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Abstract
Biomedical summarization requires large datasets to train for text generation. We show that while
transfer learning offers a viable option for addressing this challenge, an in-domain pre-training does
not always offer advantages in a BioASQ summarization task. We identify a suitable model architecture
and use it to show a benefit of a general-domain pre-training followed by a task-specific fine-tuning in
the context of a BioASQ summarization task, leading to a novel three-step fine-tuning approach that
works with only a thousand in-domain examples. Our results indicate that a Large Language Model
without domain-specific pre-training can have a significant edge in some domain-specific biomedical
text generation tasks.
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1. Introduction

The fields of question-answering and summarization have witnessed significant advancements
in recent years, with a shift from classification-based extractive approaches to the emergence of
abstractive summarization models. This transition has been driven by the superior performance
and enhanced generalization capabilities exhibited by abstractive models, effectively blurring
the boundary between long-form question answering and summarization. This paper addresses
the summarization challenge presented by BioASQ Task B Phase B in the biomedical domain,
for which we propose a novel approach.

The healthcare sector holds immense potential for leveraging health research data sharing to
enhance clinical care, informed decision-making, and scientific discovery [1]. Sharing biomedical
and healthcare studies and research data with the wider public requires robust and efficient
methods. Large pre-trained language models (LLMs) have emerged as promising candidates
for this purpose. LLMs have the potential to store medical knowledge while accommodating
variations in data and application tasks [2]. This paper aims to analyze the impact of the training
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Figure 1: Schematic representation of LLM usage in practice. The blue arrow in the top row
represents the two-phase (training and then fine-tuning) transfer learning approach typically seen in
literature. The middle and bottom rows represent the task-specific fine-tuning approach proposed in
this paper. Our results suggest that in-domain pre-training does not improve the BioASQ summarization
performance even when summarization training is introduced in the middle (second row). In this
diagram, the orange area indicates in-domain training.

process on LLMs’ ability to store biomedical knowledge, explicitly focusing on their utilization
for a question-answering and summarization task.

Traditionally, achieving state-of-the-art performance on natural language processing tasks
involves a two-phase approach [3, 4] that is shown in blue in the top row of Fig. 1: pre-training
the models on an extensive range of texts and topics, followed by task-specific fine-tuning
[4, 5, 2]. This approach has revolutionized various areas of natural language processing [6, 7, 4],
with LLMs such as BERT, GPT, and BART demonstrating remarkable capabilities. However, pre-
training models is a time-consuming and a resource-intensive process, and the literature lacks
comprehensive insights into the performance of these models for domain-specific applications
with limited data availability. Therefore, this study aims to address this gap by examining the
performance of LLMs in the context of the BioASQ summarization task.

This paper investigates two open questions concerning biomedical domain question-
answering and text summarization tasks. Over the past five years, the biomedical domain
has increasingly relied on in-domain pre-training and fine-tuning of BERT [4] for a wide range
of datasets and benchmarks [8, 9, 10, 11, 12]. In-domain pre-training has proven effective in
enhancing performance for discriminatory biomedical tasks. However, BERT’s architecture is
not optimized for text generation tasks [13, 14], lacking an autoregressive decoder to generate
tokens based on previously generated ones. Consequently, BERT is suboptimal for generation
tasks, necessitating exploring alternative approaches. Previous studies evaluating biomedical
models across diverse tasks have not reported results on generation problems due to using
non-autoregressive models [10]. The first question is is there a better-suited architecture for
biomedical text generation tasks? A significant amount of research suggests that domain-
specific pre-training significantly outperforms mixed-domain pre-training. However, we could



not find any convincing evidence for supporting this belief when it comes to text generation
problems [8, 9, 10, 11, 15, 16, 12]. The second question is do LLMs need to be pre-trained in
domain to achieve optimal performance?

We answer the above two questions. To investigate the efficacy of domain-specific pre-training
and fine-tuning for biomedical text generation, we propose an alternative three-step approach
(shown in the bottom row of Fig. 1). In this approach, we initially train a general-domain LLM,
followed by fine-tuning for a specific task in the general domain (text summarization) and
subsequent fine-tuning for the target biomedical domain task. Contrary to established theories
in the biomedical domain [10, 15, 16], our findings suggest that having a large task-specific
dataset can be more valuable than domain-specific pre-training for biomedical text generation
tasks. This approach aligns with studies indicating that diverse pre-training objectives, larger
and more diverse datasets, and tasks contribute to the robustness of the fine-tuning process
even without domain adaptation [14, 17].

We explore alternative architectures for biomedical text generation. In this study, we focus
on BART [5], a comprehensive architecture that incorporates pre-training objectives from
both BERT [4] and GPT [18] models. BART has demonstrated state-of-the-art performance
in abstractive dialogue, question-answering, and summarization tasks, making it particularly
effective for text generation and comprehension. Our experimental results showcase the benefits
and effectiveness of utilizing the BART architecture for transfer learning techniques in a context
of a biomedical summarization task.
The main contributions of this work can be summarized as follows:

• Evaluating the advantages of domain-specific pre-training in the context of text generation
tasks.

• Evaluating the impact of task-specific training on improving text generation tasks.
• Assessing the performance of BART, an encoder with an auto-regressive decoder archi-

tecture, in the biomedical question answering task B of BioASQ 11.

2. Related work

We are looking for a LLM which has an architecture suitable for long-form question answering
and has been trained on relevant in-domain data. There are several important model architec-
tures and pre-training objectives used to optimize the models worth considering [18, 4, 5].

First, lets briefly mention BERT [4] in the context of text generation, since most biomedical
Transformer-based [3] models still rely on this architecture. BERT does not have an autoregres-
sive decoder, preventing it from generating text. Despite this fact, a well-known summarisation
approach called PreSumm [13] uses this architecture by inserting additional tokens for teaching
models which sentences should be included in the summary. We followed the process proposed
by the authors while using a BioBERT [9] model; we first trained an extractive summariser,
which did perform a little better on BioASQ data [19] than a regular BERT trained the same way.
Unfortunately, when training an abstractive summarization architecture, PreSumm [13] process
uses a randomly initialised Transformer [3] for a decoder. It appears that there is a significant
mismatch between this decoder and a BioBERT [9] encoder leading to unstable abstractive



fine-tuning process and poor generation outputs in our experiments. Based on these findings,
we have concluded that BERT is a wrong architecture to be using for text generation tasks.

BART [5] is an architecture that uses an encoder with an auto-regressive decoder, similarly to
the original Transformer [3]. BART relies on an architecture which can be seen as generalising
BERT (because it also uses a bi-directional encoder) and GPT [20] (because it also uses the
left-to-right decoder). This model is using a masked language modeling objective (also known
as denoising) introduced by BERT [4] and adds two additional denoising objectives (token
deletion and sentence permutation). Authors conduct experiments that are focused on text
generation, and show that denoising objectives are particularly well-suited for summarization
tasks. Because it can be easily fine-tuned directly for generation tasks, authors achieved a
remarkable success on a wide range of abstractive summarization and long-form question
answering problems [5].

BioBART [15] is a BART model pre-trained on PubMed [21] abstracts. Authors have reported
that they have trained without one of the objectives proposed by BART, namely the sentence
permutation, showing that models trained without this objective have a better performance.
Overall, this is the only study that we are aware of that applies a LLM to a range of generation
tasks and reports the results (another BioGPT [16] study we found has not reported any numeric
results on text generation problems). We are also not completely convinced that some of the
results, like those reported for a BioASQ task could not be a result of a random chance, since the
differences in the scores are very small and there are a few possible sources of non-determinism
in training and generation procedures we discuss later in this paper.

3. Our Contribution

In the biomedical domain, the majority of models we have reviewed are focused on the pre-
training process, perhaps because pre-training data is readily available [8, 9, 10, 11, 15, 16, 12].
However, question answering and summarization are plagued by a lack of a large domain
specific dataset for fine-tuning LLMs directly for text generation problems. More specifically,
when we are looking at the biomedical text generation tasks, it’s hard to find a large (and
clean) sequence-to-sequence dataset for fine-tuning for a long-form question answering and
summarization. BioASQ [19] is the closest dataset currently available, however it is still a few
orders of magnitude away from what we would require to fine-tune a LLM for a previously
unseen generation task. Therefore, we conclude that this two-step fine-tuning process offers a
limited utility for this problem.

Following a conventional transfer learning definition we use a task to refer to training on
labeled data, seeking to transfer the knowledge from a source task and a source domain (𝒯𝑆
and 𝒟𝑆) to a target task and a target domain (𝒯𝑇 and 𝒟𝑇 ) [22, 23]. One of the common transfer
learning scenarios involves learning the tasks sequentially, one after another; and we could also
have an intermediate fine-tuning task making it a three-step fine tuning process, where a second
step is only used to get a representation that is more suitable for the task of summarization
in a biomedical domain. This means that an intermediate 𝒯𝑖𝑛𝑡𝑒𝑟 (which could be both in/out
domain) should lead to a performance improvement in 𝒯𝑇 . This could be potentially useful,
since task-domain specific data is hard to come by.



Since we need to perform text generation, a reasonable option is to train for an 𝒯𝑖𝑛𝑡𝑒𝑟
which teaches the model to perform this task. Unfortunately, large question answering and
summarization datasets like SQUAD [24] and CNN/DM [25] have nothing to do with biomedical
domain, but because we need 10-100 times more biomedical summarization data than what we
have available, we believe that task-specific datasets could offer just as much value as a domain-
specific pre-training. We believe that CNN/DM is the most suitable (clean, large, easily available)
task-specific dataset; especially because summaries there are typically closely related to source
sentences, which is also the case with the BioASQ data. Moreover, lengths of summaries are
similar to those in BioASQ. Therefore, we are interested in this task, even though a newsmedia
domain would likely have completely different marginal probability distributions of generated
text. This approach means that in addition to sequential transfer learning (two and three step
fine-tuning processes described above), models competing with a two-step fine-tuning strategy
would have to also adapt for the domain difference (i.e. differences in prior and conditional
distributions). Second 𝒯𝑖𝑛𝑡𝑒𝑟 we have considered for training is Pubmed [21] article-abstracts
combinations. While these are not summaries in the stricter sense of the word, this is the closest
domain-specific dataset that we could find, and we would like to understand if it adds useful
information to a LLM.

4. Models compared

We select LLMs that reduce the amount of overall training required. We select a mix of domain-
specific pre-training and general pre-training datasets, and we attempt different 𝒯𝑖𝑛𝑡𝑒𝑟s to see
how well the resulting models generalize to 𝒯𝑇 , namely BioASQ Task 11b Phase B [26]. Hence,
the final list of LLMs we are considering are:

• BART - a baseline two-step LLM (without additional fine-tuning) used to establish a
baseline for a general domain model without specialized domain knowledge or 𝒯𝑖𝑛𝑡𝑒𝑟
fine-tuning

• BioBART - a biomedical two-step LLM (without fine-tuning 𝒯𝑖𝑛𝑡𝑒𝑟), used to establish a
baseline for an in-domain model

• BART CNN - a baseline LLM three-step LLM with task-specific fine-tuning 𝒯𝑖𝑛𝑡𝑒𝑟 but
without any deep domain knowledge

• BioBART CNN - a biomedical three-step LLM with task-specific fine-tuning 𝒯𝑖𝑛𝑡𝑒𝑟
• BART CNN Pubmed - a general domain three-step LLM fine-tuned for 𝒯𝑖𝑛𝑡𝑒𝑟 summari-

sation task, and then further fine-tuned on a domain-specific 𝒯𝑖𝑛𝑡𝑒𝑟 dataset containing
Pubmed articles

Based on the data available, we believe that these tasks and LLMs offer the greatest benefit
for biomedical summarization, and we limit our selection to 5 models that will participate in
the BioASQ competition. We are only considering large models because we want the model to
analyze as much context as possible, and therefore having a large model helps to double the
context length (1024 tokens vs. 512 tokens). We are using pre-trained BART, BioBART, and
BART CNN models available via Huggingface1; and we are fine-tuning BART CNN on Pubmed
1https://huggingface.co/models

https://huggingface.co/models


Figure 2: We can see that BioBART outperforms regular BART, which can be attributed to the domain-
specific vocabulary; however, the same vocabulary hurts its ability to do task-specific training on the
out-of-domain CNN dataset. BART CNN shows a solid performance for a model that was only fine-tuned
on a small BioASQ in-domain dataset, and adding an in-domain Pubmed dataset reduces the range of
scores a little, making it the best overall model.

data and BioBART on CNN data for one epoch each (our 𝒯𝑖𝑛𝑡𝑒𝑟). Subsequently, all models
are fine-tuned on the latest complete BioASQ 11 dataset (𝒯𝑇 ) for five epochs using a 10-fold
cross-validation process. We empirically chose the number of training epochs to maximize the
final model scores. We’ve tried training on Pubmed (with and without training on CNN), and
found it beneficial when using a general-domain model. Despite this, CNN dataset is a much
better 𝒯𝑇 for BioASQ. Using Pubmed (summarisation) data for fine-tuning BioBART before or
after CNN training didn’t offer advantages (Appendix A, Appendix A) and was excluded from
the top five models under consideration.

5. Results

Our experiments have revealed a substantial (over 10%) variation in ROUGE [27] score results
based on a simple choice of a seed parameter for cross-validation. This indicates that the fine-
tuning process is susceptible to changes in data. Future studies should consider which BioASQ
information snippets are passed to the model as the input for summarization training. Working
with small healthcare question-answering datasets can require a more careful knowledge
extraction process [28].



Table 1
ROUGE-SU4 F1 - Mean confidence intervals

model name mean CI 95%

BioBART 0.383 (0.373, 0.394)
BART 0.384 (0.376, 0.392)
BioBART CNN 0.39 (0.382, 0.398)
BART CNN 0.396 (0.387, 0.406)
BART CNN Pubmed 0.396 (0.386, 0.405)

Table 2
ROUGE-SU4 Recall - Mean confidence intervals

model name mean CI 95%

BioBART 0.398 (0.386, 0.409)
BART 0.4 (0.392, 0.409)
BioBART CNN 0.415 (0.407, 0.424)
BART CNN 0.42 (0.411, 0.429)
BART CNN Pubmed 0.422 (0.41, 0.434)

We have experimented with fine-tuning for up to 10 epochs on the 𝒯𝑇 , and found that this
problem consistently persists across a range of training scenarios. In-domain studies we have
reviewed show that the generation results can often differ by a minimal margin, significantly
lower than the variation in scores we have observed in cross-validation.

To our knowledge, this research is the first to draw attention to this specific problem, and
we decided to overcome this by repeating the 10-fold cross-validation training process 𝒯𝑇 four
times using a different seed value. Therefore, we effectively report the average of 400 runs for
each model (95% t-test confidence interval is given in parentheses), with 100 runs for each seed
choice (ten for each fold). We are primarily focused on SU4-F1 scores (Table 1) since they have
been shown to correlate with human scores the best [29]. However, ROUGE is recall-oriented;
therefore, we also look at Recall results separately (Table 2).

Our experiments (Section 5) suggest that LLMs without domain-specific pre-training show
a better capacity for domain-specific text generation. This becomes particularly clear when
comparing BART and BioBART results before any additional task-specific fine-tuning, sug-
gesting that BioASQ data is not as similar to Pubmed pre-training data as we would expect
based on other results reported on discriminatory tasks. Moreover, we believe that currently a
non-domain specific CNN summarization task 𝒯𝑖𝑛𝑡𝑒𝑟 is required to accomplish the best results
on a BioASQ task. Adding in-domain Pubmed data improves Recall; however, Pubmed data is
unsuitable for training for a summarization task from scratch. ROUGE Recall scores (Section 5)
show one notable difference, BART CNN has a higher recall, whereas BART CNN Pubmed has a
higher precision, likely because the Pubmed training after the task-specific training introduces
a task-specific vocabulary to the model.

Overall, LLMs have established some remarkable results in various practical applications.
However, since LLMs require task-specific datasets to train to generate text, and such domain-



specific datasets are scarce, we need to find ways to overcome these challenges. We have
presented an approach that focuses on applications of transfer learning to a domain with limited
task-specific training data.

6. Conclusion and Future Work

In this work, we have observed that task-specific data is critical for generating text in a biomed-
ical domain. Based on our experiments, models without in-domain pre-training are better at
summarizing BioASQ data. Unfortunately, our models have achieved fairly modest automated
ROUGE scores during BioASQ 11 runs, and we are waiting for the final results to determine
how the models have performed overall. The generation process is non-deterministic, and while
the answers generated by the models appear sensible, we need better ways to evaluate the
candidates.

We have discussed how transfer learning can overcome challenges with data availability. We
see a lot of exciting possibilities for using generator models (more specifically paraphrasing,
simplification, and rewriting models [30]) for creating synthetic training data, as well as for
providing a differentiable loss function which allows sampling a wider space of possible answers
without over-penalizing exploration. Abstractive summarization models are trained to generate
specific gold sequences, even when they start making errors in the first steps (a problem known
as exposure bias [31]). One recent improvement over BART proposes generating multiple
candidates and comparing them, showing a new SOTA on several popular summarization
datasets [32]. This could address a common shortcoming of autoregressive models, leading
to further performance improvements. Another possibility that shows a significant promise
would be generating synthetic data to augment BioASQ. This approach has recently shown
good results in machine translation [33], and we believe it can be used for other text-generation
problems.
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Figure 3: ROUGE SU4-Recall

Figure 4: Biobart CNN + Pubmed: ROUGE SU4-F1



Figure 5: Biobart CNN + Pubmed: ROUGE SU4-Recall
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