although these methods have achieved better results in session-based

recommendation tasks, they ignore the long-term user interests which are able to

contribute more to learn users’ interests exactly.

In order to solve the problems that the traditional recommendation approaches

cannot dynamically adapt to the dynamic changes of user interests over time and

the sequential recommendation approaches cannot effectively utilize the user’s

long-term interest, there is also a small amount of work that takes into account

the user’s long-term interests and short-term interests. For example, the literature

(Devooght and Bersini, 2017) comprehensively considers the user’s long- and

short-term interests in recommender systems, and proposes a method based on

recurrent neural networks which allow recommender systems to manually control

the impact of long- and short-term interests to generate recommendation results.

However they did not take into account the long-term interests, beacause not all

user historical behaviors is used as the context of the current session which resulting

in the long-term interests can not have a sufficient beneficial impact on the current

recommendation. (Villatel et al., 2018) uses recurrent neural networks to model

the sequential data in recommender systems. As a study of long- and short-term

interests, the author only compared the effects of different sequence lengths in their

article, and not really use all the user’s historical behaviors to learn long-term user

interests.

Based on the abovementioned analysis, we propose a long- and short-term user

interest recommendation method that exploits long-term user interest and short-term

user interest to perform more precise recommendation. Specifically, inspired by

82

5.1 Introduction

the GNN method based on collaborative filtering, we propose L-UIN to learn the

latent real-value low-dimension feature representations of long-term user interest.

We incorporate side information the complete user’s historical behaviors and side

information into this network, such as the brands, price and categories of goods.

In addition to L-UIN, the latent feature representation of short-term user interests,

which refers to the temporary and dynamic user intention, are learnt by the proposed

S-UIN. Especially, S-UIN can learn the sequential relationship from the session

sequence via network embedding and attention based recurrent neural network and

is able to capture the user’s intention according to the browsing sequence. We use

common embedding layers for both L-UIN and S-UIN, which brings two important

benefits: (1) knowledge could be shared between L-UIN and S-IN; (2) it can reduce

the number of parameters, which speed up training process and reduce the risk

of overfitting. Finally, we aggregate the long- and short-term user interests and

generate recommendation for users.

The main contributions of this chapter are summarised as follows:

1. Presenting L-UIN on the basis of graph convolutional neural network to learn

long-term user interest from rich historical behaviors and side information.

2. Presenting S-UIN to learn user’s dynamic interest and intention from the

context. Based on the dynamic and temporary characteristics of the short-

term user interest, a recurrent neural network was built for quickly obtaining

the user’s intention and generating adaptive recommendation according to

the user’s surfing process.

83

5.2 Preliminaries and Problem Formulation

3. Proposing a method called LSREC to combine long-term user interest and

short-term user interest with sharing the feature embedding between the

L-UIN and S-UIN component.

4. Comprehensive experiments are conducted on real-world datasets, which

demonstrate that our method outperforms other state-of-the-art baselines.

5.2 Preliminaries and Problem Formulation

Formally, we define the set of all users as U = {u1, u2, . . . ,uN}, the set of items

as X = {x1,x2, . . . ,xM}, where N and M represent the number of unique users and

items in the dataset respectively. Suppose we know that the set of session sequences

is S = {s1,s2, . . . ,sK}, in which a session sequence of interactive actions are denoted

as Si = {x1,x2, . . . ,xn}, where K represents the number of session sequences in the

dataset and xi ∈ X denotes the ID of the i-th item that the uesr interacted with in

the current session. From this, all sessions that the user ui interacted in the dataset

can be represented by Sui ⊂ S, where ui ∈U denotes the ID of the i-th user in the

dataset. It is noteworthy that there are some anonymous sessions that do not belong

to any user in some dataset. The symbols we used to introduce our model are listed

in Table 5.1.

Usually, the objective of recommendation task based on short- and long-term

user interest is to predict what a user would like to click next when the current

session sequence and the user’s side information are given. The formulation

of the recommendation task in this chapter is that we build a model for any

given session sequence si, user historical behaviors Su j and other auxiliary

information aux(u j) of u j and items in the dataset aux(X), we get the output

84

5.3 Methodology

Table 5.1 Notations

Notations Description

U set of users
X set of items
S set of sessions
Sui set of sessions which are generated by user ui
aux(ui) side information of user ui
aux(X) side information of all items
yu j,si ranking metrics of user u j for all items on state of si

plong
ui latent vector of long-term perference of user ui

pshort
s j

latent vector of short-term perference of session s j

of yu j,si = f (si,Su j ,aux(u j),aux(X)), where y = [y1,y2, ...,yM]. We view yu j,si as

the ranking list over all the next items that can occur in that session, where y j

corresponds to the recommendation score of item j. Since a recommender system

typically needs to make more than one recommendations for the user, thus the top-k

items in y are recommended.

Speicifically, in the process of ranking predicting, we aim to learn a user’s

latent vectors from the current session sequence, the user’s attribute information

and historical behaviors. In detail, given a user ui ∈ U , we use Sui , aux(ui) and

aux(X) to learn the long-term user interest vector plong
ui . Then, we aim to use s j and

aux(X) to predict the short-term user interest as a latent vector pshort
s j

. Finally, we

aggregate the short- and long-term uesr interest to generate the final prediction y.

5.3 Methodology

The framework of LSRec is illustrated in Figure 5.1. As we see, it can be divided

into three parts: long-term user interest learning, short-term user interest learning,

and the fusion of long- and short-term user interest. The lower right part of the

85

5.3 Methodology

v2 v5v4v3v1

Session Sequence

...

0.05 0.01 0.65 0.01 0.03 0.02

Fusion Layer

Softmax Layer

...

Field A Field B Field N

Sparse Feature User Historical Interactions

S-UIN L-UIN

Linear Transformation

Embedding Layers

Figure 5.1 Overall framework of the proposed LSRec method.

framework is L-UIN. It is a GNN model. we feed the bipartite graph of user

historical behaviors and entity embeddings (i.e., user ID, item ID and item profiles)

into the network and it will generate a latent vector to represent the long-term

user interest. The details of this part will be introduced in Section 5.3.1. Then,

we further learn the short-term user interest shown in the lower left part of the

framework, which takes the item sequences of session and entity embeddings as the

input. We will introduce this part in Section 5.3.2. To enable knowledge sharing

between L-UIN and S-UIN, we use common embedding layers to represent discrete

features in the datasets. Finally, to obtaion the complete user representation, we

combine the short- and long-term user interest into a final user latent vector and

generate recommendation list according to this vector. This part will be introduced

in Section 5.3.3.

86

5.3 Methodology

5.3.1 Long-term User Interest Network

In this section, we mainly introduce L-UIN in detail. The long-term user interest

reflects the fairly stable and static interests of users based on their historical

behaviors and attributes. Though many existing works focus on long-term user

interest, learning long-term user interest is still facing challenges: most of these

methods have lower performance in cold-start situations and it is difficult for us to

provide accurate recommendations for inactive users. Most existing approaches

considering short- and long-term user interest model the long-term uesr interest by

using sequential models, because these methods are similar with short-term part.

However, as we all know, the users’ history is not continuous in time and there

is no sequential dependency between items. Therefore, we use the collaborative

relationship between items to build a graph neural network to learn the long-term

user interest.

Collaborative filtering methods assume that people who have the same interest in

the past will also have the same interest in the future. In conventional collaborative

filtering methods, recommendations are generated according to similar users or

neighbor items of the target user. And the similarity between each user are computed

accrodingto the historical behaviors, e.g. the users who rated many common items

or the user has rated a series of items. According to the method proposed in (Koren,

2008), the long-term user intrerest can be represented by aggregating the neighbor

items. It can be formulated as:

plong
u = ∑

i∈B(u)
xi (5.1)

87

5.3 Methodology

(a) Bipartite Graph (c) Second Order Neighbor(b) First Order Neighbor

USERS ITEMS

1

5

2

3

4

1

4

3

2

Figure 5.2 Illustration of long-term interest network

where xi is the latent vector of item i and B(u) is the neighbor items of user ui. In

real scenarios, the latent vector often consist of variety property of items, such as ID,

prices and categories. However, we are unable to get enough information to support

the prediction of long-term user interest in cold-start situation. Because there are

only few neighbor items in many cases.As shown in Figure 5.2 (b), imagine that

we aims to generate a recommendation list for user u1 whose neighbor only has x2.

Then we can compute the similarity between user u1 and user u2 according to the

neighbors they shared by using Equation 5.1. The similarity will be 0 because they

have no common neighbor. To alleviate the problem of insufficient information,

we introduce a graph neural network to utilize local structure information and

neighbor information. Specifically, we introduce high-order neighbors to support

the recommendation decision making process. As shown in Figure 5.2 (c), we

can find the common second-order neighbors u3 and u4 between the user u1 and

the user u2 through the second-order adjacency relationship, so as to obtain the

reasonable similarity metric between the user u1 and the user u2. Since the graph

is an asymmetric non-Euclidean space, it is often necessary to search the solution

space on the whole graph. By introducing the graph convolutional neural network,

information can be aggregated locally at relatively low computational cost. The

88

5.3 Methodology

spatial graph convolution function can then be written as:

pl+1
u =W ∗

[
pl

u; ∑
v∈N(u)

αu,v pl
v

]
(5.2)

where pl
u is the feature expression of the node u at the l level, assuming its dimension

is d. W is a linear transformation that maps the aggregated features from the

2d dimension back to the d dimension. αu,v is used to select which neighbor

information is more important. The formulations can be expressed as follows:

αu,v =
e(pl

u)
T

pl
v

∑x∈N(u) e(pl
u)

T
pl

x

(5.3)

As in convolution neural network, we hope to increase the receptive field

with more graph convolutional neural network layers. However, the high-level

abstraction often leads to the loss of details in the original features which results

the oversmoothing problem. Therefore, we retain the latent feature of each layer

in the graph convolutional neural network to improve the expressive ability of

the proposed method. To this end, for k layers graph convolutional network, we

consider the following long-term user interest representation:

plong
u =

[
p0

u; p1
u; . . . ; pk

u

]
(5.4)

5.3.2 Short-term User Interest Network

A user usually show a clear intention in one session, and the intention often change

sharply when the user start a new session. Thus, for the purpose of learning session-

level user interest from sequential behaviors, we establish a short-term user interest

89

5.3 Methodology

network based on the basis of RNN. RNNs have been devised to model sequential

data in many real-world scenarios. There are many different variants of RNNs (e.g.,

LSTM and GRU). For the balance between efficiency and performance, we take

the GRU variant to model the dependency between sequential behaviors. The GRU

variant reduced the vanishing gradients problem of vanilla RNN. The input of the

network is ordered behaviors in which the item IDs have been represented by the

common embedding layers. The formulations of GRU can be expressed as follows:

Rt = σ(XtWxr +Ht−1Whr +br) (5.5)

Zt = σ (XtWxz +Ht−1Whz +bz) (5.6)

H̃t = tanh(XtWxh+(Rt ⊙Ht−1)Whh +bh) (5.7)

Ht = Zt ⊙Ht−1 +(1−Zt)⊙ H̃ (5.8)

Yt = HtWhq +bq (5.9)

where Xt is the input at the time t, which is the representation of a commodity in

the user’s conversation sequence. W is the weight matrix in the network, and b is

the bias of the neurons in the network.

However, the short-term user interest which only captures the users current

state cannot represent the browsing intention of current session. For example, a

customer who intends to buy a computer is attracted by a advertising of mouse and

90

5.3 Methodology

clicks the detail page of the mouse. In this case, we cannot just predict that the

user’s intention is to by a mouse according to the last state. Thus, the short-term

user interest should contains two level: the last state representation and the user

intention representation. To obtain the user intention of the whole session, interest

state at each time step is aggregated.

As we all know, not all user’s behaviors are strictly dependent on each adjacent

behavior. With the help of attention mechanism, we can arrange different attention

score to reflect the relationship between user’s behavior and his/her intention. The

user intention αu can be formulated as:

αu =
1
t

t

∑
i=1

yi(Wat

t

∑
j=1

y j)
T yi (5.10)

where Wat ∈ Rd×d is used to transform the average of hidden states into a latent

space, d is the dimension of hidden state; t is the length of the session.

Finally, we combine the user’s current state and user intention by concatenate

operation to represent the short-term user interest:

pshort
u = [yt ;αu] (5.11)

5.3.3 Long- and short-term interest fusion and recommendation

The user’s long- and short-term interests can be represented by two vectors

respectively with L-UIN and S-UIN. To obtain the user’s universal interest with

long- and short-term interest, we concatenate these two feature vectors, and then

a fully connected layer is used to learn the final representation of the user. The

91

5.4 Experiments

formulations can be expressedas follows:

pu =W ∗
[

pshort
u ; plong

u

]
(5.12)

Finally, through the learned user’s interest and item feature, the user’s preference

on each item can be predicted as following:

ŷi =
epT

u xi

∑x∈I epT
u xx

(5.13)

5.3.4 Loss function

The problem of click prediction can be regarded as a multi-classification problem.

In this chapter, we use the softmax cross-entropy loss to optimize the proposed

model. It can be formulated as:

J =− ∑
u∈U

n

∑
i=1

yi log(ŷi)+(1− yi) log(1− ŷi)+λ |θ |2 (5.14)

where θ is all the parameters in the model.

5.4 Experiments

This section presents the experimental settings, results and the related analysis. The

datasets will be introduced first, followed by the evaluation metrics. Then we give

the baseline methods to be compaired with our method. Finally, we present the

results of the empirical experiments with a comprehensive analysis to the results.

92

5.4 Experiments

Table 5.2 Statistics of datasets used in the experiments

Diginetica Retailrocket

of clicks 999,198 1,270,194
of training sessions 181,165 330,885
of test sessions 24,532 40,039
of items 44,526 79,851
Average length 4.86 3.42

5.4.1 Dataset and Data Preparation

We study the effectiveness of the proposed approach LSRec on two real e-commerce

datasets, i.e., Diginetica1 and Retailrocket2. Diginetica comes from CIKM Cup

2016. We used the released transaction data and item side information in this study.

Retailrocket dataset is published by a personalized e-commerce company, which

contains six months of user browsing activities. We also used the released user

behaviors data and item properties in the following experiments.

To filter noisy data, we filter out all session sequences with a length shorter than

2 items and items appearing less than 5 times(Li et al., 2017). In addition, similar

to (Tan et al., 2016), we use the data augmentation method to generate sequences

and corresponding labels by splitting the input session. Then, a session sequence

of length n is divided into n−1 sub-session sequences. For side information, we

discretize all continuous variables to improve the generalization and stability. The

data statistics are shown in Table 5.2.
1http://cikm2016.cs.iupui.edu/cikm-cup/
2https://www.kaggle.com/retailrocket/ecommerce-dataset

93

5.4 Experiments

5.4.2 Evaluation metrics

In most recommendation scenarios, the number of items that can be recommended

is limited by certain factors. Therefore, the items that meet user’s interests should

appear in the limited number of items listed in the recommendation list. To evaluate

the quality of the recommendation list generated by these methods, we adopt two

common metrics, i.e., Predictive accuracy (P@K) and Mean Reciprocal Rank

(MRR@K). The former one is an evaluation of unranked retrieval results, while the

latter one is evaluations of ranked lists. Here, we consider Top-K (K = 5, 10) for

recommendation.

P@K: The P@K score is widely used as a measure to evaluate the quality of

the recommendation lists. P@K represents the proportion of items that should be

recommended in a top K products in a ranking list. The calculation process is as

the following equation:

P@K =
nhit

N
(5.15)

where N denotes the number of items in the test set, nhit represents the number of

items that appears in the recommendation list. We calculate P@K of each user, and

then take the average as the P@K of the method.

MRR@K: MRR@K is the average of the inverse of the ground-truth item

ranking. If the rank of an item is greater than K, the value is set to 0. This indicator

takes the position of the item in the recommendation list into account, and is

usually important in some order-sensitive tasks. The following equation shows its

calculation process:

MRR@K =
1
|Q|

|Q|

∑
i=1

1
Ranki

(5.16)

94

5.4 Experiments

where Ranki is the rank of the first item in the recommendation list that appears in

the test result for the i-th user, and |Q| represents the number of users.

5.4.3 Baseline Methods

The evaluation the proposed method, we compare our method LSRec with the

following methods. Our method considers long- and short-term user preferences

simultaneously, and there is no other methods consider both of them. These methods

are divided into two parts, the methods focusing on long-term user preferences and

the methods focusing on short-term user interests.

The baseline methods focusing on long-term user interests are as follows:

• POP: A ranking algorithm that ranks the items according to the popularity

and recommend the top K items to users. Although this is a simple method,

it is still effective in some scenarios and is widely used as a benchmark in

recommender systems.

• Item-KNN: A baseline method that recommends items similar to the

candidate item based on the cosine similarity.

• BPR-MF: BPR-MF proposed a pairwise ranking objective function to model

ranking relationship between implicit feedbacks.

• GC-MC: GC-MC view matrix completion as link prediction on interaction

graph and introduce a graph auto-encoder framework for the matrix

completion task in recommender systems.

95

5.4 Experiments

• FPMC: This is a method that combines Markov chain model and matrix

factorization for the next-basket recommendation. The authors assume that

users could continuously review two closely related items.

The baseline methods focusing on short-term user interests are as follows:

• S-POP: This method recommends the most popular products for the current

session. Compared with the POP method, the recommendation list changes

during the session gains more items.

• GRU4REC: This method uses recurrent neural network to model user’s

behavior sequence and generate session-based recommendations. Especially,

a session-parallel min-batch traing process is declared to model user action

sequences.

• NARM: This model combines the attention mechanism with RNN, while

capturing the sequential behavior characteristics and main purpose of users.

• STAMP: STAMP focuses on strengthening the influence of user’s recent

behaviors when modeling long-term behaviors. It not only considers the

general interest from long-term historical behavior, but also considers the

user’s last click to mine the immediate interest.

• GC-SAN: It is a graph contextualize self-attention network based on graph

neural network. GC-SAN dynamically construct a graph structure for session

sequences and capture rich local dependencies via graph neural network and

long-range dependencies in sessions is learnt by applying the self-attention

mechanism.

96

5.4 Experiments

5.4.4 Experimental Setup

The parameters used in the model are set as follows. For all datasets, the dimensions

of the embedding vector are set to d = 100. All parameter matrices in the model are

initialized using a Gaussian distribution with a mean of 0 and a standard deviation

of 0.1. The mini-batch Adam optimizer is exerted to optimize these parameters,

where the initial learning rate is set to 0.001. In addition, the training batch size

and L2 penalty are set to 128 and 10−5 respectively. We select hyperparameters

based on the validation set, which is a 10% random subset of the training set.

5.4.5 Comparison with baseline methods

To demonstrate the performance of the proposed model, we compare CaSe4SR with

the other state-of-art methods, which include methods considering short-term user

interest and methods considering long-term user interest. We report the comparison

results of P@K, MRR@K and NDCG@K. For anonymous sessions in Diginetica

dataset, the long-term user interest is set to the average user interest of the whole

dataset. The specific comparison results are shown in Table 5.3. In addition, we

will give a detailed analysis of the results.

97

5.4
E

xperim
ents

Table 5.3 The performance of different methods on the two datasets.

Diginetica Retailrocket

P@5 P@10 MRR@5 MRR@10 P@5 P@10 MRR@5 MRR@10

POP 0.0025 0.0072 0.0017 0.0024 0.0111 0.0195 0.0074 0.0081
BPR-MF 0.0917 0.1210 0.0623 0.0801 0.2002 0.2501 0.1251 0.1312

Item-KNN 0.1283 0.1818 0.0667 0.0826 0.1857 0.2212 0.1100 0.1225
GC-MC 0.1649 0.2099 0.0731 0.0892 0.1923 0.2282 0.1126 0.1148
FPMC 0.1792 0.2193 0.0801 0.0953 0.1944 0.2314 0.1127 0.1153

S-POP 0.0130 0.0229 0.0100 0.0207 0.0109 0.0193 0.0077 0.0119
GRU4REC 0.2367 0.3151 0.1186 0.1348 0.2111 0.2750 0.1215 0.1367

NARM 0.3183 0.4668 0.2301 0.2290 0.3096 0.3587 0.1858 0.2044
STAMP 0.3420 0.4809 0.2313 0.2382 0.3286 0.3842 0.2190 0.2418
GC-SAN 0.3473 0.4927 0.2332 0.2403 0.3325 0.4011 0.2237 0.2491

LSRec 0.3691 0.5148 0.2574 0.2629 0.3861 0.5222 0.2778 0.3097

98

5.4 Experiments

First, it can be seen that the recommend performance of all long-term user

interest methods on Diginetica is lower than Retailrocket dataset. This is mainly

because about 70 percent of sessions are anonymous sessions. We cannot obtain

enough personalized information from these anonymous sessions. Moreover, it can

be found from the experimental results in Table 5.3 that the recommend performance

of all short-term user interest methods on Diginetica is higher than Retailrocket

dataset. This is mainly because the average length of sessions in the former dataset

is longer than the latter one. LSRec achieves the better performance on Retailrocket

than Diginetica. We conjecture the main reason is that LSRec is able to utilize the

whole user historical behaviors information of Retailrocket, and there are too many

anonymous sessions which leads to the lower performance.

Second, the most traditional and the simplest algorithms (i.e., POP and S-POP)

has the most unfavorable performance on both datasets. This is because it only

considers the popularity of items and does not consider the user’s personalized

interactive behaviors. The significant gap between long-term user interest and

short-term user interest is due to the short-term user interest model is more adaptive

for recommendation task.

Finally, our proposed model LSRec outperforms all baseline methods. Com-

pared with the best long-term user interest method in the results, the performance

of LSRec is improved by about 100% in terms of P@K and MRR@K on both

dataset. This confirms the necessity of considering sequential relationship between

historical behaviors. Compared with the best short-term user interest method,

the performance of our proposed method increased by about 5% on Diginetica

dataset and about 20% on Retailrocket dataset. This is mainly because all users in

Retailrocket dataset is nonanonymous and we can utilize more global information

99

5.4 Experiments

about users. It indicates that LSRec can achieve better results compared with other

methods that do not consider long-term user interest.

5.4.6 Components Analysis

We also conduct extensive experiments to show the effect of different components

in the proposed method. In order to show the effectiveness of the long-term

user interest network, we compared the performance of nonanonymous and

anonymous users in Diginetica dataset. We also proved the effectiveness of the

graph convolutional neural network component which was introduced in the long-

term user interest network. In order to learn the impact of the dimension of latent

vector, we conduct experiments on different dimension of latent vector. We also

conduct experiments of with side information to show the impact of auxiliary

information. Finally, we illustrated the learning curves on the two datasets.

1) Effects of L-UIN: To evaluate the efeectiveness of L-UIN, we divide

Diginetica dataset into two parts: anonymous and nonanonymous. Table 5.4

shows the performance of P@5, P@10, MRR@5 and MRR@10 on LSRec.

Compared to results on anonymous users, the results on nonanonymous users

obtains obvious improvement. This shows that considering the long-term user

interest in recommender systems can significantly improve the quality of the

recommendation list.

Table 5.4 The performance of nonanonymous and anonymous users

P@5 P@10 MRR@5 MRR@10

Nonanonymous 0.3437 0.4872 0.2312 0.2375
Anonymous 0.3771 0.5267 0.2605 0.2764

100

5.4 Experiments

2) Effects of the number of Graph Convolutional Layers: We now explore how

the number of graph convolutional layers affects the preformance of LSREC. It can

be found from Figure 5.3 that the performance of LSREC increase as the number

of graph convolutional layers increase. It indicates that the aggregate strategy in

L-UIN is able to alleviate the over smoothing problem. However, more graph

convolutional layers in L-UIN will result a high computational complexity. We can

find that the gradient of performance cureve decreases with the number of layers

increases. Therefore, to balence between accuracy and runtime, we choose three

layers in other experiments in this section.

3) Effects of dimension: The dimension of the latent vector of user interests

decides the fitting and modeling ability of the proposed method. Generally,

LSRec can depict more useful information with a higher dimension and have

better performance. However, the higher dimension may cause overfitting problem

limited by optimization techniques. Therefore, we evaluate the proposed method on

different dimension which increase from 10 to 200. We assume that the dimension

in different part (e.g. ID embedding, latent vector of short- and long-term user

interest pshort and plong) is equal in our experiments. As shown in Figure 5.4, the

performance in terms of P@K and MRR@K tends to increase and then stabilize as

the dimension increase. The reason is a higher dimensional is able to incorporate

more information and 100 dimension is enough to represent the knowledge in the

dataset effectively.

4) Effects of side information: To compare the proposed approach with

the baseline methods, we only consider the ID of users and items to generate

recommendations. However, the proposed method LSRec is able to incorporate

a variety of side information into the decision making process. Note that the side

101

5.4 Experiments

1 3 5
Number of Graph Convolutional Layers

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Pr
ed
ict
iv
e
Ac
cu
ra
cy

P@5
P@10

1 3 5
Number of Graph Convolutional Layers

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

M
ea

n
Re

cip
ro

ca
l R

an
k

MRR@5
MRR@10

Figure 5.3 Performance comparison with different number of Graph Convolutional
Layers.

information of the item in both datasets are concatenated to represent itself in the

following experiments. As shown in Table 5.5, the performance of LSRec with side

information outperforms LSRec without side information in two datasets.

5) Effects of data sparsity: We now explore how the sparsity of data influences

the performance of the proposed method LSRec as well as the baseline methods.

Science there is anonymous users in Diginetica datasets, experiments are conducted

on Retailrocket dataset for fair evaluation. The concept of sparsity is different in

long-term user interest and short-term user interest. In long term user interest

102

5.4 Experiments

10 50 100 200
Dimension

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Pr
ed

ict
iv
e
Ac

cu
ra
cy

P@5
P@10

10 50 100 200
Dimension

0.18

0.20

0.22

0.24

0.26

0.28

0.30

M
ea

n
Re

cip
ro
ca
l R

an
k

MRR@5
MRR@10

Figure 5.4 Experimental results of the dimension’s effects on Diginetica dataset.

Table 5.5 Experimental results of LSREC with side information.

P@5 P@10 MRR@5 MRR@10

Diginetica
with feat 0.3437 0.4872 0.2312 0.2375

without feat 0.3437 0.4872 0.2312 0.2375

Retailrocket
with feat 0.3771 0.5267 0.2605 0.2764

without feat 0.3771 0.5267 0.2605 0.2764

103

5.4 Experiments

10 50 100 200
Dimension

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Pr
ed

ict
iv
e
Ac

cu
ra
cy

P@5
P@10

10 50 100 200
Dimension

0.20

0.22

0.24

0.26

0.28

0.30

0.32

M
ea

n
Re

cip
ro
ca
l R

an
k

MRR@5
MRR@10

Figure 5.5 Experimental results of the dimension’s effects on Retailrocket dataset.

104

5.4 Experiments

scenario, sparsity refers to the proportion between the observed entries and

unobserved entries in the user-item interaction matrix. Specifically, we construct

the datasets via filtering users with low click frequency. The results are shown in

Figure 5.6, and LSRec outperforms all baselines. The reason is that LSRec with

higher oreder neighbors is able to utilize more information in histroical behaviors.

The concept of sparsity in short-term user interest scenario is the average length of

sessions. Because we can obtain more information from a long session sequence.

The dataset of different sparsity in this scenario are generated via filtering short

sessions. The results are given in Figure 5.7. The proposed approach LSRec

outperforms all baselines in variety sparsity, which shows that LSRec is able to

model short-term user interest with different data sparsity effectively.

105

5.4
E

xperim
ents

99.995 99.95 99.9
Sparsity(%)

0.20

0.25

0.30

0.35

0.40

0.45

0.50

P@
5

BPR-MF
ITEM-KNN
GC-MC
FPMC
LSRec

99.995 99.95 99.9
Sparsity(%)

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

P@
10

BPR-MF
ITEM-KNN
GC-MC
FPMC
LSRec

99.995 99.95 99.9
Sparsity(%)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
RR

@
5

BPR-MF
ITEM-KNN
GC-MC
FPMC
LSRec

99.995 99.95 99.9
Sparsity(%)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
RR

@
10

BPR-MF
ITEM-KNN
GC-MC
FPMC
LSRec

Figure 5.6 Performance over Retailrocket dataset with a different user-item interaction sparsity.

106

5.4
E

xperim
ents

3.42 7.51 12.43
Average Length

0.20

0.25

0.30

0.35

0.40

0.45

0.50

P@
5

GRU4REC
NARM
STAMP
GC-SAN
LSRec

3.42 7.51 12.43
Average Length

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

P@
10

GRU4REC
NARM
STAMP
GC-SAN
LSRec

3.42 7.51 12.43
Average Length

0.10

0.15

0.20

0.25

0.30

0.35

M
RR

@
5

GRU4REC
NARM
STAMP
GC-SAN
LSRec

3.42 7.51 12.43
Average Length

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
RR

@
10

GRU4REC
NARM
STAMP
GC-SAN
LSRec

Figure 5.7 Performance over Retailrocket dataset with a different average length of sessions.

107

5.5 Summary

5.5 Summary

In this aritcle, we present a recommendation method LSRec based on long- and

short-term user interest. Specifically, the proposed method is composed of three

components: L-UIN for learning long-term user interest from historical behaviors

and user profiles, S-UIN for modeling short-term uesr interest from sesssion

sequence, and combination for recommendation generating. We particularly devise

a graph convolutional neural network to enrich the user’s local sturcture information

by considering the high order neighbors in L-UIN. We have further developed an

attention based RNN to learn short-term user interest in S-UIN. The experimental

results on two datasets have demonstrated the superiority of LSREC over methods

considering short-term user interest and long-term interest.

108

Chapter 6

RsyGAN: Generative Adversarial

Network for Recommender Systems

6.1 Introduction

Recommender systems have become increasingly important in recent years due to

the problem of information overload in e-commerce (Lu et al., 2015). The use of

recommender systems allows individual searches to be more effective by filtering

information. Many companies are also interested in using recommender systems to

target their customers and recommend products. Recommender systems model the

preferences of users through their click history, purchase records or list of favourites.

The recommendation task is to predict missing user-item preferences given the

observations of these historic records (Bobadilla et al., 2013).

Existing methods for recommender systems can be divided into three classes:

content-based methods, CF methods, and hybrid methods. Many recommender

systems use collaborative filtering methods to make recommendations (Georgiev

109

6.1 Introduction

and Nakov, 2013). The most successful CF methods try to learn latent factors

according to user-item interactions such as user-item rating or user purchase history

(Su and Khoshgoftaar, 2009).

A severe problem with CF methods is that it is difficult to train the model

with sparse datasets. The collaborative filtering approaches, especially matrix

factorization methods, rely on factorizing the user-item matrix into two latent factor

matrices to represent users and items. However, the factorization could be very

non-robust when the user-item matrix is very sparse. It always causes a lower

quality local optimum in the experiments.

Many works attempted to address this problem. Several authors have merged

models to obtain more robust results. (Koren, 2008) combined latent factor models

and neighbourhood models to build a more accurate combined model. (Sedhain

et al., 2015) employed an autoencoder model to learn latent user preferences. These

methods try to learn the latent factors through user-item interactions. But these

methods cannot converge to an optimal solution because of the severe sparsity of

the dataset, which results in an inability to provide ideal recommendation results.

There are also some methods use auxiliary information. Item content

information and an item-tag matrix are combined in collaborative topic regression to

address the sparsity problem in (Wang et al., 2013). A hierarchical Bayesian model

has been proposed to address the auxiliary information sparse problem (Wang et al.,

2015). However, auxiliary information is unavailable in some scenarios.

In this chapter, we develop a generative network and a discriminative network

inspired by generative adversarial networks (Goodfellow et al., 2014) to train

a property model for recommender systems. The generative network is able

to generate the missing preferences for users and the discriminative network is

110

6.2 Preliminaries and Problem Formulation

established to evaluate the generative network and guide training process. The

model is trained using an adversarial training strategy.

In the experiments, our model demonstrates significant improvements in

performance on common datasets such as movieLens (Harper and Konstan, 2015)

and Taobao. The main contributions of this chapter are summarised as follows:

• Proposing a novel recommendation model in which the adversarial training

strategy is used for the first time to improve the recommendation quality.

We treat recommendation generation as a generative process and utilize a

discriminator to help it escape from lower-quality local optima.

• Developing an efficient adversarial optimization algorithm with two loss

functions to ensure that this model can be trained efficiently until it converged.

• Conducting experiments on three real-world datasets to evaluate the effective-

ness of our method. Experimental results reveal that our method outperforms

six state-of-the-art methods in terms of precision, recall and mean average

precision metrics.

6.2 Preliminaries and Problem Formulation

In this chapter, we focus on making recommendation according to implicit feedback.

Suppose there are M users U = {u1, . . . ,uM}, N items V = {v1, . . . ,vN}. Let R ∈

RM×N denote the implicit feedback matrix, where Ri j equals 1 when interactions

exist between user i and item j, and 0 otherwise. The formulation Ri∗ can be used

to represent a user feature in which some elements are missing. Given a history

of user actions, the recommendation task tries to predict a list of items which the

111

6.3 Generative Adversarial Network for Recommender Systems

user might like. A recommender system is commonly formulated as the problem of

estimating the missing values in user feature vector Ri∗.

6.3 Generative Adversarial Network for Recom-

mender Systems

In this section, we first give the problem formulation of the recommendation task.

We then introduce our proposed generative adversarial model (RsyGAN) and give

details of the loss functions, followed by the model optimization algorithm.

6.3.1 Proposed Model

Inspired by GAN, we combine a generative network and a discriminative network

to train a property model for the recommendation task. Figure 1 illustrates our

proposed model.

Two networks have been contained in the boxes delineated by a dashed line.

The portrait box is a generative network and the landscape box is a discriminative

network. The input of the generative network is the user feature vector Ri∗ and the

input of the discriminative network is the combination of real user feature vector

Ri∗ and the generated user feature by the generative network.

The recommendation task attempts to predict the missing elements in the feature

vector. The generative network accepts the feature vector with missing values and

returns a similar vector with all missing positions are filled. We can use the output

vector to predict the user preferences more accurately.

We apply an autoencoder neural network structure as the generative network.

Our network has a number of differences from the classical autoencoder. In this

112

6.3 Generative Adversarial Network for Recommender Systems

Figure 6.1 The architecture of the RsyGAN model

neural network, the feature vector with high dimension will be mapped into a hidden

layer which is a lower feature space. The process of dimensionality reduction can

be regarded as the extraction of features for user embedding. The hidden layer is

computed as follows:

h(Ri∗,θh) = σ(Wg ×g(Ri∗)+bg) (6.1)

where σ(·) is the activation function and θh = {Wg,bg}. g(·) is the dropout function.

The dropout function is required to avoid over-fitting, because the dataset is too

sparse.

We then use an output layer to recover the original user feature vector from the

hidden layer. The missing values in the feature vector are filled in the output vector.

The output value R̃i∗ can be described as follows:

113

6.3 Generative Adversarial Network for Recommender Systems

G(Ri∗,θ) = σ(W ′
g ×h(Ri∗,θh)+b′g) (6.2)

where θ = {W ′
g,b

′
g,θh}. The reverse mapping may optionally be constrained by

tied weights where W =W ′ in the autoencoder, but different weights are used in

our method. For the generation process, we first downsample the user’s original

rating vector and map it to a low-dimensional space through an encoder. After we

get the user preference in the fixed feature space, we map it back to the original

dimension through a decoder, so as to obtain the user’s preference for other items.

In order to simulate the process of user selection of items, we also need to sample

this generated vector during the evaluation of the discriminator. Finally, a vector of

length N is obtained to represent the user’s preference for different items.

As mentioned in Section 1, we always get a lower quality local optimum due to

the sparsity of the dataset. We have therefore designed a discriminative network

as an quality indicator of our recommendation model, the generative network. It

can be used to help the parameters be trained on the property direction. Because

the evaluation function, discriminative network, can be updated according to the

convergent recommendation model to help the training algorithm escaping from

local optimum.

The discriminative network contains three layers: the input layer, the hidden

layer and the output layer. The discriminative network can be described as follows:

D(Ri∗,φ) = σ(W ′
d ×σ(Wd ×Ri∗+bd)+b′d) (6.3)

where φ = {Wd,bd,W ′
d,b

′
d} and σ(·) is also the activation function.

114

6.3 Generative Adversarial Network for Recommender Systems

We have attempted two activation functions which are defined by the formulae

(4) and (5). The impaction of the activation functions is discussed in the

experiments.

sigmoid(x) =
1

1+ e−x (6.4)

ReLU(x) = max(0,x) (6.5)

6.3.2 Loss Function

Another key problem is to design a proper objective function according to the input

data and output values. In GANs, the generative network samples synthetic data

from a hidden feature space represented by a multilayer perceptron. However,

it cannot be used directly in the recommendation task, because this task is a

prediction problem, therefore we employ the incomplete user history as the input of

the generative network. The generative network can only be used to predict missing

values, whereas the discriminative network will try to distinguish between real

users and users generated by the generative network. Two different loss functions

are utilized to conduct the two step optimization.

In the discriminative network training process, we have:

JD = max
φ

M

∑
i

logD(Ri∗,φ)+ log(1−D(G∗(Ri∗,θ),φ)) (6.6)

where G∗(Ri∗,θ) = S(G(Ri∗,θ)), S(·) is a sample function with Bernoulli

distribution x ∼ B(1, R̃i j). The output of the generative network is a vector

115

6.3 Generative Adversarial Network for Recommender Systems

containing continuous values in which R̃i j ∈ (0,1); however, the ground truth

is the binary value Ri j ∈ {0,1}.

We append JD into the loss function of the generative network to influence the

training of the model. The loss function of the generative network is as follows:

JG = min
θ

M

∑
i
(∥Wi∗ ◦ (Ri∗−G(Ri∗,θ))∥2

F

+λD(logD(Ri∗,φ)+ log(1−D(G∗(Ri∗,θ),φ))))+
λθ

2
· ∥θ∥2

F

(6.7)

where W ∈ {0,1}M×N is a non-negative weight matrix. Because there are positive

examples in missing values, the weight matrix means the confidence of the examples.

In our experiments, we set Wi j = 1 if Ri j = 1 and a low confidence level Wi j = 0.1

otherwise.

6.3.3 Optimization Algorithm

Our model contains two parts: the discriminative network and the generative

network. The parameters in both networks are initialized randomly before training

commences. During the adversarial training stage, the generative network and the

discriminative network are trained alternately with Eqs. (6) and (7).

The model for RsyGAN is built using Tensorflow and trained with synchronous

stochastic gradient descent updates. We have also open-sourced our implementation

on GitHub.

We describe the detailed optimization process in Algorithm 6.1.

116

6.4 Experiments

Algorithm 6.1: Optimization Algorithm of the Proposed Model
Input: user-item matrix R
Output: approximated user-item matrix R̃
Initialize G(Ri∗,θ) and D(Ri∗,φ) with random weights θ , φ .
repeat

for d-step do
Sample a batch Rt from training set R
Calculate the filled matrix R̃t using G(Ri∗,θ)
Sample from R̃t which is subjected to Bernoulli distribution
Update parameters φ by using Eq. (6)

end for
for g-step do

Sample a batch Rt from training set R
Update parameters θ using Eq. (7)

end for
until converges

6.4 Experiments

6.4.1 Datasets

Experiments are conducted on three datasets namely MovieLens 1M, MovieLens

10M and Taobao. The basic statistics are listed in Table 6.1. We select 60% of

records as the training set. Some records contain explicit feedback such as ratings.

As we want to solve an implicit feedback task, we remove the ratings from these

datasets.

Table 6.1 Statistics of the two datasets

users items feedback sparsity

ML-1M 6,040 3706 939,809 0.9580
ML-10M 69,878 10,677 104,000,054 0.9865
Taobao 8,349 5,701 321,976 0.9932

117

6.4 Experiments

MovieLens is a widely used dataset in many researches, and many versions

have been released on the GroupLens website. We choose MovieLens 1M (ML-1M)

and MovieLens 10M (ML-10M) to evaluate our method.

Taobao is a dataset for competitively matching clothing on the Tianchi platform.

It contains basic item data and data on the historical behaviour of users. We use

only the historical behaviour data to make recommendations. We remove users

with less than 10 items (|Ri∗|< 10) and items with less than 20 users (|R∗ j|< 20)

from this dataset.

6.4.2 Evaluation for Recommendation

For top-k recommendation, we evaluate the performance of each approach

using metrics precision (Prec@k), recall (Recall@k) and mean average precision

(MAP@k).

Given a top-k recommendation result Ck, we can compute precision and recall

as follows:

Precision@k =
∑
|U |
i=1 |Ck,i ∩Ti|
|U |× k

(6.8)

recall@k =
∑
|U |
i=1 |Ck,i ∩Ti|

∑
|U |
i=1 |Ti|

(6.9)

where Ck,i is the top-k recommendation list of user i and Ti is the items that user i

has adopted in the test set.

Average precision (AP) is a ranked precision metric which is used to score

information retrieval. AP@k is the average precision of all positions, which is

defined as follows:

118

6.4 Experiments

AP@k =
∑

k
n=1 Precision@n× rel(n)

min{k, |Ti|}
(6.10)

where rel(n) is an indicator function equalling 1 if the item at rank k is contained

in the test set, otherwise 0. MAP is the mean of the AP scores for all users.

It is difficult to optimize these metrics directly because they are discontinuous.

The loss function in our method is used in learning to approximate these metrics.

In our experiments, we mainly show the result of top-k when k = {5,10,20,50}.

6.4.3 Performance Comparison

In this subsection, we compare the proposed RsyGAN with the methods below. As

our proposed model aims to make user recommendations by considering only the

relationship between users and items, we mainly compare RsyGAN with user-item

models.

• ItemPop: Always recommends the top-k most popular items to users.

• ItemKNN: The classical memory-based collaborative filtering method.

Pearson correlation is used in our experiment and the top 50 most similar

users are selected as the nearest neighborhood.

• BPR-MF: This is also a content-free algorithm based on matrix factorization

which is designed for top-k recommendation tasks (Rendle et al., 2012). It

optimizes pair-wise preferences between observed and unobserved items.

• CDAE: Collaborative denoising auto-encoders (Wu et al., 2016) learn latent

representations of corrupted user-item preferences which can reconstruct the

full input. This model is similar to our generative network.

119

6.4 Experiments

• NCF: Neural network-based Collaborative Filtering (NCF) is a general

framework for replacing the inner product with a neural architecture that can

learn an arbitrary function from data.

• RsyGAN: Our method proposed in this chapter.

We cannot compare our method with RBM because the result of RBM is a

binary list. It cannot be evaluated by the metrics in our experiments.

We carefully choose the hyper-parameters for each baseline method. The overall

performance of the compared approaches is shown in Tables 6.2.

120

6.4
E

xperim
ents

Table 6.2 Recommendation Performances in Terms of Precision and Recall

Precision Recall

Prec@5 Prec@10 Prec@20 Prec@50 Recall@5 Recall@10 Recall@20 Recall@50

ml-1m

POPRANK 0.2085 0.1911 0.1868 0.1506 0.0742 0.1211 0.1736 0.2530
ItemKNN 0.2466 0.2351 0.2263 0.2021 0.0833 0.1367 0.1978 0.2632
BPR-MF 0.4932 0.4617 0.4026 0.3224 0.0853 0.1495 0.2149 0.3058
CDAE 0.5699 0.5183 0.4876 0.4592 0.0900 0.1556 0.2472 0.3826
NCF 0.5920 0.5222 0.4895 0.4611 0.0920 0.1623 0.2676 0.3974
RsyGAN 0.6632 0.6105 0.5087 0.3918 0.1091 0.1775 0.2702 0.4072

ml-10m

POPRANK 0.1934 0.1873 0.1628 0.1347 0.0307 0.0743 0.1008 0.1941
ItemKNN 0.2404 0.2269 0.2124 0.1817 0.0384 0.0942 0.1392 0.2057
BPR-MF 0.4153 0.3892 0.3260 0.2287 0.0612 0.1266 0.1800 0.2928
CDAE 0.4674 0.4118 0.3643 0.2816 0.0752 0.1853 0.2200 0.3733
NCF 0.4962 0.4759 0.3993 0.3082 0.0782 0.1832 0.2342 0.3542
RsyGAN 0.5333 0.4854 0.4097 0.3007 0.0885 0.2094 0.2480 0.4023

Taobao

POPRANK 0.0040 0.0036 0.0030 0.0066 0.0024 0.0053 0.0069 0.0283
ItemKNN 0.0517 0.0501 0.0466 0.0194 0.0267 0.0376 0.0582 0.0416
BPR-MF 0.1047 0.0920 0.0897 0.0544 0.0408 0.0706 0.1370 0.2079
CDAE 0.0889 0.0766 0.0608 0.0367 0.0362 0.0585 0.1196 0.1565
NCF 0.1108 0.1023 0.0856 0.0586 0.0492 0.0774 0.1402 0.2152
RsyGAN 0.1392 0.1314 0.0937 0.0624 0.0544 0.1038 0.1428 0.2343

121

6.4 Experiments

We can see from the experimental results that RsyGAN achieves significant

improvements across all the evaluation metrics and all the datasets. Note that the

generative network is similar to CDAE, but we obtain better performance than it

does. Our explanation is that there are too many local minimums in the solution

space, and it is very easy to converge to a lower quality local optimum in the CDAE

method. The discriminative network can be regarded as a strong constraint for the

generative network when the entire solution space is searched.

We also observe that the results on MovieLens are much better than those on

Taobao, because Taobao dataset is sparser than the MovieLens. The reasons can

be divided into two aspects: (1) From the perspective of ensemble learning, the

users in the recommender system are modeled using the generative model and the

discriminative model respectively. The data generated by the generative model can

alleviate the original sparse problem with a certain extension of original data. Thus,

the performances of our method are better than a traditional method. (2) On the

other hand, from an optimization point of view, sparse data makes it easier for the

model to fall into a local optimal solution during the training process. We use an

adversarial training strategy, especially go to the next epoch of training without

fully convergence, which makes it easier for the model to escape from the local

optimal and thus achieve better results.

6.4.4 Components in RsyGAN

In this Section, we study the influence of several main components, including the

types of activation functions, the number of hidden units, and the hyper-parameter

λD.

122

6.4 Experiments

Table 6.3 Performance comparison of the activations function on MovieLens 1M

MAP@5 MAP@10 MAP@20 MAP@50

Sigmoid 0.4834 0.3973 0.3420 0.3176
ReLU 0.4561 0.3800 0.3315 0.2939

Table 6.4 Performance comparison of the activations function on MovieLens 10M

MAP@5 MAP@10 MAP@20 MAP@50

Sigmoid 0.4617 0.3804 0.3292 0.2919
ReLU 0.4401 0.3721 0.3122 0.2881

As mentioned in Section 3, we have two different types of activation function.

We study their influence separately on two datasets. We show the results for the

sigmoid function and the ReLU function on the hidden layer in Tables 6.3, 6.4 and

6.5.

We can see from the three tables that the sigmoid function performs better

than the ReLU method in each case in the experiment, but that ReLU improves

more on the larger dataset than on the smaller dataset. One possible cause is that

the non-linear part in our model performs better in a small dataset. However, the

model with ReLU function can be trained more efficiently, so if we have a very

large dataset, we should perhaps choose the ReLU function, and if we need greater

precision in a small dataset, we should choose the sigmoid function. To overcome

the weakness of the linear activation function, we can also choose multiple layers

for model construction.

Table 6.5 Performance comparison of the activation functions on Taobao

MAP@5 MAP@10 MAP@20 MAP@50

Sigmoid 0.1018 0.0869 0.0715 0.0573
ReLU 0.0982 0.0827 0.0706 0.0416

123

6.4 Experiments

Figure 6.2 MAP@k of RsyGAN showing variations in the number of hidden units

Figure 6.3 The effects of parameter λD

124

6.4 Experiments

The number of hidden units is possibly another sensitive parameter in addition

to the activation function. In Figure 6.2, we evaluate the performance of our method

as the number of hidden units varies. We observe that the best performance is

obtained when the number of hidden units is around 80 on the Taobao dataset and

350 on the MovieLens 10M dataset. This illustrates that the number of hidden units

should increase with the increase in the size of the dataset.

Lastly, we study the effect of λD in our proposed method. We can see in Eqs.

6.6 and 6.7 that the value of the loss function of the discriminator network is very

small compared to the loss function of the generative function. The output of the

discriminative network is just one value range from 0 to 1, and the output of the

generative networks have N numbers ranging from 0 to 1, thus we times N when

we apply λD. Figure 6.3 shows the predictive performance for RsyGAN on the two

dataset.

We find that we obtain the best performance on Taobao dataset when λD equals

0.8. In our extensive experiments, we observe that the value of λD is same on

MovieLens 10M.

Since adversarial training is widely regarded as an effective but unstable

technique, we further investigate the learning trend of our proposed method. Figure

4 shows the learning curves of the generative network and the discriminative

network on MovieLens 10M dataset. Here we only show the performance measure

by the value of the loss function. The results show that while we cannot prove that

the loss function will ultimately converge, we can achieve better recommendation

performance than other methods.

125

6.4 Experiments

Figure 6.4 Learning curves of RsyGAN on MovieLens 10M

126

6.5 Summary

6.5 Summary

In this chapter, we have introduced a novel method for the top-k recommendation

task which can be used in a real recommendation scenario with sparse data. The

model in our method contains a generative network and a discriminative network.

We utilized the adversarial strategy to train this model. The adversarial training

framework takes advantage of both networks: the generative network is guided

by the signals from the discriminative network, and the discriminative network

can be enhanced by the generative network. We also conducted experiments on

several datasets and compared the results with state-of-the-art methods. Significant

performance gains were observed in each set of experiments.

127

Chapter 7

Conclusion and Future Research

This chapter concludes the thesis and provides further research directions for this

topic.

7.1 Conclusions

Recommender systems are one of the most important techniques to help users

alleviate the problem of information overload and achieve gread success in the past

few years. Recommender systems help users to find the most interesting items by

using information filtering technology. However, the shortcomings brought by the

complexity of recommender systems and the sparsity problem of users have not

been resolved so far. This research focuses on solving the following four questions

concerning recommender systems: 1) take advantage of multimedia information;

2) high-order similarity information between users and items; 3) incoporate long

and short-term user preferences; 4) effectively optimize with cold start users. These

are still challenging problems and an investigation to provide new features to

recommender systems will improve recommendation accuracy. Therefore, this

128

7.1 Conclusions

research conducts a comprehensive analysis of each of the aforementioned aspects

and develops a set of recommendation methods.

The main contributions of this research are as follows:

1. It develops a novel method for the fashion recommendation task with learning

compatibility knowledge in visual aspect (to achieve Objective 1).

In the learning stage of clothing matching knowledge, a supervised clothing

matching mode learning algorithm is proposed, which maximizes the

matching mode that conforms to the mainstream aesthetics and the matching

mode that does not conform to the mainstream aesthetics through the

triple network. A map of low-dimensional embedding representations

of collocation patterns. In the recommendation result generation stage

based on collaborative filtering, two autoencoders are used to map the

matching patterns learned in the clothing matching knowledge learning stage

and the product images in the recommended products to the same feature

space, reducing the visual impact between different domains. distributional

differences between information, and apply this knowledge to a collaborative

filtering-based product recommendation model. The experimental results

show that in a large-scale real data set, the algorithm proposed in this

chapter can effectively learn the knowledge of clothing matching, and

transfer the learned knowledge to the target domain to be recommended,

and the recommendation effect of the model that integrates the knowledge of

clothing matching is excellent. Compared with other personalized clothing

recommendation algorithms that regard clothing products as independent

individuals that are not related to each other.

129

7.1 Conclusions

2. It develops a general framework GCF and an information propagation-based

graph neural network (to achieve Objective 2) for learning a mapping that

embeds users and items as points in a low-dimensional vector space with

geometric relationships in the embedding space that reflect the preference

relationship between users and items.

The traditional algorithm only considers the low-order similarity between

users and users, and between users and products, so that enough information

cannot be obtained for new users and non-popular products to generate

recommendations. A graph convolutional neural network is introduced

to extend the low-order similarity in traditional algorithms to high-order

similarity through layer-by-layer local information aggregation, so that more

information can be used when targeting new users and non-popular products.

At the same time, for the over-smoothing problem caused by the multi-layer

graph convolutional neural network, we proposes an information propagation

method based on the attention mechanism, which can effectively alleviate

the over-smoothing problem when the graph convolutional neural network is

too deep. Experiments show that the performance of this algorithm is better

than other similar algorithms in this field. Applying it to the recommendation

system can effectively alleviate the problem of poor recommendation effect

for new users and non-popular products.

3. It develops a recommendation method LSRec based on long- and short-term

user interests (to achieve Objective 3) to deal with the dynamic user interests

in different context in Chapter 5.

In the long-term interest preference learning model, a graph convolutional

neural network-based method is used to learn the user’s long-term stable

130

7.1 Conclusions

and invariant inherent preference. In the short-term interest preference

learning model, a gated recurrent neural network is used to model the user’s

conversation sequence, quickly capture the user’s current intention, and

combine the current context to generate timely recommendations for the user.

The experimental results show that the method proposed in this work achieves

better results in comparison with methods that focus on users’ long-term

interest preferences and methods that focus on users’ short-term interest

preferences. It is fully proved that the assumption that the user’s interest

preference is divided into long-term stable and short-term dynamic change is

in line with the actual situation, and the recommendation algorithm based on

the user’s long-term and short-term interest preference can better solve the

problem of dynamic change of user’s interest preference.

4. It develops a novel method for the top-k recommendation task (to achieve

Objective 4) which can be used in a real recommendation scenario with sparse

data.

In the generative model, a stack of denoising autoencoders is used to predict

the missing parts in the user’s history vector and produce recommendations

accordingly. After that, the discriminant model discriminates the recommen-

dation results generated by the generative model with the real user shopping

records, so as to guide the training direction of the generative model, so

that the generative model can generate recommendation results that are as

similar to the distribution of real shopping records as possible. Experiments

show that the algorithm can effectively pass the recommendation results and

generate better recommendation results than the single generation model,

131

7.2 Future Study

thus alleviating the problem of poor optimization caused by data sparseness

to a certain extent.

7.2 Future Study

There are some limitations of this study. This thesis identifies the following

directions as future work:

• For the recommendation system for clothing products, the cost of data

labeling for learning clothing matching knowledge is relatively high.

Researching automated methods to learn matching knowledge from unlabeled

data has high economic value and practical value. Subsequent work can try

to learn fashion matching knowledge with less labeled or unlabeled datasets

from the perspectives of semi-supervised learning, unsupervised learning,

and transfer learning.

• In a real production environment, the builders and users of recommender

systems often want to know the reason for recommending a certain item.

However, the interpretability of recommendation results generated by

recommender systems based on deep learning models and collaborative

filtering is poor. Subsequent work can apply the graph neural network to

the unstructured data based on the knowledge graph in the recommendation

system, and use the information in the knowledge graph to make the model

interpretable to a certain extent. Therefore, how to combine traditional

feature-based recommendation models with knowledge graphs to improve

the interpretability of the models has high research value. On the other hand,

132

7.2 Future Study

inference-based methods can also be considered to add some interpretability

to the model.

• Considering the continuous addition of new users and new products to the

recommendation system in practical scenarios, the interests of users change

rapidly over time, and the use value and meaning of the products themselves

are constantly changing. How to dynamically update the model through

online learning? It is also an urgent problem to be solved.

• In addition, we have also started some new attempts in the field of

recommender system security. For example, we propose a new method to

generate our expected recommendation results by adding malicious noise to

the recommender system. This method can be used to conduct targeted attacks

on the target recommender system to increase or decrease the probability of

certain items being recommended.

133

Bibliography

Adomavicius, G. and Tuzhilin, A. (2005). Toward the next generation of

recommender systems: A survey of the state-of-the-art and possible extensions.

Adomavicius, G. and Tuzhilin, A. (2015). Context-aware recommender systems.

Recommender Systems Handbook, Second Edition.

Atwood, J. and Towsley, D. (2016). Diffusion-convolutional neural networks. In

Advances in Neural Information Processing Systems, pages 1993–2001.

Barkan, O. and Koenigstein, N. (2016). Item2vec: neural item embedding for

collaborative filtering. In 2016 IEEE 26th International Workshop on Machine

Learning for Signal Processing (MLSP), pages 1–6. IEEE.

Batmaz, Z., Yurekli, A., Bilge, A., and Kaleli, C. (2019). A review on deep learning

for recommender systems: challenges and remedies. Artificial Intelligence

Review, 52(1):1–37.

134

Bibliography

Billsus, D., Billsus, D., Pazzani, M., and Pazzani, M. (1998). Learning collaborative

information filters. Proceedings of the Fifteenth International Conference on

Machine Learning.

Bobadilla, J., Ortega, F., Hernando, A., and Gutiérrezz, A. (2013). Recommender

systems survey. Knowledge-Based Systems, 46:109–132.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Vandergheynst, P. (2017).

Geometric deep learning: going beyond euclidean data. IEEE Signal Processing

Magazine, 34(4):18–42.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. (2013). Spectral networks and

locally connected networks on graphs. arXiv preprint arXiv:1312.6203.

Campos, P. G., Díez, F., and Cantador, I. (2014). Time-aware recommender systems:

A comprehensive survey and analysis of existing evaluation protocols. User

Modeling and User-Adapted Interaction.

Cao, H., Chen, E., Yang, J., and Xiong, H. (2009). Enhancing recommender systems

under volatile user interest drifts. In International Conference on Information

and Knowledge Management, Proceedings.

Chen, R.-C. et al. (2019). User rating classification via deep belief network learning

and sentiment analysis. IEEE Transactions on Computational Social Systems,

6(3):535–546.

135

Bibliography

Chen, T., Zhang, W., Lu, Q., Chen, K., Zheng, Z., and Yu, Y. (2012). SVDFeature:

A toolkit for feature-based collaborative filtering. Journal of Machine Learning

Research.

Cheng, C., Yang, H., Lyu, M. R., and King, I. (2013). Where you like to go

next: Successive point-of-interest recommendation. In IJCAI International Joint

Conference on Artificial Intelligence.

Cheng, H.-T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., Anderson,

G., Corrado, G., Chai, W., Ispir, M., et al. (2016). Wide & deep learning for

recommender systems. In Proceedings of the 1st workshop on deep learning for

recommender systems, pages 7–10.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,

H., and Bengio, Y. (2014). Learning phrase representations using rnn encoder-

decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.

Covington, P., Adams, J., and Sargin, E. (2016). Deep neural networks for youtube

recommendations. In Proceedings of the 10th ACM conference on recommender

systems, pages 191–198.

Cui, Q., Wu, S., Huang, Y., and Wang, L. (2019). A hierarchical contextual

attention-based network for sequential recommendation. Neurocomputing.

136

Bibliography

Davidson, J., Liebald, B., Liu, J., Nandy, P., Van Vleet, T., Gargi, U., Gupta, S., He,

Y., Lambert, M., Livingston, B., et al. (2010). The youtube video recommendation

system. In Proceedings of the fourth ACM conference on Recommender systems,

pages 293–296.

De Andrade, A. (2019). Best practices for convolutional neural networks applied to

object recognition in images. arXiv preprint arXiv:1910.13029.

Defferrard, M., Bresson, X., and Vandergheynst, P. (2016). Convolutional neural

networks on graphs with fast localized spectral filtering. In Advances in neural

information processing systems, pages 3844–3852.

Deshpande, M. and Karypis, G. (2004). Item-based top-N recommendation

algorithms. ACM Transactions on Information Systems.

Devooght, R. and Bersini, H. (2017). Long and short-Term recommendations with

recurrent neural networks. UMAP 2017 - Proceedings of the 25th Conference on

User Modeling, Adaptation and Personalization, pages 13–21.

Diao, Q., Qiu, M., Wu, C. Y., Smola, A. J., Jiang, J., and Wang, C. (2014). Jointly

modeling aspects, ratings and sentiments for movie recommendation (JMARS).

In Proceedings of the ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining.

137

Bibliography

Ding, Y. and Li, X. (2005). Time weight collaborative filtering. In International

Conference on Information and Knowledge Management, Proceedings.

Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T., Aspuru-

Guzik, A., and Adams, R. P. (2015). Convolutional networks on graphs for

learning molecular fingerprints. In Advances in neural information processing

systems, pages 2224–2232.

Ge, T., Zhao, L., Zhou, G., Chen, K., Liu, S., Yi, H., Hu, Z., Liu, B., Sun, P., Liu,

H., Yi, P., Huang, S., Zhang, Z., Zhu, X., Zhang, Y., and Gai, K. (2017). Image

matters: Jointly train advertising CTR model with image representation of Ad

and user behavior. arXiv.

Georgiev, K. and Nakov, P. (2013). A non-IID frameworkfor collaborative filtering

with restricted boltzmann machines. In International Conference on Machine

Learning, volume 28, pages 1–9.

Goldberg, D., Nichols, D., Oki, B. M., and Terry, D. (1992). Using collaborative

filtering to Weave an Information tapestry. Communications of the ACM.

Gomez-Uribe, C. A. and Hunt, N. (2015). The netflix recommender system:

Algorithms, business value, and innovation. ACM Transactions on Management

Information Systems (TMIS), 6(4):1–19.

138

Bibliography

Gong, Y. and Zhang, Q. (2016). Hashtag recommendation using attention-based

convolutional neural network. In IJCAI, pages 2782–2788.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

Courville, A., and Bengio, Y. (2014). Generative adversarial networks. In NIPS,

pages 1–9.

Gori, M., Monfardini, G., and Scarselli, F. (2005). A new model for learning in

graph domains. In Proceedings. 2005 IEEE International Joint Conference on

Neural Networks, 2005., volume 2, pages 729–734. IEEE.

Gori, M. and Pucci, A. (2007). ItemRank: A random-walk based scoring algorithm

for recommender engines. In IJCAI International Joint Conference on Artificial

Intelligence.

Grbovic, M. and Cheng, H. (2018). Real-time personalization using embeddings for

search ranking at airbnb. In Proceedings of the 24th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining, pages 311–320.

Gu, Y., Lei, T., Barzilay, R., and Jaakkola, T. (2016). Learning to refine text based

recommendations. In EMNLP 2016 - Conference on Empirical Methods in

Natural Language Processing, Proceedings.

139

Bibliography

Guo, H., Tang, R., Ye, Y., Li, Z., and He, X. (2017). DeepFM: A factorization-

machine based neural network for CTR prediction. In IJCAI International Joint

Conference on Artificial Intelligence.

Guo, Y., Cheng, Z., Nie, L., Wang, Y., Ma, J., and Kankanhalli, M. (2019). Attentive

long short-term preference modeling for personalized product search. ACM

Transactions on Information Systems, 37(2):1–27.

Hamilton, W., Ying, Z., and Leskovec, J. (2017). Inductive representation learning

on large graphs. In Advances in Neural Information Processing Systems, pages

1024–1034.

Han, X., Wu, Z., Jiang, Y.-G., and Davis, L. S. (2017). Learning fashion

compatibility with bidirectional lstms. In Proceedings of the 2017 ACM on

Multimedia Conference, pages 1078–1086. ACM.

Harper, F. M. and Konstan, J. A. (2015). The movielens datasets: History and

context. ACM Transactions on Interactive Intelligent Systems.

He, R. and McAuley, J. (2016a). Ups and downs: Modeling the visual evolution of

fashion trends with one-class collaborative filtering. In 25th International World

Wide Web Conference, WWW 2016.

He, R. and McAuley, J. (2016b). Vbpr: Visual bayesian personalized ranking from

implicit feedback. In AAAI, pages 144–150.

140

Bibliography

He, X. and Chua, T.-S. (2017). Neural factorization machines for sparse predictive

analytics. In Proceedings of the 40th International ACM SIGIR conference on

Research and Development in Information Retrieval, pages 355–364.

He, X., Gao, M., Kan, M.-Y., and Wang, D. (2017a). BiRank: Towards ranking

on bipartite graphs. IEEE Transactions on Knowledge and Data Engineering,

29(1):57–71.

He, X., Liao, L., Zhang, H., Nie, L., Hu, X., and Chua, T.-S. (2017b). Neural

collaborative filtering. In International World Wide Web Conferences, pages

173–182.

He, X., Pan, J., Jin, O., Xu, T., Liu, B., Xu, T., Shi, Y., Atallah, A., Herbrich, R.,

Bowers, S., and Candela, J. Q. (2014). Practical lessons from predicting clicks on

ads at Facebook. In Proceedings of the ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining.

He, X., Zhang, H., Kan, M. Y., and Chua, T. S. (2016). Fast matrix factorization for

online recommendation with implicit feedback. In SIGIR 2016 - Proceedings of

the 39th International ACM SIGIR Conference on Research and Development in

Information Retrieval.

Hidasi, B. and Karatzoglou, A. (2018). Recurrent neural networks with top-k

gains for session-based recommendations. In Proceedings of the 27th ACM

141

Bibliography

international conference on information and knowledge management, pages

843–852.

Hidasi, B., Karatzoglou, A., Baltrunas, L., and Tikk, D. (2015). Session-based

recommendations with recurrent neural networks. International Conference on

Learning Representations, pages 1–9.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural

computation, 9(8):1735–1780.

Hofmann, T. (2004). Latent semantic models for collaborative filtering. ACM

Transactions on Information Systems.

Hong, W., Li, L., and Li, T. (2012). Product recommendation with temporal

dynamics. Expert Systems with Applications.

Huang, T., She, Q., Wang, Z., and Zhang, J. (2020). Gatenet: gating-enhanced deep

network for click-through rate prediction. arXiv preprint arXiv:2007.03519.

Jamali, M. and Ester, M. (2009). TrustWalker: A random walk model for

combining trust-based and item-based recommendation. In Proceedings of

the ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining.

Jiang, W., Jiao, Y., Wang, Q., Liang, C., Guo, L., Zhang, Y., Sun, Z., Xiong, Y., and

Zhu, Y. (2022). Triangle graph interest network for click-through rate prediction.

142

Bibliography

In Proceedings of the fifteenth ACM international conference on web search and

data mining, pages 401–409.

Kang, W.-C., Fang, C., Wang, Z., and McAuley, J. (2017). Visually-aware fashion

recommendation and design with generative image models. In Data Mining

(ICDM), 2017 IEEE International Conference on, pages 207–216. IEEE.

Kapoor, K., Subbian, K., Srivastava, J., and Schrater, P. (2015). Just in time

recommendations - Modeling the dynamics of boredom in activity streams. In

WSDM 2015 - Proceedings of the 8th ACM International Conference on Web

Search and Data Mining.

Koren, Y. (2008). Factorization meets the neighborhood: a multifaceted

collaborative filtering model. In Proceedings of the 14th ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 426–

434. ACM.

Koren, Y. (2009). The bellkor solution to the netflix grand prize. Netflix prize

documentation, 81(2009):1–10.

Koren, Y. (2010). Collaborative filtering with temporal dynamics. Communications

of the ACM.

Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factorization techniques for

recommender systems. Computer.

143

Bibliography

Lang, K. (1995). NewsWeeder: Learning to filter netnews. In Machine Learning

Proceedings 1995.

Li, J., Ren, P., Chen, Z., Ren, Z., Lian, T., and Ma, J. (2017). Neural attentive

session-based recommendation. International Conference on Information and

Knowledge Management, Proceedings, Part F1318:1419–1428.

Liang, H., Xu, Y., Li, Y., and Nayak, R. (2010). Personalized recommender

system based on item taxonomy and folksonomy. In International Conference

on Information and Knowledge Management, Proceedings.

Liu, B., Xiong, H., Papadimitriou, S., Fu, Y., and Yao, Z. (2015). A general

geographical probabilistic factor model for point of interest recommendation.

IEEE Transactions on Knowledge and Data Engineering.

Liu, H., Lu, J., Yang, H., Zhao, X., Xu, S., Peng, H., Zhang, Z., Niu, W., Zhu, X.,

Bao, Y., et al. (2020). Category-specific cnn for visual-aware ctr prediction at

jd. com. In Proceedings of the 26th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, pages 2686–2696.

Liu, H., Wei, Y., Yin, J., and Nie, L. (2022). Hs-gcn: hamming spatial graph

convolutional networks for recommendation. IEEE Transactions on Knowledge

and Data Engineering.

144

Bibliography

Lu, J., Wu, D., Mao, M., Wang, W., and Zhang, G. (2015). Recommender system

application developments: A survey. Decision Support Systems, 74:12–32.

Luo, X., Zhou, M. C., Li, S., You, Z., Xia, Y., and Zhu, Q. (2016). A nonnegative

latent factor model for large-scale sparse matrices in recommender systems

via alternating direction method. IEEE Transactions on Neural Networks and

Learning Systems.

Lynch, C., Aryafar, K., and Attenberg, J. (2016). Images don’t lie: Transferring

deep visual semantic features to large-scale multimodal learning to rank. In

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 541–548. ACM.

Mao, M., Lu, J., Han, J., and Zhang, G. (2019). Multiobjective e-commerce

recommendations based on hypergraph ranking. Information Sciences, 471:269–

287.

Mao, M., Lu, J., Zhang, G., and Zhang, J. (2017). Multirelational social

recommendations via multigraph ranking. IEEE transactions on cybernetics,

47(12):4049–4061.

McAuley, J. and Leskovec, J. (2013a). From amateurs to connoisseurs: Modeling

the evolution of user expertise through online reviews. In WWW 2013 -

Proceedings of the 22nd International Conference on World Wide Web.

145

Bibliography

McAuley, J. and Leskovec, J. (2013b). Hidden factors and hidden topics:

Understanding rating dimensions with review text. In RecSys 2013 - Proceedings

of the 7th ACM Conference on Recommender Systems.

McAuley, J., Targett, C., Shi, Q., and van den Hengel, A. (2015). Image-

based recommendations on styles and substitutes. In Proceedings of the

38th International ACM SIGIR Conference on Research and Development in

Information Retrieval - SIGIR ’15, pages 43–52, New York, New York, USA.

ACM Press.

Medsker, L. and Jain, L. C. (1999). Recurrent neural networks: design and

applications. CRC press.

Monti, F., Bronstein, M., and Bresson, X. (2017). Geometric matrix completion

with recurrent multi-graph neural networks. In Advances in Neural Information

Processing Systems, pages 3697–3707.

Mu, R. (2018). A survey of recommender systems based on deep learning. IEEE

Access, 6:69009–69022.

Page, L., Brin, S., Motwani, R., and Winograd, T. (1998). The pageRank

citation ranking: bringing order to the web. World Wide Web Internet And

Web Information Systems.

146

Bibliography

Pan, Z., Cai, F., Chen, W., Chen, C., and Chen, H. (2022). Collaborative graph

learning for session-based recommendation. ACM Transactions on Information

Systems (TOIS), 40(4):1–26.

Pang, Y., Wu, L., Shen, Q., Zhang, Y., Wei, Z., Xu, F., Chang, E., Long, B., and

Pei, J. (2022). Heterogeneous global graph neural networks for personalized

session-based recommendation. In Proceedings of the fifteenth ACM international

conference on web search and data mining, pages 775–783.

Panniello, U., Tuzhilin, A., and Gorgoglione, M. (2014). Comparing context-aware

recommender systems in terms of accuracy and diversity. User Modeling and

User-Adapted Interaction.

Panniello, U., Tuzhilin, A., Gorgoglione, M., Palmisano, C., and Pedone, A. (2009).

Experimental comparison of pre- vs. post-filtering approaches in context-aware

recommender systems. In RecSys’09 - Proceedings of the 3rd ACM Conference

on Recommender Systems.

Qian, X., Feng, H., Zhao, G., and Mei, T. (2014). Personalized recommendation

combining user interest and social circle. IEEE Transactions on Knowledge and

Data Engineering.

Quadrana, M., Karatzoglou, A., Hidasi, B., and Cremonesi, P. (2017). Personalizing

session-based recommendations with hierarchical recurrent neural networks. In

147

Bibliography

RecSys 2017 - Proceedings of the 11th ACM Conference on Recommender

Systems.

Rendle, S. (2010a). Factorization machines. IEEE International Conference on

Data Mining, pages 995–1000.

Rendle, S. (2010b). Time-Variant Factorization Models. Context-Aware Ranking

with Factorization Models, pages 137–153.

Rendle, S. and Freudenthaler, C. (2014). Improving pairwise learning for item

recommendation from implicit feedback. In Web Search and Data Mining, pages

273–282.

Rendle, S., Freudenthaler, C., Gantner, Z., and Schmidt-Thieme, L. (2012).

BPR: Bayesian personalized ranking from implicit feedback. Conference on

Uncertainty in Artificial Intelligence, pages 452–461.

Rendle, S., Freudenthaler, C., and Schmidt-Thieme, L. (2010). Factorizing

personalized Markov chains for next-basket recommendation. In Proceedings of

the 19th International Conference on World Wide Web, WWW ’10.

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and Riedl, J. (1994).

GroupLens: An open architecture for collaborative filtering of netnews. In

Proceedings of the 1994 ACM Conference on Computer Supported Cooperative

Work, CSCW 1994.

148

Bibliography

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning

representations by back-propagating errors. nature, 323(6088):533–536.

Salakhutdinov, R. and Mnih, A. (2009). Probabilistic matrix factorization. In

Advances in Neural Information Processing Systems 20 - Proceedings of the

2007 Conference.

Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2001). Item-based collaborative

filtering recommendation algorithms. In Proceedings of the 10th International

Conference on World Wide Web, WWW 2001.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. (2009).

The graph neural network model. IEEE Transactions on Neural Networks,

20(1):61–80.

Sedhain, S., Menony, A. K., Sannery, S., and Xie, L. (2015). AutoRec:

Autoencoders meet collaborative filtering. In WWW 2015 Companion -

Proceedings of the 24th International Conference on World Wide Web, pages

111–112.

Shen, X., Yi, B., Zhang, Z., Shu, J., and Liu, H. (2016). Automatic recommendation

technology for learning resources with convolutional neural network. In 2016

international symposium on educational technology (ISET), pages 30–34. IEEE.

149

Bibliography

Shi, Y., Larson, M., and Hanjalic, A. (2014). Collaborative Filtering beyond the

User-Item Matrix : A Survey of the State of the Art and Future Challenges. ACM

Computing Surveys, 47(1):1–45.

Singhal, A., Sinha, P., and Pant, R. (2017). Use of deep learning in modern

recommendation system: A summary of recent works. arXiv preprint

arXiv:1712.07525.

Smirnova, E. and Vasile, F. (2017). Contextual sequence modeling for

recommendation with Recurrent Neural Networks. In ACM International

Conference Proceeding Series.

Su, X. and Khoshgoftaar, T. M. (2009). A survey of collaborative filtering

techniques. Advances in Artificial Intelligence.

Symeonidis, P. (2016). Matrix and tensor decomposition in recommender systems.

In RecSys, pages 429–430.

Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. A. (2017). Inception-v4,

inception-resnet and the impact of residual connections on learning. In AAAI,

volume 4, page 12.

Tan, Y. K., Xu, X., and Liu, Y. (2016). Improved recurrent neural networks for

session-based recommendations. ACM International Conference Proceeding

Series, 15-Septemb:17–22.

150

Bibliography

Tang, J. and Wang, K. (2018). Personalized top-n sequential recommendation

via convolutional sequence embedding. In Proceedings of the eleventh ACM

international conference on web search and data mining, pages 565–573.

Tsymbal, A. (2004). The problem of concept drift: definitions and related work.

Computer Science Department, Trinity College Dublin.

Tuan, T. X. and Phuong, T. M. (2017). 3D convolutional networks for session-based

recommendation with content features. In RecSys 2017 - Proceedings of the 11th

ACM Conference on Recommender Systems.

Villatel, K., Smirnova, E., Mary, J., and Preux, P. (2018). Recurrent neural networks

for long and short-term sequential recommendation. arXiv.

Wang, H., Chen, B., and Li, W. J. (2013). Collaborative topic regression with social

regularization for tag recommendation. In IJCAI, pages 2719–2725.

Wang, H., Wang, N., and Yeung, D.-Y. (2015). Collaborative deep learning for

recommender systems. In Proceedings of the 21th ACM SIGKDD international

conference on knowledge discovery and data mining, pages 1235–1244.

Wang, J., Chen, Y., Chakraborty, R., and Yu, S. X. (2020a). Orthogonal

convolutional neural networks. In Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, pages 11505–11515.

151

Bibliography

Wang, J., Huang, P., Zhao, H., Zhang, Z., Zhao, B., and Lee, D. L. (2018). Billion-

scale commodity embedding for e-commerce recommendation in alibaba. In

Proceedings of the 24th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, pages 839–848.

Wang, W., Zhang, G., and Lu, J. (2016a). Member contribution-based group

recommender system. Decision Support Systems, 87:80–93.

Wang, W., Zhang, G., and Lu, J. (2017). Hierarchy visualization for group

recommender systems. IEEE Transactions on Systems, Man, and Cybernetics:

Systems, 49(6):1152–1163.

Wang, X., Donaldson, R., Nell, C., Gorniak, P., Ester, M., and Bu, J.

(2016b). Recommending groups to users using user-group engagement and

time-dependent matrix factorization. In 30th AAAI Conference on Artificial

Intelligence, AAAI 2016.

Wang, Z., She, Q., Zhang, P., and Zhang, J. (2020b). Correct normalization matters:

Understanding the effect of normalization on deep neural network models for

click-through rate prediction. arXiv preprint arXiv:2006.12753.

Wu, D., Lu, J., and Zhang, G. (2015). A fuzzy tree matching-based personalized e-

learning recommender system. IEEE Transactions on Fuzzy Systems, 23(6):2412–

2426.

152

Bibliography

Wu, J., Wang, X., Feng, F., He, X., Chen, L., Lian, J., and Xie, X. (2021). Self-

supervised graph learning for recommendation. In Proceedings of the 44th

international ACM SIGIR conference on research and development in information

retrieval, pages 726–735.

Wu, S., Tang, Y., Zhu, Y., Wang, L., Xie, X., and Tan, T. (2019). Session-

based recommendation with graph neural networks. Proceedings of the AAAI

Conference on Artificial Intelligence, 33:346–353.

Wu, Y., DuBois, C., Zheng, A. X., and Ester, M. (2016). Collaborative denoising

auto-encoders for top-N recommender systems. In WSDM 2016 - Proceedings of

the 9th ACM International Conference on Web Search and Data Mining, pages

153–162.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Philip, S. Y. (2020). A

comprehensive survey on graph neural networks. IEEE transactions on neural

networks and learning systems, 32(1):4–24.

Yang, B., Lei, Y., Liu, J., and Li, W. (2017). Social collaborative filtering by trust.

IEEE Transactions on Pattern Analysis and Machine Intelligence.

Yildirim, H. and Krishnamoorthy, M. S. (2008). A random walk method

for alleviating the sparsity problem in collaborative filtering. In RecSys’08:

Proceedings of the 2008 ACM Conference on Recommender Systems.

153

Bibliography

Yin, H., Cui, B., Chen, L., Hu, Z., and Zhou, X. (2015). Dynamic user modeling in

social media systems. ACM Transactions on Information Systems.

Yu, W., Zhang, Z., and Qin, Z. (2022). Low-pass graph convolutional network

for recommendation. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 36, pages 8954–8961.

Yuan, F., Guo, G., Jose, J. M., and Chen, L. (2016). LambdaFM : Learning optimal

ranking with factorization machines using lambda surrogates. In International

Conference on Information and Knowledge Management, pages 227–236.

Zhang, C., Wang, K., Yu, H., Sun, J., and Lim, E. P. (2014). Latent factor transition

for dynamic collaborative filtering. In SIAM International Conference on Data

Mining 2014, SDM 2014.

Zhang, F., Yuan, N. J., Lian, D., Xie, X., and Ma, W.-Y. (2016). Collaborative

knowledge base embedding for recommender systems. In Proceedings of the

22nd ACM SIGKDD international conference on knowledge discovery and data

mining, pages 353–362.

Zhang, J., Huang, T., and Zhang, Z. (2019). Fat-deepffm: Field attentive deep

field-aware factorization machine. arXiv preprint arXiv:1905.06336.

154

Bibliography

Zhang, Q., Lu, J., Wu, D., and Zhang, G. (2018). A cross-domain recommender

system with kernel-induced knowledge transfer for overlapping entities. IEEE

transactions on neural networks and learning systems.

Zhang, Q., Wu, D., Lu, J., Liu, F., and Zhang, G. (2017a). A cross-domain

recommender system with consistent information transfer. Decision Support

Systems, 104:49–63.

Zhang, S., Yao, L., and Sun, A. (2017b). Deep Learning based Recommender

System: A Survey and New Perspectives. arXiv, 1(1):1–35.

Zhao, K., Li, Y., Shuai, Z., and Yang, C. (2018). Learning and transferring

ids representation in e-commerce. In Proceedings of the 24th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, pages 1031–

1039.

Zheng, L., Noroozi, V., and Yu, P. S. (2017). Joint deep modeling of users and

items using reviews for recommendation. In Proceedings of the tenth ACM

international conference on web search and data mining, pages 425–434.

Zhou, J., Albatal, R., and Gurrin, C. (2016). Applying visual user interest profiles for

recommendation and personalisation. In International Conference on Multimedia

Modeling, pages 361–366. Springer.

155

Abbreviations

BPR Bayesian Personalized Ranking

CDL Collaborative Deep Learning

CF Collaborative Filtering

CKE Collaborative Knowledge based Embedding

CNN Convolutional Neural Network

DBN Deep Belief Networks

GCF Graph neural network-based Collaborative Filtering

GCN Graph Convolutional Network

GNN Graph Neural Network

GRU Gated Recurrent Unit

L-UIN Long-term User Interest Network

LSREC Long- and Short-term user interest network for personal-

ized recommendation

MF Matrix Factorization

MLP Multi-layer Perceptron

PMF Probabilistic Matrix Factorization

RNN Recurrent Neural Network

S-UIN Short-term User Interest Network

156

Bibliography

SCAE Stacked Convolutional AutoEncoder

SDAE Stacked Denoising AutoEncoder

157

	Title Page
	Certificate of Original Authorship
	Acknowledgements
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Research Questions and Objectives
	1.3 Research Significance
	1.3.1 Theoretical Significance
	1.3.2 Practical Significance

	1.4 Thesis Structure
	1.5 Publications Related to This Thesis

	2 Literature Review
	2.1 Recommendation Techniques
	2.1.1 Collaborative filtering-based recommendation algorithm
	2.1.2 Generic Feature-based recommendation algorithm

	2.2 Deep Learning Techniques
	2.2.1 Multi-layer Perceptron
	2.2.2 Autoencoder
	2.2.3 Convolutional neural network
	2.2.4 Recurrent neural network

	2.3 Deep Learning-based Recommender Systems
	2.3.1 Embedding Techniques for Recommender Systems
	2.3.2 Models using Deep Learning Technique for Latent Relationship Modeling

	3 Enhancing Fashion Recommendation with Visual Compatibility Relationship
	3.1 Introduction
	3.2 Notations and Problem Formulation
	3.3 Visual Compatibility Relationship Modeling and Recommendation
	3.3.1 Learning visual compatibility knowledge from fashion items
	3.3.2 Fashion recommender system with visual compatibility knowledge

	3.4 Experiments and Analysis
	3.4.1 Datasets and evaluation metrics
	3.4.2 Experimental settings and baselines
	3.4.3 Results

	3.5 Summary

	4 A Deeper Graph Neural Network for Recommender Systems
	4.1 Introduction
	4.2 Problem Formulation and Motivation
	4.2.1 Recommendation and Link Prediction in Bipartite Graphs
	4.2.2 Factorization Models
	4.2.3 Graph Neural Network

	4.3 Graph Neural Network-based Collaborative Filtering
	4.3.1 General framework
	4.3.2 Node embedding via Graph Neural Network
	4.3.3 Attention Mechanism
	4.3.4 Model Training

	4.4 Experiments
	4.4.1 Experimental Settings
	4.4.2 Performance Comparison
	4.4.3 Discussion

	4.5 Summary

	5 Long- and Short-term User Interest Network for Personalized Recommendation
	5.1 Introduction
	5.2 Preliminaries and Problem Formulation
	5.3 Methodology
	5.3.1 Long-term User Interest Network
	5.3.2 Short-term User Interest Network
	5.3.3 Long- and short-term interest fusion and recommendation
	5.3.4 Loss function

	5.4 Experiments
	5.4.1 Dataset and Data Preparation
	5.4.2 Evaluation metrics
	5.4.3 Baseline Methods
	5.4.4 Experimental Setup
	5.4.5 Comparison with baseline methods
	5.4.6 Components Analysis

	5.5 Summary

	6 RsyGAN: Generative Adversarial Network for Recommender Systems
	6.1 Introduction
	6.2 Preliminaries and Problem Formulation
	6.3 Generative Adversarial Network for Recommender Systems
	6.3.1 Proposed Model
	6.3.2 Loss Function
	6.3.3 Optimization Algorithm

	6.4 Experiments
	6.4.1 Datasets
	6.4.2 Evaluation for Recommendation
	6.4.3 Performance Comparison
	6.4.4 Components in RsyGAN

	6.5 Summary

	7 Conclusion and Future Research
	7.1 Conclusions
	7.2 Future Study

	Bibliography
	Abbreviations

