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ABSTRACT

A model for expressing and describing human motion patterns must be
able to improve tracking accuracy. However, Conventional Bayesian Filters
such as Kalman Filter (KF) and Particle Filter (PF) are vulnerable to failure
when dealing with highly maneuverable targets and long-term occlusions.
Gaussian Processes (GP) is then used to adapt human motion patterns and
integrate the model with Bayesian Filters. In GP, all samples in training
phase need to be included and periodically, new samples will be added
into training samples whenever it is available. Larger amount of data will
increase the computational time to produce the learned GP models due to
data redundancies. As a result, Mutual Information (MI) based technique
with Mahalanobis Distance (MD) is developed to keep only the informative
data. This method is used to process data which is collected by a robot
equipped with a LiDAR. Experiments have demonstrated that reducing data
does not raise Average Root Mean Square Error (ARMSE) considerably.
EKF, PF, GP-EKF and GP-PF are utilised as a tool for tracking people and
all techniques have been analyzed in order to distinguish which method is
more efficient. The performance of GP-EKF and GP-PF are then compared
to EKF and PF where it proved that GP-BayesFilters performs better than
Conventional Bayesian Filters. The proposed approach has reduced data
points up to more than 90% while keeping the ARMSE within acceptable
limits. This data optimization technique will save computational time
especially when deal with periodically accumulative data sets. Comparing
on four tracking methods, both GP-PF and GP-EKF have achieved higher
tracking performance when dealing with highly maneuverable targets and
occlusions.

This is an open access article under the CC-BY-SA license.

1. Introduction

Many academics are interested in exploring further applications in the fields of security, surveil-
lance, and human-robot interaction by tracking objects in a dispersed setting [1, 2, 3, 4, 5, 6, 7, 8, 9].
Many studies have been carried out employing sensors including laser detection and ranging (LiDAR)
[10, 11, 12, 13, 14, 15, 16] and camera, in various people detection and tracking systems. It is proven
that light variations such as darkness and light do not affect LiDAR efficiency on measurements
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[17, 18].

State estimation and data association are two fundamental techniques that being associated with
Bayesian Filters such as the Kalman Filter [19, 20, 21, 22] and the Particle Filter [23] have been
effectively implemented. Other solutions have been proposed to increase tracking capabilities, such
as the Interactive Multiple Model (IMM) [24, 25], but they are vulnerable to failure when dealing
with highly manoeuvrable objects and long-term occlusions.

It is vital to use past information, such as target behaviour, while dealing with such agile and oc-
cluded settings. In the prediction stage, the behaviours can be learned and applied. Some researchers
have shown that people movements have general patterns in diverse contexts due to constraints on
ambient structures and physical motions [26, 27].

The Gaussian Processes (GP) approach was later devised by J. Ko et al [28, 29] to adapt motion
patterns and integrate the model in Bayesian Filters. By combining maximum modelling flexibil-
ity with uniform uncertainty estimates, GP learns training data for probabilistic regression models.
These probabilistic regression models are then used with probabilistic filtering techniques such as the
Extended Kalman Filter (EKF) and the Particle Filter (PF) [30, 31, 32].

However, such training data accumulative increment has causing a data management issue which
lead towards instability to the learning process of GPs as it occurs in the work done by J. Ko et al [28].
Data redundancies contribute to unnecessary training data which lead to computational intractability
due to slight fluctuations and accumulative amount of data. It is not always necessary to maintain
all redundant data that does not contribute extra information to the probabilistic regression models.
Larger amount of data will increase the computational time to produce the learned GP models. To
solve the problem, a technique is proposed that only keeps the most informative data points utilising
Mutual Information (MI) [33] and Mahalanobis Distance (MD) [34] criteria.

Due to data redundancy, this work implemented data selection and management in GP, and finally
a comparison of four tracking techniques: Extended Kalman Filter (EKF), Particle Filter (PF), Gaus-
sian Processes-Extended Kalman Filter (GP-EKF), and Gaussian Processes-Particle Filter (GP-PF)
was carried out by looking at the performance of tracking capabilities towards moving targets and oc-
cluded scenarios. The visual and analytical tracking precision of GP-BayesFilters has been compared
to the Conventional Bayesian Filters.

The structure of this paper is as follows. The data management and selection processes are dis-
cussed in Section 2. The details of Gaussian Processes, combination of Gaussian Process - Particle
Filter and Gaussian Process - Extended Kalman Filter are presented in Section 3. The experimental
settings is explained in Section 4. Section 5 goes into the experimental findings and the three-step
optimization techniques used to keep a number of data points. The paper comes to a conclusion with
Section 6.

2. Data Selection and Management

All the samples in training phase of the GP need to be included and periodically new samples
will be added whenever it is available. However, when accumulative amount of data becomes com-
paratively in large numbers, it will practically increase the computing time for the GP to be trained
in dealing with new observations [35, 36]. In this research, the motion model of people tracking sce-
nario are learned and needed to be adapted timely to accomodate variations of data samples. When
additional observations become available, GP must be trained over a larger number of samples. If the
samples are informative, however, further observations must be added. A Mutual Information (MI)
based method and Mahalanobis Distance (MD) based criterion can be used to choose informative
samples. MI selects the most informative measurements from all scans and uses them to represent GP
variables.
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MD will be computed between the new measurements or observation data points from LiDAR
and the GP model when new measurements become available. Because the GP is easily capable of
representing the data set, if each of the new measurements is within 95% of the confidence interval, it
will be deleted. However, if the MD exceeds the 95% confidence interval in either x or y direction, it
must be inserted into the training samples for GP in order to properly reflect the data. This procedure
controls data management and adjusts GP variables to new conditions. The process flow on data
selection in Gaussian Processes variables is shown in Fig. 1.
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Fig. 1. The process flow on selection of data points in Gaussian Processes.

2.1. Mutual Information

The most informative data points are chosen using the Mutual Information (MI) algorithm [33].
It starts with an empty set of locations A = φ and adds placement in a sequential order until |A|= k.
More specifically, the MI algorithm selects the next point with the greatest gain in mutual information.
When all k best points have been set in order, the process is complete. The MI between subset A and
rest of trajectory V\A can be expressed more precisely as follows [33]:

F(A) = I(A;V\A)

Once y ∈V\A is selected and added to A, the calculation on variation of MI can be done as follows:

F(A∪ y)−F(A) = H(A∪ y)−H(A∪ y|Ā)− [H(A)−H(A|Ā∪ y)] = H(y|A)−H(y|Ā) (1)

2.2. Mahalanobis Distance

The Mahalanobis Distance (MD) [34] is used to determine the usefulness of new information to
be integrated in the GP trained model. This determination, as previously stated, allows the GP to
depict dynamically changing environments and consequently increase flexibility.
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Assume that a new measurement value of mean µxm and variance σxm is obtained at a location xi,
where x = ⟨x,y⟩. The GP can then be applied to predict the mean µxp and variance σxp at the new
position of measurement value. As a result, the MD can be written as

d(x) =

√
(µxm −µxp)2

σ2
xm +σ2

xp
. (2)

Since the measurement employed for this selection is one-dimensional, the chi-square table criterion
for d(x) is set to be within the 95% confidence interval, which is 3.84 [37].

3. Gaussian Process

Gaussian Processes (GP) are a comprehensive theoretical framework for model selection and
probability prediction that may be used to explain the uncertainty of complicated data sets. The
marginalisation property of Gaussian Processes is an extension of the multivariate Gaussian distri-
bution [38]. Let D = ⟨X ,y⟩ be a set of training data, with X = [x1,x2, ...,xn] a matrix containing
d-dimensional input samples and y = [y1,y2, ...,yn] a vector containing scalar output. To forecast the
regression output, the GP assumes that the data originated from a noisy process with a noisy version
of function, y = f (x)+ ε , where ε is zero mean additive Gaussian noise with σ2

n variance.

A GP creates a Gaussian predictive distribution over the output y∗ using training data D = ⟨X ,y⟩
and a test input x∗ with mean

GPµ(x∗,D) = kT
∗ [K +σ

2
n I]−1y (3)

and variance

GPΣ(x∗,D) = k(x∗,x∗)−kT
∗ [K +σ

2
n I]−1k∗ (4)

where K is the n×n kernel matrix of training input values k[m] = k(x∗,xm) and K[m,n] = k(xm,xn). k∗
is a vector consisting of kernel values between the test input x∗ and the training inputs x. The variance
GPΣ, which is a process noise-dependent uncertainty prediction; and the correlation between the
testing and training data. The squared exponential function is a kernel function that is often utilised,
is then chosen for this process as given by,

k(x,x′) = σ
2
f e−

1
2 (x−x′)W (x−x′)T

(5)

where W is a diagonal matrix that contains the length scales for each input dimension. σ2
f is the signal

variance.

3.1. Gaussian Process Regression

The process noise and the kernel function which are commonly called as hyperparameters in
Gaussian Processes (GP) are determined by using numerical optimization techniques like conjugate
gradient descent to maximise the log-likelihood of the training data [38]. Consider a d-dimensional
trajectory V with the number of points |V |. Based on the GP model, value can be predicted at any
point y ∈V\A if a set of points A ⊂V is observed. Let ZA be a set of values at the finite set A, and zy

be a value at y. The conditional distribution is derived in probabilistic terms at a predicted point of y
where ZA is given as follows [28]:

µy|A = µy +ΣyAΣ
−1
AA(ZA −µA) (6)

σ
2
y|A = k(y,y)−ΣyAΣ

−1
AAΣAy (7)

where ΣyA is a covariance vector with one input for each x ∈ A with value k(y,x); Σ
−1
AA is a covariance

matrix of ZA with each input calculated by k(x,x); µy|A and σ2
y|A are conditional mean and variance at

y and µA is a mean vector of ZA.
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3.2. Gaussian Processes - Particle Filter

The particle filter (PF) is a technique for handling non-linearity in dynamics and measurements
that uses approximation. The difficulty of learning process on prediction and observation models that
is required by particle filters can be solved using Gaussian process regression. Processes are limited
to training prediction models on static observations because learning with a dynamic observer is quite
challenging. The state and control, (xk,uk), are mapped to the state transition, ∆xk = xk+1 − xk. By
simply adding the state transitions to the preceding state, succeeding state of the process model can
be found. The data sets for prediction and observation training are adequately exemplified by,

Dp = ⟨(X ,U),X ′⟩ (8)

where X is a matrix containing locations and X ′ = [∆x1,∆x2, ...,∆xk] is a matrix containing transitions
made from those states when employing the controls that stored in U .

p(xk|xk−1,uk−1)≈ N(GPµ([xk−1,uk−1],Dp),GPΣ([xk−1,uk−1],Dp)) (9)

Representing posteriors over the state xk is a primary task of particle filter by setting Xk of
weighted samples Xk = {⟨xm

k ,w
(m)
k ⟩|m = 1, ...,M}. Here, each xm

k is a sample and each w(m)
k is a

non-negative numerical factor which called importance weight. This term, GP([xk−1,uk−1],Dp) is the
short form of the Gaussian represented by (GPµ([xk−1,uk−1],Dp),GPΣ([xk−1,uk−1],Dp)).

By taking into account the local density of training data, the covariance of this prediction is
generally different for each sample. The entire procedure can be found in [28].

3.3. Gaussian Processes - Extended Kalman Filter

An incorporation of GP models into the EKF requires a linearization of the GP function which
follows the interpretation that was specified by A. Girard et al [39] besides utilising GP mean and
covariance. The derivative of GP mean function for each output dimension can be described as:

δ (GPµ)(x∗,D)

δ (x∗)
=

δ (k∗)
T

δ (x∗)
[K +δ

2
n I]y. (10)

Noted that k∗ is the vector of kernel values between query input x∗ and the training inputs X . The
partial derivatives of the kernel vector function are

δ (k∗)

δ (x∗)
=


δ (k(x∗,x1))

δ (x∗[1])
· · · δ (k(x∗,x1))

δ (x∗[d])
...

. . .
...

δ (k(x∗,xn))
δ (x∗[1])

· · · δ (k(x∗,xn))
δ (x∗[d])

 . (11)

where d is the dimensionality of input space and n is the number of training points. The partial deriva-
tives are depend on the type of kernel function. For the squared exponential kernel, the expression
will be as:

δ (k(x∗,x))
δ (x∗[i])

=−Wiiσ
2
f (x∗[i]−x[i])exp−

1
2 (x∗−x)W (x∗−x)T

. (12)

Stacking l Jacobian vectors together can determine full l×d Jacobian of a prediction or observa-
tion model which is one for each of the output dimensions. Comprehensive explanation can be found
in [28].
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Fig. 2. Common area of the research centre. Fig. 3. Routes of walking person on a
horizontal map.
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Fig. 4. 3868 dots represents trajectories of
the subject.
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Fig. 5. 381 points in four routes after
applying MI and MD.

4. Experiment Scenario

The Segway robot with a laser range finder and a computer was employed as the platform. This
system employs a HOKUYO UTM-30LX LiDAR with a detection range of 30 metres, an angular
resolution of 0.25o, a field of view coverage of 270o, and a sampling period of 25 milliseconds. The
observation of targets is carried out in a stationary posture or a static position to scan the environment
horizontally. As indicated in Fig. 2, the experiments were conducted in a common area of research
centre.

The method for detecting humans is conducted on laser data taken at torso height of an adult.
It starts with features extraction and then proceeds on to a classification process utilising a learning
algorithm [40]. Following the detection of people and their representation as points in Cartesian
coordinates based on laser data, all of these points were employed in GP modelling. A person was
used as a subject in the experiment, who walked many times in four different directions while being
observed by the laser sensor. Fig. 3 shows a trace of such trajectories with ten routes in one direction.

Since the width of walking paths between the partitions varies between 130 and 150cm, the main
objective is maintaining the RMSE on the prediction below 5 cm. The EKF, PF, GP-PF and GP-
EKF will eventually be utilised as a tool for tracking people.Whilst, the performance of GP-EKF and
GP-PF are then compared to EKF and PF.
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5. Experimental Results

In order to accomplish the optimisation task, the training data was processed in three phases.
First step, MI is used to calculate the least number of points that can representing the GPs with the
specified average root mean square error on the first set of data in the trajectory. Second, each new
measurement is subjected to the MD to ensure that it contributes to new knowledge. Finally, the MI
is again used to delete any redundant data points that have arisen as a result on the addition of new
data. This process will recursively implemented until it reaches the set value of ARMSE.

This figures show that Fig. 4 shows 3868 points (each representing a person) collected along 10
trajectories of four different routes. The observation’s starting point is at coordinate (10, 10). When
a set of new samples for the training data became available, MD was used to compare the predicted
and measured of mean and covariance values on each point in the x and y axes. The points with an
MD of less than 3.84 in either x or y direction (as determined by the chi square table) were deleted.
For example, the majority of new data in Fig. 6 provide less MDs than the learned model’s threshold,
hence the data which values below the threshold were removed. Fig. 8 and Fig. 10 depict the learned
GP model means and covariances before applying MI and MD, respectively. Fig. 9 and Fig. 11 depict
the learned GP model means and covariances after applying MI and MD, respectively.
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Fig. 6. Mahalanobis Distance in the x
direction.
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Fig. 7. Mahalanobis Distance in the y
direction.

Less MDs indicate that the data are assumed to have been represented in the GP model and hence
contribute no further information to the present model. The data was then processed using MI-based
data selection to produce a set of points representing the previously determined RMSE of 5 cm.
However, as seen in Fig. 6 and Fig. 7, additional data variations resulted in MDs that were greater
than the threshold. For retraining purposes, such points were subsequently added into the training
samples.

Once the data to be included in the model was determined using MD, MI was used to pick the
most informative data points, as illustrated in Fig. 5. The mean and covariance after retraining are
shown in Fig. 9 and Fig. 11, and it can be seen that most of the data on predicted mean have RMSE
of less than 0.02 metre as shown in Fig. 12. It is seen that the GP predictions will be very close to
zeroing values near the corners of 3D-plot where no observations were made.

Referring to Fig. 4 and Fig. 5, the number of training data points was decreased from 3868 points
to 381 points, resulting in a data reduction of more than 90 percent.
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Fig. 8. Mean Values before applying MI and
MD.
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Fig. 9. Mean Values after applying MI and
MD.
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Fig. 10. Covariance Values before applying
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Fig. 11. Covariance Values after applying MI
and MD.
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Fig. 12. RMS Error of the Predicted Mean.
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Fig. 13. Tracking on 4 routes without occlusions by EKF (red line),
PF (magenta line), GP-EKF (blue line), GP-PF (green line) and black

dots represent routes’ reference points or ground truth.
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Fig. 14. Tracking on 1 route without occlusions by EKF (red line), PF
(magenta line), GP-EKF (blue line) and GP-PF (green line) and black

dots represent routes’ reference points or ground truth.
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Fig. 15. Comparison of RMS Error on 1 route without occlusions for
tracking by EKF (red line), PF (magenta line), GP-EKF (blue line)

and GP-PF (green line).
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Fig. 16. Comparison of RMS Error on 1 route without occlusions for
tracking by GP-EKF (blue line) and GP-PF (green line).

People are tracked on four routes at the same time without any occlusion in Fig. 13. GP-PF,
GP-EKF, EKF, and PF trackers are represented by green, blue, red, and magenta lines, respectively.
The black dots represent the routes’ reference points or ground truth. When it comes to maneouvring
conditions, EKF performs the worst among the 4 tracking methods. By comparing the RMSE on
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50 Monte Carlo runs as shown in Fig. 15, a study of each tracker’s performance at only one route
as shown in Fig. 14 was performed. As referred to Table 1, GP-PF and GP-EKF have convincingly
demonstrated that they have greater tracking performance than EKF and PF because of their lower
ARMSE. Table 2 shows the tracking points with RMSE value less than 0.25 meters which proved that
GP-EKF and GP-PF have the higher number of points. The comparison on only GP-PF and GP-EKF
trackers in Fig. 16 shows that GP-PF performs marginally better than GP-EKF because GP-PF has a
lower RMSE than GP-EKF.

Table 1. Average Root Mean Square Error (ARMSE) for EKF, PF, GP-EKF and GP-PF
trackers in Fig. 15.

Type of Tracker EKF PF GP-EKF GP-PF

ARMSE (meter) 0.4326 0.2094 0.2059 0.1986

Table 2. Tracking points with RMSE less than 0.25 meters for EKF, PF, GP-EKF and
GP-PF trackers in Fig. 15.

Type of Tracker EKF PF GP-EKF GP-PF

No. of Points ≤ 0.25 meter
25 87 88 90

(Total Points is 97)

The simultaneous tracking of four paths with partial occlusion where there were no observation
data on particular frames by GP-PF and GP-EKF trackers is shown in Fig. 17. With a specific period
of time, both trackers have demonstrated greater tracking performance on occlusions. The tracking
performance of four trackers on four routes with partial occlusions is shown in Fig. 18. It has been
demonstrated that both Conventional Bayesian Filters (PF and EKF) perform badly when compared
to Gaussian Process-BayesFilters (GP-PF and GP-EKF), where both Conventional Bayesian Filters
perform poorly on tracking with partial occlusions over time.

6. Conclusion and Future Work

In this study, a MI and MD-based criterion for rejecting least informative data points was effec-
tively adopted while quickly training a GP model for tracking multiple people in a fairly complicated
indoor setting. The proposed approach reduced data points up to more than 90% while keeping
the ARMSE within acceptable limits. This is a promising data optimization that will help reduc-
ing computational time, especially when deal with periodic accumulative data set. The learned GP
which incorporated with Bayesian Filters was then used to track people along the different paths
in the vicinity. When compared to PF and EKF trackers, both GP-PF and GP-EKF have achieved
higher tracking performance when dealing with occlusions. When comparing both Gaussian Process-
BayesFilters, GP-PF fared slightly better than GP-EKF. Furthermore, the performance of Gaussian
Process-BayesFilters is not affected by walking speed of people since state transitions are based on
displacements in x and y coordinates. However, Gaussian Process model need to be trained for spe-
cific environment and different scenarios.

In the future, this technique will be evaluated on various scenarios involving numerous sub-sectors
for broad coverage area because too many data points will increase computational time. Thus, divid-
ing a big area into smaller areas saves computing time.
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Fig. 17. Tracking comparison with partial occlusion by using GP-PF
(green), GP-EKF (blue line) and black dots represent routes’ reference

points or ground truth.
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Fig. 18. Tracking with partial occlusion by EKF (red line), PF
(magenta line), GP-EKF (blue line), GP-PF (green line) and black

dots represent routes’ reference points or ground truth.
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