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Abstract
Bacterioplankton communities govern marine productivity and biogeochemi-
cal cycling, yet drivers of bacterioplankton assembly remain unclear. Here,
we contrast the relative contribution of deterministic processes (environ-
mental factors and biotic interactions) in driving temporal dynamics of bac-
terioplankton diversity at three different oceanographic time series
locations, spanning 15� of latitude, which are each characterized by differ-
ent environmental conditions and varying degrees of seasonality. Monthly
surface samples (5.5 years) were analysed using 16S rRNA amplicon
sequencing. The high- and mid-latitude sites of Maria Island and Port Hack-
ing were characterized by high and intermediate levels of environmental
heterogeneity, respectively, with both alpha diversity (72%; 24% of total var-
iation) and beta diversity (32%; 30%) patterns within bacterioplankton
assemblages explained by day length, ammonium, and mixed layer depth.
In contrast, North Stradbroke Island, a sub-tropical location where environ-
mental conditions are less variable, interspecific interactions were of
increased importance in structuring bacterioplankton diversity (alpha: 33%;
beta: 26%) with environment only contributing 11% and 13% to predicting
diversity, respectively. Our results demonstrate that bacterioplankton diver-
sity is the result of both deterministic environmental and biotic processes
and that the importance of these different deterministic processes varies,
potential in response to environmental heterogeneity.

INTRODUCTION

Bacterial community structure influences ecosystem
function in fundamental ways across all natural

environments (Awasthi et al., 2014; Delgado-Baquerizo
et al., 2016; Loreau et al., 2001), including the ocean
(Galand et al., 2018), where microorganisms represent
the base of the food web and are the principal
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mediators of biogeochemical cycles (Azam
et al., 1983). Ecological diversity underscores commu-
nity structure; therefore, elucidating the processes that
govern bacterioplankton diversity is critical for predict-
ing marine ecosystem productivity and function. There
are two alternative perspectives for how bacterial diver-
sity assembles (Huber et al., 2020; Stegen
et al., 2013). One view is of determinism, where spe-
cies are regulated by niche processes such as environ-
mental filtering (Fuhrman et al., 2015a) stemming from
physico-chemical factors such as inorganic nutrients
availability and temperature (Hernando-Morales
et al., 2018; Ward et al., 2017), as well as biotic interac-
tions including competition, predator–prey or facultative
interactions (Friedman et al., 2017; Ho et al., 2016;
Rohwer & Thurber, 2009). The other view is one of neu-
trality, where species are considered ecologically
equivalent and therefore diversity consequently arise
from stochastic birth, death, colonization, immigration
and speciation (Evans et al., 2017; Hanson et al., 2012;
Hao et al., 2016; Hubbell, 2001; Lindström &
Östman, 2011; Zhou & Ning, 2017). The relative contri-
bution of environmental, biotic interactions and sto-
chastic processes, and how their importance changes
over space and time is currently unresolved
(Langenheder & Lindström, 2019), meaning that the
ability to interpret and predict marine bacterioplankton
diversity is restricted.

In the ocean, both environmental factors and trophic
interactions fundamentally govern bacterioplankton
diversity (Gralka et al., 2020; Nguyen et al., 2021), in
terms of both the number of co-occurring species
(alpha diversity) and the commonality of species
among environments or sampling points (beta diversity)
(Fuhrman et al., 2015b; Teeling et al., 2012). For
instance, bacterioplankton community richness in the
English channel, was highest during the winter months
and strongly predicted by day length (Gilbert
et al., 2012). Ladau et al. (2013) similarly found day
length to strongly associate with marine bacterioplank-
ton richness from temperate regions. In contrast, bac-
terioplankton community richness from the Antarctic
region was negatively correlated with seasonal
increases in chlorophyll-a (Chl-a), signalling potential
interactions with algal blooms (Luria et al., 2016). Com-
munity beta-diversity patterns have also been shown to
have environmental and biotic links. For instance,
global sampling of surface bacterioplankton from the
TARA dataset showed the strong effect of temperature
and oxygen in driving community composition
(Sunagawa et al., 2015). Surface layer (0–5 m) bacter-
ioplankton beta diversity across 10 years in the San
Pedro oceanographic time series (SPOTS) was best
predicted by abiotic factors including nitrate and day
length change as well as Chl-a (Chow et al., 2013).
From a high-resolution coastal time series, Needham
et al. (2018) demonstrated that bacterial abundance

patterns were more strongly coupled to phytoplankton
dynamics than other environmental factors, highlighting
the role of biotic processes in structuring bacterioplank-
ton community patterns. This study also noted that bac-
terial abundance patterns were correlated with other
groups of bacteria, indicating biotic interactions are per-
haps not limited to vertical trophic interactions, but can
occur horizontally through cross-feeding and antago-
nism. Cross-feeding within bacterial communities has
been hypothesized to fundamentally governing bacter-
ioplankton diversity (Fiegna et al., 2015; Gralka
et al., 2020; Little et al., 2008). Similarly, bacteria–
bacteria interactions were shown to be important for the
maintenance of bacterioplankton diversity in the
English Channel evidenced by bacterial OTUs having
stronger correlation with other bacterial OTUs than with
phytoplankton OTU’s and environmental factors
(Gilbert et al., 2012). Similarly, at SPOTS, network
analysis demonstrated that bacteria, archaea and
eukaryotes had stronger correlation with one another
than with any physico-chemical factors (Steele
et al., 2011). More recently, Lima-Mendez (2015),
incorporated the abundance of eukaryotic and viral
groups alongside environmental factors to demonstrate
that abiotic factors explained a limited amount of direct
variation in marine bacterioplankton diversity and that
trophic and symbiotic interactions were significant con-
tributors to overall diversity (Lima-Mendez et al., 2015).
Collectively, these results underscore that while envi-
ronmental factors are important regulators of bacterio-
plankton diversity, biotic interaction are apparent and
potentially influence bacterioplankton more strongly at
times, but the relative contribution of each deterministic
type is yet to be resolved.

Marine environments are inherently dynamic in their
environmental characteristics, fluctuating across scales
of space (i.e., micrometres to kilometres), and time
(i.e., microseconds to months) (Nguyen et al., 2021).
Therefore, distilling out specific factors responsible for
diversity is particularly challenging, and may not accu-
rately reflect the contemporary processes responsible
for observed patterns (Chesson, 2000). Considering
then the cumulative impacts of a set of environmental
factors (or species interactions), and their relative con-
tribution to diversity patterns is important because the
impact magnitude of the ecological process is expected
to vary in response to different ecological attributes
(i.e., environmental heterogeneity) (Horner-Devine
et al., 2004; Langenheder & Lindström, 2019; Veech &
Crist, 2007). In one example, Langenheder et al. (2012)
(Langenheder et al., 2012), showed that when environ-
mental heterogeneity among rockpools was highest,
beta diversity of bacterioplankton among the same
rockpools was also highest, with deterministic pro-
cesses emerging as the prevailing mechanism driving
beta diversity; however, when environmental heteroge-
neity among rockpools was low, and beta-diversity
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among rockpools was also relatively low, dispersal
mechanisms became increasingly more important in
driving beta-diversity patterns. Fluctuations in environ-
mental heterogeneity have been demonstrated as
important drivers of spatial beta-diversity patterns in
disparate ecosystems, including the Amazon river sys-
tem (Huber et al., 2020) and soil bacteria communities
(Ferrari et al., 2016; Ranjard et al., 2013). These results
reveal that the relative contributions of deterministic
processes in shaping spatial bacterioplankton diversity
can change through time in accordance with spatially
distributed environmental heterogeneity (Langenheder
& Lindström, 2019; Stegen et al., 2012); it remains to
be shown however how deterministic influence is parti-
tioned among environmental factors versus species
interactions. In addition, marine bacterioplankton stud-
ies have focused primarily on understanding the influ-
ence of spatial environmental heterogeneity on
bacterial diversity or temporal variability examined at a
single location (Langenheder & Lindström, 2019).
Therefore, current understanding of shifts in the relative
importance of differing ecological processes on the
temporal dynamics of bacterioplankton diversity at dif-
ferent locations is critically needed to understand if pro-
cesses structuring diversity patterns are universal
across distinct environment or rather idiosyncratic to an
environment.

Distinguishing abiotic from biotic processes in struc-
turing community diversity requires an effective means
of identifying potential species interactions (Carrara
et al., 2015). Herren and McMahon (2017) developed a
community complexity metric for phytoplankton micro-
bial communities based on the product of the median
correlation value of each organism in the dataset to its
relative abundance value. The authors argue this value
provided an index for quantifying the importance of
potential interactions within the community. Indeed,
their results demonstrated that characterizing the com-
plexity of a community can improve the proportion of
explained variation, but it remained unclear whether the
explained variance was due to environmental and/or
species interactions because the metric was based on
correlations, which could arise due to multiple organ-
isms independently tracking similar environmental fac-
tors. One potential means to overcome this limitation is
by incorporating metrics that are applied to individual
samples, derived from the number and strength of cor-
relative interactions with other species in the commu-
nity relative to environmental factors (Lima-Mendez
et al., 2015; Ritchie et al., 2009). A similar approach
has been used to partition potential species interactions
from environmental drivers in freshwater macro-
organism communities, which highlighted the impor-
tance of species interactions, relative to environmental
drivers in determining community structure (Musters
et al., 2019).

Here, we use a 5.5-year time series, including
physico-chemical and 16S microbial community data to
investigate the relative importance of environmental fil-
tering versus inter-organismal co-occurrence in
influencing marine bacterioplankton structure. Three
oceanographic time series spanning 15� of latitude
along the east Australian coastline allowed us to deter-
mine the relative contribution of environmental factors
relative to potential biotic interactions. Bacterioplankton
community structure was inferred by identifying the rel-
ative contribution of deterministic processes to shaping
patterns of alpha and beta diversity. Our analysis
involved the integration of a novel metric for inferring
potential species interactions, defined as bacteria–
bacteria and phytoplankton–bacterial interactions
(biotic interactions), to discriminate among the relative
importance of different deterministic processes in shap-
ing bacterioplankton structure.

EXPERIMENTAL PROCEDURE

Reference station description and
environmental data collection

Monthly surface water samples were collected from
three oceanographic time series stations located on
the eastern continental shelf of Australia, as part of
the Integrated Marine Observing System (IMOS)
National Reference Station (NRS) monitoring pro-
gram. These stations span latitudes of 27 to 42�S and
include Maria Island (MAI: 42�35.8 S, 148�14.0 E),
Port Hacking (PHB: 34�05.0 S 151�15.0 E), and North
Stradbroke Island (NSI: 27�20.5 S 153�33.75 E)
(Figure 1). The MAI station is situated 7.4 km off
Maria Island, on the Tasmania east coast (depth
90 m) and is seasonally impacted by the southerly
extent of the East Australian Current (EAC), which is
a strong western boundary current (Brown
et al., 2018). PHB is located at the southern extent of
the EAC separation zone (Figure 1) and 5.5 km off-
shore (depth 100 m). NSI is located north of Brisbane
(depth 50 m), and is strongly influenced by EAC
waters that originate in the Coral Sea (Brown
et al., 2018). Sampling at each time series station
comprised collection of bulk seawater samples for
microbial analyses from mooring sites at near-
monthly intervals (median days between sampling
events; MAI: 34; PHB: 33; NSI: 32), with physico-
chemical and Chl-a data (collectively termed environ-
mental from here on) collected simultaneously for
approximately 5.5 years (2012–2017), totalling
157 samples (MAI: 58; PHB: 47; NSI: 52; Table 1;
Table S1). Environmental variables measured at each
site included temperature (�C), day length (hours),
salinity (PSU), turbidity (NTU), Secchi disk depth (m),
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thermocline depth (m), dissolved silicate (μmol/L),
NOx (μmol/L), phosphate (μmol/L), ammonium (μmol/
L), and Chl-a concentration (mg/m3). Data were
collected and analysed by IMOS (Davies &
Sommerville, 2017; Lynch et al., 2014) (Table 1;
Table S1). Mixed layer depth (MLD) was estimated
from temperature-depth profiles (Australian National
Mooring Network temperature and salinity data prod-
uct at htt://aodn.com) based on Condie and Dunn
(2006) and defined as the depth at which temperature
decreased by 0.4�C from the surface temperature (0–
2 m depth).

Sample collection and DNA extraction

Two litres of surface seawater were collected using
Niskin bottles and transported on ice back to the lab.
Samples were filtered through a 0.22 μm pore Steri-
vex GP filter (Millipore, Massachusetts. Cat. #
SVGPL10RC), which were then stored at �80�C until
processing. Filters were sent (on dry ice or in liquid
nitrogen dewars) to the Commonwealth Scientific and
Industrial Research Organization Oceans & Atmo-
sphere (CSIRO O&A) laboratories in Hobart, Tasma-
nia for DNA extractions. Microbial DNA was extracted

using standardized procedures as part of the Marine
Microbes Program (https://data.bioplatforms.com/
organization/pages/bpa-marine-microbes/methods)
using a modified PowerWater Sterivex DNA Isolation
Kit (MOBIO Laboratories) protocol. DNA isolation
included incubating Sterivex filters for 1 h on a hori-
zontal vortex with 1.875 mL lysis buffer followed by a
phenol:chloroform extraction.

Amplicon sequencing

The V1–V3 regions of the 16S rRNA gene were PCR
amplified using the bacteria-specific primers 27F (50-
AGRGTTTGATCMTGGCTCAG-30) and 519R (50-GWAT-
TACCGCGGCKGCTG-30) (Caporaso et al., 2012) with
the following cycling conditions: 1-step using KAPA HiFi
HotStart ReadyMix (Roche) comprised steps including
95�C initial denaturation (3 min), with 35 cycles of 95�C
(30 s), 5�C (10 s) and 72�C 45 s) and a final elongation
step at 72�C (5 min). Amplicons were then purified using
Ampure XP beads (Agencourt Bioscience Corporation)
and sequenced on the Illumina MiSeq platform (Illumina,
Inc., San Diego, USA) at the Ramaciotti Center for Geno-
mics (UNSW, Sydney, Australia), with 300 bp paired
reads.

F I GURE 1 Map of sampling location. Inset figure shows the relative location of each reference station to the Australian continent. Mean sea
surface temperature data from May 25, 2019 - June 15, 2019.
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TAB LE 1 Summary of imputed environmental variables.

Maria Island Port Hacking North Stradbroke Island
(N = 58) (N = 52) (N = 47)

Temperature (�C)

Mean (SD) 15.1 (2.14) 20.2 (2.07) 23.6 (2.03)

Median [min, max] 14.5 [11.9, 20.3] 20.1 [16.8, 24.5] 23.4 [20.4, 27.6]

Missing 9 (15.5%) 3 (5.8%) 6 (12.8%)

Day length (h)

Mean (SD) 11.7 (2.06) 11.9 (1.53) 11.8 (1.14)

Median [min, max] 11.5 [9.04, 15.3] 11.8 [9.89, 14.4] 11.5 [10.4, 13.9]

Missing 0 (0%) 0 (0%) 0 (0%)

Salinity (PSU)

Mean (SD) 35.2 (0.801) 35.5 (0.193) 35.5 (0.234)

Median [min, max] 35.3 [29.3, 35.7] 35.5 [34.7, 35.7] 35.5 [34.3, 35.8]

Missing 9 (15.5%) 3 (5.8%) 6 (12.8%)

Turbidity (NTU)

Mean (SD) 0.388 (0.214) 0.115 (0.0640) 0.131 (0.139)

Median [min, max] 0.285 [0.146, 1.10] 0.102 [0.0582, 0.450] 0.0878 [0.0108, 0.705]

Missing 9 (15.5%) 8 (15.4%) 8 (17.0%)

Secchi disk depth (m)

Mean (SD) 16.5 (3.40) 15.2 (3.44) 20.0 (5.33)

Median [min, max] 16.5 [9.00, 24.0] 16.0 [9.00, 24.0] 19.0 [9.00, 34.0]

Missing 1 (1.7%) 3 (5.8%) 0 (0%

Silicate (μmol/L)

Mean (SD) 0.660 (0.487) 0.865 (0.749) 0.586 (0.414)

Median [min, max] 0.600 [0, 2.00] 0.800 [0, 3.90] 0.500 [0, 2.10]

Missing 7 (12.1%) 7 (13.5%) 5(10.6%

NOx (μmol/L)

Mean (SD) 1.52 (1.42) 1.00 (1.33) 0.0679 (0.125)

Median [min, max] 1.85 [0, 5.20] 0.500 [0, 7.00] 0 [0, 0.500]

Missing 7 (12.1%) 8 (15.4%) 5 (10.6%)

Phosphate (μmol/L)

Mean (SD) 0.216 (0.109) 0.174 (0.0975) 0.0934 (0.0365)

Median [min, max] 0.210 [0.0200, 0.480] 0.158 [0.0300, 0.650] 0.0903 [0, 0.190]

Missing 7 (12.1%) 7 (13.5%) 5 (10.6%)

Ammonium (μmol/L)

Mean (SD) 0.164 (0.336) 0.350 (0.412) 0.293 (0.468)

Median [min, max] 0.0772 [0, 2.40] 0.231 [0.0300, 2.24] 0.125 [0, 2.60]

Missing 7 (12.1%) 10 (19.2%) 6 (12.8%)

Chl-a (mg/m3)

Mean (SD) 0.572 (0.333) 0.669 (0.298) 0.300 (0.111)

Median [min, max] 0.526 [0, 1.62] 0.617 [0.201, 1.41] 0.293 [0.0810, 0.637]

Missing 6 (10.3%) 14 (26.9%) 9 (19.1%)

Mixed-layer depth (m)

Mean (SD) 63.3 (20.6) 32.0 (17.0) 31.4 (9.92)

Median [min, max] 74.0 [21.0, 86.0] 27.3 [11.0, 81.0] 31.0 [13.0, 57.0]

Missing 8 (13.8%) 4 (7.7%) 3 (6.4%)

Note: N is the number of samples in each time series or the whole entire dataset. Min and max are the minimum and maximum observed values in the dataset.
Mixed layer depth is the estimated thermocline based on Condie and Dunn (2006).
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Bioinformatic processing

Raw fastq files were downloaded from BioPlatforms
Australia (https://data.bioplatforms.com). Amplicon
quality control and analysis was performed using
DaDa2 (Callahan et al., 2016). In brief, primers were
truncated using cutadapt (Martin, 2011) and reads were
trimmed, denoised, merged, and chimeras removed
using function remove BimeraDenovo (minFoldParen-
tOverAbundance = 4) (full code provided https://github.
com/martinostrowski/marinemicrobes/tree/master/
dada2). Taxonomic classification of bacterial 16S rRNA
ASVs was performed using a naïve Bayes classifier
based on SILVA 138.1 and a bootstrap cut-off > 50%
(Yilmaz et al., 2014). All ASVs which had a DaDa2
bootstrapped value < 50% at the taxonomic level were
assigned to Kingdom unclassified.

The final bacterioplankton dataset analysed in this
study resulted from removing all sequences assigned
to Kingdom unclassified, Archaea, Eukaryota, Chlo-
roplast and Mitochondria. The final step included fil-
tering out low abundant ASVs with a total abundance
across the entire dataset of less than 0.005%. The
plastid dataset containing all the Chloroplast
sequences was used to assess the potential impor-
tance of phytoplankton on bacteria community
assembly, and taxonomic assignment was made in a
similar way as bacterioplankton ASVs with boot-
strapped value < 50% trimmed and taxonomic iden-
tity called with naïve Bayes classifier using PhytoRef
database (Decelle et al., 2015).

Statistical analysis

Datasets used in the analysis included (1) environmental
variables, (2) bacterial amplicon relative abundance, and
(3) plastid amplicon relative abundance to represent the
eukaryotic phytoplankton. In cases of missing environmen-
tal observations, values were imputed with rfImpute () from
the randomForest package (version 4.6.14) (Breiman,
2001). Imputation was performed for each time series inde-
pendently. Environmental variables were mean-centred
unit variance standardized to reduce outlier influence. All
analyses were performed using R version 3.6.1.

Temporal variability in environmental conditions was
estimated by determining the mean dissimilarity within
each time series (Ranjard et al., 2013) based on the
11 environmental variables described above. Dissimilar-
ity among samples based on environmental variables
was calculated on Euclidian distance. Heterogeneity
(Ed) was derived for each pair of samples within a time
series as follows:

Ed¼ Euc
Eucmax

� �
þ0:001

where Euc is the Euclidian distance between two sam-
ples within a time series, Eucmax is the maximum dis-
tance observed across the entire dataset, and 0.001 is
added to account for zero similarity among two sam-
ples. Mean Ed was then calculated within each time
series and heterogeneity compared using a Kruskal–
Walls χ2 and Dunn-post hoc pairwise tests across the
three time series.

To determine the importance of biological interac-
tions, we then calculated the biological interaction indi-
ces. Building on a framework introduced by Musters
et al. (2019), we developed a metric to quantify the rela-
tive contribution of potential interactions among bacteria
and phytoplankton in structuring patterns of bacterio-
plankton diversity. Our approach regresses biological
predictors (bacterial and phytoplankton ASVs) against
individual bacterial ASVs (response ASV). In the case of
the bacterial interaction metric, the response ASV is
removed from the predictor ASV dataset. There is no
reason to expect species interactions will be linear or
that ASV patterns are the result of a single predictor,
therefore, we extend the co-occurrence definition
beyond simple pairwise co-occurrence to include more
than a single bacterial ASV (or phytoplankton ASV)
using a machine learning approach. In this way, we can
identify nonlinear abundance relationships of an individ-
ual ASV which may be due to the abundance of multiple
organisms. We additionally identified the relationship of
each bacterial ASV to a combination of environmental
data (e.g., temperature). Therefore, we generated three
datasets including bacteria-environment, phytoplankton-
environment and environment only in a series of steps
(Figure S1) described below. The gradient forest (Ellis
et al., 2012) method was used to regress the large num-
ber of predictors to individual bacterial ASVs. Gradient
forest is a modification of regression forest, which calcu-
lates an explained variation (R2

f ) for each response ASV
(Figure S1a,b). The approach then uses an out-of-bag
prediction (OOB) similar to regression forest, but differs
by defining the explained variation of each response
and is calculated as follows:

R2
f ¼ 1�

X
i

Y fi �cYfi

� �2
=
X
i

Y fi �Yfi
� �2

Yfi is the abundance of the ith occurrence of ASV f, cYfi

is the OOB prediction for the abundance of ASV f at the
ith position, and Yfi is the mean abundance of ASV f.
Calculations were conducted using the gradientForest
package (version 0.1.17) in R (Pitcher et al., 2011). For
each response variable, we removed all predictor vari-
ables that did not significantly explain the abundance of
the response ASV (Figure S1c). Significance of predic-
tor variables in explaining proportional distribution of
the response was calculated with rfpermute (version
2.1.81). Regression forest produces partial R2 values
for each predictor of a response ASV. All partial R2
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values for a response variable are summed to produce
the total R2 of that response variable; therefore, we
could sum the remaining significant predictor partial R2

values to determine the response R2 value
(Figure S1d).

Next, we removed all bacterial response ASVs with
an R2 value less than 0.3 (thus retaining ≥ 0.3) and
summed the relative abundance of each retained ASV
for each sample (i.e., sample 1 from NSI, sample
2 from MAI) (Figure S1e). Finally, the bacteria–
bacteria metric was calculated as the abundance dif-
ference between the bacteria-environment and envi-
ronment only relative abundance for each sample.
The bacteria-phytoplankton metric was calculated as
the difference between the phytoplankton-
environment and environment only relative abundance
(Figure S1f). The resulting value is the bacterial or
phytoplankton interaction metric (Figure S1g). Our
approach is similar to that described by Muster et al.
(2019) with the addition of the significance calculation

for partial R2 values and the identification of the rela-
tive abundance of ASVs from the dataset which are
described by other bacterial or phytoplankton ASVs.
Before the calculation of the metric, we performed a
Hellinger transformation on predictors to reduce
potential bias from highly abundant predictor ASVs.
Also, to reduce computational time, we limited our
analysis to include only ASVs which occurred in >25%
of samples within a time series.

RESULTS AND DISCUSSION

Environmental characteristics of the three
oceanographic time-series sites

Environmental heterogeneity exhibited a latitudinally
defined gradient (Kruskal–Wallis χ2 df = 2 = 701.4,
p < 0.01; Figure 2A, B, Figure S2A–C) across the three
time-series stations, whereby Maria Island (MAI) had

F I GURE 2 Environmental variability of each time series. (A) PCA biplot of first two dimensions discriminating samples to demonstrate
environmental heterogeneity and is based on measured environmental variables. (B) Distribution of environmental heterogeneity across time
series. (C) Heatmap visualizing the relative heterogeneity, measured as standard deviation of environmental variables across time series.
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greater environmental heterogeneity than Pt Hacking
(PHB) (Figure 2A; Dunn-test: p < 0.01) and PHB
greater than North Stradbroke Is (NSI) (Figure 2A;
Dunn-test: p < 0.01). At MAI (Figure 1; Lat 42�35.8 S;
Lon 148�14.0 E) autumn and winter were characterized
by a greater mixed layer depth (MLD; mean ± SD;
63.3 m ± 20.6), higher inorganic nutrient concentrations
(Table S1; Figure S2b; NOx: 1.52 μmol/L ± 1.42; phos-
phate: 0.216 μmol/L ± 0/109) and lower temperature
(Figure S2a; 15.1�C ± 2.14), while spring and summer
samples had higher Chl-a concentrations (Figure S2c;
0.572 mg/m3 ± 0.333). At PHB (Figure 1; Lat 34�05.0 S;
Lon�151 15.0 E) spring and summer temperatures
(Table S1; 20.2�C ± 2.07) more closely track that of NSI
than MAI (Figure S2a), while MLD (32.0 m ± 17.0), inor-
ganic nutrient concentrations (Figure S2b; NOx:
1.00 μmol/L ± 1.33; phosphate: 0.174 μmol/L ± 0.10; sili-
cate: 0.864 μmol/L ± 0.749), and Chl-a concentration
(Figure S2c; 0.67 mg/m3 ± 0.30) during winter were
more similar to MAI. NSI (Figure 1; Lat 27�20.5 S; Lon
153�33.75 E) was distinguished by relatively high-water
temperatures (Figure S2a; Table S1; 23.6�C ± 2.03),
and relatively low concentrations of inorganic nutrients
including phosphate (Table S1; 0.09 μmol/L ± 0.04) and
NOx (Figure S2a; 0.07 μmol/L ± 0.13) concentrations.
Winter samples at NSI were characterized by relatively
high water clarity, measured by Secchi disk depth
(20.0 m ± 5.33) while samples from the other three sea-
sons were most distinguished by temperature. Thus, the
three time series exhibited distinct environmental condi-
tions that range from MAI having the greatest environ-
mental heterogeneity compared to other stations, PHB
with relatively intermediate nutrient concentrations and
high physical environmental heterogeneity and NSI hav-
ing the least environmental heterogeneity.

Contrasting drivers of bacterioplankton
alpha diversity patterns across time series

The bacterioplankton datasets from the three reference
stations had a varying number of observed ASVs (rich-
ness). Maria Island had the greatest number of total
ASVs with 7608 (mean per sample 490.8 ± SE 26.0),
then Port Hacking with 7020 (414.1 ± 20.7) and North
Stradbroke Island with 4843 (431.8 ± 19.7). Richness
of dataset ASVs corresponded with the total diversity of
ASVs at each site where MI had the greatest alpha
diversity (mean 122.14 ± SE 7. 64), followed by PHB
(116.68 ± 6.36) then NSI with the least (107.27 ± 4.07).
The distribution of alpha diversity was, however, not
significantly different among time series (Figure S3;
Kruskal–Wallis χ 2 = 2.10, df = 2, p = NS). Temporal
patterns in bacterioplankton diversity across the time
series sites provided evidence; however, for varying
degrees of seasonality among locations. Consistent
yearly diversity patterns were observed at MAI, and this
was less apparent or absent at PHB and NSI
(Figure 3A). At MAI, bacterioplankton alpha diversity
consistently peaked in the winter months and was low-
est during spring, while at PHB, diversity peaked incon-
sistently across years. For instance, in 2012, the
highest observed diversity at PHB was in winter,
whereas in 2013, diversity peaked in autumn. At NSI,
diversity peaks were not consistent across years. Col-
lectively, these patterns infer that at MAI the principal
factors regulating bacterioplankton alpha diversity are
repeatable at seasonal scales, while at PHB and NSI,
factors regulating bacterioplankton alpha diversity lack
seasonal influences.

Environmental heterogeneity has been shown in
other systems to be an important driver of bacterial

F I GURE 3 Patterns and drivers of alpha diversity across time series. (A) Scatterplot of alpha diversity through time for each time series. X-
axis is time from the start of the time series and y-axis is effective diversity. Colours represent seasonal classification based on astronomical
calendar. (B) Contribution of environmental variables and the biological metric to explaining variation of alpha diversity through time at each time
series. The x-axis displays the three-time series, and the y-axis is the adjusted R 2 score. Blue is the adjusted R2 from a multiple regression
model of environmental variables only while red is the improved R2 when the biological metric is included in the model.
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diversity patterns (Curd et al., 2018; Huber
et al., 2020), therefore, given the different levels of envi-
ronmental heterogeneity observed between locations,
we predicted that the influence of environmental factors
would become less apparent with decreasing environ-
mental heterogeneity. At MAI, diversity patterns were
predominately predicted by environmental factors
(Figure 3B; Table 2; Fdf = 4,53 = 57.06, p < 0.001,
adjusted (Adj.) R2 = 0.80). Day length had a strong
inverse relationship with alpha diversity (relative impor-
tance [RI] = 0.62). Similar results have been reported
for bacterioplankton richness patterns in the English
Channel time series (Gilbert et al., 2012), which was
also sampled at near-monthly intervals. Therefore, day
length may generally be an important predictor of high
latitude bacterioplankton diversity. In addition, Chl-a
was weakly associated with bacterioplankton alpha
diversity suggesting a potential trophic mediation by
phytoplankton (RI = 0.09). Similar trends were
observed in the Antarctic where bacterioplankton alpha
diversity was inversely related to Chl-a (Luria
et al., 2016).

At PHB, where there were lower levels of sea-
sonal heterogeneity in environmental conditions
(Figure 2A), bacterioplankton diversity was influ-
enced by mixed layer depth, but total explained varia-
tion for alpha diversity was quite low (Figure 3B;
Table 2; Fdf = 5,46 = 4.29, p = 0.003, Adj. R2 = 0.24).
The dominate environmental factors included day

length (RI = 0.12) which was inversely correlated
with alpha diversity patterns while MLD depth
(RI = 0.10) was positively correlated. The high
amount of unexplained variation may suggest other
unmeasured environmental factors (e.g., dissolved
organic carbon) more strongly influence alpha diver-
sity. Alternatively, EAC-driven dispersal processes,
which have been shown to influence bacterioplankton
occurrences at PHB (Messer et al., 2020), may also
be a dominant contributor to alpha diversity at the
monthly time-scale interval. Dispersal is a fundamen-
tal ecological process (Vellend, 2010) and can
become important in structuring bacterioplankton
diversity when environmental heterogeneity is low or
when dispersal rates are high enough to over-
shadow the effects of other ecological processes
(Huber et al., 2020).

For NSI temporal bacterioplankton alpha diversity
was not consistent with astronomical seasons, but total
variation could be explained to a relatively high level
(Figure 3B; Table 2; Fdf = 3,43 = 11.18, p < 0.001, Adj.
R2 = 0.40). Interestingly, and in contrast to the other
two locations, biotic interactions were the main predic-
tors of alpha diversity at this location. Bacteria–bacteria
interactions specifically, were positively correlated with
alpha diversity patterns and contributed a large portion
of the total predicted variation (Figure 3B; partial
R2 = 0.33). Ammonium was also important in predict-
ing alpha diversity and was inversely correlated

TAB LE 2 Linear model results for predictor variables that showed the best relationship with patterns of bacteria alpha diversity through time.

Full model
Step regression

Comparison Variables df Sum Sq
Rel.
Imp Mean Sq F value Pr (>F)

Maria Island Adj. R 2 0.8 Day length (�) 1 30020.9 0.61 30020.89 117.871 0.00

F-stat. 56.8 Ammonium (�) 1 12203.7 0.10 12203.75 47.9157 0.00

p-value <0.001 Chl-a (�) 1 15120.8 0.09 15120.81 59.369 0.00

DF1 4 Turbidity (�) 1 546.075 0.01 546.07 2.14406 0.15

DF2 53 Residuals 53 13498.7 0.81 254.69

Port Hacking Adj. R 2 0.22 Day length (�) 1 4874.45 0.12 4874.45 10.7948 0.00

F-stat 4.67552886 Mixed-layer
depth (+)

1 1825.19 0.10 1825.19 4.04201 0.05

p-value 0.003 Silicate (+) 1 1742.86 0.04 1742.86 3.85967 0.06

DF1 4 Temperature (+) 1 2.54951 0.03 2.55 0.00565 0.94

DF2 47 Residuals 47 21223.1 0.28 451.56

North Stradbroke
Island

Adj. R 2 0.4 Biotic - bac (+) 1 4800.89 0.33 4800.89 23.6068 0.00

F-stat 11.3996033 Ammonium (�) 1 730.21 0.06 730.21 3.59056 0.01

p-value <0.001 Chl-a (�) 1 1423.87 0.05 1423.87 7.00143 0.08

DF1 3 Residuals 39 8744.87 0.44 203.36899

DF2 43

Note: The full model is the results of all variables. Individual variables are the result of step regression. The (+) and (�) indicate the direction of relationship between
variables and alpha diversity. The biological metric is the interspecific interaction metric. The explained variation (Exp.var) is the result of partitioning the variable
sums of squares. Adj. adjusted; df = degrees of freedom; Rel. Imp = Relative importance based on CAR variance partitioning; Mean Sq = Means of the square;
Sum Sq = Sums of square. Significance represented by bold font if p < 0.05.
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(RI = 0.06) with diversity patterns. Therefore, potential
interspecific interactions may be important drivers of
alpha diversity patterns at this sub-tropical time series
(Chesson, 2000).

Across the three time series the amount of variance
that could be explained by environmental factors corre-
sponded with trends in environmental heterogeneity.
The largest contribution of environmental variables to
explaining alpha diversity distribution was at MAI
(80%), while an intermediate amount could be
explained at PHB (22%) and the least at NSI (10%)
(Figure 3B). However, the total explained variation did
not correspond with trends in environmental heteroge-
neity. The lowest latitude site NSI which had the lowest
environmental heterogeneity, had the second largest
total explained variance, driven by a large contribution
of biotic predictors (24%). This location had the warm-
est temperatures and the lowest inorganic nutrient con-
centrations of our study locations (Figure 2B), and
under these conditions, trophic mediation, such as facil-
itation by Prochlorococcus and Synechococcus groups
can drive bacterioplankton succession through primary
productivity (Armengol et al., 2019). Biotic interactions
at MAI or PHB were not important predictors of alpha

diversity across the temporal scale analysed here
(median 34 days), however is likely an important con-
tributor when higher resolution time series are consid-
ered (Needham & Fuhrman, 2016). For instance, Luria
et al. (2016) monitored bacterioplankton diversity in
Antarctic waters across 1–2-week intervals and found
richness was driven phytoplankton blooms; therefore,
potentially demonstrating importance of scales in distin-
guishing among dominate ecological drivers of diversity
patterns.

Differential drivers of beta-diversity
patterns across time series

Bacterioplankton beta diversity (ratio of regional: local
diversity) at each of the three reference stations exhib-
ited seasonal trends, where intra-seasonal samples
(samples from the same season) had greater observed
similarity (i.e., lower beta diversity; 0: dissimilar; 1:
highly similar) than inter-seasonal samples (Figure 4A,
Figure S4). At MAI, the mean intra-seasonal Bray-
Curtis (BC) score of 0.50 (± 0.005 SE) was significantly
greater than the inter-seasonal score (0.59 ± 0.13; t-

TAB LE 3 Distance-based linear model results for predictor variables that showed the strongest relationship to patterns of beta diversity
through time.

Full model with selected variables Step model

df SS F p (>F) Terms R 2. adj. df AIC F Pr..F.

Maria Island Model 6 3.346 11.345 0.001 Day length 0.20 1 140.11 15.20 <0.001

Residual 51 2.507 Temperature 0.33 1 130.44 12.25 <0.001

Biotic-bacteria 0.40 1 125.50 6.87 <0.001

Biotic-phyto 0.44 1 122.40 4.87 <0.001

Turbidity 0.46 1 121.44 2.72 <0.001

Secchi depth 0.47 1 121.30 1.92 < 0.001

All variables 0.48

Port Hacking Model 7 2.93 6.8 0.001 Day length 0.18 1 129.59 12.19 <0.001

Residual 44 2.7 Temperature 0.32 1 121.10 10.95 <0.001

Biotic-phyto 0.35 1 119.37 3.57 <0.001

Biotic-bacteria 0.37 1 118.36 2.80 0.002

Secchi depth 0.39 1 117.61 2.50 0.002

Salinity 0.40 1 117.46 1.90 0.020

NOx 0.42 1 117.34 1.83 0.030

All variables 0.42

North Stradbroke Island Model 5 1.47 7.32 0.001 Biotic-plankton 0.21 1 90.62 13.03 <0.001

Residual 41 1.65 Day length 0.29 1 86.69 5.92 <0.001

Biotic-bacteria 0.35 1 83.34 5.19 <0.001

Temperature 0.38 1 81.75 3.33 <0.001

Silicate 0.40 1 81.36 2.14 <0.001

All variables 0.42

Note: The biological metric is the interspecific interaction metric. Phyto is in reference to the phytoplankton biological metric. The full model informs on the global test
for all selected variance and the step model shows the results for individual chosen variables. All variables are the model results when all variables are included.
AIC, Aikaike information criteria; df, degrees of freedom; SS, sums of squares.
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testdf = 749.45 = 16.00; p < 0.001). Similarly, at PHB the
intra-seasonal similarity (0.56 ± 0.006) was significantly
greater than the inter-seasonal similarity (BC = 0.63
± 0.003; Figure S4; t-testdf = 528.48 = 10.32; p < 0001).
NSI had the lowest intra-seasonal mean BC among the
time series at 0.47 ± 0.005 which was also significantly
different than the inter-seasonal mean BC of 0.51
± 0.003 (Figure S4a; t-testdf = 473.94 = 6.00; p < 0.001).
Therefore, at all locations bacterioplankton communi-
ties from a given season were more similar to those
from the same season in different years, than to those
that were closer in time, but different in season. These
results suggest ecological processes that structure
bacterioplankton communities are recurrent at a given
time of across years, and this occurs across despite.

Like alpha diversity, beta diversity is also expected to
increase with increasing environmental heterogeneity
(Chase & Leibold, 2003; Heino et al., 2015) under the
assumption that greater variability in environmental fac-
tors will result in an increased number of niches for
organisms to occupy (Leibold et al., 2004). We therefore
predicted beta diversity would be greatest at MAI and
lowest at NSI. This pattern, however, was not observed
and rather the greatest mean beta diversity was
observed at PHB (Figure S4b; mean ± SD; 0.61 ± 0.11),
followed by MAI (0.57 ± 0.12) and NSI (0.50 ± 0.09;
Kruskal–Wallis χ 2

df = 2 = 690.3, p < 0.05). These results
suggest that environmental variability is not entirely
responsible for bacterioplankton composition, suggest-
ing other ecological processes, such as biotic processes
are important for structuring beta diversity.

Therefore, we investigated the key variables driving
beta-diversity patterns and determined their relative
contributions to these patterns. Our results indicate that
different deterministic processes govern patterns of
beta diversity across the three locations (Figure 4B).
Variables that best-modelled beta diversity at MAI

included day length, temperature, bacterial abundance,
phytoplankton abundance, turbidity, and Secchi disk
depth (Adj. R2 = 0.20, 0.13, 0.06, 0.04, 0.02, <0.01,
respectively; Table 3; F = 11.35, df = 6, 51, p = 0.001).
Variance partitioning showed environmental variables
had the greatest effect (32% of partitioned variation;
Figure 4B) influencing beta-diversity patterns at MAI fol-
lowed by bacterial interactions (7%), while phytoplank-
ton contributed 4%. Together, the biotic interactions
explained approximately 11% of the total partitioned
variation. There was 4% of variance contributed by
bacteria-environment overlap, suggesting a potential
role of environmentally mediated bacterial influence.
These results match with alpha diversity patterns where
environment was the key drivers, demonstrating the
importance of environment fluctuation in structuring
bacterioplankton diversity. Beta diversity however had
some influence by biotic factors, while alpha diversity
was only predicted by environmental factors, potentially
suggesting that biotic processes may facilitate the pres-
ence or absence of particular bacterioplankton groups,
rather than diversity at a particular time point.

At PHB, environmental factors also had the largest
contribution to beta diversity. Important variables
included day length and temperature (Adj. R2 = 0.18,
0.14, respectively; Table 3; F = 6.8, p = 0.001). Collec-
tively, the environmental factors accounted for 30% of
the total partitioned variation (Figure 4B) while biotic
interaction (bacteria and phytoplankton) only accounted
for 5% of the total variation. Environmental overlap with
bacteria (4%) and phytoplankton (1%) accounted for
5% of the variation. These results are similar to alpha
diversity in that environment was a key contributor to
observed patterns. Interestingly, environmental contri-
bution was similar to the amount contributed at MAI;
however, total explained variance was lower due to the
lower contribution of biotic influence at PHB.

F I GURE 4 Beta-diversity patterns and contribution of deterministic drivers. (A) Time (in days) between sampling points along x-axis and
Bray–Curtis dissimilarity (BC) scores along the y-axis. BC = 0, entirely the same; BC = 1 entirely different. Colours represent the category of
sample; blue = inter-seasonal (two samples from different seasons), red = intra-seasonal (two samples from the same season). Dotted vertical
line breaks spaced at 365 days to show length of time series. (B) Contribution of environmental and the biological metric to explaining variation of
beta diversity through time across each time series. Colours correspond to the amount of variation attributed to several ecological processes
derived from variance partitioning procedure.
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A key finding in this study was that at NSI, biotic
predictors played a much greater role in defining beta
diversity relative to the other two locations. Phytoplank-
ton abundance was found to be the most important fac-
tor contributing to bacterioplankton beta-diversity
variation (R2 = 0.21; Table 3; F = 7.32, df = 5,
41, p = 0.001). Biotic factors accounted for the largest
amount of partitioned variation at 15% (Figure 4B;
phytoplankton–bacteria: 6%; phytoplankton only: 5%;
bacteria only: 4%) while environmental factors only
accounted for 13% of the variation. There was a large
amount of variation accounted for due to overlapping
components, including phytoplankton-environment
(11%) and bacteria-environment (2%) (Figure 4B;
green segment). Based on the high observed influence
of phytoplankton abundance at NSI and high overlap-
ping variance between phytoplankton and the environ-
ment, we posit that the environment may indirectly
drive bacterioplankton beta diversity through influenc-
ing the phytoplankton. These results are similar to
those observed for alpha diversity patterns, where
biotic predictors were also the most important contribu-
tor. Interestingly, the main biotic contributor varied
across the two diversity measures, where phytoplank-
ton was the most importance for beta diversity while for
alpha diversity, bacteria were the predominate drivers.
Thus, trophic links are important to structuring bacterio-
plankton diversity in a dynamic manor at NSI.

Together these results show that patterns of beta
diversity are not shaped by environment alone, but
rather a combination of environment and potential biotic
interactions and that the relative importance of these
can vary across locations. Interestingly, the importance
of biotic interactions negatively corresponded with beta-
diversity, such that the total contribution by biotic factors
was greatest at NSI where beta-diversity was lowest,
while PHB had the highest beta diversity and was least
influenced by biotic predictors. These results potentially
signal a stabilizing effect on the community against envi-
ronmental fluctuation that biotic interactions can promote
(Tilman & Downing, 1994). Also, in contrast to predic-
tions, the relative contribution of deterministic processes
did not entirely correspond with changes with environ-
mental heterogeneity, as the relative contribution of envi-
ronmental factors were similar at MAI and PHB,
however at NSI where the lowest level of environmental
heterogeneity occurred, biotic processes were the pre-
dominate deterministic driver. Interestingly, biotic influ-
ence on bacterioplankton diversity was found at all
locations, suggesting previously overlooked factors driv-
ing temporal succession of bacterioplankton.

CONCLUDING REMARKS

Here, we demonstrate that temporal patterns in marine
bacterioplankton diversity are structured by different

inherent deterministic processes according to location,
which tracks latitudinal differences that may be the
result of variation in environmental heterogeneity. The
most ‘environmentally stable’ site, which was charac-
terized by the least seasonality displayed patterns in
bacterioplankton alpha and beta diversity which were in
contrasted to the site with highest levels of seasonality
in environmental conditions. Bacterioplankton diversity
is the consequence of multiple interacting processes
including filtering by environmental factors and biotic
interactions (Fuhrman et al., 2015; Needham
et al., 2018). Partitioning the effects of environmental
versus potential biotic influence is an important distinc-
tion as ecological theory predicts ecosystem function is
linked to the processes that structure community diver-
sity patterns (Cardinale et al., 2002; Loreau
et al., 2001; Weis et al., 2007). Therefore, to accurately
forecast ecosystem function, it is necessary to (1) distin-
guish among processes that give rise to bacterioplank-
ton diversity and (2) identify how these processes
change through space and time. This is heightened as
climatic conditions are changing rapidly which can alter
the balance between biotic and environmental deter-
ministic processes (Kordas et al., 2011). However, until
now no framework has been applied to bacterioplank-
ton to identify the importance of potential biotic interac-
tions relative to environmental factors driving total
diversity patterns. Patterns of seasonality for both alpha
and beta diversity observed in our study are consistent
with diversity patterns from three well-studied time
series, where the high latitude English Channel exhib-
ited the highest degree of seasonality in diversity pat-
terns, the mid-latitude SPOTS with intermediate
diversity patterns and the low latitude HOTS with
absent seasonal diversity patterns (Fuhrman et al.,
2015). Therefore, processes driving diversity patterns
along the latitudinal gradient may be general, and this
study provides insight on potential drivers of this trend.
Importantly, results shed insight on why some studies
have identified environmental factors as having signifi-
cant influence over bacterioplankton diversity (Luria
et al., 2016), while others have concluded biotic pro-
cesses play a stronger role in driving bacterioplankton
diversity patterns (Gilbert et al., 2012; Needham
et al., 2018). Predicting how biogeochemical processes
will respond under future climate change scenarios
requires insight to the microbial composition present,
and therefore microbial diversity patterns.
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