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Abstract
In the paradigm of online continual learning, one neural network is exposed to a sequence of tasks, where the data arrive
in an online fashion and previously seen data are not accessible. Such online fashion causes insufficient learning and severe
forgetting on past tasks issues, preventing a good stability-plasticity trade-off, where ideally the network is expected to have
high plasticity to adapt to new tasks well and have the stability to prevent forgetting on old tasks simultaneously. To solve these
issues, we propose a trust-region adaptive frequency approach, which alternates between standard-process and intra-process
updates. Specifically, the standard-process replays data stored in a coreset and interleaves the data with current data, and the
intra-process updates the network parameters based on the coreset. Furthermore, to improve the unsatisfactory performance
stemming from online fashion, the frequency of the intra-process is adjusted based on a trust region, which is measured
by the confidence score of current data. During the intra-process, we distill the dark knowledge to retain useful learned
knowledge. Moreover, to store more representative data in the coreset, a confidence-based coreset selection is presented in an
online manner. The experimental results on standard benchmarks show that the proposed method significantly outperforms
state-of-art continual learning algorithms.

Keywords Online continual learning · Catastrophic forgetting · Trust-region · Deep learning

1 Introduction

Continual learning (CL) is a learning paradigm that aims to
mimic the human abilities of adapting to new environments
while not forgetting past experience (Delange et al., 2021;
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Peng et al., 2021; Kong et al., 2022; Wang et al., 2022b, c, d).
However, when the network is exposed to a sequence of tasks
sequentially, the performance of the old tasks would drop
significantly, which is referred to as catastrophic forgetting
(McCloskey &Cohen, 1989; Ratcliff, 1990), a well-known
challenge in continual learning.Theproblemclosely involves
the stability-plasticity dilemma (Grossberg, 1982; Mermil-
lod et al., 2013), where with limited resources, the network
is infeasible to have plasticity to learn a new taskwell and sta-
bility to maintain useful knowledge learned from past tasks
simultaneously.

To alleviate the stability-plasticity dilemma, three classes
of continual learning approaches are proposed: replay-based
methods, architecture-based methods, and regularization-
based methods. In particular, replay-based methods store
historical data in a limited coreset and replay the data
alongside new data (Rolnick et al., 2019; Isele &Cosgun,
2018; Chaudhry et al., 2019; Lopez-Paz &Ranzato, 2017),
as done by Experience Replay (ER) (Riemer et al., 2018)
and Dark Experience Replay (DER) (Buzzega et al., 2020).
Architecture-based methods augment the networks or allo-
cate subnetworks for new tasks to decrease the interference
on past works (Zhou et al., 2012; Jerfel et al., 2019; Mallya
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&Lazebnik, 2018), e.g., ProgressiveNeural Networks (PNN)
(Rusu et al., 2016). Regularization-based methods prevent
the variants of important parameters by adding a penalty
term to the loss function (Kirkpatrick et al., 2017; Zenke et
al., 2017; Aljundi et al., 2018; Lee et al., 2017), like Elastic
Weight Consolidation (EWC) (Schwarz et al., 2018).

However, most of the approaches are tailed for offline set-
ting, where the model could iterate the entire dataset of each
task multiple times. That is, the model can access the whole
dataset of the current task at a time and needs additional
storage to store the whole current dataset, which is not real-
istic. Therefore, we consider a more restrictive but practical
setting, online continual learning (online CL). Specifically,
online CL requires continual learning algorithms to observe
the data of each task in a single pass while previous data are
unavailable.

Considering the excellent performance of replay-based
methods in continual learning, in this paper, we devote to
replay-basedmethod that stores a subset of historical data in a
coreset. The typical problem of replay-based methods is data
imbalance where the data of the current task and the data of
previous tasks are imbalanced due to the inaccessibility of the
old data and the small size of coreset.Moreover,when applied
to online fashion, replay-based methods further face more
challenges, preventing them from achieving a good stability-
plasticity trade-off. For example, themodel only observes the
data stream from sequential tasks in a single pass, resulting in
unsatisfactory learning of tasks (poor plasticity) and severe
catastrophic forgetting (poor stability). Moreover, for online
CL, the typical sampling strategy, reservoir randomly sam-
ples a uniform subset from the input stream and would omit
the representative and informative data of old tasks, resulting
in more forgetting of previous tasks.

Therefore, to overcome the challenges, we propose a new
online continual learning approach, Trust-Region Adaptive
Frequency (TRAF), which alternates between standard-
process and intra-process updates based on a trust region.
Specifically, the standard-process trains from data stored in
a coreset and interleaves the data with current data, and the
intra-process updates the network parameters based on the
coreset. By triggering the intra-process during the standard-
process, the model could improve the performance of tasks
stemming from insufficient learning and alleviate the forget-
ting on previous tasks simultaneously. Moreover, to alleviate
the data imbalance, intra-process is better to be triggered
more frequently in the stage that the coreset ismore balanced.
We propose a trust-region inspired approach (Nocedal and
Wright, 2006;Connet al., 2000;Cartis et al., 2011),measured
by confidence score, to detect the stage and adjust the fre-
quency of the intra-process based on the trust region. During
intra-process, we further distill the dark knowledge to retain
learned knowledge. Finally, considering the importance of
storing data, we introduce a confidence-based coreset selec-

tion to store more representative samples to further alleviate
the forgetting. The full procedure of the proposed method is
shown in Fig. 1.

The experimental results on different benchmarks demon-
strate that TRAF could outperform existing competitive
continual learning algorithms by a considerable margin. To
summarize, our contributions are threefold:

– For online CL, we propose a new online CL method,
Trust-Region Adaptive Frequency (TRAF), which alter-
nates between standard-process and intra-process updates
based on a trust region, to relieve the stability-plasticity
dilemma.

– To further improve performance, TRAF also uses
confidence-based coreset selection to select more rep-
resentative data.

– Extensive experimental results on two standard protocols
and several standard benchmarks show that the proposed
method could achieve state-of-art performance.

2 RelatedWorks

2.1 Continual Learning Approaches

Replay-based methods are a prominent class of continual
learning approaches and achieve state-of-the-art perfor-
mance in many challenging scenarios. Specifically, replay-
based methods maintain a small memory buffer to store data
and train the historical data interleaved with the new data
at the latter training iterations (Rolnick et al., 2019; Isele
&Cosgun, 2018; Chaudhry et al., 2019; Shin et al., 2017;
Rao et al., 2019; Aljundi et al., 2019a, 2017; Hou et al.,
2018;Ostapenko et al., 2019; Bang et al., 2021). For instance,
Experience Replay (ER) is the most classical approach that
jointly optimizes the model parameters by replaying the old
data alongside new data. Gradient Episodic Memory (GEM)
(Lopez-Paz &Ranzato, 2017) and Averaged-GEM (AGEM)
(Chaudhry et al., 2018b) update the model under inequality
constraints of gradients, which is computed by the gradients
of the stored samples. Incremental Classifier and Represen-
tation Learning (iCaRL) (Rebuffi et al., 2017) learns in a
class-incremental way by storing samples that are close to the
center of each class. Rethinking-ExperienceReplay (RE-ER)
(Buzzega et al., 2021) proposes several simple techniques to
tackle the existing challenges in ER. Gradient based Sam-
ple Selection (GSS) (Aljundi et al., 2019b) focuses on the
selection strategy and proposes a variation on ER from the
view of constrained optimization. Meta-Experience Replay
(MER) (Riemer et al., 2019) combines ERwith optimization-
based meta-learning to maximize transfer from the past
tasks whileminimizing interference. DER++ (Buzzega et al.,
2020) promotes consistency with the past by matching the
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Fig. 1 The full procedure of the proposed method. The procedure
includes Standard-Process (S-P) and Intra-Process (I-P), where S-P
updates themodel based on the current data and coreset, and I-P updates
based on coreset. The frequency of I-P is dependent on the confi-
dence score S. When the average of the confidence score is higher

than the threshold εfre, the frequency is gradually increased. Otherwise,
we decrease the frequency. Low frequency is referred to the situation
where the number of standard-process is much larger than the I-Pwithin
a certain time and vice versa. The changes of the confidence score are
only used for illustration

network’s outputs selected throughout the optimization tra-
jectory. Unsupervised Continual Learning (UCL) (Madaan
et al., 2022) mixes up new examples with past examples to
mitigate the forgetting. Among the mentioned methods, all
methods are applicable or easily modified to the setting of
online CL, except for iCaRL and GEM.

Architecture-based methods expand the network progres-
sively when needed or allocate different parameters for
different tasks (Serra et al., 2018; Mallya &Lazebnik, 2018;
Mallya et al., 2018; Li et al., 2019; Zhou et al., 2012; Wu et
al., 2020; Yoon et al., 2019). For example, PNN (Rusu et al.,
2016) expands the networks when the new task comes, and
retain the networks learned on past tasks. Wu et al. (2020)
progressively and dynamically grows neural networks by
jointly optimizing the network. However, thesemethodsmay
result in a cumbersome and complex model if new tasks con-
tinually arrive.

Regularization-based methods add a penalty term to the
loss function to prevent the changes of network parameters
(Chaudhry et al., 2018a; Yin et al., 2020; Nguyen et al., 2017;
Ritter et al., 2018; Lin et al., 2022). For example, EWC (Kirk-
patrick et al., 2017), SI (Zenke et al., 2017), MAS (Aljundi et
al., 2018), and ALASSO (Park et al., 2019) are devoted to the
computation of parameters’ importance while LwF (Li and
Hoiem, 2017) aims to distill the knowledge without storing

old data. However, these approaches may lead to unsatisfac-
tory performance without access to previous data, especially
in challenging scenarios.

2.2 Online Continual Learning

While the majority of continual learning methods are
designed for unsuitable scenarios, where the model can iter-
ate on the entire dataset of the current task multiple times
(Zenke et al., 2017; Schwarz et al., 2018; Rusu et al., 2016;
Rebuffi et al., 2017), online continual learning (online CL)
has been gaining much interest recently due to its ubiquitous
in many real-world problems. In this paper, we consider a
challenging task that is more restrictive, i.e., online CL (Jin
et al., 2021; Sun et al., 2022; Aljundi et al., 2019b). In online
CL, the model observes the data of each task in a single pass
and previous data are unavailable.

Moreover, recent works (Delange et al., 2021; Buzzega et
al., 2020) also provided the requirements that the continual
learning methods should focus on to be more applicable in
practical: (a) no task boundaries: the model does not rely
on the task boundaries. (b) constant memory: the memory is
bounded throughout the entire training phase. (c) no test time
oracle: the task identitieswhich are used to select the relevant
task for each image are not accessible at inference time. Our
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Fig. 2 The illustration of online data stream where the data of each task arrives sequentially and each data can be only observed once

setting follows the guidelines and according to the fact that
whether the task identities (time oracle) or not, we divide the
scenario into two protocols:Task-Aware (with task identities)
and Task-Free (without task identities) (Pham et al., 2021),
and evaluate the proposed method on both protocols.

3 Problem Setting

In this section, we present the setting of online continual
learning. Figure2 shows the illustration of online CL. For-
mally, in online CL, the model is learned on a sequence of
image classification tasks T = {T1, . . . , TT }, where T is the
total number of tasks and T is the tasks set. For task Tt , the
input samples x and the corresponding labels y are drawn
from the independently and identically distributed distribu-
tion of task Tt . LetDt be the dataset of task Tt , andD be the
corresponding online data stream consisting of all datasets
Dt , t ∈ {1, 2, . . . , T }, sequentially. Note that the task bound-
aries are not provided to indicate the coming of a new task
during training. Themodel is trained on a sequence of batches
{B1,B2, ...} from D with each data seen once.

Let θ be the model parameters and N be the network. In
this paper, we focus on replay-based methods, a prominent
class of approaches in continual learning,which store a subset
of past data in a limited replay coreset C and replay the data in
the future (Buzzega et al., 2020;Madaan et al., 2022;Buzzega
et al., 2021). |A| denotes the datasize of A.

4 Methodology

In this section, we depict the proposed method, Trust-Region
Adaptive Frequency (TRAF), which alternates between
standard-process and intra-process updates in an adaptive
frequency. We first describe the standard-process and intra-
process (Sect. 4.1) and then introduce the trust-region adap-
tive frequency for intra-process (Sect. 4.2), the key idea of our
work. To further alleviate the catastrophic forgetting, we also
propose confidence-based coreset selection to select more

Algorithm 1 Trust-Region Adaptive Frequency in Online
Continual Learning
Input: Network N , Parameters θ , Data stream D, Learning rate η,
Scalars m, λ, δ, εfre, invmin, invmax, εccs, inv0 and β,

Output: Target network N
k = 1, C = {}
for B in D do

ŶB = N (B)

inv
′
k =

{
inv

′
k−1 − δ, avg(S(B; θ)) ≥ εfre,

inv
′
k−1 + δ, otherwise

invk =
{
max{�inv′

k�, invmin}, avg(S(B; θ)) ≥ εfre

min{�inv′
k�, invmax}, otherwise

if I(k, invk) = 1 then
θ ← θ − η∇θ (L(C; θ) + λLd (ỸC, ŶC))

end if
θ ← θ − η∇θ (L(B; θ) + βL(C; θ))

idx∗ =
{
argmax(m)

n∈[|B|]
S(B; θ), avg(S(B; θ)) ≥ εccs,

random(m, |B|), otherwise
C ← reservoir(C,B[idx*], ŶB[idx*]) � Alg. 2
k = k + 1

end for
return N

representative data (Sect. 4.3). Finally, we discuss the differ-
ence between our work and some related works (Sect. 4.4).

4.1 Standard-Process and Intra-Process

4.1.1 Standard-Process

In this subsection, we first introduce the experience replay
(ER), the most typical replay-based method, which stores a
subset of historical data across encountered tasks and opti-
mizes the network with the historical data and current data
during training. Formally, when training on the current batch
B, the objective can be represented as the following:

L(B; θ) + βL(C; θ), (1)

where L is cross entropy loss, C is the coreset containing the
stored training samples, θ are the model parameters, and β is
a factor that controls the balance between the new task and
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past tasks.We call the updates in Eq. (1) as Standard-Process
(S-P).

ER and its variants (Buzzega et al., 2020; Arani et
al., 2022; Buzzega et al., 2021) have achieved impressive
achievements in conventional continual learning. However,
they are still hard to achieve satisfactory stability-plasticity
trade-off on the online CL. Specifically, the model observes
batchB sequentially, where each batch is seen once, resulting
in insufficient learning of the current task (poor plasticity).
Moreover, except for the historical data stored in the core-
set, the model can only access the data of the current task,
leading to more attention to the classes in the current task.
The phenomenon would result in more severe catastrophic
forgetting of previous classes (poor stability).

4.1.2 Intra-Process

Inspired by previous works that multiple iterations on the
data can improve the unsatisfactory performance (Tang et al.,
2021), to maximally utilize the limited data in the coreset,
we introduce a new process, Intra-Process (I-P), updating
the model parameters under the coreset. Formally, the loss
function for the intra-process isL(C; θ),whereL is the cross
entropy loss, C is the coreset containing the stored training
samples.

To improve the insufficient learning of tasks, we alternate
the standard-process with intra-process throughout the opti-
mization trajectory. Specifically, we trigger the intra-process
at a certain frequency during the training of the standard-
process, where the frequency corresponds to the triggers of
intra-process in certain iterations.We define the trigger func-
tion as

I(k, inv) =
{
1, k mod inv = 0,
0, otherwise,

(2)

where mod is the operation of modulo, k is the current itera-
tion number and inv is an integer that controls the frequency
and it is negatively related to the frequency, i.e., larger inv
corresponds to lower frequency.

4.2 Trust-Region Adaptive Frequency for
Intra-Process

If intra-process updates parameters based on the more bal-
anced coreset, it can alleviate the negative impact brought
by data imbalance. However, due to the online setting, the
class balance in the coreset varies at the different learning
stages of the current task. As found in our experiments and
shown in Fig. 3, the class distribution in coreset is more uni-
form for all observed classes at the late stage of the current
task learning. Therefore, intra-process should be triggered
more frequently at the late stage of the current task to alle-
viate the negative impact brought by data imbalance better.
However, in online learning, the boundaries of the task are
not accessible thus we could not obtain the learning stage
of the current task. To this end, we designed an approach to
detect the late stage of the current task. We find that, due to
online fashion that data can be seen only once, the perfor-
mance of the model on the current task would be better at the
later training stage of the current task. Therefore, we use the
performance of the current task to detect the latter stage of
the current task. A natural way tomeasure performance is the
confidence score, where a higher confidence score represents
better performance. Therefore, to detect the stage, we pro-
pose a trust-region that ismeasured by a confidence score and

Fig. 3 The illustration of distribution changes in the coreset during the
training of a task. Assume that the class of the current task is Airplane.
The samples in the coreset are all from old tasks at the beginning of

current task learning and then the fraction of the samples from the cur-
rent task will gradually increase until the end of the task. Finally, the
samples of each class will be almost equal
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adjust the frequency dynamically based on the trust region,
called trust-region adaptive frequency.

Specifically, to represent the region explicitly, we use the
average confidence score, which is the predicted probability
of the ground truth label, for the current batch to measure the
performance of the current task. When the model is under
the trust region, we increase the frequency by decreasing the
factor inv and we decrease the frequency if the model is out-
side the region. Higher score is trusted because it represents
better performance, a later stage of current task learning, and
a more balanced coreset. Therefore, let S(x; θ) be the confi-
dence score of x . Then the candidate of invk can be updated
by

inv
′
k =

{
inv

′
k−1 − δ, avg(S(B; θ)) ≥ εfre,

inv
′
k−1 + δ, otherwise,

(3)

where avg(·) denotes the average function, εfre is the thresh-
old of the score avg(S(B; θ)), k is the current iteration
number, δ is the amplitude of the frequency update and B
is the current batch. After obtaining the inv

′
k , we round up or

round down it to obtain the invk used in the trigger function:

invk =
{
max{�inv′

k�, invmin}, avg(S(B; θ)) ≥ εfre

min{�inv′
k�, invmax}, otherwise, (4)

where �·� and �·� denote the operations of rounding down
and rounding up, respectively; invmax and invmin are themax-
imum and minimum value of invk , respectively.

As shown in Fig. 1, when the average confidence score of
the current batch is satisfactory, i.e., higher than the thresh-
old εfre, we decrease the inv and the corresponding frequency
of intra-process is increased. Otherwise, we increase inv and
then the frequency is decreased. Note that εfre is an important
factor because it determines the trust region. For example,
when εfre is large, the performance of the current task is bet-
ter, and the classes in the coreset aremore balanced.However,
in the situation, most of the region is in the untrust region,
and the triggers of intra-process are lower through the opti-
mization trajetory, impacting the performance of the model.
Moreover, εfre is related to the complex of dataset. When the
dataset is easy to learn, then εfre should be a larger value since
the worse case can also be well classified.

To further relieve forgetting and maintain the useful
knowledge learned from the past, we distill the dark knowl-
edge (Buzzega et al., 2020; Gou et al., 2021; Zhao et al.,
2021; Wang et al., 2020), called Dark Knowledge Distilla-
tion (DKD), during the intra-process. Specifically, we retain
the network’s logits and use the modified cross-entropy loss
as the distillation loss. During intra-process, we sample the
examplers (x, ỹC) from the coreset randomly, where ŷC is the
record logits of x . Then distillation loss can be represented
as:

Algorithm 2 reservoir(C, x , y)
Input: coreset C, seen examples number N, example x , label y
C = |C|
if C ≥ N then

C[N − 1] ← (x, y)
else

j = randomInteger(0, N )

if j < C then
C[ j] ← (x, y)

end if
end if
return Coreset C

Ld(ỹC, ŷC) = −
L∑

l=1

ỹ′(l)
C logŷ′(l)

C , (5)

where ỹ′(l)
C = exp(ỹ(l)

C /τ)∑
i exp(ỹ

(i)
C )τ

, ŷ′(l)
C = exp(ŷ(l)

C /τ)∑
i exp(ŷ

(i)
C /τ)

, L is the

total number of classes, τ is the temperature factor, and ỹC
and ŷC are the record and current logits of x .

To the end, the training procedure can be represented as

Standard-Process: L(B; θ) + βL(C; θ), (6)

Intra-Process : L(C; θ) + λLd(ỸC, ŶC), (7)

whereλ is a factor that controls the importance of distillation;
ỸC and ŶC are the recorded and current logits of examples
randomly sampled from the coreset C, respectively; β and
λ are balanced hyperparameters which are commonly used
in CL (Buzzega et al., 2020). The intra-process is happened
when I(k, inv) = 1 (defined inEq. 2). Theprocedure is shown
in Algorithm 1.

4.3 Confidence-Based Coreset Selection

For replay-based methods, especially in online CL, a key
problem is how to choose representative data that are ben-
eficial for future rehearing. A compatible selection strategy
for online CL is the reservoir (Vitter, 1985), which randomly
smaples a uniform subset from the input stream. Specifically,
reservoir randomly chooses C = |C| samples to store in the
coreset C, guaranteeing that all seen samples have the same
probability C

N of being stored in the coreset, where N is the
number of seen samples participating in the reservoir sample
strategy. The algorithm of reservoir is shown in Algorithm
2, where randomInteger(min = 0,max = N ) denotes the
operation that randomly selects an integer between 0 and
N − 1.

However, reservoir puts equal importance on all samples,
which does not take data representation into consideration.
Therefore, we design a simple but effective sampling strategy
that could store more representative data, called Confidence-
based Coreset Selection (CCS), by storing data with higher
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confidence scores in an onlinemanner. The confidence-based
coreset selection relies on the confidence score to select the
samples. However, at the early stage of each task learning, the
confidence scores are unreliable because the model does not
fit well with the current task. Therefore, we only selectively
choose the samples based on the confidence score when the
confidence score is reliable, i.e., the average confidence score
is higher than a threshold. Or we randomly select the sam-
ples to avoid negative effect the brought by the unreliable
confidence score. Formally, the indexes idx∗ of the selected
data for the current batch B can be formulated as

idx∗=
{
argmax(m)

n
S(B; θ), n ∈ [|B|], avg(S(B; θ))≥εccs,

random(m, |B|), otherwise,
(8)

where argmax(m)

n
select m indexes of the examples with top-

m confidence scores fromn ∈ {1, 2, . . . , |B|},B is the current
batch,m = p×|B|, p ∈ (0, 1] is the ratio of selected indexes,
and random(m, |B|) is a function that randomly select m
numbers from {1, 2, . . . , |B|} without replacement. εccs is a
factor that determines when the representative samples are
convincing.

Therefore, the coreset C can be updated as following

C ← reservoir(C,B[idx*], ŶB[idx*]), (9)

where reservoir denotes the operation of reservoir sampling,
idx* is obtained based on Eq. (8), ŶB are the corresponding
logits of the current batch. The full algorithm is shown in
Algorithm 1.

4.4 Discussion

Our work is related to Liu et al. (2021) and Hou et al. (2019).
However, our method differs from theirs in many aspects.
First, ourmethod does not rely on the oracle of task boundary,
i.e., knowing the end of the task, to obtain a balanced coreset.
Unlike Liu et al. (2021) and Hou et al. (2019) that rely on
the task boundaries to obtain the balanced coreset, our pro-
posed method does not obtain the balanced coresets directly
but uses the confidence score to detect the training stage and
judge the balance of the coresets. Second, both intra-process
and standard-process update the network parameters and do
not use additional parameters or fix parameters. For example,
Liu et al. (2021) uses additional scaling weights at a neuron
level and the aggregation weights. Third, in our method, we
alternate standard-process and intra-process in a dynamic fre-
quency. However, Hou et al. (2019) applies the class balance
finetuning at the end of the task (phase). Liu et al. (2021)
alternates the two optimization process at each iteration.

5 Experiments

In this section, we first describe the experimental setup and
implementation. Then, we evaluate the continual learning
algorithms on two protocols: Task-Aware and Task-Free. We
also conduct ablation studies to explore the effect of different
factors and show more results.

5.1 Experimental Setup and Implementation

Settings Based on the fact that whether the task identities are
provided to select the relevant classifier for each imageduring
testing, online CL can be divided into two protocols (Pham
et al., 2021): Task-Aware and Task-Free, where the latter is
more challenging because the task identities are unavailable
at inference time.

Benchmarks Following previous works (Buzzega et al.,
2020; Madaan et al., 2022; Buzzega et al., 2021), we
evaluate the algorithms on four standard continual learn-
ing benchmarks: Split MNIST (S-MNIST), Split CIFAR-10
(S-CIFAR-10), Split CIFAR-100 (S-CIFAR-100), and Split
TinyImageNet (S-TinyImageNet). Split MNIST and Split
CIFAR-10 split the training examples of MNIST (LeCun et
al., 1998) and CIFAR-10 (Krizhevsky et al., 2009) into five
tasks, respectively. Each task has two disjoint classes. Split
CIFAR-100 consists of 20 tasks, each of which introduces
5 classes out of the 100 classes of CIFAR-100 (Krizhevsky
et al., 2009) without replacement. TinyImageNet (Stanford,
2015) consists of 100000 64 × 64 color training samples
and 10000 validation images. Similarly, Split TinyImageNet
is constructed by 10 sequential tasks divided from TinyIma-
geNet. Each task has 20 disjoint classes out of the total 200
classes without replacement.

Architectures Adhere to previous works (Buzzega et al.,
2020; Mirzadeh et al., 2020; Jin et al., 2021), for Split
MNIST, we employ a two-layer fully connected network,
where each hidden layer has 100 ReLU units. For the vari-
ants of CIFAR-10 and CIFAR-100, we employ a lightweight
ResNet-18 with three times smaller than standard ResNet-
18. For Split TinyImageNet, we use the standard ResNet-18
(He et al., 2016). All tasks share the same classifier, i.e., we
use a single-head setting, a more challenging setting.

BaselinesWecompareTRAFwith the following 10methods:
ER, MER (Riemer et al., 2019), AGEM (Chaudhry et al.,
2018b), GSS (Aljundi et al., 2019b), UCL (Madaan et al.,
2022), DER (Buzzega et al., 2020), RE-ER (Buzzega et
al., 2021), DER++ (Buzzega et al., 2020), Complementary
Learning System-ER (CLS-ER) (Arani et al., 2022)1), and

1 Since the performance of stable model in CLS-ER is worse for online
CL, we evaluate the performance on its working model.
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Fig. 4 The curves of the average accuracy when the network has been
trained on each task on the datasets of Split CIFAR-100 and Split Tiny-
ImageNet over five runs. [↑] denotes higher is better

Continual Normalization (CN) (Pham et al., 2022). We also
provide the performance of SGD (Ghadimi and Lan, 2013),
which simply trains the model without any countermeasure
to forgetting.

Evaluation Metric Following previous works (Mirzadeh et
al., 2020; Lopez-Paz &Ranzato, 2017; Chaudhry et al.,
2018b), we evaluate continual learning algorithms with two
metrics: Average Accuracy (ACC) and Forgetting (FT). For-
mally, after the model has finished learning all tasks, ACC
is the average accuracy evaluated across all observed tasks,
defined as, ACC = 1

T

∑T
i=1 aT i , where ati is the accuracy

of the task Ti when the model has been learned on the task
Tt . FT measures the performance degradation of tasks from
the task’s peak performance to its final performance, i.e.,
FT = 1

T−1

∑T−1
i=1 maxt∈[T−1](ati − aT i ). Higher ACC and

lower FT are better. With similar ACC, the algorithm with
lower FT is better.

Implementation Details We use Pytorch 2 to implement the
proposed algorithm and other experiments. We use the SGD
optimizer and batch size of 10 for all experiments. Adhering
to previous work (Buzzega et al., 2020), the coreset size of
Split MNIST and Split CIFAR-10 is 200 and 500, respec-
tively. For Split CIFAR-100 and Split TinyImageNet, the
coreset size is 1000. The learning rate for all experiments is
0.03.3 For the method-related hyperparameters of all base-
lines, e.g.,α inDER++ and so on,we refer to the setting of the

2 https://pytorch.org/
3 UCL uses a momentum of 0.9 and weight decay of 0.0005 as the
official code.

released code. CN is used on top of Experience Replay (ER).
For the proposed method, the batch size for intra-process are
50 for 5-Split MNIST and 5-Split CIFAR-10, and 100 for
other datasets. The sample ratio p is 0.9 for 5-Split MNIST
and 5-Split CIFAR-10, and 0.8 for other datasets. We set τ to
2 for Split MNIST and 1 for other datasets. The invmax for
all datasets is 5, and the invmin is 1 for Split CIFAR10, and 2
for other datsets. Other hyperparameters settings are shown
in Table 1. The loss function is cross-entropy loss. We per-
form all experiments five times with different random seeds,
and the results are the average results over five runs. We use
reservoir sampling strategy (Vitter, 1985) for all baselines
applicable to online CL.

5.2 Experimental Results

The effect of trust-region adaptive frequency We first assess
the ACCs and FTs of constant frequency 4 and adaptive fre-
quency on the setting of Task-Free, a more restrictive and
challenging scenario. For a fair comparison, we exclude
the component of CCS and DKD. According to Table 2,
using adaptive frequency can achieve higher ACCs (relative
improvement of at least 4.38%) and lower FTs than using
constant frequency (any integer between the range [2, 5]),
validating that using trust-region adaptive frequency could
achieve better performance and less catastrophic forgetting.

Comparisons with baselines on the setting of Task-FreeTable
3 summarizes the experimental results of ACCs and FTs on
the protocol ofTask-Free. According to Table 3, the proposed
method could outperform baselines by a considerable mar-
gin. For example, the ACCs of TRAF are at least 1.0% higher
than that of other methods on all benchmarks. Especially,
on Split CIFAR-100, the ACC of TRAF achieves at least 3
% improvement over SOTA (CLS-ER). One reason for the
worse performance of other methods may be that previous
works are not suitable for the realistic and challenging sce-
narios. For instance, UCL requires multiple accesses to the
datasets to learn invariant features between all tasks, while
the insufficient learning stemming from the online setting
prevents them from learning such representations. Therefore,
when applied to the online scenario, its performance is poorer
than that of our method. Moreover, Table 3 shows that the
proposed method has lower or comparable forgetting with
baselines, demonstrating the effectiveness of TRAF in alle-
viating forgetting. For example, on Split CIFAR-10, the FT
of TRAF is at least 2.00 % lower than other methods. On the
Split TinyImageNet, the forgetting of AGEM is lower than

4 constant frequency means that applying intra-process in a certain fre-
quency.

123

https://pytorch.org/


International Journal of Computer Vision (2023) 131:1825–1839 1833

Table 1 The hyperparameter settings

Param S-MNIST S-CIFAR-10 S-CIFAR-100 S-TinyImageNet
Task-Free Task-Aware Task-Free Task-Aware Task-Free Task-Aware Task-Free Task-Aware

β 4.5 4.5 1.0 1.0 0.5 0.5 0.5 0.5

λ 20 10 0.35 0.32 0.12 0.24 0.01 0.3

εfre 0.6 0.6 0.2 0.2 0.2 0.2 0.1 0.1

εccs 0.7 0.7 0.175 0.175 0.2 0.2 0.1 0.1

Table 2 Comparisons of
constant frequency and adaptive
frequency

inv 2 3 4 5 Adaptive

ACC [↑] 18.94±1.60 16.84±1.53 17.88±1.20 17.20±1.43 19.77±1.71

FT [↓] 48.97±2.23 51.88±1.79 51.48±1.39 52.26±1.37 48.86±1.23

The bold values denote the best performance
We set the range of interval inv as [2, 5]. The dataset is the Split CIFAR-100 and the experiments are performed
five runs. [↑] Higher is better. [↓] lower is better

Table 3 Results of ACC (%) [↑] and forgetting (%) [↓] evaluated on all tasks after finishing learning all tasks on the setting of Task-Free

Method S-MNIST S-CIFAR-10 S-CIFAR-100 S-TinyImageNet

ACC [↑] FT [↓] ACC [↑] FT [↓] ACC [↑] FT [↓] ACC [↑] FT [↓]
SGD 19.68±0.04 99.20±0.08 18.70±0.12 86.21±0.60 3.63±0.11 64.99±0.76 4.66±0.32 40.08±0.85

ER 77.69±1.45 25.96±1.68 54.40±1.12 35.65±1.96 17.13±1.21 50.22±1.20 12.36±1.22 38.59±0.83

RE-ER 78.58±1.02 24.84±1.28 54.99±2.72 34.11±4.52 15.95±0.96 51.39±1.45 12.42±1.18 37.68±2.03

MER 82.46±0.83 17.36±0.83 – – – – – –

AGEM 40.03±7.02 73.86±8.73 17.62±0.47 81.02±3.32 3.12±0.25 59.90±0.86 4.30±0.30 35.62±1.25

GSS 62.06±1.93 45.50±2.33 39.62±2.14 52.63±2.53 6.67±0.09 53.79±0.75 – –

DER 84.36±0.79 15.25±1.07 36.17±2.62 54.96±5.28 3.74±0.20 65.15±1.09 5.12±0.29 41.92±0.85

DER++ 86.43±0.88 15.97±1.15 55.32 ±1.08 26.37±3.08 16.09±0.89 50.83±0.79 12.83±0.58 38.34±0.06

CLS-ER 84.73±1.02 17.04±1.30 54.12±2.59 34.89±2.73 16.72±1.72 49.39±2.17 11.31±0.38 40.28±0.99

CN – – 54.08 ±2.24 27.09±5.01 16.01±0.55 48.95 ±0.32 11.51±0.44 42.28±0.63

TRAF 86.95±0.81 14.57±1.05 59.58±1.02 23.95±2.66 20.53±1.74 48.05±1.83 14.37±1.05 38.11±1.28

The bold values denote the best performance
‘–’ indicates experiments we were unable to run, due to compatibility issues or intractable training time. [↑] Higher is better and [↓] lower is better

our method. However, the ACC of AGEM is significantly
lower than that of ours (10% lower).

Comparisons with baselines on the setting of Task-Aware
Table 4 show the ACC and FT results in the protocol of
Task-Aware. Similar to the setting of Task-Free, the proposed
method could achieve higher performance with consider-
able forgetting than other methods. For instance, on the Split
CIFAR100, the ACC of TRAF is 75.00%, largely higher than
the best performance of baselines, i.e., 70.47%. On the Split
TinyImageNet, the forgetting (FT) of TRAF is better than
other methods, except for UCL. However, for UCL, its ACC
is significantly lower than ours (over 30%). It is because that
UCL uses the unsupervised learning loss to train the network

and requires sufficient learning to learn the representations
well. Thus, it performs poorly in the online fashion.

The accuracy curves Fig. 4 shows the curves of average accu-
racy evaluated on the observed tasks when the network has
been trained on each task on the datasets of Split CIFAR100
and Split TinyImageNet, respectively. According to Fig. 4,
the performance of our method is higher than baselines con-
tinually, further validating the superiority of the proposed
method in alleviating the stability-plasicity dilemma.

Combining with more CL methods As shown in Tables 5,
when combined with our method, the performance of com-
bining methods sometimes could be higher than TRAF. For
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Table 4 Results of ACC (%) [↑] and forgetting (%) [↓] evaluated on all tasks after finishing learning all tasks on the setting of Task-Aware

Method S-MNIST S-CIFAR-10 S-CIFAR-100 S-TinyImageNet
ACC [↑] FT [↓] ACC [↑] FT [↓] ACC [↑] FT [↓] ACC [↑] FT [↓]

SGD 95.73±1.32 4.14±1.66 72.25±1.42 19.27±2.27 34.03±3.22 33.02±3.75 25.59±1.31 16.91±1.61

ER 98.44±0.15 0.67±0.20 86.77±0.75 2.87±0.41 69.91±1.39 5.09±0.97 47.88±1.60 5.28±1.02

RE-ER 98.31±0.39 0.81±0.46 87.22±0.68 2.08±0.47 69.61±0.76 5.07±1.16 47.33±2.05 5.73±1.93

MER 97.47±0.35 0.88±0.35 – – – – – –

AGEM 98.49±0.33 0.84±0.43 70.78±3.53 15.31±1.87 41.50±2.39 20.10±2.57 32.08±1.66 5.86±1.67

GSS 97.85±0.15 1.30±0.17 80.41±2.08 9.84±2.79 56.65±2.02 14.52±1.64 – –

DER 98.70±0.11 0.68±0.15 82.53±0.79 3.99±1.01 42.82±2.58 24.08±1.73 31.73±1.75 12.58±1.99

DER++ 98.81±0.07 0.61±0.11 87.48±1.05 1.74±0.73 70.47±1.38 4.11±0.60 49.15±0.18 4.77±0.47

UCL – - 67.72±1.03 1.67±1.19 43.54±1.36 3.47±1.36 20.78±0.57 1.32±0.20

CLS-ER 98.62±0.15 0.58±0.19 87.04±1.81 1.95±2.05 70.23±0.77 3.53±0.53 46.64±0.94 6.44 ±0.49

CN – – 86.55±1.26 2.25±1.10 68.46±1.39 4.58±0.76 47.31±0.44 7.24±0.38

TRAF 98.92±0.13 0.46±0.17 89.65±0.35 1.04±0.42 75.00±0.88 3.32±0.35 51.91±1.72 4.16±1.46

The bold values denote the best performance
‘–’ indicates experiments we were unable to run, due to compatibility issues or intractable training time. [↑] Higher is better and [↓] lower is better

Table 5 Results of ACC (%) [↑] evaluated on all tasks after finishing learning all tasks on the setting of Task-Aware (T-Aware) and Task-Free
(T-Free)

Method S-MNIST S-CIFAR-10 S-CIFAR-100 S-TinyImageNet
T-Free T-Aware T-Free T-Aware T-Free T-Aware T-Free T-Aware

oEWC (Schwarz et al., 2018) 20.37±0.23 97.97±0.67 18.70±0.07 66.91±5.39 3.35±0.08 30.88±1.46 2.80±0.31 10.93±0.63

oEWC + TRAF 86.09±1.45 98.38±0.71 37.66±1.68 80.32±0.36 17.59±1.90 69.02±1.80 11.73±1.36 47.07±1.36

SI (Zenke et al., 2017) 19.91±0.17 97.00±0.95 18.21±0.25 61.52±3.03 3.40±0.07 29.78±1.93 3.89±0.10 17.40±1.73

SI +TRAF 87.56±1.04 98.51±0.15 53.23±1.93 88.15±0.85 19.10±1.56 74.50±1.27 13.78±0.84 52.97±1.05

TRAF (Ours) 86.95±0.81 98.92±0.13 59.58±1.02 89.65±0.35 20.53±1.74 75.00±0.88 14.37±1.05 51.91±1.72

The bold values denote the best performance

Table 6 Results of ACC (%)
[↑] evaluated on all tasks after
finishing learning all tasks on
the setting of Task-Free in
online continual learning. 2
Split, 5 Split, 10 Split, and 20
Split divide all 100 classes of
CIRAR-100 into 2, 5, 10, and 20
splits, respectively

Method 2 Splits 5 Splits 10 Splits 20 Splits

DER’ 10.99±0.25 13.91±0.12 16.23±0.09 17.09±0.25

FOSTER 12.54±0.51 13.05±0.37 10.24±1.66 7.60±0.71

TRAF (Ours) 26.02±0.81 22.66±1.49 22.93±0.57 20.53±0.81

The bold values denote the best performance
The classes of each task are disjoint. The memory size is 1000. [↑] Higher is better

Table 7 Results of ACC (%) and FT (%)

Method 5-Split CIFAR-10 5-Split CIFAR-100

ACC [↑] FT [↓] ACC [↑] FT [↓]
RM 65.88±1.80 31.97±4.37 21.55±0.60 17.40±0.84

CCS 66.06±0.99 30.76±5.75 22.36±0.43 10.38±0.15

The bold values denote the best performance
The experiments run three times. The memory size for Split CIFAR-10
and Split CIFAR-100 are 500 and 1000, respectively. 5-Split CIFAR-
10 and 5-Split CIFAR-100 divide the total classes of CIFAR-10 and
CIFAR-100 into five tasks, respectively. The classes of each task are
disjoint

example, SI+TRAF could obtain higher performance on S-
MNIST (Task Free) and S-TinyImageNet (Task Aware).

Comparison with more recent works According to Table 6,
compared to DER’ (Yan et al., 2021) and FOSTER (Wang
et al., 2022a), our proposed method achieves the best per-
formance with a significant margin. Moreover, according
to Table 7, CCS can achieve better performance and lower
forgetting than rainbow memory (RM), validating the supe-
riority of CCS in selecting data.
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Table 8 Effect of each component

Module S-MNIST S-CIFAR-10 S-CIFAR-100 S-TinyImageNet

S-P I-P/D CCS DKD ACC[↑] FT[↓] ACC[↑] FT[↓] ACC[↑] FT[↓] ACC[↑] FT[↓]
� 79.70 23.64 47.92 41.59 12.98 57.95 12.28 39.27

� � 81.67 21.36 56.08 29.36 19.77 48.86 13.08 39.06

� � � 82.96 19.58 57.26 27.15 20.08 48.34 13.96 38.81

� � � � 86.95 14.57 59.58 23.95 20.53 48.05 14.37 38.11

The bold values denote the best performance
The experiments are average results of five runs on the setting of Task-Free. “I-P/D” denotes intra-process without DKD

Table 9 Ablation studies for
t-test

S-MNIST S-CIFAR-10 S-CIFAR-100 S-TinyImageNet
ACC[↑] FT[↓] ACC[↑] FT[↓] ACC[↑] FT[↓] ACC[↑] FT[↓]

t-test 79.07 24.66 43.78 46.55 16.38 53.54 12.66 40.23

Ours 81.67 21.36 56.08 29.36 19.77 48.86 13.08 39.06

The bold values denote the best performance
The experiments run five times

Fig. 5 The effect of β and λ

Fig. 6 The effect of εfre and εccs in trust-region adaptive frequency

5.3 Ablation Study and Analysis

Effect of each component We show the effect of each com-
ponent. According to Table 8, both adding I-P and CCS
could obtain higher ACCs and lower FTs. Especially, the
ACC of adding I-P is 8.16% higher and the FT is 12.23%
lower than S-P on the S-CIFAR-10, indicating the effective-
ness of trust-region adaptive frequency. Similarly, adding the
component of confidence-based coreset selection can achieve
better stability-plasticity trade-off and less forgetting on all
benchmarks. For example, on S-CIFAR-10, the improvement
of adding CCS is 1.16% and 2.21% for accuracy and forget-
ting, respectively. Moreover, combing all components can
further improve the performance and decrease forgetting.
Effect of β and λ Fig. 5 shows that both too large a value
or too small a value of the balance factor β result in poor
performance. If β is too large, the model will pay too much
attention to preventing forgetting, resulting in unsatisfactory
learning of the current task. However, if β is too small, the
model could not retain the past knowledge well, resulting
in catastrophic forgetting. Similarly, too large or too small a

value of the distillation factorλwill also result in an improper
balance between the learning of coreset and knowledge dis-
tillation, leading to worse stability-plasticity trade-off.
The effect of εfre and εccs As shown in Fig. 6, when εfre is
close to zero, the interval is almost invmin, then the intra-
process will be performed frequently at the beginning of
learning of each task, where the data in coreset are most
from old tasks, leading to worse performance. Or if εfre is
large, the interval is almost invmax and the frequency is low.
Then the model could not exploit the advantage of intra-
process. Therefore, εfre needs to be proper to achieve better
performance. We also explore the effect of εccs in Fig. 6.
According to Fig. 6, when εccs = 1.0, the model randomly
selects data from the current batch. The selection strategy
degenerates into reservoir, and the performance is worse.
However, when εccs = 0.0, the model selects the examples
with higher confidence scores all the time, the performance
is also unsatisfactory because the confidence scores are not
reliable when the model does not learn well.
Comparisonwith t-test Table 9 show the results of using t-test
rule in Eq. (3). The experiments run five times. According to
Table 9, we could find that using the average score is better
than the t-test, validating the superiority of using the proposed
rule.
The result of combining into one loss Table 10 shows the
results of the baseline (OneLoss) that combines the two pro-
cesses into one loss and optimizes it at every iteration. The
results show that our method performs better than OneLoss,
validating the essential of alternating between standard-
process and intra-process.
Ablation studies on rules The results in Table 11 show that
using the average score is better than all other strategies,
validating the reasonability of using the average operation.
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Table 10 Results of ACC (%) evaluated on all tasks after finishing learning all tasks. Higher is better

Method S-MNIST S-CIFAR-10 S-CIFAR-100 S-TinyImageNet
T-Free T-Aware T-Free T-Aware T-Free T-Aware T-Free T-Aware

OneLoss 77.83±1.79 98.50±0.17 36.53±2.43 86.20±2.42 13.59±1.46 71.79±0.55 13.00±0.23 49.31±1.36

Ours 86.95±0.81 98.92±0.13 59.58±1.02 89.65±0.35 20.53±1.74 75.00±0.88 14.37±1.05 51.91±1.72

The bold values denote the best performance

Table 11 Ablation studies on
rules

S-MNIST S-CIFAR-10 S-CIFAR-100 S-TinyImageNet
ACC[↑] FT[↓] ACC[↑] FT[↓] ACC[↑] FT[↓] ACC[↑] FT[↓]

εfre Avg/std 80.70 22.57 52.51 36.03 18.70 49.91 12.66 39.29

Std. dev 80.45 22.91 55.23 30.41 18.18 50.32 12.53 40.54

Random 80.68 22.52 49.43 37.86 17.93 51.15 12.53 40.54

Ours 81.67 21.36 56.08 29.36 19.77 48.86 13.08 39.06

εmem Avg/std 81.09 22.12 50.08 37.09 19.00 48.47 11.05 42.79

Std. dev 79.73 23.81 52.65 30.56 18.79 49.11 11.38 42.10

Random 79.57 23.91 53.60 31.32 19.15 48.48 13.78 39.76

Ours 82.96 19.58 57.26 27.15 20.08 48.34 13.96 38.81

The bold values denote the best performance
[↑] Higher is better and [↓] lower is better

Fig. 7 The data comparison of selecting by random strategy and
Confidence-based Coreset Selection (CCS)

5.4 Selected Data

Figure7 shows the comparison of randomly selected data
and the data chosen by the proposed confidence-based core-
set selection. We could find that the data selected by CSS
are bolder and easier to distinguish the true class, i.e., more
representative, validating the effectiveness of our selection
strategy.

5.5 Running Time

Figure8 shows the comparison of running time. The device is
a single Nvidia Tesla V100 (16GB) GPU. The dataset is the
Split CIFAR-100, and the results are the average results over
five runs. According to Fig. 8, since our proposed method
alternates the intra-process and standard-process, the running
time is marginally larger than some baselines. However, we
can find that the running time of the proposed method is also
lower than some methods, e.g., GSS.

Fig. 8 Comparison of running time (s). The device is a single Nvidia
Tesla V100 (16GB) GPU. The dataset is the Split CIFAR-100 and the
results are the average results over five runs. For a better comparison,
we only show the range between [0, 800]

Fig. 9 The changes of invk during training. The dataset is Split CIFAR-
100. The smaller invk , the higher the frequency of intra-process is

5.6 The Changes of invk During Training

Figure9 shows how the frequency invk involves overtime.
The larger invk , the higher the frequency of intra-process is.
Since the batch size is 10 and the datasize of one task is 2500.
Therefore, new tasks arrive every 250 iterations. According
toFig. 9,we couldfind that invk would increase the frequency
at the beginning of each task. And at the later stage of training
of each task, the coreset store more data of the current task
and as shown in Fig. 3, the coreset becomes more balanced.
Therefore, invk decreases, i.e., the frequency of intra-process
increases. The result shows that the frequency of the intra-
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process can be adjusted dynamically based on the learning
stage, validating the effect of our method.

6 Conclusion

In this paper, we aim to relieve the stability-plasticity
dilemma for continual learning, constraining that the data
arrives in an online stream. We propose a new online con-
tinual learning approach, Trust-Region Adaptive Frequency
(TRAF), which alternates between standard-process and
intra-process updates in an adaptive frequency. Moreover,
TRAFalso retains useful knowledge throughdark knowledge
distillation and stores representative data basedon confidence
scores. Extensive experimental results validate the effective-
ness of the proposed method on several benchmarks. For
limitation, the proposed method is tailed for the online set-
ting and may not show excellence in other continual learning
settings, e.g., the offline setting. We would like to explore
more realistic and challenging scenarios and more analyti-
cal analysis in the future. Moreover, studying other continual
learning methods, e.g., regularization-based methods, in the
online setting is also an interesting direction.
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