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Abstract: The numerical investigation of magneto-hydrodynamic (MHD) mixed convection flow
and entropy formation of non-Newtonian Bingham fluid in a lid-driven wavy square cavity filled
with nanofluid was investigated by the finite volume method (FVM). The numerical data-based
temperature and nanoparticle size-dependent correlations for the Al2O3-water nanofluids are used
here. The physical model is a two-dimensional wavy square cavity with thermally adiabatic hor-
izontal boundaries, while the right and left vertical walls maintain a temperature of TC and TH ,
respectively. The top wall has a steady speed of u = u0. Pertinent non-dimensional parameters such
as Reynolds number (Re = 10, 100, 200, 400), Hartmann number (Ha = 0, 10, 20), Bingham number
(Bn = 0, 2, 5, 10, 50, 100, 200), nanoparticle volume fraction (φ = 0, 0.02, 0.04), and Prandtl number
(Pr = 6.2) have been simulated numerically. The Richardson number Ri is calculated by combining
the values of Re with a fixed value of Gr, which is the governing factor for the mixed convective flow.
Using the Response Surface Methodology (RSM) method, the correlation equations are obtained
using the input parameters for the average Nusselt number (Nu), total entropy generation (Es)t, and
Bejan number (Beavg). The interactive effects of the pertinent parameters on the heat transfer rate are
presented by plotting the response surfaces and the contours obtained from the RSM. The sensitivity
of the output response to the input parameters is also tested. According to the findings, the mean
Nusselt numbers (Nu) drop when Ha and Bn are increased and grow when Re and φ are augmented.
It is found that (Es)t is reduced by raising Ha, but (Es)t rises with the augmentation of φ and Re. It is
also found that the φ and Re numbers have a positive sensitivity to the Nu, while the sensitivity of
the Ha and Bn numbers is negative.

Keywords: Bingham nanofluid; analysis of variance (ANOVA); response surface methodology (RSM);
sensitivity test; wavy cavity; finite volume method (FVM); mixed convection; entropy generation

1. Introduction

When buoyancy forces are added to a pressurized flow, mixed convection (which
involves both free and forced convection) occurs [1]. In recent years, the mixed convection in
fluid-filled lid-driven cavities has attracted much interest due to its significance in the field
of heat and mass transfer and its multiple applications in engineering and sciences [2–4].
For example, applications include food processing, solar heat transfer, crystal growth,
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thermal storage system, cooling ponds, and glass production [5]. Two areas of the metal
field are also distinguished: the first one is an unyielding zone where the fluid moves rigidly,
and the second one is where the fluid moves like a viscous liquid. The second characteristic
of the extra stress is greater than the yield stress in the yielded region, whereas it is equal to
or lower than the yield stress in the unyielded zone. According to Migórski and Dudek [6],
below a stress function’s yield point, the medium behaves like a rigid body, and above the
limit, it flows like an incompressible viscous fluid. As a result, determining the position
and form of the yield surface(s), or the interaction between these two sets, is necessary
for solving flow issues involving these fluids. Therefore, we employ a novel numerical
method based on the finite volume method (FVM) to resolve the flow of a Bingham fluid in
a lid-driven wavy square cavity with a heated left wall.

It is challenging to investigate the properties of a particular non-Newtonian fluid
classified as viscoplastic in fluid mechanics. In our surroundings, several viscoplastic
materials are used in geological and industrial processes. These compounds include
suspensions, drilling mud, paste, and food items such as mayonnaise and ketchup. The
fundamental characteristic that sets this fluid apart is the division of the flow domain into
yielded and unyielded regions. At low pressures, it behaves like a solid object, but at
considerable pressures, it flows like a viscous fluid [7]. Yield stress is the crucial stress value
below which the material does not deform and over which it does. The properties of such
non-Newtonian fluids can be modeled mathematically using the Bingham model [8,9], the
Herschel–Bulkley model [10], and the Casson model [11]. The Bingham approach is the
one that best captures the properties of viscoplastic material. Using numerical methods
to solve the model might be challenging because it is discontinuous. The Papanastasiou
regularization technique [12], a different strategy suggested by Papanastasiou, can be used
to overcome these challenges.

Nanoparticles have higher thermal conductivity than base fluids [13] and thus are
commonly used to boost the heat transfer phenomenon. This is a new kind of heat trans-
fer fluid produced by dispersing non-metal or metal nanosize particles with less than
100 nm in size combined with a base fluid such as water, motor oil, and other coolants
such as metallic, non-metallic, and carbon nanotubes (CNTs), all of which have reduced
heat conduction [14]. Because of its heat conductivity, it also boosts the pressure gradi-
ent and pressure distribution [15]. Ferrofluids are also a form of nanofluids that work
with magnetically field-dependent compounds [16]. Nanofluids have the potential to be
employed in the production of vehicles, aircraft, microreactors, and other products, as
shown by recent technical advances [17]. Nano and ferrofluids have revolutionized various
industrial applications due to their ability to increase heat transmission [18–20]. As a result,
many researchers have been attracted to studying nano and ferrofluids for their thermal
properties in addition to their non-Newtonian behavior. To do so, Lajvardi et al. [21]
performed an experiment to look at the ferrofluid flow within a heated copper tube. They
used different magnetic field configurations and noticed a noticeable improvement in
the ferrofluid’s capacity to transfer heat. The next year, Hojjat et al. [22] conducted an
experimental investigation of the rheological properties of the base fluid and three different
types of non-Newtonian nanofluids with varied nanoparticle concentrations. After that,
Nadooshan et al. [23] investigated a hybrid Fe3O4-MWCNTs/ethylene-based nanofluid
for the change of volume fractions to examine flow behavior that was non-Newtonian.
In order to analyze the non-Newtonian fluid flow in a cavity containing two cylinders,
Barnoon et al. [24] created a two-phase mixing model.

Numerous studies on heat transmission and fluid flow in lid-driven cavities have
been studied by different authors [25,26]. In addition, numerous research studies that
investigate non-Newtonian Bingham liquid motion within various geometries of cavities
or enclosures have been carried out both experimentally and numerically. A chronological
account of these works was provided in the review study of Mitsoulis [27]. Bercovier
and Engelman [28] made the first attempt at numerical modeling of the Bingham fluid
in 1980. Using the finite element approach, they obtained a two-dimensional reference
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solution for lid-driven square cavity flow. Mitsoulis et al. published several works [29,30]
that consider Bingham fluids. In the area of numerical analysis of Bingham fluid flow,
Mitsoulis and Zisis’ work [31] is remarkable since it employed the finite element approach
with two separate grids; each had 400 and 1600 elements, and the numerical solutions
were displayed graphically. The findings are very useful in determining the location and
size of the yielded and unyielded zones for various Bingham number values. Another
outstanding work was carried out by Vola et al. [32] employing the Galerkin technique to
examine the unsteady laminar cavity flow of Bingham fluid in the condition of creeping
motion, that is, Re = 0. Neofytou [33] used the third-order upwind finite-volume approach
to conducting a numerical simulation of cavity (square) flow. The working substance, broad
Newtonian fluid, was the focus of the experiment. In this study, various mathematical
models, including the power-law, Bingham, Casson, and Quemada models, were taken into
consideration when employing the multiple parameters of the corresponding mathematical
models displayed graphically.

Several further studies of Bingham fluid flow take into account limited volumes in the
literature. For instance, Syrakos et al. [34] used the Papanastasiou regularization strategy to
study the viscoplastic (Bingham) flows and provide the numerical findings in both tabular
and graphical form. They also looked at how well the finite-volume technique handled
Bingham fluid flow in a square cavity driven by a lid. The same authors expanded on their
study from a slow-moving river Bingham fluid, taking into account the same geometry
and boundary conditions, to the investigation of inertia effects [35]. Pressure-driven flows
of Bingham polymers through a square hole were studied by Mitsoulis et al. [31]. In a
numerical analysis using the smoothed particle technique (SPH), Rafiee [36] represented the
non-Newtonian characteristics of the fluid in a lid-driven cavity by using the generalized
Newtonian fluid. Santos et al. [37] used a stabilized finite element approximation to
numerically study the flow field’s fundamental physics while considering the impact of
inertia and rheology factors on the flow of viscoplastic fluids inside a lid-driven cavity.
Through numerical simulation, Mahmood et al. [38] examined the cavity flow of Bingham
plastic while considering single and double-lid-driven cavities. Due to the physical model’s
straightforward geometrical design, the Cartesian mesh was used throughout these studies.
However, real-world issues have a more intricate geometry than a simple square cavity.

Bingham-type fluid mathematical models are used to investigate the behavior of mate-
rials such as paints, pastes, foams, suspensions, cements, and oils [39]. While the Bingham
model is considered, two numerical approaches help study the flow of viscoplastic fluids.
First, a suitable augmented Lagrangian functional is minimized; second, a variational
inequality is resolved; for a description, see Huilgol et al. [40]. Sanchez et al. [41] used
a first-order operator splitting technique to resolve the associated variational inequality
for the flow of a Bingham fluid while analyzing lid-driven chamber flows. Dean and
Glowinski [42] then talked about numerically simulating unsteady flows of a Bingham
fluid based on temporal discretization and used it to the flow in a lid-driven cavity to
illustrate their point. The operational splitting approach was recently used by Huilgol and
Kefayati [43] to replicate spontaneous convection in a cavity filled with a Bingham fluid. A
quick scan of the literature in the field reveals that the vast majority of these investigations
focus on what are known as “interior flows”, such as those in pipes with circular and
noncircular cross-sections and slits, laminar and chaotic flow regimes [44], batch mixing
containers [45,46], in porous media [47,48], etc. The fluid mechanical characteristics of these
processes have also been researched far more thoroughly than their equivalent heat and
mass transport. In contrast, a large portion of the literature on flows of the external surface
layer type refers to a sphere [49,50] or two-dimensional geometries such as square [51],
circular [52], or elliptical cylinders.

In the mixed convective flow, a wavy chamber can significantly affect fluid movement
and heat transmission. One of a wavy cavity’s main impacts is that it can create secondary
movements, for example, vortices and recirculation zones, which can speed up the rate of
heat transmission inside the cavity. These secondary flows usally are the result of buoyancy
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forces and can be particularly pronounced in mixed convection, where both natural and
forced convection is present. A wavy cavity can improve heat transmission while also
serving as a useful tool in a number of applications. For instance, wavy cavities have been
used in heat transfers and cooling systems for electronics as well as microfluidic devices for
mixing or dividing fluids. Based on the aforementioned literature, it is evident that further
research in the wavy cavity using the Bingham model’s effect on the mixed convection
combined with the temperature-dependent non-Newtonian nanofluid is required. In this
regard, the present study aims to analyze the effects of wavy cavities using finite volume
simulations of MHD mixed convection and entropy production of temperature-dependent
Bingham nanofluid flow. Body-fitted non-orthogonal grids are considered to derive gov-
erning equations in an irregular shape domain. For intricate or irregular geometry, the
lid-driven square wavy cavity flow is inadequate. Benchmark results using non-orthogonal
grids are likewise limited for comparing the numerical solutions for this kind of geometry.
The body-fitted non-orthogonal grids and the Bingham model with the Papanastasiou
regularization technique are employed. The correlation equations are determined using
the Response Surface Methodology (RSM) approach using the input values for the average
Nusselt number, total entropy production, and Bejan number. Plotting the response sur-
faces and contours generated from the RSM shows the interaction impacts of the relevant
factors on the heat transfer rate. The output response’s sensitivity to the input parameters
is also examined. Given the relevance and variety of applications of the wavy cavity, as
well as the influence of Bingham fluid on mixed convection, a sensitivity of the average
Nusselt number to the effective parameters has been performed.

2. Mathematical Formulation
2.1. Physical Model Description

The schematic diagram with the coordinate system and mesh composition is shown in
Figure 1, where Figure 1a shows the model geometry with coordinate system, and Figure 1b
shows the mesh distribution of the system. A laminar fluid flow in a chamber is character-
ized as incompressible with the Boussinesq approximation. A horizontal magnetic field is
applied to the flow. The Bingham non-Newtonian Al2O3–water nanofluid is assumed to be
in the enclosure. Furthermore, it is assumed that the base fluid and solid nanoparticles are
flowing at thermal equilibrium and at the same velocity. The vertically heated left wavy
wall contributes to the heat transmission process in the square chamber. In Figure 1a, it
is shown that the top (driven wall) wall maintains an initial velocity of u = uo. When it
comes to the heated and cold walls, there is a difference between the left vertical wall’s TH
and the right wall’s TC (TH > TC). According to the Figure 1b, the mesh composition is
densely distributed near the walls and sparsely distributed in the middle of the enclosure.
The enclosure’s wavy left and right walls can be expressed as follows:

σ̄x =

(
x̄− H

2

)
[1 + a sin(2Nπȳ/H)], (1)

where a = 0.05 is the fixed amplitude of the waviness, and the number of periods N = 6.

2.2. Bingham Model

A Bingham fluid is a viscoplastic substance that acts like a solid or rigid body under
low stress but flows like a viscous fluid under high stress [53]. When the shear stresses
approach a threshold level, a large number of non-Newtonian fluids tend to slide across
solid surfaces [54]. The Bingham model, which exhibits a linear stress-to-rate-of-strain ratio
during flow, is the most basic mathematical model for a viscoplastic fluid. As a result, the
constitutive equation for the Bingham model is [55]:
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x

y

(a)

Bingham fluid

u = u
0(b)

Figure 1. (a) Schematic model and coordinate system, (b) Mesh Composition.

γ̇ = 0, τ ≤ τy

τ =

(
τy

|γ̇ + µo

)
, τ > τy.

(2)

where τ is the extra stress tensor, γ̇ is the rate-of-strain tensor, and µo is the plastic viscosity.
There are numerous approaches for removing the Bingham model’s discontinuity. Among
these, the Papanastasiou [12] regularization technique is a widely accepted method. By
using the Papanastasiou [12] regularization technique, the constitutive Equation (2) can be
modified as below:

τ =

[
µ f +

τy

|γ̇| (1− exp(−m|γ̇|))
]

γ̇, (3)

where the constant viscosity is denoted as µ f , yield stress is denoted by τy, and stress
growth parameter is denoted by m.

2.3. Physical Properties of Non-Newtonian Bingham Nanofluid

The nanofluid’s effective density (ρn f ) can be computed using the mixture rule stated
by [56,57]:

ρn f = (1− φ)ρ f + φρs, (4)
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where ρ f is the base fluid’s density, ρs is the solid particle’s density, and φ is the nanoparticle
volume fraction. The heat capacity (ρCp)n f and the thermal expansion coefficient (ρβ)n f of
the nanofluid are determined using the mass averaging technique for nanofluid [57] are
as follows:

(ρCp)n f = (ρCp) f (1− φ) + (ρCp)sφ, (5)

(ρβ)n f = (ρβ) f (1− φ) + (ρβ)sφ, (6)

where (ρCp) f and (ρβ) f are the heat capacity and thermal expansion coefficient of the base
fluid, respectively, and (ρCp)s and (ρβ)s represent the heat capacity and thermal expansion
coefficient of the solid particle, respectively. The electrical conductivity for the nanofluid is
defined by σn f from the Maxwell–Garnetts (MG) models [58,59] for nanofluid as:

σn f = σf

1 +
3
(

σs
σf
− 1
)

φ(
σs
σf

+ 2
)
−
(

σs
σf
− 1
)

φ

, (7)

where σf is the electrical conductivity for the base fluid, and σs is the electrical conductivity
for the solid particle. The extra-stress tensor τ̄ is expressed in the dimensional form in
terms of the shear rate ¯̇γ as follows:

τ̄ = µ̄(| ¯̇γ|) ¯̇γ, (8)

In this study, the Papanastasiou [12] regularization technique has been used to con-
struct the stress-deformation behavior of the fluids with yield stress, which is defined
by (dimensional):

τ̄ =

[
µ f +

τy

| ¯̇γ| (1− exp(−m| ¯̇γ|))
]
| ¯̇γ|, (9)

where constant viscosity is denoted as µ f , yield stress is denoted by τy, and stress growth
parameter is denoted by m.

From the model of Corcione et al. [60,61], the nanofluid’s viscosity (µn f ) is defined as:

µ̄n f =

 µ f

1− 34.87
(

dsolid
d f luid

)−0.3
φ1.03

, (10)

In this study, the nanoparticle size dsolid = 25 nm is considered, and the d f luid (base
fluid’s diameter) is given by:

d f luid = 0.1

(
6B

NAπρ f

) 1
3

, (11)

where B = 18.01528× 10−3 Kgmol−1 is denoted by the base fluid’s molecular weight,
and NA = 6.022× 1023 mol−1 is denoted by the Avogadro number. The temperature-
dependent effective thermal conductivity is denoted by Kn f , which is shown below, as
defined in [60,61]:

kn f = k f

1 + 4.4Re0.4Pr0.66

(
Tf

Tf r

)10(
ks

k f

)0.03

φ0.66

, (12)

where Re =
2ρ f kbTf

πµ f
2 dsolid, Pr = 6.2, Tf r = 273 K (freezing temperature), and k f and ks

represent the effective thermal conductivity base fluid and nanoparticles, respectively.
Tf = T0 + T(t, x̄, ȳ)∆T, where ∆T = 50 K is considered for this study.
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After combining Equations (9) and (10), we obtain the dimensional apparent viscos-
ity as:

µ̄n f (| ¯̇γ|) =
1

1− 34.87
(

dsolid
d f luid

)−0.3
φ1.03

[
µ f +

τy

| ¯̇γ| (1− exp(−m| ¯̇γ|))
]

, (13)

where | ¯̇γ| is the shear-rate’s magnitude:

| ¯̇γ| =
[
2(ūx̄)

2 + 2
(
v̄ȳ
)2

+
(
v̄x̄ + ūȳ

)2
] 1

2 , (14)

The thermophysical properties for the solid ferroparticles and base fluid have been
used from [62–64].

2.4. Governing Dimensional Equations

Under the Boussinesq approximation, the problem can be modeled as a system of
coupled non-linear partial differential equations as below [57]:

ūx̄ + ūȳ = 0, (15)

ρn f
(
ūt̄ + ūūx̄ + v̄ūȳ

)
= − p̄x̄ +

∂

∂x̄

(
2µ̄n f ūx̄

)
+

∂

∂ȳ

(
µ̄n f ūȳ

)
+

∂

∂ȳ

(
µ̄n f ūx̄

)
, (16)

ρn f
(
v̄t̄ + ūv̄x̄ + v̄ūȳ

)
= − p̄ȳ +

∂

∂x̄

(
µ̄n f v̄x̄

)
+

∂

∂ȳ

(
2µ̄n f v̄ȳ

)
+

∂

∂x̄

(
µ̄n f ūȳ

)
+g(ρβ)n f (T − Tc)− σn f Bo

2v̄,
(17)

Tt̄ + ūTx̄ + v̄Tȳ =
1

(ρCp)n f

[
∂

∂x̄

(
kn f (T)Tx̄

)
+

∂

∂ȳ

(
kn f (T)Tȳ

)]
, (18)

where the conservation of mass is enforced by (15), the conservation of the linear mo-
mentum is enforced by (16) and (17), and the conservation of energy is enforced by (18),
together with the initial conditions

ū = v̄ = 0, T = 0 at t̄ = 0, (19)

and boundary conditions

ū = v̄ = 0, Tȳ = 0 at ȳ = 0, where, 0 ≤ x̄ ≤ L (20)

ū = u0, v̄ = 0, Tȳ = 0 at ȳ = H, where, 0 ≤ x̄ ≤ L (21)

ū = v̄ = 0, T = TH at x̄ = 0, where, 0 ≤ ȳ ≤ H (22)

ū = v̄ = 0, T = Tc at x̄ = L, where, 0 ≤ ȳ ≤ H (23)

where g is the gravitational acceleration. Bo is the applied magnetic field, and T is the
temperature.

2.5. Non-Dimensional Governing Equations

Introducing the following non-dimensional variables and parameters,

x =
x̄
H

, y =
ȳ
H

, u =
ū
u0

, v =
v̄
u0

, t =
t̄u0

H
, p =

p̄
ρu2

0
; (24)

θ =
T − Tc

Th − Tc
, ν f =

µ f

ρ f
, Re =

u0H
ν f

, Ri =
Gr
Re2 ; (25)
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Pr =
ν f

α f
, Gr =

gβn f ∆TH3(
ν f

)2 , Ha =

√
σf

µ f
B0H; . (26)

into the dimensional governing Equations (15)–(18), we present the following dimensionless
form [65,66]:
Continuity Equation:

ux + vy = 0. (27)

u-Momentum Equation:

ut + uux + vuy = −px +
ρ f

ρn f

1
Re

[
∂

∂x
(2DBnux) +

∂

∂y
(

DBnuy
)
+

∂

∂y
(DBnvx)

]
. (28)

v-Momentum Equation:

vt + uvx + vvy = −py +
ρ f

ρn f

1
Re

[
∂

∂x
(DBnvx) +

∂

∂y
(
2DBnvy

)
+

∂

∂x
(

DBnuy
)]

+Ri
(ρβ)n f

ρn f β f
θ −

σn f

σf

ρ f

ρn f

Ha2

Re
v.

(29)

Energy Equation:

θt + uθx + vθy =
(ρCp) f

(ρCp)n f

1
RePr

[
∂

∂x

(
kn f

k f
θx

)
+

∂

∂y

(
kn f

k f
θy

)]
. (30)

The thermophysical properties for the solid nanoparticles and base fluid have been
used from [57,67,68] where the non-dimensional form of apparent viscosity is given by

DBn =
1

1− 34.87
(

dsolid
d f luid

)−0.3
φ1.03

[
1 +

Bn
|γ̇|
(
1− exp(−M|γ̇|)

)]
, (31)

where Bn =
τy H
µ f u0

is the Bingham number, M = muo
H = 1000 is the growth factor of

dimensionless stress and |γ̇| is the dimensionless strain tensor rate, which is defined as:

|γ̇| =
[
2(ux)

2 + 2
(
vy
)2

+
(
vx + uy

)2
] 1

2 , (32)

The initial condition and the dimensionless boundary can be expressed below,

u = v = 0, θ = 0 at t = 0, (33)

u = v = 0, θy = 0, at y = 0, where, 0 ≤ x ≤ 1, (34)

u = 1, v = 0, θy = 0, at y = 1, where, 0 ≤ x ≤ 1, (35)

u = v = 0, θ = 1, at x = 0, where, 0 ≤ y ≤ 1, (36)

u = v = 0, θ = 0, at x = 1, where, 0 ≤ y ≤ 1. (37)

2.6. Rate of Heat Transfer

The average rate of heat transmission along the wavy hot wall can be determined
using the average Nusselt number (Nu) [57,65,69]:

Nu =
1
Q

∫ H

0
Nu(y)dy, (38)

where Nu(y) = − kn f
k f

(Tx)x=0, Q is the wavy wall’s area.
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2.7. Entropy Generation

Fluid friction, magnetic field, and heat transfer all worked together to create irre-
versibility in this study. Thus, the total entropy production is defined as the sum of the
entropy produced by heat gradients, viscosity, and the magnetic field can be represented as
follows [13,57,70]:

ĒS = ĒF + ĒT + ĒM, (39)

where entropy produced by fluid friction (ĒF), heat transfer (ĒT) and magnetic field (ĒM)
are computed as follows [13]:

ĒF =
µn f (| ¯̇γ|)

T0

[
2(ūx̄)

2 + 2
(
v̄ȳ
)2

+
(
ūȳ + v̄x̄

)2
]
. (40)

From Equation (13), putting the value of µn f we can write,

ĒF =
1

T0

(
1− 34.87

(
dsolid
d f luid

)−0.3
φ1.03

)[µ f +
τy

| ¯̇γ| (1− exp(−m| ¯̇γ|))
]

[
2(ūx̄)

2 + 2
(
v̄ȳ
)2

+
(
ūȳ + v̄x̄

)2
]
, (41)

also

ĒT =
kn f

T2
0

[
(Tx)

2 +
(
Ty
)2
]
, (42)

and

ĒM =
σn f B2

0

T0
. (43)

The Bejan number (Be) is the ratio of entropy produced by heat transfer to total entropy
production, and it can be defined as follows [13,57,71]:

B̄e =
ĒT

ĒS
. (44)

The dimensionless equations can be written as follows after non-dimensionalizing:

ES = EF + ET + EM, (45)

EF = ĒF ×
T2

0 H2

k f ∆T2 , (46)

EF = λ1DBn

[
2(ux)

2 + 2
(
vy
)2

+ 2
(
vx + uy

)2
]
, (47)

ET = ĒT ×
T2

0 H2

k f ∆T2 , (48)

ET =
kn f

k f

[
(θx)

2 +
(
θy
)2
]
, (49)

EM = ĒM ×
T2

0 H2

k f ∆T2 , (50)

EM = λ2
σn f

σf
Ha2, (51)
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where DBn is defined as Equation (31), and

λ1 =
T0uo

2

k f ∆T2 , (52)

λ2 =
µ f To

k f ∆T2 . (53)

The non-dimensional local Bejan number is computed by

Be =
ET
ES

. (54)

The non-dimensional entropy production is numerically integrated throughout the
cavity volume to determine the overall non-dimensional irreversibilities. The following is
how the integral equations are stated:

(EF)t =
∫ 1

0

∫ 1

0
EF dxdy, (55)

(ET)t =
∫ 1

0

∫ 1

0
ET dxdy, (56)

(EM)t =
∫ 1

0

∫ 1

0
EM dxdy, (57)

Bet =
∫ 1

0

∫ 1

0
Be dxdy, (58)

Beavg =
Bet∫ 1

0

∫ 1
0 dxdy

. (59)

3. Numerical Methodology

The governing equations are transformed into the Cartesian coordinates to handle the
complex wavy enclosure to a simple square computational domain. The final equations
are discretized by the finite volume method (FVM) with a collocated grid system. Grid
generation is the crucial step of any numerical method such as FVM. It is a discrete
implementation of the computational domain, and the problem is solved based on this
domain [55]. This creates limited control volumes (CV) within the field. Each CV for the
2D problem represents a cell with four faces. Figure 2 represents a computational node of a
central CV, whose center is at P. E, W, N, and S are the centers of its neighboring CVs. The
central CV’s four cells are denoted by e, w, n, and s. The variables’ values at the cell faces are
calculated via interpolation based on the node points. The surface and volume integrals are
assessed using the suitable quadrature formula to produce an algebraic equation for each
CV. The numerical methodology is described in excellent detail in [72]. In this study, the
FORTRAN code is updated to solve the governing equations indicated above [73–75]. The
code is double precision, entirely implicit, and second-order precise in both space and time.
The SIMPLE algorithm has been used in conjunction with a colocated grid arrangement of
the variables and a time-marching pressure-correction approach.
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Figure 2. A control volumne of the computational domain.

4. Grid Independence Test and Code Validation
4.1. Grid Independence Test

The grid independence test (GIT) is an important examination after code validation
before the beginning of the numerical simulations for a new study.

For the present study, the GIT was calculated using the average Nusselt number (Nu)
for different Bingham numbers such as Bn = 0.6, Bn = 1, and Bn = 1.4 with Re = 400,
Ha = 20, and φ = 4%, as shown in Table 1. Three grid (lattice) sizes have been shown:
Case 1: 81× 81, Case 2: 161× 161, and Case 3: 321× 321. Case 2: 161× 161 is considered
for the current numerical simulations.

Table 1. Grid sensitivity test for the average Nusselt number, Nu, at Pr = 6.8377, Ha = 20, φ = 0.04,
Gr = 100, and Re = 400.

Average Nusselt Number Nu

Grid size Bn = 50 Bn = 100 Bn = 200

G1: 81× 81 7.6854(6.18%) 7.0113 (2.48%) 6.2924 (1.13%)
G2: 161× 161 7.2383(0.00%) 6.8416(0.00%) 6.2111(0.00%)
G.3: 321× 321 7.1644(1.02%) 6.7711(1.03%) 6.1943 (0.27%)

4.2. Code Validation for the Bingham Fluids

To validate the current program, the acquired results are compared to earlier results
for Bingham fluid flow inside the square lid-driven chamber using several values of Bn
and Re.

Figure 3 shows the u-velocity comparison of the current study with Syrakos et al. [35].
The outcome of this comparison is depicted in Figure 3. The consistency with the results of
Syrakos et al. [35] is good in the instance of Re = 1000 and Bn = 10.
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Figure 3. Comparison of present results with Syrakos et al. [35] in terms of u-velocity along vertical
centerline at Re = 1000 and Bn = 10.

5. Results and Discussion

The finite volume approach has been applied to study the MHD mixed convective
flow and entropy production in a wavy enclosure. The non-Newtonian Bingham model
has been used to investigate the flow phenomena depending on different parameters. Local
and average Nusselt numbers, velocity and temperature distributions, streamline and
isotherms have been analyzed in this study, including entropy production with the effect
of various pertinent parameters, including the Reynolds number (Re = 10, 100, 200, and
400), Bingham number (Bn = 0, 2, 5, 10, 50, 100, and 200), Hartmann number (Ha = 0, 10,
and 20), volume fraction (φ = 0, 0.02, and 0.04), Prandtl number (Pr = 6.2) and Grashof
number (Gr = 100). The Richardson number Ri has been computed using Re and Gr. Ri
is the controlling parameter for the mixed convection phenomenon. In this study, two
different flow characteristics have been considered: one is dominating forced convection
with the values of Ri = 0.000625, 0.0025, 0.01, and one is dominating mixed convection
by considering the value of Ri = 1. The buoyancy effect causes natural convection, and
the lid’s motion induces forced convection inside the chamber. The numerical results are
discussed in the following sections.

The Bingham number (Bn) is the yield stress ratio to viscous stress. Yield stress
usually slows down the flow. Figure 4 shows the dimensionless axial velocity for flow
with different Bn and Ha at Re = 10, 100, 200, and 400. The presence of wavy walls and a
temperature differential excite the flow domain and induce movement inside the cavity.
The flow direction is clockwise and always complies with the produced buoyancy force. At
Re = 400, the high-velocity component is owing to the delivered inertia from the surface to
the flow, which causes large axial velocity. When an object experiences a force, the item
accelerates, which in turn has an impact on its velocity. The inertia force and velocity
have a proportionate connection. An increased Re results in increased fluid momentum
depletion and lower resistance near the fluid path. The impact of forced fluid movement in
layers away from hot and cold sources is mitigated by lowering the fluid penetrability. A
high Re also contributes to greater flow velocities within the cavity. Circulation in a cavity
with a higher Re and a lower Ri near the walls produces stronger velocity parameters;
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however, as you approach the cavity’s center, the fluid velocity has become negligible
caused by a change in the liquid direction, and the same thing happens in the upper half
of the cavity. Adding Ha decreases the u-velocity in the cavity, because increases in Ha
improve the Lorenz force, resulting in a reduction in velocity distributions. As the Ha rises,
the amplitude of the highest horizontal velocity decreases.
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Figure 4. u-Velocity distributions for various Bn when (A) Re = 10, (B) Re = 100, (C) Re = 200,
(D) Re = 400, and (a–d) Ha = 0, (e–h) Ha = 10 and (i–l) Ha = 20 while φ = 0.04.

5.1. Temperature Distributions for various Bn, Re, Ha and φ

The impact of different parameters such as Re, Bn, φ and Ha on temperature distri-
bution (θ) is shown in Figures 5 and 6. Because yield stress may alter the fluid’s flow
characteristics and heat transmission capabilities, the Bingham number can have an im-
pact on temperature in fluid systems. Particularly, the yield stress can alter how the fluid
behaves in areas of high and low shear, which can affect how quickly heat is transferred
there. From Figure 5, it is seen that temperature distribution is linear at lower Re. In this
case, the convection process is lower. That is why θ decreases linearly. As Re increases, θ
changes from linear to chaotic. When Re increases, the inertia force activates and accelerates
the flow. Due to the inertia’s higher force, the temperature distribution looks chaotic at
higher Re. At Re = 400, while the domination of forced convection is maximum (lowest
Ri). However, as Ha increases, the temperature increases before x = 0. However, it shifts
its trend from x = 0, and θ decreased as Ha increased. Ha induces the magnetic effect on
the flow. The magnetic effect opposes the fluid flow; hence, θ decreases as Ha increases.
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Figure 5. Temperature distributions for various Bn when (A) Re = 10, (B) Re = 100, (C) Re = 200,
(D) Re = 400 and Hartmann number (a–d) Ha = 0, (e–h) Ha = 10 and (i–l) Ha = 20 while φ = 0.04.

Moreover, Figure 6 shows that as Bn grows, the temperature distribution becomes
linear due to its high viscosity. That means increasing Bn increases the viscosity of the
fluid, which opposes the fluid flow, and that is why the change in θ becomes linear as
Bn grows. As a result, the overall temperature of the system decreases as Bn increases.
From Figure 6a–f, it can be seen that θ is higher for the higher values of Re and φ. The
increment happens due to the inertia force and nanoparticles effect. However, overall,
θ also increases as φ increases. Adding 4% of nanoparticles accelerates the temperature
distribution process.

5.2. Effects of Ha, Re, and φ on Streamlines at a Fixed Bn

The effects of Re, Bn, and φ on streamline are presented in Figure 7. At Re = 10, one
central elliptical vortex appears on the upper portion of the cavity due to the effect of the
mixed convection flow. As Ha increases, the flow trend changes due to the magnetic effect,
and at Ha = 20, two secondary vortices appear in the lower portion of the cavity. Due to
the weak buoyancy forces, the flow pattern for Re = 100 shows one large vortex on the
upper side of the chamber and a secondary vortex at the bottom. Pressure increases in the
top left corner while decreasing along the upper right corner. The movement from left to
right toward the top is what causes the fluid to recirculate clockwise toward the left. The
created top vortex does not completely fill the area due to the mentioned pressure disparity.
The shear force is the main cause of the observed secondary lower vortex. At Re = 200 and
Re = 400, the central vortex seemed to be shifted to the top right corner of the enclosure,
and streamlines are more intensively distributed close to the top wall, which means the
area where the fluid is moving faster. The coarse dispersion of streamlines away from the
top wall shows that the fluid is moving in a slower area. It is due to weak fluid circulation
at the center of the cavity and a high-velocity gradient close to the driven wall.
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Figure 6. Temperature distributions for various Re at (a) Bn = 0, (b) Bn = 2, (c) Bn = 5, (d) Bn = 10,
(e) Bn = 50, and (f) Bn = 100; and φ = 0, 0.04 while Ha = 10.

5.3. Effects of Ba, Re, and φ on Streamlines at a Fixed Ha

Figure 8 illustrates the streamlines for various Re, Ha, and φ to provide a more
thorough picture of flow and heat transmission in a wavy square cavity. A magnetic
field has been applied parallel to the x-axis. When the magnetic field is zero (Ha = 0),
a clockwise revolving vortex with its center toward the right upper of the chamber has
been discovered. The influence of mixed convection on the fluid flow and the associated
heat transfer at various Re is discussed here. The streamlines of a fluid flow are affected
by the Bingham number, especially in areas with high shear stresses. When a threshold
stress is achieved in a fluid flow with a high Bn number, the fluid first behaves like a solid
or exhibits strong resistance to deformation before starting to flow. The fluid’s velocity
field becomes complicated as a result of this behavior. According to the data, the flow
phenomenon consists of one primary vortex on the central top of the cavity for Re = 10.
When Re and Ha are increased, a secondary vortex appears at the bottom right corner. A
further increment in Ha results in two independent cells that separate the cavity into two
different chambers due to the magnetic field and buoyancy effect. The additional chamber
found is a direct result of the shear force. At Ha = 20, secondary vortices with opposing,
rotations may be seen toward the left bottom end of the chamber. The pattern is the same
regardless of fluid type for various Re except Re = 10 at Ha = 20. The number of these cells
is insignificant compared to the significant circulation cells. Forced convection is attempted
to be balanced by a strong magnetic field. The stream function’s value drops as the Ha
increases. The weak convective flow in the cavity results from a greater magnetic field,
which in turn causes a higher Lorentz force inside the fluid domain when the Ha values
are increased.
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Figure 7. Streamlines for (A) Re = 10 (B) Re = 100 (C) Re = 200 (D) Re = 400, and (a–d) Ha = 0,
(e–h) Ha = 10 and (i–l) Ha = 20 while φ = 0, 0.04, and Bn = 0.

5.4. Effects of Ha, Re, and φ on Isotherms at a Fixed Bn

The impacts of Bn, Re, and φ on isotherms are presented in Figure 9. In many flow
field scenarios, Re aids in the prediction of flow patterns. When convection significantly
contributes to heat transport, the isotherms become more curved as Re rises. In the scenario
of Bn = 100 and Bn = 200 at Re = 10, it can be seen that the isotherms for Bingham fluids
are parallel to the vertical walls, but the isotherms for Newtonian fluid flow (Bn = 0) are
curved. Due to larger viscous effects in the Bingham fluid at the same nominal value of Re,
this difference effectively indicates that the Re at which convection effects are felt is greater
for Bingham fluids than for Newtonian fluids. Flows with low Re are likely to be laminar,
whereas those with high Re are likely to be chaotic. Chaotic flow is caused by changes in
the fluid’s direction and speed, which can occasionally cross or even travel in the opposite
direction of the flow’s main direction. Chaotic flow takes place at high Re (Re = 400) and
therefore is dominated by inertial forces, which tend to produce chaotic eddies, vortices,
and other flow instabilities; laminar flow occurs at low Re (Re = 10) and is characterized by
smooth, constant fluid motion. Temperature graphs show that adding solid nanoparticles
to the base fluid increases the nanofluid’s thermal conductivity parameter and results in
a more even distribution of temperature inside the chamber. The left side wall is where
isotherms are concentrated, indicating the location of the quickest fluid movement. Away
from the top wall, isotherms are more widely distributed.
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Figure 8. Streamlines (A) Bn = 0 (B) Bn = 2, (C) Bn = 5, (D) Bn = 10, and (E) Bn = 50; where
(a–e) Re = 10, (f–j) Re = 100, (k–o) Re = 200, and (p–t) Re = 400, while (φ = 0, 0.04), and Ha = 0.

5.5. Effects of Ba, Re, and φ on Isotherms at a Fixed Ha

Figure 10 shows a substantial response to thermal outlines with varying values of
Re. When Re is small, as shown in Figure 10, the isotherms in the Bingham fluid scenario
remain almost parallel to the vertical walls, indicating that the heat transport is either
diffusion or conduction-driven. The thermal distribution shows that the generated heats
accumulated on the left wall while the right wall stayed cold. In this instance, the dominant
phenomenon is mixed convection. The fluid flow became disrupted as Re increased. The
isotherms become more curved as Re rises. As a result, convection significantly contributes
to heat transport. Because of its low density, it begins to compress at the heated left wavy
wall. As seen in Figure 10a–d,h,i,m,n,r,s, the dominance of force convection results in
the formation of a single clockwise vortex. The upper wall of the circulatory cell moves
nearer the top of the cell. While buoyancy force is still present in both scenarios, the flow
distributions shift from forced to mixed convection when Re drops to 10. Figure 10b,d,i,n,s
shows the vortex distortion due to an increase in Ha. An increased amount of Ha slows
down the flow; hence, the vortex disappears with the Ha effect.
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Figure 9. Isotherms for (A) Re = 10 (B) Re = 100 (C) Re = 200 (D) Re = 400, and (a–d) Ha = 0,
(e–h) Ha = 10 and (i–l) Ha = 20 while φ = 0, 0.04, and Bn = 0.

5.6. Effects of Re and Bn on Unyielded Zone

The effect of Bingham number on unyielded regions is shown in Figure 11 for Bn = 0
to Bn = 50 at Re = 200 and Re = 400 with fixed Re, Ha, and φ. Unyielded zones arise near
the lower part of the wavy chamber in the Bingham flow scenarios since stresses are less
there because of the distance from the moving wall (top wall) [35]. When Bn increases,
these regions enlarge and provide a little area for the flow, driving the vortex upward
toward the moving wall. Because of the zero rates of strain situation inside the unyielded
zone, the material motion is zero inside the unyielded zones. From the figure, it is seen that
the unyielded regions increased as Bn increased.

Furthermore, when Bn rises, the flow area narrows, and the vortex moves toward the
motion source (lid). The cavity contains two distinct unyielding zones for all values of
the Bingham number, except for Bn = 0 and Bn = 5 (for Re = 200). The smaller portion
is at the upper side of the chamber, toward the primary vortex’s center or left, while the
more significant part is at the lower side of the chamber. Due to the no-slip boundary
condition, the velocity is quite low, close to the bottom wall. The upper unyielded portion
did not touch any wall. The velocities are non-zero in this chamber portion because of the
lid motion. Lid motion allows the fluids to move in the upper part of the chamber even in
the presence of higher Bn. As a result, as the Bn increases, the unyielded zone grows but
always retains room near the moving wall to form a yielded region.
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Figure 10. Isotherms for (A) Bn = 0 (B) Bn = 2, (C) Bn = 5, (D) Bn = 10, and (E) Bn = 50; where
(a–e) Re = 10, (f–j) Re = 100, (k–o) Re = 200, and (p–t) Re = 400, while (φ = 0, 0.04), and Ha = 0.

Bn = 50(d)Bn = 10(c)Bn = 0(a)

(A
)

R
e

=
2

0
0

Bn = 0(e)

(B
)

R
e

=
4

0
0

Bn = 5(f)

Bn = 5(b)

Bn = 10(g) Bn = 50(h)
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(A) Re = 200, (B) Re = 400 at φ = 0.04, and Ha = 20.
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5.7. Effect of Bn and Re on Local Nusselt Number (Nu)

Figure 12a–c represents the impact of different parameters on Nu such as Bn and Re.
Nu is the ratio of heat transfer due to convection and heat transfer due to conduction at
the boundary layer. Nu is a significant parameter that can help to improve heat transfer
rates. It is a non-dimensional parameter equal to the non-dimensional temperature gradient
at the surface. It is a measure of the convective heat transfer happening at the surface.
Re and Pr mostly determine it. Here, an increased number of Nu was found due to the
increased number of Re. That means Nu has a proportionate relationship with Re. As Re
increased, the flow density and speed also increased. As a result, the heat transfer also
increased. At Re = 10, the mixed convection phenomenon dominates the most; in this case,
the heat transfer rate is the least. An increase in the Re value increases the forced convection
domination; hence, the heat transfer rate gradually increases. The maximum heat transfer
is found for maximum values of Re = 400. Moreover, potential growth is also found in
Nu when φ increases from 0% to 4%. On the other hand, the local Nu values obtained
for Bingham fluids are smaller than those found for Newtonian fluids (Bn = 0) with the
same nominal Re, Ha, and φ values because Bingham fluids have weaker convection due
to increased viscous effects. The lowest Nu has been found for the highest Bn. Nu also
drops as Ha increases due to the magnetic effect on the flow. Magnetic effects oppose
the fluid flow, and the heat transfer rate decreases. Hence, it can be concluded that Nu is
proportional with φ and Re and inversely proportional with Bn and Ha.
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Figure 12. Local Nusselt number (Nu) for (a–d) Ha = 0, (e–h) Ha = 10, (i–l) Ha = 1.4 and
(A) Re = 10, (B) Re = 100, (C) Re = 200, and (D) Re = 400 across different Bn = 0, 50, and100 while
φ = 0 (solid line), and φ = 0.04 (dashed line).
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5.8. Effect of Bn, Ha, Re, and φ on Average Nusselt Number (Nu)

The average Nusselt number (Nu) measures the average heat transfer rate of the
fluid. In the mixed convective phenomenon based on Bingham fluid, Nu is dependent
on different parameters such as Bn, Re, Ha, and φ. The effect on Nu due to Bn, Ha, φ,
and Re is shown in Figures 13a–d and 14a–c and Table 2. While the isotherm and the
local Nu distribution give precise information about heat exchange, the average Nu is
frequently required in engineering applications to size the heat exchange equipment [76].
Furthermore, Nu is required in engineering process computations to estimate the heat
transfer rate between the fluid and the heated surface or to assess one of the temperatures if
the heat flux is known. Nu is predicted to be a function of Re, Bn, and Ha, explaining why
Nu is calculated over a large range of these parameters. It is shown (Figure 13) that when
Bn grows, the obtained value of Nu drops gradually from the value that has been found
for the Newtonian case (Bn = 0). This indicates that the convective heat transmission
drops when Bn rises, because as Bn increases, the stress of the fluid increases, too. Higher
stress retards the fluid flow. Similar results have been found in [76]. However, the Nu
values obtained for Bingham fluids are smaller than those found for Newtonian fluids
(Bn = 0) with the same nominal Re, Ha, and φ values because Bingham fluids have weaker
convection due to increased viscous effects which indeed agreed with the results of the
study of Turan et al. [77]. From Figure 14a–c, it is seen that Nu continuously grows as
Re increases, but Nu drops as Ha increases. Since Re increases, the buoyancy effect’s
domination decreases, but the buoyancy effect increases as Ha increases. The buoyancy
effect affects the fluid flow that causes a lower heat transfer rate due to the augmentation
of Ha and increases the heat transfer rate as Re increases [78]. Potential growth is also
found in Nu when φ increases from 0% to 4%. Hence, it can also be stated that Nu is
proportional with φ and Re and inversely proportional with Ha. Table 2 shows the effect
of those parameters on Nu. Nu is proportional to Re and φ and inversely proportional
to Ha and Bn. This is because when Re increases, the fluid’s velocity and density also
increase. Due to this, the fluid’s heat transfer rate increases; hence, Nu also increases for
a given number of Ha and Bn. Similarly, if we add an extra 2% and 4% of nanoparticles
to the fluid, Nu will increase, too. On the other hand, when Ha increases, the magnetic
effect of the fluid also increases. An increasing amount of magnetic field retards the flow
phenomenon. As a result, Nu falls for an increased number of Ha. It is also clear from
Table 2 that for a larger value of Bn, the convection becomes too weak to affect the thermal
transport. That means that the mean heat transfer decreases as Bn increases. It is worth
noting that fluid flow can still occur, but this flow is not sufficient to impart any influence
on thermal transport.
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Figure 13. Average Nusselt number (Nu) vs. Bn for (a) Re = 10, (b) Re = 100, (c) Re = 200, and
(d) Re = 400 across different Ha = 0, 10, 20 and φ = 0, 0.04.
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Table 2. Effect of various Re, Ha, φ and Bn on Nu for Pr = 6.8377 and Gr = 100.

Re Ha φ Bn = 0 Bn = 2 Bn = 5 Bn = 10 Bn = 50 Bn = 100 Bn = 200

10 0 1.7606 1.5567 1.5567 1.2422 1.0709 1.0258 1.0196
0 0.02 1.7843 2.0552 1.8890 1.8623 1.2370 1.1768 1.1488

0.04 1.9869 1.9429 1.6947 1.5336 1.3028 1.2871 1.2855

0 1.5721 1.4566 1.4566 1.2201 1.0089 1.0255 1.0257
10 0.02 1.6502 1.9687 1.8272 1.5383 1.2008 1.1504 1.1180

0.04 1.8387 2.0784 1.7125 1.5327 1.3050 1.2870 1.2849

0 1.4299 1.3173 1.2861 1.1635 1.1844 1.0248 1.2832
20 0.02 1.2833 2.3075 1.7655 1.4955 1.3901 1.5007 1.6011

0.04 1.6795 1.7548 1.5861 1.4819 1.3029 1.2867 1.2767

100 0 4.4136 3.5236 3.5236 3.3759 3.6507 3.6388 2.7102
0 0.02 5.2663 4.1961 4.2467 4.3277 3.3503 3.4276 3.5449

0.04 5.8186 4.4742 4.5803 4.3060 3.6313 3.1696 3.0901

0 4.2487 3.7377 3.7642 3.5588 3.4906 3.0387 3.1499
10 0.02 5.0076 3.9359 4.3483 3.9546 3.3155 3.2293 3.0278

0.04 5.1958 5.3358 5.0267 4.6271 3.5782 3.2294 2.9411

0 4.1120 3.6115 3.6301 3.4716 2.9876 3.4332 2.7071
20 0.02 5.0881 3.7390 4.1958 3.8338 3.5431 3.7101 3.0434

0.04 5.2357 5.1968 4.8929 4.5422 4.7276 4.0709 3.0877

200 0 5.3654 4.5366 4.5366 4.7017 4.7345 4.4483 3.8059
0 0.02 5.4823 4.9888 4.9888 5.2777 4.6943 4.8743 4.0159

0.04 5.8789 5.9311 6.4690 6.1849 4.4321 4.9664 4.0709

0 5.7420 4.0906 4.4923 4.0954 4.5705 4.2128 3.8053
10 0.02 5.8672 5.2835 2.7265 3.1851 4.0908 4.4005 4.6398

0.04 5.9247 4.8102 5.4107 5.3212 4.3242 4.9368 4.4449

0 5.7327 4.2277 4.0277 4.0030 4.4481 4.2078 3.8032
20 0.02 5.8821 3.9048 4.2257 3.0692 4.3857 4.7327 4.0060

0.04 6.1255 4.8873 5.3112 5.2216 4.2855 4.9332 4.4433

400 0 7.2634 3.8699 5.1394 5.5567 7.2029 5.6446 5.1800
0 0.02 7.8008 5.5638 6.4072 6.5531 7.8039 6.0052 6.1813

0.04 8.4137 6.6223 7.0149 6.8813 7.9421 6.8459 6.2134

0 5.8036 6.1672 6.7236 4.4216 6.6753 5.6429 5.1795
10 0.02 6.3983 5.9977 5.9406 6.05091 6.9301 6.3452 6.6691

0.04 6.9226 8.0508 4.8102 4.9496 7.3826 6.8449 6.2128

0 6.0679 4.3913 5.1394 4.7014 5.8887 5.6378 5.1779
20 0.02 7.0675 5.1829 6.3365 5.8752 6.1911 6.7734 6.2531

0.04 7.3885 8.1243 5.0262 5.9388 7.2383 6.8416 6.2111

5.9. Entropy Production for Various Re, Ha, and φ

The effects of relevant factors on entropy production are shown in Table 3, where the
effects of fluid friction (EF)t, thermal effect (ET)t, as well as magnetic field (EM)t on overall
entropy production (Es)t and Bejan number (Be) are illustrated at Bn = 100 for various
Ha, Re, and φ. Entropy production is a measure of energy lost and the low reliability of
any system, which refers to the level of irreversibilities present throughout a process. It
provides a numerical measurement of irreversibility. The total entropy depends on the
summation of other quantities such as (EF)t, (ET)t, and (EM)t. Furthermore, the ratio of
(ET)t to (ES)t is known as the local Bejan number (Be) [79,80]. When Be > 0.5, the heat
transfer irreversibility becomes dominant, and when Be < 0.5, other irreversibilities become
dominant. For Be = 1, the irreversibility is caused by heat. Lower entropy production
is required to improve the efficiency of energy conversion processes. Overall, reducing
entropy generation can lead to more efficient and safe processes, making it an important
goal in many fields.
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Figure 14. Average Nusselt number (Nu) for the different Re at (a) Bn = 0, (b) Bn = 2, (c) Bn = 5,
(d) Bn = 10, (e) Bn = 50, and (f) Bn = 100 across different Ha = 0, 10, 20 and φ = 0, 0.04.

From the numerical data, it is observed that increasing Re increases the overall entropy
formation (Es)t. Higher Re induces higher fluid friction and heat transfer to flow. Higher
fluid friction and heat transfer cause higher entropy production due to (EF)t and (ET)t.
Hence, the overall entropy production is attenuated as well. Maximum (ES)t is recorded at
maximum value of Re (Re = 400). According to the obtained result, the overall entropy
was attenuated by 110% when Re grows from Re = 10 to Re = 400 at Ha = 0 and
φ = 0.04. However, increasing Ha decreases the flow circulation. As a result, the overall
entropy reduces in maximum cases with the increment of Ha. At zero magnetic effect
Ha = 0, (EM)t is found 0 for all cases of φ. At Re = 10, the overall entropy reduces 1.01%
when Ha increases from 0 to 20. (Es)t increases when an extra 2% and 4% of nanofluid
is introduced. The addition of nanoparticles accelerates the flow phenomenon. Hence,
the entropy formation grows as well. The obtained data show that an increment of 1.33%
happens when φ increases from 0 to 0.02 at Re = 10. However, the Bejan number (Be)avg
shows similarities in the maximum case. It means that (Be)avg does not show any significant
difference in its magnitude. The correlation equation for (Es)t and Beavg can be formulated
as below:

(Es)t = 3.1596 + 0.02691 Re− 0.00163 Ha + 0.03674Re φ

−0.000032 Re2 + 0.000054Ha2.
(60)

Beavg = 0.9371 + 0.00015 Re + 0.00057 Ha + 0.00068Re φ− 0.0285Ha φ

−1.782× 10−7 Re2 + 0.000049Ha2.
(61)
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These correlation equations are required, since they establish a mathematical link
between every factor employed in this research. These formulas are very useful for deter-
mining the value of each feasible combination of variables.

Figure 15 shows a response surface plot for (Es)t, which is a visual depiction of the
link between total entropy generation (Es)t and the various parameters that influence it.
The x-axis of the graphic indicates the Ha number, the y-axis is the Re number, and the
color reflects the entropy generation. The graphic illustrates that increasing the Reynolds
number improves entropy generation, demonstrating that this parameter has a beneficial
influence on entropy creation. The graphic also demonstrates that the influence of volume
fraction on entropy production is positive, which means a higher φ enhances the (Es)t.

Table 3. Effect of various Re, Ha and φ on entropy production for Bn = 100, Pr = 6.2 and Gr = 100.

Re Ha φ (EF)t (ET)t (EM)t (Es)t Beavg

10 0 2.1775 1.2983 0 3.4748 0.9627
0 0.02 3.0456 1.3893 0 4.4406 0.9523

0.04 3.4097 1.6191 0 5.0288 0.9533

0 2.1766 1.2976 0.00049 3.4257 0.9629
10 0.02 3.0571 1.6002 0.00047 4.6602 0.9585

0.04 3.4100 1.6187 0.00046 5.0292 0.9532

0 2.1755 1.2954 0.00192 3.4158 0.9629
20 0.02 3.1602 1.3400 0.00189 4.7410 1.0592

0.04 3.4107 1.6176 0.00182 5.0301 0.9530

100 0 2.2023 3.8619 0 6.0643 0.9588
0 0.02 3.2453 3.7403 0 6.9491 0.9894

0.04 3.4470 3.7676 0 7.2146 0.9631

0 2.2026 3.4714 0.00049 5.6745 0.9666
10 0.02 3.2543 3.5047 0.00047 9.9501 0.9865

0.04 3.4473 3.7967 0.00046 7.2444 0.9626

0 3.2033 3.7097 0.00191 5.9149 0.9615
20 0.02 4.0454 4.1949 0.00189 8.4407 0.9806

0.04 5.6624 4.6897 0.00191 10.3521 0.9548

200 0 2.9101 5.1254 0 7.3355 0.9596
0 0.02 3.0455 5.1575 0 8.3031 0.9939

0.04 3.4597 5.5294 0 8.9895 0.9589

0 2.2104 4.8356 0.00046 7.0465 0.9641
10 0.02 3.0455 5.1165 0.00047 8.4622 0.9904

0.04 3.4582 5.4834 0.00048 8.9436 0.9586

0 2.2112 4.8298 0.00191 7.0428 0.9627
20 0.02 3.0456 5.2250 0.00190 8.8710 0.9873

0.04 3.4604 5.4800 0.00192 8.9422 0.9579

400 0 2.2179 6.6144 0 8.8323 0.9575
0 0.02 3.5465 6.8036 0 10.1300 0.9931

0.04 3.4716 7.5544 0 11.0260 0.9507

0 2.2182 6.6118 0.00048 8.8305 0.9560
10 0.02 3.9045 6.8265 0.00049 10.7731 0.9912

0.04 3.4718 7.5545 0.00049 11.0267 0.9497

0 2.2189 6.6043 0.00191 8.8251 0.9534
20 0.02 3.0463 7.2104 0.00195 10.2573 0.9815

0.04 3.4725 7.5545 0.00198 11.2288 0.9472
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Figure 15. Response surface (2D and 3D) of (Es)t for Re vs. Ha, where (a,b) φ = 0, (c,d) φ = 0.02,
and (e,f) φ = 0.04.
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6. Response Surface Methodology of Nu

Response Surface Methodology (RSM) is a statistical approach for modeling and
analyzing the interactions between single or multiple responses and input parameters. The
primary purpose of RSM is to determine the best possible values of the variables being
used to maximize the response variable(s). RSM is employed to examine how different
factors affect heat transport in a situation of the average Nusselt number. It analyzes
and quantifies the important factors that have an impact on the average Nusselt number.
Designing operations to change the input parameters within a predefined range, evaluating
the response factor or variables, and then combining a mathematical model with the results
are common steps in the process. The response variable(s) may therefore be predicted
using the model for any set of input parameters, including their ideal values that optimize
the outcome. RSM is one of the helpful approaches for modeling multivariate situations,
especially when the interest-generating behaviors are continuously influenced by the input
parameters. It has a wide range of practical uses in technology, science, and biological
processes, in which it is utilized to optimize methods and goods, decrease costs, and
enhance quality. RSM has been used to build improved heat exchangers and improved
systems for cooling, increasing the thermal efficiency of different equipment in the field of
heat transfer.

The RSM’s first goal is to develop a numerical and statistical estimation for the func-
tional connection between the variables [81]. Although there are several RSM models avail-
able, a second-order RSM model is widely used because it considers all linear, square, and
interaction components for estimating the response. The quadratic polynomial regression
model in RSM is a sort of mathematical model that uses a second-order polynomial equa-
tion to represent the connection between the input parameters and the output responses,
which is considered in the present study. When the influence of the input parameters on
the reaction of the output variable(s) is predicted to be non-linear, and the linear model
is insufficient to describe the complex nature of the connection, the quadratic polynomial
regression model comes into action. The equation of the quadratic polynomial regression
model depends on the involved variables. Here, in the RSM process, the number of vari-
ables involved as input is four, and there is one output response. The following equation is
a representation of the quadratic polynomial regression model having four input variables
and one output response.

y = η0 + η1x1 + η2x2 + η3x3 + η4x4 + η5x1x2 + η6x1x3 + η7x1x4 + η8x2x3

+η9x2x4 + η10x3x4 + η11x1
2 + η12x2

2 + η13x3
2 + η14x4

2.
(62)

where y is the output response x(1−4) are the input variables, and η 0 to 14 are the coefficients
for the intercept, linear, quadratic, and interaction terms. The interaction term reflects the
impact of the interaction between the input factors on the response variable, whereas
the quadratic terms depict the curve of the connection. In the present study, Re, Ha, Bn,
and φ represent the input parameters, whereas Nu is the output response. So, the above-
mentioned polynomial regression model can be replaced using these variables as follows:

y = η0 + η1Re + η2Ha + η3Bn + η4φ + η5ReHa + η6ReBn + η7Reφ + η8HaBn

+η9Haφ + η10Bnφ + η11Re2 + η12Ha2 + η13Bn2 + η14φ2.
(63)

where 10 ≤ Re ≤ 400, 0 ≤ Ha ≤ 20, 0 ≤ Bn ≤ 100, and 0 ≤ φ ≤ 0.04 are considered in this
analysis. Finding the coefficients is the first step in creating a correct correlation between
each of these variables (Re, Ha, Bn, and Φ) and the outcome response (Nu). In a series of
tests, the outcome variable is calculated for numerous combinations of the input parameters
to estimate the model’s coefficients. The best-fit coefficient values are then determined by
analyzing the data using regression analysis methods. Statistical measurements such as
the R2 value and the adjusted R2 value are used to assess the model’s goodness of fit. In
a regression model, the R2 value shows the amount of variance in a dependent variable
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that can be determined by the independent variables. A higher R2 value indicates that the
regression model is better fitted to the data. In this case, the measure R2 value is 99.58%
for Nu; this implies that this model is appropriate for determining the response function
values. The following model summary table (Table 4) for Nu shows the predicted, adjusted,
and actual R2 values and standard deviation of the analysis:

Table 4. Model Summary for Nu.

Source Std. Dev. R2 Adjusted R2 Predicted R2 Sequential p-Value Comment

Linear 0.5993 0.9378 0.9254 0.8927 <0.0001 Suggested
2FI 0.5104 0.9884 0.9459 0.6666 0.9683

Quadratic 0.2207 0.9958 0.9899 0.8843 <0.0001 Suggested
Cubic 0.0000 1.0000 1.0000 Aliased

Other than that, an analysis of variance (ANOVA), 2D and 3D surface plot, standard
error, and correlation plot are presented to assess the results. The analysis of variance
(ANOVA) is a useful statistical method for comparing the means of multiple groups. It
is used in studies and analyses of data to examine if variations within categories are
statistically significant or just coincidental. ANOVA helps to investigate the impact of
several variables on a single dependent variable. For instance, in this case, we examined if
there are any significant changes in the Nu due to the effect of the considered parameters.
It provided us with a more informed statistical basis for our conclusions. The findings of
the statistical analysis of the present mixed convective study using the Bingham model are
shown in Table 5.

Table 5. Analysis of variance (ANOVA).

Source Sum of Squares DOF Mean Square F-Value p-Value Comment

Model 112.32 14 8.02 85.66 <0.0001 significant
Re 88.46 1 88.46 944.56 <0.0001
Ha 0.3255 1 0.3255 3.48 0.0419
Bn 1.59 1 1.59 16.96 0.0005
φ 2.42 1 2.42 25.81 0.6780

Re ∗ Ha 0.0427 1 0.0427 0.4564 0.5146
Re ∗ Bn 0.0013 1 0.0013 0.0140 0.9081
Re ∗ φ 0.8568 1 0.8568 9.15 0.0128

Ha ∗ Bn 0.1951 1 0.1951 2.08 0.0495
Ha ∗ φ 0.3734 1 0.3734 2.10 0.0177
Bn ∗ φ 0.3074 1 0.3074 3.28 0.0101

Re2 5.92 1 5.92 63.18 <0.0001
Ha2 0.2354 1 0.2354 2.51 0.1440
Bn2 0.3439 1 0.3439 3.67 0.0443
φ2 1.12 1 1.12 11.98 0.5061

Residual 0.9365 10 0.0937 - -
Lack of Fit 0.9365 5 0.1873 - -
Pure Error 0.0000 5 0.0000 - -
Cor Total 113.25 24 - - -

Here, degrees of freedom (DOF) refers to the number of independent elements of
data available in the ANOVA test, which generates the mean square values that are used
to examine the statistical significance of the differences between groups. The sum of
squares (SS) in ANOVA refers to the portion of data differences that identify as a specific
source of treatment or the error. It is calculated by the sum of squares for the residual error
subtracted from the sum of squares for the model. The p-value and F-value are two essential
indicators for determining the statistical significance of an analysis of variance (ANOVA)
test’s findings [82]. The p-value denotes the chances of detecting a test statistic that is as
significant as the one computed from the data. In other words, a low p-value (p ≤ 0.05)
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indicates that the model is appropriate and significant. On the other hand, a higher F-value
indicates that the differences between the groups are substantial. F-values larger than
one are important in engineering applications [83]. In statistics, the importance of each
term is determined through a comparison of the probability value at the F-value > 1 [84].
Here, the SS value is 112.32 and the F-value is 85.66 which is quite significant, and with
the p-value, it concludes that the model for the Nu is statistically significant. The obtained
value of the coefficient with the respective p-value is given in Table 6 below:

Table 6. Obtained regression coefficients for Nu from RSM.

Coefficients Obtained Values p-Value

η0 1.6185 >0.0001
η1 0.02356 >0.0001
η2 −0.03118 0.0419
η3 −0.02044 0.0005
η4 −49.1991 0.6780
η5 −0.000038 0.5146
η6 −1.30768× 10−6 0.9081
η7 +0.0807 0.0128
η8 −0.0003 0.0495
η9 −1.0134 0.0177
η10 +0.1905 0.0101
η11 −0.000027 >0.0001
η12 +0.0029 0.1440
η13 +0.00013 0.0443
η14 +1356.981 0.5061

From the above table, the coefficients with the p-value greater than 0.05 (highlighted
in bold font in the table) will be omitted from the final regression model equation. The final
regression model equation summarized the connection between the input parameters with
the output response Nu; after computing the coefficients, Equation (63) can be written as
follows:

Nu = 1.6185 + 0.02356Re− 0.03118Ha− 0.02044Bn + 0.0807Reφ− 0.0003Ha Bn

−1.0134Ha φ + 0.1905Bn φ− 0.000027Re2 + 0.00013Bn2 (64)

Model Contour and Response Surface Plot

Based on a mathematical framework developed through response surface analysis, a
response surface plot is an illustration of the connection between multiple independent
variables and the response variable. The graphic depicts how the output response variable
varies when the independent factors’ values vary. The independent factors are commonly
shown on the x and y axes, while the response variable is depicted on the z-axis in a
response surface plot. A model contour plot is a 2D visual depiction of outcome variables
as a function of two distinct variables. It behaves similarly to a response surface plot, and
rather than a 3D surface, it displays the response variable as a sequence of contour lines
in a 2D plot. Both independent variables are commonly shown on the x and y axes, while
the response variable is represented by a sequence of contours in a model contour plot.
Figures 16–18 show the model contour and response surface plot for showing the effect of
different independent variables on Nu.

Figures 16 and 17 depict the average Nu number as a function of the Bingham and
Hartmann numbers in 2D contour and 3D surface plots. The output surface response is
shown as a function of Ha and Re in Figure 18. The Bn, Re, and Ha numbers were adjusted
independently in this study, and their effects on the average Nu value were investigated
throughout a range of values.
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Figure 16. Response surface (2D and 3D) of Nu for Ha vs. Re, where (a,b) Bn = 0, (c,d) Bn = 50, and
(e,f) Bn = 100.



Energies 2023, 16, 4408 30 of 39

(d) Re = 200

(f) Re = 400

(b) Re = 10(a) Re = 10

0
5

1
0

1
5

2
0

0 20 40 60 80 100

H
a

Bn

(c) Re = 200

0
5

1
0

1
5

2
0

0 20 40 60 80 100

H
a

Bn

(e) Re = 400

0
5

1
0

1

Figure 17. Response surface (2D and 3D) of Nu for Ha vs. Bn, where (a,b) Re = 10, (c,d) Re = 200,
and (e,f) Re = 400.
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Figure 18. Response surface (2D and 3D) of Nu for Ha vs. Re, where (a,b) φ = 0, (c,d) φ = 0.02, and
(e,f) φ = 0.04.
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It is shown that increasing the Bn number causes a fall in the average Nu number
because the fluid’s yield stress limits its ability to transmit heat. Similar to this, an increase
in the Ha number causes a decrease in the Nu number when the magnetic field restricts
heat transfer rate and slows fluid motion. On the other hand, the geometry of the system
and the boundary conditions determine the precise effects of these parameters on the
Nu. In summary, the Bingham and Hartmann numbers have a considerable impact on
the Nu in a variety of physical systems. Their individual impacts may be examined and
shown using 2D and 3D surface plots as well as computer simulations and experimental
tests. As Re increases, the average rate of heat transfer increases as the fluid flow becomes
more chaotic, enhancing heat transmission. Furthermore, based on the system, a rise
in the volume fraction can have a favorable or detrimental effect on Nu. In this case,
increasing the φ improves the thermal conductivity of the fluid, which increases the rate of
heat transmission.

The residual plot and the normal probability plot represent two popular diagnostic
representations used to examine the hypotheses of a regression model. It represents a
visualization that compares the predicted result of the dependent factor with the residuals
(the variation among the actual and predicted values of the dependent parameter). Figure 19
depicts the residual plots for Nu, which give an indication of the RSM model’s precision
level. Figure 19a depicts the normal probability of Nu. The plotted points almost maintain
a straight line, indicating that the residuals have a normal distribution. Figure 19b depicts
the expected versus actual values for Nu. The residuals, as illustrated, fall close to a straight
line, indicating that the regression models are well matched with the actual results.

As a result, we can infer in this situation that there is a substantial correlation between
the average Nu number and the independent variable(s) represented on the correlation
graph, and the regression line shows the accuracy level of the value of Nu.

Figure 20 shows the standard error for Nu at different Re numbers. The fluctuation
or uncertainty around the estimated response surface simulation are represented by the
standard error in RSM. It shows the degree of variance that could be expected in the
projected response at any specific spot inside the design area [85]. The response surface
model’s standard error is graphically represented by the standard error plot. The contour
plot is used in this figure to show the standard error, where lines with equal standard errors
are shown on the response surface. The contour lines demonstrate how, as the design space
is explored, the standard error varies. The levels of error are very small in different cases of
Re, which suggests that the model accuracy is significant and this error can be neglected.
In summary, the standard error of the average Nusselt number with the effect of Ha, Bn,
and Re shows the level of deviation of the whole process, and it can be determined using
statistical techniques. The specific method depends on the assumptions and characteristics
of the data.

(b)(a)

Figure 19. The residual plots for the Nu, (a) predicted vs. actual and (b) the normal probability plot.



Energies 2023, 16, 4408 33 of 39

(c) Bn = 50

0
5

1
0

1
5

2
0

0 20 40 60 80 100

H
a

Re

(e) Bn = 100

0
5

1
0

1
5

2
0

0 20 40 60 80 100

H
a

Re

(b) Bn = 0

0.0

0.2

0.4

0.6

0.8

1.0

0

5

10

15
20

10
88

166
244

322
400

Ha Re

S
ta

n
d

a
rd

E
rr

o
r

(f) Bn = 100

0.0

0.2

0.4

0.6

0.8

1.0

0

5

10
15

20

10
88

166
244

322

400

Ha Re

S
ta

n
d

a
rd

E
rr

o
r

(d) Bn = 50

0.0

0.2

0.4

0.6

0.8

1.0

0

5

10

15
20

10
88

166
244

322
400

Ha Re

S
ta

n
d

a
rd

E
rr

o
r

(a) Bn = 0

0
5

1
0

1
5

2
0

10 88 166 244 322 400

H
a

Re

Figure 20. The standard error plot for the Nu at (a,b) Bn = 0 (c,d) Bn = 50, and (e,f) Bn = 100.

7. Sensitivity Analysis

A sensitivity evaluation is a crucial tool in the mixed convective research of Bingham
nanofluid because it explains how variations in various variables impact the study’s result.
Several factors can impact the heat transfer rate in the mixed convective heat transfer of
Bingham nanofluid. We can determine the most pertinent variables and understand the
influence of all of them on the rate of heat transfer by performing a sensitivity analysis.
This aids in optimizing the system’s design and enhancing its performance. Furthermore,
sensitivity analysis can aid in finding the places where the heat transfer rate is most
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susceptible to parameter changes. In this study, we individually calculate the partial
derivatives of the dependent parameter (Nu) with regard to the independent parameters
Re, Ha, Bn, and φ. By setting the values of the independent factors at three levels (low,
moderate, and high) (−1, 0, 1), we were able to obtain the desired outcomes.

The regression Equation (64) is used to determine the sensitivity. Sensitivity is mea-
sured by calculating the partial derivative of the output function (Nu) with respect to the
independent factors [86]. The following is the response function’s sensitivity functions:

∂Nu
∂Re

= 0.02356 + 0.0807φ− 5.4× 10−5Re, (65)

∂Nu
∂Ha

= −0.03118− 0.0003Bn− 1.0134φ, (66)

∂Nu
∂Bn

= −0.02044− 0.0003Ha + 0.1905φ + 0.00026Bn, (67)

∂Nu
∂φ

= 0.0807Re− 1.0134Ha + 0.1905Bn. (68)

A positive sensitivity output shows that raising the value of the input variable en-
hances the value of the output function. In addition, a negative sensitivity value reflects
a drop in the output function produced by raising the input variable [87]. Figure 21 and
Table 7 show the sensitivity analysis for different Bn, φ, Ha, and Re numbers on the output
response Nu. It depicts that the sensitivity of Re and φ is positive while the sensitivity of
Ha and Bn is negative. Because Ha and Bn have a dampening impact on flow and heat
transmission, their sensitivity is negative. When Ha is raised, the electromagnetic forces
become stronger and dampen the fluid flow, causing the heat transfer rate to drop. As
a consequence, the sensitivity of Ha is negative, implying that a rise in Ha results in a
reduction in Nu. The yield stress increases as Bn increases, and the fluid becomes more
resistant to flow. Due to the slowed fluid flow, the heat transfer rate decreases. As a
result, the sensitivity of the Bingham number is negative, implying that increasing the
Bingham number causes a drop in the heat transfer rate. On the other hand, Re and φ have
a positive sensitivity on the Nu; because Re and φ have a direct influence on fluid flow and
heat transfer, increasing these parameters can lead to an increase in the heat transfer rate.
Among these parameters, φ has the highest sensitivity on Nu because the small change in
φ (2%, 4%) enhances the heat transfer rate more in comparison with Re.

Re = 1 Re = 0 Re = 1

Sensitivity to Re

Sensitivity to Bn

Sensitivity to Ha

Sensitivity to φ

Ha =0, Bn = 1,
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Figure 21. Sensitivity analysis of Nu at (a) different coded levels of Bn (low, medium, high), and
(b) different coded levels of Re (low, medium, high).
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Table 7. Sensitivity analysis for Nu.

Re Ha Bn φ ∂Nu
∂Re

∂Nu
∂Ha

∂Nu
∂Bn

∂Nu
∂φ

−1 0 1 0 0.023614 −0.031484 −0.02018 0.109864
−1 0 1 1 0.104314 −1.044854 −0.07032 0.109864
0 0 1 0 0.02356 −0.031484 −0.02018 0.190534
0 0 1 1 0.10426 −1.044854 −0.07032 0.190534
1 0 1 0 0.023506 −0.031484 −0.02018 0.271204
1 0 1 1 0.104206 −1.044854 0.17032 0.271204

8. Conclusions

This study used the Bingham model to investigate the MHD mixed convection and
entropy production of non-Newtonian nanofluid in a wavy enclosure numerically. Several
non-dimensional factors, including Re, Bn, Ha, as well as φ, are shown to have a significant
influence on the results. There are diagrams and tables showing the numerical data to
provide visual and numerical comprehension of the findings. The investigation was also
performed by the RSM method. The accuracy of the RSM method has been found to be
99.58%. The 2D contour and 3D surface plot presented have been obtained from the RSM.
The sensitivity of the Nu to the input parameters also investigated using the RSM method.
This analysis is conducted for various values of the aforementioned parameters, and the
results are as follows:

• For non-Newtonian Bingham fluids, the Hartmann number (Ha), Reynolds number
(Re), Bingham number (Bn), and nanoparticle volume fraction (φ) all play an important
role in the thermal velocity and temperature as well as the local and average rate of
heat transfer in the wavy cavity.

• Convective heat transmission in a wavy cavity increases as φ and Re increase and
decreases as Bn and Ha increase.

• The local rate of heat transfer increases as Re and φ increase. The highest magnitude of
local Nu is found at Re = 400. This means that the local heat transfer rate is significant
for the lower Richardson number Ri (High Re).

• High Re (low Ri) causes greater axial velocity within the wavy cavity. However, the
addition of Ha addition decreases u-velocity.

• The addition of an extra 2% and 4% nanoparticle volume fraction increases the magni-
tude of ψmax.

• At the highest Re and zero magnetic effect, the highest magnitude of Nu has been
found when extra 4% nanoparticles are added to the simulation.

• Re, Bn and φ have a significant impact on stream function, when Re and φ are progres-
sively raised, ψmax tends to rise as well. However, ψmax is inversely proportional to
Ha and Bn.

• As Re grows, the overall entropy production (Es)t rises dramatically. When Re grows
from 10 to 100, 100 to 200, and from 200 to 400 at Ha = 10 and φ = 0.04, (Es)t increases
by 61.85%, 30.51%, and 31.93% respectively.

• The total entropy production (Es)t is reduced when Ha is increased. (Es)t decreases
by 7.9%, 8.2%, and 8.3%, respectively, as Ha grows from 0 to 20.

• At φ = 0, the entropy production caused by the magnetic field is found to be 0.
However, (Es)t increases when an extra 2% and 4% of nanofluid are added to the
system.

• The local Bejan number(Be) does not show any significant changes in its magnitude. It
shows a little variation with the change of different parameters (Bn, Re, Ha, and φ).

• The magnetic or Lorentz force reduces convective heat transport; as a result, Nu, θ,
(Es)t, ψmax and velocity are reduced as Ha increases.

• The obtained correlation equation from the RSM method shows the relation of output
responses to the input parameters.
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• The φ and Re numbers have a positive sensitivity to the Nu while the sensitivity of
the Ha and Bn numbers is negative.

• The standard error of the RSM method is less negligible, and the obtained result from
the RSM method shows an excellent agreement with the original CFD result.
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Nomenclature

English Symbols
Bn Bingham number
Be Bejan number (Local)
B0 Magnetic force kg s−2 A−1

Cp Specific heat Jkg−1 K−1

E Entropy production J m−3 s−1 K−1

Gr Grashof number
g Gravitational acceleration ms−2

Ha Hartmann number
k Thermal conductivity J m−1 s−1 K−1

Nu Nusselt number (Local)
Nu Nusselt number (Average)
Pr Prandtl number
Re Reynolds number
Ri Richardson number
T Temperature K
To Bulk temperature K
ū,v̄ Dimensional mid-x and mid-y velocity components ms−1

u, v Dimensionless mid-x and mid-y velocity components
x̄, ȳ Dimensional coordinates m
x, y Dimensionless coordinates

Greek Letters
α Thermal diffusivity m2s−1

β Thermal expansion coefficient K−1

µ Dynamic viscosity kg m−1s−1

ν Kinematic viscosity m2 s−1

ρ Fluid density kg m−3

σ Electrical conductivity Am−2

φ Volume fraction
ψ Dimensionless stream function
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