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Control Design for Interconnected Power Systems with OLTCs via
Robust Decentralized Control

Hemanshu R. Pota, Germane Xavier Athanasius, Valery Ugrinovskii and Li Li

Abstract— This paper addresses the problem of designing
a decentralized control of interconnected power systems, with
OLTC and SVCs, under large changes in real and reactive
loads that cause large structural changes in the system model.
In addition to this, small changes in load are regulated by small
disturbance controllers whose gains are adjusted for variations
in power system model due to large changes in loads. The only
feedback needed by subsystem controllers is the state of the
subsystem itself. The design is carried out within a large-scale
Markov jump parameter systems framework. In this paper,
unlike other control schemes, OLTC transformers are used to
damp power-angle oscillations. Simulation results are presented
to demonstrate the performance of the designed controller.

I. INTRODUCTION

The primary task of the power system control is to provide
reliable and secure electric power supply within a narrow
band of voltage and frequency variation. As the demand
for electric power is continuously increasing the power
system grows in size and complexity. Also to meet the ever
increasing demand, the system is forced to operate as close
as possible to its maximum limit without sacrificing the
reliability. This makes the power system control task more
difficult and challenging.

In a multi-machine power system, when the steady state
condition is disturbed due to load changes or fault in the
system, the rotors of different machines start oscillating
with respect to each other, exchanging energy between
them. When oscillations are allowed to grow, machines
are pulled out of synchronisation. The rotor angle stability
is the ability of interconnected synchronous machines to
remain synchronised. Small signal disturbances occur in
a system continually because of small variations in load
and generation. This can produce sustained oscillations in
power angles and frequency and may disrupt the service [1].
There are several reasons for the dynamic instability in a
power system. Among them, the weak couplings between
interconnected systems which are randomly fluctuating, and
a small group of machines with relatively low or negative
damping against other machines in the system with positive
damping, are a couple of important factors which need to
be considered. The work mentioned in [1] shows how the
systems with above situations can lead to instability created
by random fluctuations in the coupling between machines
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due to variations in load impedances and transmission line
reactances. It also shows that such systems will lead to in-
stability for almost every sample path the random variations
can take as time goes to infinity. In this paper, the change in
the power system model due to the random nature of load
variations is modelled using Markov jump parameters.

An interconnected power system is operated by many
different utilities. There is an agreement amongst the utilities
on performance standards but each utility is free to choose
the way in which to maintain the agreed performance. This
style of operation necessitates the decentralised control of
power system. Since the power system is interconnected in
a complex manner, the controller providing damping control
of the oscillations may require the knowledge of the states
of the other machines connected to the grid in real time.
But because of the geographic separation of the location
of the generating units, it is not always possible to transfer
this information amongst machines in real time. Under these
conditions a decentralised controller, which operates strictly
based on the information of local states is desirable.

For small-disturbance damping linearised power system
models are employed. In many situations the system is
further simplified as single machine connected to infinite
bus (SMIB), the model is linearised around an operating
point and the controllers are designed. But in most situations
neither the SMIB nor a single operating mode assumptions is
valid as systems undergoes structural changes owing to large
changes in load conditions. Also in an interconnected system
each machine is affected by the changes happening elsewhere
in the system. In this paper we consider the complete
interconnected system with changing operating modes.

The robustness problems encountered by the conventional
design procedures and the modelling limitations were ad-
dressed and improved upon by considerable research work
in this area reported in [2]–[6]. In these works, controllers
are designed for multi-machine power systems using modern
control techniques like H∞ optimisation, µ-synthesis and
LMI approach. These approaches include model uncertainties
and control design scheme based on optimising a cost
function. The results of these studies suggest that robust
control technique can be used to improve the performance
and stability of interconnected power systems.

An alternative approach to controlling linearised power
system at each operating mode separately one can consider
it as an interconnected nonlinear system. Much attention
has been given to the design of nonlinear controllers using
nonlinear system models [4]–[6]. Even though these con-
trollers do improve the transient stability of the system, their



practical implementation is quite complicated and difficult
due to their structure and often excessive control levels. The
work mentioned in [2] explains robust decentralised control
for a multi-machine system using a linear controller and
the nonlinear interconnections were treated as parametric
uncertainties.

In a recent work [7], the power system control is treated
as the problem of designing a decentralised robust controller
for an interconnected system which is subjected to uncer-
tain disturbances and having randomly changing structure.
Structural changes in the system model are assumed to be
governed by a continuous-time Markov chain taking values
in a finite set. Integral Quadratic Constraints (IQCs) are
used to describe modelling errors and unknown systems
interconnections. In this paper, it is shown that decentralised
power system control using the Markov jump parameters
theory [7], with on-load-tap-changing (OLTC) transformer
and Static Var Compensators (SVC), is able to provide a
fast damping to otherwise persistent low damping modes of
power systems.

Static var compensators are shunt connected static genera-
tors and absorbers whose outputs are varied so as to control
specific parameters of the system. Since their first application
in the late 1970’s the use of SVCs in transmission systems
has been increasing steadily. By virtue of their ability to
provide continuous and rapid control of reactive power and
voltage, SVCs can enhance several aspects of transmission
system performance. Applications to date include the control
over voltage variations and prevention of voltage collapse
and also enhancement of transient stability and enhancement
of damping oscillations [8]. In the example power system
considered in this paper capacitors are included at specific
nodes as SVCs. The use of SVCs enables a weaker inter-
connection amongst generators by providing reactive power
near the load.

Transformers with tap changing facilities constitute an
important means of regulating voltage levels in spite of
fluctuating load. Usually many OLTC transformers are lo-
cated throughout the distribution network. The taps on these
transformers help to control reactive power flow between
subsystems. The control of single transformer will cause
changes in voltages at its terminals, it will also influence the
reactive power flow through the transformer. The resulting
effect on the voltages at other buses will depend on the
network configuration and load/generation and distribution.
In order to maintain the system voltage at required level the
regulators must, however have sufficient capacity to satisfy
the needed reactive power requirements [8].

It is important to consider the effect of OLTCs on the
power system while designing controllers. The effects of
the dynamics of OLTC with respect to voltage collapse,
stability and power transfer ability are considered in [9]–
[11]. In the works mentioned in [10], [11], the generators
feeding the OLTC are assumed as constant voltage sources
but the secondary voltage of the OLTC is affected by the
changes in the primary voltage as well as the load connected
to the OLTC. In this paper a mathematical model is presented

which includes the effect of OLTCs on other subsystems in
the grid as well as the effect of other subsystems on the
OLTC itself.

In most OLTC control schemes [8] the OLTC tap-settings
are changed to maintain a constant secondary voltage. In this
paper the decentralised control is designed to vary the tap
setting not to provide a constant secondary voltage but to
adjust it to damp the power-angle oscillations in the power
system. A stable OLTC controller is designed using robust
control techniques with guaranteed cost. This scheme thus
makes use of the OLTC as an effective control element and
not as a source of voltage collapse owing to its fixed voltage
settings [9]–[11].

In this paper, a numerical example of an interconnected
power system jumping between two load profiles are con-
sidered. The variations in the load profile is treated as
stochastic variations for the controller design. The controller
gains designed need to be switched in accordance with the
changes in the load. In this example static var compensators
and on-load-tap-changers are included for reactive power
and voltage control. The robustness and performance of
the design is validated through simulation of the system
with nonlinear plant model incorporating load variations and
controller switchings.

II. POWER SYSTEM MODEL

The main assumptions made in obtaining a linear model
for interconnected power system are [7]:
1. All loads are modeled as constant admittances [12].
2. The change in reactive power due to small changes in

generator angles is negligible [13].
3. Real power (Pm) and reactive power (Qm) inputs to the

generators and the reference voltage (Eu) to the OLTC
are controlled parameters.

The power system has n generators and t OLTCs; load buses
are eliminated to obtain the system dynamic model [7].

A. Algebraic Constraints on OLTCs

For the i-th OLTC let the primary voltage |ETi
| an

secondary voltage |ESi
| be related as

|ESi
| = ni|ETi

| (1)

where ni is the turns ratio of i-th OLTC. Let the reactive
power at OLTC nodes be QT = [QT1

, . . . , QTt
]
T . The

reactive power due to the reactor LTi
connected on the

secondary side of the OLTC is

QTi
=

|ESi
|2

2πfLTi

(2)

where f is the system frequency in Hz.
In this paper we consider the effect of tap-change only

on reactive part of the load. It is assumed that the real load
doesn’t change much with the changing tap position. This is
a common assumption in the literature [11].

For small variations in |ESi
| expressions (1) and (2) can

be written as:
∆QTi = 2

Q0

Ti

|E0

Si
|
∆|ESi |, (3)



∆|ESi | = ∆ni|E
0

Ti
| + n

0

i ∆|ETi | (4)

where superscript 0 is used with variables to denote their
equilibrium or steady-state value.

Reactive power equality constraint can be used to ob-
tain an expression for ∆|ET | in terms of input reactive
power ∆|Qm| and ∆n, where ∆n = [∆n1, . . . ,∆nt]

T and
∆|ET | = [∆ET1

, . . . ,∆ETt
].

Let KTi
= 2

Q0
Ti

|E0
Si

|
, substituting (4) in (3) we get

∆QTi
= KTi

(∆ni|E
0

Ti
| + n0

i ∆|ETi
|) (5)

Let [∆Qg1
, . . . ,∆Qgn+t

]T = [∆Qm ∆QT ]T and write
[

∆Qm

∆QT

]

=

[

N11 N12

N21 N22

] [

∆|Eg|
∆|ET |

]

(6)

where subscript g indicates generator and T indicates OLTC.
Let KT = diag(KTi

), Λn0
i

= diag(n0

i ), Λ|E0
Ti

| =

diag(|E0

Ti
|), and ΛTi

= diag(1/Ti) then from (5) and (6)
we can write

∆|ET | = M21∆Qm + M22∆n, (7)

where

M21 =
“

KT Λn0
i

+ N21N
−1

11 N12 − N22

”−1
`

N21N
−1

11

´

,

M22 = −
“

KT Λn0
i

+ N21N
−1

11 N12 − N22

”−1 “

KT Λ|E0
Ti

|

”

.

The above equation (7) gives the algebraic constraint the
system must satisfy at all times. In the next section we put
together the algebraic constraints derived in this section with
the dynamic equations for the generators and the OLTCs to
arrive at the interconnected system dynamic equations.

B. The System Dynamic Model

The swing equations which describe the generator dynam-
ics are [12]:

miω̇i + diωi + Pgi
= Pmi

, i = 1, . . . , n (8)

and the reactive power constraint equations are:

Qgi
= Qmi

, i = 1, . . . , n (9)

where δi is the angle between the generator rotor and a
reference frame rotating at the synchronous frequency; ωi

is the rate of change of angle δi; Pmi
is the real power input

and Qmi
is reactive power input of the i-th generator.

The swing equation (8) is linearized about the equilibrium
point to obtain a linear model for the interconnected system
[1], [13].

The dynamic equation for the tap changing of the i-th
transformer is given as

ṅi =
1

Ti

(|Eui
| − |ESi

|) (10)

and its linearised form is

∆ṅi =
1

Ti

(

|E0

ui
| + ∆|Eui

| − |E0

Si
| − ∆|ESi

|
)

=
1

Ti

(

∆|Eui
| − ∆ni|E

0

Ti
| − n0

i ∆|ETi
|
)

(11)

under steady state conditions |E0

ui
| = |E0

Si
|. Then equa-

tion (11) can be collected for all OLTCs and written as

∆ṅ = −(ΛTi
Λ|E0

Ti
| + ΛTi

Λn0
i
M22)∆n −

ΛTi
Λn0

i
M21∆Qm + ΛTi

∆|Eu|. (12)

The linearised power-flow relationship for generators and
OLTC (assuming that no real power is supplied at any OLTC
bus) can be written (with ∆Pgi

= 0, i = n + 1, . . . , n + t
and ∆Pg = [∆Pg1

, . . . ,∆Pgn
] as [7],

»

∆Pg

0t×1

–

=

»

R11 R12

R21 R22

– »

∆δg

∆δT

–

+

»

S11 S12

S21 S22

– »

∆|Eg|
∆|ET |

–

.(13)

We can eliminate ∆δT from the above equation (13),

∆Pg =
[

R̃
]

[∆δg] +
[

S̃1, S̃2

]

[

∆|Eg|
∆|ET |

]

, (14)

where R̃ =
[

R11 − R12R
−1

22
R21

]

, S̃1 =
[

S11 − R12R
−1

22
S21

]

, and S̃2 =
[

S12 − R12R
−1

22
S22

]

. The
swing equation for each generator is

∆δi = δi − δ0

i , ∆δ̇i = ωi, ∆δ̈i = ω̇i

ω̇i = −
di

mi

ωi −
1

mi

(∆Pgi
) +

1

mi

(∆Pmi
) (15)

These swing equations can be collected and written as a
vector equation in terms of states ∆δ and ∆n and inputs
∆Qm as follows

ω̇ = −ΛdΛmω − ΛmR̃∆δg

− Λm

[

S̃1 S̃2

]

[

∆|Eg|
∆|ET |

]

+ Λm∆Pm (16)

From (6), ∆|Eg| = N−1

11
∆Qm−N−1

11
N12∆|ET |, and further

using the expression for ∆|ET | in (7) we can write (16) as

ω̇ = −ΛdΛmω − ΛmR̃∆δg − Λm

“

S̃2 − S̃1N
−1

11 N12

”

M22∆n

−Λm

“

S̃1N
−1

11 − S̃1N
−1

11 N12M21 + S̃2M21

”

∆Qm + Λm∆Pm

(17)

We can write the linearised dynamic equations for the
entire system in a matrix form as,

2

4

∆δ̇g

ω̇
∆ṅ

3

5 = Ā

2

4

∆δg

ω
∆n

3

5 + B̄1∆Pm + B̄2∆Qm + B̄3∆|Eu|,(18)

where

Ā =

2

6

4

0n×n In×n 0n×t

−ΛmR̃ −ΛdΛm −Λm

“

S̃2 − S̃1N
−1

11
N12

”

M22

0t×n 0t×n −(ΛTiΛ|E0
Ti

| + ΛTiΛn0
i
M22)

3

7

5
,

B̄2 =

2

6

4

0n×n

−Λm

“

S̃1N
−1

11
− S̃1N

−1

11
N12M21 + S̃2M21

”

−ΛTiΛn0
i
M21

3

7

5
,

B̄1 =

2

4

0n×n

Λm

0t×n

3

5 , B̄3 =

2

4

0n×t

0n×t

ΛTi

3

5 ,
Λm = diag( 1

mi
)n
i=1,

Λd = diag( 1

di
)n
i=1.



III. SUBSYSTEM REPRESENTATION AND CONTROLLER
DESIGN

Each generator and OLTC are considered as subsystems of
the interconnected system and can be represented as follows:

Si : ẋi = Ai(η(t))xi(t) + Bi(η(t))ui(t)

+ Ei(η(t))ξi(t) + Li(η(t))ri(t), (19)
zi = Ci(η(t))xi + Di(η(t))ui,

ζi = Hi(η(t))xi(t) + Gi(η(t))ui(t),

where xi is state-vector, ui the control inputs, ξi ∈ R
pi

is the perturbation, ζi ∈ R
hi is the uncertainty output and

zi ∈ R
qi is the controlled output of the subsystem. The

input ri describes the effect of the subsystems Sj , j 6= i, on
the subsystem Si. The input ξi describes the effect of local
uncertain modeling errors in this subsystem. The variable
η(t) describes the mechanism of mode switching in the
system. It is assumed that η(t) is a homogeneous stationary
Markov process taking values in a finite state set K. Its
state transition rate matrix is Q := [qνµ]kν,µ=1

in which
qνµ ≥ 0, ν 6= µ and qνν = −

∑

µ6=ν qνµ. This process
will be assumed to be strictly stationary, its stationary initial
distribution π = [π1, . . . , πk] will be assumed to have the
property πj > 0, j = 1, . . . , k.

In the case of power systems let j indicate different load
profiles. The general structure of system matrices and signals
for subsystems representing generator and OLTC can be
obtained from (18) as follows.

For the generators:

Ai(j) =

»

Ā(i, i) Ā(i, n + i)
Ā(n + i, i) Ā(n + i, n + i)

–

,

Bi(j) =

»

B̄1(i, i) B̄2(i, i)
B̄1(n + i, i) B̄2(n + i, i)

–

,

Li(j) =

»

Ā(i, l) Ā(i, n + l)
Ā(n + i, n + l) Ā(n + i, n + l)

(20)

Ā(i, 2n + k) B̄1(i, l) B̄2(i, l)
Ā(n + i, 2n + k) B̄1(n + i, l) B̄2(n + i, l)

–

,

where the elements for example Ā(i, l) refers to (i, l)th

element of the matrix Ā and the signals are defined as,

xi(t) = [∆δi, ωi]
T

, ui(t) = [∆Pmi,∆Qmi]
T

,

ri(t) = [∆δl, ωl,∆nk,∆Pml,∆Qml]
T

where l = 1, . . . , n, and j 6= i; k = 1, . . . , t.

For the OLTC:

Ai(j) =
[

Ā(2n + i, 2n + i)
]

, Bi(j) =
[

B̄3(2n + i, i)
]

,

Li(j) =
[

Ā(2n + i, k), B̄1(2n + i, l), B̄2(2n + i, l)
]

.

and the signals are defined as,

xi(t) = [∆ni] , ui(t) = [∆|Eui|] ,

ri(t) = [∆nk,∆Pml,∆Qml]
T

where l = 1, . . . , n; k = 1, . . . , t and k 6= i.
Decentralised controller design for a subsystem repre-

sented by the equation (19) is done with the procedures

outlined in [7], which makes use of certain assumptions
about the magnitude of uncertain perturbations and inter-
connections between subsystems. Although perturbations and
interconnection signals are not known, their magnitude was
assumed to satisfy magnitude constraints expressed in terms
of time domain Integral Quadratic constraints of the form

E
R tl

0

`

‖ζi(t)‖
2 − ‖ξi(t)‖

2
´

dt ≥ −x′
i0Mixi0, (21)

E
R tl

0

“

P

µ6=i ‖ζµ(t)‖2 − ‖ri(t)‖
2

”

dt ≥ −x′
i0M̂ixi0, (22)

∀i = 1, . . . , N ;

here Mi = M ′
i > 0, M̂i = M̂ ′

i > 0 and {tl}
∞
l=1

,
tl → +∞, is a sequence of time instants. The sets of
admissible uncertainty inputs and admissible interconnection
inputs ξi(t), ri(t), satisfying (21) and (22), will be denoted
by Ξ,Π respectively.

The controllers considered are decentralized linear state
feedback controllers of the form

ẋc,i = Ac,i(η(t))xc,i(t) + Bc,i(η(t))xi(t);

ui = Kc,i(η(t))xc,i(t), (23)

where xc,i ∈ R
nc,i is the ith controller state vector.

Having the uncertainties, controller structure and Markov
jump parameters defined, we can find the decentralised
controllers as follows: Let τi > 0, θi > 0, i = 1, . . . , N , be
given constants, and θ̄i =

∑N
j=1,

j 6=i
θj . We consider a collection

of the game-type algebraic Riccati equations

Ai(j)
′
Xi(j) + Xi(j)Ai(j) + C̄i(j)

′
C̄i(j)

−Xi(j)[Bi(j)R
−1

i (j)Bi(j)
′ − B̄2,i(j)B̄

′
2,i(j)]Xi(j)

+
k

X

ν=1

qjνXi(ν) = 0, j = 1, . . . , k, (24)

where Ri(j) = D̄′
i(j)D̄i(j),

C̄i(j) =

»

Ci(j)

(τi + θ̄i)
1/2Hi(j)

–

, D̄i(j) =

»

Di(j)

(τi + θ̄i)
1/2Gi(j)

–

,

B̄2,i(j) =
h

τ
−1/2

i Ei, θ
−1/2

i Li

i

.

Associated with the Riccati equations (24) is a collection of
decentralized static state feedback controllers of the form

ui(t) = Ki(η(t))xi(t), (25)
Ki(j) = −R−1

i (j)Bi(j)
′Xi(j), (26)

and the corresponding systems

ẋi = (Ai(η(t)) + Bi(η(t))Ki(η(t)))xi(t). (27)

Furthermore, consider a set of vectors T = {
{

τi θi

}N

i=1
∈

R
2N , τ1 > 0, θi > 0} satisfying the condition: For all i =

1, . . . , N , equation (24) has a solution {Xi(j) = X ′
i(j) >

0, j ∈ K}, such that the jump parameter systems (27) are
mean-square stable.

When the set T is not empty, then the worst case perfor-
mance achievable via decentralised controller (23) is,

inf
ui, i=1,...,N

sup
Ξ,Π

E

Z ∞

0

N
X

i=1

‖zi‖
2
dt

= inf
T

N
X

i=1

x
′
i0

"

k
X

j=1

πjXi(j) + τiMi + θiM̂i

#

xi0. (28)



Suppose the infimum on the right-hand side of (28) be
attained at τ∗

i , θ∗i , i = 1, . . . , N . Then, the minimax optimal
controller of the optimal worst-case control problem on the
left-hand side of (28) is given by the decentralized controller
(25), (26) in which τi = τ∗

i , θi = θ∗i , i = 1, . . . , N .

IV. EXAMPLE: CONTROL DESIGN FOR A NINE-BUS
POWER SYSTEM

To demonstrate the design, a nine bus power grid system
consisting of 3 generator buses, 3 load buses, 2 SVSs and one
OLTC is considered here. One-line diagram of the example
system is shown in Figure 1. The OLTC node has a purely
inductive load connected to it. Each machine is considered a
subsystem interconnected by two weak tie-lines to the other
two machines.

The jump parameter three-machine system switches be-
tween two load profiles. The load profiles are given in
Table I. The two load profiles are chosen to have an open-
loop system with small damping. Between the two load
profiles there is a big change in both the real and reactive
loads. The PLi

are in MW and QLi
are in MVars. The

system jumps between the above two load conditions in
a random way, described by the Markov chain parameter
η(t) whose transition probabilities are determined by the
parameters q12 = q21 = 0.1, and the initial distribution is
π = [0.5 0.5]′.

The numerical value of system parameters is as follows:
line impedances are: z15 = 0.0576 pu, z27 = 0.0625 pu,
z39 = 0.0586 pu, z45 = (0.5 + 4.3) × 10−3 pu, z56 =
(0.9 + 4.6) × 10−3 pu, z47 = (1.6 + 8) × 10−3 pu, z78 =
(0.4+3.6)×10−3 pu, z89 = (0.6+5)×10−3 pu, and z69 =
(0.2 + 8.5)× 10−3 pu. All the three machines are assumed
to have unity damping, i.e., di = 1 s/rad, i = 1, 2, 3; the
inertias of the generators are: m1 = 8.1 s2/rad, m2 =
10.39 s2/rad, m3 = 8.59 s2/rad and the synchronous
impedances are: xd1

= 0.146 pu, xd2
= 0.155 pu, xd3

=
0.13 pu (on a 100 MVA base).

Bus Profile 1 Profile 2
1 23 + 0.14 185 + 110

2 31 + 13.8 100 + 77

3 21 + 14 60 + 78

4 0 − 10 0 − 15

5 −25 − 10 −125 − 40

6 −20 − 15 −100 − 45

7 0 + 4 0 + 5

8 −30 − 10 −120 − 35

9 0 + 3 0 + 4

TABLE I
LOAD PROFILES (MW, MVARS)

A. Controller
The interconnected power system model in (18) for the

system in Figure 1 is written as subsystems Si given in (19).
Numerical values of matrices Ei(j), Ci(j), Di(j), Hi(j) and
Gi(j) used for this design for generator subsystems are

[Ci(j) Di(j)] = 0.1 ∗

»

I2 02

02 I2

–

,

Fig. 1. One-Line Diagram on Nine-Bus Three-Generator System

Ei(j) =

»

0.1
0.1

–

, [Hi(j) Gi(j)] = 0.2 ∗

»

I2 02

02 I2

–

,

and for OLTC subsystems are

[Ci(j) Di(j)] =

»

0.1 0.0
0.0 0.1

–

,

Ei(j) =
ˆ

0.1
˜

, [Hi(j) Gi(j)] =

»

0.2 0.0
0.0 0.2

–

.

Also, we let Mi = M̂i = I2, and xi,0 = [0.1 0.1]′

for the generators; Mi = M̂i = 1 and xi,0 = 0.141
for the OLTC. The controller is obtained by solving the
Riccati equations (24) by using the convex algorithm given
in [16] and the cost is globally minimised. With the above
chosen parameter values, it was found that the function (28)
attained a minimum at: τ∗

1
= 0.0220, τ∗

2
= 0.0308, τ∗

3
=

0.0249, τ∗
4

= 0.0001, θ∗
1

= 0.0132, θ∗
2

= 0.0163, θ∗
3

=
0.0093, θ∗

4
= 0.0001, resulting in the minimax value of

the performance cost 0.0098. These values of the parameters
were then used in (25), (26) to obtain a controller as follows:

[K1(1) K1(2)] =

»

−0.1196 −1.2244 −0.1583 −1.3515
0.0679 0.6950 0.1261 1.0766

–

,

[K2(1) K2(2)] =

»

−0.1240 −1.4628 −0.1551 −1.4820
0.0941 1.1101 0.0813 0.7769

–

,

[K3(1) K3(2)] =

»

−0.1138 −1.2856 −0.1399 −1.2652
0.0591 0.6675 0.0493 0.4455

–

,

[K4(1) K4(2)] =
ˆ

−0.9362 −0.9303
˜

.

B. Simulation Results

Simulation is performed for the nonlinear power system
dynamics, given by equations (8) and (10), with the decen-
tralised linear controller obtained above. The following initial
conditions were used for the simulation:

∆δi = 0.1,∆ωi = 0.01, i = 1, 2, 3; ∆n = 0.005.

The units for ∆δ’s and ∆ω’s are radians and radi-
ans/second respectively. The load conditions and the cor-
responding controllers are switched at t = 40s, 80s and
120s. Simulations show that the disturbance created by initial
conditions and due to load variations are contained rapidly.
Figures 2 and 3 compares the responses of generators and
OLTC tap-setting with and without controller. From the
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Fig. 2. Nonlinear simulation Generator 1 to 3 rotor angles (∆δ1 to ∆δ3).
The solid line indicates the closed loop response (with controller) and the
dash line indicates the open loop response.
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Fig. 3. OLTC tap position (∆n) - thick line indicates the response with
controller and dotted without controller

figures it can be seen that the oscillations are damped much
faster than their natural damping time.

In most power systems OLTC controllers are set to achieve
a constant secondary voltage but in this decentralised con-
troller design the set voltage of the OLTC is varied to damp
the oscillations. This can be seen in Figure 3. The OLTC
voltage setting changes by a considerable amount just when
the oscillation magnitude peaks showing the effect of the
decentralised control of the OLTC tap-setting.

Further to evaluate the robustness of the system under
load perturbations, the load and generation in Profile 1 is
reduced by -20% and Profile 2 by +20%. Simulations are
carried out with the controllers designed for the nominal
system and the nonlinear dynamics of the perturbed grid
conditions. The simulation shows that there is very little
degradation in performance proving the robustness of the
designed controller.

V. CONCLUSION

In this paper power system model incorporating the dy-
namics of generators and OLTC is presented along with
a method to design robust controller using Markov jump
parameter systems framework. This paper demonstrates the
effectiveness of a decentralised robust controller for a system
whose load profiles vary and give rise to lightly damped
oscillation modes. The simulations results show that the
controller, with the use of OLTC, is capable of quickly
damping out the disturbances induced in the power system.
The simulation shows that the switching transients of the
controllers when the load profile changes are also contained.
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