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Abstract. Many gait recognition methods first partition the human
gait into N-parts and then combine them to establish part-based fea-
ture representations. Their gait recognition performance is often affected
by partitioning strategies, which are empirically chosen in different
datasets. However, we observe that strips as the basic component of
parts are agnostic against different partitioning strategies. Motivated by
this observation, we present a strip-based multi-level gait recognition
network, named GaitStrip, to extract comprehensive gait information at
different levels. To be specific, our high-level branch explores the con-
text of gait sequences and our low-level one focuses on detailed pos-
ture changes. We introduce a novel StriP-Based feature extractor (SPB)
to learn the strip-based feature representations by directly taking each
strip of the human body as the basic unit. Moreover, we propose a novel
multi-branch structure, called Enhanced Convolution Module (ECM), to
extract different representations of gaits. ECM consists of the Spatial-
Temporal feature extractor (ST), the Frame-Level feature extractor (FL)
and SPB, and has two obvious advantages: First, each branch focuses on
a specific representation, which can be used to improve the robustness of
the network. Specifically, ST aims to extract spatial-temporal features of
gait sequences, while FL is used to generate the feature representation of
each frame. Second, the parameters of the ECM can be reduced in test by
introducing a structural re-parameterization technique. Extensive exper-
imental results demonstrate that our GaitStrip achieves state-of-the-art
performance in both normal walking and complex conditions. The source
code is published at https://github.com/M-Candy77/GaitStrip.

1 Introduction

Gait recognition is one of the most popular biometric techniques. Since it can
be used in a long-distance condition and cannot be disguised, gait recognition
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Fig. 1. Visualization of feature extractors of different methods.

is widely applied in video surveillance and access control systems. However, this
technology has experienced a huge challenge due to the complexity of the external
environment, such as cross-view, speed changes, bad weathers and variations in
appearances [4,13,14,35,37].

Recently, many Convolutional Neural Networks (CNNs) based gait recogni-
tion frameworks have been proposed to generate discriminative feature represen-
tations [1,2,7,15–19,21,22,26–28,33,36,40,44,45]. As shown in Fig. 1(a), some
researchers extract gait features directly from the whole gait sequence, which
captures global context information of gait sequences [2,27,40]. As those meth-
ods take the human gait as a unit to extract features, some local gait changes that
are important for gait recognition might not be fully captured, which may affect
the recognition performance. On the other hand, some other researchers [7,44]
propose part-based feature representation to represent the human gait, which
is shown in Fig. 1(b). They first partition the human gait into N-parts and
then extract the detailed information of each part. Although carefully choosing
the number of partitions in different convolutional layers can achieve appealing
performance, it is unclear how to build an accurate part-based model on new
datasets, which limits the generalization of the methods.

According to these findings, we argue that the part-based feature representa-
tion is not a general feature representation for gait recognition. Hence, we ques-
tion whether there is a gait descriptor that is insensitive to various partitions?
Through carefully analysis of recent part-based methods, we find that strips are
the minimal effective representation elements for gaits instead of parts. Using
strips, we will be able to circumvent the handcrafted partition in part-based
methods. As shown in Fig. 1(c), the strip can be considered as an extreme form
of the part-based representation, thus it is not necessary to manually determine
the reasonable number of the parts. Motivated by this observation, we propose a
new gait recognition network, called GaitStrip, to learn more discriminative fea-
ture representations based on strips. Specifically, GaitStrip is implemented under
a multi-level framework to improve the representation capability. The multi-level
framework includes two branches, i.e., the low-level branch and the high-level
one. In particular, the high-level branch extracts the global context information
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from low-resolution gait images, while the low-level one captures more details
from high-resolution images.

Furthermore, we introduce Enhanced Convolution Module (ECM), as a
multi-branch block, to our GaitStrip. ECM includes three branches, i.e., the
StriP-Based feature extractor (SPB), the Spatial-Temporal feature extractor
(ST) and the Frame-Level feature extractor (FL), where each branch corresponds
to a specific representation. Specifically, SPB is designed to generate strip-based
feature representations by taking each strip of the human body as a basic unit,
ST aims to extract spatial-temporal information of a gait sequence, and FL is
used to extract each frame’s spatial features. On the other hand, we introduce a
structural re-parameterization technique to reduce the parameters of the ECM
module in test [6]. Specifically, the parameters of SPB, ST and FL can be merged
into a single 3 × 3 × 3 convolution.

After feature extraction, we obtain an effective feature representation by
using temporal aggregation and spatial mapping operations. The temporal aggre-
gation ensembles temporal information of a variable-length gait sequence [20].
The spatial mapping first partitions the feature maps into multiple horizontal
vectors and aggregates each vector by Generalized-Mean (GeM) pooling opera-
tions [25] for better representation. Extensive experiments on widely-used gait
recognition benchmarks demonstrate that our GaitStrip outperforms the state-
of-the-arts significantly.

The main contributions of the proposed method are three-fold, shown as
follows:

– Based on the observation that the strip-based method can achieve more effec-
tive gait representations than part-based partitioning, we propose a multi-
level gait recognition framework with strip to extract more comprehensive gait
features, in which the high-level representation contains the context informa-
tion while the low-level representation extracts local details of gait sequences.

– We develop an effective enhanced convolution module including three
branches, which can not only take the advantage of both frame-level and
spatial-temporal features but also use SPB to enhance the representation
ability. Furthermore, we use the structural re-parameterization technique to
reduce the parameters for high efficiency in test.

– We compare the proposed method with several state-of-the-art methods
on two public datasets, CASIA-B and OUMVLP. The experimental results
demonstrate that the performance of the proposed method achieves superior
performance to these approaches.

2 Related Work

2.1 Gait Recognition

Existing gait recognition methods can be divided into two types, i.e. , global-
based and local-based.
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The global-based methods usually take the human gait as a sample to gen-
erate global feature representations [27,34,40]. For instance, Shiraga et al. [27]
first calculate the Gait Energy Image (GEI) by using the mean function to com-
press the temporal information of gait sequences, and then utilize 2D CNNs
to extract gait features. However, the generation of the GEI causes the loss of
temporal information, which may degrade the representation ability. Thus, some
other researchers [2,3,10,43] use 2D CNNs to extract each frame’s feature before
building the template. On the other hand, some researchers [20,30,32] extract
spatial-temporal information from gait sequences for representation. Recently,
3D CNN has been used in gait recognition to learn the spatial-temporal repre-
sentation of the entire gait sequence. For example, Lin et al. [20] use 3D CNNs
to extract spatial-temporal information, and employ temporal aggregation to
integrate temporal information, addressing the variable-length issue of video
sequences.

The local-based methods usually take the part of the human gait as input
to establish the part-based feature representations [7,44]. For example, Fan et
al. [7] propose a focal convolution layer to extract part-based gait features. The
focal convolutional layer first splits the feature maps into several local parts
and then uses a shared convolution to extract each part’s feature. Zhang et
al. [44] first partition the human gait into four parts and then use 2D CNN to
obtain feature representations of each part. However, these local-based methods
need to predefine the number of partitions for specific datasets, which limit the
generalization ability.

2.2 Strip-Based Modeling

Recently many strip-based modeling methods have been proposed in the visual
field. For example, Ding et al. [5] propose a novel block, called Asymmetric
Convolution Block (ACB), to generate discriminative feature representations.
They use 1D asymmetric forms (e.g. 3× 1 Conv and 1× 3 Conv) to improve the
feature representation ability of the standard square-kernel convolution (3 × 3
Conv). Note that the asymmetric convolutions can exploit the information of the
horizontal and vertical strips. In particular, the asymmetric convolutions can be
fused into the original square-kernel convolution. Huang et al. [12] propose the
CCNet network to capture global contextual information. CCNet which is built
with Criss-Cross Attention blocks models the relationships of horizontal and
vertical strips.

However, the aforementioned methods only focus on the spatial strip-based
information, which do not capture the temporal changes of each strip. Therefore,
in this paper, we propose a novel strip-based feature extractor, which can be
used to establish each strip’s spatial-temporal information. In particular, as far
as we know, GaitStrip is the first network which models strip-based feature
representations in gait recognition.
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Fig. 2. Overview of the entire gait recognition framework.

3 Proposed Method

In this section, we first overview the whole gait recognition framework. Then,
we describe the enhanced convolution module, the multiple-level structure and
feature mapping in detail. Finally, we introduce the strategies of training and
test.

3.1 Overview

The proposed gait recognition framework, GaitStrip, which includes the feature
extraction stage and feature mapping stage is shown in Fig. 2. The GaitStrip
is constructed based on 3D convolutions, which can effectively extract spatial-
temporal information of gait sequences. During the feature extraction stage, a
novel enhanced convolution module which uses both frame-level feature extrac-
tor and strip-based feature extractor to improve the representation ability of
the traditional spatial-temporal feature extractor is proposed. Then, we design
the multi-level framework which includes both the high-level and the low-level
branches. During the feature mapping stage, the temporal aggregation opera-
tion is introduced to integrate the temporal information of feature maps [20].
Then, the feature maps are partitioned into multiple horizontal vectors and the
information is aggregated by Generalized-Mean (GeM) pooling [25]. Finally, a
combined loss function consisting of both cross-entropy loss and triplet loss is
employed to train the proposed network.

3.2 Enhanced Convolution Module

Recently, many excellent feature extractors have been proposed to extract robust
gait features, which can be divided into two types. One is the frame-level feature
extractor which extracts gait features of each frame [2,3,7], and the other one is
the spatial-temporal feature extractor which generates spatial-temporal feature
representations of a gait sequence [20,30,32].

Assume that the feature map Xin ∈ R
Cin×Tin×Hin×Win is the input of a

convolution operation, where Cin is the number of channels, Tin is the length of
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gait sequences and (Hin, Win) is the image size of each frame. The frame-level
and spatial-temporal feature extractors can be designed as

XFL = c1×3×3(Xin), (1)

XST = c3×3×3(Xin), (2)

where ca×b×c(·) represents the 3D convolution with kernel size (a, b, c). XFL ∈
R

Cout×Tin×Hin×Win and XST ∈ R
Cout×Tin×Hin×Win are the output of the frame-

level and spatial-temporal feature extractors, respectively.
The frame-level features ignore the temporal information of the gait sequence,

while the spatial-temporal features focus on the spatial-temporal changes, which
may not pay enough attention to the detailed information of each frame. Thus,
we propose a combined framework which takes advantage of frame-level and
spatial-temporal information as our backbone. The combined structure includes
two branches, i.e. the spatial-temporal feature extractor and frame-level feature
extractor, which can be designed as

XSTFL = XFL + XST . (3)

To further improve the global representation and address the inflexibility
issue in the part-based representation, we present a StriP-Based feature extrac-
tor (SPB) which extracts strip-based features on horizontal axis and vertical
axis, respectively. The strip-based feature extractor on horizontal axis first splits
the human body into multiple horizontal strips and then applies convolution to
extract spatial-temporal information of each horizontal strip. This extractor can
be denoted as

XSPB−H = c3×1×3(Xin), (4)

where c3×1×3(·) denotes the 3D convolution with kernel size (3, 1, 3). XSPB−H ∈
R

Cout×Tin×Hin×Win is the output of this extractor.
Similarly, the strip-based feature extractor is used for the vertical strip’s

spatial-temporal extraction, represented as

XSPB−V = c3×3×1(Xin), (5)

where c3×3×1(·) denotes the 3D convolution with kernel size (3, 3, 1). XSPB−V ∈
R

Cout×Tin×Hin×Win is the output of this extractor. Finally, by combining the
horizontal-based and vertical-based feature extractors, the strip-based feature
extractor can obtain the following feature maps

XSPB = XSPB−H + XSPB−V . (6)

The proposed SPB can be used to enhance the feature representation ability
of the traditional feature extractor. By combining SPB with aforementioned
spatial-temporal feature extractor and frame-level feature extractor, as shown
in Fig. 3, the ECM module can be obtained as follows

XECM = XST + XFL + XSPB . (7)

Thus more comprehensive feature representations can be achieved.
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Fig. 3. Overview of the enhanced convolution module. ST represents the Spatial-
Temporal feature extractor, FL represents the Frame-Level feature extractor, SPB-V
represents StriP-Based feature extractor in vertical and SPB-H represents StriP-Based
feature extractor in horizontal.

3.3 Structural Re-parameterization

To reduce the parameters of the proposed ECM, we introduce the structural re-
parameterization [6] method to ensemble different convolutions during the test
stage. As shown in Eq. 7, the ECM block includes four convolutions: c3×3×3(·),
c1×3×3(·), c3×1×3(·) and c3×3×1(·). During the test stage, these convolutions can
be integrated into a single 3D convolution c3×3×3

emb (·), which can be designed as

c3×3×3
emb = c3×3×3 + c3×3×3

t + c3×3×3
h + c3×3×3

w , (8)

where c3×3×3
t , c3×3×3

h and c3×3×3
w are zero-padding expansions of c1×3×3, c3×1×3

and c3×3×1, respectively, to make the kernels maintain the same dimensions.
According to Eq. 8, the ECM in the test stage can be designed as

XECM = c3×3×3
emb (Xin). (9)

Note that although four convolutions are employed to improve the represen-
tation ability in the training stage, only a single convolution is required in the
test stage, which does not increase the parameter number and not degrade the
inference running efficiency.

3.4 Multi-level Framework

To further improve the representation ability, we design the multi-level frame-
work based on the proposed ECM block for both high-level and low-level feature
extraction. The low-level branch directly extracts features from the large-size
feature maps, which focuses on details of the human body. By contrast, the
high-level one which works on down-sampled feature maps based on max pool-
ing can extract more abstract information.
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3.5 Temporal Aggregation and Spatial Mapping

To adaptively aggregate the temporal information of variable-length gait
sequences, we introduce the temporal aggregation [20]. Assuming that the fea-
ture map Xout ∈ R

Cf×Tf×Hf×Wf is the output of the feature extraction module,
the temporal aggregation operation can be represented as

Yta = F
1×Tf×1×1
Max (Xout), (10)

where Yta ∈ R
Cf×1×Hf×Wf is the output of the temporal aggregation module.

For the spatial mapping, we generate multiple horizontal feature represen-
tations and then combine them to improve the spatial representation ability
[2,7,20,24,39]. The spatial mapping can be represented as

Yout = Fs(F
1×1×1×Wf

GeM (Yta)), (11)

where Yout ∈ R
Cf×1×Hf×1 is the output of the spatial mapping. FGeM (·) means

the Generalized-Mean (GeM) pooling operation [25]. Fs(·) denotes the multiple
separate fully connected (FC) layers. After spatial mapping, we obtain the final
feature representation Y by concatenating the high-level and low-level feature
maps in horizontal axis.

3.6 Loss Function

To train the proposed network, we employ the combined loss function which
consists of the triplet loss and cross entropy loss. Besides the traditional cross
entropy loss used for classification, the triplet loss is also introduced to make
the samples from the same ID as close as possible while those from different IDs
have larger distance in the feature space. The combined loss function is calculated
with the obtained the output of spatial mapping, which is represented as

Lcombined = Ltri + Lcse, (12)

where the Ltri and Lcse denote the triplet loss and cross entropy loss, respec-
tively. Ltri is defined as

Ltri = max(d(r, s) − d(r, t) + m, 0) (13)

where r and s are samples of the same category, while r and t are samples
from different categories. d(·) represents the Euclidean distance between the two
samples and m is the margin of the triplet loss.

3.7 Training and Test Details

Training. In this paper, we introduce a combined loss function consisting of
cross-entropy loss and triplet loss [2,7,31,38,41,42] to train the proposed Gait-
Strip. Specifically, the feature representation Y is fed into the triplet loss function
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for calculation [2], and input into the cross-entropy loss function through an FC
layer. The Batch ALL (BA) [8] is used as the sampling strategy. The number of
samples of each batch is P × K, which contains P classes and each class corre-
sponds to K samples. Considering the memory limit, the length of gait sequences
is set to T in the training stage.

Test. During the test stage, we input the whole sequences into the GaitStrip
to produce the feature representation Y . After that, Y is flattened into a vector
to represent the corresponding sample. In general, the gait datasets are usually
divided into two sets, i.e. , the gallery set and the probe set. The feature vectors
from the gallery set are taken as the standard view to be retrieved, while those
from the probe set are used to evaluate the performance. Specifically, we calculate
the Euclidean distance between the feature vectors in the probe set and all
feature vectors in the gallery set. The class label of the gallery sample with the
smallest distance will be assigned to the probe sample.

4 Experiments

4.1 Datasets and Evaluation Protocol

CASIA-B. The CASIA-B dataset [37] is one of the largest gait datasets for
evaluation. It includes 124 subjects, each of which contains 10 groups of gait
sequences (six groups of normal walking (NM) #01-#06, two groups of walking
with a bag (BG) #01-#02 and two groups of walking with a coat (CL) #01-#02).
Each group contains 11 view angles (0◦–180◦) and the sampling interval is 18◦.
Hence, the CASIA-B dataset contains 124 (subject) × 10 (groups) × 11 (view
angle) = 13,640 gait sequences. The dataset is divided into two subsets, the train-
ing set and the test set. We use the protocol [2] for evaluation, which includes
three different settings, i.e., Small-sample Training(ST), Medium-sample Train-
ing (MT) and Large-sample Training (LT). In the three settings, 24, 62 and 74
subjects are used to form the training set, respectively, and the rest are used for
test. During the test stage, four groups of sequences (NM#01-#04) are used as
the gallery set and the rest (NM#05-#06, BG#01-#02 and CL#01-#02) are
taken as the probe set.

OUMVLP. The OUMVLP dataset [29] is one of the most popular gait datasets,
which includes 10,307 subjects. Each subject was collected in two groups of video
sequences (Seq#00 and Seq#01), each of which contains 14 view angles (0◦,
15◦, ..., 75◦, 90◦, 180◦, 195◦, ..., 255◦, 270◦). During the test phase, the sequences
in Seq#01 are used as the gallery set and the sequences in Seq#00 are taken as
the probe set.

4.2 Implementation Details

Gait sequences are preprocessed and normalized into the same size 64 × 44 on
both datasets [2]. In CASIA-B, GaitStrip has four blocks, where the last three
blocks are built with the proposed ECM. The channel number of the four blocks
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Table 1. Rank-1 accuracy (%) on CASIA-B under all view angles, different settings
and conditions, excluding identical-view case.

Gallery NM#1-4 0◦–180◦

Probe 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ Mean

ST (24) NM#5-6 GaitSet [2] 64.6 83.3 90.4 86.5 80.2 75.5 80.3 86.0 87.1 81.4 59.6 79.5

MT3D [20] 71.9 83.9 90.9 90.1 81.1 75.6 82.1 89.0 91.1 86.3 69.2 82.8

GaitGL [23] 77.0 87.8 93.9 92.7 83.9 78.7 84.7 91.5 92.5 89.3 74.4 86.0

Ours 79.6 89.5 95.6 94.3 86.4 82.0 86.6 93.0 93.6 90.1 75.1 87.8

BG#1-2 GaitSet [2] 55.8 70.5 76.9 75.5 69.7 63.4 68.0 75.8 76.2 70.7 52.5 68.6

MT3D [20] 64.5 76.7 82.8 82.8 73.2 66.9 74.0 81.9 84.8 80.2 63.0 74.0

GaitGL [23] 68.1 81.2 87.7 84.9 76.3 70.5 76.1 84.5 87.0 83.6 65.0 78.6

Ours 71.4 82.6 90.4 88.1 77.9 73.6 79.8 86.4 89.1 86.3 71.3 81.5

CL#1-2 GaitSet [2] 29.4 43.1 49.5 48.7 42.3 40.3 44.9 47.4 43.0 35.7 25.6 40.9

MT3D [20] 46.6 61.6 66.5 63.3 57.4 52.1 58.1 58.9 58.5 57.4 41.9 56.6

GaitGL [23] 46.9 58.7 66.6 65.4 58.3 54.1 59.5 62.7 61.3 57.1 40.6 57.4

Ours 54.3 67.8 75.0 71.6 66.2 59.7 65.5 70.5 69.6 63.6 46.6 64.6

MT (62) NM#5-6 GaitSet [2] 86.8 95.2 98.0 94.5 91.5 89.1 91.1 95.0 97.4 93.7 80.2 92.0

MT3D [20] 91.9 96.4 98.5 95.7 93.8 90.8 93.9 97.3 97.9 95.0 86.8 94.4

GaitGL [23] 93.9 97.6 98.8 97.3 95.2 92.7 95.6 98.1 98.5 96.5 91.2 95.9

Ours 94.0 98.0 98.7 97.8 95.6 93.0 96.1 98.2 98.6 97.0 92.6 96.3

BG#1-2 GaitSet [2] 79.9 89.8 91.2 86.7 81.6 76.7 81.0 88.2 90.3 88.5 73.0 84.3

MT3D [20] 86.7 92.9 94.9 92.8 88.5 82.5 87.5 92.5 95.3 92.9 81.2 89.8

GaitGL [23] 88.5 95.1 95.9 94.2 91.5 85.4 89.0 95.4 97.4 94.3 86.3 92.1

Ours 88.8 95.2 96.8 95.5 92.7 87.4 90.7 95.7 97.6 95.3 87.0 93.0

CL#1-2 GaitSet [2] 52.0 66.0 72.8 69.3 63.1 61.2 63.5 66.5 67.5 60.0 45.9 62.5

MT3D [20] 67.5 81.0 85.0 80.6 75.9 69.8 76.8 81.0 80.8 73.8 59.0 75.6

GaitGL [23] 70.7 83.2 87.1 84.7 78.2 71.3 78.0 83.7 83.6 77.1 63.1 78.3

Ours 69.2 86.7 90.0 88.3 83.6 75.8 82.3 88.1 88.1 81.7 65.7 81.8

LT (74) NM#5-6 GaitSet [2] 90.8 97.9 99.4 96.9 93.6 91.7 95.0 97.8 98.9 96.8 85.8 95.0

GaitPart [7] 94.1 98.6 99.3 98.5 94.0 92.3 95.9 98.4 99.2 97.8 90.4 96.2

MT3D [20] 95.7 98.2 99.0 97.5 95.1 93.9 96.1 98.6 99.2 98.2 92.0 96.7

GaitGL [23] 96.0 98.3 99.0 97.9 96.9 95.4 97.0 98.9 99.3 98.8 94.0 97.4

Ours 96.0 98.4 98.8 97.9 96.6 95.3 97.5 98.9 99.1 99.0 96.3 97.6

BG#1-2 GaitSet [2] 83.8 91.2 91.8 88.8 83.3 81.0 84.1 90.0 92.2 94.4 79.0 87.2

GaitPart [7] 89.1 94.8 96.7 95.1 88.3 84.9 89.0 93.5 96.1 93.8 85.8 91.5

MT3D [20] 91.0 95.4 97.5 94.2 92.3 86.9 91.2 95.6 97.3 96.4 86.6 93.0

GaitGL [23] 92.6 96.6 96.8 95.5 93.5 89.3 92.2 96.5 98.2 96.9 91.5 94.5

Ours 92.8 96.6 97.2 96.5 95.2 90.5 93.5 97.5 98.3 97.6 91.4 95.2

CL#1-2 GaitSet [2] 61.4 75.4 80.7 77.3 72.1 70.1 71.5 73.5 73.5 68.4 50.0 70.4

GaitPart [7] 70.7 85.5 86.9 83.3 77.1 72.5 76.9 82.2 83.8 80.2 66.5 78.7

MT3D [20] 76.0 87.6 89.8 85.0 81.2 75.7 81.0 84.5 85.4 82.2 68.1 81.5

GaitGL [23] 76.6 90.0 90.3 87.1 84.5 79.0 84.1 87.0 87.3 84.4 69.5 83.6

Ours 79.9 92.3 93.4 89.2 86.0 80.0 86.0 88.5 91.7 87.5 73.5 86.2

is set to 32, 64, 128 and 128, respectively. In OUMVLP, we use five blocks to
construct the proposed GaitStrip and the last two blocks are implemented by
the ECM module. The channel number of the five blocks is set to 64, 128, 196,
256 and 256, respectively. The margin of the triplet loss is set to 0.2 and Adam
is selected as the optimizer. During the training stage, the parameters P and K
are both set to 8. And the length of sequences T is set to 30. The learning rate
is set to 1e-4 and reset to 1e-5 in the last 10K iterations. For the settings ST,
MT and LT on CASIA-B dataset, the iteration number is set to 60K, 70K and
80K, respectively. On OUMVLP dataset, the parameter P ×K is set to 32 × 8.
The iteration number is set to 210K. The learning rate is initialized to 1e-4 and
reset to 1e-5 after 150K iterations.
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4.3 Comparison with the State-of-the-Art

Evaluation on CASIA-B. We compare the proposed method with several
gait recognition approaches including GaitSet [2], GaitPart [7], MT3D [20] and
GaitGL [23] on the CASIA-B dataset. The experimental results are shown in
Table 1. It can be observed that the proposed method achieves the highest aver-
age accuracy under all settings (ST, MT and LT) and conditions (NM, BG and
CL). Furthermore, we explore the performance of the proposed method under
different settings and conditions in details.

Evaluation Under Various Settings (ST, MT and LT). We observe that
our method achieves high performance under all three settings (ST, MT and
LT) and exceeds the best result reported before. We display the complete exper-
imental results under these three settings in Table 1. The recognition accuracy
of GaitGL under ST MT and ST settings in NM condition is 86.0%, 95.9% and
97.4%, respectively. For the proposed method, the gait recognition accuracy is
87.8%, 96.3% and 97.6%, respectively. Furthermore, our method obtains signifi-
cant improvement comparing with other methods in all three settings.

Evaluation Under Various Conditions (NM, BG and CL). It can be
seen that when the external environment changes and more challenges exist,
the accuracy decreases heavily. Under the LT setting, the accuracy of GaitGL in
NM, BG and CL conditions is 97.4%, 94.5% and 83.6%, respectively. Comparing
with GaitGL, our results are 0.2%, 0.7% and 2.6% higher, respectively. Under ST
and MT settings, we can also observe that the proposed method owns the best
performance. In the ST setting, our method outperforms GaitGL by 1.8%, 2.9%
and 7.2% under NM, BG and CL, respectively. In the MT setting, the accuracy
of the proposed method is 96.3%, 93.0% and 81.8%, which exceeds GaitGL by
0.4%, 0.9% and 3.5%, respectively.

Evaluation on Specific Angles (0◦, 90◦, 180◦). The proposed method shows
significant improvement in some extreme view angles (0◦, 90◦ and 180◦). For
example, the average accuracy of MT3D in the setting LT and NM is 96.7%, but
the accuracy corresponding to the three specific view angles are 95.7%, 93.9%
and 92.0%, respectively. For the proposed method, the accuracy in the setting
LT and NM is 97.6%, which outperforms MT3D by 0.9%. And the accuracy
corresponding to the specific view angles (0◦, 90◦ and 180◦) are 96.0%, 95.3%
and 96.3%, respectively, which outperforms MT3D by 0.3%, 1.4% and 4.3%,
respectively. The main reason may be that the proposed SPB module extracts
the feature of each strip, making the proposed ECM obtain more effective feature
representation in the specific view angles.

Evaluation on OUMVLP. Compared with the CASIA-B, the OUMVLP
dataset contains more subjects. Hereby, we compare GaitStrip with several
famous gait recognition methods, including GEINet [27], GaitSet [2], Gait-
Part [7], GLN [9], SRN+CB [10], GaitGL [23] and 3D Local [11] on this dataset.
The experimental results are shown in Table 2 which indicates that the pro-
posed method achieves the optimal performance in all conditions. For example,
the accuracy of GaitGL with invalid probe is 89.7%. For the proposed method,
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Table 2. Rank-1 accuracy (%) on OUMVLP dataset under different view angles,
excluding identical-view cases.

Method Probe view Mean

0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ 180◦ 195◦ 210◦ 225◦ 240◦ 255◦ 270◦

GEINet [27] 24.9 40.7 51.6 55.1 49.8 51.1 46.4 29.2 40.7 50.5 53.3 48.4 48.6 43.5 45.3

GaitSet [2] 84.5 93.3 96.7 96.6 93.5 95.3 94.2 87.0 92.5 96.0 96.0 93.0 94.3 92.7 93.3

GaitPart [7] 88.0 94.7 97.7 97.6 95.5 96.6 96.2 90.6 94.2 97.2 97.1 95.1 96.0 95.0 95.1

GLN [9] 89.3 95.8 97.9 97.8 96.0 96.7 96.1 90.7 95.3 97.7 97.5 95.7 96.2 95.3 95.6

SRN+CB [10] 91.2 96.5 98.3 98.4 96.3 97.3 96.8 92.3 96.3 98.1 98.1 96.0 97.0 96.2 96.4

GaitGL [23] 90.5 96.1 98.0 98.1 97.0 97.6 97.1 94.2 94.9 97.4 97.4 95.7 96.5 95.7 96.2

3D Local [11] − − − − − − − − − − − − − − 96.5

Ours 92.8 97.0 98.4 98.5 97.6 98.2 97.8 96.0 96.2 97.8 97.9 96.6 97.3 96.7 97.0

Table 3. Rank-1 accuracy (%) of different ECM blocks.

ST FL SPB NM BG CL

� 97.4 94.9 85.3

� � 97.4 95.2 85.5

� 96.2 92.9 78.5

� � 97.2 94.9 85.2

� � 97.4 95.2 85.9

� � � 97.6 95.2 86.2

the accuracy in the same conditions is 90.5%, which outperforms GaitGL by
0.8%. The accuracy of GaitGL excluding invalid probe sequences is 96.2%, while
the accuracy of the proposed method is 97.0%.

4.4 Ablation Study

In this paper, to obtain effective feature representation, we propose the GaitStrip
with ECM block, SPB feature extractor and multi-level framework. Therefore, we
design several ablation studies to explore the contribution of the key components.

Analysis of the SPB module. We propose the novel SPB extractor to extract
more discriminative gait features. To explore the contribution of the SPB, we first
design three groups of comparative experiments, i.e., only using the ST to com-
pare with the combination of ST and SPB, only using the FL to compare with the
combination of FL and SPB, and comparing the combination of ST and FL to the
combination of ST, FL and SPB. The experimental results are shown in Table 3.
We can find that the performance of the modules with SPB is improved compared
with that without SPB. The accuracy of methods with and without SPB in NM
condition is very close, but the methods with SPB in CL condition perform better.
Specifically, the accuracy in CL condition by using FL is 78.5%, while the accuracy
in CL condition with the combination of FL and SPB is 85.2%, which increases by
6.7%. In the CL condition, the accuracy with the combination of FL, ST and SPB
is 86.2%, which increases 0.3% compared with that with only the combination of
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Table 4. Rank-1 accuracy (%) of different levels.

Multi-level structure NM BG CL

High-level Low-level

� 97.3 94.4 83.4

� 97.2 94.4 84.4

� � 97.6 95.2 86.2

Table 5. The accuracy (%) of different strip-based modeling on the CASIA-B dataset.

Method NM BG CL

baseline+ECM 97.6 95.2 86.2

baseline+ACB 96.1 92.8 79.4

baseline+CCA 80.4 75.1 67.6

FL and ST. Hence, the SPB can help to extract more comprehensive gait features,
which plays an important role in recognition improvement.

Analysis of the ECM Block. In this paper, we propose the ECM to gen-
erate the discriminative feature representations by taking full advantage of the
frame-level and strip-based information. The ECM consists of the ST, FL and
SPB. To explore the advantage of the combination of the ST, FL and SPB in
robust feature extraction, we design ablation experiments by using only one or
two modules. The results of the ablation experiments are shown in Table 3. In
NM condition, the accuracy of the combination of ST and SPB is 97.4%, the
accuracy of the combination of FL and SPB is 97.2%, and the combination of
the ST, FL and SPB is 97.6%, which increases by 0.2% and 0.4%, respectively,
compared with the other two modules. The accuracy of the study shows that
the combination of the ST, FL and SPB can obtain better accuracy in NM, BG
and CL conditions than using only one or two of the modules.

Analysis of Multi-level Framework. The proposed GaitStrip works with
multiple levels. To investigate the contribution of the low-level and high-level
branches, we design the comparison methods with only one branch. The exper-
imental results are shown in Table 4, from which we can observe that the accu-
racy of the methods with only high-level or low-level branch is 97.3% and 97.2%,
respectively, while the accuracy with both levels is 97.6%, which achieves 0.3%
and 0.4% improvement, respectively, demonstrating that the multi-level struc-
ture can effectively enhance the representation ability and then improve the
recognition performance.

4.5 Comparison with Other Strip-Based Modeling

In Sect. 2.2, we introduce two different modules to model the strip-based infor-
mation. To analyze their performance, we design some experiments by using the
Asymmetric Convolution Block (ACB) or Criss-Cross Attention Block to replace
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the ECM module. All experiments are built with the LT setting on CASIA-B.
The experimental results are shown in Table 5. It can be observed that the pro-
posed ECM achieves better performance than other strip-based modelings. This
may be because our ECM utilizes the spatial-temporal information of each strip,
improving the feature representation ability. The accuracy of the ECM method
in NM, BG and CL is 97.6%, 95.2% and 86.2% respectively, which exceeds the
ACB method by 1.5%, 2.4% and 6.8%. The accuracy of the CCA method in
NM, BG and CL is 80.4%, 75.1% and 67.7% respectively, which is inferior to
our method as well. By comparing with other strip-based methods, we can note
that the proposed method can better exploit the spatial-temporal representation,
especially in some complex conditions, which achieves significant improvement.

4.6 Computational Analysis

In the inference stage, the proposed ECM can be embedded into a standard 3D
convolution, which reduces parameters and inference time. The computational
analysis is shown in Table 6. It can be observed that the average accuracy of
using ECM is 93.0%, outperforming the accuracy of using ST by 0.5%. However,
the parameters of both modules are equal.

Table 6. The accuracy (%), inference time (second/sequence) and parameters (M) of
different methods on CASIA-B dataset

Re-param ST ST+FL ECM

Accuracy − 92.5 92.8 93.0

Inference time × 0.025 0.027 0.035

Parameters × 3.87 4.33 5.25

Accuracy − 92.5 92.8 93.0

Inference time � 0.025 0.025 0.025

Parameters � 3.87 3.87 3.87

5 Conclusion

In this paper, we propose a novel gait recognition network GaitStrip with ECM
block and multi-level framework. On the one hand, the proposed ECM which
aggregates spatial-temporal, frame-level and strip-based information can gener-
ate more comprehensive feature representations. Moreover, the spatial-temporal,
frame-level and strip-based feature extractors can be embedded into a com-
mon 3D convolution in the inference stage, which does not introduce additional
parameters. On the other hand, the multi-level structure containing both low-
level and high-level branches can ensemble global semantic and local detailed
information. The experiment results verify that the proposed GaitStrip achieves
appealing performance in normal environment as well as complex conditions.
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