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Abstract. Important natural language processing tasks such as ma-
chine translation and document summarization have made enormous
strides in recent years. However, their performance is still partially lim-
ited by the standard training objectives, which operate on single tokens
rather than on more global features. Moreover, such standard objectives
do not explicitly consider the source documents, potentially affecting
their alignment with the predictions. For these reasons, in this paper, we
propose using an Optimal Transport (OT) training objective to promote
a global alignment between the model’s predictions and the source docu-
ments. In addition, we present an original implementation of the OT ob-
jective based on the Sinkhorn divergence between the final hidden states
of the model’s encoder and decoder. Experimental results over machine
translation and abstractive summarization tasks show that the proposed
approach has been able to achieve statistically significant improvements
across all experimental settings compared to our baseline and other al-
ternative objectives. A qualitative analysis of the results also shows that
the predictions have been able to better align with the source sentences
thanks to the supervision of the proposed objective.

Keywords: Natural Language Processing · Natural Language Genera-
tion · Neural Text Generation · Optimal Transport

1 Introduction
Natural language generation (NLG), a key field for the natural language process-
ing (NLP) community, lends itself to a wide range of applications such as ma-
chine translation, text summarization, dialogue systems, and others [14]. In these
tasks, attention-based sequence-to-sequence (seq2seq) models [23] are dominant,
together with the conventional maximum-likelihood estimation (MLE), which is
also known as teacher forcing in the area of recurrent neural networks (RNN).
This approach maximizes the generation probability of the current target word
conditioned on all the previous ground-truth inputs and all the source words.
However, it has been widely criticized for both its conditioning of the predictions
on ground-truth information, unavailable at inference time, and its inability to
capture sentence-level features by only operating at token level [19].

Several attempts have been made to address the limitations of standard MLE
by adopting sentence-level objectives. For example, Ranzato et al. [19] have
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trained their models by directly optimizing sentence-level evaluation metrics
such as the BLEU [16] and ROUGE [13] scores. However, these two metrics com-
pute sentence similarity primarily based on surface matches of n-grams. While
they can provide sentence-level information to a certain extent, they struggle
to reward context-preserving lexical equivalence. Additionally, they are typically
based on hard predictions, i.e., sequences of labels, which make the metrics
non-differentiable as they are flat and subject to change discontinuously in the
parameter space. For this reason, optimizing them often requires resorting to
slow and high-variance gradient estimation techniques such as policy gradient.

An efficient alternative to optimizing the above n-gram-based metrics is to
optimize embedding-based ones. Several such metrics have been proposed in
recent years, including the Word Mover’s Distance [10], MoverScore [26], and
BERTScore [25]. The matching schemes in these advanced sentence-level met-
rics better preserve semantically-relevant information, especially when combined
with contemporary pretrained language models such as BERT [5] and BART [11].
More importantly, they straightforwardly support optimization as they are based
on continuous quantities. For instance, Jauregi Unanue et al. [8] have proposed
fine-tuning machine translation models by using BERTScore as the training
objective, reporting consistent improvements over a variety of language pairs.
However, most of these methods only focus on measuring the similarity between
predictions and references, and rarely pay attention to the source documents.
While the source information can be covered by the inner cross-attention mecha-
nism to some extent, the attention mechanism itself has been criticized in recent
years. For example, in the absence of constraints, some of the source tokens may
be rarely attended to. To amend this, some approaches have started to include
explicit coverage terms in the models [7,17].

To address the above issues, in this paper, we focus on providing text gen-
eration models with sentence-level supervision directly from the source text. To
achieve this goal, we propose a novel training objective based on the minimiza-
tion of the recently-proposed Sinkhorn divergence (SD) [6] between the hidden
states of the encoder and decoder. The Sinkhorn divergence is a variant of the
general optimal transport (OT) problem, which can be used to optimally align
two arbitrary sets of weighted elements. The proposed objective only utilizes the
contextualized source information already learned by the encoder, without in-
troducing any additional module or memory footprint. In addition, the inference
remains unchanged and its run time is unaffected. Overall, our paper makes the
following main contributions:
– A novel training objective for conditional text generation models such as

machine translation and document summarization providing sentence-level
supervision directly from the source text.

– An original implementation of the objective leveraging the context-aware
hidden states of the encoder and the decoder, and the Sinkhorn divergence
– a performing variant of OT distance.

– Experimental results on machine translation and abstractive summarization
showing marked improvements in both text quality and word alignment over
an MLE baseline and all other compared objectives.
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2 Related Work

Sentence-Level Supervision The sentence-level supervision used in early re-
search was typically performed with the non-differentiable metrics used for eval-
uation, such as the BLEU and ROUGE scores used in [19]. With the increases
in model capacity and training data size, advanced language models such as
BERT [5] and BART [11] have shown their ability to learn context-aware repre-
sentations of the input sentences. As a result, researchers have started to leverage
these pretrained representations as sentence-and document-level signals. For ex-
ample, Zhang et al. [25] have utilized BERT as a sentence-level evaluation metric,
and Chen et al. [3] have focused on distilling knowledge learned by a large BERT
model for training smaller, student models. Typically, these context-aware rep-
resentations are extracted from the last layer of the language models, and we
follow this line in our implementation.
Coverage of Source Information Approaches for explicitly covering the
source-side information are an important component of statistical machine trans-
lation, and also the founding idea behind the attention mechanism in contem-
porary NLG models [24], which adaptively focus on different parts of the source
sentence at each generation step. In addition, networks such as the copying
net [28] have directly allowed copying content from the source text to the pre-
dictions, leveraging the homogeneity of the source information and the output in
NLG tasks. More recently, Garg et al. [7] have jointly trained an explicit align-
ment module for source and target sentences when training machine translation
models and Parnell et al. [17] have proposed a reinforcement learning reward for
multi-document summarization to even out the individual contributions of the
source documents.
Optimal Transport Optimal transport (OT) was first introduced in NLP by
Kusner et al. [10] as a way to measure the distance between two documents.
Since then, OT has been widely used in several other applications. For instance,
Alqahtani et al. [1] have utilized it as an objective for word alignment while
Zhao et al. [26] have used it as an evaluation metric. In terms of NLG tasks,
Chen et al. [2] and Wang et al. [12] have demonstrated improved performance
by minimizing the OT distance between the references and sentences generated
with teacher forcing (TFOT) and student forcing (SFOT), respectively. In turn,
Nguyen et al.[15] have used the OT distance for knowledge distillation and shown
improvements in cross-lingual text summarization. However, none of these OT-
based methods has paid explicit attention to context-aware source information.

3 Methodology
In this section, we first briefly recap the standard seq2seq training, then provide
the basics of OT optimization, and finally introduce the proposed approach.

3.1 Sequence-to-Sequence Model Training

The seq2seq framework is essentially an encoder-decoder architecture, where the
encoder is responsible for mapping a source sentence X1:N = (x1, . . . , xN ) to a
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sequence of hidden vectors, or states, H1:N = (h1, . . . , hN ), and the decoder is
responsible for eventually mapping these hidden vectors to a target sentence,
Y1:M = (y1, . . . , yM ). In the original seq2seq model [23], only the last hidden
state of the encoder, hN , was fed into the decoder, limiting the source infor-
mation available to the decoder. However, this limitation was removed by the
attention mechanisms [14], which leverage all the encoder’s hidden states. The
standard MLE training objective of seq2seq models is to minimize the negative
log-likelihood of the target sentence, Y1:M , conditioned on X1:N :

LMLE = − logPθ(Y1:M |X1:N ) = −
M∑

m=1

logPθ(ym|y<m, X1:N ) (1)

3.2 The Proposed Approach: a Contextual Sinkhorn Divergence

Optimal transport aims to determine the best linear assignment between the
elements of two sets under given marginal constraints. To formally describe the
proposed approach, we first introduce a cost matrix, C, such that Cij = c(xi, yj)
is a distance between the vectorized token xi and token yj , which are denoted
as hSn and hTm, respectively. Additionally, we introduce two discrete marginal
distributions:

Φ =

N∑
n=1

ϕnδhS
n

; Ψ =

M∑
m=1

ψmδhT
m

(2)

where ϕ and ψ are individual weights with respect to each token in X1:N and
Y1:M and δπ is the Dirac function centred on the vector π. The weight vectors
are discrete distributions, with their values lying in the simplex (i.e., ϕn, ψm ≥
0 ∀n,m;

∑N
n=1 ϕn =

∑M
m=1 ψm = 1). Hence, optimal transport aims to find a

transport matrix, T , achieving the following minimization:

O(Φ, Ψ) = min
T∈∆(Φ,Ψ)

⟨T,C⟩ (3)

where ⟨·⟩ is the Frobenius dot-product and ∆(Φ, Ψ) is the set of joint distri-
butions with respective marginals Φ and Ψ . To achieve this minimization, OT
matches token pairs of minimum cost from X1:N and Y1:M in a many-to-many
manner, respecting their individual weights. Since this convex optimization can
be computationally expensive, Cuturi [4] has proposed the Sinkhorn distance,
which is an entropy-regularized OT that can be expressed as:

Oϵ(Φ, Ψ) = O(Φ, Ψ) + ϵ · h(T ) (4)

where h(T ) is the entropy of the transport matrix T and ϵ is a positive regular-
ization coefficient. Note that one of the main benefits of the Sinkhorn distance
is that it can be computed efficiently using a dual form:

Oϵ(Φ, Ψ) = ⟨Φ, f⟩+ ⟨Ψ, g⟩ (5)

While the Sinkhorn distance is computationally efficient, it generally leads to
a biased solution for a positive ϵ since Oϵ(Φ,Φ) ̸= 0, and thus may not perform
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ideally as a training objective. For this reason, in our work we have chosen to
experiment with the recently-proposed Sinkhorn divergence [6], which can be
formally defined as:

LSD(Φ, Ψ) = Oϵ(Φ, Ψ)−
1

2
Oϵ(Φ,Φ)−

1

2
Oϵ(Ψ, Ψ) (6)

Intuitively, this divergence normalizes the standard Sinkhorn distance by dis-
counting two symmetric terms, Oϵ(Φ,Φ) and Oϵ(Ψ, Ψ), that reflect the intrinsic
“hardness” of its arguments, leaving only the alignment contribution in focus.
The Sinkhorn divergence in Equation 6, too, can be expressed concisely in dual
form by simply subtracting the symmetric terms:

LSD(Φ, Ψ) = ⟨Φ, (f − f ′)⟩+ ⟨Ψ, (g − g′)⟩ (7)

where f ′, g′ are the solutions of the respective symmetric problems.
In our implementation, to cater for the information from the source sentence,

we compute the Sinkhorn divergence “contextually” by setting the vectors hSn
and hTm in Equation 2 to the hidden states of the encoder and the decoder.
Finally, we compose the seq2seq loss in Equation 1 and the Sinkhorn divergence
in Equation 6 into our final training objective, which can be expressed as:

L = LMLE + λ · LSD (8)

where λ is a hyperparameter that controls the magnitude of the OT component.
The objective shows that the proposed approach can be seamlessly incorporated
into any contemporary encoder-decoder architecture.

4 Experiments

4.1 Datasets

Machine Translation For this task, we have evaluated our approach on two
standard datasets, IWSLT 2014 German↔English (De↔En)3 and IWSLT 2015
English↔Vietnamese (En↔Vi), and one large-scale dataset (≈ 4M parallel sen-
tences), WMT 2014 English→German (En→De). For IWSLT De↔En and WMT
En→De, we perform the same data pre-processing steps as in the Fairseq li-
brary4. For IWSLT En↔Vi, we use the publicly available dataset5 with TED
tst2012 and tst2013 as validation and test sets, respectively. For the two IWSLT
datasets, we have tokenized sentences using the tokenizer and vocabulary from
the pretrained mBERT base model, as distributed by Hugging Face.6. For WMT
3 We remark that there are a few misaligned sentence pairs in the official release of this

dataset, which end up affecting the test BLEU score. For more details, please refer to
https://github.com/pytorch/fairseq/issues/4146. Herein, we report the BLEU scores
on the corrected dataset.

4 https://github.com/pytorch/fairseq/tree/main/examples/translation
5 https://nlp.stanford.edu/projects/nmt/data/iwslt15.en-vi
6 https://huggingface.co/bert-base-multilingual-cased

https://github.com/pytorch/fairseq/issues/4146
https://github.com/pytorch/fairseq/tree/main/examples/translation
https://nlp.stanford.edu/projects/nmt/data/iwslt15.en-vi
https://huggingface.co/bert-base-multilingual-cased
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En→De, we have tokenized the dataset using the byte pair encoding (BPE) of
Sennrich et al. [20], with 40K subword merge operations. For evaluation, we re-
port the case-sensitive [22] detokenized sacreBLEU score, as suggested by Post
et al. [18], and also the recently proposed BERTScore (FBERT) [25] which nicely
complements the BLEU score as it is based on embeddings rather than n-grams.

Abstractive Summarization For this task, we have trained our models on
the English Gigaword dataset provided by Hugging Face7. However, the default
dataset contains roughly 190K documents in the validation set, which makes the
validation process exceedingly slow. For the sake of efficiency, we have instead
used the modified dataset provided by Zhou et al. [27]. For tokenization, we
have used the same tokenizer of WMT En→De. For evaluation, we report the
ROUGE-1, ROUGE-2 and ROUGE-L on both the original and modified test
sets for a comprehensive comparison.

Fig. 1. Illustration of the three different training schemes. The dotted line indicates
the path requiring smoothing techniques.

4.2 Models and Training

We have used Fairseq’s transformer_iwslt_de_en configuration for the two
IWSLT tasks and transformer_wmt_en_de configuration for the WMT task.
For the MLE training, we have used the label-smoothed negative log-likelihood
with smoothing parameter 0.1. For our combined training objective, we have
explored a wide range of values for the hyperparameter λ in Equation 8 using
the IWSLT De→En dataset, and set it to 0.1 for all tasks based on the best per-
formance on the validation set. A sensitivity analysis is presented in Section 4.3.
During training, we have batched sentences with a maximum number of 8192
7 https://huggingface.co/datasets/gigaword

https://huggingface.co/datasets/gigaword
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tokens and employed the inverse-sqrt learning rate scheduler and the Adam op-
timizer with (β1, β2) = (0.9, 0.98). At inference time, we have used beam search
decoding with a beam size of 5. For measuring the statistical significance with
respect to the baseline model, we have used the paired bootstrap resampling
test [9] with 2000 resamples.

The proposed approach minimizes the Sinkhorn divergence between the hid-
den states of the predicted and source sentences, and we therefore note it as
SD-hidden hereafter. In order to single out the respective contributions of the
contextual representation and the source text, we have also trained two further
models for comparison. In the former, we have computed the same Sinkhorn
divergence, but between the word embeddings of the predicted tokens and the
source tokens (SD-emb-src), and in the latter, those of the predicted tokens and
the target tokens (SD-emb-tgt). It is important to note that, in order to use con-
ventional word embeddings in the two compared models, the predictions from
the output layer of the decoder need to be “softened". In our experiments, we
have used the probability-averaged embedding as suggested by TFOT [2]. The
three different training schemes are summarized in Figure 1.

Table 1. BLEU and FBERT scores for the IWSLT 2014 De↔En and IWSLT 2015
En↔Vi translation tasks. (†) p-value < 0.05. (‡) p-value < 0.01.

Model
De→En En→De

dev test dev test
BLEU FBERT BLEU FBERT BLEU FBERT BLEU FBERT

Transformer 35.14 67.41 33.44 65.94 29.90 64.27 28.22 63.24
+ SD-emb-src 35.11 67.22 33.39 65.78 29.92 64.41 28.34 63.36
+ SD-emb-tgt 35.27 67.56 33.67† 66.04 29.89 64.44† 28.36 63.53‡

+ SD-hidden 35.59‡ 67.70‡ 34.05‡ 66.31‡ 30.19† 64.66‡ 28.78‡ 63.46†

Model
Vi→En En→Vi

dev test dev test
BLEU FBERT BLEU FBERT BLEU FBERT BLEU FBERT

Transformer 24.62 57.96 27.48 61.19 26.59 85.14 29.85 86.63
+ SD-emb-src 24.37 57.90 27.43 61.14 27.10† 85.22 30.28 86.70
+ SD-emb-tgt 24.27 57.61 27.57 61.01 26.68 85.26† 29.63 86.62
+ SD-hidden 25.03 58.14 28.23† 61.26 27.14† 85.26† 30.41† 86.61

4.3 Results and Discussion

Machine Translation We first report the results for the machine translation
task over the two IWSLT datasets in Table 1 and the WMT dataset in Ta-
ble 2. For the two IWSLT translation tasks, both SD-emb models show little
or even no improvement compared to the baseline model. However, our SD-
hidden model shows consistent improvements over almost all datasets and eval-
uation metrics, of up to 0.75 pp in BLEU and 0.39 pp in FBERT. Also over
the WMT 2014 En→De dataset, our SD-hidden model has performed the best,
achieving increases of up to 0.45 pp in BLEU and 0.42 pp in FBERT. No-
tably, the SD-emb models also show noticeable improvements in this dataset.
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Table 2. BLEU and FBERT scores for the WMT
2014 En→De translation task. (†) p-value < 0.01.
(‡) p-value < 0.001. (⋆) from [21]. (-) not available.

Model
En→De

dev test
BLEUFBERT BLEU FBERT

Other Reported Results
Transformer⋆ - - 26.5 -
Rel-Transformer⋆ - - 26.8 -
Our Implementations
Transformer 29.99 61.47 26.61 63.27
+ SD-emb-src 30.22‡ 61.69‡ 26.97 63.54
+ SD-emb-tgt 30.20‡ 61.65‡ 26.95 63.46
+ SD-hidden 30.3‡ 61.75‡27.06†63.69‡

For comparison with the liter-
ature, we also include other re-
ported sacreBLEU scores over
the same datasets.

Abstractive Summarization
Table 3 shows the results for
the abstractive summarization
task. For a fair comparison,
where available, we report re-
sults for both the original
and the modified test set. On
the original test set, our SD-
hidden model performed the
best, achieving 0.22 pp, 0.27 pp
and 0.23 pp improvements in
ROUGE-1, ROUGE-2 and ROUGE-L scores, respectively. Also on the modified
test set, it has achieved marked improvements over the baseline of 0.58 pp, 0.32
pp and 0.65 pp in ROUGE-1, ROUGE-2 and ROUGE-L scores, respectively. Yet,
in this case, the SD-emb-src approach has slightly outperformed the proposed
approach in two metrics. In all cases, all these results confirm the importance of
attending to the source information in the training objective.

Table 3. ROUGE-1, ROUGE-2 and ROUGE-L scores for the Gigaword summarization
task. (†) p-value < 0.05. (‡) p-value < 0.01. (◦) from [24]. (•) from [27]. (3) from [28].
(-) not available.

Model
English Gigaword

dev test test⋆

RG-1 RG-2 RG-L RG-1 RG-2 RG-L RG-1 RG-2 RG-L
Other Reported Results
Transformer◦ - - - - - - 37.57 18.90 34.69
SEASS• - - - 46.86 24.58 43.53 36.15 17.54 33.63
SeqCopyNet3 - - - 47.27 25.07 44.00 35.93 17.51 33.35
Our Implementations
Transformer 48.00 25.46 44.65 48.35 26.28 44.86 37.90 19.01 35.13
+ SD-emb-src 47.98 25.30 44.51 49.07‡ 26.79 45.51‡ 37.68 18.64 34.72
+ SD-emb-tgt 47.93 25.31 44.37 48.67 26.39 44.95 37.67 18.59 34.61
+ SD-hidden 48.42‡ 25.65 45.10‡ 48.93† 26.60 45.51† 38.12 19.28 35.36
⋆ original test set provided by the Hugging Face library.

Comparison with the Standard OT We have also compared the performance
of the Sinkhorn divergence in Equation 6 with the standard OT distance of
Equation 4 over the same hidden states. For simplicity, we have limited this
comparison to the IWSLT 2014 En→De translation task. The results, reported
in Table 4, show that the Sinkhorn divergence has outperformed the standard
OT distance in all cases.
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Table 4. BLEU and FBERT scores for the
standard OT (Sink. Dis. in the table) and
the proposed Sinkhorn divergence (Sink.
Div. in the table) in the IWSLT 2014
En→De translation task.

Method
En→De

dev test
BLEUFBERTBLEUFBERT

Transformer 29.90 64.27 28.22 63.24
+ Sink. Dis. 29.81 64.53 28.58 63.40
+ Sink. Div. 30.19 64.66 28.78 63.46

Performance Sensitivity to the
Value of λ Table 5 shows the perfor-
mance with variable values of λ in the
IWSLT 2014 En→De translation task.
The key observation is that the results
seem reasonably stable, and that values
of 0.01 and 0.1 (and, likely, any values
in between) have clearly outperformed
the baseline (column 0) on the valida-
tion set. As a reassuring indication of
stability, the same values have also out-
performed the baseline on the test set.
For convenience, we have used the best
value over this validation set (i.e., 0.1)
for all tasks.

Table 5. Performance sensitivity to the value of regularization parameter λ for the
IWSLT 2014 De→En translation task.

dataset λ
0 0.001 0.01 0.1 0.2 0.5 1

Valid BLEU 35.14 35.22 35.34 35.59 35.33 35.13 34.92
Valid FBERT 68.81 68.52 69.03 69.14 68.76 68.38 68.39
Test BLEU 33.44 33.38 33.82 34.05 33.66 33.61 33.44
Test FBERT 67.39 66.98 67.63 67.80 67.58 67.22 67.24

Qualitative Analysis of the Word Alignments To further investigate the
proposed approach, in Figure 2 we visualize the optimal transport matrices be-
tween the word embeddings of the source and the reference obtained with the
different models for a sample from the IWSLT 2014 De→En dataset. For the
baseline model, most words are wrongly aligned, especially for the first few to-
kens (e.g., “also” means “so” in German, “es” means ‘it’ etc). This shows that
the internal attention mechanism of the transformer is not particularly effective
at aligning word embeddings. Conversely, the proposed model shows a remark-
able performance, even when compared to the two SD-emb models that directly
seek to align word embeddings during training. SD-emb-src has the second-best
performance, yet it has still failed to correctly align the first three tokens. We
have also observed that this behaviour has been even more pronounced in the
case of long sentences. For these sentences, our SD-hidden model has displayed
a consistent ability to align along the diagonal axis, which is correct in first
approximation, while all the other models have predominantly reported very
scattered alignments.

It is also noteworthy that the best alignments between word embeddings have
not been obtained by the SD-emb objectives that explicitly optimize them. We
speculate that a reason for this may be the impact of subword tokenization. For
instance, the word circle in Figure 2 is an intact token in the English corpus
while it has been tokenized into two subwords, kr and ##eis, in the German
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Fig. 2. OT matrices of a sample from the IWSLT 2014 De→En translation task.

corpus. This may somehow break the “equilibrium” in the alignments, as two
tokens need to match only one. Since subwords are given the same weight as
intact tokens, the unmatched weight may be forcefully assigned to other tokens.
We assume that this may be one of the reasons why optimizing the transport
directly between word embeddings may lead to poorer alignments. Conversely,
optimizing the transport over the hidden states of the transformer may afford
more degrees of freedom to mollify this behavior. We leave further investigation
to future work.

Table 6. Examples of generated text for the IWSLT 2014 De→En translation task
and English Gigaword Summarization task. This table uses color coding to highlight
some correct and incorrect phrases. Red: incorrect phrases; Green: correct phrases.

Translation Examples

Reference he just looked up at the sky, and he said, "excuse me, can you not see that
i’m driving?"

Baseline he just looked up in heaven and said, you can’t see i’m driving? "
SD-emb-src hejust lookedupinheavenandsaid,"so,really,canyouseethat i’mdriving?"

SD-emb-tgt he just looked up into heaven and said, "forgive me, can’t you see i’m
driving cars?"

SD-hidden he just looked up into the sky and said, "excuse me, can’t you see that
m driving?"

Reference nowthesedecisionsvary in thenumberof choices that theyofferperdecision.

Baseline now these decisions are different in the number of choices that you make
when you make choices.

SD-emb-src now these choices are different from the number of choices that they offer
per choice.

SD-emb-tgt now these choices are different from the number of choices they make.

SD-hidden now these decisions are different in the number of choices they offer
per decision.

Summarization Examples
Reference credit agricole announces 1.1-billion-euro bid for greek bank emporiki
Baseline credit agricole launches offer to buy rest of greek bank
SD-emb-src credit agricole bids for greek bank
SD-emb-tgt credit agricole launches 1.1-bln-euro offer for greek bank
SD-hidden credit agricole bids 1.1 bln euros for emporiki bank
Reference palestinian official urges arabs to invest in jerusalem
Baseline palestinian official calls for holy war for east jerusalem
SD-emb-src palestinian official calls for arab investment in east jerusalem
SD-emb-tgt palestinian official calls for arab investment in east jerusalem
SD-hidden palestinian official urges arabs to invest in east jerusalem
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Examples of Generated Text In Table 6, we show a few examples from the
IWSLT 2014 De→En translation task and the English Gigaword summarization
task. Overall, it is easy to appreciate the higher quality of the generated sentences
provided by the proposed approach for these samples. In the first translation ex-
ample, the proposed approach has been the only one that was able to retrieve
“sky” (metaphorical) instead of “heaven” (metaphysical) and the “excuse me,”
opener. In the second translation example, the proposed approach has been the
only one to correctly nuance “different in” and “per decision”. Also in the sum-
marization examples, the proposed model seems to have been the most faithful
to the reference. For example, in the second summarization example, the MLE
baseline has returned a major mistake by predicting the incorrect phrase “calls
for holy war”.

5 Conclusion
In this work, we have proposed a novel training objective for NLG tasks that
minimizes the Sinkhorn divergence between the contextual representations of the
predictions and the source text. The proposed objective shares the computational
efficiency of the well-known Sinkhorn distance and is, in principle, applicable to
any of the seq2seq models in common use. The experimental results over various
translation and summarization datasets have shown that the proposed approach
has been able to achieve statistically-significant improvements over our MLE
baseline and two, alternative OT objectives. A qualitative analysis of selected
samples has shown that the proposed approach has led to word embeddings
that can more effectively align the source and target, even over those of other
OT-trained models which are explicitly trained to align word embeddings. In
addition, a few examples of generated text have shown that the attention devoted
to the source does not come at a price of fluency and adequacy of the generated
text.
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