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Abstract A double tuned mass damper (DTMD) for suppressing oscillations of civil structures is proposed
in this study. DTMD is a combination of an undamped TMD and a smaller TMD. The impact of parameters
on the essential characteristics, as well as the vibration absorption capacity of DTMD, is investigated. Using
genetic algorithms (GA), the optimum parameters of DTMD are determined by minimizing the peak dynamic
magnification factor of structural responses for a wide range of excitation frequencies. The effectiveness and
robustness ofDTMDare also comparedwith those of the optimizedTMDhaving a similarweight as theDTMD.
Furthermore, multi-objective optimization designs of DTMD (for both two-objective and three-objective) are
also developed here. This study indicates that the DTMD is more effective than a single TMD. If keeping a
similar efficiency to that of an optimized TMD, the optimum DTMD has a broader domain for choosing the
frequency and damping ratio. In this sense, a DTMD is much more robust than a single TMD.

Keywords Double tuned mass damper · Tuned mass damper · Vibration control · Passive damper · Genetic
algorithms · Multi-objective optimization

1 Introduction

The high demand for living spaces and offices in most big cities around the world [1, 1] in the past decades
has led to a large number of high-rise buildings and office towers built. On the other hand, advances in the new
material field and construction technology helped civil works recently constructed to be taller and lighter [1,
1]. However, they become more sensitive to external loadings such as earthquakes and extreme winds [1]. For
this reason, the safety of building structures, as well as the comfort of occupants, is always a vital engineering
issue [2]. Thus, it is essential to find a suitable and effective solution for reducing the dynamic responses of
buildings, especially for super-tall towers.

Many solutions have been proposed and applied to mitigate structural responses. In the civil engineering
field, adding damping devices to structures is one of themost common technologies adopted to reduce structural
oscillations [1, 1]. In this approach, the tunedmass damper (TMD) is one of themost popular types.Many high-
rise buildings in the world have been equipped with one or some TMDs and confirmed to significantly suppress
oscillations such as the SydneyTower, CitigroupCenter skyscraper inNewYork, Taipei 101 skyscraper, Crystal
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Tower Building in Japan or Berlin Television Tower [4–6]. Although TMDs are passive vibration control
devices, they have been proven to be simple and effective dampers [1, 4, 6–11] Furthermore, a TMD does not
need a well-designed control algorithm and an external energy source [3, 3, 7, 12, 13]. Thus, using TMDs
for reducing undesired vibrations is still a suitable strategy, and this strategy has also attracted attention from
researchers. To enhance the performance and robustness of TMD, researchers have proposed and developed
various modified types of TMD. For instance, Ikago et al. [14] introduced a tuned viscous mass damper (VMD)
as a new seismic control device. A hybrid damping system was also developed by Jafarabad et al. [15]. This
system was composed of a tuned mass damper (TMD) fixed on a friction damper device (FDD) to reduce
the seismic vibrations of structures. Cao [3] proposed a hybrid vibration absorber composed of a tuned liquid
column damper (TLCD) fixed on an undamped TMD. In these research works, obtained results have shown
that improved TMD systems are superior to the traditional ones.

On the other hand,magnetorheological elastomers (MREs) have also been studied and applied inmitigating
structural vibrations. To some extent, MREs can be considered as a solid form of magnetorheological fluid
(MRF). Hence, they can change their stiffness or elastic modulus if the magnetic field changes and then
instantly revert to their initial status once the magnetic field is removed. Due to this smart characteristic of
MREs, MREs have been utilized to develop smart devices such as MRE isolators [16] or MRE absorbers
[17, 17]. In particular, Zhu and Rui [17] proposed a semi-active vibration control system consisting of a
magnetorheological elastomer (MRE) and a magnetorheological damper (MRD). The experimental results
showed that the performance of the proposed system is significantly higher than that of the system only using
the MRD. Sun et al. [18] introduced a magnetorheological elastomers-based tuned mass damper (MRE-TMD)
to protect buildings from earthquakes. The innovation of this damper was based on the multi-layered MRE
structure developed by Yang et al. [16]. Both the experimental and simulation results of the research showed
the superiority of semi-active MRE-TMD over passive TMDs. Although using an MRE-TMD for structural
response suppression is a potential approach, such anMRE-TMD still needs an external current supply source.
Additionally, smart materials such as MREs are usually challenging to manufacture, and therefore, developing
an MRE-TMD is quite expensive.

Equipping a double tuned mass damper (DTMD) on high-rise buildings to suppress structural vibrations
induced by external forces is presented in this paper. Here, the proposed DTMD consists of an undamped
TMD (denoted as TMD1) and a smaller regular TMD (denoted as TMD2) as Fig. 1. This DTMDmodel differs
from DTMD models in previous research groups such as Li et al. [19] and Shen et al. [20]. In the works of Li
et al. [19] and Shen et al. [20], DTMDmodels were composed of two regular TMDs. On the other hand, in our
previous research work, a DTMD (consisting of two regular TMDs) used to reduce the structural responses
has been developed (unpublished). The results from that research showed that the DTMD reaches maximum
effectiveness if the damping ratio of larger TMD approaches zero. As a coincidence, this is also in accordance
with the conclusions in the paper of Li et al. [19]. Unlike multiple tuned mass dampers (MTMD), a DTMD
with an undamped primary TMD is remarkable convenient for the maintenance and installing process because
of its simple configuration. Thus, these are reasons why a larger TMD undamped is used in the DTMD model
of this study.

The paper is organized as follows. After the introduction, Sect. 2 shows an analysis model of the system
coupled with a DTMD. Section 3 presents the parametric study of a DTMD for absorbing harmonically
forced vibrations through numerical examples. In the next section, the optimal parameters of DTMD are also
determined by solving its optimization problems. Genetic algorithms, one of the most powerful optimization
algorithms, are utilized in this study. Then, the effectiveness and robustness of the optimum DTMD are
compared with those of an optimized TMD that has the same weight as the DTMD. Furthermore, multi-
objective optimal designs (for both two and three objectives) of DTMD are also developed and discussed in
Sect. 5. Finally, conclusions drawn from this study are presented in Sect. 6.

2 Modeling of the DTMD-structure system

According to Gao et al. [10], natural frequencies of civil structures are normally separate. In this investigation,
the DTMD is considered for mitigating a specific vibration mode of a multi-degree of freedom (MDOF)
structure. Hence, the primary structure can be simplified as a single degree of freedom (SDOF) system, but the
frequency of the SDOF system must be equal to the frequency of the mode controlled. The calculation model
of the SDOF structure with a DTMD subjected to an external force is shown in Fig. 1, in which the DTMD is
composed of an undamped TMD1 and a TMD2.
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Fig. 1 Analysis model of the DTMD-structure system

2.1 Equations of motion

The equations of motion of the DTMD-structure system can be expressed as follows:

M2Ü2 + C2U̇2 + K2U2 � −M2(Ü0 + Ü 1) (1)

M1Ü1 + K1U1 − C2U̇2 − K2U2 � −M1Ü0 (2)

M0Ü0 + C0U̇0 + K0U0 − K1U1 � F(t) (3)

In Eqs. (1), (2) and (3), U0 is the absolute displacement of the structure, while U1 and U2 are the rel-
ative displacements of the TMD1 mass and the TMD2 mass, respectively. This means that the absolution
displacement of the TMD1 mass isU absolute

1 � U1 +U0 and the absolution displacement of the TMD2 mass is
U absolute
2 � U2+U absolute

1 � U2+U1+U0. The structure has the generalized stiffness (K0), damping coefficient
(C0), and mass (M0). The mass and the stiffness of TMD1 are, respectively, M1 and K1. The parameters of
TMD2 include the mass M2, the stiffness K2, and the damping C2. Here, F(t) is the external force acting on
the structure, which is considered as a harmonic force with the frequency �. The intensity of loading (F0)
is expressed by a nondimensional ratio � corresponding to the percentage of structural weight, as Gao et al.
[10]:

F(t) � F0sin(�t) � �M0gsin(�t) (4)

In Eq. (4), � is the external force intensity factor and g is the acceleration of gravity. In addition, for the
sake of simplicity and convenience, let us introduce the following quantities:

The natural frequency of the TMD1

ω1 �
√

K1

M1
(5)
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The natural frequency of the TMD2

ω2 �
√

K2

M2
(6a)

The damping ratio of the TMD2

ξ2 � C2

2M2ω2
(6b)

The natural frequency of the primary structure

ω0 �
√

K0

M0
(7a)

The damping ratio of the primary structure

ξ0 � C0

2M0ω0
(7b)

By combining Eqs. (1–4), the equations of motion governing DTMD-structure system can be written in
matrix form:

MÜ + CU̇ +KU � F (8)

in which

M �
⎡
⎣ M0 0 0
M1 M1 0
M2 M2 M2

⎤
⎦ (8a)

C �
⎡
⎣C0 0 0

0 0 −C2
0 0 C2

⎤
⎦ (8b)

K �
⎡
⎣ K0 −K1 0

0 K1 −K2
0 0 K2

⎤
⎦ (8c)

F �
⎡
⎣ F0sin(�t)

0
0

⎤
⎦ (8d)

U �
⎡
⎣ U0

U1
U2

⎤
⎦ (8e)

U̇ �
⎡
⎣ U̇0

U̇1

U̇2

⎤
⎦ (8f)

Ü �
⎡
⎣ Ü0

Ü1

Ü2

⎤
⎦ (8g)

It is noted that the values of elements in matrices M, C, K of some papers [21, 22] differ from Eqs. (8a),
(8b) and (8c). This is becauseU0 is the absolute displacement of the structure, whileU1 andU2 are the relative
displacements of the TMD1 mass and the TMD2 mass, respectively (as previously mentioned in this paper).
In the case of choosingU0, U1 andU2, respectively, are the absolute displacements of the structure, the TMD1
mass and the TMD2 mass, then the values of terms in Eqs. (8a), (8b) and (8c) will be similar to those in
the general formulas M, C, K of Khatibinia et al. [21] or Etedali and Rakhshani [22]. In this study, some
nondimensional quantities are denoted as follows:
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The mass ratio of the TMD1

μ1 � M1

M0
(9a)

The mass ratio of the TMD2

μ2 � M2

M0
(9b)

The mass ratio of the DTMD

μ � M1 + M2

M0
� μ1 + μ2 (9c)

In addition, the mass ratio between TMD1 and TMD2:

μ21 � M2

M1
� μ2

μ1
(9d)

Thus, Eq. (8) can be rewritten as follows:

MÜ + CU̇ +KU � F (10)

where

M �
⎡
⎣1 0 0
1 1 0
1 1 1

⎤
⎦ (10a)

C �
⎡
⎣2ξ0ω0 0 0

0 0 −2μ21ξ2ω2
0 0 2ξ2ω2

⎤
⎦ (10b)

K �
⎡
⎣ω2

0 −μ1ω
2
1 0

0 ω2
1 −μ21ω

2
2

0 0 ω2
2

⎤
⎦ (10c)

F �
⎡
⎣ �gsin(�t)

0
0

⎤
⎦ (10d)

U �
⎡
⎣ U0

U1
U2

⎤
⎦ (10e)

U̇ �
⎡
⎣ U̇0

U̇1

U̇2

⎤
⎦ (10f)

Ü �
⎡
⎣ Ü0

Ü1

Ü2

⎤
⎦ (10g)
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Table 1 The first mode of the 76-story tower [24]

Parameter Value

The natural frequency ω0 1.0 rad/s
The damping ratio ξ0 1%

2.2 Responses of the system DTMD-structure

The dynamic magnification factor (DMF) of the structural response in the steady state is given by [23]

DMF � MaxU0

(F0/K0)
(11)

Let us introduce the following dimensionless quantities.
The frequency ratio is

α � �

ω0
(12)

The tuning ratios (β1, β2) of TMD1 and TMD2, respectively, are denoted by{
β1 � ω1

ω0

β2 � ω2
ω0

, (13a)

and the tuning ratio of DTMD is set as

β12 � ω1
ω2

� β1
β2

(13b)

Consequently, the structural response is a function of α, β1, β2, ξ0, ξ2, μ1andμ2. Note that, the values of
μ1andμ2 can be computed through μ and μ21 from Eqs. (9c) and (9d). Apart from ξ0 and α given by itself,
the effects of β1, β2, ξ2, μ1andμ2 on the structural responses are investigated through parametric studies in
the next section.

3 Parametric investigation

A parametric study involving the effects of the frequency range, mass ratios, and damping ratio on the effec-
tiveness of DTMD is conducted through numerical examples. In the numerical model, the 76-story office tower
in Melbourne, Australia, used in the paper of Varadarajan and Nagarajaiah [24], is applied to demonstrate the
potential of installing a DTMD for vibration control. The first mode properties of the building are listed in
Table 1. In addition, a range of excitation frequency corresponding to 0.5 ≤ α ≤ 1.5 is considered, and the
external force is assumed by the intensity factor � � 0.003.

3.1 Effects of the mass ratios µ, µ21

With the mass ratio (μ) of 0.02, Fig. 2 describes the frequency response curve of the building for five different
cases of μ21. In the figure, the damping ratio ξ2 of TMD2 is chosen to be 0.20, while the tuning ratios are
assumed as β1 � β2 � 1. It can be seen in Fig. 2 that the DTMD is effective in controlling vibrations if the
ratio of μ21 is chosen in (0, 1). In the case of μ21 � 0, the DTMD becomes a single undamped TMD (TMD1).
If the mass of TMD2 equal to the TMD1 mass (μ21 � 1), the efficiency of DTMD is less significant. In this
case, the structural response curve is similar to (but lower than) the curve of the system without DTMD. On
the contrary, when the TMD2 mass is larger than the mass of TMD1 (μ21 > 1), the control performance of
DTMD is not significant. As observed in Fig. 2, a DTMD is no longer effective if the value of μ21 is large. In
the case of μ21 � 10, the structural response curve is most close to the response curve of the building without
DTMD.

Figure 3 depicts the effect of the ratio μ21 on the peak dynamic magnification factor curve of the structure
in a range ofμ21 from 0 to 1. It is noted that the peak dynamic magnification factor (DMFmax) of the structural
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Fig. 2 The structural response curve for different values of μ21

Fig. 3 The effect of μ21 on DMFmax curve for different values of μ

response is defined by Eq. (15) in the wide frequency range corresponding to 0.5 ≤ α ≤ 1.5. As observed
in Fig. 3, the minimum value of DMFmax decreases from 13.77 to 8.62 when μ increases from 1 to 3%. This
means that the effectiveness of DTMD is improved significantly asμ rises. Furthermore, there exists an optimal
value of μ21 corresponding to each given value of μ, and this optimum value also increases if the mass ratio μ
increases. In the figure, the optimum value of μ21 is 0.04 at μ � 0.01, while this value is 0.055 for μ � 0.02
and 0.07 for μ � 0.03.

3.2 Effects of the tuning ratios β1,β2, β12

The effect of the tuning ratio β12 on the DMFmax curve of the building response for five different values of β1
is described in Fig. 4. In this investigation, the tuning ratio of DTMD (β12) is considered in [0.5, 1.5], while
the damping ratio of TMD2 (ξ2) is 0.2, the value of μ � 0.02 and the value of μ21 � 0.1. Obviously, there is
a nadir in each DMFmax curve. This means that there exists an optimum value of β12 corresponding to each
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Fig. 4 The effect of β12 on DMFmax curve with different values of β1

value of β1 given to minimize the value ofDMFmax. The variation in this optimal value in theDMFmax curve
is from 0.9 to 1.2 when the tuning ratio of TMD1 (β1) changes within [0.8, 1.2]. Moreover, the effectiveness
of DTMD is improved in the case that the value of β1 increases from 0.8 to 1.1. In the figure, the lowest point
value of DMFmax curve is 34.1 corresponding to β1 � 0.8, and this value decreases to 8.613 in the case of
β1 � 1.1.

3.3 Effects of the damping ratio ξ2

Figure 5 presents the change of the DMFmax curve in five different cases of the damping ratio ξ2, while the
tuning ratio is chosen β2 � 1 and the ratio μ2/μ1 is 1/10. In the calculation, the values of ξ2, respectively, are
0.1, 0.2, 0.3, 0.4 and 0.5. It is observed in Fig. 5 that the lowest point value of the DMFmax curve decreases
from 13.75 to 7.89 as ξ2 increases from 0.1 to 0.3. However, this value is increased again (from 7.89 to 10.43)
when ξ2 changes from 0.3 to 0.5. In the figure, a smaller ξ2 corresponds to the optimum value of β1/β2 that
is larger. For instance, the optimal value obtained of β12 is 1.045 at ξ2 � 0.5, but this value is 1.175 as the
damping ratio ξ2 decreases to 0.1.

Therefore, it can be concluded that (i) a DTMD is effective when the mass ratio of DTMD(μ21) is in the
range of (0, 1), and (ii) there exists a set of the optimum values of μ,μ21, β1, β2 and ξ2 to maximize the
performance of a DTMD in mitigating the building vibrations.

4 Effectiveness and robustness of dtmd

4.1 Parametric optimization

The desired outcome of the parametric optimization is to minimize the value ofDMFmax obtained by sweeping
the range of excitation frequency which corresponds to the frequency ratio within [α1, α2]. The objective
function of DMFmax can be given by

Obj � {DMFmax → min} (14)

here, the value of DMFmax is determined by Eq. (15), while α1 and α2 are the lower and upper limit of the
frequency ratio. The variables of the objective function in Eq. (14) include the damping ratio, mass ratios and
tuning ratios. It is, however, a challenge to obtain a closed-form solution for a set of optimum parameters of a
DTMD. Therefore, using a powerful algorithm to search for the optimal or near-optimal solution for the above
optimization problem is necessary. Nowadays, there are many techniques adopted for optimization problems
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Fig. 5 The change of the DMFmax curve for different values of ξ2

Table 2 Optimum parameters of DTMD

Symbol β
opt
1 β

opt
2 μ f i xed μ

opt
21 ξ

opt
2

Value 1.041 0.970 0.020 0.088 0.246

in many fields. However, genetic algorithms (GAs), an optimization technique based on a natural selection
process, are well known as a potential optimization approach [25, 26]. Using GAs in the Optimization Tool
of MATLAB, Table 2 reports the optimum parameters of DTMD obtained in the case of μ � 0.02, while the
optimal parameters of a single TMD with the same weight as the DTMD are ξ

opt
tmd=0.0883 and β

opt
tmd � 0.9784.

Here, the input parameters of the building are taken from Table 1; the frequency ratio (α) is within [0.5, 1.5],
and the ratio � is unchanged to be 0.003.

4.2 Comparisons between DTMD and TMD

(a) Performance index

The effectiveness of each damper in reducing the structural responses is evaluated through two of the major
indices, which are the maximum dynamic magnification factor (DMFMax) and the root-mean-square of the
peak displacement response (RMSU0 ) of the building. It is also noted that the damper which gives the smaller
value of DMFMax or RMSU0 is more effective. Here, the peak dynamic magnification factor (DMFMax) of the
structural response within the frequency range which corresponds to [α1,α2] is given by

DMFMax � Max{U0}α2α1
/(F0/K0) (15)

Furthermore, the root-mean-square (RMS) of the peak displacement response (e.g., Wu et al. [27]; Xue
et al. [28]) can be computed by the following formula:

RMSUo �
√∑n

1 (U 0i )
2

n
(16)

in which U0i is the value of peak displacement response corresponding to αi .

(b) Effectiveness of DTMD
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Table 3 DMFMax and RMSU0 of each absorber

Configuration DMFMax RMSU0

Uncontrolled 50.00 0.264
Optimum TMD 8.567 0.126
Optimum DTMD 7.398 0.120

Table 3 reports evaluation indices of both of DTMD and TMD optimized in the case of μ � 0.02. For the
case of the uncontrolled building, DMFMax and RMSU0 of the structural response are, respectively, 50.0 and
0.264. As observed in Table 3, the values of DMFMax and RMSU0 of the building equipped with the DTMD
are smaller than those of the system coupled with the TMD, respectively. Thus, it can be concluded that the
effectiveness of the optimum DTMD is higher than that of TMD which has the same weight as the DTMD.
In particular, with the same value of μ � 0.02, the values of DMFMax and RMSU0 for the building with the
optimized DTMD are 7.398 and 0.120, while these values of the system with the optimum TMD are 8.567
and 0.126, respectively. In this numerical example, the peak dynamic magnification factor of the structural
response is reduced by 85.2% if the building is equipped with the DTMD optimized.

(c) Robustness of DTMD

It is, in fact, not easy to exactly measure the natural frequency of structures in the civil engineering area. Apart
from the error in determining the natural frequency of structures (Yamaguchi and Harnpornchai [29]), there
are different reasons leading to the change of the structural stiffness such as environment loadings or replaced
components of the structure (Xue et al. [28]). As the structural stiffness (K0) varies, the natural frequency (ω0)
and the damping ratio (ξ0) of the structure also change. Therefore, to evaluate the robustness of a DTMD, a
study on the impact of the drift in the structural stiffness is carried out in this section.

Figure 6 shows the robustness against the variation in the structural stiffness,εK0 , for both of the optimum
DTMD and the single TMD optimized. In the figure, the drift of the building stiffness is considered in the range
of [-30%, 30%]. It is also noted that the mass ratio μ � 0.02 is unchanged in the calculation. As observed
in Fig. 6, DTMD and TMD optimized have the largest effectiveness at the nominal stiffness εK0 � 0%.
This means the values of DMFmax of the building response in cases with the DTMD and with the TMD are
7.398 and 8.567, respectively (similar to the values of DMFmax in Table 3). Nevertheless, the DTMD and
TMD optimized become non-optimized vibration absorbers because of the structural stiffness changes. In this
sense, the performance of each damper is decreased. From Fig. 6, it can be concluded that the robustness
of the DTMD is not better than that of the TMD for resisting the drift of the structural stiffness. However,
if remaining the same level of efficiency as the optimized TMD, the DTMD offers a lot of options for the
frequency and damping ratio to enhance the robustness of DTMD. This will be confirmed in the next section
of multi-objective optimal designs of DTMD as well.

(d) Oscillations of the TMD1 and TMD2 in DTMD

In order to further understand how the DTMD vibrates, Fig. 7 shows the DMF curves of the TMD1 and
TMD2 of the optimum DTMD. Moreover, Fig. 7 also includes the curves of the structure with and without the
optimal DTMD. It is seen that the value of DMFmax in the uncontrolled system is 50.0, while this value of
the system containing the DTMD is 7.398. For the TMD1 and TMD2 in the DTMD, they oscillate with large
amplitudes. Although TMD2 is much smaller than TMD1 (μ21=0.088, see Table 2), the maximum vibration
amplitude of TMD2 ismuch larger than that of TMD1 (139.914 compared with 50.862). In other words, TMD2
plays a vital role in the DTMD, especially the damping coefficient of TMD2. Although the mass of TMD2 is
much smaller than that of the optimized single TMD having the same weight as DTMD, the damping ratio
TMD2 is much greater than that of the single TMD (ξopt2 � 0.246 in Table 2 compared with ξ

opt
tmd � 0.0883).

In addition, to have a clearer look at the vibration amplitude and phase of the DTMD-structure system, the
natural frequencies of the system and the mode shapes corresponding to these frequencies are depicted in
Fig. 8. In this calculation, the natural frequencies of the system obtained are 0.85295, 1.0022 and 1.1813 rad/s.
The mode shapes displayed in Fig. 8 also confirm that the oscillation of the TMD2 is the largest in all modes.
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Fig. 6 The robustness against the change of K0 of DTMD and TMD

Fig. 7 DMF curves of TMD1 and TMD2 of the optimized DTMD (with μ=0.02)

5 Multi-objective optimal design

In this study, three core objectives considered for multi-objective optimal designs of DTMD are the perfor-
mance, robustness and weight of DTMD. We will discuss and develop multi-objective optimization problems
of DTMD in this section.

5.1 Two-objective optimization of DTMD

DTMD is a damping device added to the main structure to reduce structural vibrations. Due to the safety of the
primary structure, the weight of DTMD (or the mass ratio μ) needs to be restricted. If the mass ratio is firstly
chosen to satisfy required standards of design, the remaining two important targets including the effectiveness
and robustness of DTMD will be considered. The aim of this optimization problem is to maximize both the
vibration absorption capacity and the robustness of DTMD.
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Fig. 8 Mode shapes of the DTMD-structure system

(a) Establishing objective functions

In this study, the effectiveness of DTMD is evaluated through either the target value of DMFmax or the DMFmax
reduction. Here, the target value of DMFmax and the DMFmax reduction are denoted by (DMFmax)

target and ψ
(%), respectively. The DMFmax reduction can be calculated by

ψ � (DMFmax)uncontrolled − (DMFmax)
with DTMD

(DMFmax)uncontrolled
100% (17)

The value of (DMFmax)
uncontrolled is 50.0 as reported in the previous section. Hence, corresponding to each

DMFmax reduction (ψ%) given, the target value of DMFmax will be determined by Eq. (17). Thus, the objective
function for the effectiveness of DTMD is described as follows:

Obj_effectiveness : {DMFmax − (DMFmax)
target} → min (18)

On the other hand, the robustness of the absorber is evaluated by the changing domain of the structural
stiffness [−χ1%, +χ2%]. From Fig. 6, there is difference between two branches of the DMFmax curve. Thus,
the values of χ1 and χ2 will be different, however, the difference can be not much. For the sake of simplicity
and reduce variables in the objective function, let us assume that χ1 � χ2 � χ . This means that the DTMD still
maintains the similar level of efficiency (or better), while the structural stiffness is varied from −χ% to +χ%.
It is noted that the damper which gives the larger value of χ% is more robust. In the range of [−χ%,+χ%],
the bottom of the DMFmax curve will be quite flat because all of points on this range will approach to the
value of (DMFmax )

target . The objective function for the robustness of DTMD can be established as follows:

Obj_robustness :
n∑

i�1

{
(DMFmax)

χi% − (DMFmax)
target}2 → min (19)

In Eq. (19), n is the number of chosen points on the DMFmax curve in the domain of [−χ%,+χ%]. For
the sake of simplicity, choosing the distance between points within [−χ%,+χ%] is equal. From there, χi%
can be determined by

χi% � −χ% +
2χ%

n − 1
(i − 1) (20)

By combining Eq. (18) and Eq. (19), two-objective optimization function of DTMD is given as follows:

Two_Obj �
⎧⎨
⎩

{DMFmax − (DMFmax)target} → min
n∑

i�1
{(DMFmax)χi% − (DMFmax)target}2 → min (21)
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Fig. 9 DMFmax curve for two-objective optimal designs of DTMD (with μ � 0.02)

Table 4 Optimal parameters of DTMD for two-objective optimal designs

ψ DMFmax β1 β2 μfixed μ21 ξ2 χ%

85.2% 7.398 1.041 0.970 0.020 0.088 0.246 0
83% 8.5 1.033 0.952 0.020 0.080 0.192 7
81% 9.5 1.044 0.941 0.020 0.099 0.205 10
79% 10.5 1.057 0.931 0.020 0.121 0.216 15

Obviously, apart from μ,μ21, β1, β2 and ξ2, χ% is also a variable of the objective function Eq. (21).

(b) Numerical results

Using GAs in the Optimization Tool of MATLAB and the two-objective function in Eq. (21), Fig. 9 presents
the DMFmax curves for two-objective optimal designs (both the robustness and effectiveness) of DTMD. The
optimal parameters of DTMD for different cases of ψ are reported in Table 4. In the calculation, the mass
ratio is fixed (μ � 0.02) and the value of n is 5. As observed from Fig. 9, the effectiveness of DTMD will be
decreased if one tries to enhance the robustness of DTMD. In the specific case of ψ � 83%, the performance
of DTMD is still better than that of the optimal TMD (DMFmax � 8.5 of DTMD compared with 8.567 of the
TMD), and the DTMD robustness against the drift of the structural stiffness is the range of [−7%, 7%].

5.2 Three-objective optimization of DTMD

(a) Establishing objective functions

In this part, DTMD is optimized for three main objectives including the performance, robustness and weight
of DTMD, in which the weight of DTMD is evaluated through the nondimensional quantity μ. Here, the mass
ratio μ is considered in the range of [1%, 3%] and X% is not exceeded to 30%. The three-objective function
of DTMD is established as follows:

Three_Obj �

⎧⎪⎪⎨
⎪⎪⎩

{DMFmax − (DMFmax)target} → min
n∑

i�1
{(DMFmax)χi% − (DMFmax)target}2 → min

μ → min

(22)
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Fig. 10 Pareto optimization surface for the multi-objective optimal designs of DTMD

(b) Numerical results

It is noted that finding solutions of a three-objective optimization problem is a challenge. Thus, a suitable
approach is to use two-objective optimization problems (as previously mentioned) with different values of µ.
In this manner, the Pareto fronts are constituted from many two-objective optimal designs. In particular, the
values of µ are predetermined in turn 1%, 1.25%, 1.5%, 1.75%, 2%, 2.25%, 2.5%, 2.75% and 3%, while χ%
represented for the robustness of DTMD changes from 0 to 30%. Figure 10 shows the Pareto optimization
surface ofDTMD for three objectives. In this figure, the DMFmax curve in theYZplane (blue line) is the Pareto
set of two-objective optimization designs relating to the performance and weight of this device. Other curves
located on planes which are parallel with the YZ plane (small dotted line) represent two-objective optimal
designs of the performance and weight corresponding to each predetermined value of χ%. Meanwhile, the
DMFmax curves located on planes that are parallel with theXZplane (big dotted line), such as the red and green
lines, are other Pareto sets established for the DTMD robustness and effectiveness objectives corresponding
to each value of µ given. Obviously, the Pareto optimization is always constrained by a law of trade-off. This
means that if one chooses to enhance this objective, other objectives cannot be improved. For example, in the
case ofµ� 3% (the red line), the robustness can increase to χ% � 30% if the DMFmax reduction is accepted
to drop to 79% (corresponding to (DMFmax)

target � 10.5).

6 Summary and conclusions

Controlling vibrations of high-rise buildings by a DTMD, in which the DTMD consists of an undamped TMD
and a smaller TMD, was proposed in the paper. The effects of parameters on the fundamental characteristics
of a DTMD were investigated numerically through minimizing the peak structural response under harmonic
excitations. The effectiveness of the optimumDTMD and the its robustness to resist the change of the structural
stiffness were demonstrated. The noteworthy results achieved from this study are as follows:

(a) DTMD is significantly effective if themass ratio of DTMD (μ21) chosen is in the domain of (0, 1). Further-
more, there exists a set of optimum parameters of DTMD to maximize its vibration absorption capacity.

(b) An optimized DTMD is more effective than an optimal single TMDwith the samemass ratio in mitigating
structural responses.

(c) DTMD with optimal parameters is not more robust than the TMD optimized for resisting the variation
in the structural stiffness. However, to achieve the same level of effectiveness as an optimum TMD, an
optimized DTMD with a similar weight as the TMD offers a wider range for both frequency ratio and
damping ratio. In this sense, by choosing a frequency range wider than the optimal value, the DTMD is
much more robust against the changes of the frequency.

(d) This study also produces a suitable method for solving multi-objective optimization problems. Moreover,
the Pareto optimization surface obtained will be helpful for designers to select a set of sufficiently good
parameters instead of considering the full range of every parameter.
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(e) For the configuration of DTMD, using an undamped primary TMD instead of a regular TMD offers a
notable advantage compared with a traditional TMD or MTMD because of its simplicity for the mainte-
nance and installing process.
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