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A B S T R A C T

The inertial measurement unit (IMU) preintegration approach nowadays is widely used in various
robotic applications. In this article, we revisit the preintegration theory and propose a novel
interpretation to understand it from a nonlinear observer perspective, specifically the parameter
estimation-based observer (PEBO). We demonstrate that the preintegration approach can be viewed as
recursive implementation of PEBO in moving horizons, and that the two approaches are equivalent in
the case of perfect measurements. We then discuss how these findings can be used to tackle practical
challenges in estimation problems. As byproducts, our results lead to a novel hybrid sampled-data
observer design and an approach to address statistical optimality for PEBO in presence of noise.

1. Introduction
State estimation and perception are fundamentally im-

portant for autonomous systems [4]. Initially, filtering ap-
proaches dominated the field of online state estimation
due to the limitation of computational capacity [6, 11]. In
recent years full smoothing approaches which are based
on nonlinear batch optimisation have gained popularity in
numerous localisation problems, since they provide esti-
mates with high accuracy [25]. However, the optimisation-
based estimation framework is computationally demanding.
This issue is currently becoming more urgent than ever as
we have witnessed the trend of utilisation of monocular
cameras with IMUs – known as the monocular visual-
inertial system (VINS) – in real-world robotic systems.
The VINS is an asynchronous sampled system, with IMUs
providing measurements at a high rate. As a result, there is
the need to calculate the “standard” inertial integration from
initial conditions between two camera frames, which thus
makes it a daunting task to solve in real time.

In [18], Lupton and Sukkarieh propose the IMU preinte-
gration approach to address the above-mentioned computa-
tional challenges. It allows pre-processing of the high-rate
data from IMU to obtain low-rate pseudo measurements,
in which initial conditions and the preintegrated quantities
are separated, thus reducing on-line computational burden
significantly. Later on, the preintegration approach was
extended to kinematic models living on nonlinear manifolds
[13], and now is gradually becoming a popular result in the
robotics community. More recently, it has been improved
and elaborated from several different perspectives, e.g.,
analytical solutions for graph optimisation [12], approxi-
mation via Gaussian process [16], and generalisation on
groups [5], just to name a few. Since its introduction, the
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preintegration approach has been widely applied in various
robotic systems, see e.g. [8, 14, 22].

In this paper we prove that the preintegration approach
can be derived following the observer theory for nonlinear
systems, in particular the parameter estimation-based ob-
server (PEBO). It is a novel kind of constructive observer
technique recently proposed by Ortega et al. in [21] and later
elaborated in [20], in which state observation is translated
into an on-line parameter identification problem; see [29]
for a geometric interpretation. Recently, we have extended
the PEBO methodology from Euclidean space to marix Lie
groups, which has been proven instrumental in solving sev-
eral open problems in observer design for robotic systems
[27, 28, 30].

Although the approaches of preintegration and PEBO
have been pursued in parallel in different communities, it
is interesting and generally important to elucidate the con-
nections between these two frameworks. By bridging these
distinct bodies of research, this paper aims to unveil their
relationship and present the following main contributions.

1) We revisit the preintegration theory and provide a
nonlinear observer interpretation to it. Namely, the
preintegrated signals are exactly the dynamic ex-
tended variables (i.e., fundamental matrices) in PEBO
but implemented in a moving horizon. Under some
mild assumptions, we establish the equivalence be-
tween the preintegration and PEBO approaches.

2) We show the practical utility of the resulting equiv-
alence in addressing several practical challenges en-
countered in state estimation problems. In particular,
it provides a novel solution to design sampled-data
observers for continuous-time dynamical systems and
enables the attainment of statistical optimality in
PEBO in the presence of noisy measurements.

The remainder of the paper is organised as follows. In
Section 2 we consider the dynamical models in Euclidean
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space as an illustrative example to recall the preintegration
and PEBO approaches. It is followed by some preliminary
results about the connections between two approaches in
Euclidean space. In Section 3, we present our main results
on the manifold SO(3)× Rn, which is the state space con-
sidered in numerous robotic and navigation-related prob-
lems, and also the original motivation of IMU preintegra-
tion. Then, we discuss some applications of the main claim
in Section 4. The paper is wrapped up by some concluding
remarks in Section 5.

Notation: For a given variable or signal x, sometimes
we may simply write x(t) as xt, and the dependency of
signals on t is omitted for brevity when clear. We use
x(t−1 ) to denote the value of x just before t1, i.e. x(t−1 ) :=
lims>0,s→0 x(t1 − s). We use |x| to represent the standard
Euclidean norm of a vector. SO(3) represents the special
orthogonal group, which is defined as SO(3) = {R ∈
R3×3|R⊤R = I3, det(R) = 1}. The operator (·)× is
defined such that a×b := a × b for two vectors a, b ∈ Rn.
For a variable y, we use ȳ to represent its noisy measurement
from sensors. λmax{A} denotes the largest eigenvalue of a
symmetric matrix A ∈ Rn×n.

2. Preliminary Results in Euclidean Space
We start with the deterministic systems with states living

in Euclidean space to introduce our basic idea. Its extension
to the systems on manifolds, which is tailored for pose
estimation of rigid bodies, will be presented in the next
section.

2.1. Problem Set
In many engineering problems, there is a need to esti-

mate the unknown internal state x ∈ X ⊂ Rn for the linear
time-varying (LTV) dynamical system

ẋ = Atx+Btu

y = Ctx+Dtu
(1)

with input u ∈ Rm and the output y ∈ Rp, and we usually
consider the state space X as Rn. Since sensor noise is
unavoidable in practice, the measured signals of u and y
satisfy

ū = u+ ϵu, ȳ = y + ϵy, (2)

in which ϵu ∈ Rm and ϵy ∈ Rp represent measure-
ment noise, usually modelled as zero-mean white-noise
processes. This estimation problem has been well addressed
by the Kalman filter and the full-information estimation
approach (a.k.a. batch optimisation).

In some applications, despite admitting continuous-time
models, we are concerned with estimation of the state x
at some discrete instants {tk}k∈N. This is because mul-
tiple sensors provide information with different rates –
sometimes even having obvious time-scale separation. For
example, in the problem of visual inertial navigation (VIN)
for robotics, the IMU provides data at a very high rate, and
it is reasonable to roughly view inertial measurements as

some continuous-time signals. In contrast, it is well-known
that image processing is relatively computationally heavy,
and thus the camera provides data at a low rate. As a result,
if the estimation algorithm is being processed at the same
rate as the IMU, then it is usually not tractable on-line.

In this paper, we make the following assumption. This
scenario exists in many practical problems, particularly in
robotic systems.

Assumption 1. The input ū is available as a continuous-
time signal, and the output ȳ is measured at some discrete
instances {tk}k∈N.

The main results can be extended straightforwardly to
discrete-time systems with multi-rate sampled data (i.e.
high-frequency input ū and low-rate output ȳ), and we do
not discuss it in this paper.

2.2. Preintegration in Euclidean Space
To address the state estimation of x under Assumption

1, Lupton and Sukkarieh proposed in [18] the preintegration
approach to generate pseudo-measurements to improve on-
line efficiency. Let us recall its basic idea with the LTV
model (1) as follows.

Proposition 1. [5] Consider the LTV system (1). Given two
instants tk < tk+1, there exist a matrix Fk and a vector vk
such that the state satisfies

x(tk+1) = Fkx(tk) + vk. (3)

for all x(tk) ∈ Rn. □

Its proof is available in [5]. We underscore that the
matrices Fk and vk are independent of the state x, which
are accessible signals and uniquely determined by the mea-
surable signals At, Bt and ut. Hence, we call Fk and vk as
preintegration, and they can be calculated as

Fk = F (t−k+1), vk = v(t−k+1),

which is generated by the dynamics

Ḟ = AtF, F (t+k ) = In

v̇ = Atv +Btu, v(t+k ) = 0n

}
Preintegration (4)

Note that when implementing preintegration we only have
the measurable signal ȳ rather than the perfect output y, and
thus the second preintegration is implemented as

˙̄v = Atv̄ +Btū, v̄(t+k ) = 0n, (5)

where v̄ may be viewed as the noisy signal of v. They can
be written as the Picard integral for t ∈ (tk, tk+1)

Ft =

∫ t

tk

AsFsds, v̄t =

∫ t

tk

(
Asvs +Bsūs

)
ds,

and implemented numerically via discretization.
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Now, using the preintegration we obtain the equation
(3) that is a new LTV discrete-time dynamical model with
known Fk and vk, and the (nominal) output function

y(tk) = C(tk)x(tk) +D(tk)u(tk). (6)

Supposed the current moment is tN , in the full-information
estimation (FIE) approach we need to estimate {x(tk)}k∈ℓ

with ℓ := {0, . . . , N}. The simplest case is to consider
solving the optimisation

(x̂, ŵ) = argmin
x,w

Jx(x) + Jw(w)

s.t. x̂(tk+1)− Fkx̂(tk)− v̄k = wk

(7)

with the cost functions1

Jx(x) =

N−1∑
k=0

γk
∣∣ȳ(tk)− C(tk)x(tk)−D(tk)ū(tk)

∣∣2
Jw(w) =

N−1∑
k=0

γ′
k|wk|2

(8)
and the definitions

x := col(x0, . . . , xN ), x̂ := col(x̂0, . . . , x̂N )

w := col(w0, . . . , wN ).

The coefficients γk, γ
′
k > 0 may be involved to weight

different instances, and two widely-used selections are:

(i) using the norm inverse of some covariance for the
consideration of noise; and

(ii) selecting γk = λN−k with λ ∈ (0, 1) to represent
forgetting factors in on-line deterministic estimators.

The above summary of preintegration is presented as a
high-level framework, which may be implemented in dif-
ferent ways. For instance, the optimisation problem can be
solved for each instance (a.k.a. full-information estimation,
FIE), in a moving-horizon, or incrementally as done in
LTV Kalman-Bucy filters at the discrete instants {tk} in a
lower sampling rate; the optimisation may also be replaced
by computing the optimal maximum a posteriori (MAP)
estimate, and combined with factor graphs.

To summarise, the basic idea is to use the preintegration
(3) to transform the continuous-time model (1) into the
discrete model (3) with low-rate measurements, and then
complete the estimation task.2 Note that a salient feature of
(3) is the separation between the preintegrated signals F, v
and the initial condition x(tk), which is capable of reducing
significant on-line computational burden in the nonlinear
context.

1We assume that y is measured from t0 without loss of generality.
2To distinguish from the other estimates in the remainder of the paper,

we write the estimate from the preintegration approach as x̂PI.

State Estimation via Preintegration:

- preintegration: (4)

- estimate: x̂PI

- optimisation: (7)-(8)

Remark 1. The computational burden of estimation of the
original continuous-time system (1) is not prohibitive, due
to linearity in the model. However, when considering the
visual navigation problem on manifolds, high nonlinearity
and non-convexity limit the performance and complicate
the analysis of both full-information estimation and filtering
approaches.

2.3. Parameter Estimation-Based Observer
Recently, a new constructive nonlinear observer tech-

nique, namely PEBO, has been developed for a class of
state-affine systems [20, 21]. Its basic idea is translating
state estimation into the one of some constant variables and
then identifying them online. This provides an efficient way
to simplify observer design.

Instead of introducing the approach comprehensively,
we limit ourselves to the LTV system (1) to show the basic
idea of PEBO. Following [20], the first step is to design the
dynamic extension

ξ̇ = Atξ +Btu, ξ(t0) = ξ0, (9)

with ξ ∈ Rn, in which the initial condition ξ0 is selected by
users thus being known. We underline here that the PEBO
approach is developed for the deterministic system with the
perfect measurement u, and the robustness to various uncer-
tainties can be addressed from standard Lyapunov analysis.
In this subsection, we consider the case with access to the
perfect u, and its extension to with the noisy measurement
ū will be discussed in Section 4.

If we define the error e := x − ξ, it yields the error
dynamics

ė = Ate.

As shown in linear systems theory [23], the solution of e is
given by e(t) = Φ(t, 0)e(0), in which Φ(t, s) is the state
transition matrix of At from s to t. Though it is generally
impossible to write down the function Φ(t, s) analytically,
it can be calculated by implementing the dynamics of
fundamental matrix Ω on-line

Ω̇ = AtΩ, Ω(t0) = In

Φ(t, s) = Ω(t)Ω(s)−1.
(10)

Then, we have the new parameterisation to the state x as
xt = ξt − Ωtξ0 + Ωtθ with the unknown vector θ := x(0).
It means that once the parameter θ have been determined as
θ̂, one has the state estimation as

x̂t = ξt − Ωtξ0 +Ωtθ̂. (11)
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By plugging the new parameterization of x into (1), we have
the linear regression model with respect to θ as follows

Yt = CtΩtθ (12)

with the variable Yt := yt−Ctξt+CtΩtξ0−Dtūt. Its noisy
“measurement” is defined accordingly as

Ȳt := ȳt − Ctξt + CtΩtξ0 −Dtūt. (13)

The remainder is to estimate θ from the regressor (12) on-
line. With measurements collected at {tk}k∈N, the simplest
case at the moment tN is to solve the optimisation

θ̂ := argmin
θ∈Rn

N−1∑
k=0

γk

∣∣∣Ȳ (tk)− C(tk)Ω(tk)θ
∣∣∣2, (14)

with some coefficients γk > 0.
Hence, the PEBO approach can be summarised below.

Parameter Estimation-Based Observer:

- dynamics: (9), (10)

- estimate (observer output): x̂PEBO from (11)

- optimisation: (14)

Remark 2. For batch optimisation or filtering approaches,
it is necessary to impose some “informative” excitation
or observability assumptions on the model (1) along the
trajectory. There are some observer design tools requiring
observability/detectability uniformly along all feasible so-
lutions, e.g., [6, 7, 15, 31]; however, this is not the case
in various robotic localisation and navigation problems. It
means that the optimisation (14) may have multiple or even
infinite solutions under an insufficiently excited trajectory.

2.4. The PEBO Viewpoint to Preintegration
In this section, we provide our new interpretation to the

preintegration approach from a nonlinear observer perspec-
tive. For states living in Euclidean space with perfect or
noise-free measurement of u, we summarise our findings as
follows.

Proposition 2. Consider the LTV system (1) with ϵu = 0.
State estimation from the preintegration approach using (4)-
(8) exactly coincides with that from the PEBO (9)-(14)
using the zero initial condition ξ0 = 0n, in the following
senses.

a) The preintegration signal F and the fundamental
matrix Ω satisfy

Ω(tk) =

k−1∏
i=0

Fi := Fk−1 . . . F0, ∀k ∈ N

Ω(t) = F (t)Ω(tk), t ∈ (tk, tk+1).

(15)

b) The preintegration signal v and the dynamic extension
variable ξ verify

vt = ξt − ΩtΩ(tk)
−1ξ(tk), t ∈ (tk, tk+1). (16)

c) If the cost function Jx + Jw in (8) admits a unique
global minimum, the PEBO estimate equals to the one
from preintegration, i.e., x̂PEBO = x̂PI.

Proof. First, we note that the fundamental matrix Ω shares
the same dynamics as the one of the matrix F in preinte-
gration. The only difference is that the latter resets its initial
values in instances {t+k }k∈N. From the semigroup property
of the state transition matrix Φ(t, s), as well as the resetting
lims→t−k

F (s) = In, we have

Φ(t, tk) = F (t), t ∈ (tk, tk+1).

On the other hand, for t ∈ (tk, tk+1) we have

Ω(t) = Φ(t, t0)Ω0

= Φ(t, tk)Φ(tk, tk−1) · · ·Φ(t1, t0)In

= F (t)

k−1∏
i=0

Fi,

which verifies the first claim.
For the case ϵu = 0, we have v(t) = v̄(t) for all t ≥ 0.

By comparing the dynamics of ξ and v, we have

˙︷ ︷
v − ξ = At(v − ξ),

thus

vt − ξt = Φ(t, s)(vs − ξs), ∀tk+1 > t ≥ s > tk.

Selecting s = tk, and resetting as done in preintegration
lims→t−k

v(s) = 0n, then for t ∈ (tk, tk+1) we have

vt = ξt − Φ(t, tk)ξ(tk),

which verifies the item b).
At the end, let us show the equivalence between the

optimisation problems (7) and (14). For the case of ϵu =
0 (with perfect measurement of u), we have x(tk+1) −
Fkx(tk)− vk = 0, and thus

Jx(x) = Jx(x) + Jw(0) ≤ Jx(x̂) + Jw(ŵ). (17)

Since we have assumed the unique minimum of the cost
function, the optimisation in the preintegration approach
becomes

x̂ = argmin
x

Jx(x)

with the hard constraint

x̂(tk+1)− Fkx̂(tk)− vk = 0, k = 0, . . . , N − 1. (18)
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Invoking the properties a)-b), the above optimisation can
be written as

x̂ = argmin
x∈R(N+1)n

N−1∑
k=0

γk
∣∣ȳ(tk)− C(tk)x(tk)−D(tk)ū(tk)

∣∣2
= argmin

x∈R(N+1)n

N−1∑
k=0

γk
∣∣ȳtk − Ctk

(
ξtk +Ωtk(x0 − ξ0)

)
−Dtkutk |

2

= argmin
x∈R(N+1)n

N−1∑
k=0

γk

∣∣∣Ȳ (tk)− C(tk)Ω(tk)x0

∣∣∣2,
(19)

where in the last equation we have used the hard constraints
(18). Let us recursively solve (18) – combining the proper-
ties a) and b) – we have the new constraint

x̂(tk) = ξ(tk) + Ω(tk)x̂0, (20)

which has been plugged into the second equation in (19).
It is clear that the cost function in (19) only contains the

decision variable x̂0, which is the first n-elements in x̂, and
the solution to the optimisation (7) is thus given by

x̂0 = argmin
x0∈Rn

N−1∑
k=0

γk

∣∣∣Ȳ (tk)− C(tk)Ω(tk)x0

∣∣∣2
together with (20), and note that Ω and ξ are available
signals (i.e. the dynamic extension variables in the PEBO).
Obviously, this exactly coincides with the solution x̂PEBO

for the case with zero initial condition ξ0 for the dynamic
extension. We complete the proof for the term c). □

The above result establishes the connection between
preintegration and PEBO for the LTV dynamical model (1)
with the ideal measurements of u.

3. IMU Preintegration and PEBO on
Manifolds
In this section, we extend the results in Section 2 to

the extended pose estimation problem on the manifold
SO(3) × Rn, which was the original motivation to study
the preintegration approach.

3.1. IMU Preintegration
Let us recall the approach of IMU preintegration, which

was proposed in [18] and elaborated on the manifold in [13].
The motion of rigid body can be charaterised by the

kinematic model
Ṙ = Rω×
Iv̇ = Ia+ g
Iṗ = Iv

(21)

with the attitude R ∈ SO(3), the sensor velocity Iv ∈ R3,
the “apparent” acceleration Ia ∈ R3 in the inertial frame
{I}, and the rigid-body position Ip ∈ R3, which is briefly
written as p. The gravity vector is given by g = [0, 0, 9.8]⊤

m/s2. See [8] for a concise representation using the matrix
group SE2(3). The IMU provides discrete-time samples of
the biased acceleration and rotational velocity in the body-
fixed frame {B}, i.e.,

Bā = Ba+ ba + ϵa
Bω̄ = Bω + bω + ϵω,

in which ba and bω represent the sensor biases3, and ϵa and
ϵω are measurement noise.

3.1.1. Standard inertial integration
If the “initial” condition at t1 is given, then the states

(R, Iv, Iq) can be uniquely obtained (for the noise-free
case) as the Picard integral

R(t2) = R(t1) +

∫ t2

t1

R(s)
[
Bω̄(s)− bω

]
×ds

Iv(t2) =
Iv(t1) +

∫ t2

t1

R(s)
(
Bā(s)− ba

)
ds+∆tg (22)

p(t2) = p(t1) + ∆t
Iv(t1) +

1

2
∆2

tg +

∫∫ t2

t1

R(s)
(
Bā(s)− ba

)
ds2

with
∆t := t2 − t1.

If ∆t is sufficiently small, then the first integral equation in
(22) can be approximated by [13]

R(t1) ≈ R(t1)Exp
(∫ t2

t1

(Bω̄(s)− bω)ds

)
.

Note that for a relatively large ∆t, this does not hold.
As is shown in [18, Sec. II], the above standard inertial

integration equations have strong nonlinearity and non-
convexity with respect to the unknown initial conditions,
mainly stemmed from the attitude state R. Between any
two key frames, it requires to repeat the above “standard”
integration, which yields heavy computational burden for
real-time implementation.

3.1.2. Inertial preintegration
It is well known that IMUs are sampled with a much

higher rates than other sensors for navigation or localisation.
In [18], it is suggested to integrate the inertial observation
between required poses in the body-fixed frame of the pre-
vious pose, and then we may view the inertial observations
as a single observation in the filter. To be precise, we may
define rotation matrix ∆Rt

t1 related to the attitude at t1, i.e.

R(t) = R(t1)∆Rt
t1 ,

with the state at t1 being ∆Rt1
t1 = I3. In general, the

function ∆Rt
t1 does not have an analytic form, but the

relative rotation matrix ∆Rt
t1 can be approximated by

∆Rt
t1 ≈ Exp

(∫ t

t1

(
Bω̄(s)− bω

)
ds

)
(23)

3They are slowly time-varying, but can be modelled as constants.
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for |t − t1| sufficiently small. The inertial integration (22)
can be equivalently written as

R(tk+1) = R(tk)∆R
tk+1

tk

Iv(tk+1) = Iv(tk) +R(tk)∆v
tk+1

tk
+∆tg (24)

p(tk+1) = p(tk) + ∆t
Iv(tk) +

1

2
∆2

t g +R(tk)∆p
tk+1

tk

with the functions for t ≥ tk

∆vttk =

∫ t

tk

∆Rs
tk

(
Bā(s)− ba

)
ds

∆pttk =

∫∫ t

tk

∆Rs
tk

(
Bā(s)− ba

)
ds2.

(IMU preintegration)

(25)
Note that the terms ∆v

tk+1

tk
and ∆p

tk+1

tk
are defined in the

body-fixed frame, which can be calculated perfectly – by
preintegrating IMU measurements – without the access to
the initial conditions (Rt1 ,

Ivt1 ,
Ipt1). This is the original

motivation to study IMU preintegration.

3.1.3. Estimation via IMU preintegration
The IMU preintegration has been widely used in many

robotic applications, e.g., visual inertial SLAM and naviga-
tion. In these problems, there are numerous feature points,
whose coordinates pi ∈ R3 (i = 1, . . . , np) are constant and
unknown, i.e.,

ṗi = 0, i = 1, . . . , np.

Each feature is captured by the camera, thus satisfying some
algebraic equations

y = h(x) + ϵy (26)

with y = Rny and the noise ϵy , which is the output function
(a.k.a. observation models) in the observer theory. We have
defined the extended state variable as4

x = (R, Iv, Ip, p1, . . . , pnp
) ∈ X

with the manifold X := SO(3)×R3(2+np). At the instance
tN , we would like to estimate the state

x(tN ) := (x(t0), x(t1), . . . , x(tN )).

Similar to the case in Euclidean space, we may formulate it
as the batch optimisation to estimate the state

x̂ = argmin
x∈XN

JI(x) (27)

with

JI :=

N−1∑
k=0

[
J (k) + JR(k) + Jv(k) + Jp(k)

]
(28)

4We assume that sensors have been well calibrated to simplify the
presentation. In more general cases, we may take all biases into the variable
x and estimate them on-line simultaneously.

and

J (k) =
∣∣y(tk)− h(x(tk))

∣∣2
Σ−1

y (k)
(29)

JR(k) =
∣∣∣R(tk+1)−R(tk)∆R

tk+1

tk

∣∣∣2
Σ−1

1 (k)

Jv(k) =
∣∣∣Iv(tk) +R(tk)∆v

tk+1

tk
+∆tg − Iv(tk+1)

∣∣∣2
Σ−1

2 (k)

Jp(k) =
∣∣∣ptk +∆t

Ivtk +
1

2
∆2

t g +Rtk∆p
tk+1

tk
− ptk+1

∣∣∣2
Σ−1

3

and Σi ≻ 0 (i = 1, 2, 3) are some covariances to charac-
terise the uncertainty in the model (24). If the stochastic
properties of ϵa and ϵw are known in advance, we may use
some on-line propagation to approximate Σi(k). See [13, 8]
for example, and we omit its details.

Estimation via IMU Preintegration on Manifolds:

- preintegration: (23), (25)

- estimate: x̂PI

- optimisation: (27)-(28)

3.2. Parameter Estimation-Based Observer on
Manifolds

In this section, we briefly summarise the main results in
our previous papers [27, 28, 30] about the PEBO design on
manifolds.

Consider the kinematics (21) with the measurable output
in (26). In [27], the observer design is conducted in the
body-fixed frame with the dynamics given by

Ṙ = Rω×
Bv̇ = − ω×

Bv + Bā− ba +R⊤g
Bṗ = − ω×

Bp− Bv,

where Bp is defined as the origin coordinate of {I} in the
body-fixed frame, i.e.

Bp := R⊤Ip.

In the PEBO approach, we design the dynamic extension

Q̇ = Qω×

ξ̇ = A(ω,Q)ξ +B(Bā, ba)

Ω̇ = A(ω,Q)Ω

Ω(t0) = I,

(30)

with

A(ω,Q) :=

−ω× 0 Q⊤

−I −ω× 0
0 0 0

 ,

B(Bā, ba) :=

Bā− ba
0
0

 .
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The key observation in [27] is that the system state can be
linearly parameterised as

Rt = QcQ
⊤
tBv

Bp
gc

 = ξt − Ωtξ0 +Ωtθ
(31)

with the unknown constant matrix Qc ∈ SO(3), and the
vector

θ := col(Bv(0), Bp(0), gc).

Similar to the case in Euclidean space, we only need to
determine (Qc, θ) and p := (p1, . . . , pnp

), whose estimates
are written as (Q̂c, θ̂, p̂). Then, the estimates of x ∈ X is
given by

x̂t = (R̂, R̂Bv̂, R̂Bp̂, p̂). (32)

with
R̂ = Q̂cQt[

Bv̂, Bp̂, ĝc
]⊤

= ξt − Ωtξ0 +Ωtθ̂.
(33)

For the measurements collected at instances {tk}, the
unknown (Q̂c, θ̂, p̂) can be obtained from the following
optimisation:

(Q̂c, θ̂, p̂) = argmin
Qc∈SO(3)

θ∈R9,p∈R3np

N−1∑
k=0

J (k)

s.t. ĝc = Q̂⊤
c g

(34)

with J defined in (29). The main result of PEBO on
manifolds is summarised as follows.

PEBO on manifolds:

- dynamics: (30)

- estimate (observer output): x̂PEBO from (32)-(33)

- optimisation: (34)

3.3. The PEBO Viewpoint to IMU Preintegration
We are in the position to present the main result of the

paper. Similarly to the case in Euclidean space, we establish
the connection between IMU preintegration and PEBO on
manifolds as follows.

Proposition 3. Consider the kinematics (21) with constant
pi (i = 1, . . . , np). The estimation of the state of the
IMU preintegration (23)-(28) converges to the estimate of
the PEBO (30)-(34) as minj=1,2,3(λmax{Σj}) → 0, in the
following sense.

a) The preintegration of ∆Rt
s and the extended state Q

satisfy

Q(t0)
⊤Q(tk) =

k−1∏
i=0

′∆R
tk+1

tk
:= ∆Rt1

t0 . . .∆Rtk
tk−1

(35)
for all k ∈ N.

b) If the cost function J has a global minimum, then the
estimates from the PEBO and the IMU preintegration
satisfy

x̂PI → x̂PEBO as λmax{Σj} → 0 (j = 1, 2, 3).

Proof. The property a) is straightforward to verify because

∆Rt1
t0 . . .∆Rtk

tk−1
= ∆Rtk

t0

and
d

dt
(RQ⊤) = 0.

When the largest eigenvalue of Σj converges to zero, the last
three terms in (28) make (24) as the hard constraints. For
the fact b), we need to show that the constraint (33) together
with

ĝc = Q̂⊤
c g

in PEBO yields the constraint (24) in IMU preintegration.
To see this, for a fixed (constant) estimate θ̂ and defining

η := col(Bv̂, Bp̂, ĝc)

we have

η̇ = ξ̇ − Ω̇ξ0 + Ω̇θ̂

= A(ω,Q)ξ +B(Bā, ba)−A(ω,Q)Ω(ξ0 + θ̂)

= A(ω,Q)η +B(Bā, ba).

Now, consider the coordinate transformation

η 7→ z =

z1
z2
z3

 :=

 R̂Bv̂

R̂Bp̂

Q̂cĝc

 .

In the transformed coordinate, the dynamics verifies

ż1 = R(Ba− ba) + g

ż2 = z1

ż3 = 0.

Considering the constraint in (34), we may equivalently
select the decision variable as (R̂, z1, z2, p̂), and the change
of decision variable does not affect the minimum of the cost
function J .

In the new coordinate, z1 and z2 satisfy

z1(tk+1) = z1(tk) +R(tk)∆v
tk+1

tk
+∆tg

z2(tk+1) = z2(tk) + ∆t
Iv(tk) +

1

2
∆2

t g +R(tk)∆p
tk+1

tk
.

It exactly coincides with (24). Hence, following the same
arguments in the proof of Proposition 2, we can show that
the estimates from these two approaches are exactly the
same. □
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4. Discussion and Applications
4.1. Discussions

In this section, we present some further remarks and
applications following from the connections between pre-
integration and PEBO.

Remark 3. First, let us make some comparisons between
two frameworks of PEBO and preintegration.

– The preintegration approach may be roughly viewed
as the implementation of PEBOs in a moving horizon,
i.e., the “initial moment” is recursively defined as
{tk}k∈N and then the task is to estimate the state
x(tk). In PEBO, we only need to estimate the initial
condition at t0. For the ideal case with perfect models
and measurements, these two frameworks exactly
coincide with each other, as illustrated in Proposition
2.

– In the pose estimation-related problems, the IMU
preintegration utilises the body-fixed frame for accel-
erations and velocities; in contrast, the PEBO in our
previous works [27, 28] adopts the inertial frame.

Remark 4. In IMU preintegration, it is possible to write
the state transition matrix analytically for the (Iv, Ip)-
subsystem; see (24). In PEBO, we need to calculate the state
transition matrix for the (Bv, Bp)-subsystem numerically, but
it brings two benefits:

B1: The sensor bias ba appears in the dynamics (30) in a
linear way. As shown in [27], we are able to construct
a linear regression model on the unknown bias ba
using the PEBO methodology.

B2: In some applications, we do not need the estimation
of attitude R. By applying PEBO in the body-fixed
frame, we are able to estimate (Bv, Bp,p) directly
without the information of attitude.

Remark 5. In the generalised PEBO approach [20], there
is a need to calculate the fundamental matrix Ω(t) over
time in (10). Though its dynamics is forward complete, the
variable Ω is unbounded when the matrix At is unstable.
Since Ω is part of the internal state in the observer, at
some finite time the observer would become dramatically
ill-conditioned and impossible to represent accurately in
memory. As a result, it may bring some numerical issues and
make the observer very sensitive to sorts of perturbations.
For this consideration, it is reasonable to implement a PEBO
in “moving horizons” like preintegration in order to improve
robustness.

Remark 6. When considering the uncertainty from the
input-output measurements, the estimates from the PEBO
and preintegration approaches would be different. In PEBO,
we only need to solve the optimisation problem with the
decision variable θ (equivalently x0) at a single instance;
in contrast, the hard constraint (18) does not hold in the
preintegration approach, and there are additional decision

variables {xk, wk}k∈N. For this case, their relation resem-
bles the single and multiple shootings in the direct methods
for optimal control.

Remark 7. State estimation via recursive algorithms under
Assumption 1 is known as the problem of sampled-data
(or digital) observers [19, 2]. Even for linear time-invariant
(LTI) systems, there are still several open problems to design
a sampled-data observer [24]. An useful application of the
proposed equivalence between preintegration and PEBO is
providing a novel method to design sampled-data observers.
We will present constructive details in the next subsection.

4.2. Application I: Sampled-data Observer via
Preintegration

In this section, we show that the proposed equivalence
provides a new method to design a hybrid sampled-data
observer for the LTV system (1). We summarise the results
as follows. To simplify the presentation, as well as to
obtain asymptotic stability claims, we consider the ideal
measurements (u, y) in the following proposition.

Proposition 4. Consider an observable LTV system (1).
Assume the sampled instances {tk}k∈N are selected such
that

P1: The pair (Φ(tk+1, tk), C(tk)) is (discrete-time) uni-
formly completely observable, where Φ(·, ·) is the
continuous-time state transition matrix of At defined
in (10).

P2: There exists a constant k2 ∈ N+ such that

Wq :=

k+k2∑
i=k

Ψ(i, k)QΨ⊤(i, k) ≻ δqIn (36)

for some Q ≻ 0, δq > 0 and ∀k ∈ N with Ψ(i, k)
the discrete-time state transition matrix of zk+1 =
Φ(tk+1, tk)zk.

Then, the hybrid sampled-data observer

Ḟ = AtF, F (t+k ) = In

v̇ = Atv +Btu, v(t+k ) = 0n.

Fk = F (t−k+1), vk = v(t−k+1).

 H1

x̂k+1 = Fkx̂k + vk +Kk+1ek+1

ek+1 = ytk+1
− Ctk+1

(Fkx̂k + vk)−Dtk+1
utk+1

Kk = P̂kC
⊤
k [CkP̂kC

⊤
k +R]

P̂k+1 = FkPkF
⊤
k +Q

Pk = P̂k −KkCkP̂k.


H2

(37)
with some positive definite matrices Q and R, provides a
globally asymptotically convergent estimate x̂, i.e.

lim
k→∞

|x̂k − x(tk)| = 0. (38)
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Proof. According to Propositions 1-2, the systems state x
at the instances {x(tk)}t∈N exactly satisfies the discrete
dynamical model

x(tk+1) = Fkx(tk) + vk

y(tk) = C(tk)x(tk) +D(tk)u(tk),
(39)

with the preintegration signals Fk and vk generated from the
system H1. Invoking the first equation in (15), we have

Fk = Ω(tk+1)Ω
−1(tk) = Φ(tk+1, tk).

As a consequence, the discrete-time uniform complete ob-
servablility (UCO) of the pair (Φ(tk+1, tk), C(tk)) implies
the UCO of the LTV system (39). Note that the system H2

is the standard Kalman-Bucy filter for the LTV system (39).
Together with the condition (36), we conclude the global
asymptotic convergence (38) by invoking [1, Thm. 4.1]. □

Remark 8. In the condition P1, it is equivalent to impose the
UCO of the discrete-time LTV system (39). It is relatively
straightforward to verify the UCO of the continuous-time
system (1) is a necessary condition to P1, but it is not
sufficient. Consider the constant observable pair (A0, C0),
and let A = A0, C(t) = C0 for t ∈ [2k, 2k+1) and C(t) =
0 for t ∈ [2k + 1, 2k + 2) with k ∈ N. The resulting pair
(At, Ct) guarantees the UCO of (1) but not for the system
(39) if the sampled data are collected in [2k+1, 2k+2). On
the other hand, the condition P1 is unnecessary to design
a sampled-data observer. If the observability Gramian is
positive definite only in some interval but not uniform over
time, it is still possible to design globally convergent state
observer by using MHE or some state-of-the-art recursive
designs [26, 27, 28].

Remark 9. In [2], nonlinear sampled-data observers are
classified into two categories: i) design via approximate
discrete-time models of the plant; and ii) emulation: dis-
cretisation of continuous-time observers. Clearly, the pro-
posed observer belongs to the first class, but we utilise
an exact discrete-time model rather than its approximation
because of its linearity. Indeed, the proposed design is also
applicable to nonlinear systems which can be transformed
into the affine form.

Remark 10. The proof of Proposition 4 does not rely on
the assumption of periodic sampling. That is, the proposed
sampled-data observer is also immediately applicable to the
case with asynchronous measurements, which was studied
for the linear time-invariant (LTI) systems [24]. We provide
a much simpler solution to this specific problem for LTV
systems.

4.3. Application II: Statistical Optimality in
PEBO

In this subsection, we will show that the proposed
equivalence in Sections 3-4 leads to an intuitive way to
improve the performance of PEBO in the presence of noisy
input u.

We assume that the initial condition x0 is a deterministic
variable but unknown, and model the noisy terms ϵu and ϵy
as zero-mean white noise processes (40), in which ϵu ∈ Rm

and ϵy ∈ Rp are addictive zero-mean white-noise processes,
namely5

E[ϵu,tϵ⊤u,s] = Σuδ(t− s)

E[ϵy,tϵ⊤y,s] = Σyδ(t− s).
(40)

The variables {ϵu}, {ϵy} and x0 are uncorrelated. Then, the
error e = x− ξ in PEBO for the LTV system (1) satisfies

ė = Ate+Btϵu. (41)

According to the state covariance propagation for LTV
systems [10, Ch. 4], we have

xt − ξt = Ωt(θ − ξ0) + ϵe

with the white-noise process ϵe, i.e. E[ϵe(t)ϵe(s)⊤] =
Πtδ(t− s) and Πt satisfies

Π̇t = AtΠt +ΠtA
⊤
t +BtΣuB

⊤
t , Π(0) = 0n×n, (42)

where the initial condition of Π is due to the deterministic
assumption of x0. Noting that the uncertainties from ū and
ȳ in (13), we have

Ȳ = CtΩtθ + ϵY (43)

with
ϵY(t) := ϵy −Dtϵu + Ctϵe.

Unfortunately, the variables ϵe and ϵu are not indepen-
dent, since ϵe(t) is indeed filtered from ϵu. However, for the
LTV system (1) without the feedfoward term, i.e. Dt = 0,
the variable ϵY is a white noise process

E[ϵY(t)ϵY(s)⊤] =
(
Σy + CtΠtC

⊤
t

)
δ(t− s).

Hence, we may reformulate the optimisation (14) as

θ̂ := argmin
θ∈Rn

N−1∑
k=0

∣∣∣Ȳ (tk)− C(tk)Ω(tk)θ
∣∣∣2
(Σy+CtΠtC⊤

t )−1

(44)
to obtain some statistic optimality, where Πt is generated
from (42).

Remark 11. In [20], the PEBO approach is applicable to
nonlinear systems in the form of

ẋ = f(x, u), y = h(x, u),

for which a coordinate transformation x 7→ z := ϕ(x) exists
such that the lifted dynamics is given by

ż = A(u, y)z+B(u, y), y = C(u, y)z+D(u, y). (45)

It is generally difficult to calculate covariance propagation
for nonlinear systems, but there are many works discussing
how to empirically approximate it in the literature on prein-
tegration [8, 13, 18]. The proposed connection between two
approaches, together with the state-of-the-art development
of preintegration, provides a promising way to develop
nonlinear stochastic PEBO method.

5Here, the white processes are not rigorously defined due to the δ-
covariances, with δ the delta function. A rigorous definition is based on the
stochastic differential equations [3, Sec. 7].
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5. Concluding Remarks
In this paper, we have presented a novel observer inter-

pretation to the IMU preintegration approach. Our findings
reveal an exact correspondence between the preintegrated
signals and the dynamic extended variables in PEBO that is
implemented in a moving horizon. Furthermore, we have
identified the precise conditions under which these two
approaches yield identical estimates. These results were
developed in both the Euclidean space and matrix Lie
groups. Finally, we have utilised the proposed equivalence
to design a novel sampled-data observer for LTV systems,
and to improve the performance of PEBO in the presence of
measurement noise.

These connections suggest some interesting avenues for
future research, including:

- In the preintegration and PEBO approaches, we re-
quire that the system dynamics is in (or can be
transformed into) a state-affine form (45). It would be
interesting to integrate them with contraction analysis
[17, 9], for which the so-called differential dynamics
is exactly an LTV system.

- In Section 3, we show that different coordinates are
used in the IMU preintegration and PEBO. For the
latter, we adopt the body-fixed coordinate (Bv, Bp),
and it is interesting to observe the benefit of the linear
parameterisation of bias ba. This is notable by its
absence in the inertial coordinate for preintegration
[13]. Hence, it would be of practical interest to imple-
ment IMU preintegration in the body-fixed coordinate
towards real-time bias estimation.

- It is theoretically interesting to elaborate the results in
Section 4.3 using Itô integrals toward a more rigorous
formulation.

Appendix

A. Some Definitions
Definition 1. A pair (Ak, Ck) of discrete-time systems
is uniformly completely observable if the observability
Gramian

WO[k, k1] ⪰ δoI

for some δo > 0, k1 ∈ N+ and all k ≥ 0, with

WO[k, k1] :=

k+k1∑
i=k

Ψ⊤(i, k)C⊤
k CkΨ(i, k) (46)

in which Ψ(i, k) is the state transition matrix from k to i of
the system zk+1 = Akzk.
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