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Abstract. Story Ending Generation is a task of generating a coher-
ent and sensible ending for a given story. The key challenges of this
task are i) how to obtain a good understanding of context, ii) how
to capture hidden information between lines, and iii) how to obtain
causal progression. However, recent machine learning models can
only partially address these challenges due to the lack of causal en-
tailment and consistency. The key novelty in our proposed approach
is to capture the hidden story by generating transitional common-
sense sentences between each adjacent context sentence, which sub-
stantially enriches causal and consistent story flow. Specifically, we
adopt a soft causal relation using people’s everyday commonsense
knowledge to mimic the cognitive understanding process of readers.
We then enrich the story with causal reasoning and utilize depen-
dency parsing to capture long range text relations. Finally, we ap-
ply multi-level Graph Convolutional Networks to deliver enriched
contextual information across different layers. Both automatic and
human evaluation results show that our proposed model can signifi-
cantly improve the quality of generated story endings.

1 Introduction
Automated storytelling is an important yet challenging problem in
Natural Language Processing as it needs to cater for the logical flow
of a story within the context and external commonsense knowledge
[21, 20, 15, 48, 24]. The story ending generation (SEG) task includes
concluding a story and completing the plot with a proper causal flow.

Previous SEG research works mainly focus on the symbolic plan-
ning method. For example, [13, 32, 35, 43] conducted reasoning di-
rectly for causality using the form of predicate precondition and post-
condition matching. However, their abilities to learn extensive do-
main knowledge, the vocabulary of events, and their characters are
limited.

On the contrary, machine learning approaches can overcome those
limitations by learning a corpus of existing stories or plot summaries.
They learn probabilistic relationships between words, sentences, and
events.

However, they need help in modelling causal entailment and main-
taining consistency. Recently, many published works have been using
Sequence-to-Sequence (Seq2Seq) model [25]. Nevertheless, as the
Seq2Seq generates sentences in a single direction (e.g., in a left-to-
right manner) and only optimises the model using a maximum like-
lihood estimate, they show limitations in achieving coherence and
causality.
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Figure 1. An example of the SEG task. Our proposed model enriches the
story using causal commonsense reasoning from the four sentences to make

better story endings. We do a story augmentation process for the first and
second sentences, the second and third sentences, and the third and fourth

sentences.

Recently, Li et al. [17] proposed a model that uses multi-level
Graph Convolutional Networks over dependency trees to capture hid-
den clues in the context. Due to the enhanced capturing of context in-
formation, the generated endings are clearer. However, there is still a
big gap between machine-generated and human-crafted endings out-
puts regarding causality and abundance. One reason is that the pro-
posed method relies only on the relation between internal context
sentences. The other possible reason is insufficient causality. Good
story endings require capturing internal context and language un-
derstanding using the everyday commonsense knowledge of readers.
Most of the time, people rely on their own experiences and implicit
knowledge to understand a story.

One of the main challenges of SEG is the causal progression of the
flow of a story. For example, the ending story should be connected
to the previous one and can be understood by causal relation. In this
paper, we adopt soft relation causality using everyday commonsense.
Figure 1 shows an example of the SEG task. We have the given four
sentences. Given the four sentences, we aim to generate a proper
ending for the given texts. To make appropriate endings, we need to
capture the internal context clue and hidden messages via external
commonsense knowledge. Hence, we do story augmentation using
causal commonsense knowledge. We enrich the text by generating
additional texts between the first two sentences. We repeat the same
process for the second and third sentences and the third and fourth
sentences. This process tracks the reader’s understanding process.
When reading a story, people commonly apply the context and their
commonsense knowledge together while reading.

This paper considers the causality between sentences and external
commonsense knowledge. First, we enrich the given stories by story
augmentation using story infilling, which is based on the soft causal
relations. Story infilling [19] is inspired by plot infilling where an



outline of plot points is extracted from the source, and then the ex-
tracted plot points will be added to the story plots.

We query commonsense causal inferences from COMET [5] to
build a graph and search the graph space via common sense knowl-
edge reasoning. Commonsense knowledge is a set of commonly
shared knowledge about how the world works. It allows us to ex-
pect what is going on if we conduct a particular behaviour and what
was likely to happen in the past. Therefore, commonsense reasoning
can be used for inference of the flow of stories.

Therefore, we can build a branching space of possible story con-
tinuations connecting sentences. Once the sentence graph has been
constructed, we search for complete sequences. The previous work
C2PO [1] proves the effectiveness of soft causal relations’ effective-
ness. It can improve causality between story events by applying peo-
ple’s everyday commonsense understanding rather than strict logical
consistency. Next, we apply dependency parsing to capture informa-
tion from non adjacent sentences into a dependency tree, especially
targeting long range sentences. Dependency trees are already exam-
ined to effectively extract features from texts [17, 47]. Moreover, we
apply forward Multi-level Graph Convolutional Networks over de-
pendency parse trees to conduct the dependency relations of input
sentences.

The key novelty in our proposed model is to capture the hid-
den story by generating transitional commonsense sentences between
adjacent context sentences, which substantially enriches causal and
consistent story flow. We achieve this by the following contributions:

• Utilizing COMET for story augmentation;
• To our best knowledge, we are the first research work to apply

and investigate the effect of the recent state-of-art model C2PO
for story argumentation;

• We explore the synergy between the story augmentation and
multi-level GCNs and find the optimal amount of story augmen-
tation for story ending generation in our ablation study.

Experiments show that our model can significantly improve the qual-
ity of generated story endings based on both automatic and hu-
man evaluations. In particular, it confirms that our approach effec-
tively captures the hidden context by combining the internal context
and causal commonsense reasoning. Our ablation study also demon-
strates that story augmentation improves causal and cohesive endings
by enhancing story quality and enjoyable ability.

2 Related Work
2.1 Story Ending Generation (SEG)

Most previous works regard the story context as a sequence of words
and ignore the rich relations among them. In particular, Li et al. [22]
applied a Seq2Seq and adversarial training. Gual et al. [15] adopted
incremental encoding. Wang et al. [42] applied a modified Trans-
former model to build the contextual clues, and variational autoen-
coder for diversity and coherence. Other works applied control sen-
timent and attribute to increase the diversity of the ending [30, 16].

In general, neural network-based models overlooked the impor-
tance of causality. MGCN-DP is a proposed multi-level Graph
Convolutional Networks and introduces Dependency Trees into the
model to increase causality by capturing hidden clues from long
range sentences. It suggests the great importance of story clues hid-
den in the context. However, it mainly relies on capturing internal
context information using dependency trees and does not consider
commonsense knowledge behind the story.

This paper enriches the context by story augmentation using causal
commonsense knowledge based on the soft causal relation from peo-
ple’s everyday commonsense knowledge.

2.2 Story Augmentation

We adopt story infilling literature to enrich a text using commonsense
causal reasoning. Text infilling [40] is a task removing sequences of
words from a text and asking for a replacement. Fedus et al. [12]
used the masking of random words. Collobert et al. [8] and Devlin
et al. [9] used contextualized word embeddings. Sun et al. [37] used
bi-directional decoding for image captioning.

Ippolioto et al. [19] suggested a task filling in missing parts from
a story by conditioning a text generator on rare words. Donahue et
al. [10] attempted to fill in the blanks given left and right contexts.
C2PO [1] incorporates commonsense knowledge into this task by ap-
plying soft causal relation and plot graph learning, which is initially
inspired by [21]. Du et al. [11] proposed an autoregressive pretrained
language model for blank infilling and Xiao et al. [44] proposed an
interactive machine translation model for a bilingual text infilling
method. They published work on a Bilingual Text Infilling Method
for Interactive Machine Translation (BiTIIMT). Du et al. [11] pub-
lished a pretraining framework for three main categories - natural
language understanding (NLU), unconditional generation, and con-
ditional generation. To address the challenge, it proposes a General
Language Model (GLM) based on autoregressive blank infilling. In
this paper, we apply these infilling methods for story infilling.

3 Proposed Model
3.1 Overall Framework

Figure 2 illustrates our model. We have two stages: 1) story aug-
mentation using soft causal relation and 2) multi-level Graph Con-
volutional Networks (GCNs). From the story augmentation, we gen-
erate additional context sentences using commonsense knowledge.
The enriched context is fed as multi-level Graph Convolutional Net-
works input for information delivery. We use a dependency parse tree
to capture long range dependency and prune unrelated information.

Given a story context consisting of a sentence sequence, the SEG
task can be formulated as follows:

X = X1, X2, · · · , Xµ

where Xs = x
(s)
1 x

(s)
2 · · ·x(s)

n contains n words in the sth sen-
tence. This task aims to generate a story ending Y related to the
given context X . Therefore, we can formalize a one-sentence end-
ing Y = y1y2 · · · yl as follows:

Y ∗ = argmin
Y

Pr(Y |X).

As illustrated in Figure 2, our model has 2 phases. The first part
is story augmentation to enhance context by generating additional
sentences using commonsense knowledge reasoning. Given the task,
we have four sentences. We generate additional sentences xstart:endi
from the two adjacent sentences xstart and xend where start ∈ {1, 2, 3}
and end = start + 1.

This is from the idea that when readers read a story, they under-
stand the content, not only sentences in the book but also use their
commonsense knowledge. We use soft causal relations using daily
commonsense reasoning inspired by C2PO. Our contribution is intro-
ducing a method of story augmentation using COMET. To our best



Figure 2. An illustration of our proposed model for SEG task. The model has 1) a story augmentation stage using causal commonsense and 2) multi-level
Graph Convolutional Networks (GCNs) for information delivery. The enriched context by story augmentation is an input of multi-level Graph Convolutional

Networks. The final outputs are the encoder’s input to generate proper story endings.

knowledge, we are the first research work to apply and investigate
the effect of the recent state-of-art model C2PO method for story ar-
gumentation. We use these enriched stories as inputs for multi-level
GCNs.

The second part is based on an encoder-decoder architecture. We
use Stanford Dependency parser [6] to parse dependency relations.
We use Tree LSTM [38] to build a story graph from each input sen-
tence. We prune some unrelated edges to obtain the sparse graphs.
We apply MGCN-DP [17] to build graphs and update each node by
aggregating information from the neighbours. The MGCN-DP has
not been applied for story argumentation in other related works.

3.2 Subject Extraction

Before story augmentation, we extract the subject to generate sen-
tences. We use coreference resolution [7] and information extraction
to identify the subject for the sentences. First, we use a pre-trained
neural coreference resolution model to extract all the coreference
clusters. The clusters include all the mentions in the story belong-
ing to a single possible character. We randomly select one of them
and let M = {m1,m2, ...,mn}. Also, we extract a set R of <sub-
ject, relation, object> triples from the story text using OpenIE [3].
Next, we align them to find a subset of triple P ⊂ R relevant for
a single character based on their character-level positions within the
original story text. Let pos(.) be a function to do this. We randomly
select the subject among the subject and object to generate additional
sentences.

3.3 Story Augmentation using Commonsense Casual
Reasoning

We build two directed acyclic graphs to enrich the story between
xstart and xend. xstart and xend are adjacent sentences in the given text.
We recursively query COMET [5] to p sentence candidates q times
starting from xstart. We define this as Gf . The wants relation is a
direct forward cause, meaning a character has wanted and therefore
acts on for this. Also, we recursively query COMET to generate p
sentences q times starting xend. We define this as Gb. For backward
entailment, we use needs relation. Note that needs relation means a
character needs something to be true to act on. The relations in Gf

and Gb are weighted proportional to the likelihood by COMET for
each inference.

COMET is a transformer-based language model designed for com-
monsense inference. It is trained on ATOMIC [36], a dataset contain-
ing 877k instances of information relevant for everyday common-
sense reasoning with the form of if-then relation types.

Next, we follow [1] to find the optimal way to connect Gf and Gb.
The link’s weight is defined as follows:

w(u, v) =
Prwants(u|v)

αwants
u

+
Prneeds(u|v)

αneeds
v

,

where Prneeds(u|v) is the probability of generating sentence xend

as inferences by COMET under the needs relation, conditioned on
xstart. Prwants(u|v) is calculated in the same by but under the wants
relation. αwants

u and αneeds
u are normalized constants. This process

is repeated for all nodes until a set of optimal links is found.



Therefore, we can finalise the entire story graph as follows:

G =
⋃

xstart,xend

(Gf
xstart ∪Gb

xend),∀xstart, xend ∈ P,

where xstart, xend are adjacent in X .
Finally, we can link the sentence graphs for the entire sentences of

the story. A random graph walk can generate a story from the first
sentence xstart to xend. All random walks are guaranteed to terminate
xend as Gbx

end is built by branching backward from xend.
This way, we generate l sentences from X1 and X2. We generate

m sentences from X2 and X3. We generate n sentences from X3

and X4. Finally, we generate context-enhanced l+m+ n sentences
from the initial four sentences.

3.4 Commonsense Graph Construction

Given a sth sentence Xs = x
(s)
1 x

(s)
2 · · ·x(s)

n with n words, we rep-
resent the tth word x

(s)
t by Glove [31] word embedding as follows:

e
(s)
t = ew(x

(s)
t ),

where ew denotes a word embedding lookup table and e
(s)
k is the

embedding vector of tth word x
(s)
t in the sth sentence. We apply

LSTM to obtain the word representation hs
wt:

h
(s)
wt = LSTM(e

(s)
t ).

Each edge represents a particular relation between two words, and
each word represents a vertex. We can define an intra-sentence graph
GI as follows:

GI = (νI , ξI),

where νI is the set of nodes and ξI is the set of edges connected with
the nodes.

3.5 Dependency Relations

We build dependency relations between words by parsing sentences.
We remove unrelated edges and obtained a dependency sparse graph
GP as follows:

GP = (νP , ξP ),

where νs is the set of nodes of the pruned graph and ξs is the set of
edges connected with the nodes.

3.6 Intra-sentence Information

Next, we perform the attention-based GCNs [45, 18] node aggrega-
tion and updating. Dependency sparse graph Gp with a n × n ad-
jacency matrix is used, where a fully connected layer reflects the
relations between nodes. For a target node i and its neighbour nodes
set N(i), the representing of node i and node j ∈ N(i) are hwi

and hwj . We calculate the correlation score wi,j between node i and
node j as follows:

wij = wT
0 σ(W0[hwi;hwj ] + b0),

where w0, W0, and b0 are trainable parameters, σ is the non-linear
activation function. hwi and hwj denote the concatenation. We cal-
culate the weight αij using a softmax function over the correlation
score wij as follows:

αi,j =
exp(wij)∑

j∈N(i) exp(wij)
.

The i-th representation of neighbor node h
(l)
wj is first transformed

using a learned linear transformation layer W1 as follows:

hl+1
wi = σ(h

(l)
wi +

∑
j∈N(i)

αij(W1h
(l)
wj + b1)),

where W1 and b1 are trainable parameters. The output Hw of the
stacked l layer GCNs is

Hw = h
(l+1)
wi .

3.7 Multi-level GCN for Story Augmentation

From the story infilling stage, we generate l + m + n sentences.
Among them, we select the first p sentences.

We apply multi-level GCNs [17] on the graph to represent L-level
GCNs graph.

GL = (νL, ξL),

where GL is the set of the L-th level GCNs node, νL denotes the set
of the set of the L-th level GCNs nodes and ξL is the set of the L-th
level GCNs edges.

For the s-th sentence Xs with n words, all words can be repre-
sented [h

(s)
w1 · · ·h

(s)
wn ]. The node set νL in L-th level GCNs is

νL = [h
(s)
w1 · · ·h

(s)
wn].

For information delivery across different levels, We weigh each node
using the attention mechanism in νL and sum them together as a new
node h

(L)
a :

β = softmax(W2ν
L + b2),

h(L)
a =

n∑
L=1

βνL,

where W2 and b2 are trainable parameters.
For the (s + 1)-th sentence Xs+1, we can build word embedding

[h
(s+1)
w1 · · ·h(s+1)

wm ].
Then we combine [hs+1

w1 · · ·h(s+1)
wm ] with h

(p)
a as the nodes set

νL+1 of the (L+ 1)-th level GCNs:

νL+1 = [h
(s+1)
w1 · · ·hwm(s+1) ;h

1
a, · · · , hL

a ].

Given a graph with (m+L) nodes, for the graph structure GL+1,
the (m+ L)× (m+ L) adjacency matrix is used. For a target node
i and a neighbour node j ∈ Ψ(i) in the L1-th level graph GL+1,
Ψ(i) is the set of nodes neighbouring with node i. We calculate the
correlation score λij between node i and node j as follows:

λij = wT
3 σ(W3[hLi;hLj ] + b3),

where w3,W3, and b3 are trainable parameters. σ is the non-linear
activation function, and [hLi;hLj ] denotes the concatenation opera-
tion. The weight ϕ can be calculated using the softmax function over
the correlation score λij as follows:

ϕ =
exp(λij)∑

j∈Ψi
exp(λij)

.



Table 1. Automatic evaluation and human evaluation. We bold our model and underline the best results.

Model BLEU-1 BLEU-2 METEOR ROUGE-1 ROUGE-2 ROUGE-L Grammar Logic
Seq2Seq [25] 18.5 5.9 12.1 20.3 2.5 21.2 2.57 1.41
Transformer [41] 17.4 6.0 11.9 19.8 2.3 20.9 2.54 1.62
GCN [45] 17.6 6.2 11.8 19.9 2.5 21.3 2.62 1.70
IE+MSA [15] 24.4 7.8 13.2 23.2 2.7 23.1 2.64 1.80
T-CVAE [42] 24.4 8.4 13.3 23.5 2.7 23.2 2.65 1.73
Plan&Write [46] 24.4 8.4 13.3 23.4 2.6 23.1 2.65 1.73
GPT2 [34] 23.0 7.3 13.1 22.9 2.6 22.8 2.69 1.85
KE-GPT2 [14] 26.5 9.4 16.1 25.7 2.9 26.8 2.65 1.92
MGCN-DP [17] 24.6 8.6 18.8 28.4 3.2 27.8 2.67 1.86
ChatGPT (https://chat.openai.com) 27.0 9.7 20.1 30.1 3.2 28.3 2.85 1.94
CCRGCN (ours) 27.2 9.9 20.4 31.5 3.4 29.0 2.71 1.97

The l-th representation of neighbour nodes h
(l)
Lj are first trans-

formed using a linear transformation layer W4. Those transformed
representations are gathered with the weight phiij , followed by a
non-linear function σ. This propagation process is denoted as fol-
lows:

h
(l+1)
Li = σ(h

(l)
Li +

∑
j∈ϕ(i)

ϕij(W4h
l+1
Lj + b4)),

where W4 and b4 are trainable parameters.
Following the stacked l layer GCNs, the output of the encoder HL

is as follows:
HL = hL+1

Li
.

3.8 Decoder

We adopt the decoder of transformer [41] for decoding. The input of
Multi-Head attention is Din,HL, and HL, FFN is two linear trans-
formations with ReLU activation in between, and Do is the middle
output of the decoder. Decoding can be denoted as follows:

D̃in = MultiHead(Din, HL, HL),

Do = FFN(D̃in)

We can predict the probability of a word using a linear transforma-
tion layer and softmax function to convert the output of the decoder.
Let z denote the index of the ending sentence. At each time step t,
the decoding process is represented as follows:

P (yt|y < t,X) = softmax(WzDo + bz),

where Wz and bz are trainable parameters and P (yt) is the probabil-
ity distribution over vocabulary.

4 Experiments
We evaluate our model using the ROCStories corpus [26]. The
dataset contains 90,000 training stories, 4,081 validation stories, and
4,081 test stories. We use standard automatic language generation
metric BLEU and human participant study.

4.1 Experimental Settings

GloVe.6B is used as word vectors. The vocabulary size is 10,000,
and the word vector dimension is 300. The level of the stacked layer
in GCNs is 16. The learning rate is 0.005. The batch size is 64. The
head h of attention in the decoder is 6, dk and dv are 64. The level
of the stacked layer of the decoder is 2. The dropout rate is 0.1. We
train the model for 60 epochs.

4.2 Evaluation Metrics

4.2.1 Automatic Evaluation Metric

• BLEU [29] evaluates the n-gram overlap between generated end-
ings and a reference. We report BLEUs with n = 1, 2. We cal-
culate each BLEU-1 and BLEU-2 for stories in the test set and
obtain the average prediction accuracy.

• METEOR [4] applies a weighted F-score using mapping unigrams
and a penalty function for incorrect word order.

• ROUGE (Recall Oriented Understudy for Gisting Evaluation) [23]
replies on recall. We calculate each ROUGE-1 and ROUGE-2. For
n, we calculate the number of n-grams across all the gold ending
text and count how many appear in the candidate gold ending from
each model.

• ROUGE-L is based on the longest common subsequence (LCS).
Rather than using only recall, it is calculated as the weighted har-
monic mean of precision and recall.

4.2.2 Human Evaluation Metric

For human evaluation, we randomly sample 100 stories. We recruit
five students who are a) fluent in English and b) demonstrate an un-
derstanding of story generation tasks. Human participants are given
ten stories generated by GPT2, MCGN-DP, ChatGPT, and our model.
The order of stories is randomized to avoid bias due to the ordering
effect [27]. At least 3 participants see each story set (3 pairs). We ask
them about the quality of Grammar and Logic for the outputs from
each model. Grammar evaluates whether the generated story is flu-
ent and natural, while Logic evaluates whether the generated story is
reasonable and coherent with the context. We ask the participants to
score 1/2/3, where 1 means bad, 2 means okay, and 3 means good.

4.3 Baselines

We adopt the experiment results from MGCN-DP [17], which in-
cludes 7 baselines plus MGCN-DP itself, and supplement this set
of baselines with GPT2 [34] and ChatGPT 1. GPT2 is a pre-trained
model from web text such as Reddit and Wikipedia with a 1.5 billion
parameter for story generation tasks. It has a Transformer architec-
ture. We set the length of the generated story as the average length
of the gold ending. We use our test set as inputs for GPT2. ChatGPT
is fine-tuned on the top of GPT3.5 [28] using Reinforcement Learn-
ing from Human Feedback (RLHF). We use Free Research Preview
ChatGPT and the query prompt “Can you predict the last sentence

1 https://chat.openai.com



Table 2. Generated endings from different models. Bold words denote the
keywords in the story. An improper story in endings is italic.

Case 1

Context

Lizzy’s cousin died.
She didn’t have enough money
to fly home for the funeral.
She told her friend.
He gave her the money.

GPT2 And then she ran away.
MGCN-DP She was able to go to the .
ChatGPT When Lizzy’s cousin died and

she didn’t have enough money
to fly home for the funeral, she
was devastated and didn’t know
what to do.

CCRGCN She went home .
Gold Ending She was able to go home .

Case 2

Context

The kid was in a spelling contest.
He won a prize for most improved
speller.
He made it through seven rounds
before
getting kicked out.
He was proud of what a good speller
he was.

GPT2 You can’t go wrong with this guy.
MGCN-DP He ended up on the.
ChatGPT Even though he didn’t win the spelling contest,

he was still proud of how much he had improved
and promised to work harder for next
year’s competition.

CCRGCN He ended up and went home.
Gold Ending He went home and decided to

practice more.

from the 4 sentences?” MGCN-DP is based on multi-level GCNs us-
ing dependency trees. The model mainly relies on internal context
information. We use the same parameters for MGCN-DP and our
model to compare results fairly. We give them the four context sen-
tences as input per story.

4.4 Results and Analysis

4.4.1 Results

Table 1 shows that our model outperforms most baselines on au-
tomatic and human evaluation. Our model achieves significant im-
provements over other baselines. These results indicate that our
model generates story endings that overlap with the gold endings
from the generating story endings. Also, our model shows promis-
ing results from human evaluation. In particular, for the question re-
garding Grammar, our model shows the second highest score (2.71).
As ChatGPT is a state-of-art pre-trained language generation model
with human AI trainers using huge conversations with a chatbot, it
shows better results. However, regarding Logic, our model obtains
the highest score, 1.97.

4.4.2 Analysis

We present examples of the generated story endings. Table 2 shows
the 4 given context sentences, endings generated from the models,
and gold endings. From the given 4 sentences “Lizzy’s cousin died.
She didn’t have enough money to fly home for the funeral. She told
her friend. He gave her the money.”, our model generates the best

Table 3. The results of human evaluation for ablation study

Q1 Q2 Q3
(%) (%) (%)

w/o story augmentation 44 24 46
with story augmentation 56 76 54

sentence compared to the gold ending and grammar. Our model gen-
erates a good ending, “She went home.” with good grammar and the
keyword home. However, MGCN-DP generates an ending “She was
able to go to the” with bad grammar and missing a keyword home.
GPT2 and ChatGPT generate good grammar endings, but they are
very different from the gold ending.

Case 2 also shows that our model generates the best sentence, “He
ended up and went home.” considering the given context, “spelling
contest” and “kicked out”. Our model generates good sentences again
in terms of grammar and meaning. However, the ending by MGCN-
DP is “He ended up on the.” It is poor grammar and missing critical
information home. The sentence by GPT2 is, “You can’t go wrong
with this guy.” It looks good in terms of grammar. However, it is out
of the topic compared to the gold endings. Our model can generate
the best sentences from the results by combining the external knowl-
edge reasoning and capturing the internal long range distance.

4.5 Ablation Study

To investigate our proposed model’s effectiveness, we conduct an
ablation study. First, we compare our model with the baseline with-
out story augmentation to address the effect of story augmentation.
Next, we further explore how we achieve our model by varying the
number of additional sentences. We conduct a human survey to quan-
tify the effect of story argumentation to infer correct story endings.
Next, we investigate the synergy effects between story augmentation
and multi-level GCNs with different volumes of story augmentation.
We conduct automated evaluation metrics for the cases with differ-
ent numbers of additional sentences to find optimal values for story
augmentation for multi-level GCNs.

4.5.1 Story Augmentation

We conduct an additional human evaluation to investigate the effects
of story augmentation. We hire five students with the same qualifi-
cation as previous human participants. We create a pair of stories.
The first story set includes only the original four sentences and gold
endings. The second story set consists of the original four sentences,
other stories generated by our story augmentation, and gold endings.
We ask the participants to select the better one between them. We use
the questions proposed by previous work for multiple storytellings
[33, 39, 2]. In particular, we use the following questions [1]:

• Q1: Which story is of higher quality?
• Q2: Which story is more enjoyable?
• Q3: Which story is better to predict the gold ending?

4.5.2 Results

We ask the participants to select which one has a higher score for
each criterion. Table 3 shows the results. The second story set with
story augmentation obtains better results from both questions. For the
first question regarding quality, B (with story augmentation) obtains
56% against 44% (A: original four sentences and gold ending). For



Table 4. Examples of a story generated by story augmentation. Initial set
sentences are in bold. From the two bold sentences, we generate additional

sentences using causal common sense reasoning.
Case 1
Nathan liked hanging out with his friends.
Nathan begins to go to the movies.
Nathan begins to go home.
Nathan starts to smoke.
They would sit around and smoke cigars.
Nathan starts to smoke another cigarette.
Nathan wants to smoke more.
Nathan wants to work.
Nathan starts to have money.
Nathan took a trip to Cuba.
Nathan tries to go to the airport.
Nathan wants to get in the car.
Nathan tries to go to the store.
Nathan starts to purchase cigars.
He bought a lot of cigars there to bring home.
Gold Ending : He couldn’t wait to share them
with his friends.

Case 2
Fred wanted to try the Paleo diet.
Fred begins to eat healthy food.
Fred starts to exercise.
Fred starts to work hard.
Fred tries to be in charge.
It was all the rage.
Fred tries to calm down.
Fred tries to rest.
Fred begins to think.
Fred begins to think about something.
He thought it would be good.
Fred starts to do something.
Fred begins to rest.
Fred wants to take a nap.
Fred tries to be tired.
But after one day he quit.
Gold Ending : It was too hard not to eat bread.

the second enjoyable question, B (with story augmentation) obtains
76% against 24%. Also, the story with story augmentation obtains
a better score (54% vs 46%) for the question regarding effective-
ness for generating endings. The study confirms that story augmenta-
tion using causal commonsense reasoning effectively generates high-
quality and enjoyable stories. Also, it is helpful in generating story
endings.

4.5.3 Case Study

Table 4 demonstrates the story augmentation effects using common-
sense reasoning and soft causal relation. The initial four sentences are
in bold. The sentences between the two bold sentences are generated
sentences from story augmentation. The initially given sentences are
“Nathan liked hanging out with his friend. They would sit around and
smoke cigars. Nathan took a trip to Cuba. He bought a lot of cigars
there to bring home.” From the first two sentences our model gener-
ates additional three sentences. They show causal ordering based on
everyday common sense. They use begin and start relation to add
more causality between stories. In particular, they add context, “go
to the movie” from “hang out”. They add the preceding action “start
to smoke” before “sit around and smoke cigars”.

From the second and third sentences, “They would sit around and
smoke cigars. Nathan took a trip to Cuba.” Our story augmentation
process adds new context using three sentences “Nathan starts to

Table 5. The effect of a different number of additional sentences ("as"
denotes the number of additional sentences from each adjacent sentence).
Model BLEU-1 METEOR ROUGE-1 ROUGE-L
CCRGCNas=0 24.6 18.8 28.4 27.8
CCRGCNas=1 24.7 18.9 28.5 27.9
CCRGCNas=2 26.3 19.3 30.7 28.5
CCRGCNas=3 27.0 19.7 31.2 28.7
CCRGCNas=4 27.2 20.4 31.5 29.0
CCRGCNas=5 24.4 18.6 28.3 27.8

smoke another cigarette. Nathan wants to smoke more. Nathan wants
to work. Nathan starts to have money.” They use start and want re-
lation to adopt causal commonsense reasoning. Our model reasons
a new sentence from the previous sentence: “Nathan starts to smoke
another cigarette. Our model generates the following story from ev-
eryday commonsense, meaning we need to make money for a trip
overseas. From the third and fourth sentences, “Nathan took a trip to
Cuba. He bought a lot of cigars there to bring home.” Our model en-
riches more background information such as airport car, and store.
These are possible from causal reasoning.

Similarly, also Case 2 demonstrates that our model is effective.
We use begin, start, and try relation. From the internal context
diet, we enrich the context using “health food” and “exercise”. We
add causal ordering. In particular, from “rage”, our model generates
“calm down”, “rest”, and “think”. The human evaluation shows that
we enrich the context by adding additional context from common-
sense. Hence, we can make the story more enjoyable and close con-
nection to the gold ending.

As shown in the results, our story augmentation process success-
fully adds more causality to the story following the reader’s under-
standing. Also, our model using story augmentation and multi-level
GCNs is beneficial to generate story endings.

4.5.4 Number of Additional Sentences

Table 5 shows each case’s automated evaluation metric results by
varying the number of additional sentences. In this experiment, as
means the number of additional sentences from story augmentation.
For example, CCRGCNas=0 means the results of multi-level GCNs
without story augmentation. We find that the optimal number of ad-
ditional sentences is 4. The model with 5 additional sentences fails
to produce improved results. Since even one additional sentence of
story augmentation increases all the evaluation measures, we con-
clude that story augmentation significantly (up to a certain number
of additional sentences) contributes to maximizing the inference of
story endings.

5 Conclusion
Story ending generation is challenging due to the difficulty of cap-
turing internal and external context. Also, the model should gener-
ate a make-sense conclusion. We propose a story augmentation with
multi-level GCNs for generating story endings. At first, we enrich
stories given four sentences using soft causal relation to track read-
ers’ everyday understanding when they read a story. To capture all
the given information, we apply dependency tree parsing. Then we
apply multi-level GCNs to train our story generation model. Our ap-
proach effectively generates story endings from both automatic and
human evaluations. We also conduct an ablation study to address the
effect of story argumentation with varying the number of additional
sentences.



Acknowledgements
This research was supported by the Australian Government Research
Training Program Scholarship.

References
[1] Prithviraj Ammanabrolu, Wesley Cheung, William Broniec, and

Mark O. Riedl, ‘Automated storytelling via causal, commonsense plot
ordering’, in AAAI 2021.

[2] Prithviraj Ammanabrolu, Ethan Tien, Wesley Cheung, Zhaochen Luo,
William Ma, Lara Martin, and Mark Riedl, ‘Story realization: Expand-
ing plot events into sentences’, in AAAI 2020.

[3] Gabor Angeli, Melvin Jose Johnson Premkumar, and Christopher D.
Manning, ‘Leveraging linguistic structure for open domain information
extraction’, in ACL 2015.

[4] Satanjeev Banerjee and Alon Lavie, ‘METEOR: An automatic metric
for MT evaluation with improved correlation with human judgments’,
in ACL 2005.

[5] Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chaitanya Malaviya,
Asli Celikyilmaz, and Yejin Choi, ‘COMET: commonsense transform-
ers for automatic knowledge graph construction’, in ACL 2019.

[6] Daniel Cer, Marie-Catherine de Marneffe, Daniel Jurafsky, and Christo-
pher D. Manning, ‘Parsing to stanford dependencies: Trade-offs be-
tween speed and accuracy’, in LREC 2010.

[7] Kevin Clark and Christopher D. Manning, ‘Deep reinforcement learn-
ing for mention-ranking coreference models’, in EMNLP 2016.

[8] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray
Kavukcuoglu, and Pavel Kuksa, ‘Natural language processing (almost)
from scratch’, J. Mach. Learn. Res., 12, (2011).

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova,
‘BERT: Pre-training of deep bidirectional transformers for language
understanding’, in NAACL 2019.

[10] Chris Donahue, Mina Lee, and Percy Liang, ‘Enabling language models
to fill in the blanks’, in ACL 2020.

[11] Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin
Yang, and Jie Tang, ‘GLM: general language model pretraining with
autoregressive blank infilling’, in ACL 2022.

[12] William Fedus, Ian Goodfellow, and Andrew Dai, ‘Maskgan: Better
text generation via filling in the’, (2018).

[13] Pablo Gervás, Belén Díaz-Agudo, Federico Peinado, and Raquel
Hervás, ‘Story plot generation based on cbr’, volume 18, (2005).

[14] Jian Guan, Fei Huang, Zhihao Zhao, Xiaoyan Zhu, and Minlie Huang,
‘A knowledge-enhanced pretraining model for commonsense story gen-
eration’, Transactions of the Association for Computational Linguistics,
8, (2020).

[15] Jian Guan, Yansen Wang, and Minlie Huang, ‘Story ending genera-
tion with incremental encoding and commonsense knowledge’, in AAAI
2019.

[16] Zhijiang Guo, Yan Zhang, and Wei Lu, ‘Attention guided graph convo-
lutional networks for relation extraction’, in ACL 2019.

[17] Qingbao Huang, Linzhang Mo, Pijian Li, Yi Cai, Qingguang Liu, Jie-
long Wei, Qing Li, and Ho-fung Leung, ‘Story ending generation with
multi-level graph convolutional networks over dependency trees’, in
AAAI 2021.

[18] Qingbao Huang, Jielong Wei, Yi Cai, Changmeng Zheng, Junying
Chen, Ho-fung Leung, and Qing Li, ‘Aligned dual channel graph con-
volutional network for visual question answering’, in ACL 2020.

[19] Daphne Ippolito, David Grangier, Chris Callison-Burch, and Douglas
Eck, ‘Unsupervised hierarchical story infilling’, in The First Workshop
on Narrative Understanding, (2019).

[20] Yangfeng Ji, Chenhao Tan, Sebastian Martschat, Yejin Choi, and
Noah A. Smith, ‘Dynamic entity representations in neural language
models’, in EMNLP 2017.

[21] Boyang Li, Stephen Lee-Urban, George Johnston, and Mark Riedl,
‘Story generation with crowdsourced plot graphs’, in AAAI 2013.

[22] Zhongyang Li, Xiao Ding, and Ting Liu, ‘Generating reasonable and
diversified story ending using sequence to sequence model with adver-
sarial training’, in ACL 2018.

[23] Chin-Yew Lin, ‘ROUGE: A package for automatic evaluation of sum-
maries’, in ACL 2004.

[24] Tianyu Liu, Yizhe Zhang, Chris Brockett, Yi Mao, Zhifang Sui, Weizhu
Chen, and Bill Dolan, ‘A token-level reference-free hallucination detec-
tion benchmark for free-form text generation’, in ACL 2022.

[25] Thang Luong, Hieu Pham, and Christopher D. Manning, ‘Effective
approaches to attention-based neural machine translation’, in EMNLP
2015.

[26] Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh,
Dhruv Batra, Lucy Vanderwende, Pushmeet Kohli, and James F. Allen,
‘A corpus and cloze evaluation for deeper understanding of common-
sense stories’, in NAACL HLT 2016.

[27] Judith S. Olson and Wendy A. Kellogg, Ways of Knowing in HCI,
Springer Publishing Company, Incorporated, 2014.

[28] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wain-
wright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina
Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Chris-
tiano, Jan Leike, and Ryan Lowe, ‘Training language models to follow
instructions with human feedback’. arXiv, (2022).

[29] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu, ‘Bleu:
a method for automatic evaluation of machine translation’, in ACL
2002.

[30] Nanyun Peng, Marjan Ghazvininejad, Jonathan May, and Kevin Knight,
‘Towards controllable story generation’, in Proceedings of the First
Workshop on Storytelling, (2018).

[31] Jeffrey Pennington, Richard Socher, and Christopher D. Manning,
‘Glove: Global vectors for word representation’, in EMNLP 2014.

[32] Julie Porteous and Marc Cavazza, ‘Controlling narrative generation
with planning trajectories: The role of constraints’, (2009).

[33] Chris Purdy, Xinyu Wang, Larry He, and Mark O. Riedl, ‘Predicting
generated story quality with quantitative measures’, in AIIDE 2018.

[34] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,
Ilya Sutskever, et al., ‘Language models are unsupervised multitask
learners’, OpenAI blog, 1(8), 9, (2019).

[35] Mark Riedl and Robert Young, ‘Narrative planning: Balancing plot and
character’, J. Artif. Intell. Res. (JAIR), (01 2014).

[36] Maarten Sap, Ronan Le Bras, Emily Allaway, Chandra Bhagavatula,
Nicholas Lourie, Hannah Rashkin, Brendan Roof, Noah A. Smith, and
Yejin Choi, ‘Atomic: An atlas of machine commonsense for if-then rea-
soning’, in AAAI 2019.

[37] Qing Sun, Stefan Lee, and Dhruv Batra, ‘Bidirectional beam search:
Forward-backward inference in neural sequence models for fill-in-the-
blank image captioning’, (2017).

[38] Kai Sheng Tai, Richard Socher, and Christopher D. Manning, ‘Im-
proved semantic representations from tree-structured long short-term
memory networks’, CoRR, (2015).

[39] Pradyumna Tambwekar, Murtaza Dhuliawala, Lara J. Martin, Animesh
Mehta, Brent Harrison, and Mark O. Riedl, ‘Controllable neural story
plot generation via reward shaping’, in IJCAI 2019.

[40] Wilson L. Taylor, ‘“cloze procedure”: A new tool for measuring read-
ability’, Journalism Quarterly, 30(4), 415–433, (1953).

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin, ‘Attention
is all you need’, in NIPS 2017.

[42] Tianming Wang and Xiaojun Wan, ‘T-cvae: Transformer-based condi-
tioned variational autoencoder for story completion’, in IJCAI 2019.

[43] Stephen G. Ware and R. Michael Young, ‘Cpocl: A narrative planner
supporting conflict’, in AIIDE 2011.

[44] Yanling Xiao, Lemao Liu, Guoping Huang, Qu Cui, Shujian Huang,
Shuming Shi, and Jiajun Chen, ‘Bitiimt: A bilingual text-infilling
method for interactive machine translation’, in ACL 2022.

[45] Jianwei Yang, Jiasen Lu, Stefan Lee, Dhruv Batra, and Devi Parikh,
‘Graph r-cnn for scene graph generation’, in European Conference,
(2018).

[46] Lili Yao, Nanyun Peng, Ralph Weischedel, Kevin Knight, Dongyan
Zhao, and Rui Yan, ‘Plan-and-write: Towards better automatic story-
telling’, in AAAI 2019.

[47] Yan Zhao, Lu Liu, Chunhua Liu, Ruoyao Yang, and Dong Yu, ‘From
plots to endings: A reinforced pointer generator for story ending gener-
ation’, in Natural Language Processing and Chinese Computing, eds.,
Min Zhang, Vincent Ng, Dongyan Zhao, Sujian Li, and Hongying Zan,
pp. 51–63, Cham, (2018). Springer International Publishing.

[48] Yucheng Zhou, Tao Shen, Xiubo Geng, Guodong Long, and Daxin
Jiang, ‘ClarET: Pre-training a correlation-aware context-to-event trans-
former for event-centric generation and classification’, in ACL 2022.


