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Abstract

The laser Doppler vibrometer (LDV) has become an indispensable tool in vibration engi-

neering, boasting high bandwidths and spatial resolutions unrivalled by traditional con-

tacting accelerometers - all whilst doing so via non-contact means. Since their widespread

adoption, their application envelope as vibration transducers has been steadily expanding,

encompassing increasingly impactful and interesting areas. This work focuses specifically

on the significant potential of deploying LDV from mobile platforms, for example, terres-

trial or airborne vehicles, since it has the potential to substantially increase land coverage

rates whilst simultaneously enabling access to hazardous or remote areas. This field has

already received some interest, with research taking place into mobile buried landmine de-

tection, intelligence gathering from drones and structural health monitoring from drones.

However, these represent only a small fraction of potential applications. The first portion

of this work explores and mitigates the effects of any instrument motion on mobile LDV

deployment, while the second portion explores a novel mobile application for a robust

LDV: non-contact vibro-acoustic object recognition and enhanced point cloud perception

for autonomous systems.

In the reference frame of the sensor head, the motion can be divided into two broad

categories: translational motion along the beam axis or translational motion in the two
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orthogonal axes, plus the three rotational degrees of freedom. Since the underlying physics

of the LDV dictate that the sensor head is as sensitive to self-vibration in the beam axis as

it is to the target vibration in the beam axis, sensor head vibration could compromise the

measurement. Whereas motion in the five non-beam axes would cause the measurement

beam to stray from the intended measurement location. Two separate approaches can

mitigate the effects of these two distinct phenomena, referred to herein as measurement

correction and arbitrary tracking.

Since the sensor head is as sensitive to self-vibration as it is to target vibration, mea-

surement correction is required when self-vibration is present. Despite the success of the

existing, single accelerometer-based measurement correction technique, there were two

main improvements to be made. Firstly, the technique was fundamentally limited to sta-

tionary signals due to the frequency domain-based signal processing employed, requiring

a time domain alternative for mobile deployments. Secondly, the technique lacked proper

accelerometer signal handling, leading to sub-optimal performance, therefore requiring a

revised technique. As such, the first portion of this thesis focuses on the development of a

new time domain and revised frequency domain-based processing techniques that display

up to eight-fold improvements in performance over the previous technique. This is accom-

panied by a rigorous analytical model describing the effects of synchronisation quality on

both techniques, delving into the nuances of time domain-based signal synchronisation.

Finally, the thesis covers the extension of these signal processing techniques to be compat-

ible with existing theoretical scanning LDV measurement correction work, with the first

experimental validation of the technique on the Multi-Axis Simulation Table taking place.

While arbitrary path-tracking LDV solutions exist, current techniques cannot meet the

strict weight requirements of a drone-mounted LDV system. As such, the development of

a novel tracking system specifically tailored for the hovering drone is described; specifi-

cally focused on correcting small pitch and roll adjustments that drones make while holding

their position in a hover. The proposed system employs a standard galvanometer steering

mirror setup found in scanning LDV systems to counter-rotate the beam rather than the
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entire instrument. This technique’s performance is then assessed on the Multi-Axis Simu-

lation Table, configured to simulate a hovering drone in extreme conditions. Results show

that the beam motion was reduced by 68%.

With a comprehensive framework established for mitigating the effects of both beam axis

and non-beam axis motion, the focus shifts onto applications for such a system, specifically,

the possibility of LDV integration into autonomous systems. Initially, this portion of the

work describes a novel vibro-acoustic object recognition technique utilising convolutional

neural networks to classify the LDV measurements. A rigorous five-fold cross-validation

showed it is possible to recognise acoustically excited objects with up to 99.8% accuracy.

Finally, the thesis explores the possibilities of merging point clouds with LDV scans for

enhanced perception applications for autonomous systems in a first-of-its-kind proof-of-

concept system, allowing autonomous systems to “see” the surrounding acoustic world.
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