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Abstract
Background and Objectives: To identify and summarize validated multivariable prognostic models for the Functional Independence
Measure� (FIM�) at discharge from post-acute inpatient rehabilitation in adults with acquired brain injury (ABI).

Methods: This review was conducted based on the recommendations of the Cochrane Prognosis Methods Group and adheres to the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Three databases were systematically searched in May
2021 and updated in April 2022. Main inclusion criteria were: a) adult patients with ABI, b) validated multivariable prognostic model,
c) time of prognostication within 1-week of admission to post-acute rehabilitation, and d) outcome was the FIM� at discharge from
post-acute rehabilitation.

Results: The search yielded 3,169 unique articles. Three articles fulfilled the inclusion criteria, accounting for n 5 6 internally and n 5
2 externally validated prognostic models. Discrimination was estimated as an area under the curve between 0.76 and 0.89. Calibration was
deemed to be assessed insufficiently. The included models were judged to be of high risk of bias.

Conclusion: Current prognostic models for the FIM� in post-acute rehabilitation for patients with ABI lack the methodological rigor to
support clinical use outside the development setting. Future studies addressing functional independence should ensure appropriate model
validation and conform to uniform reporting standards for prognosis research. � 2023 The Author(s). Published by Elsevier Inc. This is an
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Keywords: Acquired brain injury; Cerebrovascular disorder; Rehabilitation; Prognosis; Prognostic prediction model; Systematic review
Funding: The present research did not receive any specific grant from

funding agencies in the public, commercial, or not-for-profit sectors.

U.M.P. has received a grant from Helsefonden partially covering the salary

during his PhD education, which this study represents a part of. Helsefon-

den had no influence on the preparation or execution of the present system-

atic review.

Conflict of interest: P.W.S., P.P.E., J.F., J.F.N.: None.

Author Contributions: U.M.: conceptualization, methodology, project

administration, investigation, formal analysis, writing-original draft, re-

view & editing; PW Stubbs: conceptualization, methodology, investiga-

tion, supervision, writing-original draft, review & editing; PP Eggertsen:

investigation, writingereview & editing; J Fabricius: investigation,

writingereview & editing; JF Nielsen: conceptualization, supervision,

writingereview & editing; All listed authors meet the ICMJE criteria for

authorship and have approved the final.

* Corresponding author. Hammel Neurorehabilitation Centre and Uni-

versity Research Clinic, Department of Clinical Medicine, Aarhus Univer-

sity, Voldbyvej 15, 8450 Hammel, Denmark. Tel.: Phone þ45-78419090;

fax þ45-78419682.

E-mail address: uwepom@clin.au.dk (U.M. Pommerich).

https://doi.org/10.1016/j.jclinepi.2023.02.009

0895-4356/� 2023 The Author(s). Published by Elsevier Inc. This is an open acce

4.0/).
1. Introduction

Rehabilitation aims to assist individuals to regain a
meaningful life and maintain the maximum level of func-
tional independence and societal participation post-injury
[1]. Worldwide, acquired brain injury (ABI) contributes
to disability-adjusted life years and a loss of productivity
[2]. Post-acute ABI rehabilitation is usually provided dur-
ing hospitalization in inpatient rehabilitation facilities, de-
pending on the severity of the ABI [3]. Here, functional
independence is an important outcome and often consid-
ered the definition of ‘successful rehabilitation’ as it is
associated with long-term functional ability, improved
quality of life, and reduced caregiver burden [4e7]. Indi-
rectly, lack of functional independence affects healthcare
spending [8]. Purchasing power parity adjusted estimates
from Europe in 2010 indicate direct and indirect healthcare
ss article under the CC BY license (http://creativecommons.org/licenses/by/

http://creativecommons.org/licenses/by/4.0/
mailto:uwepom@clin.au.dk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jclinepi.2023.02.009&domain=pdf
https://doi.org/10.1016/j.jclinepi.2023.02.009
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jclinepi.2023.02.009
https://doi.org/10.1016/j.jclinepi.2023.02.009


Clinical Epidemiology 156 (2023) 53e65
What is new?

Key findings
� Six internally validated prognostic models for the

prediction of functional independence in postacute
brain injury rehabilitation were identified; which
all investigated patients with stroke.

� The identified prognostic models were judged to be
of high risk of bias.

� Two models were externally validated for trans-
portability, yet these models used unclear
procedures.

What this adds to what is known?
� The identified prognostic models lack the method-

ological rigor to be useful in clinical practice.

� No appropriate prognostic models for functional
independence in the post-acute rehabilitation
setting for non-stroke patients with acquired brain
injury were identified.

What is the implication, what should change now?
� Novel or updated prognostic models for functional

independence should be developed with internal
and external validation based on existing methodo-
logical guidelines.

� Although all included prognostic models focused
on patients with stroke, these models may also be
relevant for persons with other brain injuries, such
as traumatic brain injury or anoxic brain injury.

and rehabilitation costs for stroke (zV64.0 Billion) and
traumatic brain injury (TBI) (zV33.0 Billion) [9]. For
example, in Denmark the direct costs of stroke and TBI
were zV1.0 Billion and zV500 Million in 2015, respec-
tively [8,10]. In addition, the incidence of stroke is pro-
jected to increase and stroke mortality is projected to
decrease, putting more people in need of rehabilitation
[11]. To limit rising healthcare costs the Danish healthcare
system, similar to other countries [12], is transforming to
value-based healthcare, that is, achieving the best outcome
at the lowest cost [13,14]. In this context, prognosis
research in rehabilitation is particularly important. Empiri-
cally derived prognoses for meaningful rehabilitation out-
comes (e.g., functional independence) at discharge from
inpatient rehabilitation may provide information on pre-
dicted recovery potential to staff, patients and families to
aid patient-centered rehabilitation [15] and clinical decision
making [16]. Furthermore, a prognosis of the most likely
functional level may allow patients and their families to
plan/prepare for a life after hospitalization, for example,
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whether a return to previous living arrangements appears
feasible. Given this, measuring functional independence is
of importance. Two frequently used measures of functional
independence are the Functional Independence Measure�
(FIM�) [17] and the Barthel Index [18]. The FIM� is
frequently used in research and post-acute rehabilitation
settings and generates comprehensive outcome information
based on clinically relevant items [19]. The advantage of
the FIM� over the Barthel Index is a cognitive domain
which is highly relevant in individuals with an ABI [20,21].

Existing prognosis research in rehabilitation is sparse
and considered at high risk of bias with few meaningful
patient-centered rehabilitation outcomes [21e26]. Findings
from previous, seemingly related, systematic reviews
[21,24e28] are not applicable here due to differences in
the objectives and eligibility criteria related to the
following: a) included populations (e.g., including chil-
dren), b) time of prognostication (e.g., predicted in the
acute settings), c) predicted outcomes (e.g., mortality),
and d) the type of prognostic model (i.e., non-internally
validated). Additionally, as most of these reviews were per-
formed some years ago, there is a current knowledge gap of
recently validated multivariable prognostic models for
rehabilitation prognosis in patients with ABI.

The objective of the present study was to identify vali-
dated multivariable prognostic models for the prediction
of the FIM� score [17] at discharge from post-acute inpa-
tient rehabilitation in adult patients with ABI.
2. Methods

The present review was conducted in accordance with
the Prognosis Research Strategy (PROGRESS) framework
[29]. Guidelines from the updated Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRIS-
MA) [30] and the Cochrane Prognosis Methods Group
[31e33] were used. The CHecklist for critical Appraisal
and data extraction for systematic Reviews of prediction
Modelling Studies (CHARMS) and the PICOTS (Popula-
tion, Index, Comparator, Outcome, Timing, Setting)
acronym [32] (see Fig. 1) were also used to determine the
inclusion criteria and search strategy. The review protocol
is registered in PROSPERO (https://www.crd.york.ac.uk/
prospero/): CRD42021257098.
2.1. General eligibility criteria

Included studies were: 1) validated multivariable prog-
nostic models [29,32] for individualized outcome predic-
tion developed from longitudinal data, 2) peer-reviewed
articles, 3) articles published after the year 2000 due to cur-
rent advances in rehabilitation for ABI and an increased
focus in multivariable prognostic modelling, in terms of
guiding principles and improvement of methodological
quality [23,34,35], and 4) Articles published in English,

https://www.crd.york.ac.uk/prospero/
https://www.crd.york.ac.uk/prospero/


Popula�on Adults following ABI including:
ischaemic or haemorrhagic stroke;
subarachnoid haemorrhage;
trauma�c brain injury;
hypoxic or anoxic brain injury;
encephali�s or meningi�s;
primary brain tumours.

Index Internally or externally validated mul�variable 
prognos�c models according to the PROGRESS 
framework i.e. a combina�on of mul�ple 
variables (predictors) to es�mate the likelihood 
of certain events in the future, for which an 
individual is at risk. This includes both deriva�on, 
upda�ng or sole valida�on of prognos�c models.

Comparison This is irrelevant as the current study is based on 
including all eligible prognos�c models and not 
on comparing two dis�nct models.

Outcome Seven FIM® dimensions are considered eligible:
1) Total, 2) motor, or 
3) cogni�ve FIM® scores at discharge from post-
acute inpa�ent rehabilita�on;
4) Func�onal Independence Staging system 
grade at discharge;
5) Total, 6) motor, or 7) cogni�ve FIM® gain (i.e. 
change from admission to discharge)

Timing Time of prognos�ca�on: within the first week of 
admission to post-acute inpa�ent rehabilita�on.
Time of outcome: within the last week prior to 
discharge.
Timeframe for prognosis: dura�on of post-acute 
rehabilita�on.

Se�ng Post-acute inpa�ent rehabilita�on i.e. temporary 
comprehensive rehabilita�on provided by a 
hospital or inpa�ent rehabilita�on facility
following discharge from acute care 
/consulta�ve rehabilita�on.

Fig. 1. Detailed eligibility criteria according to the PICOTS (Popula-
tion, Index, Comparator, Outcome, Timing, Setting) acronym.
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Danish, Swedish, Norwegian, or German as these were the
languages spoken by the authorship team. The population
of interest was adults with ABI in a post-acute comprehen-
sive inpatient rehabilitation setting [36]. The included
outcome was the FIM�. The FIM� has adequate psycho-
metric properties in ABI populations [37e39] and has been
used in various clinical settings worldwide. The FIM� con-
tains 18 items (motor domain: 13 items and cognitive
domain: 5 items) scored on a 7-point scale. FIM� scores
are often reported as the total score (18e126 points) or
sum of motor domain items (13e91 points) or cognitive
domain items (5e35 points); with higher scores indicating
a higher functional level. The functional independence
staging (FIS) system is another utilization of the FIM�
[40]; it compiles FIM�-item scores into hierarchical stages
of activity profiles according to the order of expected re-
covery (see Fig. 1 for further details of the eligibility
criteria).
2.2. Exclusion criteria

Excluded studies were: conference abstracts and clinical
impact studies, machine learning approaches (i.e.,
automatic learning from data [41]) such as classification
and regression tree (CART) type prediction algorithms
(see Section 4.4), and studies measuring the outcomes of
interest but not reporting the results for a prognostic model.

2.3. Search methods for identification of studies

Electronic searches were performed in May 2021, in
PubMed (open PubMed interface), EMBASE (Ovid inter-
face), and Web of Science (Core collection). Search filters
were applied for publication date (after 1st January, 2000)
and publication language. The searches were repeated on
22nd April, 2022. Both synonyms and appropriate subject
or index headings of relevant search terms were used during
electronic searches. Search filters developed for the identi-
fication of prediction research [42,43] were included in the
search strategy. An information specialist was consulted
with the electronic search strategy. The detailed search
strategy can be found in the online Supplementary
Material. In addition, reference lists of eligible studies,
relevant systematic reviews, and the personal collections
of the authors were inspected for further potentially eligible
studies.

2.4. Data collection

2.4.1. Selection of studies
Identified references were exported into Endnote X8

(Clarivate, Philadelphia, USA) and duplicate references
were identified and removed both automatically based on
author(s), publication year, and title, and manually by one
author (UMP). Screening and selection of studies were
managed using Covidence (Covidence Ltd, Melbourne,
Australia). Titles and abstracts were screened for eligibility
independently by two authors (UMP, PPE). Thereafter, full
text articles were obtained and reviewed (UMP, PWS). Dis-
agreements were resolved by consulting a third reviewer
(JF).

2.4.2. Data extraction and management
Data were extracted by UMP using Covidence, and veri-

fied by JF. Disagreements were resolved by discussion.
Extraction forms included items recommended in the
CHARMS checklist [32] and the TRIPOD guidelines [44]
(see online Supplementary Material).

2.4.3. Assessment of risk of bias in included studies
Two authors (UMP, PWS) independently assessed the

risk of bias of each distinct prognostic model, using the
Prediction model Risk of Bias ASsessment Tool (PRO-
BAST) [45]. The PROBAST tool provides an assessment
for the key domainsdparticipants, predictors, outcome,
and analysis. Each domain contains 2 to 9 signalling ques-
tions to aid judgement. Risk of bias is rated as low, high or
unclear. Overall risk of bias was rated based on PROBAST
recommendations [45]. Both review authors discussed the
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PROBAST items and calibrated their assessment on 2
studies not included in the present review. All disagree-
ments were resolved by discussion.

2.5. Data synthesis

A planned meta-analysis [46] was deemed unfeasible
due to few identified prognostic models (see Section 3).
For the same reason, we did not grade the certainty of ev-
idence [47]. Hence, a narrative approach was used to
describe the included multivariable prognostic models.
Due to lack of reporting of information on model
Records identified from:

Database total (n = 4,595)
Embase (n = 1,520)
PubMed (n = 1,248)
Web of Science (n = 1,827)

Personal collection (n = 29) 

Reports sought for retrieval
(n = 242)

Id
en

tif
ic

at
io

n
In

cl
ud

ed

Reports assessed for eligibility in 
full text
(n = 240)

Studies included in review
(N = 3) entailing:

- Internally validated prognostic 
models (n = 6) 
- Externally validated prognostic 
models (n = 2)

Sc
re

en
in

g

Identification of studies v

Records screened in title and 
abstract
(n = 3169)

Fig. 2. Flow diagram of study id
performance we inferred likelihood ratio statistics, coeffi-
cients of determination, and optimism of included models
using published formula [48].
3. Results

Electronic searches yielded 4,595 articles (Fig. 2). After
removal of duplicates, 3,169 articles were screened for in-
clusion by title and abstract. Finally, 240 full text articles
were reviewed, resulting in n 5 3 articles fulfilling the in-
clusion criteria [49e51]. These three articles included the
Records removed before 
screening:

Duplicate records removed:
automatically (n = 1,303)

manually (n = 152)

Reports not retrieved
(n = 2)

Reports excluded:
Study of association (n = 114)
Conference abstract (n = 48)
Missing intern. validation (n = 36)
Outcome not FIM (n = 15)
Setting not post-acute (n = 11)
Study population not ABI (n = 10)
Duplicates (n = 2)
Language (n = 1)

ia databases and registers

Records excluded
(n = 2927)

entification and selection.



Table 1. Characteristics of included studies

Reference Country n Age
Gender %
males Stroke type %

Rehabilitation admission FIM�
score median (IQR)

Neglecta

%

Days from
injury until
rehabilitation
admission,
Median
(IQR)

Rehabilitation
length of

stay (days),
mean (SD)Total Motor Cognitive

Scrutinio
et al. (2017)
[50]

Italy 717 Mean (SD)
72 (12)

57.2 Ischemic: 81.2
Hemorrhagic:
18.8

40 (27e54) 19 (14e28) 19 (10e26) 9.9 15 (11e20) 52 (11)

Scrutinio et al.
(2019) [49]

Italy 951 Median (IQR)
73 (65e80)

54.8 Ischemic: 82
Hemorrhagic:
18

35 (24e45) 17 (14e23) 16 (9e25) 14 25 (17e38) 56 (14)

Garc�ıa-Rudolph
et al. (2021)
[51]

Spain 710 Mean (SD)
52 (10)

61.8 Ischemic: 53
Hemorrhagic:
47

47 (30e63) 25 (16e38) 19 (11e27) 35.9 37 (23e56) 75 (31)

Abbreviations: FIM�, Functional Independence Measure�; IQR, interquartile range.
All reported characteristics refer to the derivation cohort, that is, the sample used to develop the prognostic models in.
a The definition of neglect and criteria for diagnosis were not specified.
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development of n 5 6 prognostic models and external vali-
dation of n 5 2 prognostic models. Four other articles were
discussed for inclusion due to disagreements in the review
process but were ultimately excluded due to missing inter-
nal validation [52] and the setting not fulfilling the inclu-
sion criteria [53,54]. The fourth article [55] was an
external validation of the model presented by Inouye
[52]. However, modelling procedures were described insuf-
ficiently to assess whether eligibility criteria were fulfilled.
The authors did not respond to our inquiry concerning the
modelling procedures.

3.1. Included study populations

The participants in two included studies [49,50] were
from the same source population and were likely partially
overlapping because inclusion criteria were similar. The re-
maining participants from the third study [51] were re-
cruited from another centre in a different country. All
included participants presented with either ischemic or
hemorrhagic stroke, and were mostly males. Average age
(6SD) differed between studies and ranged from
50 (610) [51] to 72 (612) [50]; as did the prevalence of
neglect and ischemic stroke. Median total-, motor-, and
cognitive FIM� scores at admission ranged from 35 to
47, 17e25, and 16e19, respectively [49e51]. See
Table 1 for further details.

3.2. Description of prognostic models

Three prognostic models were developed to predict the
motor FIM� score at discharge either as treatment failure
(!37 points; model I) [49] or mild stroke impairment
(O61 points; model II & III) [50,51], respectively. Two
models were developed to predict the achievement of the
FIS system grade 5 or higher (model IV & V) [50,51].
Finally, one model was developed predicting the achieve-
ment of a clinically important improvement in motor
FIM� scores (O25 points; model VI) [50]. All included
prognostic models predicted dichotomized outcomes. Three
models (II, IV & VI) were internally validated in a different
cohort of patients from other centres under the same Reha-
bilitation Institute [50]. Model I was internally validated us-
ing bootstrapping; Models III & V were also presumed to
be validated with bootstrap procedures, although not
explicitly stated [51]. Two models (VII & VIII) were
self-described as externally validating models II & IV
geographically, that is, in a different setting from the devel-
opment setting [51]. The effective sample size ranged from
5 (model IV) to 44 (model I) events-per-candidate-
predictor-parameter (EPP; sometimes referred to as
Events-per-Variable, EPV). A summary of the characteris-
tics of included studies and prognostic models are shown
in Tables 1 and 2.

3.3. Risk of bias

All includedmodels were rated as high risk of bias. Defini-
tions and descriptions of the assessment procedures for candi-
date predictorswere sparse and non-transparent. For example,
although neglect (yes/no) was included in five prognostic
models (models I, II, II, V, and VI) [49e51], no diagnostic
criteria or assessment procedureswere provided. Second, sub-
optimal or unclear modelling and selection procedures may
have introduced bias in the analysis. For example, in five prog-
nosticmodels (models IIeVI) variable selectionwas based on
stepwise forward selection. Furthermore, selection proced-
ures were not repeated in any internal validation of the
included prognostic models. Figure 3 summarizes the PRO-
BAST assessment in these models.

3.4. Modelling procedures and model performance

Nineteen (models II, IV & VI) and 16 (models III & V)
candidate predictors were tested for inclusion in five prog-
nostic models [50,51] based on forward stepwise selection



Table 2. Overview of included prognostic models

Reference in text
model nr

Predicted
outcome n

Events
(n)

Events-per-
candidate-
predictor-
parameter
(EPP)

Candidate
predictors

(n)
Predictors included in the final

model Selection procedure

Internally validated prognostic models

Scrutinio et al.
(2019) model I
[49]

Discharge motor
FIM� score
�37 points

951 440 44a 10d Age, Stroke type, Admission Motor
FIM score, Admission cognitive
FIM� score, Neglect

Backward stepwise
selection

With P O 0.157
For Exclusion

Scrutinio et al.
(2017) model II
[50]

Discharge motor
FIM� score
O61 points

717 206 11b 19e Age, Injury-Rehabilitation
admission interval, Unilateral
neglect, Admission Motor FIM�
score, Admission cognitive
FIM� score

Forward stepwise with
P ! 0.05 for addition

Garc�ıa-Rudolph
et al. (2021)
model III [51]

Discharge motor
FIM� O61
points

710 302 19c 16f Age, onset-rehabilitation
admission interval, unilateral
neglect, Admission motor FIM�
score, aphasia

Forward stepwise
selection with
P ! 0.05 for addition

Scrutinio et al.
(2017) model
IV [50]

Functional
Independence
Staging Grade
�5

717 100 5b 19e Age, Gender, Injury- rehabilitation
admission interval, Admission
motor FIM� score, Admission
cognitive FIM� score

Forward stepwise with
P ! 0.05 for addition

Garc�ıa-Rudolph
et al. (2021)
model V [51]

Functional
Independence
Staging Grade
�5

710 148 9c 16f Age, onset-rehabilitation
admission interval, unilateral
Neglect, admission motor FIM�
score, aphasia

Forward stepwise
selection with
P ! 0.05 for addition

Scrutinio et al.
(2017) model VI
[50]

Motor FIM� gain
�25 points

NRg 309 Unclear Unclearg Age, injury- rehabilitation
admission interval, Side of
impairment, Stroke type,
unilateral neglect, Admission
motor FIM� score, Admission
cognitive FIM� score

Forward stepwise with
P ! 0.05 for addition

Externally validated prognostic models

Garc�ıa-Rudolph
et al. (2021)
model VII [51]

Discharge motor
FIM� O61
points

710 302 Unclear Irrelevant Age, onset-rehabilitation
admission interval, unilateral
neglect, admission motor FIM�
score, admission Cognitive
FIM� score

Irrelevant

Garc�ıa-Rudolph
et al. (2021)
model VIII [51]

Functional
Independence
Staging Grade
�5

710 148 Unclear Irrelevant Age, onset-rehabilitation
admission interval, sex,
admission motor FIM� score,
admission cognitive FIM� score

Irrelevant

Abbreviations: AUC, area under the receiver operated characteristic curve; EPP, Events per candidate predictor parameter (often referred to as
EPV, events per variable); FIM�, Functional Independence Measure�; and NR, not reported.

a This estimate is likely an overestimation. The functional form of some predictors is unclear. For example, according to the results presented by
Scrutinio et al. 2019 (their Table 4), the regression coefficient for age is per 5-year increase, indicating a categorization. It remains unclear if this
was the case as the regression coefficient itself is presented as linear increase (i.e., per 1 age-unit difference).

b The EPP is realistically lower as an interaction was also tested (year of admission x centre in 4 categories: requiring 3 parameters).
c This is a crude estimate. Some variables or their categorization were not clearly defined. It is therefore unclear exactly how many parameters

were estimated.
d age, sex, marital status, diabetes mellitus, onset-rehabilitation admission interval, stroke type, side of impairment, neglect, admission motor

FIM�, and admission cognitive FIM�.
e age, sex, marital status, employment status, hypertension, diabetes mellitus, chronic obstructive pulmonary disease (COPD), coronary heart

disease, atrial fibrillation, onset-rehabilitation admission interval, stroke type, side of impairment, aphasia, unilateral neglect, admission motor
FIM� score, admission cognitive FIM� score, blood urea nitrogen, estimated glomerular filtration rate (eGFR), and haemoglobin.

f age, sex, marital status, employment status, hypertension, diabetes mellitus, dyslipidaemia, Body Mass Index, atrial fibrillation, onset-
rehabilitation admission interval, stroke type, side of impairment, aphasia, unilateral neglect, admission motor FIM�, admission cognitive FIM�.

g The prognostic model is reported in the Supplementary Material to the article; it is not explicitly stated whether exactly the same derivation/
validation cohort and candidate predictors were used for this model as for the other 2 reported models (II & IV) or if changes were made.
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Derivation Validation

Apparent
model

performance

Discrimination
AUC

(95% CI) Calibration Type of validation

Optimism adjusted
model

performance
Discrimination
AUC (95% CI) Calibration

Not reported
(NR)

0.834 (0.809
e0.859)

Hosmer-Lemeshow c2

7.77 (P 5 0.456)
Resampling 200
bootstrap eplications,
calculation of
shrinkage factor

NR
shrinkage factor

0.965

0.831 (0.812
e0.857)

NR

NR 0.883 (0.858
e0.910)

Hosmer-Lemeshow c2

4.12 (P 5 0.249)
Validation cohort
n 5 875 recruited
from 3 centres (incl.
development centre)
at varying periods

NR 0.886 (0.840
e0.892)

Hosmer-Lemeshow c2

8.86 (P 5 0.115)
Calibration plot by

quintiles

NR 0.894 (0.857
e0.929)

Hosmer-Lemeshow c2

10.40 (P 5 0.23)
Resampling 2000
bootstrap replications

NR NR Calibration plot, unclear
categories and
smoother function

NR 0.913 (0.884
e0.942)

Hosmer-Lemeshow c2

1.20 (P 5 0.754)
Validation cohort
n 5 875 recruited
from 3 centres (incl.
development centre)
at varying periods

NR 0.850 (0.815
e0.885)

Hosmer-Lemeshow c2

34.5 (P 5 0.001)
Calibration plot by

quintiles

NR 0.845 (0.789
e0.900)

Hosmer-Lemeshow c2

6.94 (P 5 0.54)
Resampling 2000
bootstrap replications

NR NR Calibration plot, unclear
categories and
smoother function

NR 0.754 (0.718
e0.790)

Hosmer-Lemeshow c2

8.94 (P 5 0.111)
Validation cohort NRg NR 0.757 (0.726

e0.789)
Hosmer-Lemeshow c2

4.57 (P 5 0.206)

Irrelevant Irrelevant Irrelevant External geographical
validation: n 5 710
recruited from 1
centre different than
the development
cohort

NR 0.873 (0.833
e0.915)

Hosmer- Lemeshow c2

6.07 (P 5 0.63)
Calibration plot, unclear

categories and
smoother function

Irrelevant Irrelevant Irrelevant External geographical
validation n 5 710:
recruited from 1
centre different than
the development
cohort

NR 0.803 (0.749
e0.857)

Hosmer-Lemeshow c2

8.91 (P 5 0.34)
Calibration plot, unclear

categories and
smoother function
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Fig. 3. Prediction model risk of bias assessment tool (PROBAST) summary for included prognostic models.
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with a significance level of P ! 0.05 for adding the predic-
tor. An interaction between year of admission and rehabil-
itation centre was tested in three models (II, IV & VI).
Univariable analysis and the order of addition of variables
to the models were not reported. In the remaining model
(model I) [49], ten candidate predictors, identified through
a literature review, were tested for inclusion based on back-
ward stepwise selection with P O 0.157 for exclusion. The
functional form, for example, potential nonlinearity, of
some the candidate predictors entered into the model re-
mains unclear (e.g., age). The external validation procedure
of two models (VII & VIII) was not described clearly. It ap-
pears that the original models were refitted in the validation
data using cross-validation; the assessment of the perfor-
mance of the original model (i.e., the linear predictor with
its original coefficients) in the validation data was not
reported.

3.4.1. Overall model performance
Overall performance measures such as the coefficient of

determination (R2) were not reported. Inferring the
apparent model performance from the reported area under
the receiver operated characteristic curve (AUC) estimates
[48] yielded the following estimates of the apparent Cox-
Snell R2: 0.39 (model I); 0.32 (model II); 0.44 (model
III); 0.19 (model IV); 0.21 (model V); and 0.25 (model
VI). Shrinkage (i.e., optimism adjustment) was reported
for model I [49] and estimated as 0.965. The precise esti-
mation method was not reported. For the remaining prog-
nostic models, shrinkage was not reported. Inferring the
global shrinkage factor through the closed form provided
by Van Houwelingen and Le Cessie [48,56] yielded the
following estimates: 0.92 (model II); 0.96 (model III);
0.85 (model IV); 0.90 (model V); and 0.89 (model VI).

3.4.2. Discrimination
Discrimination, using AUC was reported for all included

prognostic models. The AUC in the validation samples was
lowest for model IV and estimated as 0.76 (95% CI
0.73e0.79); the highest observed AUC was in model II
and estimated as 0.89 (95% CI 0.84e0.89). It is unclear
if the AUC estimates reported for models III & V are for
the apparent or optimism-adjusted models. Further details
are reported in Table 2.

3.4.3. Calibration
Calibration was assessed in all included prognostic

models [49e51] with estimation based on the Hosmer-
Lemeshow test (Table 2). Calibration plots were presented
for models IIeV [50,51] indicating potential miscalibration
for models II & IV in the validation cohort on visual inspec-
tion. A moderate overestimation can be detected for model
II although both underestimation and overestimation of
extreme values can be detected for model IV. The interpre-
tation of the calibration plots for models III, V, VII & VIII
[51] is hindered by unclear optimism-adjustment proced-
ures. A potential miscalibration appears for both the newly
developed model Vand the externally validated model VIII.
4. Discussion

Valid and reliable clinical prognostic models are
important for informed decision-making and may aid
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patient-centered planning, ultimately benefiting both
resource allocation and patient satisfaction [15,29]. In the
setting of post-acute rehabilitation, meaningful patient-
centered rehabilitation outcomes should be the outcome
of prognosis to inform rehabilitation goals and the planning
and preparation of life after discharge [1,16]. We identified
three eligible articles, including the development and
external validation of eight relevant prognostic models,
all of which were deemed to be high risk of bias. Likewise,
although discrimination appeared adequate, calibration was
assessed or reported insufficiently, and optimism adjust-
ment remained unclear.
4.1. Identified prognostic models

The FIS system was applied as a prognostic outcome in
two prognostic models [50,51]; one of which may have
been externally validated [51]. While the interpretation of
FIM� total or domain scores may be considered relatively
arbitrary to clinical staff, patients, and relatives, the FIS
system provides FIM� scores as hierarchical activity pro-
files based on expected recovery [40]. Hence, these models
are important to patients and are potentially a valuable
prognostic tool in clinical practice [40,53], through provi-
sion of a tangible outcome (i.e., achievement of grade 5:
requiring only supervision in most FIM� items). However,
most patients similar to those under investigation appear to
not reach grade 5 during rehabilitation [50,51]. This dichot-
omous classification is problematic and achievement of
function for patients at lower grades cannot be estimated.
Hence, a multinomial logistic regression predicting the
likelihood of achieving any of the 7 grades may be worth-
while in the future [57,58]. Furthermore, model I was trans-
formed into a nomogram [49] which may be easily
implemented into daily clinical practice by yielding a vi-
sual impression of the relevance of predictors [59]. We
did not include this nomogram [49] as a separate prognostic
model, as it was unclear whether it was converted from the
apparent or optimism-adjusted coefficients. There was
some uncertainty whether a validation in a non-random
split-sample (models II, IV, & VI) [50] may be considered
an external geographical validation with some authors
arguing for [60] and some against [[44,61] pp. 159 &
166] this. Here, we consider these models as internally vali-
dated for two reasons: a) the validation addresses reproduc-
ibility rather than transportability [62] as development and
validation samples appear very similar and b) it was not
investigated if the models needed updating or re-
calibration [63]. Model VI used the improvement on the
motor FIM� as an outcome [50]. This model should be
used extremely cautiously as the admission motor FIM�
score was included as a predictor. Hence, a predictor
defines the outcome (improvement 5 admission score -
discharge score), causing mathematical coupling and void-
ing the independence assumption underlying regression
analysis [64].
4.2. Methodological limitations of prognostic models

Most candidate predictors selected into the final prog-
nostic models (Table 2) have previously been identified to
be associated with functional independence in post-stroke
rehabilitation [21]. Nevertheless, modelling choices along
with sparse and non-transparent definitions of candidate pre-
dictors increases model uncertainty and reduces the inter-
pretability and potential for further validation of the
included models [44,65]. External validation addressing
model transportability [62], that is, in a sample other than
from the setting themodel was developed and internally vali-
dated in, is required before any prognostic model should be
applied in clinical practice [44,59e61]. Here, we identified
the external validation of two prognostic models [51]. The
intention of external validation is to test the prognostic per-
formance of the original model in a different but similar sam-
ple than the original development sample [62]. This is one
rationale behind prognostic models, that is, the application
in new individuals. The two externally validated models
(VII & VIII) identified in the present study did not appear
to assess the performance of the original prognostic models
(i.e., the linear predictor with its regression coefficients) in
the validation cohort. Instead, themodels appear to have been
refitted in the validation cohort using unclear procedures;
although both cross-validation and bootstrapping methods
are mentioned. Although this approach may be necessary
sometimes, for example, when case-mix or predictors effects
are very different; it is usually not the preferred first step in an
external validation [[59] p. 399ff.]; that is, the displayed
models (VII&VIII) yield no information on the performance
of the original model in a new sample. In addition, differ-
ences in case-mix or predictors effects were not investigated.
Hence, these models should be seen as newly developed
models with a priori defined predictors, in our opinion
[[51,59] p. 382ff.]. It has been proposed that validation of ex-
isting prognostic models may be discouraged due to scarce
and non-uniform reporting and high risk of bias, which was
also observed in the prognostic models identified in the cur-
rent study. Thus, developing a new prognostic model is often
preferred and likely required [22,66]. Although there has
been an increased advocacy for methodological prognosis
frameworks in recent years [15,29,35], suboptimal statistical
procedures with high risk of bias are still frequently observed
in prognostic models proposed in healthcare [26,67e70].
4.3. Clinical implications

In all included prognostic models [49e51] calibration
was sparsely discussed and discrimination was emphasized.
Yet, most prognostic models should not be evaluated solely
based on discrimination. Calibration was primarily assessed
using the HosmereLemeshow test, which is considered
inadequate to effectively detect miscalibration [45,59,71].
Although calibration plots were presented for some models
[50,51], their interpretation was hampered by a sparse
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description of assessment procedures (e.g., applied
grouping and smoother) and graphical presentation.
Calibration-in-the-large or calibration slopes were not re-
ported in the external validation [71]. This observation is
similar to prognostic model studies early after TBI [26].
Calibration plays a substantial role in the performance of
prognostic models by estimating the reliability of risk esti-
mates [71,72]. Model calibration is substantially influenced
by overfitting [71], which may be especially problematic
here because of the following reasons: a) optimism (i.e.,
overfitting) was only assessed in one model [49], which
did not elaborate on the estimation method, b) five included
prognostic models [50,51] used stepwise forward selection
methods, which are prone to overfitting and instability of
selection [44,45,59], c) limited samples based on the effec-
tive sample size (i.e., EPP) [48,61], and d) non-repetition of
selection procedures in the internal validation [60,73]. We
have estimated global shrinkage factors for five models
[50,51] based on published mathematical formula [48,56].
The global shrinkage estimates indicate some overfitting,
likely related to testimation bias [59] caused by forward se-
lection procedures. Yet, possibly due to the similarity be-
tween the split-samples [50], the overfitting does not
appear severe. Importantly, poor calibration may affect
the clinical utility of prognostic models and may lead to
harmful decision making in some circumstances [72].
Although the models may perform well in the local context
and may already be used to provide local evidence, prog-
nostic models usually perform more poorly with actual
external validation [66,70]. We disagree with the authors
[51] on the conclusion that the newly developed model
III outperformed model II (i.e., the original model) based
on a crude comparison of the AUC estimates. The differ-
ences in AUC may be attributable to differences in selec-
tion procedures, case-mix or predictor effects which the
authors did not formally assess [[59] p. 382ff.]. Some even
advocate that prognostic models should be treated as health
technology and be investigated as such before clinical
application [61]. Hence, we deem a widespread application
of the identified models unfeasible, based on the models
uncertain calibration alone. We want to emphasize the need
for uniform reporting and valid methodological approaches
in prognosis research in postacute rehabilitation [74].
Future studies should draw upon recently published guide-
lines [29,33,44,45,59,75] to increase the transparency of
prognosis research so it can be properly externally vali-
dated and safely implemented into routine clinical practice.
Thus, aiding rehabilitation and benefiting both patients and
healthcare providers.
4.4. Strengths and limitations of the present systematic
review

We used a strict methodological approach based on
acknowledged guidelines to plan and conduct the present
review and deliberately applied a very broad search strategy
as we expected non-uniform reporting and terminology
[22]. In addition, we included a broad definition of the
ABI population which, besides major subgroups, also
included anoxic brain injuries; encephalitis and primary
brain tumours. We applied the minimum inclusion criteria
for valid prognostic model research [44,59], and filtered
studies that had the potential for low risk of bias. Further-
more, we assessed the risk of bias in included prognostic
models with the PROBAST tool [45], which was specif-
ically developed for this purpose.

Reporting was very poor and the use of shared terminol-
ogy (e.g., based on the PROGRESS framework or its pre-
cursors) [15,29,35] was rare. For example, one of the
included studies was identified only through the ongoing
updating of our personal collections. This sometimes made
it difficult to ascertain what a study had actually done. In
addition, our strict inclusion criteria, filtering only validated
prognostic models for the FIM�, may be seen as a limita-
tion as we might have excluded potentially relevant studies
by design (i.e., missing validation). Yet, our intention was
to quantify the performance of prognostic models satisfying
minimum-criteria for prognostic model research (i.e., inter-
nal validation). A meta-analysis of the performance of non-
validated prognostic models is not recommended due to
high risk of bias and overestimation [31,76]; instead a
meta-analysis of individual-patient data may be a better
approach [77]. This approach however would require data
sharing, which may be difficult in some jurisdictions and
circumstances [78]. Although the best measure for prog-
nosis of meaningful rehabilitation outcomes might be
debatable [18,20,21], our decision to include only the
FIM� as the eligible outcome is based on superior face val-
idity, from our clinical perspective. Although both the Bar-
thel Index and the FIM� are the most frequently used
measures of disability/burden of care [21,79], only the
FIM� incorporates a cognitive domain, which we deem
of paramount importance to reflect functional independence
in our study population. In contrast, the Barthel Index only
contains motor items and is less frequently used in distinct
post-acute rehabilitation therapy settings [20,21]. Instead of
including other outcome measures we included seven
possible FIM� dimensions as eligible outcomes, for
example, the cognitive domain improvement or the FIS sys-
tem [40]. Furthermore, we acknowledge that the definition
of the time of prognostication and setting are grounded in a
location (Western-European/Australian) understanding of
post-acute ABI rehabilitation; another definition may be
more meaningful in other healthcare contexts where access
to these services may differ or rehabilitation is provided in
other settings [3,36,80]. This definition lead to the exclu-
sion of two otherwise qualified studies [53,54] which were
deemed to provide mostly consultative rehabilitation in a
subacute setting. Similarly, we excluded machine learning
type prognostic models. Although machine learning type
algorithms yield potential in prognostic model development
in some circumstances (e.g., large datasets, real-time data
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or competing risks), disadvantages in health research
include reduced interpretability, a lacking framework for
prognosis [75] and large required samples, ideally featuring
high signal: noise ratios, seldom found in health research
[81,82]. Reduced interpretability may be particularly prob-
lematic in clinical prognostic models which are intended
for decision making and treatment planning in actual pa-
tients. Clinicians may not rely on a ‘black box’ type prog-
nostic model, that is, those lacking transparency or clinical
credibility, as they would be held accountable for potential
mistreatment or suboptimal decision making [83]. In addi-
tion, it appears that current machine learning based prog-
nostic models do not display superior performance over
traditional regression based models [82,84].
5. Conclusion

The lack of prognostic models for functional indepen-
dence in post-acute rehabilitation does not match the
impact ABI has on individuals and healthcare spending.
Although applying a broad search strategy, including
diverse diagnoses of ABI, we identified only a few vali-
dated prognostic models, including only people with stroke.
These models, although internally validated, were insuffi-
ciently reported, at high risk of bias, and should be consid-
ered local evidence not yet fit for widespread application.
Future studies must acknowledge the importance of appro-
priate and robust model development, including internal
validation, and conform to uniform reporting standards.
Acknowledgments

We would like to thank Henrik Sehested Laursen, Med-
ical Librarian at Regional Hospital Central Jutland for his
aid in drafting, testing and translating the electronic search
strategy.
Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.jclinepi.2023.02.009.
References

[1] United Nations. Convention on the Rights of Persons with Disabil-

ities (CRPD). New York, NY: United Nations; 2008.

[2] Feigin VL, Abajobir AA, Abate KH, Abd-Allah F, Abdulle AM,

Abera SF, et al. Global, regional, and national burden of neurological

disorders during 1990-2015: a systematic analysis for the Global

Burden of Disease Study 2015. Lancet Neurol 2017;16:877e97.
[3] Buntin MB. Access to postacute rehabilitation. Arch Phys Med Reha-

bil 2007;88:1488e93.

[4] Rigby H, Gubitz G, Phillips S. A systematic review of caregiver

burden following stroke. Int J Stroke 2009;4:285e92.
[5] Verdugo MA, Fernandez M, Gomez LE, Amor AM, Aza A. Predic-

tive factors of quality of life in acquired brain injury. Int J Clin Health

Psychol 2019;19:189e97.

[6] Kohnen R, Lavrijsen J, Smals O, Gerritsen D, Koopmans R. Preva-

lence and characteristics of neuropsychiatric symptoms, quality of

life and psychotropics in people with acquired brain injury in long-

term care. J Adv Nurs 2019;75:3715e25.

[7] Doser K, Norup A. Caregiver burden in Danish family members of

patients with severe brain injury: the chronic phase. Brain Inj 2016;

30:334e42.

[8] Jennum P, Iversen HK, Ibsen R, Kjellberg J. Cost of stroke: a

controlled national study evaluating societal effects on patients and

their partners. BMC Health Serv Res 2015;15:466.

[9] Olesen J, Gustavsson A, Svensson M, Wittchen H-U, J€onsson B,

CDBE2010 Study Group, et al. The economic cost of brain disorders

in Europe. Eur J Neurol 2012;19:155e62.
[10] Vestergaard SV, Rasmussen TB, Stallknecht S, Olsen J, Skipper N,

Sørensen HT, et al. Occurrence, mortality and cost of brain disorders

in Denmark: a population-based cohort study. BMJ Open 2020;10:

e037564.

[11] Wafa HA, Wolfe CDA, Emmett E, Roth GA, Johnson CO, Wang Y.

Burden of stroke in Europe. Stroke 2020;51:2418e27.

[12] Stabile M, Thomson S, Allin S, Boyle S, Busse R, Chevreul K, et al.

Health care cost containment strategies used in four other high-

income countries hold lessons for the United States. Health Aff (Mill-

wood) 2013;32:643e52.

[13] Bonde M, Bossen C, Danholt P. Translating value-based health care:

an experiment into healthcare governance and dialogical account-

ability. Sociol Health Illn 2018;40:1113e26.

[14] Porter ME, Lee TH. The strategy that will fix health care. Harv Bus

Rev 2013;91:50e70.
[15] Moons KGM, Royston P, Vergouwe Y, Grobbee DE, Altman DG.

Prognosis and prognostic research: what, why, and how? BMJ

2009;338:b375.

[16] Wade D. Rehabilitation e a new approach. Part three: the implica-

tions of the theories. Clin Rehabil 2016;30:3e10.

[17] Linacre JM, Heinemann AW, Wright BD, Granger CV, Hamilton BB.

The structure and stability of the functional independence measure.

Arch Phys Med Rehabil 1994;75:127e32.

[18] Mahoney FI, Barthel DW. Functional evaluation: the Barthel index.

Md State Med J 1965;14:61e5.

[19] Hobart JC, Lamping DL, Freeman JA, Langdon DW,

McLellan DL, Greenwood RJ, et al. Evidence-based measurement.

Which disability scale for neurologic rehabilitation? Neurology

2001;57:639e44.

[20] Turner-Stokes L, Williams H, Rose H, Harris S, Jackson D. Deriving

a Barthel index from the northwick park dependency scale and the

functional independence measure: are they equivalent? Clin Rehabil

2010;24:1121e6.

[21] Meyer MJ, Pereira S, McClure A, Teasell R, Thind A, Koval J, et al.

A systematic review of studies reporting multivariable models to pre-

dict functional outcomes after post-stroke inpatient rehabilitation.

Disabil Rehabil 2015;37:1316e23.
[22] Bouwmeester W, Zuithoff NP, Mallett S, Geerlings MI, Vergouwe Y,

Steyerberg EW, et al. Reporting and methods in clinical prediction

research: a systematic review. PLoS Med 2012;9:1e12.

[23] Counsell C, Dennis M. Systematic review of prognostic models in pa-

tients with acute stroke. Cerebrovasc Dis 2001;12:159e70.

[24] Perel P, Edwards P, Wentz R, Roberts I. Systematic review of prog-

nostic models in traumatic brain injury. BMC Med Inform Decis

Mak 2006;6:38.

[25] Jaja BNR, Cusimano MD, Etminan N, Hanggi D, Hasan D,

Ilodigwe D, et al. Clinical prediction models for aneurysmal sub-

arachnoid hemorrhage: a systematic review. Neurocrit Care 2013;

18:143e53.

[26] Dijkland SA, Foks KA, Polinder S, Dippel DWJ, Maas AIR,

Lingsma HF, et al. Prognosis in moderate and severe traumatic brain

https://doi.org/10.1016/j.jclinepi.2023.02.009
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref1
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref1
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref2
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref2
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref2
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref2
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref2
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref3
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref3
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref3
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref4
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref4
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref4
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref5
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref5
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref5
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref5
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref6
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref6
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref6
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref6
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref6
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref7
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref7
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref7
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref7
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref8
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref8
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref8
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref9
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref9
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref9
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref9
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref9
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref10
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref10
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref10
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref10
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref10
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref11
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref11
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref11
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref12
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref12
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref12
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref12
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref12
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref13
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref13
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref13
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref13
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref14
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref14
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref14
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref15
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref15
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref15
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref16
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref16
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref16
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref16
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref17
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref17
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref17
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref17
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref18
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref18
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref18
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref19
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref19
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref19
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref19
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref19
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref20
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref20
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref20
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref20
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref20
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref21
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref21
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref21
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref21
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref21
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref22
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref22
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref22
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref22
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref23
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref23
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref23
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref24
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref24
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref24
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref25
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref25
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref25
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref25
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref25
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref26
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref26


64 U.M. Pommerich et al. / Journal of Clinical Epidemiology 156 (2023) 53e65
injury: a systematic review of contemporary models and validation

studies. J Neurotrauma 2019;37:1e13.

[27] Veerbeek JM, Kwakkel G, van Wegen EE, Ket JC, Heymans MW.

Early prediction of outcome of activities of daily living after stroke:

a systematic review. Stroke 2011;42:1482e8.
[28] Hakkennes SJ, Brock K, Hill KD. Selection for inpatient rehabilita-

tion after acute stroke: a systematic review of the literature. Arch

Phys Med Rehabil 2011;92:2057e70.

[29] Steyerberg EW, Moons KG, van der Windt DA, Hayden JA, Perel P,

Schroter S, et al. Prognosis Research Strategy (PROGRESS) 3: prog-

nostic model research. PLoS Med 2013;10:e1001381.

[30] Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC,

Mulrow CD, et al. PRISMA 2020 explanation and elaboration: up-

dated guidance and exemplars for reporting systematic reviews.

BMJ 2021;372:n160.

[31] Debray TP, Damen JA, Snell KI, Ensor J, Hooft L, Reitsma JB, et al.

A guide to systematic review and meta-analysis of prediction model

performance. BMJ 2017;356:i6460.

[32] Moons KG, de Groot JA, Bouwmeester W, Vergouwe Y, Mallett S,

Altman DG, et al. Critical appraisal and data extraction for system-

atic reviews of prediction modelling studies: the CHARMS checklist.

PLoS Med 2014;11:e1001744.

[33] Cochrane methods prognosis. Available at https://methods.cochrane.

org/prognosis/. Accessed May 6, 2021.

[34] Harrell FE Jr, Lee KL, Mark DB. Multivariable prognostic models:

issues in developing models, evaluating assumptions and adequacy,

and measuring and reducing errors. Stat Med 1996;15:361e87.
[35] Altman DG, Royston P. What do we mean by validating a prognostic

model? Stat Med 2000;19:453e73.

[36] Stineman MG, Xie D, Kurichi JE, Kwong PL, Vogel WB, Ripley DC,

et al. Comprehensive versus consultative rehabilitation services post-

acute stroke: outcomes differ. J Rehabil Res Dev 2014;51:1143e54.

[37] Choo SX, Stratford P, Richardson J, Bosch J, Pettit SM, Ansley BJ,

et al. Comparison of the sensitivity to change of the functional inde-

pendence measure with the assessment of motor and process skills

within different rehabilitation populations. Disabil Rehabil 2018;40:

3177e84.

[38] Pretz CR, Kean J, Heinemann AW, Kozlowski AJ, Bode RK,

Gebhardt E. A multidimensional rasch analysis of the functional in-

dependence measure based on the national Institute on disability, in-

dependent living, and rehabilitation research traumatic brain injury

model systems national database. J Neurotrauma 2016;33:1358e62.
[39] Stineman MG, Shea JA, Jette A, Tassoni CJ, Ottenbacher KJ,

Fiedler R, et al. The Functional Independence Measure: tests of

scaling assumptions, structure, and reliability across 20 diverse

impairment categories. Arch Phys Med Rehabil 1996;77:1101e8.
[40] Stineman MG, Ross RN, Fiedler R, Granger CV, Maislin G. Func-

tional independence staging: conceptual foundation, face validity,

and empirical derivation. Arch Phys Med Rehabil 2003;84:29e37.
[41] Beam AL, Kohane IS. Big data and machine learning in health care.

JAMA 2018;319:1317e8.

[42] Ingui BJ, Rogers MAM. Searching for clinical prediction rules in

medline. J Am Med Inform Assoc 2001;8:391e7.
[43] Geersing G-J, Bouwmeester W, Zuithoff P, Spijker R, Leeflang M,

Moons K. Search filters for finding prognostic and diagnostic predic-

tion studies in medline to enhance systematic reviews. PLoS One

2012;7:e32844.

[44] Moons KG, Altman DG, Reitsma JB, Ioannidis JP, Macaskill P,

Steyerberg EW, et al. Transparent Reporting of a multivariable pre-

diction model for Individual Prognosis or Diagnosis (TRIPOD):

explanation and elaboration. Ann Intern Med 2015;162:W1e73.

[45] Moons KGM, Wolff RF, Riley RD, Whiting PF, Westwood M,

Collins GS, et al. PROBAST: a tool to assess risk of bias and appli-

cability of prediction model studies: explanation and elaboration.

Ann Intern Med 2019;170:W1e33.

[46] Pommerich UM, Stubbs PW, Fabricius JJ, Eggertsen PP, Nielsen JF.

Multivariable prognostic models for functional independence at
discharge from post-acute inpatient rehabilitation following acquired

brain injury e protocol for a systematic review and meta-analysis.

PROSPERO. 2021. Available at https://wwwcrdyorkacuk/prospero/

display_recordphp?ID5CRD42021257098. Accessed June 30, 2021.

[47] Huguet A, Hayden JA, Stinson J, McGrath PJ, Chambers CT,

Tougas ME, et al. Judging the quality of evidence in reviews of prog-

nostic factor research: adapting the GRADE framework. Syst Rev

2013;2:1e12.

[48] Riley RD, Snell KI, Ensor J, Burke DL, Harrell FE, Jr, Moons KG,

et al. Minimum sample size for developing a multivariable prediction

model: PART II - binary and time-to-event outcomes. Stat Med 2019;

38:1276e96.

[49] Scrutinio D, Guida P, Lanzillo B, Ferretti C, Loverre A,

Montrone N, et al. Rehabilitation outcomes of patients with se-

vere disability poststroke. Arch Phys Med Rehabil 2019;100:

520e529.e3.
[50] Scrutinio D, Lanzillo B, Guida P, Mastropasqua F, Monitillo V,

Pusineri M, et al. Development and validation of a predictive model

for functional outcome after stroke rehabilitation. Stroke 2017;48:

3308e15.
[51] Garc�ıa-Rudolph A, Bernabeu M, Cegarra B, Saur�ı J, Madai VI,

Frey D, et al. Predictive models for independence after stroke reha-

bilitation: maugeri external validation and development of a new

model. NeuroRehabilitation 2021;49:415e24.

[52] Inouye M. Predicting outcomes of patients in Japan after first acute

stroke using a simple model. Am J Phys Med Rehabil 2001;80:

645e9.
[53] Bates BE, Xie D, Kwong PL, Kurichi JE, Cowper Ripley D,

Davenport C, et al. Development and validation of prognostic indices

for recovery of physical functioning following stroke: part 1. PM R

2015;7:685e98.
[54] Bates BE, Xie D, Kwong PL, Kurichi JE, Ripley DC, Davenport C, et al.

Development and validation of prognostic indices for recovery of phys-

ical functioning following stroke: part 2. PM R 2015;7:699e710.
[55] Matsugi A, Tani K, Mitani Y, Oku K, Tamaru Y, Nagano K. Revision

of the predictive method improves precision in the prediction of

stroke outcomes for patients admitted to rehabilitation hospitals. J

Phys Ther Sci 2014;26:1429e31.
[56] Van Houwelingen JC, Le Cessie S. Predictive value of statistical

models. Stat Med 1990;9:1303e25.

[57] Harrell FE, Jr. Regression modeling strategies with applications to

linear models, logistic and ordinal regression, and survival analysis.

Cham: Springer International Publishing; 2015.

[58] Edlinger M, van Smeden M, Alber HF, Wanitschek M, Van Calster B.

Risk prediction models for discrete ordinal outcomes: calibration and

the impact of the proportional odds assumption. Stat Med 2022;41:

1334e60.

[59] Steyerberg EW. Clinical prediction models a practical approach to

development, validation, and updating. 2nd ed. Cham: Springer Na-

ture; 2019.

[60] Steyerberg EW, Harrell FE, Jr. Prediction models need appropriate

internal, internal-external, and external validation. J Clin Epidemiol

2016;69:245e7.
[61] Riley RD, Moons KG, Debray TP, Snell K, Steyerberg EW,

Altman DG, et al. Prognostic model research. In: Riley RD, van

der Windt DA, Croft P, Moons KG, editors. Prognosis Research in

Healthcare Concepts, Methods, and Impact. Oxford: Oxford Univer-

sity Press; 2019:139e87.

[62] Debray TP, Vergouwe Y, Koffijberg H, Nieboer D, Steyerberg EW,

Moons KG. A new framework to enhance the interpretation of

external validation studies of clinical prediction models. J Clin Epi-

demiol 2015;68:279e89.

[63] Van Calster B, McLernon DJ, van Smeden M, Wynants L,

Steyerberg EW, Bossuyt P, et al. Calibration: the Achilles heel of pre-

dictive analytics. BMC Med 2019;17:230.

[64] Hawe RL, Scott SH, Dukelow SP. Taking proportional out of stroke

recovery. Stroke 2019;50:204e11.

http://refhub.elsevier.com/S0895-4356(23)00030-6/sref26
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref26
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref26
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref27
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref27
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref27
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref27
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref28
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref28
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref28
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref28
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref29
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref29
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref29
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref30
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref30
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref30
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref30
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref31
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref31
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref31
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref32
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref32
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref32
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref32
https://methods.cochrane.org/prognosis/
https://methods.cochrane.org/prognosis/
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref34
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref34
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref34
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref34
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref35
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref35
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref35
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref36
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref36
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref36
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref36
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref37
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref37
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref37
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref37
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref37
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref37
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref38
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref38
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref38
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref38
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref38
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref38
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref39
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref39
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref39
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref39
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref39
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref40
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref40
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref40
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref40
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref41
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref41
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref41
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref42
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref42
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref42
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref43
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref43
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref43
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref43
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref44
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref44
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref44
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref44
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref44
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref45
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref45
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref45
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref45
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref45
https://wwwcrdyorkacuk/prospero/display_recordphp?ID=CRD42021257098
https://wwwcrdyorkacuk/prospero/display_recordphp?ID=CRD42021257098
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref47
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref47
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref47
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref47
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref47
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref48
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref48
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref48
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref48
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref48
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref49
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref49
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref49
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref49
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref49
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref50
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref50
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref50
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref50
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref50
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref51
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref51
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref51
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref51
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref51
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref51
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref51
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref52
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref52
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref52
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref52
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref53
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref53
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref53
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref53
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref53
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref54
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref54
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref54
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref54
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref55
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref55
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref55
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref55
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref55
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref56
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref56
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref56
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref57
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref57
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref57
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref58
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref58
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref58
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref58
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref58
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref59
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref59
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref59
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref60
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref60
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref60
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref60
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref65
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref65
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref65
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref65
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref65
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref65
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref61
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref61
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref61
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref61
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref61
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref62
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref62
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref62
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref63
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref63
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref63


65U.M. Pommerich et al. / Journal of Clinical Epidemiology 156 (2023) 53e65
[65] Sauerbrei W, Perperoglou A, Schmid M, Abrahamowicz M,

Becher H, Binder H, et al. State of the art in selection of variables

and functional forms in multivariable analysisdoutstanding issues.

Diagn Progn Res 2020;4:3.

[66] Siontis GCM, Tzoulaki I, Castaldi PJ, Ioannidis JPA. External valida-

tion of new risk prediction models is infrequent and reveals worse

prognostic discrimination. J Clin Epidemiol 2015;68:25e34.

[67] Kaiser I, Diehl K, Heppt MV, Mathes S, Pfahlberg AB, Steeb T, et al.

Reporting quality of studies developing and validating melanoma

prediction models: an assessment based on the TRIPOD statement.

Healthcare 2022;10:238.

[68] Haller MC, Aschauer C, Wallisch C, Leffondr�e K, van Smeden M,

Oberbauer R, et al. Prediction models for living organ transplantation

are poorly developed, reported, and validated: a systematic review. J

Clin Epidemiol 2022;145:126e35.

[69] Wynants L, Van Calster B, Collins GS, Riley RD, Heinze G,

Schuit E, et al. Prediction models for diagnosis and prognosis of

covid-19: systematic review and critical appraisal. BMJ 2020;369:

m1328.

[70] Helmrich IRAR, Mikoli�c A, Kent DM, Lingsma HF, Wynants L,

Steyerberg EW, et al. Does poor methodological quality of prediction

modeling studies translate to poor model performance? An illustra-

tion in traumatic brain injury. Diagn Progn Res 2022;6:8.

[71] Van Calster B, Nieboer D, Vergouwe Y, De Cock B, Pencina MJ,

Steyerberg EW. A calibration hierarchy for risk models was

defined: from utopia to empirical data. J Clin Epidemiol 2016;

74:167e76.
[72] Van Calster B, Vickers AJ. Calibration of risk prediction models:

impact on decision-analytic performance. Med Decis Making 2015;

35:162e9.

[73] Steyerberg EW, Uno H, Ioannidis JPA, van Calster B, Ukaegbu C,

Dhingra T, et al. Poor performance of clinical prediction models:

the harm of commonly applied methods. J Clin Epidemiol 2018;98:

133e43.
[74] Damen JAAG, Hooft L. The increasing need for systematic reviews

of prognosis studies: strategies to facilitate review production and

improve quality of primary research. Diagn Progn Res 2019;3:2.
[75] Collins GS, Dhiman P, Andaur Navarro CL, Ma J, Hooft L,

Reitsma JB, et al. Protocol for development of a reporting guideline

(TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and

prognostic prediction model studies based on artificial intelligence.

BMJ Open 2021;11:e048008.

[76] Deeks JJ, Higgins JPT, Altman DG. On behalf of the Cochrane sta-

tistical methods Group. Chapter 10: analysing data and undertaking

meta-analyses. In: Higgins JPT, Thomas J, Chandler J,

Cumpston M, Li T, Page MJ, et al, editors. Cochrane Handbook

for Systematic Reviews of Interventions. Cochrane; 2022. www.

training.cochrane.org/handbook. Accessed April 13, 2022.

[77] Debray TPA, de Jong VMT, Moons KGM, Riley RD. Evidence syn-

thesis in prognosis research. Diagn Progn Res 2019;3:13.

[78] Peloquin D, DiMaio M, Bierer B, Barnes M. Disruptive and avoid-

able: GDPR challenges to secondary research uses of data. Eur J

Hum Genet 2020;28:697e705.
[79] Sangha H, Lipson D, Foley N, Salter K, Bhogal S, Pohani G, et al. A

comparison of the Barthel Index and the Functional Independence

Measure as outcome measures in stroke rehabilitation: patterns of

disability scale usage in clinical trials. Int J Rehabil Res 2005;28:

135e9.

[80] Langhammer B, Becker F, Sunnerhagen KS, Zhang T, Du X,

Bushnik T, et al. Specialized stroke rehabilitation services in seven

countries. Int J Stroke 2015;10:1236e46.

[81] van der Ploeg T, Austin PC, Steyerberg EW. Modern model-

ling techniques are data hungry: a simulation study for pre-

dicting dichotomous endpoints. BMC Med Res Methodol

2014;14:137.

[82] Steyerberg EW, van der Ploeg T, Van Calster B. Risk prediction

with machine learning and regression methods. Biom J 2014;56:

601e6.
[83] Wyatt JC, Altman DG. Commentary: prognostic models: clinically

useful or quickly forgotten? BMJ 1995;311:1539e41.

[84] Christodoulou E, Ma J, Collins GS, Steyerberg EW, Verbakel JY, Van

Calster B. A systematic review shows no performance benefit of ma-

chine learning over logistic regression for clinical prediction models.

J Clin Epidemiol 2019;110:12e22.

http://refhub.elsevier.com/S0895-4356(23)00030-6/sref64
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref64
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref64
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref64
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref66
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref66
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref66
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref66
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref67
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref67
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref67
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref67
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref68
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref68
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref68
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref68
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref68
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref68
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref69
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref69
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref69
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref69
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref70
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref70
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref70
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref70
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref70
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref71
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref71
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref71
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref71
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref71
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref72
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref72
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref72
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref72
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref73
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref73
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref73
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref73
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref73
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref74
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref74
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref74
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref75
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref75
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref75
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref75
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref75
http://www.training.cochrane.org/handbook
http://www.training.cochrane.org/handbook
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref77
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref77
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref78
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref78
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref78
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref78
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref79
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref79
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref79
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref79
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref79
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref79
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref80
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref80
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref80
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref80
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref81
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref81
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref81
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref81
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref82
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref82
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref82
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref82
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref83
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref83
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref83
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref84
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref84
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref84
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref84
http://refhub.elsevier.com/S0895-4356(23)00030-6/sref84

	Regression-based prognostic models for functional independence after postacute brain injury rehabilitation are not transpor ...
	1. Introduction
	2. Methods
	2.1. General eligibility criteria
	2.2. Exclusion criteria
	2.3. Search methods for identification of studies
	2.4. Data collection
	2.4.1. Selection of studies
	2.4.2. Data extraction and management
	2.4.3. Assessment of risk of bias in included studies

	2.5. Data synthesis

	3. Results
	3.1. Included study populations
	3.2. Description of prognostic models
	3.3. Risk of bias
	3.4. Modelling procedures and model performance
	3.4.1. Overall model performance
	3.4.2. Discrimination
	3.4.3. Calibration


	4. Discussion
	4.1. Identified prognostic models
	4.2. Methodological limitations of prognostic models
	4.3. Clinical implications
	4.4. Strengths and limitations of the present systematic review

	5. Conclusion
	Acknowledgments
	Supplementary data
	References


