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ABSTRACT:
Arrangements of acoustic meta-atoms, better known as acoustic metamaterials, are commonly applied in acoustic

cloaking, for the attenuation of acoustic fields or for acoustic focusing. A precise design of single meta-atoms is

required for these purposes. Understanding the details of their interaction allows improvement of the collective per-

formance of the meta-atoms as a system, for example, in sound attenuation. Destructive interference of their scat-

tered fields, for example, can be mitigated by adjusting the coupling or tuning of individual meta-atoms.

Comprehensive numerical studies of various configurations of a resonator pair show that the coupling can lead to

degenerate modes at periodic distances between the resonators. We show how the resonators’ separation and relative

orientation influence the coupling and thereby tunes the sound attenuation. The simulation results are supported by

experiments using a two-dimensional parallel-plate waveguide. It is shown that coupling parameters like distance,

orientation, detuning, and radiation loss provide additional degrees of freedom for efficient acoustic meta-atom tun-

ing to achieve unprecedented interactions with excellent sound attenuation properties.
VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1121/10.0020570
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I. INTRODUCTION

Acoustic metamaterials are artificial structures consist-

ing of an arrangement of meta-atoms that can be used to

control or manipulate the propagation of sound and elastic

waves due to their exotic behavior (Cummer et al., 2016;

Deymier, 2013; Ma and Sheng, 2016; Zangeneh-Nejad and

Fleury, 2019). The operating principle of meta-atoms is

mostly based on local resonances leading to, for example, a

negative effective mass density (Milton and Willis, 2007;

Yao et al., 2008), negative bulk modulus (Fang et al., 2006),

or negative refractive index (Pendry, 2000). Since meta-

atoms are typically arranged close to each other, i.e., less

than their operating wavelength, interaction such as longitu-

dinal near-field coupling (Wang and Laude, 2017) and trans-

verse coupling (Fu et al., 2011) occur. In the context of the

acoustics of a lossless medium, there is only pressure cou-

pling. Such coupling and associated parameters can provide

additional degrees of freedom to tune the system, e.g., to

enhance sound transmission (Yang et al., 2015).

Coupling effects have been applied for the tuning of

electro-magnetic metamaterials (Pendry et al., 2006; Schurig

et al., 2006; Valentine et al., 2009). Keiser et al. (2013)

employed near-field interaction phenomena in the design of

electro-magnetic metamaterials. Coupling between electro-

magnetic metamaterial elements can have a significant

impact on the behavior of the material as a whole (Liu et al.,
2009a). Especially for very closely arranged elements, it is

no longer adequate to solely consider the averaged effect of

the uncoupled resonators. Instead of treating the metamate-

rial as a continuous effective medium, the near-field interac-

tion phenomena have to be considered. These phenomena

give rise to various applications, like frequency tunable and

broad bandwidth metamaterials (Keiser et al., 2013; Liu

et al., 2009a). Powell et al. (2010) investigated the near-field

interaction between split-ring resonators (SRRs) as resonant

structures of a metamaterial. They found that modifications

of the structures’ relative orientation and separation affected

the near-field interaction. Thereby, the metamaterial response

can be tuned. In a subsequent paper, Powell et al. (2011)

a)This paper is part of a special issue on wave phenomena in periodic, near-

periodic, and locally resonant systems.
b)Electronic mail: felix.kronowetter@tum.de
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examined the linear near-field interaction of a pair of SRRs

on the same axis with varying relative angle and observed a

crossing point between the symmetric and antisymmetric

mode in the dispersion curve. The analysis of the (anti-)

crossing behavior is based on the mode coupling model pre-

sented by Yakovlev and Hanson (2000). Studying a similar

system, Liu et al. (2009b) found that with increasing twist

angle the resonant modes converge, pass through an avoided

crossing, and then diverge again. The acoustic counterpart to

SRRs is Helmholtz resonators (Movchan and Guenneau,

2004).

Analogous coupling effects can be found in acoustics,

more precisely, in the analysis of organ pipes. Existing stud-

ies on the interaction of organ pipes contribute useful find-

ings that can be adapted to locally resonant structures. Two

organ pipes sound in unison when close together, even if

their natural frequencies differ slightly (Strutt, 2011).

Fischer et al. (2016) investigated the mutual interaction of a

pair of organ pipes experimentally and analytically. Sawicki

et al. (2018) examined the effect of separation and fre-

quency detuning of two coupled organ pipes on their syn-

chronization behavior. Pikovsky et al. (2001) give a

summary of the nonlinear principle of synchronization with

applications in diverse fields of science, like engineering,

biology, and social behavior. Although synchronization is

based on non-linear effects, analogies can be extracted to

explain the degeneracy of modes. With the aim to understand

the interaction between close organ pipes, Johansson and

Kleiner (2001) investigated the coupling effects of two

Helmholtz resonators. They argue that the coupling mecha-

nisms of organ pipes and Helmholtz resonators resemble each

other. Despite different working principles, simple Helmholtz

resonators thus present a good approximation for more com-

plex organ pipes. Two Helmholtz resonators can be coupled

via the surrounding air by bringing them close together.

Various studies on coupling of acoustic resonators in

waveguides (Al Jahdali and Wu, 2018; Herrero-Dur�a et al.,
2020; Wang and Laude, 2017; Zhou et al., 2018) have been

reported. Recent publications (Cavalieri et al., 2019;

Krasikova et al., 2022; Lee and Iizuka, 2019) apply cou-

pling to acoustic metamaterials, whereby the interaction of

local resonances within a unit cell—in a subwavelength

region—is considered. Cavalieri et al. (2019) demonstrate

that the combination of local resonators of different types

combined with the periodicity of the system can lead to mul-

tiple coupled resonances to achieve broadband acoustic

attenuation. The interaction of local resonances and Bragg

scattering are investigated by Lee and Iizuka (2019).

Krasikova et al. (2023) investigate the strong coupling

between pairs of resonators within a unit cell and their influ-

ence on the dispersion curves and the transmission spectrum.

Additionally, coupling is used for tuning acoustic lenses

(Yang et al., 2015) and metagratings (Dong et al., 2017).

In this article, we investigate coupling of two C-shaped

meta-atoms in a two-dimensional unbounded domain. Since

almost all acoustic metamaterials can be thought of as arrayed

coupled resonators, we refer to them as meta-atoms, even if

we consider only two of them (Belacel et al., 2017; Wu et al.,
2017). Coupling between meta-atoms affects the total perfor-

mance of periodic structures shown by Krasikova et al.
(2023). The modal behavior of the system for varying param-

eters, like distance, orientation, detuning, and radiation losses,

is studied. Fundamental effects are explained for a better

understanding of the coupling mechanisms. We demonstrate

how the sound attenuation of meta-atoms can be improved

and adjusted using orientation and positioning as tunable

parameters. In addition, we detune the resonance frequency

of one of the resonators and present how the detuning affects

the modal behavior. Furthermore, we show how increased

radiation losses can counteract detuning concerning the inter-

action of the eigenfrequencies of the system. The numerical

results are validated by experiments. A two-dimensional par-

allel-plate waveguide (Melnikov et al., 2019) is used for the

evaluation of sound pressure fields of the acoustic meta-

atoms. We demonstrate how coupling affects the performance

of local resonances in terms of sound attenuation and hence,

can provide an improved design of acoustic metamaterials.

II. NUMERICAL MODEL

Figure 1(a) shows the configuration of a pair of two-

dimensional C-shaped Helmholtz resonators (Chalmers

et al., 2009; Elford et al., 2011), within a rectangular acous-

tic domain surrounded by a perfectly matched layer. The

rectangular domain with absorbing boundaries is chosen

such that it resembles the waveguide used for experiments

hereinafter presented. We denote the C-shapes’ inner radius

r ¼ 6 mm, the aperture width w ¼ 4 mm, and the thickness

t ¼ 16 mm. The choice of the geometric dimensions of the

C-shape depends on the following factors: the walls of the

C-shape must be thick enough to be considered sound hard.

We choose a wall thickness of 16 mm based on our experience

from previous measurements. Furthermore, the eigenfrequen-

cies of our system are determined by the dimensions and thus,

the measurable frequency range (1000–2400 Hz) of the wave-

guide used in our experimental setup. The chosen aperture

width of 6 mm is large compared to the expected boundary

layer thickness of dg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g=qmx

p
� 0.05 mm following the

formulations in the book by Dukhin and Goetz (2002); nev-

ertheless, we consider thermo-viscous losses in our simula-

tions. Thermo-viscous boundary layer losses are significant

for structures with narrow geometry features (Jiang et al.,
2017; Jordaan et al., 2018). The inter-resonator distance is

denoted l and is measured from the exterior of each resona-

tor. Initially, both apertures face Ci with a ¼ 90�. All stud-

ies in this section are conducted as finite element

simulations in COMSOL Multiphysics (COMSOL Inc.,

2021), first in the form of modal analyses, then by the trans-

mission response for harmonic excitation through a plane

wave. The modal analysis of a single C-shape results in the

complex individual eigenfrequency fc ¼ 1960þ 82i Hz.

The real part of the complex eigenfrequencies fc ¼ f þ ic is

the resonant frequency f; the imaginary part c characterizes

the radiation loss (Baydoun and Marburg, 2020;

J. Acoust. Soc. Am. 154 (2), August 2023 Kronowetter et al. 843

https://doi.org/10.1121/10.0020570

 17 N
ovem

ber 2023 00:00:07

https://doi.org/10.1121/10.0020570


Kronowetter et al., 2020). Furthermore, the symmetric and

antisymmetric cavity resonant modes, exhibiting in- and anti-

phase oscillation of the two resonators, are depicted in Fig. 1(b).

The cavity resonant modes are identified as the two modes with

the highest quality factors (Q ¼ f=2jcj). The corresponding

cavity resonant frequencies will be discussed in the following

section. In addition, we use the integration lines for the transmis-

sion response evaluation at Ci and Co. Their positions are cho-

sen such that they match the experimental microphone

locations.

III. RESULTS

A. Inter-resonator distance

The first influence parameter to be examined is the

distance l between two identical resonators, varied from

l ¼ 2 mm to l ¼ 300 mm. Figures 2(a) and 2(b) show the

real and imaginary parts of the complex eigenfrequencies fc
associated with cavity resonance as a function of l. The real

parts of the eigenfrequencies associated with cavity

resonance oscillate around a reference frequency of

f ¼ 1960 Hz. The oscillation period matches the resonant

wavelength k ¼ 175 mm, similar to the Fabry–P�erot inter-

ference observed by Hein et al. (2012) for duct-cavity sys-

tems. Thus, the two modes cross at periodic distances of

Dl ¼ k=2. The crossing points of real parts [Fig. 2(a)] and

imaginary parts [Fig. 2(b)] are shifted by about a quarter

wavelength. Consequently, the imaginary parts split where

the real parts cross and vice versa. The mode with the

smaller imaginary part c has increased lifetime and domi-

nates the decay process in the time domain, whereas it leads

to a higher sound attenuation in the frequency domain.

FIG. 1. (Color online) (a) Numerical setup. The schematic of the resonator pair geometry and dimensions, specified by inner radius r, aperture width w, wall

thickness t, and inter-resonator distance l in a two-dimensional unbounded fluid domain are shown. Ci and Co define the integration lines for calculating the

transmitted sound power. (b) Cavity resonant modes. The symmetric mode (lower) termed as mode S and antisymmetric mode (upper) termed as mode AS,

where pr denotes the real part of the total pressure normalized to its maximum value.

FIG. 2. (Color online) (a) Real and (b) imaginary parts of the complex eigenfrequencies fc associated with cavity resonance as a function of the inter-

resonator distance l (mm). The dashed black lines indicate the distances of the modal crossings and modal (anti-) crossings. The color bar represents the val-

ues of the transmission efficiency T (-). The white plus sign (lossless) and white cross (including thermo-viscous losses) mark the points where the transmis-

sion efficiencies reach their minima.
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The phase difference between resonators is DH ¼ 6p
for the antisymmetric mode and zero for the symmetric

mode, independent of the inter-resonator distance.

Based on the modal analysis, the highest attenuation of

an incident sound wave is expected at the crossing points of

in- and anti-phase modes. On the one hand, the dominant

mode—the mode with the lowest imaginary part—has the

highest quality factor just below the degeneracy, which is

the reason for the minimum in the transmission spectrum.

On the other hand, detuning decreases the quality factor of

the dominant mode. We can say that the modal degeneracy

is a prerequisite for particularly high transmission minima

and thus for increased local energy trapping. Figure 2(a)

shows the transmission efficiency T ¼ Po=Pi —where Po is

the total transmitted sound power evaluated at Co and Pi is

the power of the incident wave evaluated at Ci—as a func-

tion of separation l and frequency f of the incident plane

wave, including thermo-viscous losses.

The drops in the transmitted sound power are located

around every second modal crossing point and extend along

the frequency of the descending mode. This means that the

attenuation reaches its maximum where the symmetric

mode dominates. In the regions with dominating antisym-

metric mode, transmitted sound power does not decrease.

Sawicki et al. (2018) show in case of organ pipes that for

zero detuning, the in-phase mode (Dh ¼ 0) corresponds to

enhancement and the anti-phase mode (Dh ¼ p) corresponds

to a cancellation of sound. We can see that the white plus

sign in Fig. 2(a) is shifted from l ¼ 78 mm and f ¼ 1945 Hz

to the white cross at l ¼ 82 mm and f ¼ 1930 Hz just by con-

sidering losses. Hence, losses lead to a frequency and dis-

tance shift of the minimum transmitted sound power and are

considered in the following time harmonic studies.

The reason for the drop in the transmitted sound power at

modal crossing points with the dominant symmetric mode is

the different coupling between the two modes and the incident

plane wave. Modal degeneracy means that any superposition

of the two interacting modes will have the same resonant

dynamic behavior. In the present configuration, the symmetric

mode dominates because both resonators are excited in phase

by a plane wave that is normally incident on them. When the

angle of incidence is changed by 90� with respect to the initial

configuration in Fig. 1(a), there is a slight decrease in the trans-

mitted sound power for the dominant antisymmetric mode.

The coupled modes of the system are always linked. In particu-

lar, the minimum decay of the symmetric mode occurs near

the degeneracy, and also near the maximum decay of the anti-

symmetric mode.

B. Relative orientation

The second influence factor to be examined is the C-

shapes’ relative orientation. It is known to be relevant in

electromagnetic metamaterials, as shown by the findings of

Powell et al. (2011). In addition, earlier research results by

Powell et al. (2010) and Hesmer et al. (2007) suggest that

the relative orientation plays a major role for the coupling of

SRRs. It may therefore also be of importance for the acous-

tic counterpart. Starting with facing apertures for zero twist

angle a ¼ 0�, the two C-shapes are rotated in opposite direc-

tions and reach the configuration in Fig. 1(a) for a ¼ 90�. A

maximum twist angle of a ¼ 180� implies that the two aper-

tures are pointing away from each other.

Figure 3(a) shows the absolute difference between the

cavity resonant frequencies Df ¼ jf1 � f2j in the parameter

plane of inter-resonator distance l and twist angle a.

The dark blue regions indicate the course of the modal

crossings (depicted by the red line) with Df ¼ 0. Regarding

the coupling mechanism, the distance between the apertures

is a relevant parameter. However, there has to be an

FIG. 3. (Color online) (a) Difference between the real parts of the cavity resonant frequencies Df ¼ jf1 � f2j of mode S and AS in the plane of

inter-resonator distance l (mm) and angle a (�). The modal crossings are represented by the dark blue lines with zero frequency difference Df ¼ 0. The black

line indicates a constant inter-aperture distance la starting at the second crossing point for a ¼ 0�. (b) Transmission efficiency T (-) for a plane wave with

f ¼ 1930 Hz in the plane of inter-resonator distance l (mm) and angle a (�). The minimum transmission efficiency is highlighted by the white cross. (a) and

(b) For comparison, the first modal crossing is indicated by red lines in both figures.
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additional effect besides the changing distance between the

apertures. The C-shapes can be regarded as Helmholtz reso-

nators embedded within a cylinder (Melnikov et al., 2019).

Thus, the background scattering of the cylinders also plays a

major role. The impact of the scattering on the interaction

between the resonators is negligible for facing apertures

(a ¼ 0�) and grows with the twist angle, as the apertures

move away from each other. A detailed analysis of the back-

ground scattering exceeds the scope of this work.

As observed in Fig. 2(a), the modal crossings provide

the locations of possible transmission minima, that is attenu-

ation maxima. The transmission efficiency T in the plane of

inter-resonator distance l and twist angle a is shown in

Fig. 3(b). The incident wave has a frequency of

f ¼ 1930 Hz, matching the frequency of the lowest trans-

mission efficiency marked by the white cross in Fig. 2(a).

As a result, transmission dips and modal crossings occur at

the same distances and twist angles. For comparison, the

first modal crossings are indicated by red lines in both plots

in Fig. 3. Like in Fig. 2(a), the transmission dips only occur

where the symmetric mode dominates, because of the rela-

tive orientation of resonators and incident wave.

The dark blue regions with Df ¼ 0 in Fig. 3(a) cover all

considered inter-resonator distances. This means that the modal

crossings can be shifted to arbitrary resonator separations by

varying the relative orientation of the two C-shapes. Independent

of the orientation, the period is maintained. The transmission

results show that the attenuation maxima follow the modal cross-

ings. Thus, the combination of the two parameters, distance and

orientation, offers the possibility of reaching attenuation maxima

for a prescribed distance or lattice constant by adjusting the ori-

entation and vice versa. Surprisingly, the attenuation maxima for

this configuration is not found at a ¼ 90� but at a ¼ 70� and

l ¼ 102 mm. Similar results are observed by additionally varying

the frequency of the incoming wave.

C. Frequency detuning and radiation losses

Another influencing factor is the frequency detuning

D ¼ ðfB � fAÞ=fA. Therefore, we detune the resonance

frequency of one of the C-shaped resonators by adjusting

the geometrical parameters (r, w, t) before coupling them

together. Often associated with synchronization theory

(Pikovsky et al., 2001), frequency detuning is a measure for

the difference between the uncoupled natural frequencies of

two oscillators A and B. In synchronization theory, non-

linear effects can overcome detuning, but for our linear case,

we can still observe degeneracy in certain cases. Detuning

can arise due to fabrication imperfections, for example. In

the following, it is set to D ¼ 3 %. Resonator A remains

unchanged with a constant resonant frequency of fA
¼ 1960 Hz and resonator B is scaled such that fB ¼ 2020 Hz.

Like the case of zero detuning, the complex eigenfre-

quencies and the modal phase differences provide informa-

tion about the coupling mechanism. The real and imaginary

parts of the complex eigenfrequencies fc associated with

cavity resonance for variable resonator separation l are plot-

ted in Figs. 4(a) and 4(b).

Except for the first crossing point of Fig. 2(a), the two

modes no longer cross in the real part. The modal resonant

frequencies still converge every half average wavelength

Dl ¼ �k=2 with �k ¼ ðkA þ kBÞ=2, like in the case of zero

detuning in Fig. 2(a). However, they do not become identi-

cal, but pass through an avoided crossing and then diverge

again. The resulting anti-crossing gap grows with increasing

distance, that is, with decreasing coupling strength. In con-

trast, the imaginary parts of the eigenfrequencies exhibit an

additional modal crossing at the distance of the anti-crossing

in the real part. Thus, they cross-every Dl ¼ �k=4.

The influence of a frequency mismatch on the occur-

rence of degenerate modes can be explained by varying the

detuning at the points of degeneracy for zero detuning.

More precisely, the detuning is varied from D ¼ 615 % at

the distances of the first two points of degeneracy for zero

detuning, previously shown in Fig. 2(a), and furthermore, at

the distance of the second crossing of the imaginary parts in

Fig. 2(b). Figure 5 shows the real and imaginary parts of

the complex eigenfrequencies fc associated with cavity

resonance as a function of the detuning D at l ¼ 84,

120; 174 mm, respectively.

FIG. 4. (Color online) (a) Real and (b) imaginary parts of the complex eigenfrequencies fc associated with cavity resonance as a function of the inter-

resonator distance l (mm) with frequency detuning D ¼ 3 %. The dashed black lines indicate the distances of the modal crossings and modal (anti-) crossings

extracted from Fig. 2(a).
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Looking at the real parts in Figs. 5(a) and 5(e), the

region of degeneracy with identical resonant frequencies is

clearly visible. In this region, one can expect a destructive

interference of the two degenerate modes, which can be

observed, e.g., in the transmission spectrum. Figures 5(c)

and 5(d) show an avoided crossing in the real parts of the

eigenvalues and a point of degeneracy in the imaginary part.

We can state that no degenerate modes can be found

between crossing points in the real part, even for a detuned

system. With decreasing coupling strength, that is, with

increasing distance l from Figs. 5(a)–5(e), the region of

degeneracy becomes smaller. This explains the previous

results for D ¼ 3 % in Fig. 4(a). For very small distances,

the coupling is still strong enough to overcome the fre-

quency mismatch and thus cause degeneracy of the modes.

As the separation increases, a detuning of D ¼ 3 % no lon-

ger lies in the region of degeneracy. The coupling is too

weak to merge the two resonant frequencies, resulting in an

avoided crossing. The larger the inter-resonator distance, the

larger the anti-crossing gap. As observed before, identical

real parts of the eigenfrequencies cause the imaginary parts

in Figs. 5(b) and 5(f) to move apart. The curves of the reso-

nant frequencies in Figs. 5(a) and 5(e) agree with the typical

curve based on synchronization theory (Pikovsky et al.,
2001), even if we do not consider non-linear effects. A simi-

lar behavior is observed in the experimental results for a

pair of organ pipes by Fischer et al. (2016).

Having examined the influence parameters inter-

resonator distance l and frequency detuning D separately,

the final step is their combination. Figure 6 shows the cavity

resonant frequency difference Df ¼ j<ð�x1 � �x2Þj of mode

S and AS as a function of the two variables and we call it the

degeneracy pattern. In the resulting parameter plane, the fre-

quency difference is approximately periodic in l-direction

and nearly symmetric about D¼ 0. The degeneracy of

modes is represented by the dark blue regions (line-shaped

regions in D-direction) with zero frequency difference

Df ¼ 0. These line-shaped regions of degeneracy are

arranged periodically, with the period corresponding to half

the average uncoupled wavelength �k=2. This matches the

period expected from the modal (anti-) crossings of the cav-

ity resonant frequencies for varying separations in Figs. 2(a)

and 4(a). The lines of degeneracy are slightly inclined

towards smaller distances for positive frequency detuning

due to smaller periods for smaller average resonant wave-

lengths. Since this effect accumulates over the distance, it

becomes especially visible for larger separations. The first

region of degeneracy extends over a wide range of detuning.

For the second region, the range becomes smaller and

decreases only weakly afterwards. This decrease in width

with increasing separation, and thus weaker coupling, is in

accordance with the regions of degeneracy in Fig. 5.

If the radiation losses are sufficiently increased for a fixed

detuning, the modal crossing can be restored. In case of the C-

shaped resonators, the radiation losses can be tuned by aper-

ture width. This becomes obvious when comparing the results

for the initial C-shape with wA ¼ 4 mm and an increased

aperture width of wA ¼ 4:25 mm for D ¼ 3 % (see Fig. 7).

FIG. 5. (Color online) Real and imaginary parts of the complex eigenfre-

quencies fc associated with cavity resonance as a function of the frequency

detuning D ½%� at the first and second point of degeneracy obtained from

Fig. 2(a) and at the second crossing point of the imaginary parts in Fig. 2(b).

The gray area marks the range of 63% detuning. (a) real part, l¼ 84 mm, (b)

imaginary part, l¼ 84 mm, (c) real part, l¼ 120 mm, (d) imaginary part,

l¼ 120 mm, (e) real part, l¼ 174 mm, and (f) imaginary part, l¼ 174 mm.

FIG. 6. (Color online) Difference between the real parts of the cavity reso-

nant frequencies Df ¼ j<ð�x1 � �x2Þj½Hz� of mode S and AS in the plane of

inter-resonator distance l (mm) and frequency detuning D ½%�. The degener-

acy pattern shows the degeneracy of modes represented by the dark blue

regions Df ¼ 0.
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Figures 7(a) and 7(b) show the complex eigenfrequencies f as

a function of the resonator separation l for the case with

increased aperture width, that is, with increased c of about

10%. Compared to Fig. 4(a), the modal crossings in the real

parts are restored, while the imaginary parts approach each

other without crossing at these distances, indicated by the

dashed black lines. The further the losses are increased, the

smoother are the curves in the vicinity of the crossing points.

An illustrative explanation for the counteracting effects

can be given looking at the real parts of the cavity resonant

frequencies in Figs. 2(a), 4(a) and 7(a). The frequency

detuning opens a gap between the uncoupled and coupled

resonant frequencies [see Fig. 4(a)]. However, this gap can

be bridged by a sufficiently high increase in c [see

Fig. 7(a)]. As the coupling increases with the radiation

losses, it can be tuned by aperture width.

D. Experimental validation

To experimentally valid the acoustic performance of

the coupled resonators, the transmission efficiency of two

identical C-shaped meta-atoms was measured in a two-

dimensional parallel-plate waveguide system as shown in

Fig. 8(a).

The meta-atom samples are fabricated using additive

manufacturing (3D printing) with polylactide (PLA). The

two samples are shown in Fig. 8(b). We create an incident

plane wave by using an array of eight loudspeakers. The

FIG. 7. (Color online) (a) Real and (b) imaginary parts of the complex eigenfrequencies fc associated with cavity resonance as a function of the inter-

resonator distance l (mm) with frequency detuning D ¼ 3 %, for a geometry with increased radiation losses increased aperture width wA¼4.25 mm, initially

wA¼4 mm). The dashed black lines indicate the distances of the modal crossings and modal (anti-) crossings extracted from Fig. 2(a).

FIG. 8. (Color online) Experimental setup. (a) C-shaped meta-atoms placed in waveguide. (b) C-shaped meta-atoms.
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incident and transmitted fields are measured along a vertical

straight line by the microphone mounted on a belt system.

The waveguide system is surrounded by absorbing foam to

reduce unwanted reflection from the boundaries. We use

four different orientations a ¼ 30�, 60�, 90�, and 120� to

experimentally demonstrate the sound attenuation of cou-

pled meta-atoms. The sound reduction performance is exam-

ined by the transmission efficiency and compared with the

numerical results (see Fig. 9).

The measured data match the trend of the simulated

data quite well. The minor deviations in the transmission

efficiency are due to inaccuracies in the setup, inaccuracies

of modelling losses, and also modelling the acoustic source.

Our model only covers the acoustic field, and no flow is con-

sidered. We also use a background pressure field in the

COMSOL model, leading to plane wave excitation, while

we use an array of loudspeakers mimicking a plane wave in

the experimental setup. Since we are still able to reproduce

the characteristic of the transmission efficiency in simula-

tion and experiment, we consider the results as validated by

experiment and hence, applicable in a real environment

including all kind of losses. Furthermore, we show that the

transmission efficiency strongly depends on the twist angle

of the C-shapes at a fixed distance l. The configurations of

the C-shapes for the four measured twist angles are pre-

sented on the top left of Fig. 9. We control the level of sound

attenuation of the coupled C-shapes, for instance, by chang-

ing the twist angle from 90�–60� at an excitation frequency

of 1960 Hz. This leads to a decrease in the transmission effi-

ciency from 0.86–0.69. As a result, the measurement results

confirm the simulated data and hence, demonstrate the twist

angle as parameter to control the level of sound attenuation

of the coupled C-shapes.

IV. CONCLUSION

We show that degeneracy of modes for identical C-

shaped Helmholtz resonators occurs at periodic distances

with either the symmetric or antisymmetric mode dominating.

By introducing detuning, we demonstrate that modal degener-

acy depends on the level of detuning and on the coupling

strength. Modal degeneracy can still occur for weak enough

FIG. 9. (Color online) Experimental and numerical transmission efficiencies for six different frequencies evaluated at the twist angels of the resonators

a ¼ 30�, 60�, 90�, and 120� and an inter-resonator distance of 60 mm. The configurations of the C-shapes in C-shapes in dependence of the twist angles are

presented on the top left.
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detuning at certain specific distances between the resonators

and, moreover, leads to the highest sound attenuation.

This region of degeneracy has similarities to Arnold

tongues in non-linear synchronization theory. The degener-

acy of modes holds within a certain range of frequency

detuning—the region of degeneracy. Its scope narrows with

increasing inter-resonator distance, that is, decreasing cou-

pling strength. At the edge of the region of degeneracy, the

phase differences converge to DH ¼ 6p=2. For varying dis-

tances, detuning values outside the degeneracy region lead

to periodic avoided modal crossings of the real parts of the

eigenfrequencies. The imaginary parts of the eigenfrequen-

cies cross at the location of the avoided crossings of the real

parts. At the distances of these (avoided) crossings, also the

phase differences cross. This indicates an interchange in the

nature of the two modes.

For C-shaped resonators, the radiation losses can be

tuned by aperture width and counteract the effect of detun-

ing. The combined effect of distance and detuning becomes

visible in the degeneracy pattern. It consists of line-shaped

regions of degeneracy, which are periodic in distance–direc-

tion and symmetric about zero detuning.

Furthermore, coupling induces the possibility of tuning

via the resonators’ relative arrangement, that is, distance

and orientation. Starting with facing apertures, the two reso-

nators were twisted in opposite directions. Thereby, the

degeneracy of modes can be shifted to arbitrary distances,

while the period is maintained. The location of the crossing

points depends on the inter-aperture distance and is addition-

ally influenced by background scattering effects. Moreover, the

relative orientation affects the width of the regions of degener-

acy. This means that the coupling strength depends on relative

orientation and distance. Accordingly, these two influence

parameters offer additional degrees of freedom for tuning the

metamaterial response with unchanged components.

We also use coupled mode theory as an analytical

approach to determine the coupling coefficient, but do not

present it throughout the manuscript. The reason for this is

that any asymmetry depends on the off diagonal terms,

which makes the eigenvalue problem quite complicated.

Determining the coupling coefficients using analytical mod-

els could be the subject of future research.

Experiments in a two-dimensional parallel-plate waveguide

were conducted, showing good agreement and hence, validating

the numerical results. In addition to their validation, the pre-

sented findings provide a base for further research, in particular,

concerning the application to acoustic metamaterials.

The impact of the resonators’ relative arrangement on

the interaction and hence, the metamaterial response, pro-

vides additional degrees of freedom for the design of meta-

materials. Since we can significantly manipulate the

transmission efficiency of the coupled meta-atoms by

changing the twist angle, our results offer new possibilities

for more efficient and versatile metamaterials for noise con-

trol. In addition, our findings help drive progress in the

design of advanced and high-performance metamaterials for

a wide range of applications besides sound barriers.
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