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Abstract: This paper proposes an adaptation redesign approach of the immersion and
invariance (I&I) adaptive control to achieve asymptotic stability of the controlled plant and
the parameter estimator at the desired equilibrium. The key idea is to employ the technique of
generalized parameter estimation-based observer on the parameter estimation error dynamics by
applying the indirect 1&I adaptive control scheme, yielding a linear regression equation, from
which the adaptive law can be redesigned. As a result, it is shown that globally exponential
parameter convergence can be guaranteed under an interval excitation (IE) condition, which
is much weaker than the conventionally required persistent excitation. Under a stabilizability
assumption, an adaptation-redesigned feedback control law can be designed to achieve global
asymptotic stability at the desired equilibrium point under the IE condition. The proposed
adaptive control approach is applied to a class of parameteric strict-feedback systems without

overparameterization, which is needed by the standard 1&I adaptive control.
Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license
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1. INTRODUCTION

With the success in the flight control in 1950s, adaptive
control has been regarded as an effective and promising
tool to handle systems with uncertain parameters Sastry
and Bodson (2011); Zhang et al. (2019, 2021). In general,
in the adaptive controller design an estimator is usually in-
corporated, providing an estimate of uncertain parameters
of the plant for the indirect approach or the controller for
the direct approach. These estimates are then used to drive
a feedback control law such that the desired asymptotic
tracking/stabilization is achieved. In last decades, several
systematic design approaches have been reported in the
literature, such as the model reference adaptive control
Tao (2003), the Lyapunov-based adaptive control Krstic
et al. (1995), and the immersion and invariance (I&I) adap-
tive control Astolfi et al. (2008). In addition to regulating
the plant states to the prescribed points or trajectories
asymptotically, an asymptotic parameter estimate may
also be desired. In other words, the control object may
be to achieve asymptotic stability of the interconnected
system of the plant and the parameter estimator. To
achieve the parameter convergence, the aforementioned
approaches usually require the regression term to satisfy
certain persistent excitation (PE) conditions Tao (2003);
Wang and Kellett (2019, 2021), which are quite restrictive
and may not be satisfied in practical applications.

* This paper was partially supported by National Natural Science
Foundation of China (NSFC: 62203386), and Zhejiang Key R&D
Program (Grant NO. 2022C01035, 2021C01198).

The PE condition is a necessary and sufficient condition for
the uniform parameter convergence in adaptive systems
Sastry and Bodson (2011). If the uniformity is not pursued,
it has been shown in Wang et al. (2021) that the unknown
parameters are identifiable if and only if the corresponding
regressor is excited over a finite interval, i.e., the interval
excitation (IE) condition Chowdhary et al. (2014); Pan
and Yu (2015). 1 Tt is clear that the IE is strictly weaker
than the PE by removing the requirement of persistence.
Along this line, emerging research attention has recently
been devoted to achieving parameter convergence without
PE. In Cho et al. (2017); Pan and Yu (2015); Aranovskiy
et al. (2017); Bobtsov et al. (2022); Yi and Ortega (2022),
the filtering techniques are explored to generate algebraic
regression equations, by which new parameter estimators
are proposed, guaranteeing parameter convergence with
IE. Similar ideas have been extended to handle systems
with time-varying parameters in Gaudio et al. (2021). In
Wang et al. (2021), for model reference adaptive control of
linear systems, the authors firstly propose to establish an
gradient-descent estimator, which is then utilized to gener-
ate a linear regression equation for the estimator redesign,
yielding globally exponential parameter convergence under
the IE.

In this paper, we focus on the 1&I adaptive control method
which has been widely applied in many fields Astolfi et al.
(2008); Shao et al. (2021). Given the estimation error
dynamics following the 1&I adaptive scheme, the technique

1 Note that the notion of the finite excitation in Cho et al. (2017)
is fundamentally equivalent to the IE.
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of the generalized parameter estimation-based observer
(GPEBO) Ortega et al. (2021) is employed to derive a
linear regression equation. As a result, a redesign approach
of the adaptive law is proposed, guaranteeing a globally
exponential parameter convergence with an IE condition.
Further, with an ISS-type stabilizability condition on the
controlled plant, it is shown that the closed-loop system
consisting of the plant and the redesigned estimator can
be rendered to be globally bounded, and globally asymp-
totically stable at the desired equilibrium point if the IE
condition is satisfied. To illustrate the effectiveness of the
proposed control scheme, we apply it to a class of paramet-
ric strict-feedback systems without overparameterization,
which is required by the standard 1&I adaptive control
Astolfi et al. (2008).

The paper is organized as below. The considered problem
is formulated in Section 2, and Section 3 presents the
proposed adaptive redesign scheme, which is applied to
handle a class of parameteric strict-feedback systems in
Section 4. A brief conclusion is made in Section 5.

2. PROBLEM STATEMENT

Consider the following uncertain system
&=t x)0 + f(t z,u) (1)
with state x € R™, control v € R™, uncertain parameter
0 € © C RY, and initial time g > 0. In this paper, suppose
all mappings in (1) are smooth. The control objective is to
design an adaptive state-feedback controller of the form
Te = gc(tv Zec, .’t)

u = he(t, e, x) (2)
such that the closed-loop (z, z.)-system is globally asymp-
totically stable at the equilibrium point (z,z.) = (0, z}).
If the z. subsystem denotes a parameter estimator of 6,
then it is expected that z} = 6.

Following the indirect 1&I adaptive control scheme Astolfi
et al. (2008), the adaptive law is designed as

b = =200 [t ) B+t )+ 1 )]~ 2 2

where the off-the-manifold function 3(t,z) can be chosen
as a solution of the partial differential equation (PDE)

% 1,2) = vt )T @
with the design_ parameter 7y > 0. By denoting the
estimation error 0;; := 65+ B(t, ) — 6, one then can obtain

i = =yt (1) T p(t, 2(t)) B ()
Thus, let V;i(0;) = 36:l/?, whose time derivative along
(5) is given by

Vi (05) = =]l (t, )05 . (6)

To further illustrate how the above property can be
utilized to design the control law to regulate the closed-
loop system, we consider a simple example of (1) with
f(t,x,u) = u. Then we design the control law as

uw=—k(z) —x —p(t,z)(0; + B(t, x)),
which, with Vy(z) = 1|z|?, yields Vi(z) = —z " r(z) —

) = 2
llz)|?> — T ¢(t,z)0;. As a consequence, by choosing the

Lyapunov function V(z, 0~ii) = Ve(z) + %Vﬁ(éﬁ) for the

closed-loop (z, éii)—system and using the Young’s inequal-
ity, we can obtain

Va < 2" w(a) = lo(t, )6l (7)

By choosing the design function x(z) such that 2 " x(x) > 0
for nonzero x, one immediately obtains global stability of
the (z, 0;)-system at the zero equilibrium and asymptotic
convergence of x(t) and ¢(t,x)0s to zero from (7). If
the regression o(t,z(t)) satisfies the PE condition (see
Definition 1 below), it is known that the global asymptotic
stability of the equilibrium (z,6;) = (0,0) can be con-
cluded. However, it is well-known that the PE condition
is indeed rather restrictive, which may fail to be fulfilled
in many practical applications. This thus motivates us to
develop new adaptive control schemes that can relax the
required PE condition for asymptotic stability.

Remark 1. To implement the adaptive law (3), the PDE
(4) needs to be solved to derive an off-the-manifold func-
tion 8. To overcome the obstacle of solving the PDE, as
proposed in Dimitrios et al. (2009) one may employ a
filter of (1) for an estimate of § satisfying (3) and then
the dynamical scaling technique to compensate for the
mismatch between the state x and its filtered value. d

Remark 2. In addition to the I&I adaptive control, an-
other class of widely used adaptive control approaches
are based on the direct cancellation of uncertain terms
appearing in the time derivative of the plant’s Lyapunov
function V,(x) (see e.g., Krstic et al. (1995)). For such
approaches, one eventually can obtain the global stability

at the equilibrium, and lim;_, . z(t) = 0, while for the
closed-loop asymptotic convergence, one still needs the PE
condition on the regressor. O

Instrumental to the forthcoming analysis is the notions of
PE and IE below.

Definition 1. The regressor ¢(t,z(t)) is said to be
(i) PE, if there exist constants Tp, dg > 0 such that

t+To
/ QD(T,ZL’(T))T(p(T,x(T))dT >60l, Vt>to.
t

(ii) IE, if there exist constants Ty, d9 > 0 such that

to+70o
/t o(r,2(7) T p(rx(r))dr > oI (8)

The above definitions depend on the system flow xz(¢),
which is closely connected to the uniform PE in Panteley
et al. (2001). Since we do not target to achieve uniform
stability, there is no need to distinguish the uniformity
throughout the paper. Note that in contrast with the
PE condition, the IE condition is clearly weaker, which
has been shown to be necessary and sufficient for glob-
ally exponentially convergent online parameter estimation
from linear regression equations Wang et al. (2021). In
the following, we will redesign the I&I adaptation law (3),
which enables to achieve the global asymptotic stability
under the weaker IE condition.
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3. I&I ADAPTIVE CONTROLLER REDESIGN
3.1 1861 Adaptation Redesign

In the following, an I&I adaptation redesign approach is
developed for an exponential parameter estimation under
the IE condition of (¢, ).

We first introduce an auxiliary system of the form

d = —’)/(,O(t, x(t))Tgo(t, x(t))i), (I)(tO) =1, (9)
with ® € R?%9. The solution ®(t) of (9) satisfies the
following property, with the proof given in Appendix A.

Lemma 1. Suppose ¢(t,z(t)) is IE in the sense of Defini-
tion 1.(ii). Then there exists 1 > €* > 0 such that

p(®(t) < (1—¢€), Vi>t" =ty +Tp (10)
where p(-) denotes the spectral radius. O

Bearing this in mind, from (9) we can explicitly express
the solution of 6; in (5) as
0ii(t) = ()0 (t0) = D(1)[0:i(to) + B(to, 2(t)) — 6]
Without loss of generality, we let 05(tg) = 0. Then by
recalling 65 (t) := 05 (¢) + B(t, z(t)) — 6, we have
(I—®)0 = (6 + B) — ©Bo (11)
B(to, x(tg)) and omitted

the arguments of P, 6y, B for simplicity. The above design
and analysis indeed are motivated by the idea of GPEBO
Ortega et al. (2021). Note that (I — ®(¢)) is nonsingular
for ¢ > t* under the IE condition of ¢(¢,x) by Lemma 1.

where we have denoted [, =

To this end, we arrive at the linear regression equation (11)
with unknown 6, from which online estimation approaches
can be applied to design an estimator of 6, yielding a
redesigned adaptive law.

We next follow the idea in Aranovskiy et al. (2017) and
transform (11) into ¢ scalar equations by multiplying the
adjugate matrix of ® — I, denoted by adj(® — I), on both

sides of (11), yielding
det(I — )0 = A (12)
where we define
A:=adj(I — @) [éii +08 - ‘bﬁo} ) (13)

which is available for feedback design.

By (12), we propose the following adaptation law as

6= —kA [det(1 — )0 — A (14)
with £ > 0 and
det(I — @
__ detll=2) (15)
1+ |det(I — ®)|?
We conclude this subsection by the following result.
Proposition 1. For the adaptive law (3), (9), (14), the

resulting trajectories of (®,6) are bounded. Moreover, if
the regressor o(t,xz(t)) is IE, then the H-system (14) is
globally exponentially stable at the equilibrium 6 = 4. O

Proof. The boundedness of ® is obvious as it is a state
transition matrix of the stable system (5). We denote the
redesigned estimation error as # = 6 — §. Computing its
time derivative along (14) gives

k| det(I — ®)|?
1+ |det(I — D)2
It immediately follows that 0 is stable at the origin and 6
are bounded.

If the regression gp(t,x( ) is IE, we let V;(0) = 2||9||2
whose time derivative is

dV;/dt =

6=— (16)

—kA[6]* < 0. (17)

Moreover, with the IE of ¢(t, ) and by Lemma 1, we have

1> |det(I — ®(t))] > €, Vit >t
As a result, (17) implies
*2q
avy/dt < 2k: *qug, V>t

Therefore, the 9—system is globally exponentially stable at
the origin if (¢, z(t)) is IE, completing the proof. O

8.2 Feedback Control Design

In the following, we elaborate an explicit stabilizability
assumption, which induces a feedback control law that
together with the redesigned adaptation law (14) can solve
the adaptive control problem in question.

Assumption 1. There exist smooth mappings ¥ : Ry X
R” x R? - R™ and 7 : Ry x R” x R? — R" such that
(i) for each (¢t,0) € Ry x R?, T(t,-,0) is a global
diffeomorphism with 7 (¢,0,80) = 0;
(ii) denoting z = T (t,x, ), the system
2= Va.Tle(t, )0 + f(t,z,(t,2,0))]

. (18)
+V.T + VéT@
permits a function V, (¢, z) satisfying
ar(||z]]) < Vi(t, 2) < as(||z
1(l121) < Va(t,2) < ao(]l2) (19)

Ve < —as([lz]]) + G(16 = 01) + C(1161])
where a; € Koo, @ = 1,...,3, and (1, (2 are nonde-
creasing positive continuous functions, depending on
the unknown parameter # and vanishing at the origin.

With this assumption, we design the control law as
= U(t, z,0) (20)

where 6 is given by (14). As a result, we complete the
design of the adaptive controller (2) consisting of the
redesigned adaptation law (14) and the feedback control
law (20), yielding the following result.

Theorem 1. For the system (1), suppose Assumption 1
holds, and let the adaptive controller (2) consist of the
adaptive law (3), (9), (14) and the feedback control law
(20). Then the resulting (z,6)-system trajectories are
globally bounded. Moreover, if the regressor ¢(t, z(t)) is
IE, the equilibrium (z,6) = (0, 8) of the closed-loop system
(1), (14) is globally asymptotically stable. O

Proof. With the controller (3), (9), (14) and (20), by
Assumption 1, we have
V. < —as(|lz[1) + G(16l]) + G (101)

with z = T (¢,
| det(I — @(1))

1611 < kA[0] <

(21)

z,0). By Lemma 1, it can be verified that
| <1 for all t > tg. Thus, it follows that
k
2

1
|0]| . Substituting this to (21) implies
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V. < —as(||21) + aa(116])

with ag € K such that ay([|0]]) > G(|0]) + (501D,
yielding that the z-system is uniformly ISS with respect
to input # and state z. In combination with Proposition
1, we then can conclude that z is bounded, and the zero
equilibrium (z,6) = 0 is globally asymptotically stable
if the IE of o(t,z(t)) is satisfied. This, by recalling that
T(t,-,0) is a global diffeomorphism and 7 (¢,0,6) = 0 for
all (¢,0) € Ry x R, completes the proof. O
Remark 3. Different from the conventional stabilizability
conditions in Krstic et al. (1995); Astolfi et al. (2008) that
are established on the original coordinate x, Assumption
1 implies the existence of a change of coordinate z defined
by the mapping 7 such that the resulting z-system with

control (20) is ISS with respect to the inputs 6 — 6 and .

4. AN ILLUSTRATIVE EXAMPLE

In this section, we apply the previously established scheme
to the stabilization problem of the parametric strict-
feedback systems of the form

T2 + p1 (t, 171)9
u+ pa(t, )0

with state * = col(z1,2), control u and uncertain pa-
rameter 8 € R?. Suppose all mappings are smooth, and
©1(t,0)0 = 0 for all ¢ € Ry and 6 € R?, which guaran-
tees that the zero-equilibrium stabilization problem of the
system (22) is feasible. Note that the subsequent design
and analysis can be adapted to more general parametric
strict-feedback systems with state dimension n > 2.

Firstly, the redesigned I&I adaptation law (1), (9), (14)
can be directly applied with f(¢,z,u) = col(xo,u) and
o(t,x) = col(p1(t,x1), p2(t,z)). In view of this, the con-
troller design remains to design the feedback control to
satisfy Assumption 1, for which we adopt the backsteping-
based approach Krstic et al. (1995), consisting of the
following two steps.

Step 1. Let

21 = T1,

Z1
T

(22)

Zog = —VU1 + T2 + P1 (t, xl)é (23)
with the virtual control v; to be determined later. Along
(22), we compute the time-derivative of z1, yielding

Z1 = V1 + 29 +€1(t,x179)
where the function ¢; is defined by

(24)

El(t, Zq, 0) = —wl(t, 1'1)0 .
Choose Vi(z1) = 321, whose time derivative along (24) is
given by

. 1 1 1 ~
Vi<zy (’Ul + 54 + 131”901”2) + 523 +[16]> .
Thus, let

1 1
vi(t, x1,21) = —(k1 + 5)21 - 121||<P1||2a ki >0 (25)
which implies
) 1 _
Vi< —kizt o+ oz o+ 0] (26)

It is noted that with (23) and (25), the mapping 7 from
x to z := col(z1, 22) is a global diffeomorphism, and for all

te Ry and 6 € RY, z = 0 if and only if z = 0, indicating
that Assumption 1.(i) is satisfied.

Step 2. With (25) and letting

’(/}1(t7l’1,21,é) = —U1 +()01ré (27)
we have zo = x9 4 11, whose time derivative is given by
Zg = ut+ Ve + Vet (v +22) + Vo, thn -2
+(p2 4 Va1 - 01) 10+ Vo thy - £y + Vgiby - 0.
(28)
Here for convenience, for mapping v (s1, $2, 3, S4) we de-

note V¢ = %(81,82,83,34), t=1,...,4. Then let

u = —vg — Vythy + V., 1Py - (v1 + 22) .

+Va 1 -T2 + (P2 + Vo, th1 1) 10

with vo to be determined later. Thus, the time derivative
of z5 can be rewritten by

(29)

Zo = vg+ o+ p2é (30)
where
Oy(2,21,0,0) = — (Vb1 -1 +¢2) 0+ Vo1 -
p2(x1) = Vi .

With 6 = 6 + 6, it can be verified that there exist positive
functions hg, ko, and a class Ko function cg (-) such that

12262 (2, 21,0, ol < Z3ha (@, 21) +;Ce,2(|\é||) 31)
lz2p2(21)8|| < 23ka (@) + [19]1* -
Thus, let
va(z, 2) = — (ko + %)22 — zoha(x,21) — zok2(x1)  (32)
with ko > 0, and choose Va(z2) = %zg, whose time

derivative along (30) is given by
Va = 200y + 2aly + zop10
2 .
z ~ X
22v2 + 2+ 23ha + co2(1I0]]) + 3h2 + 0]

A

IA

2 [v2 + 572 + 22hg + 22K2] + co.2(]|01]) + 1]
—ko23 + ca1]|0]|* + ca2]|0]* + [10]].

IN

To this end, by letting V, = V; + V5, we have

V. < —k127 — kaz3 + (car + D]I0]* + ca2l|6]* + [10]1%,
which indicates that Assumption 1 is satisfied.

In summary, the proposed approach is applicable to handle
the adaptive control problem of (22). To further illustrate
the effectiveness, we consider a numerical example with
o1 = col(zy,22)T and ¢o = col(zz,1)". By choosing
the parameters v = 3 and k& = ki = ko = 10, the
simulation results are presented in Fig. 1 and 2, where
the trajectory of the spectral radius p(®) is less than
one and both states x1,x2 and the parameter estimation
errors 6 asymptotically converge to zero, demonstrating
the effectiveness of Lemma 1 and Theorem 1, respectively.
In comparison, we follow the Lyapunov-based adaptive
control approach with tuning function Krstic et al. (1995)
and the I&I adaptive control with overparameteration
Astolfi et al. (2008) to design adaptive controller for
(22), respectively. The corresponding simulation results
are given in Figs. 3 and 4, respectively, where the states
x1, %2 asymptotically converge to zero while there is no
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Fig. 2. Trajectories of states and estimation errors via the
proposed approach
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Fig. 3. Trajectories of states and estimation errors via the
Lyapunov-based adaptive control Krstic et al. (1995)

guarantee of asymptotic convergence of the parameter
estimation errors to zero.

Remark 4. We remark that the I&I adaptive control
method has been applied to handle the system (22) in
Astolfi et al. (2008), where the overparameterization is
required to overcome the mismatch between the control
input and the uncertain parameter. In contrast, by apply-
ing our proposed approach in Theorem 1, the overparame-
terization can be removed as in Krstic et al. (1995) where
the technique of tuning function is used. O

5. CONCLUSION

In this paper, we proposed a new 1&I adaptive controller
design paradigm, where the GPEBO was employed to
redesign the 1&I adaptive law in such a way that parameter

6

Al
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10 a bl
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o ‘ Vaa(t)

7‘40 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2

Fig. 4. Trajectories of states and estimation errors via the
1&1I adaptive control Astolfi et al. (2008)

estimation errors were steered to zero exponentially under
a rather weak interval excitation (IE) condition. Under
the IE condition and an ISS-type stabilizability assump-
tion, it was shown that an adaptation-redesigned control
law could be designed to achieve the globally asymptotic
stability at the desired equilibrium point. The proposed
adaptive control approach was applied to a class of pa-
rameteric strict-feedback system without overparameter-
ization, which is needed by the standard I&I adaptive
control.

It is known that for the standard I&I adaptive control
Astolfi et al. (2008), the asymptotic convergence of the
regression error ||o(t, z)6;|| can be concluded from (6),
under which the state x may still be regulated to van-
ish asymptotically without the IE condition. In view of
this, one may combine the I&I adaptation law (3) and
the redesigned adaptation law (14), leading a composite
adaptive law as

0 =\by+5(t2)+ (1 =202,  A€(0,1), (33)
where 3 is given by (4), and 6y, 0, satisfy
él = _7(p(t7 I)T [C)O(t I‘)é + f(ta €T, U)} - vtﬂ(tv x) (34)

0, = —kA [det(l — @) A} .

As a result, it can be easily verified that the regression
error o(t,x)0; converges to zero, even if there is no IE
condition. This thus preserves the benefits of the both
design approaches, enabling to deal with the adaptive
control problem of more general uncertain systems.

Appendix A. PROOF OF LEMMA 1

It is clear that the proof is done if there exists an €* € (0, 1]
such that
@) <1—¢€

holds for all ¢ > t* := to + Ty, with Tp given in (8). In
this respect, we now use contradiction to prove the above
statement, and thus assume that for any small enough
€ > 0, there always exists T' > t* such that ||®(T)| > 1—e.
The contradiction is formed by the following two steps.

(S1) We show that the assumed statement implies | ®(¢)|| =
1 for all ¢ € [to, t*];

(S2) We show that ||®(¢)|| = 1 for all ¢ € [to,t*] contradicts
with the IE condition.

Let h € R? be any vector such that ||| = 1, and denote
2(t) = ®(t)h and @y = (¢, x(t)). Thus, with (9) we have
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t=—p) iz, z(tg) = h. (A1)

By letting V, = ||z(t)||?, it immediately follows that
V. = sl < 0. (A2)
Thus, we can obtain that ||z(t)|| := ||®(¢)h|| decreases as

t increases, implying for all ¢ > ¢, ||®(¢)h|| < 1 and thus
|®(t)]] <1 as h is an arbitrary unit vector.

We now complete proof of the (S1) by contradiction.
From the continuity of ||®(t)||, we suppose that there exist
t' € [to,t*) and ¢ € (0,1) such that |®(t)]| = 1 — €.
This implies that ||®(¢')h| < 1 — € for each ||h]] = 1.
As for any ||h|| = 1, ||®(¢)h|| decreases as t increases, we
have | ®(t)h|] < 1 — € and thus ||®(¢)|| < 1 — ¢ for all
t > t'. This clearly contradicts with the assumption that
for arbitrarily small €, there always exists T > t* > ¢
such that ||®(T')|| > 1 —e. Hence, it can be concluded that
[|@(t)|| = 1 for all ¢t € [tg,t*]. Then fix any ||h|| = 1 such
that ||z(t*)]] = |®(t*)h| = 1. It is clear from (A.2) that
2@ < |lz(®)] < ||z(to)]] = 1 for all t* > t > ty, and
thus ||z(t)]] = 1 for all ¢ € [to, t*].

Next, we proceed to prove the (S2), and represent (A.1)
in polar coordinates by setting z(t) = r(¢)y(t) where

r(t) =zl y@) = 2)/llz(O]-
Note that r(¢t) = 1 for all t € [to,t*], and the polar
coordinate representation z(t) = r(t)y(t) is well-defined
for t € [tg, t*]. We then have

= —Hgtyllzr ,
v =~ ey + llesyll“y

Recalling that r(t) = 1 for all ¢ € [t,t*], we thus obtain
ory(t) = 0 for all ¢ € [to, t*], yielding y(t) = y(to) = h.

t € [to, t*]. (A.3)

This, on the other hand, implies 7 = —|¢:h|/?>r for all
t € [to,t*], rendering

r(T) = exp (— /t:

where the inequality is obtained by invoking the IE con-
dition (8) and ||h|| = r(t¢) = 1. This clearly contradicts
with 7(t) := ||z(t)|| = 1 for all ¢ € [to, T]. This then proves
the (S2) and thus completes the proof of the lemma.

*

tho;rapTth> r(0) <e ™% <1
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