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Abstract

The laser Doppler vibrometer (LDV) has become an indispensable tool in vibration engi-

neering, boasting high bandwidths and spatial resolutions unrivalled by traditional con-

tacting accelerometers - all whilst doing so via non-contact means. Since their widespread

adoption, their application envelope as vibration transducers has been steadily expanding,

encompassing increasingly impactful and interesting areas. This work focuses specifically

on the significant potential of deploying LDV from mobile platforms, for example, terres-

trial or airborne vehicles, since it has the potential to substantially increase land coverage

rates whilst simultaneously enabling access to hazardous or remote areas. This field has

already received some interest, with research taking place into mobile buried landmine de-

tection, intelligence gathering from drones and structural health monitoring from drones.

However, these represent only a small fraction of potential applications. The first portion

of this work explores and mitigates the effects of any instrument motion on mobile LDV

deployment, while the second portion explores a novel mobile application for a robust

LDV: non-contact vibro-acoustic object recognition and enhanced point cloud perception

for autonomous systems.

In the reference frame of the sensor head, the motion can be divided into two broad

categories: translational motion along the beam axis or translational motion in the two
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orthogonal axes, plus the three rotational degrees of freedom. Since the underlying physics

of the LDV dictate that the sensor head is as sensitive to self-vibration in the beam axis as

it is to the target vibration in the beam axis, sensor head vibration could compromise the

measurement. Whereas motion in the five non-beam axes would cause the measurement

beam to stray from the intended measurement location. Two separate approaches can

mitigate the effects of these two distinct phenomena, referred to herein as measurement

correction and arbitrary tracking.

Since the sensor head is as sensitive to self-vibration as it is to target vibration, mea-

surement correction is required when self-vibration is present. Despite the success of the

existing, single accelerometer-based measurement correction technique, there were two

main improvements to be made. Firstly, the technique was fundamentally limited to sta-

tionary signals due to the frequency domain-based signal processing employed, requiring

a time domain alternative for mobile deployments. Secondly, the technique lacked proper

accelerometer signal handling, leading to sub-optimal performance, therefore requiring a

revised technique. As such, the first portion of this thesis focuses on the development of a

new time domain and revised frequency domain-based processing techniques that display

up to eight-fold improvements in performance over the previous technique. This is accom-

panied by a rigorous analytical model describing the effects of synchronisation quality on

both techniques, delving into the nuances of time domain-based signal synchronisation.

Finally, the thesis covers the extension of these signal processing techniques to be compat-

ible with existing theoretical scanning LDV measurement correction work, with the first

experimental validation of the technique on the Multi-Axis Simulation Table taking place.

While arbitrary path-tracking LDV solutions exist, current techniques cannot meet the

strict weight requirements of a drone-mounted LDV system. As such, the development of

a novel tracking system specifically tailored for the hovering drone is described; specifi-

cally focused on correcting small pitch and roll adjustments that drones make while holding

their position in a hover. The proposed system employs a standard galvanometer steering

mirror setup found in scanning LDV systems to counter-rotate the beam rather than the
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entire instrument. This technique’s performance is then assessed on the Multi-Axis Simu-

lation Table, configured to simulate a hovering drone in extreme conditions. Results show

that the beam motion was reduced by 68%.

With a comprehensive framework established for mitigating the effects of both beam axis

and non-beam axis motion, the focus shifts onto applications for such a system, specifically,

the possibility of LDV integration into autonomous systems. Initially, this portion of the

work describes a novel vibro-acoustic object recognition technique utilising convolutional

neural networks to classify the LDV measurements. A rigorous five-fold cross-validation

showed it is possible to recognise acoustically excited objects with up to 99.8% accuracy.

Finally, the thesis explores the possibilities of merging point clouds with LDV scans for

enhanced perception applications for autonomous systems in a first-of-its-kind proof-of-

concept system, allowing autonomous systems to “see” the surrounding acoustic world.
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Chapter 1

Introduction

In the 1800s, it was generally believed that there existed a medium that permeated all

space and through which light waves propagated, known as the luminiferous aether. To

prove this, the Michelson interferometer was invented by A. Michelson and E. Morley [1],

seen pictured in Figure 1.1. The Michelson interferometer takes advantage of the wave-like

properties of light to detect changes in optical path length smaller than a fraction of the

wavelength being used. While the pair were unable to detect any sign of the luminiferous

aether, Michelson interferometers have become an invaluable tool in science and are the

basis of many modern-day devices. Some examples of these devices include optical co-

herence tomography scanners, commonly used in ophthalmology; the Laser Interferometer

Gravitational-Wave Observatory, used to detect the first gravitational wave based in the

United States of America; and the laser Doppler vibrometer (LDV), which is the focus of

this doctoral program.

Although the original Michelson interferometer employed white light, modern-day ver-

sions of the optical arrangement employ a laser. The laser was invented in 1960 by T.

Maiman [2] by taking advantage of the stimulated emission of ruby, with its name origi-

nating from Light Amplification by Stimulated Emission of Radiation. They have become

an indispensable tool in many optical applications since they output monochromatic co-

herent light, i.e. light of a single frequency with all wavelengths in phase [3]. Like the

1
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Figure 1.1: Photograph of the original Michelson-Morley interferometer [1]. p Public
domain, no permission required.

Michelson interferometer, the LDV takes advantage of the wave-like nature of light and

the Doppler effect to make non-contact surface velocity measurements in the direction of

the measurement beam. An example of a fairly popular LDV can be seen in Figure 1.2.

The optical nature of the LDV leads to a high spatial resolution and bandwidth com-

pared to traditional contacting accelerometers, making them uniquely suited for vibration

measurements [4]. This has led to their widespread adoption in a vast range of areas, a

few examples include, mechanical engineering, where they have been crucial in studying

vibrations, especially in rotating machinery [5, 6, 7, 8, 9]; electrical engineering, where

they have been used on microelectromechanical systems as there is no mass loading [10,

11, 12, 13]; civil engineering, as they can make remote non-contact measurements over a

dense grid of points for defect detection [14, 15, 16]; biology, where they have been applied

to study vibrations in plants, ants and humans [17, 18, 19]; and medicine, where they

have been used to assess cardiovascular risk and as a non-contact means to measure the

respiration and heart rates in preterm infants [20, 21].

When an LDV is mounted to a moving platform, referred to as mobile laser Doppler vi-

brometry, it has the potential to substantially increase area coverage rates and enable

access to remote or hazardous areas. Despite this, literature describing mobile LDV is

sparse, currently including buried landmine detection from terrestrial vehicles [22, 23,
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Figure 1.2: Photograph of the Polytec PDV-100 portable laser Doppler vibrometer.

24], seismic measurements from a moving ground vehicle [25], and railway bridge mea-

surements with a drone-mounted LDV [26]. Other promising, yet-to-be-realised proposed

mobile LDV deployments include orbital seismology [27, 28, 29], intelligence gathering

[30], structural health monitoring [31, 32, 33] and LDV-based buried landmine detection

from drones [34]. Despite the numerous benefits and interest surrounding mobile LDV

deployment, progress has been largely hampered by the fundamental nature of LDV.

1.1 Challenges surrounding mobile laser Doppler vibrome-

ter deployment

In the reference frame of the sensor head, the motion experienced during a mobile deploy-

ment can be divided into two broad categories: translational motion along the beam axis

or translational motion in the two orthogonal axes, plus the three rotational degrees of

freedom; referred collectively here as non-beam DOF motion. The underlying physics of

LDV dictate that any motion along the beam axis, from the target or the sensor head1,

would equally lead to a velocity measurement; making instrument motion and target mo-

tion along the beam axis indistinguishable from one another. Whereas, instrument motion

in the non-beam DOFs - which the LDV is not sensitive to - will cause the beam to stray

from the intended measurement location. Therefore, two separate approaches are required

1Or the vibration of the entire instrument for portable models such as the Polytec PDV-100 or the
Polytec VibroGo.
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to mitigate the effects of these two distinct phenomena, referred to herein as measurement

correction and arbitrary motion tracking.

1.1.1 Motion in the measurement beam axis

The innate sensitivity of the LDV to self-vibration normally limits its use to scenarios

with low ambient vibration levels or requiring adequate isolation; typically a tripod with

compliant feet. Some active vibration isolation techniques exist with improved perfor-

mance [25]; however, these can be too heavy or costly for some applications. Differential

LDVs can be configured to optically subtract the motion of the sensor head by mixing the

measurement beam returning from the target with a second external beam returning from

a static surface [35]. However, this approach is practically constrained in the context of

mobile LDV deployment. Previous research has demonstrated that instrument vibration

measurements must be taken along the beam axis to enable measurement correction during

six-DOF vibration; failure to do so results in coupling between the corrected measurement

and the non-beam axis instrument motion [31]. Therefore, requiring the reference beam

to be anti-parallel and on the beam axis, focused on a static reference surface behind the

instrument. While this may be possible in the laboratory, for mobile, field-based appli-

cations, this is practically impossible due to the simultaneous positioning and focusing

requirements.

Using a technique somewhat similar to the differential LDV configuration, alternative tech-

niques remove the requirement for an external static reference surface by using a secondary

transducer to estimate the sensor head vibration and subsequently subtract it from the

measurement [31, 36, 37, 38, 39]. Of these techniques, referred to herein collectively as

measurement correction, the most accessible and accurate utilises a single rear-mounted

accelerometer to estimate the motion of the sensor head such that it may be subtracted

using a frequency domain-based signal processing technique [31]. Its performance and ease

of implementation have also led it to be replicated by other international research groups

[40]. However, the signal processing implemented before the work presented herein could
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have been improved in two main aspects. Firstly, due to the frequency domain analysis

employed, the technique used was limited to stationary signal types only. Secondly, the

frequency domain signal processing lacked proper handling of the accelerometer signal,

which significantly hampered the total obtainable performance.

Since it is likely that the vibration experienced during these mobile deployments is transient

in nature, it is imperative that any such system have time domain-based measurement cor-

rection capabilities. As such, the first portion of this thesis describes the development and

performance assessment of a novel time domain-based signal processing technique which is

compatible with the hardware arrangement of the existing single-accelerometer frequency

domain-based technique. A rigorous assessment of the new time domain-based technique’s

performance in comparison to the established technique is conducted for stationary signal

types. This assessment shows a significant improvement in performance, highlighting the

importance of proper accelerometer signal handling. In some scenarios with stationary

signal types, it may still be convenient to use frequency domain-based signal processing

despite the development of this new time domain technique. As such, the focus of this

thesis then shifts to the development of an improved frequency domain-based approach by

introducing proper accelerometer signal handling. A second rigorous assessment of this

improved technique shows that the modifications made to the technique successfully closed

the performance gap, obtaining similar results to the new time domain-based approach.

In either domain, the quality of the measurement correction is related to the accuracy of

the signal synchronisation from the two transducers since any error therein will adversely

affect the quality of the corrected velocity estimate. This is often accounted for by estimat-

ing and subsequently removing the time delay with post-processing [38, 31]. The accuracy

of this time delay estimate is a fundamental factor dictating achieved performance, how-

ever, the implementation of the synchronisation is constrained to integer multiples of the

time step in the time domain, therefore, even an exact delay estimate is unlikely to lead to

perfect synchronisation. Therefore, the development of a model which relates synchroni-

sation error to the velocity estimate error is essential. As such, a rigorous analytical model

describing the effects of sampling frequency and errors in the time delay estimate on the

measurement correction performance is developed for both domains, focusing on the time
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domain. Using the insights gained from this model, a holistic framework is developed

to assist the user with the selection of both the correction technique and the acquisition

parameter selection, ensuring optimal measurement correction.

For the measurement correction described, it is vital that the measurement of the in-

strument motion be colinear and on the beam axis. While this is straightforward for a

single-point LDV, it becomes challenging when the beam is directed independently of the

sensor head, such as on a scanning LDV (SLDV). An SLDV is fundamentally no different

to a single-point LDV but includes the addition of steering optics and the appropriate

control circuitry such that the mirrors may be precisely positioned. This is most often im-

plemented using a pair of orthogonal galvanometric steering mirrors; a commercial system

can be seen pictured in Figure 1.3. SLDVs are often used for modal analysis due to their

ability to automatically take measurements in a dense grid of points [4]. As such, there

has similarly been interest in applying measurement correction to these systems. This

was shown to be theoretically possible with a rigorous vector analysis if a total of three

accelerometers are specifically positioned relative to the final steering mirror [41]. If the

angles of the mirrors are known, then the appropriate component of the three accelerom-

eters can be taken to find the velocity in the beam direction. This work is then integrated

with the new time and frequency domain signal processing described herein, followed by

the first experimental validation of SLDV measurement correction. This was performed

on the Multi-Axial Simulation Table (MAST) whilst undergoing six degrees of freedom

(DOF) vibration.

The work presented herein has defined a new gold standard for measurement corrections

with the introduction of the two time and frequency domain techniques and their extension

to SLDV systems, substantially improving the expected performance for both single-point

LDVs and SLDVs while also introducing transient signal compatibility. Similarly, the

development of the accompanying analytical model allows for the further optimisation of

these techniques by informing the user of the necessary acquisition parameters a priori ;

further expanding the capability of the LDV towards truly mobile deployments. However,

the aforementioned measurement correction in this thesis has focused specifically on sensor
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Figure 1.3: Photograph of a Polytec PSV-500-Xtra scanning head.

head motion along the measurement beam axis. However, the mobile deployment of an

LDV likely also requires the adequate handling of instrument motion in the two non-beam

axes and any rational motion. This motion is distinctly different to motion along the beam

axis since this will cause the beam to deviate from the intended target; as such, the beam

will likely need to be directed independently from the mobile vehicle. An LDV system

outfitted to handle motion in the five non-beam axes, combined with the measurement

correction techniques described herein, would be sufficiently robust to enable high-quality

measurements to be taken from mobile platforms with previously unacceptable levels of

transient vibration and beam motion.

1.1.2 Motion in the non-beam axes

Independently aiming the measurement beam from a mobile vehicle is straightforwardly

achieved using the aforementioned SLDV setup; however, since the vehicle motion during a

mobile deployment will likely be unpredictable with no a priori knowledge of the expected

trajectory, then such a system must be embedded with some form of sensor. Until the

work presented herein, the only viable solutions were a range of various image-based track-

ing LDV systems (iTLDV) [42, 43]. These techniques utilise an SLDV with an additional

in-line high-speed camera to observe the target. Using a sufficiently powerful computer

running a tracking algorithm, the mirrors are driven in a closed control loop, therefore,
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maintaining a fix on the target. A benefit of iTLDV is that it is compatible with either

instrument motion in the five non-beam axes, a mobile target, or both. However, for most

cases discussed here, the target is likely to be stationary. Furthermore, since iTLDV also

requires the necessary onboard computational and power resources, the additional weight

can be relatively large, resulting in a system that may be more suitable for terrestrial

deployment than drone deployments.

Known drone-based LDV applications have been gaining popularity with the aforemen-

tioned research into intelligence gathering and structural health monitoring [26, 30, 31],

however, many yet-to-be realised applications might hold even greater promise. For exam-

ple, drone-based LDV buried landmine detection can dramatically increase area coverage

rates whilst simultaneously removing any risk of accidental detonations, protecting assets

from damage or destruction and potentially saving lives. Ground penetrating radar buried

landmine detection has already been successfully implemented from a drone [44], although

it has been shown that LDV-based detection techniques have significantly higher accuracy

due to their ability to detect plastic land mines [45]. Therefore, this work proposes a novel

tracking solution specifically tailored towards the hovering drone and a stationary target

scenario - as would be expected during intelligence gathering, structural health monitoring

or buried landmine detection from drones. Hovering drones have a remarkable ability to

hold their location in space by utilising their myriad of sensors to measure and correct

for any unwanted translational movement. These corrections come in the form of small

adjustments in pitch and roll, therefore, an LDV tracking system intended for hovering

drone deployment could simply act as a camera gimbal. Camera gimbals maintain a fix on

a specific angle by counter-rotating the contained device, typically camera [46]. However,

a gimbal-mounted LDV would either be sluggish or heavy due to the responsiveness and

weight trade-off of the actuators which rotate instrument.

The novel system proposed here overcomes the challenges presented by traditional gimbals

by counter-rotating the beam using an SLDV, rather than the entire instrument. This is

shown to be more accessible, lightweight, and cheaper than the vision-based alternatives,

making the system ideal for drone applications. The system’s performance is assessed
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on the MAST while replicating a drone hovering in extreme conditions. The data is

acquired using a vision-based system such that both the input of the MAST and the

output of the gimbal are known in perfect synchronisation. The acquired data is analysed

in both the time and frequency domain to fully characterise the system’s performance.

The results showed that even in these extreme conditions, the beam motion could be

reduced by an average of 68%. The work on both the beam axis motion and non-beam

axis motion conducted during this doctoral program, combined with existing work on the

topic demonstrates a comprehensive framework for the components of a truly robust LDV

ready for mobile deployment. Therefore, following these topics, the focus shift onto new

applications of a mobile LDV.

1.2 Mobile laser Doppler vibrometer autonomous system

applications

As mentioned, a truly robust LDV ready for mobile deployment has applications in many

fields. This thesis specifically focuses on improving acoustic object recognition for au-

tonomous vehicles, although the potential applications are by no means limited to these.

Up until now, existing acoustic object recognition approaches described in the literature

involve excitation techniques that are contact in nature, using either a simple actuator

[47, 48] or a multiple degrees-of-freedom robotic arm [49, 50] to excite an audible response

in the object which is recorded using a microphone. These recorded sounds are then pro-

cessed and classified using a range of signal processing and machine learning techniques in

order to classify the sound, hence recognising the object. Therefore, imbuing these robots

with similar acoustic object recognition skills to a person. Despite recognition rates in the

range of 85.5% [50] and 98.2% [49], these existing acoustic object recognition techniques

have a number of shortcomings. Firstly, these techniques require physical access to the

object, meaning the robot must move towards the object, making the task slower and

more complex. Secondly, the object must be excited with sufficient force to produce an

audible response. Therefore, some fragile objects could be damaged during the excitation,

for example, an object made from glass. Therefore, this thesis presents a new entirely



10 Chapter 1. Introduction

non-contact vibro-acoustic object recognition technique.

This new non-contact vibro-acoustic object recognition technique substitutes the contact-

ing actuator of the robot with an acoustic excitation emitted by a loudspeaker. However,

the response generated as a result of this acoustic excitation is orders of magnitude lower

in amplitude than those previously excited via direct contact, therefore, generating little to

no detectable sound. As such, the microphone previously employed is similarly substituted

with an LDV directly measuring the low-amplitude vibrational response of the object itself,

rather than measuring the sound the object generates as a result of the excitation. These

recorded responses are processed with a range of spectrogram-based techniques and then

used to train a convolutional neural network via transfer learning to classify the responses

with accuracies of over 99.7%. This near-perfect classification performance is higher than

the existing contact techniques, whilst simultaneously introducing valuable improved non-

contact functionality, therefore, positioning it as a viable object recognition technique for

autonomous systems and potentially even other machine automation tasks. Finally, the

thesis explores what this practical LDV deployment onto an autonomous vehicle may look

like. Here, LDV and point cloud data are used in conjunction with one another together

in a proof-of-concept system, establishing the groundwork to enable objects of interest to

be identified within a point cloud for further vibro-acoustic interrogation with the LDV.

Therefore imbuing the autonomous system with the unique ability to perceive its sur-

roundings as a spatially associated vibrational map and, if combined with the previously

mentioned vibro-acoustic object recognition technique, meaningfully interpret this vibra-

tional data.

1.3 Aims and Objectives

To summarise, the broad aim of this thesis is to enable the mobile deployment of LDVs

and explore their integration within autonomous systems. The following objectives were

pursued to achieve this aim:
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1. Measurement correction: The objective is to improve the existing measurement

correction techniques for LDVs. This includes developing new time domain signal

processing techniques to handle non-stationary or transient vibration signals. Ad-

ditionally, enhancing frequency domain-based techniques to outperform the original

technique.

2. Arbitrary tracking: This objective involves developing a novel instrument motion-

tracking solution suitable for downward-facing drone applications. The aim is to

reduce beam motion during extreme flight conditions, thus, enabling high-quality

measurements.

3. Explore potential in-field mobile applications: This objective focuses on in-

vestigating the application of LDVs in autonomous systems. The specific application

explored herein is non-contact vibro-acoustic object recognition by utilising remote

acoustic excitation of objects and advanced signal processing using convolutional

neural networks.

By achieving these aims and objectives, this thesis aims to contribute to the advancement

of LDV technology and its integration within mobile and autonomous systems, expanding

its application envelope and enabling enhanced capabilities in various domains such as

vibration engineering, autonomous systems, and hazard detection.

1.4 Thesis overview

This thesis can be divided into three main areas. The first part of this thesis is concerned

with instrument motion in the beam axis, whereas the second is concerned with motion in

the non-beam axes. The combination of these two research areas develop the groundwork

for a truly robust LDV capable of obtaining high-quality vibration data during mobile

deployment scenarios. Therefore, the third and final focus of the thesis is on new ap-

plications of this robust LDV system, specifically focusing on autonomous vehicles. A

visual representation of these three main topics and their inter-dependencies is shown in
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Figure 1.4.

Figure 1.4: Conceptual diagram of this thesis highlighting the three main research areas
and their inter-dependencies.
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These specific topics have translated into the following thesis structure:

Chapter 2 presents an overview of the fundamental physical concepts surrounding laser

Doppler vibrometry vibration measurements.

Chapter 3 describes the development of a time domain-based measurement correction

technique, comparing it with the existing frequency domain counterpart. An accessible

time domain correction technique is essential for mobile LDV scenarios where vibrations of

the instrument will likely be transient in nature. Results show that this time domain-based

technique outperforms the existing frequency domain-based technique by a significant mar-

gin for stationary signal types.

Chapter 4 focuses on the development of an improved frequency domain-based technique

with proper accelerometer signal handling. Resulting in a significant performance increase,

almost matching that of the time domain-based technique presented herein. Following this,

it explores the fundamental differences of signal synchronisation in the frequency and time

domains, presenting an analytical model relating the quality of the measurement correc-

tion to signal synchronisation and sampling frequency, therefore, optimising performance

a priori.

Chapter 5 is a two-part chapter employing the MAST for both measurement correction

and arbitrary path tracking for SLDV systems. First, the chapter explores the means by

which motion along the beam axis of an SLDV can be removed based on previous theo-

retical work, but with the new signal processing techniques presented herein. This is then

experimentally validated on the MAST, displaying significant improvements. Following

which, the focus shifts to motion in the five non-beam axes. By considering the specific

case of a hovering drone, a novel type of gimbal is presented and tested, which uses an

unmodified SLDV to counter-rotate the beam and maintain a fix target of interest. This

is similarly validated on the MAST.
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Chapter 6 describes a novel non-contact vibro-acoustic object recognition technique in-

tended for autonomous systems. This technique utilises a custom set-up involving a syn-

chronised loudspeaker and scanning LDV to simultaneously, remotely solicit and record

responses an acoustic excitation in various objects. Using a range of spectrogram-based

pre-processing techniques and convolutional neural networks trained via transfer learning,

objects could be recognised with accuracies of over 99%, including tests with never-before-

seen instances of objects. Therefore, positioning this as a viable object recognition tech-

nique suitable for various machine automation tasks

Chapter 7 is the final chapter which presents a summary of the conclusions gained from

this doctoral program and explores some areas for further work.

Appendix A presents the practical extension of the work described in Chapter 6. Here,

an additional point cloud mapping modality is used in conjunction with the SLDV, allow-

ing an autonomous system to locate objects of interest within a scene for vibro-acoustic

interrogation using an SLDV.

1.5 Contributions and publications

The main contribution of this thesis is the development of a truly robust LDV platform

capable of deployment on highly mobile platforms, with a focus on autonomous system

applications. Specifically:

1. A novel time domain-based correction measurement technique able to outperform the

existing frequency domain-based signal processing technique, introducing transient

signal compatibility and increasing performance by a factor of eight [51].

2. An improved frequency domain-based correction measurement technique able to out-

perform the existing frequency domain-based signal processing technique by a factor

of seven, and an analytical model able to accurately predict the influence of signal

synchronisation on measurement correction performance [52].
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3. The extension and experimental validation of these new signal processing techniques

to scanning laser Doppler vibrometer systems.

4. The development of a novel type of gimbal compatible with SLDV systems intended

for drone applications.

5. A novel non-contact vibro-acoustic object recognition technique and enhanced spa-

tially associated vibro-acoustic perception for autonomous systems [53]

List of papers published in the course of completing this research:

• Correction of laser Doppler vibrometer measurements affected by sensor head vi-

bration using time domain techniques [51] - Published in the Proceedings of the

International Conference on Structural Dynamics, Eurodyn.

• A comparison of time and frequency domain-based approaches to laser Doppler vi-

brometer instrument vibration correction [52] - Published in the Journal of Sound

and Vibration.

• Non-contact vibro-acoustic object recognition using laser Doppler vibrometry and

convolutional neural networks [53] - Published in Sensors Special Issue: Artificial

Intelligence-Based Audio Signal Processing.

• Towards real-time vibro-acoustic classification, verification and tracking of in-flight

UAVs [54] - Published in the Proceedings of the International Conference on Noise

and Vibration Engineering (ISMA) 2022.





Chapter 2

Laser Doppler vibrometry

background

This chapter presents an overview of the fundamental concepts required to understand

laser Doppler vibrometry as this is the consistent theme throughout this thesis and re-

quires the deepest understanding. In-depth reviews of related work pertaining to each

chapter can be subsequently found at the beginning of each chapter.

2.1 Physical principles and limitations of laser Doppler vi-

brometry

To more easily understand the working principles of an LDV, it is best to start with the

aforementioned Michelson interferometer. A Michelson interferometer is a precision in-

strument used to measure changes in optical path length on the order of the wavelength

of light being used. This is made possible by taking advantage of the wave-like nature

of light by observing the interference pattern produced when two coherent beams of the

same wavelength are mixed.

17
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Figure 2.1: Schematic of a basic Michelson interferometer. Where Ls and Lp are the
optical path lengths from the cube beam splitter to the secondary and primary mirror,

respectively.

Practically, this is achieved using the optical arrangement shown in Figure 2.1. A monochro-

matic coherent light source, i.e. a laser, is directed onto a beam splitter. The role of the

beam splitter is to allow the transmission of half of the light towards the primary mirror

while reflecting the other half of the light towards the secondary mirror1. Upon reflection

by their respective mirrors, the two beams are recombined at the beam splitter such that

they may interfere with one another on the path towards the photodetector. If the optical

path length difference of the two beams is an integer number of wavelengths, constructive

interference will occur, and maximum brightness will be measured by the photodetector.

Similarly, if the optical path length difference is a half-integer number of wavelengths, then

destructive interference will occur and a minimum brightness will be measured. Therefore,

by tracking the changing brightness at the photodetector, precise measurements can be

made of any movement in a mirror, shown here with the secondary mirror undergoing

motion.

1Here, a cube beam splitter is shown, however, a half-silvered mirror can similarly be used, typically
with the addition of a compensator plate to make both optical path lengths equal.
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The Michelson interferometer arrangement was modified by Y. Yeh and H. Cummins in

1966 to enable velocity measurements of a flowing fluid, known as laser Doppler anemom-

etry [55]. Rather than one of the beams being reflected from a mirror, it was made to be

incident upon a flowing fluid containing monodispersed polystyrene spheres with a diam-

eter of 0.6 µm. This beam, now known as the measurement beam, was backscattered by

these particles with a Doppler-shifted frequency proportional to the velocity of the fluid,

given by:

∆f =
2n|v⃗|
λ

cos(γ) sin

(
ε

2

)
(2.1)

where ∆f is the Doppler shifted frequency, n is the refractive index of the medium, |v⃗|
is the magnitude of the fluid velocity, λ is the wavelength of the source light, ε is the

angle between the incidence and scattering directions, and γ is the angle between v⃗ and

the bisector angle between the incidence and scattering directions. The setup can be seen

depicted in Figure 2.2, where ε is 30◦ and γ = π − ε/2.

Figure 2.2: A depiction of the experimental arrangement used to develop laser Doppler
anemometry [55]. © AIP Publishing, reprinted with permission.

Using Equation 2.1, it can be shown that the expected frequency shift for light of non-

astronomical velocities is many orders of magnitude smaller than the frequency of light
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itself (≈ 1015 Hz). Therefore, the inclusion of an interferometric arrangement is essential

as the photodetector is not sufficiently responsive to directly measure the changing electric

and magnetic fields of the light. Practically, this means mixing the backscattered mea-

surement beam with the beam reflected from the internal mirror, known as the reference

beam. Since the backscattered measurement beam frequency has been Doppler shifted,

the recombined beam will periodically constructively and destructively interfere with it-

self, modulating the intensity with a frequency known as the beat frequency. The frequency

of this modulation is directly proportional to the fluid’s velocity and is measurable by the

photodetector. Hence, the fluid’s velocity could be determined by demodulating the signal

from the photodetector using a spectrum analyser.

In the following years, it was quickly realised that this setup can be similarly used to take

velocity measurements of solid surfaces since light-scattering surface elements can play

the same role as scattering particles within a fluid. In this scenario, light is collected in

direct-backscatter, meaning ε = π, and n = 1 for air; thus, by rearranging and simplifying

Equation 2.1, the following is obtained:

v =
λ∆f

2 cos(γ)
(2.2)

where v is the surface velocity and cos(γ) = 1 if the measurement beam is normal to the

surface. A depiction of this scenario is shown in Figure 2.3, related by ∆f = f − f0 and

v = |v⃗|. Here, light is incident upon an optically rough surface such that light may still be

collected in direct backscatter by the instrument when the vibrating surface is not normal

to the beam.
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Figure 2.3: Depiction of light undergoing direct backscatter from an optically rough
surface moving with a velocity vector of v⃗ and an angle of γ to the incoming light. The

incoming light has a wave vector
−→
k0 and frequency f0, whereas the backscattered Doppler-

shifted light has a wave vector of
−→
k and frequency of f .

However, the optical arrangement previously described suffers from directional ambiguity,

meaning positive and negative velocities cannot be distinguished. In order to distinguish

positive and negative velocities, a known frequency shift is introduced to the reference

beam [56, 57, 58]. This results in a beat frequency that increases if the scattering surface

moves towards the instrument and decreases if the scattering surface moves away. While

this frequency shift can be introduced in several ways, the most popular method utilises

an acousto-optic modulator known as a Bragg cell [59]. Therefore, the surface velocity of

the target is related to the beat frequency by the following relationship [60]:

fbeat =

∣∣∣∣fR − 2

λ
v(t)

∣∣∣∣ (2.3)

where fbeat is the beat frequency, fR is the frequency shift, λ is the light wavelength and

v(t) is the target surface velocity. Practically, the target surface velocity is recovered by

treating the output of the photodetector as a typical frequency-modulated signal; with

the Bragg cell frequency as the carrier frequency and the Doppler shift frequency as the

modulation frequency. This can be demodulated to obtain the surface velocity by using

a range of frequency demodulation techniques such as single-chip frequency modulated

decoders [61], or quadrature detection [62]. LDV manufacturers include increasingly com-

plex optical arrangements, demodulation and preprocessing techniques in order to increase

the data quality under a range of measurement scenarios. However, the setup described

here represents a standard basic arrangement for most commercial LDVs, depicted in

Figure 2.4.
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Figure 2.4: A schematic of a laser Doppler vibrometer system capable of distinguishing
positive and negative velocities using a Bragg cell.

2.2 Signal level and speckle noise challenges

The functional principles of LDV require that a sufficiently high portion of the measure-

ment beam returns from the target surface and is collected by the measurement optics.

If an insufficient amount of light is collected, then the amplitude of the aforementioned

modulation incident upon the photodetector will decrease in intensity, thus, increasing

the uncertainty in the demodulation and increasing the signal-to-noise ratio, potentially

compromising the measurement [63, 64]. Light can return from the target via two mech-

anisms, specular reflection from a surface normal to the beam or diffuse reflection, also

referred to as scattering. Specular reflection can direct the vast majority of the light back

towards the instrument if aligned correctly, giving high signal levels2. However, there

are two main drawbacks to relying on specular reflection alone. Firstly, aligning the in-

strument such that it is normal to the reflecting surface in all six DOF is very difficult

to achieve practically. Secondly, measurements are limited to those with reflecting surfaces.

More often, LDV measurements will rely on the collection of diffusely reflected light. Dif-

fuse reflection occurs through two main mechanisms: surface scattering and sub-surface

scattering. Surface scattering occurs when the target surface is rough on the scale of the

optical wavelength being used, whereas sub-surface scattering occurs within the superficial

2The return of all the light would require a perfect mirror.
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outer layer of the material [65, 66]. While metals do not exhibit any subsurface scatter-

ing, many materials which may seem opaque do in fact cause some subsurface scattering,

such as human tissue and some plastics. However, regardless of the exact mechanism, the

result in both cases is that some light is collected by the measurement optics in direct

backscatter, making measurements of non-normal surfaces possible.

While the role of scattering is essential to most LDV measurements, it can also lead to

the introduction of spurious signal content, known as speckle noise. This is due to the

de-phasing of the scattered monochromatic coherent light, where returning wavelets inter-

fere constructively and destructively with one another resulting in a chaotic distribution

of high and low intensities [67], referred to as a speckle pattern; an example of which can

be seen in Figure 2.5. The measurement optics generally collect light over several speckles

mitigating these effects, however, sometimes small adjustments in the measurement loca-

tion are required to avoid low optical signal levels caused by an unfavourable summation

of speckles over the photodetector surface [68]. This phenomenon can also manifest as

pseudo-vibration if there is off-axial target motion, such as in-plane vibration, whole body

motion, or a continuous scanning scenario, where the measurement beam traverses the

target surface throughout the measurement [69, 70]. This is due to the dynamic nature

of the evolving speckle pattern, leading to two major issues. Firstly, signal dropouts can

occur when the summation of speckles over the photodetector surface is particularly dark,

similarly causing sharp deviations in the time trace [4]. Secondly, phase noise can occur

during speckle transitions since the phases of the bright speckles are inhomogeneous and

randomly distributed [71, 60].
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Figure 2.5: Photograph of a speckle pattern off black anodised aluminium.

State-of-art LDV systems include increasingly sophisticated attempts to overcome low op-

tical signal and laser speckle challenges caused by the collection of backscattered light.

Most recently, it was shown via simulation that the summation of multiple photodetec-

tor outputs, all perceiving unique speckle patterns, can mitigate the introduction of this

pseudo-vibration [27, 28]. This fundamental concept, known as diversity reception [72],

has been recently integrated into the Polytec QTec line of LDVs. However, when these

advanced systems are inaccessible or when the techniques are not completely effective,

there are several steps that can be taken to mitigate the effects of speckle noise on a

measurement. When encountering low optical signal level from an uncooperative target,

surface treatment can be used. Surface treatment most commonly comes in the form of

retro-reflective tape applied to the measurement surface of the target3. Retro-reflective

tape consists of many microscopic glass beads bonded to a paper backed with adhesive.

The effect of these glass beads is that incoming light is always reflected back in the same

direction as the incoming angle [73], as depicted in Figure 2.6. The use of such tape can

drastically increase optical signal levels from an uncooperative surface, however, its use

can be undesirable or impractical in some situations; for example, on remote infrastruc-

ture where access is limited or light structures, where mass-loading and stiffening can take

place changing the vibration characteristics.

3There exist alternatives, such as Ardrox Reflective Spray although often less effective than retro-
refective alternatives.
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Figure 2.6: Diagram of light being retro-reflected by a glass bead contained in retro-
reflective tape.

In scenarios where there is low optical signal level, and surface treatment is not an option,

then an infrared LDV may be used. Typical LDVs employ helium-neon laser with a wave-

length of 632.8 nm, but infrared LDVs use longer wavelength and more powerful lasers,

such as the PSV-500 Xtra Scanning Laser Doppler Vibrometer which is 1550 nm. This

difference is due to the increased safety of infrared lasers meaning that the power limit

is 10 mW as opposed to 1 mW for visible light lasers [74]. This results in instruments

capable of making measurements from uncooperative surfaces and from greater distances.

2.3 Laser Doppler vibrometry and ambient vibration

The fundamental physics of laser Doppler vibrometry dictates that the movement of the

sensor head or the target along the beam axis will equally create a Doppler shift in the

measurement beam. The result is that the instrument is as sensitive to its own vibration

as it is to the target vibration. Therefore, making measurements in environments with

high levels of ambient vibrations would negatively affect the data quality. As such, typ-

ical implementations isolate the instrument from surrounding vibrations passively using

a tripod with compliant feet. However, passive isolation can be inadequate for some ap-

plications. For more effective vibration isolation, active anti-vibration mounting could be

used; however, these solutions can be either too costly or too heavy [25]. Therefore, the

development of an LDV insensitive to its own vibration, here referred to collectively as
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measurement correction, has gained increased attention. In general, measurement correc-

tion requires independent vibration measurements of any additional velocity contributions

to the LDV signal. These additional velocity contributions can be due to a combination

of sensor head, scanning head and steering optic vibration; all solutions will be referred

to as LDV measurement correction herein. This section provides a brief overview of the

literature related to measurement correction, with complete reviews contained at the be-

ginning of the relevant subsequent chapters.

The name measurement correction refers to the removal of any unwanted velocity con-

tribution of the sensor head from the signal, thereby, fully recovering the target surface

vibration velocity. This has been realised in a variety of different ways with varying levels

of success. Initial attempts employed a similar approach to that of the differential LDV,

but rather than have the secondary beam incident upon an external reference surface,

it was incident upon an internal damper [36, 39, 75]. The velocity of this damper, as

measured by the second measurement beam, is used to infer the motion of the instru-

ment itself and correct the target measurement. It is important to note that differential

LDVs perform this subtraction optically, however, since this damper system acted as an

accelerometer, the subtraction was performed electronically following the necessary inte-

gration and filtering. Due to the resonances of the internal damper system, a flat frequency

response over a sufficiently large range is difficult to obtain, resulting in a correction that

is heavily frequency-dependent. Following this, a system was developed which utilised

both an accelerometer and an external reference beam to estimate the motion of the in-

strument on a moving ground vehicle [37]. While this technique significantly reduced the

impact of instrument vibration, there were several shortcomings related to the location

of the correction measurements and the external reference beam, which limited the per-

formance. Additionally, both the mentioned techniques require complex bespoke optical

arrangements making them considerably less accessible for the practising vibration engi-

neer.

Unlike the previous two measurement correction techniques, the third and most recent

type of measurement correction utilises a commercial LDV, rather than a bespoke setup,
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with a single rear-mounted accelerometer [31]; which would be readily available in most

vibration laboratories. Despite its relative simplicity, this technique yields a significant

reduction of instrument vibration in the measurement signal whilst being considerably

more straightforward to implement when compared to the previous attempts. The per-

formance and accessibility of this technique have likely led it to be replicated by other

international research groups [40]. This technique has since been expanded to be com-

patible with scenarios utilising external steering optics, by placing another accelerometer

to similarly measure and subtract its vibration contribution [76]; and theoretically shown

to be compatible with SLDVs by using three precisely positioned accelerometers whose

trigonometric components can act as a measurement colinear and on the beam axis [41].

While the hardware arrangement is well-optimised and is shown to be compatible with

a range of application scenarios, there are two drawbacks in the current form. Firstly,

the signal processing did not sufficiently handle the accelerometer signal leading to a non-

optimal performance. Secondly, the technique is based in the frequency domain, limiting

it to stationary signal types. As such, Chapter 3, Chapter 4 and part of Chapter 5 use

this hardware arrangement but focus on improving the signal processing.

2.4 Alternative mobile laser Doppler vibrometry techniques

The focus of this thesis is mobile-mounted LDVs, however, there is an alternative proposed

technique that is important to discuss, referred to as flyable mirrors [32, 33]. This approach

focuses on enabling scans of remote surfaces that either have no direct line-of-sight access

or would result in a low incidence angle - therefore only measuring a small component

of the normal velocity. The approach requires an LDV base station with pitch and yaw

control to track a drone-mounted mirror in-flight such that the beam spot is ultimately

incident upon the intended target location. An illustration of this can be seen in Figure 2.7.
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Figure 2.7: Illustration of the flyable mirrors concept for beam steering [32].

The advantages of flyable mirrors in comparison to drone-mounted LDVs include lower

costs, since smaller drones can be used as the entire instrument is not being lifted; and

increased safety, since smaller drones have lower collision risks and potential to cause dam-

age than a larger drone carrying an entire LDV. A laboratory setup was used to simulate a

flyable mirror deployment, allowing the efficacy of this technique to be estimated. Here, a

shaker was driven with a 5 Hz pure tone - simulating the measurement of interest - while a

tethered hovering drone was reflecting the measurement beam towards the shaker spigot.

A secondary beam path was also tested which avoided the drone-mounted mirror and

recorded the shaker vibration directly, allowing it to be used as a benchmark to compare

the effect of the flyable mirror on the measured vibration. It was shown that for this setup,

the drone vibration introduced significant signal content in the region of 50 Hz to 70 Hz,

which in this scenario was clearly separated from the 5 Hz of the target shaker. However,

this clearly defined frequency separation of the target and drone vibration is unlikely to

always be the case. As such, it cannot be relied on to distinguish between drone and target

vibration.

A follow-up paper shifted the focus onto the removal of the drone’s contribution to the

measured vibration by employing the aforementioned differential vibrometry approach [33].
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In this improved deployment, the measurement beam remains as previously described, be-

ing reflected from the ground-based LDV to the structure via a drone-mounted mirror;

however, in this scenario the external reference beam is incident upon a retro-reflector

attached to the drone. This results in the optical subtraction of the drone’s vibration

along the reference beam axis from the vibration measurement. An illustration of this can

be seen in Figure 2.8.

Figure 2.8: Illustration of the differential LDV (DLDV) flyable mirrors concept for beam
steering and measurement correction [33].

It has been previously shown that for optimal subtraction when using external steering

optics, the correction measurement should be normal to the mirror surface and as close

as possible to the incident beam spot location [76]. This criterion is not satisfied in this

configuration - with the subtracted contribution of the drone’s vibration occurring along

the reference beam axis, not normal to the reflecting steering mirror. While the correction

may not be optimal, it may still share enough in common with the normal-mirror axis

to lead to an improvement in the signal. A lab-based setup, seen pictured in Figure 2.9,

aimed to simulate this deployment scenario, allowing both the LDV and DLDV approaches

to be compared to one another in a controlled manner.
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Figure 2.9: Flyable mirrors experimental simulation setup aiming to compare the LDV
or and DLDV approaches to one another [33]. © 2021 The British Institute of Non-

Destructive Testing, reprinted with permission.

Using the setup shown in Figure 2.9, a 10-fold reduction was observed in the overall noise

floor of the measurement when compared to the previous single point LDV approach. The

results are seen pictured in Figure 2.10, where the 222 Hz vibration of the shaker is clearly

visible through either optical path. The technique clearly reduces the introduction of un-

wanted drone vibration despite its non-optimal arrangement; therefore, positioning this as

a viable mobile LDV technique.

Figure 2.10: Flyable mirrors experimental simulation results using either an LDV or
an DLDV [33]. © 2021 The British Institute of Non-Destructive Testing, reprinted with

permission.
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While there is undeniable promise in the unique concept of flyable mirrors, it also presents

some technical challenges regarding the simultaneous tracking requirements for the base

station and the drone-mounted mirror. While drones have an impressive ability to hold

their position, they undergo small amounts of translational motion in flight due to atmo-

spheric effects; as such, modern sensor-laden drones employ an array of sensors to measure

their positions in space such that they may be corrected using small adjustments in pitch

and roll. These adjustments could make it difficult to maintain a lock on the flyable mirror

from the ground-based LDV, as such, a tracking system would likely be required. With a

tracking system on the base station, it could be ensured that the beam is incident upon

the flyable mirror, however, the drone’s motion would result in the beam straying from

the intended measurement location on the target. The amplitude of this stray may or may

not justify the inclusion of a secondary tracking system on the drone to aim the mirror.

These challenges are not dissimilar to those experienced during a drone-mounted mobile

deployment, which requires similar measurement correction and aiming capabilities. While

drone-mounted mirrors can potentially reduce drone costs and the severity of a crash by

offloading some instrumentation to the ground, it similarly ties the drone to that ground

station. Restricting movement and similarly increasing the effective standoff distance,

while ideal for many applications, most applications discussed herein could benefit from a

truly mobile LDV. As such, the remainder of this thesis does not consider this technique.





Chapter 3

Time domain measurement

correction

In real-world relevant, field-based vibration measurement scenarios from mobile platforms,

it can be reasonably expected that the instrument vibration signals will be transient in

nature. A signal is considered transient whenever its Fourier expansion requires an infinite

number of sinusoids, as opposed to stationary signals, which is expressible as a finite num-

ber of sinusoids [77]. Of course, an infinite number of sinusoids is not practically available

as this would require an infinitely long measurement duration. As such, when transient

vibrations are expected, time domain techniques can be implemented. As discussed in

Section 2.3, the optimal hardware arrangement for LDV measurement correction utilises

a single-rear mounted accelerometer; however, the compatible signal processing available

prior to the work presented herein was based in the frequency domain, therefore, pre-

venting its use in mobile deployments where transient vibrations might be expected. As

such, for optimal measurement correction, time domain-based correction techniques are

desirable, yet despite this, the available time domain-based techniques were inaccessible to

most vibration engineers, requiring the construction of complex bespoke LDVs with unsat-

isfactory performance [36, 37, 39]. As such, this chapter presents a new time domain-based

alternative based on the optimised existing frequency domain hardware arrangement.

33
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First, this chapter will conduct an in-depth review of the time domain-based measurement

correction literature. Following this, a new time domain-based technique is described

based on the existing single accelerometer frequency domain-based technique hardware

arrangement [31]. This is followed by a rigorous performance assessment, contextualising

it against the previously established frequency domain-based technique. The work pre-

sented in this chapter is orientated around the body of work that was published in the

peer-reviewed conference proceedings for the International Conference on Structural Dy-

namics, EURODYN 2020 [51].

3.1 Review of time domain-based measurement correction

techniques

To the author’s knowledge, there exists only two time domain-based based LDV measure-

ment correction techniques, both being rather different from one another. This section

will outline both techniques and discuss the merits and drawbacks of each based on three

main aspects. The first consideration will be the accuracy ; meaning the technique should

yield similar measurements to that of a stationary LDV or contacting transducer - but

shown the be the case by means of an empirical and quantifiable metric. The second con-

sideration is accessibility - that is, readily available to the practising vibration engineer,

and not merely by means of potential eventual commercialisation. And the final consider-

ation is transient signal compatibility - since the ambient vibration profiles during mobile

deployment are likely to be transient in nature.

3.1.1 Internal damper LDV measurement correction

The earliest mention of LDV measurement correction in any domain was in the year 2000

[36]. The proposed solution featured an internal damper, consisting of a mass suspended

between two springs submerged in a viscous fluid. The optical arrangement can be un-

derstood as two independent LDVs, one measuring the velocity of the target and one
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measuring the velocity of the internal damper. Since the velocity of the internal damper

is related to the acceleration of the instrument, its velocity measurement is acting as an

accelerometer. The demodulated damper signal is then integrated to obtain an instrument

velocity estimate, processed via a least means square (LMS) adaptive filter and subtracted

from the target vibration measurement, all in the time domain.

In order to test this system, the instrument body was vibrated with two sine waves at

30 Hz and 60 Hz while measuring a target vibrating at 1 kHz. The results are presented in

Figure 3.1. While there is a considerable improvement, the velocity trace is still marginally

affected by the body vibration. The work does not mention that the damper is unlikely

to have a flat frequency response over a sufficiently large frequency range, therefore, the

quality of the correction could be heavily frequency dependent. This might have been ap-

parent if the instrument had been vibrated with broadband noise or a chirp excitation over

a sufficiently wide frequency range. A rigorous assessment of the system must characterise

the correction performance at a wide range of frequencies for it to be a practically viable

solution. Similarly, a quantitative performance metric should be introduced to truly gauge

the performance of the technique, ideally one utilising a simultaneous reference measure-

ment of the target.

Figure 3.1: The time domain signal of (a) the target vibrating at 1 kHz, (b) the measured
target vibration, and (c) the corrected measured signal. Unfortunately, a better quality
digitisation of the paper does not exist. Here, the vertical axes are velocity and the

horizontal axes are time [36]. © 2000 IEEE, reprinted with permission.
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In the following year, two follow-up papers covering the same system but in more detail

were published [39, 75]. The first was a single-page summary paper that added little new

information, however, the results of a second test were described. Here, the LDV body

was vibrated in the beam axis with a 1 Hz, 5 cm amplitude sinusoid while the target

was vibrating with a 100 Hz 50 µm sinusoid. The results can be seen in Figure 3.2, de-

spite being difficult to interpret, there does seem to be some improvement between the

uncorrected measurement in Figure 3.2(c) and the corrected measurement in Figure 3.2(d).

Figure 3.2: The time domain signal of (a) the target vibration, (b) instrument vibration,
(c) uncorrected LDV signal, and (d) corrected LDV signal [75]. © 2002 IEEE, reprinted

with permission.

The second follow-up paper tackled the issues presented by the non-flat frequency response

of the damper [39]. The equation of motion for the damper was shown to be:

Mẍd + Cẋd +Kxd = −Mẍl (3.1)

where M is the mass of the damper, C is the viscosity of the fluid, K is the spring constant,

xd is the displacement of the damper mass with respect to the LDV body and xl is the

displacement of the LDV body to a virtual fixed plane. A damping ratio of C/M = 0.707

was selected as this provides a “constant gain” when the instrument vibration frequency

is much lower than natural frequency of the damper. The first natural frequency was se-

lected to be at 60 Hz since, the authors claim, that instrument vibrations tend to be much
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lower than this. However, in reality the expected instrument vibration range is heavily

dependant on the application, with vibration profiles during mobile deployment likely to

be higher than this.

The effectiveness of the system was tested in a similar fashion to the previous paper but

with a single 1.5 Hz sinusoidal instrument vibration. While the team qualitatively claim

to have experimentally proven effective removal of the instrument vibration within the

range of 1 Hz to 5 Hz, there is no data presented to support this, so the true bandwidth

of the measurement correction is unknown. However, taking the stated range to be true,

it would still likely be insufficient for mobile deployments. Similarly, it would have been

informative to compare the corrected signal with a reference measurement so that some

quantitative performance metric could be presented. Despite the poor performance range,

this approach is still rather inaccessible as it requires complex bespoke optical arrange-

ment, therefore, would require manufacturing, assembly and optical alignment of the LDV.

3.1.2 External reference beam and accelerometer LDV measurement

correction

Later work published in 2011 employed both an accelerometer and an external reference

beam to remove the contribution of the instrument vibration [37]. While both the ac-

celerometer and the external reference beam will measure and subsequently subtract some

instrument vibration, it’s made clear that they have subtly different roles. The accelerom-

eter is used to estimate the vibration of the instrument, while the external reference beam

is intended to mitigate the effects of the parasitic coupling introduced by vibrations in the

optical fibres used in their setup.

Unfortunately, very little is said in terms of accelerometer signal processing as the paper

focuses on bespoke demodulation and Doppler tracking electronics. The accelerometer is

described as being subtracted from that of the LDV in a “line-of-sight” measurement. It

could be assumed the authors subtracted the component of the measurement in the beam
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direction, however, this is unclear. Similarly, there does not seem to be a signal synchroni-

sation stage prior to the subtraction of the integrated accelerometer signal from the LDV

measurement, which is important since the differing signal condition of each transducer

type will undoubtedly impact the total obtainable potential performance.

The entirely bespoke system was designed to increase land coverage rates, so it employed

a downward-facing five-beam LDV mounted to a moving ground vehicle. However, the

nature of this setup prohibited the acquisition of a simultaneous reference measurement

of the target vibration as the target location is in motion. Therefore, the system’s noise

floor is used rather than a reference measurement to assess the measurement correction

performance. This experimentally measured noise floor was compared to a theoretically

expected noise floor for an instrument insensitive to self-vibration. This was modelled as

a combination of shot noise and the aforementioned speckle noise. Shot noise occurs in

optical devices since the number of backscattered discrete photons can vary stochastically

between samples and is worsened during low-signal conditions with its effects located at

the higher acoustic frequencies (>5 kHz). A rigorous analytical derivation for the shot

noise is presented in the work which builds on previous works [78, 79], finally yielding the

following expression for shot noise:

Av,sh(f) =
fλ√
ϕpe

(3.2)

where Av,sh(f) is the amplitude spectrum as a function of the frequency f , λ is the wave-

length, and ϕpe is the received photoelectrons per second from the photodetector [37].

Whereas speckle noise mainly contributes to low frequencies (<1 kHz). The paper pos-

tulates that the square root of a Lorentzian function can effectively model speckle noise.

This postulation was based on several stated factors; firstly, the functional behavior of the

Lorentzian function aligned with the observed patterns highlighted by existing work [80];

secondly, the Lorentzian function was chosen for its continuous nature, providing conve-

nience in mathematical modelling; lastly, the Lorentzian function exhibited a meaningful

autocorrelation function. Therefore, speckle noise is modelled as the following:
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Av,sp(f) = λ

√
πf2

exc

12

√
2α

α2 + (2πf)2
(3.3)

where α = 2πfexc, with fexc being the exchange rate of the speckle pattern and all other

variables are as previously defined [37]. Finally, in order to calculate the total theoretical

noise floor due to these effects alone, the speckle noise and shot noise expressions are

combined using the following:

Av(f) =
√

[Av,sh(f)]2 + [Av,sp(f)]2 (3.4)

Figure 3.3 shows the original, uncorrected signal from the LDV at three different cruising

speeds along with the theoretically expected noise floor, given by Equation 3.4, Equa-

tion 3.3 and Equation 3.4. While for higher frequencies, the experimental measurements

match the theory, this is not the case for lower frequencies where the measured noise floor

is significantly higher than the theoretical noise floor. This is as would be expected and

is caused by the introduction of mechanical vibrations from the moving ground vehicle.

There also seem to be a number of resonances being excited, the largest of which is located

at roughly 50 Hz and 100 Hz and seem to be somewhat unaffected by the cruising speed.
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Figure 3.3: Amplitude spectrum of the surface velocity as measured with the laser
Doppler vibrometer, uncompensated by accelerometer data or external reference beam.
The smooth curves are the theoretically expected noise floors with the remaining curves
being the experimental measurements. The colours represent the cruising speeds of the
experimental and theoretical pairs [37]. © 2011 The Optical Society, reprinted with

permission.

Figure 3.4 shows the data following the subtraction of only the accelerometer signal. This

appears to significantly reduce the noise floor at the lower frequencies when compared to

the data shown in Figure 3.3. This reduction is particularly apparent on the two reso-

nances located at 50 Hz and 100 Hz which are reduced in amplitude by nearly a factor of

10. However, the measured data does not seem to agree well with the theoretically derived

noise floor at each cruising speed.
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Figure 3.4: Amplitude spectrum of the surface velocity as measured with the laser
Doppler vibrometer, corrected with accelerometer data. Solid smooth curves are theo-
retically expected noise floors due to shot and speckle noise [37]. © 2011 The Optical

Society, reprinted with permission.

Finally, Figure 3.5 shows the data following the subtraction of the accelerometer signal

and the external reference channel. Now the 100 Hz peak is entirely missing, and the

50 Hz peak has undergone a further significant reduction in amplitude. Interestingly, the

optical subtraction of the external reference mirror seems to have increased the amplitude

of the noise at around 1000 Hz. Despite this, the agreement between the theoretical model

and the measurements is still questionable below 1000 Hz, despite the technique leading

to a significant reduction in the measured instrument vibration.
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Figure 3.5: Amplitude spectrum of the surface velocity as measured with the laser
Doppler vibrometer, corrected with both the accelerometer data and the optical reference
channel. Solid smooth curves are theoretically expected noise floors due to shot and

speckle noise [37]. © 2011 The Optical Society, reprinted with permission.

While this technique yields a significant reduction in instrument vibration, there are two

main shortcomings. Firstly, the use of an external reference is limited to the quality of the

reference surface, if one is available at all. In this scenario, the reference beam is adjacent

to the measurement beam on the incoming ground, leading to the optical subtraction of

large portions of genuine signal content as the reference location will be undergoing similar

motion to the measurement location. The paper acknowledges this by stating that “often,

it is more interesting to measure the presence of a vibration rather than quantify its exact

amplitude”. The second shortcoming of the system is the significant complexity of its

implementation. Not only do the optics need to be assembled and aligned, but all the

accompanying signal processing electronics would also need to be constructed and config-

ured. Therefore, identifying a major gap within the existing time domain measurement

correction works, that is, a technique that can be easily adopted by the practising vibra-

tion engineer to make accurate frequency and amplitude vibration measurements while

being insensitive to self-vibration over a sufficiently wide frequency range.
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3.2 A new time domain-based processing technique

Considering that the three main criteria for a correction technique outlined in this chapter

are accuracy, accessibility and transient signal compatibility, then it becomes clear that,

independently, none of the existing time domain techniques are sufficient. As such, in

order to satisfy all three criteria, this section describes the development of a time domain-

based technique which utilises the same hardware arrangement as the existing frequency

domain-based work described in Section 2.3, but with new time domain-based signal pro-

cessing; making it compatible with transient signal types and therefore satisfying all three

criteria. This frequency domain technique signal processing is described in more detailing

the following chapter; however, for the purposes of this chapter, it is only the hardware

arrangement that is germane.

3.2.1 Hardware arrangement

It is important for the development of the correction techniques to construct a test setup

that simulates real-world LDV vibration scenarios, meaning there should be a vibrating

target of interest and a vibrating LDV. Figure 3.6 illustrates the experimental setup used

in this work, it allows for the independent control of both the target and the LDV vi-

bration. This setup is similar to the experimental setup employed in existing frequency

domain measurement correction work [31]. Here, the target vibration is the measurement

of interest, while the base vibration simulates the effects of instrument vibration on the

LDV measurement. Both the target and the base vibrations were realised using electro-

dynamic shakers independently driven using uncorrelated broadband white noise up to

200 Hz, generated by a Siemens Digital Industries Software Simcenter SCADAS Mobile

data acquisition system and accordingly amplified. The base shaker was a Tira Vibration

exciter S 51120 amplified by a Tira Vibration BAA 500, and the target shaker was a Brüel

& Kjær V201 M4-CE amplified by a Brüel & Kjær LDS LPA100. While a flat shaker/am-

plifier response over the frequency range of interest may be desirable, it is not essential

since the correction algorithm should be effective, irrespective of level and phase, across
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the frequency range.

(a) General schematic

of the setup used for

this work.

(b) Physical setup with

the laser beam high-

lighted.

DAQ System with Signal
Generator

AmplifierAmplifier

Ref.
Acc.

Corr.
Acc. LDV

Signal
Conditioning

Base
Shaker

Target
Shaker

Computer

(c) Block diagram rep-

resentation.

Figure 3.6: Experimental setup used to simulate a vibration measurement while the
instrument is experiencing vibration. The labels “Corr. Acc.” and “Ref. Acc.” represent

the correction and reference accelerometers, respectively.

A custom-made aluminium mounting bracket was used to fix a Polytec NLV-2500-5 Com-

pact Laser Vibrometer to the base shaker so that the laser beam axis was aligned with

that of the vibration. An Endevco 770F-10-U-120 (20.4 mV/ms−2 nominal) DC-response

accelerometer was mounted to the bracket with its sensitive axis colinear to and on the

beam axis. The target shaker was suspended directly above the LDV from an overhead

crane, providing isolation from the large base shaker. A second Endevco accelerometer of

the same model was mounted to the spigot providing the ‘true’ vibration measurement.

As in earlier work [38], a second, fixed LDV could equally be used for the true vibration

measurement. However, one or both beams would need to be off-axis to enable optical

access, which may require the angular misalignment to be determined and accounted for.

Similarly, the vibration produced by the large base shaker may be hard to isolate from the

second LDV. Therefore, the use of the reference accelerometer was preferred since all sen-

sitive axes could be aligned without obstruction, and no vibration isolation was required

since the target shaker was mounted from an overhead crane.
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The usage of accelerometers, while practical, is not without limitations. Primary among

these is the flatness of their amplitude and phase response. Unlike LDVs, accelerometer

performance is typically limited by the first mechanical resonance of the mass-spring sys-

tem. However, they are relatively low cost, are readily available and can offer acceptable

performance in the context of mobile LDV measurement campaigns, which are the focus of

the solutions developed in this body of work. In general, a frequency range from several Hz

to several hundred Hz is considered appropriate with vibration levels on the order of sev-

eral tenths to several tens of mms−1. Over such a relatively narrow frequency range, it is

appropriate to compensate for the amplitude and phase response with a straightforward

relative calibration (to the LDV), and this will be described in detail subsequently.

To better understand some of the other limitations of accelerometers, it is important to

cover their construction and operational principles briefly. As mentioned previously, the

core of an accelerometer is a mass-spring system. When the accelerometer is subjected

to any form of mechanical shock or vibration, this causes the spring to move or deflect

from its equilibrium position. This deflection is then converted into an electrical signal,

typically through a transducer which could be capacitive, piezoelectric, or piezoresistive.

The transducer transforms the mechanical motion into an electrical signal which can be

amplified, conditioned, and eventually measured. The resulting electrical signal is thus

a representation of the measured acceleration. However, translating mechanical motion

into an electrical signal through the mass-spring system comes with issues, such as noise.

This can be inherent in the transducer itself (like thermal noise), or it can be external,

like shot noise (caused by the quantum nature of electricity), mains noise (interference

from electrical power lines), amplifier noise, or cable sensitivity to vibration. These noise

factors can introduce unwanted signals that can interfere with the desired accelerometer

signal, thereby reducing the precision and accuracy of the measurements. While these

would somewhat affect the final obtained performance, the relative amplitudes of these

tend to be orders of magnitude smaller than the measurement of interest, therefore, they

are not considered further.
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Another limitation of accelerometers is that they typically exhibit a small amount of trans-

verse sensitivity, which might degrade correction performance in the presence of significant

off-axis vibration; in this case, it is only 3% [81]. In the experimental setup used here,

the inevitable rocking motion of the shaker is minimised by centring the mass distribution

on the vibration axis; therefore, this effect is considered negligible. Nevertheless, this and

some misalignment between the shaker axes also results in some motion of the LDV beam

on the target. While this motion was insufficient to cause the laser beam to deviate sub-

stantially from the region of interest on the target, pseudo-vibrations in the LDV signal,

which include speckle noise, are associated with such relative motion of the laser beam

across the target surface, and these cannot be corrected by the means proposed in this

paper. However, combined LDV sensitivity to transverse vibration as a result of both

phenomena is on the order of 0.1% [82] and is therefore also considered to be negligible in

the context of sensitivity to sensor head vibration.

The Siemens acquisition system was used to record the various time data throughput vi-

bration signals at the maximum sampling frequency of 204.8 kHz for a duration of 8 s.

This high oversampling factor assists in the accurate synchronisation of the three signals

in the time domain. The acquired data were processed as five separate 1.6 s data lengths.

These were similarly processed in the frequency domain for comparison with these acquisi-

tion parameters leading to a spectral resolution of 0.625 Hz and a bandwidth of 102.4 kHz.

An identical hardware arrangement is also used in Chapter 4; however, this section is not

repeated.

3.2.2 Performance metrics

Ultimately, and only possible in the lab-based experimental validation, the reference ac-

celerometer can be used to quantify the efficacy of the correction procedure. This is

achieved by comparing the corrected LDV signal with the processed reference accelerom-

eter signal. Signal similarity can be quantified in a number of ways; however, to keep this

work within the context of the existing frequency domain-based work, the same metric
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is adopted - known as the error reduction. This metric is essentially the ratio of the er-

ror in the signal before and after correction on a logarithmic scale [38]. When taking a

mean across multiple measurements as done here, then the formulation for the mean error

reduction can be written as:

R = −10 log10(r) dB (3.5)

with:

r =
1

M

M∑
m=1

MSEcorr
m

MSEmeas
m

(3.6)

where MSEcorr
m and MSEmeas

m are the mean squared error of the signal before and after

correction, respectively, andM is the total number of data lengths (M = 5 here). Similarly,

the uncertainty in R is taken to be the standard error of the mean, SEM , expressed in

the form R
+SEM
−SEM throughout this thesis. The SEM is calculated using:

±SEM = −10 log10

(
r ± δ√

M

)
dB (3.7)

where δ is the standard deviation of the M samples of r. Given by:

δ =

√√√√ 1

M − 1

M∑
m=1

(rm − r)2. (3.8)

where rm is the calculated r for the mth data length. So far, all equations in this section

have been kept general such that they apply to both the time and frequency domains. To

calculate the error reduction in a specific domain, then r is calculated using a domain-

specific formulation of the MSE.

To calculate r in the time domain, the following formulation of the MSE is used:

MSEsignal
m =

(
U signal
m (t)− U true

m (t)
)
2 (3.9)



48 Chapter 3. Time domain measurement correction

where U true
m (t) is the velocity obtained from the reference transducer, U signal

m (t) is either

the measured or corrected LDV signal and (·) signifies the time average. Whereas, to

calculate r in the frequency domain, the following formulation of the MSE should be used

for the mth spectra of N spectral lines [41]:

MSEsignal
m =(asignal0,m − atrue0,m )2+

1

2

N∑
n=1

(Asignal
n,m −Atrue

n,m)2 + (Bsignal
n,m −Btrue

n,m)2
(3.10)

where Asignal
n,m and Bsignal

n,m are the real and imaginary parts, respectively, of either the

measured or corrected LDV signal at the nth spectral line for the mth spectra The same

notation applies to Atrue
n,m and Btrue

n,m , which are the reference accelerometer equivalents.

Similarly, asignal0,m and atrue0,m are the DC component equivalents.

3.2.3 Accelerometer sensitivity and time delay estimation

Prior to any measurement correction, a one-off relative sensitivity determination and time

delay estimation should be carried out to optimise performance. To do this, a vibration

measurement is obtained from all transducers with their sensitive axes aligned. Practi-

cally achieved using an arrangement with the LDV positioned directly above and focused

on an accelerometer stack mounted to the target shaker’s spigot. Care was taken to

eliminate contamination from ambient vibration by placing the entire arrangement on an

anti-vibration base, as shown in Figure 3.7. This setup also assisted in keeping all sensitive

axes aligned. Aside from the omission of the base shaker, all other components on the

signal conditioning and acquisition side were identical to that described in Section 3.2.1,

as were the acquisition parameters.
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Figure 3.7: Annotated photograph of the calibration setup used.

While a secondary setup has been used here for the calibration measurement, it is not

strictly required. The setup depicted in Figure 3.6 could be sufficient by enabling only the

target shaker to calibrate the reference accelerometer and only the base shaker to calibrate

the correction accelerometer. Similarly, both accelerometers could be simultaneously cal-

ibrated by placing them in a stack on the target shaker or onto the LDV mount and then

driving the appropriate shaker.

Figure 3.8 schematically depicts this time domain-based relative calibration procedure for

a single accelerometer, which is applied to both the correction and reference accelerom-

eters. Since accelerometers measure acceleration but LDVs measure velocity, then some

differentiation or integration must occur. While it is possible to differentiate the LDV

signal and process the signals as accelerations, it is not ideal. Velocity is considered the

optimal vibration parameter for its flat representation of all frequencies [83]; therefore, the

accelerometers were integrated, as can be seen in Figure 3.8.
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Figure 3.8: The time domain-based accelerometer calibration procedure with “Acc.”
representing either the correction or the reference accelerometer signal.

Integration is straightforwardly achieved here using the cumulative trapezoidal method.

However, the integration of accelerometer signals commonly leads to the introduction of

errors such as a DC offset and drift. Detrending is used to remedy this and is achieved

by subtracting the least squares fit of a first-order polynomial from the integrated signal.

Since this might remove genuine as well as spurious signal content, the LDV signal is

subjected to the same for consistency.

With the accelerometer and LDV signals represented as velocities and detrended, a root

mean square (RMS) ratio can be used to revise the accelerometer sensitivities. All sub-

sequent measurements are then acquired with this adjusted sensitivity. Meanwhile, the

finite time delays between the LDV and accelerometer signals, which occur as a result

of differences between the signal conditioning electronics in the measurement chain, are

estimated using a cross-correlation function as follows [40]:

rxy(τ) =
1

T

ˆ ∞

0
x(t)y(t+ τ)dt (3.11)

where τ is the time delay between the signals, x and y are the two signals, t is time and

rxy(τ) the cross-correlation function in which the peak will occur at the time delay between

the signals.
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Figure 3.9: A cross-correlation plot of a single 1.6 s data length, with the maximum
highlighted by the dotted line and the corresponding τ overlaid.

Figure 3.9 shows one of the five cross-correlation functions, rxy(τ), generated to measure

the time delay between each accelerometer and the LDV. Across the five measurements,

an average of −125.0±2.4 µs was obtained. Here, the associated uncertainty is half that of

the time step, dt. This means that the accelerometer signal leads that of the LDV, which

is as expected since obtaining a measurement involves more complex digital signal pro-

cessing steps, such as demodulation and digital filtering, which can introduce additional

latency compared to the simpler and more direct analog-to-digital conversion process used

in accelerometers. Moving forward, this is the value used throughout this chapter for both

correction techniques. It should also be noted that, due to the signal truncation following

time domain synchronisation, the time and frequency domain approaches are not of exactly

identical signal content. However, the difference is only 26 out of over 300,000 samples,

and it is therefore highly unlikely this will significantly affect the results.
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3.2.4 Time domain correction algorithm

Figure 3.10 schematically depicts the time domain-based correction technique. The first,

integration, and second, detrending, stages are consistent with those of the previous sec-

tion. The third synchronisation stage accounts for the finite time delay between the ac-

celerometer and LDV signals. This is achieved by time-shifting each accelerometer signal

relative to the LDV signal by the amount previously determined using the cross-correlation,

given by Equation 3.11. As this is only possible in integer units of the time step, a high

sample frequency is required to increase the accuracy of the synchronisation. However, this

time-shifting results in regions at the start and at the end of the measurement duration

where samples for all three signals are not present. As a result, these regions are truncated.

Figure 3.10: The time domain-based measurement correction technique with “Corr.
Acc.” and “Ref. Acc.” representing the correction and reference accelerometer signals,

respectively.

The final stage in Figure 3.10, correction, refers to the removal of the instrument vibration

from the signal and is given mathematically by [38]:

Ucorr(t) = Um(t)− U0(t) (3.12)
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where Um(t) is the measured LDV signal, U0(t) is the processed correction accelerometer

signal and Ucorr(t) is the fully corrected LDV signal.

3.2.5 Established frequency domain and time domain techniques per-

formance comparison

As can be seen qualitatively by comparing Figure 3.11 (a) and Figure 3.11 (b), the fre-

quency domain-based technique yields significant improvements in the corrected versus the

uncorrected LDV signal over the range 15 Hz to 100 Hz. However, the performance below

15 Hz is relatively poor, which at the time of publication [51] was thought to be caused by

the lower signal level in this range owed to the shaker-amplifier dynamic characteristics.

While this may have been partially true, the main cause of this behaviour is incomplete

accelerometer signal handling which is the focus of the following chapter.
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(a)

(b)

Figure 3.11: A spectra for a 1.6 s segment (df = 0.625 Hz) in the range 0.625 Hz -
200 Hz: (a) all signals before correction and (b) reference accelerometer, measured and

corrected LDV signal.

As can be seen in Figure 3.12 for a 100 ms segment of data, the time domain-based tech-

nique developed here offers significant improvement in the corrected LDV signal. However,
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in the time domain, the effect of speckle noise is apparent, manifested as instantaneous

spikes not present in the reference accelerometer signal. In this scenario, the effects of

speckle noise may be reduced using a low-pass filter.

(a) (b)

Figure 3.12: A 100 ms segment of data from time domain technique: (a) all signals
before correction and (b) reference accelerometer, measured and corrected LDV signal.

The quality of the correction for the two alternative methods can be compared quantita-

tively using the mean error reduction, which can be seen in Table 3.1. Here it is shown

that the time domain-based technique outperforms the established frequency domain-based

technique by a factor of eight. Therefore, placing the new time domain-based technique

as the likely preferred measurement correction technique for both transient and station-

ary signal types at the time of publication. It should also be noted that by looking at

Figure 3.12 there is little improvement to be made, therefore, future improvements to the

technique will likely be minor.

Table 3.1: The mean error reduction for the five 1.6 s segments along with their loga-
rithmic uncertainties calculated as the standard error of the mean.

Technique R

Established frequency domain [31] 25.3+1.8
−1.3 dB

Time domain [51] 34.5+2.1
−1.4 dB
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3.3 Chapter summary and discussion

Recent advances in the use of LDVs for measurement campaigns in which the instrument

itself is subject to vibration have led to an increasing number of measurement correction

techniques. Practical implementation of these techniques involves the determination of

the sensor head vibration and subtraction of this in post-processing, which in the presence

of transient leave only the time domain techniques. These existing techniques have been

evaluated on three main criteria: accessibility, accuracy and transient signal compatibility.

The result of this assessment showed that existing time domain techniques, while being

compatible with transient signal types, require complex bespoke optical arrangements

and yield questionable performance. However, the existing frequency domain technique

hardware arrangement is highly accessible using only a rear-mounted accelerometer and a

commercial LDV system. As such, this chapter presented a new signal processing technique

based on the existing single-accelerometer hardware arrangement but using only time

domain techniques. This results in a technique that is accurate, accessible and compatible

with transient signals.

This new time domain-based technique was validated using an experimental arrangement

consisting of a vibrating LDV instrumented with a correction accelerometer and a vibrating

target similarly instrumented with a reference accelerometer to provide a ‘true’ vibration

measurement. Throughput time data for stationary vibration signals were acquired and

processed using both the frequency and new time domain-based techniques. It was shown

that, while both approaches lead to improvements in the quality of the corrected LDV

measurement, the time domain-based approach presented in this chapter yields a mean

error reduction value eight times higher than the frequency domain counterpart, yielding

near-perfect measurement correction. This new technique offers a viable alternative to the

established frequency domain equivalent for stationary vibration signals, provided time

data signals can be acquired with a high oversampling factor. Moreover, it now extends

the capability to perform complete correction of LDV measurements in the presence of

transient instrument vibration, which is expected to be present during real-world mobile

deployments.
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Frequency domain measurement

correction and signal

synchronisation

As highlighted in the previous chapter, there is a large performance discrepancy between

the established frequency domain and the new time domain-based single-accelerometer

techniques. While the new time domain technique presented herein is compatible with

stationary and transient signal types, it requires a high oversampling factor to enable ac-

curate signal synchronisation. Similarly, practising vibration engineers working with sta-

tionary signal types may prefer a frequency domain-based approach. Therefore, the first

portion of this two-part chapter presents a revised frequency domain-based technique. The

improved technique’s performance is compared against the established frequency domain-

based technique along with the time domain-based technique described in the previous

chapter for stationary signal types. This improved technique also involves the introduc-

tion of an improved relative calibration procedure which is similarly compared to the

established frequency domain-based technique. The same experimental arrangement used

in the previous chapter is then used to rigorously compare the time, frequency and im-

proved frequency domain-based techniques, showing that the revisions made successfully

close the performance discrepancy observed in the previous chapter. The combination of

57
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the signal processing presented in this chapter and the previous chapter set a new gold

standard for single accelerometer measurement correction signal processing, improving ex-

pected performance by up to a factor of eight.

The second portion of this chapter focuses on the effects of signal synchronisation on mea-

surement correction performance. This is important for both domains as the quality of the

measurement correction is related to the accuracy of the signal synchronisation since any

error therein will adversely affect the quality of the corrected velocity estimate. Therefore,

this chapter also describes the development of an analytical model that relates synchroni-

sation error to the velocity estimate error. This is essential for two main reasons. Firstly,

the time delay estimate will always have an associated uncertainty, however small and

in whichever domain. Secondly, the implementation of the synchronisation is constrained

to integer multiples of the time step in the time domain; therefore, even an exact delay

estimate is unlikely to lead to perfect synchronisation. While interpolation could be used

to upsample time domain data to enable sub-time step alignment, this is not always desir-

able. Therefore, a thorough investigation into the relationship between the time step and

the synchronisation error is required such that the errors in the time delay estimate can

be propagated and, in the time domain, an optimal sampling frequency can be selected,

maximising the performance. This chapter is orientated around the body of work that

was published in the Journal of Sound and Vibration [52].

4.1 Review of frequency domain-based measurement cor-

rection techniques

The frequency domain-based measurement correction works can be broken down into two

categories: a single accelerometer or a dual accelerometer arrangement to estimate the

instrument vibration. In either case, these techniques have been shown to effectively re-

move the instrument vibration from the measurement while being highly accessible to the

practising vibration engineer. However, as discussed in the previous chapter, the accuracy
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of this technique could be improved by implementing proper accelerometer signal handling.

4.1.1 Dual accelerometer measurement correction

Frequency domain-based LDV measurement correction was first realised using a pair of

accelerometers in 2017 [38]. They were mounted with equal but opposite coordinates in

the two axes orthogonal to the laser beam in order to measure and therefore subtract the

instrument vibration from the measured signal, as depicted in Figure 4.1. This arrange-

ment was shown by means of vector calculus to deliver theoretically perfect correction in

all six DOF.

Figure 4.1: A schematic of the dual accelerometer LDV measurement correction tech-
nique [38]. © 2017 Elsevier, reprinted with permission.

The corrected LDV measurement can be obtained by subtracting the measured instrument

vibration from the LDV measurement, as shown by Equation 4.1.

Ucorr = Um − U0 (4.1)

where Um is the velocity measured by the instrument, U0 is the instrument velocity es-

timate and Ucorr is the final corrected measurement. Practically, this was implemented

using Equation 4.2 and Equation 4.3:
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ℜ[FT (U0)]ωn
=

1

2ωn

(
cos (ωnτ1)ℑ[FT (a1)]ωn + cos (ωnτ2)ℑ[FT (a2)]ωn

)
− 1

2ωn

(
sin (ωnτ1)ℜ[FT (a1)]ωn + sin (ωnτ2)ℜ[FT (a2)]ωn

) (4.2)

ℑ[FT (U0)]ωn
= − 1

2ωn

(
cos (ωnτ1)ℜ[FT (a1)]ωn + cos (ωnτ2)ℜ[FT (a2)]ωn

)
− 1

2ωn

(
sin (ωnτ1)ℑ[FT (a1)]ωn + sin (ωnτ2)ℑ[FT (a2)]ωn

) (4.3)

where ℜ and ℑ denote the real and imaginary parts, ωn denotes the nth spectral line of

the Fourier transform FT , a1 and a2 denote the measured time domain accelerations of

the two accelerometers, τ1 and τ2 denote the time delays of the two accelerometers relative

to the LDV. These time delays were obtained using via a relative calibration procedure

using a similar hardware arrangement to that described in Section 3.2.3. This essentially

involved the simultaneous acquisition of vibration data using both the LDV and the ac-

celerometers with their sensitive axes aligned. Following this, the phase difference between

the integrated accelerometer and LDV signals can be used to calculate the time delay be-

tween the two transducer types, as shown in Figure 4.21.

Figure 4.2: One of five phase difference plots between the integrated accelerometer
and LDV signals used to estimate the phase delay [38]. © 2017 Elsevier, reprinted with

permission.

1This time delay estimation technique is only valid for frequency-independent time delays as is seen
here
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To verify this correction technique, two different experimental setups were used. First,

the setup shown in Figure 4.3 was constructed to simulate instrument vibration in the

direction of the beam axis using a large shaker to which the LDV was mounted. The

target vibration was simulated using a smaller shaker, and the reference measurement

was taken using a stationary LDV mounted above. This experimental arrangement and

signal processing yielded a mean error reduction, using Equation 3.5 and Equation 3.10,

of 30 dB, representing a significant reduction in the contribution of instrument vibration

in the measured signal.

Figure 4.3: A diagrammatic representation (a) and a photograph (b) of the experimental
setup to verify the dual accelerometer correction technique during one DOF sensor head

vibration [38]. © 2017 Elsevier, reprinted with permission.

To further validate this correction technique, a “6-poster” platform that could undergo

six DOF vibration was used, with the reference measurement now being taken using an

accelerometer rigidly mounted to the target. The setup is pictured in Figure 4.4 with the

target now being a mock steering wheel also mounted on the platform. Using this setup,

corrections with an error reduction of up to 19 dB were demonstrated. It should be noted

that this decrease in the correction performance is likely caused by there being lower levels

of instrument vibration on this platform than on the single DOF shaker experiment; hence,
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there is less room for improvement.

Figure 4.4: A photograph of the experimental setup used to verify the dual accelerom-
eter correction technique during six DOF sensor head vibration [38]. © 2017 Elsevier,

reprinted with permission.

4.1.2 Single accelerometer measurement correction

In the year following the initial paper [38], a follow-up paper was published that showed

measurement correction to be possible in the presence of six DOF vibration using only one

of the two correction accelerometers [31]. Through some additional vector calculus, it was

rigorously shown the accelerometer must be mounted colinear to and on the beam axis

to avoid any cross-axis sensitivity. Practically, this was achieved by mounting the LDV

on a rigid aluminium frame with an accelerometer mounting surface behind the LDV,

satisfying these criteria. This frame could then be mounted to the shaker to undergo one

DOF vibration while aimed at the vibrating target, mounted from the ceiling for effective

isolation from the base shaker. The target was in the form of a speaker box with an

accelerometer mounted to the centre to act as the reference measurement. As can be seen

in Figure 4.5, this setup also contained similar mounting points for the dual accelerometer

configuration discussed in the previous section to allow for a thorough comparison between

the two techniques.
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Figure 4.5: Experimental arrangement to compare the double and single accelerometer
frequency domain-based approaches [31]. CC BY 3.0.

While not presented in the paper, Figure 4.6 was generated to explain the signal process-

ing used for this technique in a style consistent with other such diagrams presented herein

to allow for easier comparison. It captures the same concepts as the dual accelerometer

technique, except since there is only one accelerometer now, no averaging is required. The

procedure involves first windowing and transitioning into the frequency domain using an

FFT of all signals. Followed by the integration and synchronisation of the accelerometer

signals and, finally, subtracting the processed correction accelerometer signal from the

LDV signal.

Figure 4.6: A functional diagram representing the established frequency domain-based
technique developed based on the technique described in the paper (this diagram was
not present in the paper) [31]. The signals “Corr. Acc.” and “Ref. Acc.” represent the

correction and reference accelerometer signals, respectively.
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When both the target and the base shaker were excited using white noise, both the single

accelerometer and the dual accelerometer techniques yielded an error reduction of 17.5 dB,

showing the single accelerometer technique is as effective as the dual accelerometer tech-

nique whilst being considerably easier to implement. Figure 4.7 shows a spectrum before

correction and after correction by the single and double accelerometer techniques. Overall,

the corrected signals tend to agree with the reference measurement. However, below about

5 Hz, the corrected LDV and the reference measurements deviate from one another.

Figure 4.7: A spectra of the target vibration compare to the uncorrected LDV and the
two corrected LDV techniques [31]. CC BY 3.0.

A similar trend can be observed in the plot of the mean phase difference between the

corrected LDV and reference measurement, seen in Figure 4.8. Here, the mean phase

difference begins to dramatically increase for frequencies below about 15 Hz. Therefore,

it is likely that whatever is causing the performance gap described in Chapter 3 is a phe-

nomenon that largely affects the lower frequencies with a rapid decay as the frequency

increases, beginning to hint at the improvements to be made to the existing signal pro-

cessing.
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Figure 4.8: The mean phase difference between the corrected LDV signal with either a
single or double accelerometer, and the reference accelerometer [31]. CC BY 3.0.

4.2 Improved frequency domain-based processing technique

Similar to the previous chapter, the signals in this work have been handled as velocities

since it is the optimal vibration parameter for its flat representation of all frequencies

[83]. Therefore, the accelerometer signals must be integrated. However, the integration

of discretised signals commonly leads to the introduction of errors which can manifest

themselves as drift. Drift is more readily identified and relatively easily removed in the

time domain by subtracting a first-order least squares fit. Although possible to remove in

the frequency domain, it is less noticeable not as easily removed, which is likely why the

established technique neglected to include this. Conversely, integration is readily imple-

mented and shown to be more accurate in the frequency domain [84].

For an arbitrary signal, s(t), the actual measurement in the presence of drift can be

understood as the addition of both s(t) and the drift, given by f(t). The effects of this

drift on the frequency domain representation of a signal can be visualised by taking the

FFT of f(t), where it is best represented as first-order function:
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f(t) = mt (4.4)

where t is time and m is the gradient of the drift. Since the most common window type

when dealing with vibrations is a Hann window, H, then its effects should also be consid-

ered. However, for completeness, both the FFT of the Hann windowed function, Hf(t),

and the original function, f(t), have been plotted, see Figure 4.9. This example demon-

strates how the errors being introduced by the drift would manifest themselves at the lower

frequencies, agreeing with the observed errors in previous work [31]. Therefore, the inte-

gration of an appropriate detrending stage into the established frequency domain-based

technique should increase the technique’s performance.

(a) (b)

Figure 4.9: A 2 s segment of simulated data at 512 Hz for f(t) = 2t in both (a) the time
domain and (b) the frequency domain (df = 0.5 Hz), with and without a Hann window

4.2.1 Accelerometer sensitivity and time delay estimation

Using the setup described in Section 3.2.3, a dataset is collected with all the sensitive

axes aligned and measuring the same vibration. The acquired signals are then processed

according to the procedure shown in Figure 4.10 for a single accelerometer channel. In

earlier work [31, 38], signals were directly captured as frequency spectra, calculated from

Hann-windowed time blocks because the excitation was broadband white noise. Follow-

ing frequency domain integration of the accelerometer signals, time delay and updated
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sensitivity values were determined as per the ultimate step in the diagram. In the re-

vised approach, time data are instead acquired with the accelerometer signal immediately

converted to frequency domain representation, albeit without prior application of a Hann

window to the time data blocks. While perhaps considered unconventional, the lack of

windowing is an essential part of the technique as it enables the preservation of the overall

time domain waveform, thereby allowing accurate detrending in the subsequent stages.

Figure 4.10: A schematic of the new frequency domain-based relative calibration pro-
cedure. The improvements are highlighted by the curly brackets and include the addition
of the IFFT, detrending and FFT stages, along with moving the windowing stage from
after the measurement block to just before the second FFT. The signal “Acc.” represents

that obtained from either the correction or reference accelerometer.

As can be seen in Figure 4.10, a jω division is used in the frequency domain to integrate

the accelerometer signal. Removal of the resulting drift is achieved by the subtraction of a

first-order least-squares fit from the time domain integrated signal. Since this detrending

step will act to remove not only the spurious but also some genuine signal content, the

same operation must be applied to the measured LDV signal; as done in the previous

chapter. Both signals are now converted to the frequency domain in the usual way, and

implementing a Hann window on the time data blocks if required. The required sensitiv-

ity prefactor and synchronisation parameters are obtained by taking the ratio of the RMS

values and the phase difference between the signals, respectively.

Figure 4.11 (a) shows phase difference plots generated from a single time data block using

the established and the improved frequency domain-based method. By comparing the

two curves, it becomes obvious that the improved technique leads to increased agreement
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between the two types of transducers. As can be seen in Figure 4.11 (b), the improvement

occurs mainly occurs at the lower frequencies. For a system with a constant phase delay,

the group delay can be written as:

∆ϕ(f) = −2πfτmeas (4.5)

where ∆ϕ is the phase difference, τmeas is the measured time delay and f is the frequency.

Therefore, the least squares fit can be used to extract τmeas from the detrended data set.

For this dataset, a value of τmeas = −133.3 ± 1.8 µs was obtained using the improved

technique. For consistency, all correction techniques in this chapter will use this time

delay estimate. Since the required accuracy for the time delay estimate is related to the

frequency content of the instrument vibration, more advanced estimate techniques may

be required if the instrument vibration increases in frequency. Therefore, the use of more

advanced signal processing techniques, such as the smoothed coherence transform [85],

may be important for these applications as they yield more accurate estimates which are

less affected by measurement noise.

(a) (b)

Figure 4.11: Phase differences for a single, 1.6 s data length (df = 0.625 Hz), using the
established [31], ∆ϕest, and improved, ∆ϕimp, frequency domain-based methods; a) phase

differences and b) comparison between differences.
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4.2.2 Improved frequency domain correction algorithm

Correction of the LDV measurement similarly requires integration of the correction ac-

celerometer signals with detrending; therefore, being essential for optimal performance, as

such, a revised post-processing approach is shown in Figure 4.12. As with the previous

section, the differences between this improved and the previously established approach are

largely captured in the steps between the IFFT and the second FFT. Again, the signals

are now captured in the time domain, whereas previously frequency spectra were captured

directly. In this case, the integration-related steps are conducted on both the correction

and reference accelerometers, these having had their relative sensitivities adjusted and

time delays estimated. The latter of the two accelerometers is only intended for use in

the laboratory research campaign, which provides a ‘true’ vibration measurement for cor-

rection performance; for subsequent real-world campaigns, there is no such device since,

otherwise, there would be no need to develop the LDV capability for this purpose.

Figure 4.12: A functional diagram representing the improved frequency domain-based
technique. The improvements are highlighted by the curly brackets and include the ad-
dition of the IFFT, detrending and FFT stages, along with moving the Windowing stage
from after the measurement block to just before the second FFT. The signals “Corr. Acc.”
and “Ref. Acc.” represent the correction and reference accelerometer signals, respectively.

It is important also to note here that the LDV measurement must also be subject to the

detrending step; otherwise, the corrected LDV signal may contain some signal content

that was removed during the accelerometer detrending. Following the second FFT, the

correction processing is similar to that previously described Figure 4.6, the exception being
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that here the accelerometer signals are already in velocity. Incorporating the previously

determined time delays, before subtracting the correction accelerometer signal from the

LDV (in complex representation), yields the corrected LDV signal for direct comparison

with the ‘true’ vibration, given by the reference channel. The correction performance is

then quantified using the error reduction, given by Equation 3.5, with the frequency do-

main formulations of the MSE, given by Equation 3.10. For practical applications, if the

user so wishes, an IFFT may be applied to return the signal to the time domain.

4.2.3 Improved frequency domain technique performance assessment

It is useful to visualise the performance difference between the two techniques as a function

of the frequency. To do this, the error reduction can be calculated for each spectral line

and plotted. The MSE in Equation 3.5 can be substituted for the square error, SE, to

preserve the frequency information. This plot is improved if a mean of each spectral line,

n, is taken across the multiple spectra, m. Algebraically, this is given by:

SEsignal(n) =
1

M

M∑
m=1

(asignal0,m − atrue0,m )2 for n = 0

=
1

2M

M∑
m=1

(Asignal
n,m −Atrue

n,m)2 + (Bsignal
n,m −Btrue

n,m)2 for n > 0

(4.6)

where all symbols are as previously defined. Substituting the SE in place of the MSE in

Equation 3.5) would then give:

R(n) = −10 log10

(
SEcorr

SEmeas

)
dB (4.7)

which can be seen plotted in Fig. 4.13 as a function of frequency.
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Figure 4.13: A plot of R(f) obtained from R(n) for both the established [31] and
the improved [52] frequency domain-based techniques using five 1.6 s data lengths (df =

0.625 Hz).

To obtain the data shown in Figure 4.13, the reference channel for both techniques were

processed identically and according to the technique presented in Figure 4.12. These data

show that the improved frequency domain-based technique outperforms the established

technique for frequencies below 100 Hz. However, for frequencies above 100 Hz, the dif-

ference is less noticeable, which is expected since the errors mitigated by detrending are

largely at the lower frequencies. For further proof that this was indeed the cause of the

performance gap seen in Chapter 3, the mean error reduction, R, of these two techniques

can be compared to that of the time domain technique.
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Table 4.1: Error reduction of the three measurement correction techniques with their
associated logarithmic uncertainties.

Technique R

Established frequency domain [31] 25.0+1.8
−1.3 dB

Improved frequency domain [52] 33.5+1.2
−0.9 dB

Time domain [51] 34.3+0.9
−0.7 dB

Table 4.1 shows the error reduction for the three techniques, along with their associated

logarithmic uncertainties. Firstly, it shows that the improvements made to the frequency

domain technique lead to a seven times increase in R. It is important to note that this

is not in contradiction with the previously quoted eight times performance gap [51] since

these were different datasets with likely slightly different gains set on the shakers. Com-

paring the performance of the improved frequency domain-based technique to that of the

time domain-based technique described in Chapter 3, it can be seen that while the time

domain-based technique slightly outperforms that for the frequency domain technique by

0.8 dB, however, the two are still within the associated uncertainties of one another. This

shows that the previously observed performance gap was indeed caused by the lack of

proper accelerometer handling in the established frequency domain technique.

4.3 Theoretical generalisation relating synchronisation er-

ror to correction performance

With performance inconsistency now resolved, the focus of the remainder of this chapter

is an analytical model which relates the synchronisation error, ∆τ , to measurement cor-

rection quality. The main focus will be on time domain-based processing since the quality

of the synchronisation is restricted to integer multiples of the time step. Although inter-

polation could be used on the time data could enable sub-time step alignment, this is not

always preferred. Therefore, this model can be used to predict the system requirements

necessary to obtain high-quality time domain data based on the sampling frequency and
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the measured time delay.

4.3.1 Relating the error reduction to the synchronisation error

To relate the synchronisation error, ∆τ , to the error reduction, R, it is assumed that ∆τ

is the primary factor which affects the quality of the corrected velocity estimate, MSEcorr.

While other factors may also affect MSEcorr, this model is not concerned with them. There-

fore, a relationship between MSEcorr and ∆τ is required to relate ∆τ to R.

To do so, the corrected LDV signal, vcorr(t), can be written as follows:

vcorr(t) = vmeas(t)− vacc(t) (4.8a)

where vmeas(t) is the target velocity measured by the LDV and vacc is the velocity of

the LDV instrument itself, measured by the correction accelerometer. Rewriting Equa-

tion 4.8a) to encapsulate the synchronisation error expressed as v′corr(t):

v′corr(t) = vmeas(t)− vacc(t+∆τ) (4.8b)

The velocity error, ∆vcorr(t), can then be defined as the difference between vcorr(t) and

v′corr(t):

∆vcorr(t) = vacc(t)− vacc(t+∆τ) (4.9)

Now a discrete Fourier expansion can be applied and, since ∆τ is small, the small angle

approximation can also be applied:

vacc(t) =
a0
2

+

N∑
n=1

An cos(nω0t) +Bn sin(nω0t) (4.10a)
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vacc(t+∆τ) =
a0
2

+
N∑

n=1

An

(
cos(nω0t)− nω0∆τ sin(nω0t)

)
+Bn

(
sin(nω0t) + nω0∆τ cos(nω0t)

) (4.10b)

where An and Bn are constants for each spectral line, a0 is the DC component and ω0 is the

spectral resolution. Substituting these expansions back into Equation 4.9) and simplifying

the expression gives:

∆vcorr(t) = ∆τ
N∑

n=1

−Annω0 sin(nω0t) +Bnnω0 cos(nω0t) (4.11)

Therefore, MSEcorr, or ∆vcorr(t)2, can be expressed as:

MSEcorr =
∆τ2

2

N∑
n=1

(Annω0)
2 + (Bnnω0)

2 (4.12)

Inevitable sources of error other than synchronisation error mean that the MSE will never

be zero in practice. To account for this, an additional term, c, is introduced:

MSEcorr = c+
∆τ2

2

N∑
n=1

(Annω0)
2 + (Bnnω0)

2 (4.13)

where c is a constant representing the lowest practically obtainable MSE with a given setup.

In order to relate this to the mean error reduction, Equation 3.5) can be rearranged into

the following form:

MSEcorr

MSEmeas
= 10−

R
10 = r (4.14)

where r has been defined for convenience. Combining this with Equation 4.13), the fol-

lowing can be written:

r(∆τ) =
c+ ∆τ2

2

∑N
n=1(Annω0)

2 + (Bnnω0)
2

MSEmeas
(4.15)



Chapter 4. Frequency domain measurement correction and signal synchronisation 75

The value of r(∆τ = 0) can then be described as “optimal”, and denoted by ropt. There-

fore, Equation 4.15) can also be written as:

r(∆τ) = ropt +K∆τ2 (4.16)

where ropt and K have now incorporated all remaining constants. Both ropt and K can

be experimentally determined for a given setup.

Finally, an expression for R(∆τ) can be written by substituting Equation 4.16) into Equa-

tion 3.5):

R(∆τ) = −10 log10(ropt +K∆τ2) (4.17)

However, to make use of this relationship, the synchronisation error must be derived and

this differs for the frequency and time domain.

4.3.2 Frequency domain synchronisation error

The synchronisation error in the frequency domain, ∆τf , is simple since it only depends

on how accurately the signal delay is known since sub-time step alignment is possible.

Mathematically this can be defined as:

∆τf = τmeas − τtrue (4.18)

where τmeas is the measured time delay and τtrue is the true time delay. Practically,

τtrue is the theoretical unknowable exact true time delay between the signals and τmeas is

ideally determined using the procedure outlined in Section 4.2.1. Substituting this into

Equation 4.17) gives the following:
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R(τmeas) = −10 log10

(
ropt +K(τmeas − τtrue)

2

)
(4.19)

Therefore, this frequency domain model predicts that the mean error reduction will have

no sampling frequency dependence.

4.3.3 Time domain synchronisation error

The synchronisation error in the time domain, ∆τt(dt), is not only dependant on the

accuracy of the measured time delay, but also on the time step. This is given by:

∆τt(dt) =

⌊
τmeas

dt

⌉
dt− τtrue (4.20a)

where dt is the time step and ⌊...⌉ denotes the nearest integer. Equation 4.20a) can now

be written in terms of the sampling frequency, fs, instead of the time step since that is

the adjustable acquisition parameter:

∆τt(fs) =

⌊
τmeasfs

⌉
1

fs
− τtrue (4.20b)

Since τtrue is the theoretically true value, it bares little practical significance. Moving

forward, it will be assumed that τmeas ≈ τtrue so that the effect of the sampling frequency

alone on the error reduction can be thoroughly assessed; both will now be denoted as τ .

This assumption also results in both positive and negative synchronisation errors having

an equivalent negative effect on the velocity estimate. Combining Equation 4.17) and

Equation 4.20b) gives:

R(fs) = −10 log10

(
ropt +K

(⌊
τfs

⌉
1

fs
− τ

)2)
(4.21)

The general form of the time domain model, with the significant features labelled, can be

seen in Figure 4.14. As can be seen, there are three distinct regions of behaviour. The

first, Inactive Region, displays no sensitivity to the sampling frequency because the time
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step, dt, is too small for any temporal alignment to take place; as such, no performance

change occurs. Temporal alignment becomes possible once the time step is less than 1
2τ ,

representing the beginning of the Transitionary Region. This region is characterised by a

sharp performance increase, as the decreasing time step allows for increasingly accurate

synchronisation. The third and final region, the Oscillatory Region, is characterised by

oscillations in the error reduction which decrease in amplitude as the frequency increases.

The peaks of these performance oscillations occur at integer multiples of τ−1 Hz, since

these locations are where τ becomes divisible by an integer number of time steps, lead-

ing to an increase in the accuracy of the temporal alignment. Similarly, the performance

troughs occur at half-integer multiples of τ−1 Hz, where the synchronisation error is max-

imised.

Figure 4.14: A general plot of the time domain error reduction model as a function of
the sampling frequency with three distinct regions labelled. Higher values on the vertical

scale represent better performance.
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Since a continuous range of sampling frequencies is rarely available, a more practically

relevant example is Equation 4.21) plotted at the sampling frequencies available on the

Simcenter SCADAS Mobile data acquisition system, as seen in Figure 4.15. Although the

highest sampling frequency, 204.8 kHz, shows a significant reduction in error, a similar

performance could have been obtained by selecting a sampling frequency of 8.192 kHz,

16.384 kHz or 40.960 kHz. In fact, the aforementioned frequencies have a error reduction

0.03 dB higher than 204.8 kHz. This shows that the time domain model can still predict

the optimal sampling frequency to maximise performance without needing to measure val-

ues for the constants K and ropt.

Figure 4.15: A plot of error reduction as a function of the sampling frequencies available
on the Simcenter SCADAS Mobile data acquisition system. This is plotted with values

of K = 35× 103 s−2 and ropt = 350× 10−6.

4.3.4 Time domain constants determination

Since the main functionality of the time domain model is to enable the informed selec-

tion of the sampling frequency, knowledge of the constants is not necessary. However, in
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order to validate the time domain model it will be compared to an experimentally mea-

sured R(fs), denoted by Rex(fs), meaning the constants are required since they affect the

model’s relative proportions in the vertical axis.

The first constant, ropt, is calculated using:

ropt = 10−
max(Rex)

10 (4.22)

where max(Rex) is the maximum value of Rex(f). Similarly, K, can be calculated using:

K =
ropt − 10−

Rex(fs)
10(⌊

τmeasfs

⌉
1
fs

− τmeas

)2 for fs >
1

2τmeas
Hz (4.23)

where all symbols are as previously defined. The sampling frequency here must be larger

than 1
2τmeas

Hz as the time domain model does not predict any behaviour in the Inactive

Region so scaling using these data will lead to erroneous predictions.

4.4 Experimental validation of the time domain model

This section aims to show the relative performances of both the improved frequency do-

main and time domain techniques over a range of frequencies and, by doing so, confirm the

time domain model for R(fs), given by Equation 4.21). Thus, providing the user with two

instrument vibration correction techniques when faced with stationary signal types. The

experimental arrangement and acquisition parameters used in the following was common

with that used in Section 3.2.1 and Section 3.2.2.
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4.4.1 Data collection and processing

To validate the time domain model presented in Equation 4.23), the error reduction needs

to be characterised against the sampling frequency and thus data is acquired at the high-

est available sampling frequency of 204.8 kHz and iteratively downsampled to simulate

acquisition at lower sampling frequencies. The process was implemented in MATLAB and

Figure 4.16 illustrates this code for the time domain and improved frequency domain-based

techniques.
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Figure 4.16: A schematic of the code used to characterise the error reduction as a
function of sampling frequency. Where D is a downsampling factor and “TD Corr” and
“FD Corr” represent both the time domain [51] and improved frequency domain-based

correction techniques [52], respectively.

As shown in Figure 4.16, measured data are immediately lowpass filtered using a finite

impulse response digital lowpass filter with a 200 Hz cut-off frequency which coincides with

the maximum frequency of the vibration. Any spurious higher frequency signal content

which might otherwise have been aliased into the frequency range of interest following
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the downsampling is thereby rejected. Following this, the reference accelerometer signal

is then subjected to the same frequency domain detrending and synchronisation steps as

previously described. The sole purpose of this special treatment is to make sure that the

reference signal is as close to the ‘true’ vibration. This includes both the integration and

synchronisation accuracy.

Given that the Fourier transform presumes that a signal is periodic, depending on which

signal is leading, the phase shift would have caused a piece of the reference accelerometer

signal’s beginning or end to wrap around to the opposite side of the signal. To fix this, any

sample in this “wrapped” region is removed from all three signals in the Truncation stage,

shown in Figure 4.16. The signals are then downsampled by collecting each Dth sample

from the original signals, simulating an acquisition with a lower sampling frequency. The

penultimate stages named “TD Corr” and “FD Corr” represent the two correction algo-

rithms. This process was looped in the code with D = 1, 2, ..., 400, giving a minimum

sampling frequency of 512 Hz and a total of 400 data points for each correction technique.

The final output is, therefore, two data sets describing the performance of each correction

algorithm as a function of the sampling frequency.

4.4.2 Model validation and sample rate dependent performance assess-

ment

The frequency domain model, given by Equation 4.19), predicts no sampling frequency

dependence as sub-time step synchronisation is possible in the frequency domain. How-

ever, the time domain model, given by Eq (4.21), predicts a reasonably strong dependence

due to this time step synchronisation limitation. Comparing Figure 4.17 and Figure 4.14,

the three previously defined regions are clearly identifiable from the experimental data.

In particular, the important Transitionary Region is clearly shown; this is where the time

domain-based technique’s performance exceeds that of the frequency domain-based ap-

proach.
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Figure 4.17: A plot of the experimentally derived error reduction as a function vari-
ous sampling frequencies for the improved frequency domain and the time domain-based
techniques. The error reduction is calculated using Equation 3.5) and the domain-specific
formulations for the MSE. The time domain model, given by Equation 4.21), is also plot-

ted for validation purposes.

In order to validate the time domain model, the time domain data can be compared to the

time domain model in Figure 4.17; from this, two shortcomings can be seen. Firstly, the

minor noise-like variations that can be seen in the time domain data at frequencies below

10 kHz are not predicted by the time domain model. However, both correction techniques

show these variations, which are most likely the result of distinct phenomena since they

don’t occur at common frequencies. Secondly, the time domain model fails to predict the

behaviour in the Inactive Region - where an increase from 25 dB to 30 dB is observed.

The three-times increase seen in the time domain experimental data is likely caused by

a decrease in the quality of integration at the lower sampling frequencies when using the

cumulative trapezoidal method. It is no shortcoming of the time domain model since only

the effects of signal synchronisation were considered, a more complex model would likely

be required to understand these other phenomena.
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However, as can be seen in Figure 4.17, the time domain model almost exactly describes

the experimental data in the Transitionary and Oscillatory Regions, which are the regions

of interest here. With the time domain model validated, its main utility is its ability

to determine when the time domain technique will perform optimally, a priori based on

the time delay estimate and the sampling frequency. That is, significant improvements in

the correction will occur if a data acquisition system is used with a sampling frequency

larger than 1
2τ Hz. Similarly, any sampling frequency larger than τ−1 Hz will not yield

any substantial increase in performance and is, therefore, unnecessary. Also, if possible, a

sampling frequency should be selected close to a performance peak located at n
2τ Hz with

n = 1, 2, 3, ....
technique and select an appropriate sampling frequency to optimise perfor-433

mance.434
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Figure 10: A flow chart describing when to use either the time domain [16] or the improved
frequency domain-based technique described herein. The outcome is based on the sampling
frequencies available to the user and τ .

5. Conclusions436

Recent advances in the application of LDVs to measurement campaigns437

in which the instrument sensor head is itself subject to vibration have lead438

to an increasing number of techniques for the correction of the measured439

signals. Practical implementation of these techniques involves the determi-440

nation of the sensor head vibration and subtraction of this in post-processing.441

Extension from lab to field-based measurements has further necessitated the442

conception and development of novel time domain-based processing tech-443

niques for vibration signals that are transient in nature. Initial investigations444

21

Figure 4.18: A flow chart describing when to use either the time domain or the improved
frequency domain-based technique, both described herein. The outcome is based on the

sampling frequencies available to the user and τ .

Comparing the performances of the two techniques in the region fs > 1
2τ Hz, as shown

in Figure 4.17, there is about a decibel of performance gain to be made by using the

time domain-based technique. The exact reason for the difference in performance is yet
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to be determined. However, since this is small, either technique could be used with little

difference in overall performance. Similarly, the user could select a sampling frequency

close to a performance peak, τ−1 Hz, in order to optimise the time domain-based tech-

nique performance. However, the benefit of this marginal with the performance change

between a performance peak and trough in the Oscillatory Region to be just over a decibel.

Figure 4.18 summarises these generalised findings based on the vibration signal type and

the sampling frequency, advising the user which is the most appropriate technique to use

for a given measurement campaign. When the vibration is stationary in nature, the user

can select either technique. When the vibration is transient in nature, the user must use

the time domain-based technique with an an appropriate sampling frequency to optimise

performance.

4.5 Chapter summary and discussion

For stationary signal types, both time and frequency domain-based techniques should be

able to handle the measurement correction equivalently. However, the previous chapter

showed that there exists an eight times performance gap between the established frequency

domain-based technique and the time domain-based technique. As such, this chapter

aimed to close the observed performance gap, with an improved frequency domain-based

technique being developed. By applying a modified frequency domain-based technique,

which included a detrending step prior to implementation of the correction, a seven times

performance increase was obtained. To make this detrending possible, it is necessary that

no window is applied to the sampled data until after detrending. Particular improvement

was shown to be found in frequencies below 100 Hz, which is arguably a major benefit

since many applications of interest in these techniques are expected to be focused on me-

chanical vibrations experienced during mobile deployments. In all likelihood, the improved

technique presented herein should become the new gold-standard frequency domain-based

technique, with the established technique becoming obsolete. It should be noted that

while previous work showed an eight-times difference in the performance, the seven-times

difference in performance is not contradictory as the error reduction is dependant on the
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relative levels of the target and instrument vibration, therefore, is not necessarily consis-

tent across campaigns.

Since correction measurements are typically obtained using accelerometers, in addition to

the requisite integration, signal synchronisation is necessary due to differences in signal

conditioning. It is commonly known that the effectiveness of the correction will depend

on how well the signals are synchronised. Therefore, when working in the time domain

and when interpolation is not desirable, the sampling frequency would then contribute

to the synchronisation error as time shifts are only possible in integer units of the time

step. As such, an analytic model describing the relationship between the synchronisation

error and the performance was derived and formulated in terms of the sampling frequency

and the error reduction. The derived model was validated using significantly oversampled

experimental data, downsampled to simulate acquisition over a wide range of sampling

frequencies with excellent agreement found. This method of experimentally obtaining the

sampling frequency dependence also enabled the comparison of the time and frequency

domain-based techniques across an extended range.

Comparing the relative performances over this extended sampling frequency range leads

to the definition of distinct regions, within each of which the measurement correction can

be optimised by selecting the appropriate technique. These findings were then gener-

alised, based on two parameters, to determine the minimum sampling frequency necessary

for the time domain-based technique to outperform the improved frequency domain tech-

nique. Given the now two viable and equally effective correction techniques developed

herein, each with their own set of requirements and the specifics of the vibration mea-

surement of interest, a framework was developed to allow the user to conveniently select

the appropriate correction technique and sampling frequency a priori. This enables the

definition of the optimal hardware characteristics required for a given measurement cam-

paign, which is important for the efficient and practical integration of such sensor solutions.



Chapter 5

Multi-Axial Simulation Table

Experimentation

The focus of this thesis up until this chapter has been on the translational motion in the

beam axis. However, the introduction of arbitrary non-beam DOF motion, as would be

expected during an in-field mobile deployment, introduces speckle noise and aiming er-

rors. Speckle noise is discussed in Chapter 2 and arises due to relative motion between the

LDV beam and measurement surface, whereas aiming errors will cause the measurement

beam to record the vibration of an area different to the intended measurement location.

Both of these effects can be mitigated by reducing the relative motion between the incident

beam spot and the measurement surface, which is the initial focus of this two-part chapter.

Techniques that can maintain an LDV fix on an arbitrarily moving target or throughout

arbitrary instrument motion, are known as arbitrary path tracking LDV [4]. While few

techniques exist, the most promising of the existing work utilises a vision-based system to

locate the measurement location in combination with an SLDV setup to steer the beam

in the appropriate direction [86, 42]. This technique will likely be suitable for many ter-

restrial applications, however, due to the necessary onboard optical and computational

resources, the additional weight can make it unsuitable for drone-based applications. As

87
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such, this chapter first describes a novel type of arbitrary path tracking tailored specifi-

cally for drone-based deployments, similarly utilising an SLDV setup to steer the beam

and maintain a fix on a stationary target as the drone undergoes motion. In order to assess

the performance of the system, the Multi-Axial Shake Table (MAST) is used to simulate

the motion of a hovering drone subject to atmospheric turbulence.

Previous work has shown that it is vital for the correction measurement to be colinear

to and on the beam axis, otherwise, the corrected measurement could have some residual

sensitivity to vibration in the non-beam DOFs [31]. While these criteria are straight-

forwardly achieved for single-point LDVs by mounting the correction transducer to the

rear of the instrument, it is difficult to satisfy during a scanning scenario which would be

required during the proposed tracking scenario. Previous literature has considered this sit-

uation and theoretically shown through a rigorous vector analysis the required transducer

arrangement to enable correction measurements on an SLDV [41]. If three independent

transducers are positioned precisely relative to the final steering mirror in the optical path,

a triaxial measurement can be taken, whose components can be resolved into a single ve-

locity measurement colinear and on the moving beam axis. As such, the second part

of this chapter describes the incorporation of the improved signal processing described

in Chapter 3 and Chapter 4 into the existing SLDV measurement correction framework,

followed by the first experimental validation of this during six DOF vibration using the

MAST to simulate the vibration of a vehicle during deployment.

5.1 The galvanometer gimbal

One potential mobile deployment scenario is on an Unmanned Aerial Vehicle (UAV), specif-

ically a drone. With the increase in popularity of drones and the advances in measurement

correction, their potential use for vibration measurements has already been recognised for

both intelligence gathering [87] and remote structural vibration measurements [32, 33].

However, the applications are by no means limited to these. One promising example of

a field that stands to benefit is LDV-based mobile buried landmine detection. Currently,
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this is conducted from a terrestrial vehicle with a mounted speaker to insonfiy the ground

[22, 23, 24]. The sound waves generate seismic waves within the soil, which cause the

mine to vibrate and resonate, producing a measurable increase in the vibration directly

above the mine at the ground surface. If this work could be replicated from a drone, as

it has been done with ground penetrating radar [44], it would enable the identification of

buried landmines to be conducted more efficiently with reduced risk of accidental detona-

tion, preventing the loss of life and assets. While the measurement correction techniques

discussed herein remove the effects of motion along the beam axis, any translational mo-

tion in the two orthogonal axes and any rotational motion would act to divert the beam

from the intended measurement location. Image-based tracking solutions could likely han-

dle these tracking requirements [42, 86]; however, these systems tend to be heavy due to

the required high-speed camera, additional optics and an onboard computer sufficiently

powerful to perform low-latency tracking. While these vision-based systems are viable in

scenarios where either or both the LDV and the target are mobile, this functionality is

often excessive. For most applications utilising a mobile LDV discussed herein, the target

is likely to be stationary; therefore, it is only the effects of the vehicle motion itself that

must be mitigated. As such, this section will explore a novel alternative tracking approach

tailored specifically to the requirements surrounding drone-based deployment.

The problem of tracking from a drone can be simplified by only considering a hovering

scenario. Modern, sensor-laden drones have an impressive ability to hold their transla-

tional position in space by constantly making small adjustments in pitch and roll. While

some translational motion will inevitably occur, the magnitude depends on the type of

drone and the weather conditions. For this section, it will be assumed that this motion is

negligible. Therefore, only the pitch and roll need to be corrected in this hovering scenario.

Devices that compensate for rotational motion are known as gimbals and are commonly

used within the film industry [46]. However, these compensate for whole-body rotation

by counter-rotating the entire device. This can cause them to be both heavy, due to the

powerful actuators required; and sluggish, due to the inertia of the camera (or LDV).

Therefore, this section describes the development of a novel type of gimbal that utilises

the galvanometer scanning mirrors typically found in SLDV systems to counter-rotate the
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beam rather than the entire instrument.

5.1.1 Existing arbitrary path tracking solutions

Tracking LDV (TLDV) systems come in various forms, with most published material as-

suming a stationary instrument and a mobile target. The simplest type of tracking LDV

system is referred to as self-tracking. In this scenario, a mechanically coupled optical ar-

rangement is utilised to redirect the beam onto a moving measurement surface, usually a

rotating one [88, 89]. A similar effect can also be achieved using an SLDV system, with

the addition of positional feedback, typically a rotary encoder. This is known as tracking

LDV and has been similarly applied to rotating machinery [90, 91, 92]. If the rotation

angle is known, then the scan location can be calculated using a kinematic model, allowing

the required SLDV pitch and yaw mirrors to be straightforwardly calculated. However,

in a mobile deployment scenario, none of these are suitable tracking techniques since the

vehicle motion is arbitrary, meaning there exists no a priori knowledge of the expected

trajectory.

Arbitrary tracking has been achieved on windscreen wipers [91], whereby two string po-

tentiometers are attached, then using the extended string length, the two-dimensional

location of the windscreen wiper can be solved for if the two potentiometer locations are

known. A different yet similar approach employed a commercial Vicon MX videogram-

metry system which uses multiple infrared cameras to track retro-reflective markers in 3D

[93]. These markers act as distinct tracking features when illuminated by the infrared ring

lights surrounding each camera lens. Therefore, the locations of the markers can be deter-

mined in a 3D virtual coordinate system by triangulating the feature coordinates based

on the known relative camera positions. As such, when these markers are mounted to an

arbitrarily moving target, the motion can be tracked. Finally, using the location of the

SLDV within this virtual coordinate system, the vector direction from the LDV location

to the target location can be calculated and used to drive the steering mirrors. Despite the

reported success of both these arbitrary path-tracking solutions, they both are impractical



Chapter 5. Multi-Axial Simulation Table Experimentation 91

for mobile deployments since they involve instrumenting the target.

Image-based tracking laser Doppler vibrometry (iTLDV) requires no target instrumen-

tation by utilising a single in-line camera to obtain the relative angular location of the

target [42, 86]. Much like TLDV, iTLDV systems utilise a bespoke scanning head that

accommodates an in-line high-speed camera that shares the beam axis by mixing the two

optical paths using a semi-transparent mirror. If correctly aligned, this acts to remove any

parallax error completely. The frames from the high-speed camera are received by a com-

puter running a tracking algorithm that searches for the target to calculate the angle for

each respective mirror in order to recenter the measurement location. To avoid scenarios

where the system might track the beam spot itself rather than the target, an optical filter

is also attached to the camera, which blocks the laser wavelength. Initially, this tracking

algorithm searched for a marker placed onto the target [42]; however, more recent work

utilising more advanced image processing techniques did not require any markers [86]. The

measurements taken using this system included active windshield wipers [42], and a table

tennis ball while in-play [86].

A benefit of iTLDV is that it functions irrespective of target or vehicle motion, yet despite

the performance and flexibility of this technique, there are a number of drawbacks. Firstly,

in order to accommodate an inline camera, modifications should be made to existing SLDV

setups, likely voiding any manufacturer warranties, otherwise requiring a bespoke system

to be built, which can be costly. Secondly, the required onboard computational and power

resources will be heavy. As such, when considering a hovering drone undergoing small

adjustments in pitch and yaw, then iTLDV solutions can be unsuitable and excessive. A

more practical solution would be the galvanometer gimbal proposed herein.

5.1.2 Limitations of gimbal-based solutions

The galvanometer gimbal is suited for any mounting angle on the drone, however, this

section specifically focuses on downward-facing applications, such as unexploded buried
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landmine detection. In this downward-facing configuration, the yaw and pitch mirrors of

the LDV become aligned with the roll and pitch rotations of a hovering drone allowing

each mirror to correct a single rotational DOF; whereas in the forward-facing scenario,

the roll motion of the drone would require the coordination of both mirrors determined

by the rotation matrix. In either case, some misalignment between the drone’s centre of

rotation in the vertical plane is probable since the LDV system must be mounted on the

underside. The result of this misalignment between the galvanometer gimbal mirrors and

the centre of rotation will result in a small amount of translational offset as the drone

makes adjustments even for a gimbal with hypothetical perfect performance. This can be

seen illustrated in Figure 5.1.

Figure 5.1: A depiction of the translation error introduced when the drone centre of
rotation, given by the green circle, and the mirror axes are misaligned. Here, the size of

the misalignment is given by d and the transitional error is given by ∆.

The pitch and yaw SLDV mirrors are independent and only separated by a couple of

centimetres, therefore, it will be assumed that the optical path length from either mirror

to the target is equal. If care was taken to mount the SLDV beneath the centre of the

drone, which is necessary for in-flight stability, then the relationship between the pitch,

θin, and the roll ϕin, of the drone and the translational offset introduced by the z offset,

drot is given by:

∆x = drot sin(θin) (5.1)

and

∆y = drot sin(ϕin) (5.2)
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Therefore, the total Euclidean error introduced by the z misalignment for a given pitch

and roll angle of the drone is given by:

∆ = drot

√
sin2(θin) + sin2(ϕin) (5.3)

5.1.3 Galvanometer gimbal control box

A control box for this galvanometer gimbal was developed using a BNO080 inertial mea-

surement unit, an ESP-32 microcontroller, two MCP4725 12-bit Digital-to-Analogue Con-

verters (DACs), and an operational amplifier circuit. This control box would then interface

with an SLDV system to become the galvanometer gimbal by appropriately driving the

mirrors, a block diagram of this integrated system can be seen in Figure 5.2. The ESP-32

was selected since it has a higher clock speed than most consumer microcontrollers whilst

also having two cores - allowing for both the steering mirror positions to be updated si-

multaneously. The 12-bit DACs were used since they provide 16 times the resolution of

the internal 8-bit DACs in the ESP-32. An operational amplifier circuit was required

to properly scale the 0 V to +3.3 V DAC output to the required voltage range for the

SLDV steering mirrors used - in this case, ± 3.3 V. Finally, a BNO080 9-axis IMU is used

to measure the rotation of the system. This was specifically selected over more popular

and cheaper IMUs, such as the MPU6050, for its virtual reality head-tracking applica-

tions. This allowed for low-latency and pre-processed roll, pitch and yaw outputs from the

Kalman filtering-based sensor fusion occurring on its onboard ARM Cortex M0+. Since

the position estimate calculations are running on a separate microcontroller, the process-

ing delays are further reduced by offloading this from the main ESP-32 microcontroller.

A schematic of the system can be seen in Figure 5.2.



94 Chapter 5. Multi-Axial Simulation Table Experimentation

Figure 5.2: Block diagram schematic of the galvanometer gimbal control box compo-
nents and the galvanometer mirrors of the interfacing SLDV system to achieve pitch and

yaw tracking.

The electronics of the system sit inside a 3D printed housing with external BNC jacks such

that it can be quickly set up by simply connecting the two mirrors to their appropriate

jacks and a third BNC cable supplying 6.6 V for the operational amplifier. The enclosure

has an external button on the side which will trigger the microcontroller to establish a

new lock on a specific angle, re-centring the beam. The enclosure is then mounted to the

scanning head using any non-permanent solution; in this case, large zip ties were used.

5.1.4 Experimental arrangement

The galvanometer gimbal system, which includes both the control box and SLDV, was

mounted to the centre of the MAST in order to simulate a hovering drone and characterise

the frequency response. To do so required simultaneous measurements of both the MAST

angle, referred to as the input, and steering mirror angles, referred to as the output. While

both the MAST and the galvanometer mirrors have position feedback, due to the differing

signal conditioning, these would both experience some finite time delay, especially from

the MAST, which performs kinematic model calculations in order to estimate its position

in space. These finite time delays would introduce errors in the measured phase response.

Whilst these could be measured and subsequently removed, an alternative approach was

employed. This involved the use of a projection screen orthogonal to the MAST where the

LDV laser is incident upon alongside an additional laser of a different wavelength fixed to

the galvanometer gimbal system. Therefore, both the pitch and yaw of the MAST and of

the galvanometer gimbal system can be known in perfect synchronisation. These locations
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could then be recorded using a high-speed camera, converting the beam spot locations

into their respective angles once the video is analysed in post.

Figure 5.3: Annotated photograph of the experimental arrangement used to charac-
terise the frequency response of the galvanometer gimbal system alongside a diagram rep-
resenting the downward-facing drone deployment. The coordinate system of the MAST
evaluation is shown alongside that of the intended drone deployment - illustrating how

the MAST yaw becomes the drone roll when downward-facing.

The positions of these beams were recorded using a Sony RX10 II, at 120 fps while the

MAST underwent rotational motion in pitch and yaw with the lasers aimed at a white

screen 2.55 m from the galvanometer gimbal system. The videos were analysed, giving

six 10 s data lengths resulting in frequency domain data with a bandwidth of 60 Hz and

a spectral resolution of 0.1 Hz. While the oversampling factor may seem unnecessarily

high, it is essential since this increases the shutter speed such that each beam may be

resolved as a circular spot rather than a streak - which was the case with the typical

frame rate of 30 fps. The SLDV system used here employed the same pair of galvanometer

scanning mirrors (GSI Lumonics 000-3008561), associated electronics and optical layout

as are in the Polytec Scanning Vibrometer PSV 300; however, in this application used in
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conjunction with a Polytec NLV-2500-5 single-point vibrometer - despite no actual LDV

measurements being taken.

The rotation of the MAST was displacement-driven in closed-loop control white noise

with an RMS amplitude of 1◦ in the range of 0.5 Hz - 5 Hz. This led to a maximum

observed angle of about 5◦, which was near the limit of the MAST range; however, the

galvanometer gimbal system in its current form is capable of tracking in the range of ± 13◦.

These parameters were selected to simulate extreme conditions for hovering drones. Dur-

ing deployment, the system is intended to be downward facing rather than forward facing;

however, due to the practical limitations of implementation, this couldn’t be replicated.

To account for the different mounting orientations, the appropriate rotational degrees of

freedom were driven such that it simulates a downward-facing deployment, illustrated in

Figure 5.3. It is important to note that in this setup, the SLDV was aligned with the

centre of the table, however, there was an inevitable vertical offset from the SLDV to the

MAST surface by about 15 cm, which will manifest itself as some Euclidean misalignment

error in the vertical axis of the screen (pitch of SLDV/MAST). During a typical drone

deployment the Euclidean misalignment error would affect both axes, as discussed in Sec-

tion 5.1.2 with an amplitude given by Equation 5.3. To estimate the amplitude of the

translational offset introduced in this simulated deployment, the single-axis formulation

of the translational offset error can be used, given by Equation 5.2. Taking a maximum

rotation of 5◦, then the maximum error introduced by this misalignment is only 1 cm.

5.1.5 High-speed vision tracking and data analysis

Since vision-based systems will suffer from some degree of lens distortion, the first step

is to derive the distortion coefficients and the camera matrix required to undistort the

later frames. To do so requires a series of images of a printed checkerboard pattern at

various locations within the camera’s field of view. These images are then processed using

the OpenCV library in order to calculate the aforementioned parameters, thus enabling

the undistortion of the experimental frames used in the data collection. This process is
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Figure 5.4: The typical camera calibration procedure in OpenCV which implements
previously published work [94].

outlined in Figure 5.4, and begins by importing 30 images; these many images are not

necessarily required, but the process is generally improved by increasing the number of

images. The next stage is to determine the 2D locations of the intersection points on the

checkerboard pattern in pixels using the findChessboardCorners function and further

refine it into a subpixel value by utilising the cornerSubPix function. The latter is able

to make subpixel measurements by analysing the gradients of the colours to estimate the

true location of the corners. Finally, these coordinates are fed into the calibrateCamera

function, outputting the camera calibration parameters, fx, fy, cx, cy, k1, k2, k3 and p1.

This procedure is a standard OpenCV implementation of previously published work [94].

A separate Python script was written in order to efficiently and accurately analyse the

experimental frames, extracting the pitch and yaw for each of the two beams - equivalent

to the pitch and the roll of a drone during downward-facing deployment. This process is

outlined in Figure 5.5. The first stage in this process is to apply the previously obtained

distortion parameters in order to undistort the frame. Following this, a small adjustment

to the skew of the image is made since the camera is slightly elevated from the screen

in order to see over the MAST and the mounted setup. In order to isolate the beams

within the image, a background subtraction algorithm is used; specifically, a Gaussian

mixture-based background/foreground segmentation algorithm [95, 96]. This feature is

conveniently integrated into OpenCV and is fairly straightforwardly implemented, result-

ing in a masked image containing only the regions which have moved since the previous

frame. This algorithm performs best when there are a few frames at the beginning of a

video segment only containing the background, therefore, each recorded video here starts

with the lasers switched off.

findChessboardCorners
cornerSubPix
calibrateCamera
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Figure 5.5: A depiction of the processing algorithm for a single frame, subsequently
repeated for all frames. Where x′, y′ are the Cartesian coordinates for each beam relative

to the frame origin, whereas x and y are relative to the zero position of each beam.

This background subtraction algorithm leaves two clusters of pixels remaining, represent-

ing the two incident beam spots; however, their boundaries tend to be non-circular due

to some tolerance in the background subtraction algorithm. As such, the next step in

Figure 5.5 is a pair of common morphological operations known as erosion and dilation,

resulting in a mask boundary that accurately represents the circular boundaries of the

two beams. In order to extract the pixel coordinates of these two beam spots, a minimum

bounding circle is then applied to each of the two pixel clusters, with the centre location

taken to be the beam location. These two pixel clusters then need to be classified based

on their colour, as such, the frame is converted from the standard Red Green Blue (RGB)

colour space into Hue Saturation Value colour space. Now, the two pixel clusters will have

distinctly different mean hue values corresponding to green and red, therefore, allowing

them to be easily distinguished from one another.

With all the image processing stages now complete in Figure 5.5, the pixel coordinates of

the two beams are then converted into metres using the known size of the screen. However,
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these are in the reference frame of the image, therefore, this is transformed such that the

coordinates are relative to each beam’s respective zero position when the MAST is station-

ary. Now, the pitch and yaw can then be calculated for the MAST and the galvanometer

gimbal system using some basic trigonometry and the measured distance to the screen.

The repetition of this process across all video frames results in four time domain data

types, x, y, Θ and Φ for both the input and output, which is analysed using both time and

frequency domain techniques to assess the performance of the system in the next section.

5.1.6 Performance assessment

The performance of the system will be first assessed by observing the deviation of the two

beams, representing the scenarios with and without tracking. Figure 5.6 shows the Eu-

clidean coordinates across the screen relative to their respective zero locations for a single

10 s segment. It can be seen that the tracking beam moves considerably less than the

fixed beam - which represents the motion of an LDV beam without tracking. Quantifying

this decrease in beam movement can be done by calculating the mean absolute deviation

across the six 10 s data lengths - giving 8.2 cm for the fixed beam compared to 2.6 cm for

the tracking beam, representing a 68% reduction in beam movement.
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Figure 5.6: A plot of the Euclidean movement of the fixed beam, in green, and the
tracking beam, in red, across the surface of the screen from their respective zero locations
for one of the six 10 s data lengths, with each of the traces comprised of 1200 position

measurements.

The second important aspect to consider is the frequency response of the system. This is

straightforwardly calculated in the frequency domain following an FFT for each of the six

data lengths. A mean Bode plot of all six data lengths can be seen in Figure 5.7.
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Figure 5.7: The mean frequency response of the pitch and yaw axes of the galvanometer
gimbal system, with the motion of the MAST as the input and beam angle as the output

(df = 0.2 Hz).

Figure 5.7 shows that the galvanometer gimbal system is more capable of correcting for

lower frequency motion than higher frequency motion, with its performance steadily de-

clining from about -10 dB at 0.75 Hz to about -3 dB at 5 Hz. However, there exists a large

discrepancy between the two axes below 0.75 dB with the yaw axis at -11.2 dB while the

pitch axis is only at -0.4 dB. The mean gain of the pitch axis is -5.1 dB while the mean

gain of the yaw axis is -5.4 dB. The slight performance discrepancy could be caused by

the translational offset error, discussed in Section 5.1.2, which only affects the pitch axes

in this configuration. However, this seems unlikely as most of this occurs mostly below

0.75 Hz, whereas the translational offset error would manifest equally for all frequencies.

An alternative explanation for this discrepancy could be the behaviour of the IMU. For ex-

ample, rotations in yaw would rely on the internal gyroscope and magnetometer, whereas

rotations in pitch would rely on the internal gyroscope, magnetometer and the accelerom-

eter - as the change in the orientation of gravity would be detectable. The IMU employs

a Kalman filter to internally fuse the various sensor data; therefore, the re-calibration of

the filter to increase the sensitivity in pitch to reduce this dead zone could help.
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5.2 Scanning laser Doppler vibrometry measurement cor-

rection

It is vital that the correction measurement is colinear to and on the beam axis, otherwise,

the corrected LDV measurement could have some residual sensitivity to vibration in the

other axes [31]. For SLDV systems, obtaining a measurement that adheres to these strict

measurement criteria is difficult since the beam angle relative to the LDV body is not

fixed; therefore, the accelerometer cannot simply be mounted to the rear. However, as

the previous section discussed, the successful integration of measurement correction with

the SLDV system is vital for arbitrary path-tracking systems. A theoretical framework

previously developed described an arrangement that enables measurement correction on

SLDV systems using three independent accelerometers [41]. However, the described ar-

rangement has yet to be experimentally validated and employed the previously established

frequency domain signal processing which has been shown to perform relatively poorly in

the previous chapters. As such, this section describes the extension of this theoretical

framework to incorporate the updated signal processing techniques described in Chapter 3

and Chapter 4. This updated SLDV measurement correction framework is then validated

experimentally under scanning scenarios and in the presence of six DOF vibration for the

first time using the MAST.

5.2.1 Review of existing work

Both iTLDV and the galvanometer gimbal proposed herein are promising tracking tech-

niques for mobile deployments, both of which utilise SLDV systems. Recent work explored

potential SLDV measurement correction possibilities, with a rigorous vector analysis con-

cluding on the optimal accelerometer arrangement for correction in the presence of full

six DOF vibration [41]. The previously shown correction measurement criteria of colinear

and on the beam axis still applying in this scenario [31, 38, 76], the exact transducer

arrangement is difficult to implement practically. Through a rigorous vector analysis, it
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was shown that the optimal correction measurement locations are three independent or-

thogonal transducers, rigidly mounted such that their sensitive axes intersect at the centre

of the final mirror surface.

By taking the appropriate components of each orthogonal transducer, it is possible to

make a virtual measurement that is colinear to the beam, regardless of the scanning an-

gle. Similarly, by having their sensitive axes intersect at the centre of the final steering

mirror, then the measurement is approximately on the beam axis. This cannot be exact

since the beam deflection incurred following the reflection from the first mirror to the

point of incidence on the secondary mirror. This was taken into consideration during the

derivation and shown to have a negligible effect since the point of incidence moves on the

order of a few millimetres, depending on the scan angle and the distance between the two

orthogonal steering mirrors. The considerable benefit of this proposed technique lies in its

ability to similarly be applied to any commercial scanning LDV without any modification

to the system, thus keeping the system accessible to the practising vibration engineer for

real-world industrial vibration measurement challenges.

Mathematically, the magnitude of the compensation measurement, Ucorr is derived using

the pitch and yaw mirror angles. The mirror angles are half of the optical beam angles, as

such, the following has been given in terms of the beam angles to remain consistent with

the previous section:

Ucorr = −Ux cos(ϕout) sin(θout) + Uy sin(ϕout)− Uz cos(ϕ) cos(θ) (5.4)

where Ux, Uy and Uz are the x, y and z velocities corresponding to the three specific trans-

ducer locations. In this case, accelerometer measurements were subsequently integrated

to obtain the velocities. The signal processing employed was common to that of previous

work [31, 38, 76] and as outlined in Figure 4.6. As was shown in Chapter 4, the signal

processing in these existing works does not adequately handle the accelerometer signals

and is limited to stationary signal types. As such, the following section will integrate both

the time domain technique, described in Chapter 3; and the improved frequency domain
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technique, described in Chapter 4, into this SLDV measurement correction scheme.

5.2.2 Improved SLDV measurement correction signal processing

Here, the previously proposed SLDV measurement correction approach [41] is extended to

be compatible with the time domain approach discussed in Chapter 3 and the improved

frequency domain approach described in Chapter 4. These approaches are largely the same

as those previously described, with the necessary accelerometer integration, detrending,

and synchronisation duplicated for all three orthogonal correction accelerometers, corre-

sponding to the x, y and z axes. However, both stages contain an additional processing

stage where the three orthogonal velocity components are used in conjunction with the

current scanning mirror angles in order to calculate the required velocity component which

is both colinear and on the beam axis. The remaining LDV and reference accelerometer

channel handling is no different to the single accelerometer techniques in the previous

chapters. The updated SLDV signal diagrams for the improved frequency domain and the

time domain can be seen in Figure 5.8 and Figure 5.9, respectively.
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Figure 5.8: Signal diagram for SLDV measurement correction in the frequency domain
using the improved technique. With the Component block calculated using Equation 5.4.

Figure 5.9: Signal diagram for SLDV measurement correction in the time domain. With
the Component block calculated using Equation 5.4.
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5.2.3 Experimental arrangement

The setup employed the same pair of scanning mirrors, associated electronics and optical

layout as are in the Polytec Scanning Vibrometer PSV 300; however, in this scenario used

in conjunction with a Polytec NLV-2500-5 single-point vibrometer. This was mounted to a

stiff, steel base which, by using adjustable straps, could be positioned such that the centre

of rotation of the MAST was aligned in the horizontal axes with the axis of the final mirror

of the scanning head. The positioning is important to minimise the translational offset

experienced by the SLDV sensor head when the MAST is directed to a pitch or yaw angle.

Accompanying bespoke steel mounts were constructed such that the x and z correction

accelerometers could be mounted to the table and similarly adjusted to be aligned with the

centre of the final steering mirror reflecting surface. The final y correction accelerometer

was simply mounted to the surface of the MAST in alignment with the centre of rotation

and the axis of the final steering mirror. These three accelerometer mounting locations

are as outlined in previous theoretical works [41]; a diagram depicting the arrangement is

shown in Figure 5.10.

Figure 5.10: Illustration of the three orthogonal correction accelerometers positioning,
‘AccX’, ‘AccY’ and ‘AccZ’.
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The reference accelerometer was mounted to the spigot of the target shaker using synthetic

beeswax with the SLDV measurement beam incident upon its top surface. Retro-reflective

tape was also adhered to the reference accelerometer top surface to ensure optimal SLDV

signal strength. All four accelerometers used were Endevco 770F-10-U-120 (20.4 mV/ms−2

nominal), as in previous chapters. The target shaker was a Modal Shop SmartShaker

K2004E01 with its vibration axis aligned with that of the LDV beam using an adjustable

tripod at a 2.2 m distance from the rotation centre of the MAST. During this initial setup,

the MAST and SLDV mirrors were in their zero positions, as can be seen in the annotated

diagram Figure 5.11. Following the initial alignment, the MAST was directed to a 4◦ yaw

angle and a -4◦ pitch angle with the opposite angles applied to the SLDV system such

that the measurement beam remained incident upon reference accelerometer.

The signals of all three correction accelerometers, the reference accelerometer and the

LDV were acquired using a Siemens Digital Industries Software Simcenter SCADAS Mo-

bile data acquisition system. The data were collected at a sampling frequency of 8192 Hz

for a duration of 10 s. The sampling frequency was selected using Equation 4.20b de-

rived in Chapter 4; this can be used to select the optimal sampling frequency to minimise

the synchronisation error incurred due to the integer time-step limitation imposed during

time domain synchronisation. The MAST was driven using closed-loop control in velocity

with 0.5 Hz - 50 Hz white noise in all six DOFs, with a translational RMS amplitude of

10 mms−1 and a rotational RMS amplitude of 0.25◦ s−1. The resulting incident beam spot

motion from the combined six DOF vibration was at maximum 0.5 cm in diameter, which

was comfortably contained on the 1.5 cm by 1.5 cm top surface of the accelerometer. The

target shaker was driven in velocity with 0.5 Hz - 50 Hz uncorrelated white noise, with

the shaker vibration occurring only along the beam axis and the MAST vibration in all

six DOFs. The acquired data were processed as five separate 2 s data lengths, similar to

before. In the frequency domain, these acquisition parameters lead to a spectral resolution

of 0.5 Hz and a bandwidth of 4096 Hz.
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Figure 5.11: An annotated photograph of the SLDVmounted to the MAST with ‘AccX’,
‘AccY’ and ‘AccZ’ being the three orthogonal correction accelerometers and ‘AccTar’

being the reference accelerometer mounted to the target shaker spigot.

5.2.4 Performance assessment

In order to gauge the performance increase gained from the triple accelerometer arrange-

ment [41] as opposed to the single accelerometer arrangement [97] under scanning scenarios,

the correction can be carried out using either just the rear-mounted correction accelerome-

ter or using all three and equation Equation 5.4 to calculate the relevant component in the

beam direction. As such, Table 5.1 shows the results of the time and improved frequency

domain techniques presented herein in either the single accelerometer or triple accelerome-

ter correction. For a fair comparison, the mean error reduction in the frequency domain is

calculated over the entire measurement bandwidth rather than only the region of interest.
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This is essential for a fair comparison between the signal processing based either in the

time or frequency domain.

Table 5.1: Mean error reduction of the two measurement correction techniques de-
veloped herein [51, 52]combined with either the single accelerometer [31] or the triple
accelerometer [41] hardware arrangement. These are calculated using the domain-specific
formulations over the entire frequency range, presented with the associated logarithmic

uncertainties.

Transducer Time domain Frequency domain

arrangement signal processing [51] signal processing [52]

Single accelerometer [31] 7.5+0.2
−0.1 dB 7.6+0.2

−0.2 dB

Three accelerometers [41] 7.7+0.2
−0.1 dB 7.8+0.3

−0.3 dB

While Table 5.1 does, in fact, show that there is an increase in the mean error reduc-

tion when using the triple accelerometer arrangement, it is minimal, with the associated

uncertainties of all four combinations of techniques and hardware arrangements contain-

ing large overlap. The mean error reduction is dependent on the relative levels of target

vibration and instrument/sensor head vibration, therefore, it cannot be expected that

these values are to match previous chapters; however, this drastic drop in performance is

likely caused by additional factors. In order to understand the source of this poor perfor-

mance, a spectrum of the improved frequency domain technique can be seen in Figure 5.12.
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(a) (b)

Figure 5.12: Frequency domain-based correction technique spectra (df = 0.625 Hz)
plotted over the frequency range of interest (a) and entire frequency range (b).

Figure 5.12 shows the spectra of the LDV signal before and after correction, along with the

reference measurement. While Figure 5.12 (a) shows that the correction was successful

in considerably reducing unwanted signal content, Figure 5.12 (b) shows that the LDV

noise levels were higher across the entire frequency band. This is similarly apparent in the

time domain plots, shown in Figure 5.13. The entire data length in Figure 5.13 (b) shows

a clear reduction in signal amplitude, resulting in a signal closer to that of the reference

measurement. Similarly, Figure 5.13 (a) shows 1 ms of data and the same can be seen,

however, here it is clear that the LDV signal is contaminated by higher frequency noise,

as is apparent in the spectra shown in Figure 5.12.
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(a) (b)

Figure 5.13: Time domain-based correction technique time trace over 1 ms (a) and the
entire 2 s data length (b).

The mean error reduction is weighted across each sample in the time domain, and simi-

larly, each spectral line in the frequency domain. Therefore, a higher noise floor across the

entire bandwidth is sufficient to skew the results in either domain. One obvious solution

is not to oversample when not required, allowing the anti-aliasing filters to remove this

signal content; however, in this scenario, the high oversampling factor is required for the

synchronisation stage in the time domain-based technique, and therefore, to keep it a fair

comparison, also the improved frequency domain based-technique. Calculating the mean

error reduction over the frequency range of interest is readily achieved in the frequency

domain by only including those spectral lines of interest. Similarly, filtering could be ap-

plied to the time domain to reject any signal content outside of the measurement range of

interest whilst still maintaining the required high-sampling rate for synchronisation. How-

ever, in this section, to keep the two techniques comparable, the time domain correction

signals are converted into spectra such that both may receive identical treatment during

the calculation of the mean error reduction over only the range of interest (0.5 Hz - 50 Hz)

in the frequency domain using Equation 3.7.
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Table 5.2: Mean error reduction of the two measurement correction techniques de-
veloped herein [51, 52] combined with either the single accelerometer [31] or the triple
accelerometer [41] hardware arrangement. Calculated using the frequency domain formu-
lation over the frequency range 0.5 Hz - 50 Hz, presented with the associated logarithmic

uncertainties.

Transducer Time domain Frequency domain

arrangement signal processing [51] signal processing [52]

Single accelerometer [31] 21.0+0.8
−0.8 dB 20.9+0.9

−0.7 dB

Three accelerometers [41] 29.3+5.9
−3.8 dB 28.0+7.3

−2.6 dB

Table 5.2 shows the same data as the previous table, but with the mean error reduction

calculated in the frequency domain over the frequency range of interest (0.5 Hz - 50 Hz).

This shows a dramatic increase in the reported performance between the single accelerom-

eter and the triaxial arrangement. If evaluated on a linear scale instead of a logarithmic

one, this would correspond to an increase of 6.8 times in the time domain technique and 5.1

times in the improved frequency domain technique, respectively. This falls in line with the

qualitative gains observed in Figure 5.12 (a). This demonstrates unequivocally the value of

the previously proposed hardware arrangement, in combination with the improved signal

processing techniques presented herein. It is possible that the increased noise in the signal

between 100 Hz and 1.2 kHz is caused by the vibration of scanning mirrors; however, this

is the subject of further study.

5.2.5 Iterative reference frame alignment

For proper correction, it is essential that the axes of the accelerometers be aligned with the

coordinate axes of the SLDV. While great care was taken during the MAST setup, some

misalignment is inevitable since the galvanometer mirrors in the scanning head are not

guaranteed to be similarly aligned with the body of the scanning setup. This is particularly

present since this semi-bespoke SLDV setup is difficult to precisely to align as the tension

screws which mount the galvanometer mirrors introduce some twist upon tightening. Best

efforts were made to ensure alignment but some angular error is likely inevitable. As such,

this section describes a post-processing-based iterative alignment approach intended to
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fine-tune the mirror angles relative to that of the LDV body, and hence, accelerometers.

This could similarly be applied to factory-aligned SLDV systems to ensure that the body

of the LDV and the internal galvanometer mirrors are aligned.

This reference frame alignment technique is based on the premise that the correction

performance will peak when the true pitch and yaw values are used to calculate the

appropriate component of the three orthogonal correction accelerometers. Therefore, in

order to find the true angles, the correction algorithms can be iteratively run to search

for the combination of pitch and yaw values which leads to a peak in performance. Since

this process does not take too long to compute, every combination of the pitch and yaw

values are tried within an expected range, ±σ , at a predefined resolution, δ. Other more

sophisticated search algorithms could be deployed here to reduce computation time rather

than computing every combination of pitch and yaw; however, there is little advantage to

this as it only took a minute or so to complete. The angles for which the correction should

be computed can be expressed as:

Θ = (ΘE − σ), (ΘE − σ) + δ, (ΘE − σ) + 2δ, ..., (ΘE + σ) (5.5)

and

Φ = (ΦE − σ), (ΦE − σ) + δ, (ΦE − σ) + 2δ, ..., (ΦE + σ) (5.6)

for the yaw and pitch beam angles, respectively. Where ΘE and ΦE are the expected yaw

and pitch values respectively; in this case since the angle of the MAST. The result of these

computations will result in a (2σ/δ)× (2σ/δ) grid of mean error reductions, whose maxi-

mum will correspond to the true yaw and pitch beam angles. Both the time and improved

frequency domain techniques have been tested here, with this described procedure seen

depicted in Figure 5.14.
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Figure 5.14: Illustration of the iterative reference frame alignment procedure for both
the time and improved frequency domain techniques. Where the beam angles are used to
calculate the component of the instrument velocity in the direction of the measurement

beam using Equation 5.4.

For this work, the expected yaw and pitch values were ΘE = 4◦ and ΦE = -4◦, correspond-

ing to the MAST angle. Similarly, the selected angular search resolution was σ = 0.2◦.

Finally, the search range was selected to be far larger than the expected misalignment at

σ = 6◦ to better visualise the performance drop-off at larger misalignments for the pur-

poses of this section. Practically, a value reflecting the maximum estimated misalignment

should be used. These were then used to calculate the mean error reduction for every

combination of angles within this range with each correction algorithm in Figure 5.14 rep-

resenting the same procedure used in the previous section, that is a mean error reduction

of the same five 2 s data lengths previously described.
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(a) (b)

Figure 5.15: Surface plot showing the relationship between measurement correction
beam angle and the obtained performance with either the (a) time domain technique and

(b) improved frequency domain technique.

Figure 5.15 shows the surface plots for both the time and improved frequency domain

techniques. Both techniques show a true beam angle of -4.4◦ in pitch and 4.4◦; therefore,

the angular offsets are -0.4◦ in pitch and 0.4◦ in yaw. Since this is the beam angle, the me-

chanical misalignment of each steering mirror is half of that - 0.2◦. Recalculating the data

shown in Table 5.2 using the optimised beam angles, the three accelerometer technique

performance increased to 29.4+0.8
−0.8 dB and 28.2+6.3

−3.9 dB for the time and frequency domain,

respectively. These improvements are within the associated uncertainties and potentially

do not justify the application of this procedure, however, it does give the user confidence

that the system is fairly well aligned. SLDV systems with larger misalignments may yield

more significant performance gains from this fine-tuning stage.

5.3 Chapter summary and discussion

Up to now, existing arbitrary motion LDV tracking solutions have been vision-based sys-

tems. While these systems are capable of tracking in the scenario where both the LDV

and the target are mobile, they utilise an inline high-speed camera, meaning either the
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modification of a commercial SLDV system or a bespoke scanning setup. Similarly, these

vision-based systems must be coupled with the necessary power and computational re-

sources to function. The combination of these factors results in a system that is costly

and heavy - which is not perfectly suited for drone-based LDV deployment. For scenar-

ios involving a stationary target and a hovering drone, the requirements can be reduced

such that only rotational motion in the pitch and roll axes require correction. While

traditional gimbals could be used, they can similarly be heavy as they rotate the entire

instrument, which requires powerful actuators. Therefore, this chapter proposed a novel

galvanometer mirror gimbal intended specifically for downward-facing drone-based appli-

cations. This type of system is considerably cheaper and lighter than the vision-based

alternatives. Similarly, it can simply be mounted to the body of an existing commercial

SLDV system requiring no modifications.

The assessment of the system performance was carried out on the MAST in an arrange-

ment that would simulate a hovering drone. The data acquisition was carried out using

using an optical arrangement whereby both the motion of the MAST and the response of

the LDV could be measured in perfect synchronisation when recorded with a high-speed

camera. This data was then analysed using a combination of time and frequency domain

techniques. The results of this assessment showed that the LDV beam motion could be

reduced by 69%, with a gain of -5.1 dB and -5.4 dB for the pitch and yaw axes, respec-

tively. Therefore, showing that this type of system represents a viable tracking system

with benefits uniquely suited to drone-based LDV measurement campaigns, complement-

ing the steadily expanding body of work pushing the LDV application envelope into new

and promising areas.

While measurement correction has been rigorously investigated and improved prior to this

chapter, the focus was on LDV systems, rather than SLDV systems. While measurement

correction is straightforwardly achieved on an LDV, the situation becomes more complex

on an SLDV since the correction measurement must be colinear to and on the beam axis,

despite the variable beam angle. Innovative work prior to this thesis showed by the means

of rigorous vector analysis that these criteria can be met using three independent precisely
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positioned contacting transducers [41]. By mounting them such that their orthogonal

sensitive axes intercept in the centre of the final mirror surface, their components can be

resolved such that a velocity measurement that is colinear and on the beam axis is obtained.

While this aforementioned SLDV measurement correction hardware arrangement holds

great promise, the work employed the previous signal processing approach, which has

since been superseded by the techniques described in Chapter 3 and Chapter 4. As such,

the second part of this chapter focused on the expansion of this triaxial accelerometer ar-

rangement to incorporate the signal processing techniques proposed herein. This updated

SLDV measurement correction technique was then validated on the MAST undergoing six

DOF white noise vibration during a four degree pitch and yaw scan angle. When compared

to the single accelerometer technique, results show that the triaxial arrangement leads to

a performance increase of 6.8 times and 5.1 times for the time and frequency domain tech-

niques, respectively. This demonstrates unequivocally that serious performance gains can

be met by implementing the triaxial arrangement in scanning scenarios.

Following this, a new iterative reference frame alignment approach is proposed. Using

the premise that measurement correction performance is optimised at the ‘true’ angle, the

correction can be iteratively run over a range of marginally adjusted angles, creating a sur-

face plot of performance against measurement correction scan angles. An optical mirror

misalignment of 0.2◦ in both mirror axes was determined, resulting in a slight performance

increase. A mirror misalignment this small is difficult to remove by hand, as such, this

system can be considered to be aligned, with the adjusted pitch and yaw values being

optional. While the benefits here were minimal, the true value in this iterative fine-tuning

approach would be for either determining the misalignment in a system known to be out of

alignment such that it may be accounted for, or for validating the alignment of a system,

as was achieved here.

The combination of these two sections results in a practically viable tracking and measure-

ment correction technique which when used in tandem can mitigate the effects of speckle
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noise, aiming errors and vehicle vibration. In order to confirm the true efficacy of this

combined technique, the two sub-components should be integrated into a real deployment

scenario, where both correction and tracking are taking place. This would require the

angles of the two orthogonal mirrors to be simultaneously logged as they are tracking, en-

abling the appropriate measurement correction components to be calculated for each data

point in the time series; naturally lending itself to the time domain technique. This test

should be experimentally validated on the MAST and include a reference measurement, as

has been shown in previous chapters, such that the performance can be quantified with and

without the combined motion tracking and triaxial measurement correction. This should

experimentally prove that there are reductions in speckle noise, aiming error and vehicle

vibration. Prior to this test, the galvanometer gimbal system could be improved in several

ways. Firstly, integrating an IMU with a higher output rate would increase the system’s

responsiveness, reducing the introduced error at any instant. Secondly, while this system

is intended for downward-facing applications, such as buried landmine detection, it should

be extended to work with any mounting angle. The mirrors on an SLDV correspond to

pitch and yaw which are straightforwardly tracked during a downward-facing application

as these translate readily to the pitch and roll of the drone. However, if the system were

forward facing, the two orthogonal mirror angles would need to work in tandem to recenter

the target location; these angles are readily calculated using a rotation matrix.



Chapter 6

Non-contact vibro-acoustic object

recognition

The work described in previous chapters outlines a comprehensive framework for both

measurement correction and arbitrary path tracking, the amalgamation of which enables

the deployment of LDVs on mobile vehicles and unlocks countless potential applications.

Some examples already receiving some interest include: buried landmine detection [98, 99,

100], terrestrial seismology [25], orbital seismology [27, 28, 29], structural health monitor-

ing and intelligence gathering from drones [30, 31, 32]. As such, it is straightforward to

imagine the extension of these various contemporary vibro-acoustic detection, localisation

and classification techniques into solutions that can be deployed on mobile autonomous

vehicles, especially since this immediately extends their application envelope to scenarios

in hostile environments, not suitable for human presence.

In that context, the work presented in this chapter adds a new addition to the ever-

expanding body of LDV applications: non-contact vibro-acoustic object recognition. Prior

to the work presented herein, acoustic object recognition approaches described in the lit-

erature involved contact excitation techniques. These excited an audible response in the

object using either a simple actuator [47, 48], or a multiple degrees-of-freedom robotic arm

119
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[49, 50], such that the recorded sounds could be classified using a variety of signal pro-

cessing and machine learning techniques. The simple actuators excited the objects using

a shake motion [47, 48], whereas robotic arms employed various exploratory behaviours

such as lift, shake, drop, crush, and push motions to be compatible with a broader range

of objects [49, 50]. All these techniques have focused on the acoustic classification of

household objects and have obtained accuracies as high as 96.7%. Despite this success,

exciting an object via touch has some drawbacks. Firstly, contact necessitates physical

access to the object, requiring the robot to move towards the object, slowing down and

complicating the task. Secondly, the object must be excited with enough force to produce

an audible response; therefore, some fragile objects could be damaged during the exci-

tation - for example, dropping a glass object. Therefore, the new vibro-acoustic object

recognition technique presented in this chapter addresses these shortcomings with an en-

tirely non-contact technique.

To achieve an entirely non-contact vibro-acoustic object recognition technique, the con-

tacting actuator of the robot was substituted with an acoustic excitation generated by

a loudspeaker. However, the response due to this acoustic excitation will be orders of

magnitude lower in amplitude than one excited by touch, therefore, generating little to no

detectable sound. As a result, an LDV is used in place of the conventional microphone

used in earlier studies to measure the low-amplitude vibrational response of the object

itself rather than measuring the sound the object produces as a result of the excitation.

The measured responses are then processed using various spectrogram-based techniques

and used to train a convolutional neural network (CNN) via transfer learning (TL). The

training set size and pre-processing techniques are then optimised using a rigorous five-fold

cross-validation, resulting in a CNN which can obtain an accuracy of 99.7%. As practi-

cal applications will require the technique to classify objects belonging to broader object

classes rather than a specific instance of an object, the technique is then shown to suc-

cessfully recognise never-before-seen instances of an object class with similar near-perfect

accuracy. This performance exceeds that of existing contact techniques whilst simultane-

ously introducing non-contact functionality, positioning it as a viable object recognition
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technology for the potential deployment on autonomous systems and other machine au-

tomation tasks. This chapter is orientated around the body of work that was published in

the Sensors special issue named Artificial Intelligence-Based Audio Signal Processing [53].

6.1 Review of related work acoustic object recognition work

As mentioned in the previous section, there are no non-contact acoustic object recognition

techniques described in the literature; however, this section will cover the relevant as-

pects of the existing contact-based techniques to allow the work presented in this chapter

to be contextualised. The following discussion will be divided into two main categories,

simple shake actuators and multiple DOF robotic arms. Due to the nature of the shake

excitation, the test objects are largely limited to those which emit a sound when shaken;

however, multiple DOF robotic arms explore a wider range of objects and excitations. All

the discussed techniques employed traditional machine learning algorithms, as opposed to

the NN-based classification that will be used in the new method proposed in this chapter.

6.1.1 Simple shake actuators

Simple shake actuators consist of a mechanism able to undergo a reciprocating motion and

a mount to hold the object being excited. The simplest of these consisted of a slider-crank

mechanism, leading to a linear reciprocating motion with an amplitude of 10 cm and a

frequency of about 2 Hz that was transferred to a container via a clamp at the end of the

arm - intending to mimic how a human might shake a container [48]. The objects studied

can be seen in Figure 6.1 and represent an assortment of 12 items, such as nuts, bolts

and even chocolate. The unusual variety of objects here is partly due to the focus of the

work being specifically on not only identifying the objects within the container but also

estimating the number of the specific object within the container.
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Figure 6.1: Photograph of the 12 object types used for acoustic object recognition with
a simple DC motor shake actuator [47]. © 2017 IEEE, reprinted with permission.

The work focused on the use of a contact microphone, also known as a piezo microphone,

to measure the responses on the exterior of the container while it is being excited using

the shake actuator - directly measuring the vibrations of the container in a similar fash-

ion to the LDV-based technique of this chapter. A support vector machine was used to

classify 1 s measurements of 28 g batches of all 12 items seen in Figure 6.1. The mean

accuracy when classifying the responses was 93.8%. Following this, and less related to the

work proposed in this chapter, the paper goes on to assess the ability of the technique to

estimate the number of objects seen in Figure 6.1 within the container, showing that an

accuracy as high as 99% is obtainable for some objects when the acceptable tolerance of

the estimation is ±2 objects.

The second paper utilised a pneumatic actuator to shake objects within a small arc, similar

to that of a human shake [47], as can be seen in Figure 6.2. A feedback potentiometer was

integrated into the arm to enable closed-loop control, driving the arm with a sinusoidal

signal. The frequency of this shaking was not stated but lasted for a duration of 10 s, ten

times longer than that of the previously described work. The end of this arm contained a

simple G-clamp to allow it to grasp objects of various shapes and sizes.



Chapter 6. Non-contact vibro-acoustic object recognition 123

Figure 6.2: Photograph of the pneumatic shake actuator used for acoustic object recog-
nition [47]. © 2022 Informa UK Limited, reprinted with permission.

The work focused on 3 broad categories of objects, seen pictured in Figure 6.3, consist-

ing of rigid objects, such as a spanner; paper materials, such as a newspaper; and water

bottles of various shapes and sizes. This represents a limited set of objects, especially

when considering that the rigid objects will not emit a sound when shaken and, therefore,

would be easily distinguishable. However, unlike the other works described in this litera-

ture review, this work investigated broader object classes, which requires the classifier to

identify features in the recorded sound common to all instances of the objects; for exam-

ple, understanding the general sound of paper rather than the sound of a specific piece of

paper, therefore, identifying a never-before-seen instance of a broad class. This approach

is more in line with the form of acoustic object recognition that people are capable of; for

example, anyone could distinguish the sound of rustling paper from the sound of a shaken

water bottle - regardless of the specific paper or water bottle used.
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Figure 6.3: Photograph of the 3 broad objects categories used for acoustic object recog-
nition with a simple shake actuator [47]. © 2022 Informa UK Limited, reprinted with

permission.

This work used a traditional microphone in order to record the sounds of the objects being

shaken, which were converted into amplitude spectra. These spectra were then classified

using self-organising maps to identify a previously unseen instance of a broader object

class. Results showed that water bottles could be identified with an accuracy of 92.5%,

paper with an accuracy of 95% and rigid objects with an accuracy of 100% - giving a mean

accuracy across all three classes of 95.8%. It is unsurprising that rigid objects obtained

a 100% classification accuracy since they would simply emit no sound when shaken. It is

important to note that with only three potential classes, a faulty classifier would correctly

identify the object with an accuracy of 33% of the time, meaning these accuracies would

likely decrease as more object classes were introduced.

6.1.2 Robotic arm actuators

While robotic arms are orders of magnitude more complex than the simple actuators

described, they are able to enact a range of exploratory behaviours. The simplest imple-

mentation of these utilised a Universal Robotics UR5 six DOF robotic arm in order to
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excite small containers with three different rotations and one linear shake motion. Us-

ing an AG-95 end effector, the arm picked up each container to then excite an audible

response, which is then measured using a nearby traditional microphone, as can be seen

pictured in Figure 6.4.

Figure 6.4: Photograph of the UR5 robotic arm used to excite an audible response from
various filled containers [50]. CC BY 3.0.

There was a total of 10 containers filled with a wide range of contents, largely pantry items

and medicine, as can be seen in Figure 6.5. These represent a diverse and challenging set

of contents, for example, including two types of rice which will likely be difficult to dis-

tinguish from one another. Similarly, with 20 types of container contents, the chance of a

faulty classifier correctly identifying the item is reduced to only 5%.

Figure 6.5: Photograph of the contents of the 20 filled containers used in the acoustic
object recognition work [50]. CC BY 3.0.
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The sound data were measured for a total of 6 s, starting prior to the beginning of each

exploratory behaviour. These measured sounds were then converted into Mel-Frequency

Cepstral Coefficients, which are commonly used in audio analysis. This work compares

four traditional machine learning algorithms (k-nearest neighbour, support vector ma-

chines, sparse representation classification and Kernal-k-nearest neighbour) to find which

could best identify the contents of each container. Results showed that the data obtained

by rotating the container through 180◦ yielded the best results, with accuracies for the

four machine learning techniques ranging between 75% and 86%.

The final paper utilised the most biomimetic approach of all the robots, using an entire

upper-torso humanoid robot, with two seven DOF Barrett WAM arms and two three-finger

Barrett hands as end effectors [49]. The robot’s head was equipped with a microphone,

keeping the experimental setup in line with how a person would both interact and hear

objects. The robot employed the widest range of exploratory behaviours, including lift,

shake, drop, crush, and push motions. The experimental setup can be seen in Figure 6.6.

Figure 6.6: Photograph of the humanoid robot used in existing acoustic object recog-
nition work [49]. © 2011 SAGE Publications, reprinted with permission.

This work employed the largest set of items than any of the previous works, generating

a library of 50 items, as can be seen in Figure 6.7. These items consisted of a range of
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household items made from materials such as plastic, fabric and more. This work recorded

both the sounds the items emitted when excited and the proprioceptive data in the form

of torque time series from the robot’s actuators, further mimicking the human experience.

Figure 6.7: Photographs of the 50 household object selection used in existing acoustic
object recognition work [49]. © 2011 SAGE Publications, reprinted with permission.

Each object was then classified by using the actuator torque data and the discrete Fourier

transform of the audio data using self-organising maps for each exploratory behaviour.

The probabilistic prediction of each exploratory behaviour was then used together with a

weighted combination to predict a single class. A similar weighted combination was also

taken using the proprioceptive data and the audio data. The results show that using only

audio data or proprioceptive data obtained an accuracy of 93%, however, when these two

were similarly combined using a weighted output, the accuracy increased to 98.2%.

6.2 Non-contact data collection and data pre-processing

With the existing contact acoustic recognition techniques summarised, this section will

now describe the proposed non-contact technique hardware arrangement and data han-

dling.
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6.2.1 Object selection

The objects used in this new non-contact vibro-acoustic object recognition technique are

shown in Figure 6.8. The objects were selected to satisfy the following three main criteria.

Firstly, objects were selected to enable this research to remain within the scope of the

previous work presented in Section 6.1. These objects are made from a range of common

materials, including glass, ceramic, metal, plastic, and wood. Secondly, triplets of similar

objects were included to assess the sensitivity of this technique to distinguish similar ob-

jects and the ability to generalise across broader object classes, similar to previous work

[47]. As such, there are four main subgroups composed of three similar objects: i) tennis

balls, ii) table tennis balls, and iii) full or iv) empty soda cans. For example, the system

could either distinguish the three tennis balls from one another or it could identify that

a never-before-seen instance of tennis ball belongs to the broader object class of “tennis

balls”. Finally, since a rotary stage is used to automatically collect vibro-acoustic data,

the objects all possess some degree of axial symmetry and are small and light enough to

fit on and be manipulated by the rotary stage.
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Figure 6.8: The 23 household objects characterised in this paper: (a) bottle cap, (b)
AA battery, (c) empty jar, (d) empty container, (e) small wooden block, (f) porcelain
mug, (g) metal cup, (h) plastic cup 1, (i) plastic cup 2, (j) plastic cup 3, (k) table tennis
ball 1, (l) duct tape, (m) tennis ball 1, (n) tennis ball 2, (o) tennis ball 3, (p) table tennis
ball 2, (q) table tennis ball 3, (r) empty 375 mL soda can, (s) empty 250 mL soda can,
(t) empty 500 mL soda can, (u) sealed 375 mL soda can, (v) sealed 250 mL soda can, (w)
sealed 500 mL soda can. Here, the empty soda cans have been drained of their containing

liquid, and the sealed soda cans were full of soda.

6.2.2 Automated data acquisition system

It is challenging to predict in advance how much data will be needed to produce a spe-

cific performance outcome when applying deep learning to a new problem. As a result,

a large number of responses were collected for each object, enabling the determination

of the ideal data set size by taking subsets of the entire obtained data to simulate the

smaller data sets. A bespoke automated data collection system was built to enable the

rapid collection of hundreds of measurements per object, as seen in Figure 6.9. The rotary

stage was custom-built and consisted of an Arduino Nano and a 28BYJ-48 stepper motor,

contained in a 3D printed housing with a similarly 3D printed turntable attached to the
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motor shaft, allowing the objects to be rotated about a vertical axis in front of the speaker

and SLDV. In order to control the SLDV, the bespoke galvanometer control box described

in Chapter 5 was used, receiving mirror angle commands from the laptop over serial com-

munication, then applying the appropriate voltages to the scanning mirrors in the SLDV;

with the IMU playing no role here. Two ±3V analogue outputs - one per scanning mirror

- and a single digital output to the rotary stage enabled control of the object rotation and

SLDV beam orientation.

4

Figure 6.9: Experimental arrangement; (a) showing the physical setup with the SLDV
measurement grid annotated, (b) block diagram of the components where solid and dashed
lines are wired, and wireless connections, respectively. α and β are the scanning mirror

angle command signals while γ is the rotary stage angle command signal.

Since LDVs measure the surface velocity of a target in the direction of the laser beam

at the incident beam spot, any change in the beam angle and measurement location will

change the nature of the measurement, thereby adversely affecting the subsequent object

classification performance. While the object location is fixed in this work, the eventual

practical application of this technique would need to be insensitive to the relative object-

robot positioning. As such, care was taken to sufficiently diversify the training data to

better represent a real application scenario. Practically this was achieved by moving both

SLDV steering mirrors and the rotary stage to collect a total of 864 responses at various

(a)

SLDV

Computer

SpeakerController

Rotary stage

Excitationα, β, γ

Response

γ

α, β
Auto-

focus

(b)
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locations and angles of incidence. A schematic with the relevant dimensions labelled as

can be seen in Figure 6.10; it can be noted that a portion of the measurement content

will be the vibration of the SLDV steering mirrors themselves due to the proximity to the

loudspeaker, however, it is unlikely to affect the classification accuracy as this is the same

for each object. The responses were collected over an 8 × 3 grid for every 10◦ increment

of the rotary stage. The height and width of the measurement grid for each object were

chosen to be 80% of the total height and width of the particular object. Once responses at

each of the 24 grid points are complete, the rotary stage rotates by 10 degrees, and another

8x3 scan commences. This procedure was repeated until scans were collected around the

entirety of the object, giving 864 responses and taking approximately 20 minutes per

object.

Figure 6.10: A side view and top view schematic of the test apparatus with the relevant
approximate dimensions annotated.

The entire operation was orchestrated by a laptop running a Python script that sent angle

commands to the galvanometer gimbal control box via a USB serial link; the controller

then applied the corresponding voltages to the External Scanner Control of the Polytec

PSV-500 Xtra Scanning Laser Vibrometer to adjust the mirror positions1 and then re-

layed the required object orientation angle to the rotary stage. The acoustic excitation

imparted on the target was a 1 s long, 1 Hz to 20 kHz linear chirp played during each

1External Scanner Control (EXT) is an optional extra on some Polytec scanning laser Doppler vibrom-
eters.
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measurement through a 125 mm 5 Ω AS3007 loudspeaker, amplified by a Kemo Electronic

12W M032N amplifier module. The selected frequency range was chosen to be as broad

as possible while utilising a standard audible frequency loudspeaker. The maximum A-

weighted sound pressure level recorded at the object position was 67 dB re 20 × 10−6 Pa,

measured with a Digitech QM1592 sound level meter. Both the excitation and response

signals were played and recorded through the headphone and microphone jacks on the

laptop for convenience, using a sampling frequency of 44.1 kHz. The room itself was a

concrete-walled laboratory of about 8 m by 8 m with little ambient sound.

6.2.3 Management of measurement challenges

As discussed in Section 2.2, successful LDV measurements usually rely on the target surface

being optically rough such that sufficient light may be collected in direct backscatter by the

instrument optics. Importantly, this enables vibration measurements of surfaces that are

not normal to the beam. However, optically rough surfaces de-phase monochromatic co-

herent light, leading to the formation of a speckle pattern [64]. For a moving target or laser

beam, the speckle pattern will change in sympathy to the movement which can present a

number of measurement challenges [4]. While the PSV-500 Xtra includes some automatic

features to overcome some speckle challenges, such features were not available as part of

this work since externally generated signals controlled the scanning mirrors. Laser beam

auto-focusing is another increasingly important feature of commercially available scanning

LDVs, as this also contributes to optimising the chances of obtaining high-quality auto-

mated measurements across the range of points on the object surface. As such, a custom

solution was developed to handle these two aspects and maximise the collection of high-

quality object responses in this campaign.
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Figure 2: Flow chart of the measurement process where v is the LDV time mea-
surement and vt is the threshold velocity within the measurement. Adjustments
occur in the order of

3

Figure 6.11: The measurement procedure where t is time, v(t) is the LDV measurement
and vT is the threshold velocity, initially set to twice the root mean square of the first

object measurement.

Figure 6.11 illustrates the measurement procedure from the moment the measurement

beam has been directed to a new grid location on the target. First, the galvanometer gim-

bal control box emulates a Bluetooth keyboard connected to the integrated PSV-500 Xtra

Data Management System and issues a Ctrl+E keystroke shortcut to have the scanning

head complete “fast auto-focus” operation. Now that the laser beam is focused at the

measurement location, the loudspeaker signal is outputted via the headphone jack, and a

simultaneous recording is made from the SLDV via the microphone jack. The amplitude

of this velocity signal, v(t), is interrogated and should it exceed a predefined threshold, vT ,

it is rejected on the basis that a high-amplitude inducing laser speckle noise “drop-out”

likely occurred; otherwise, the measurement is saved. This threshold value is initially equal

to twice the RMS of the first object measurement. In the event of a rejection, the laser

beam position is adjusted by a 5 mrad scan angle, sequentially in ±x or ±y, prior to the

process repeating from the autofocus step until a satisfactory measurement is acquired.

If the original measurement location and the four adjusted measurement locations fail to

obtain a satisfactory measurement, it is reasonably concluded that the algorithm is incor-

rectly identifying measurements as containing speckle drop-outs. As such, the threshold

is raised by 10% to prevent the algorithm from becoming stuck in an infinite loop, and

Ctrl + E
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then the process is repeated. Finally, once a satisfactory measurement is obtained for that

measurement location, the measurement beam is directed to the grid location or the object

is rotated to the next rotary stage angle, as shown in Figure 6.9 (a). It should be noted

that this revised threshold value remains for all subsequent grid locations until another

false speckle drop-out is detected, at which point it will be further increased. This allows

the system to determine an appropriate threshold value for each object autonomously.

6.2.4 Data pre-processing

The 864 responses for each object were stored in the form of audio files (*.wav) for later

processing. Figure 6.12 shows the mean spectra of all 864 responses for two of the tennis

ball and two of the soda cans to aid in visualisation. It can be seen that most of the

resonances occur below 15 kHz, and that while some objects like the tennis balls share

many features, objects such as the soda cans do not as they are geometrically rather dif-

ferent to one another. It should also be noted that while the mean spectra are presented

here, the measured responses for a given object varied depending on the exact nature of

the measurement location; for example, a measurement on a modal node would vary from

that to a measurement on a modal anti-node, similarly, a measurement normal to the

vibrating surface would vary from that measured at a sharp angle of incidence. In order

to classify these responses the audio files were processed into images, enabling the applica-

tion of image processing CNN; the raw measurements have been made publicly available

[101]. Since this pre-processing will affect classification accuracy, four similar but alter-

native spectrogram-based pre-processing techniques were applied so that they could be

compared to one another. For each measurement, the first two data types were the spec-

trogram, showing the frequency content plotted against time; and the mel-spectrogram,

instead showing the frequency content on a non-linear scale (the mel scale). The mel-

spectrogram uses a non-linear frequency scale based on human auditory perception and

is a common pre-processing technique for audio classification tasks [102, 103]. Since these

types of spectrograms devote more image area to the lower frequencies, they should al-

low the NN to more effectively generalise as most of the object resonances are located in

these lower frequencies, as shown in Figure 6.12. With a focus on reducing the impact of
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measurement noise on classification accuracy, an additional two data types were included

where the spectrograms and mel-spectrograms were modified such that any signal content

above the excited frequency at that instant is removed; this will be referred to as “crop-

ping” throughout this paper. This results in a total of four data types: spectrograms,

mel-spectrograms, cropped spectrograms and cropped mel-spectrograms, as can be seen

in Figure 6.13. Each of these will be used to train a CNN so that the efficacy of these data

pre-processing techniques can be compared.

(a) (b)

(c) (d)

Figure 6.12: Mean spectra (df = 1 Hz) of all 864 Hann windowed responses with
subfigures (a) and (b) being those of the tennis balls (m) and (s). For comparison,
subfigures (c) and (d) show those of the soda cans (r) and (s). Since there were recorded
via the laptop microphone port, the amplitude has no units. The mean spectra of all 23

objects can be found in the publication [53].
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Figure 6.13: A response of object (j) shown as the four data types used to train the
various CNNs; (a) spectrogram, (b) mel-spectrogram, (c) cropped spectrogram, and (d)
cropped mel-spectrogram. The axes were not presented to the CNN, similarly, the colours

represent normalised amplitude.

The pre-processing was implemented in Python using the Librosa library [104]. Each re-

sponse was first used to generate a normalised spectrogram with a window size of 1024

samples, or 23.22 ms, which gives a spectral resolution of 0.043 Hz. The windows had

an overlap of 6.25% and a maximum frequency bin of 22.05 kHz. The spectrograms were

then “cropped” between opposing corners, shown in Figure 6.13, removing any spectral

information above the excitation frequency by setting these areas of the spectrogram to

zero amplitude. Finally, the mel-spectrograms and the cropped mel-spectrograms were

generated using their spectrogram counterparts with 150 bin frequencies. Convolutional

neural networks (CNNs) were then trained and assessed on each of these four data types,

which were in the form of 496 x 369 pixel images (*.png) as exported by Librosa.
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6.3 Convolutional neural network training and regularisa-

tion

6.3.1 Summary of fundamental neural network concepts

CNNs are a variety of neural network (NN) specialised in processing data with grid-like

topologies, therefore, excelling at image recognition tasks [105]. Since audio data can be

readily represented as an image using spectrogram techniques, which maintain this grid-

like topology, CNNs have been commonly employed for audio classification tasks [103].

The name and fundamental structure of the NN is inspired by that of a biological brain,

as it is intended to mimic neurons in a brain signalling to one another [106]. A general

schematic of basic NN can be seen in Figure 6.14. The input nodes are those which receive

information, such as the brightness of a pixel2, and pass this information on via a connec-

tion to a node in the following layer. Each hidden layer node uses an internal bias and

the assigned weights of each connection to calculate an output value3 [107]. This process

continues across each layer of the NN until the output layer, where the result is acquired;

for example, the classification of the image.

2For a monochromatic image; otherwise, it is the brightness of a channel within a pixel.
3Activation functions are not mentioned here for simplicity.
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Input layer

Multiple hidden layers

Output Layer

Figure 6.14: A general schematic of a basic NN, with circles representing nodes and
arrows representing how information is passed between them.

It is the weights and biases that determine the specific output of a NN, given a specific

input, and they are assigned through a process known as training. In the case of supervised

learning used herein, training is performed using a labelled data set, known as a training

set. The training set is used during training to tune the weights and biases such that the

NN outputs best agrees with the labels of the training set. The tuning of the weights and

biases is regulated by various parameters known as hyperparameters [107]. The correct

selection of the hyperparameters is a vital part of training any NN, as these influence the

ultimate performance. One such hyperparameter is the number of epochs a NN is trained

for, with an epoch being one iteration of the training data by the NN - since training

involves making repeated iterations over the training data to arrive at the optimal weights

and biases. A common obstacle when training a NN is obtaining high performance on the

training data but lower performance on a new unseen data set; this is known as overfitting

and should be avoided.
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6.3.2 Regularisation to prevent overfitting

There are a number of techniques intended to prevent overfitting and are known as reg-

ularisation techniques, but the most common of them is known as early stopping [108].

Early stopping uses a second data set, known as the validation set ; the NN is not trained

on this data set, but it does make predictions on it. These predictions are used to de-

termine if the NN has successfully generalised such that the predictions also apply to the

validation set, or if the NN is can only make accurate predictions on the training set.

Practically, this means training for a number of epochs which minimise both training loss

and validation loss, where loss is a metric that captures the performance of the NN when

making predictions on either data set.

Typically, a dataset will be split into 80% training set and 20% validation set. However,

sometimes split into 70% training set, 20% validation set and 10% test set when partic-

ular rigour is required [107]. Despite the validation set only being used to calculate the

performance, not tune the weights and biases, sometimes, through the selection of specific

hyperparameters, slight overfitting can still occur. Therefore, to obtain the most represen-

tative real-world estimate of the performance, the test set is set aside in the early stages

and is not used at all for training but at the end of the work to gauge the performance.

6.3.3 Training methodology for response classification

Rather than training the CNN from scratch, transfer learning (TL) was applied. TL takes

a NN which has already been trained for a related task and retrains it for the task at hand,

thus “re-purposing” the NN. In this approach, only the weights and biases near the output

layer are tuned, with the output layer being modified for the new classes; therefore, the

network retains knowledge learned from the initial data set. TL has three main general

advantages when compared to training a new network [109]. Firstly, the accuracy after

one epoch of training will be higher. Secondly, the rate of improvement with increasing

epochs will be steeper. Finally, the performance plateau at the higher epochs will still
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remain higher than for traditional techniques. These advantages are due to the increased

contextual knowledge available to the NN from the pre-training data set, which is being

applied to the new data set.

The pre-trained CNN used in this work is ResNet-18 [110] which has already been trained

on the ImageNet database [111]. It is a relatively lean CNN at only 18 layers deep, mean-

ing the training and subsequent inference will require less time and processing power than

its larger counterparts. This was performed on the Google Colab cloud platform in Python

using the Fastai library [112]. A Google Colab Pro subscription allowed access to either

NVIDIA V100 or A100 graphical processor units, depending on availability. All of the

CNNs described in this chapter were trained using a batch size of 16 for 14 epochs using

the fit.one_cycle function. This training methodology is an implementation of cyclical

learning rate [113, 114] and super-convergence [115] principles published in the literature.

The practical implications of this technique allow for the hyperparameters of the learning

rate, momentum, and weight decay to be automatically determined, resulting in CNNs

which can outperform those trained with traditional hyperparameter tuning techniques

for some applications [115]. In order to measure the performance of the various CNNs the

classification accuracy is calculated on the test set, while in many applications this would

not be appropriate, here it is valid since the data is balanced, meaning each class contains

the same number of responses [116]. During the analysis, the data can be split in such a

way that some classes contain one more or less response than other classes. For example,

the 10% test set split of all 19,872 responses results in 1987.2, as such, the resulting test

set contains 1987 responses meaning one class has one less response. This is a common

occurrence that introduces a negligible bias into this accuracy-based performance assess-

ment, whereas, for larger class imbalances - roughly ranging up from a two times difference

- other performance metrics become more reliable, such as the F1-score [117].

fit.one_cycle
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6.4 Pre-processing and dataset size optimisation

This section explores the impact of data pre-processing and total training set size on the

performance of the various CNNs. Here, the 864 audio files for each of the 23 objects in

Figure 6.8 were used to generate 864 of each of the four data types shown in Figure 6.13.

This results in a total of 19,872 images for each of the four pre-processing techniques. Of

these, 10% is set aside as the test set used to determine the accuracy of each CNN in the

final stages. This test set is comprised of the same 1988 responses for each technique, only

with a different pre-processing technique applied. As discussed in the previous section,

10% of 19,872 results in there being either 86 or 87 responses for each object class in the

test set. The remaining 17,884 images are taken to be the training set. Finally, to simulate

smaller data sets, the number of responses is reduced by a factor of m = 1, 2, 4, 6, 8, 10.

This results in six training set sizes and the four pre-processing techniques, giving a total

of 24 data sets used for this section.

The test set was comprised of a randomly selected stratified sample and was set aside for

each pre-processing technique to evaluate the performance of the CNNs later. Five-fold

cross-validation was then used to rigorously compare the effects of the four pre-processing

techniques and data set size on the CNN performance. This divides the remaining data

into five “folds”; four of these are used as the training set, with the remaining fold used

as the validation set. This process repeats five times, resulting in five separate CNNs for

each iteration, meaning that all the data not in the test set is used for both training and

validation, generating a total of 120 CNNs for the 24 data sets. For a fair comparison,

all CNNs for all values of m were compared against the identical test sets for each pre-

processing type. Meaning all the metrics presented in this section were generated using

the same test set just with differing pre-processing applied for the four techniques. This

procedure is depicted in Figure 6.15.
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Figure 6.15: Illustration of the five-fold cross-validation procedure used to compare the
four pre-processing techniques at six data set sizes. Where m is the fraction of the data
set used in the five-fold cross-validation, A is the accuracy obtained for each split, Ā is
the mean accuracy of all five splits, σ is the associated standard deviation of the mean
accuracy, Nsplit is the total size of that split of the training data set, and Ntest is the test

set size.

The results of the five-fold cross-validation procedure for the 24 data sets are shown in

Figure 6.16. Overall, all four pre-processing techniques yield higher accuracies for larger

data set sizes, with all four techniques tending towards 100%. However, for smaller data

set sizes, the performances of the four techniques begin to diverge. The worst-performing

CNNs used spectrograms, reaching as low as 72.16% for the data set containing 78 re-

sponses used per object. The second worst technique was the cropped spectrogram, how-

ever, its performance was fairly similar to mel-spectrograms, exhibiting a maximum per-

formance difference across all data set sizes of about 2%. Finally, the CNNs which utilised

cropped mel-spectrograms performed the best of the four techniques and exhibited con-

siderably lower sensitivity to data set size than the other techniques; while also being the

most accurate when the entire data set was available. The cropped mel-spectrograms ob-

tained an accuracy of 87.74% while only being trained on 78 responses per object, which

is potentially sufficiently small to make manual data acquisition a viable alternative to the

bespoke automated arrangement used here.
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Figure 6.16: The accuracies and the associated standard deviations for each set of five
CNNs in the five-fold cross-validation on the 24 data sets - four preprocessing types at 6
data set sizes. Overlaid on the right is an expanded plot representing four data points at

the full data set size.

The results at the largest sample size can be seen more closely in the expanded plot

in Figure 6.16. This shows that the accuracy of all four techniques was above 98.64%

with non-overlapping associate uncertainties. At this largest data set size, the spectro-

gram CNNs performed the worst, with cropping leading to a performance boost of over

a percent. A similar effect can be observed with mel-spectrogram CNNs, where crop-

ping leads to a performance increase of about half a percent. Overall, cropping seems to

have the expected outcome on the performance as the CNNs are able to generalise more

effectively if the image area known to be devoid of any features is removed. Similarly,

mel-spectrograms had a similarly anticipated advantage over spectrograms, likely because

where mel-spectrograms devote more image area to the frequencies with higher densities

of resonances, therefore, allowing the CNNs to generalise more effectively. Consequently,

the remainder of this chapter will focus on the use of cropped mel-spectrograms as the

primary data type in combination with the entire data set, as the classification accuracy

using these exceeds that of the others tested here.
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Figure 6.17 shows a confusion matrix for one of the five cropped mel-spectrogram CNNs

using the entire data set. For context, a confusion matrix of a classifier with 100% accu-

racy would only have entries on the diagonal from the top left to the bottom right-hand

corners of the figure since these locations correspond to the predicted label being the same

as the true label. It can be seen that the CNN correctly classified the vast majority of the

responses, however, there were to two main regions where errors were made. The CNN

misclassified the tennis balls (m), (n) and (o) for one another four times and the table

tennis balls (p) and (q) for one another once. These misclassifications might be resolved by

using a larger data set, by extrapolating the observed trend in Figure 6.16; using a deeper

CNN which is sensitive to more complex features, such as ResNet-34; and by adjusting

the parameters in the spectrograms to resolve more spectral features.

Despite these potential improvements to the technique, the performance of this technique

rivals that of the existing contact object recognition techniques discussed in Section 6.1.

While the direct comparison of existing work to this work is difficult due to differences in

the number of objects (ranging from 12 to 50), with some using filled containers [48, 50]

rather than solid objects [49], or both [47]. However, these techniques can be summarised

as performing within the range of 85.5% [50] up to 98.2% [49] - with the best perform-

ing work utilising similar objects to those used in this work. However, as was discussed,

the best performing of the existing work utilised a combination of actuator torques and

the sounds emitted by a combination of five different exploratory behaviours, whereas the

technique presented in this chapter can identify an object within seconds using only an

acoustic excitation. This contextualises the technique presented in this chapter as a vi-

able alternative since it not only increases recognition accuracy but also introduces rapid

non-contact functionality.
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Figure 6.17: The confusion matrix of test set inferences of one of the five cropped
mel-spectrogram CNNs. Highlighted for convenience are the two groups of objects where
misclassification occurred: in green - (m), (n) and (o) - are the tennis balls, and in red -

(k), (p) and (q) - are the table tennis balls.

6.5 Broader object class performance

While it was demonstrated in the previous section that it is possible to identify objects

solely by their vibrational response to an acoustic excitation, it has not yet been deter-

mined whether this technique can be used to recognise broader classes of similar objects;

for example, recognise any soda can rather than a specific instance of a soda can. The few

misclassifications seen in Figure 6.17 are a subtle indicator that vibrational characteristics

of these groups of similar objects may share some features. As such, this section will focus

on the system’s ability to classify objects into broader object classes.
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For this to be possible, the CNN must generalise features related to all objects within a

broader class and be able to identify those features in the instance of the object not con-

tained within the training data. As such, this section utilises the grouped objects: tennis

balls - objects (m), (n) and (o); table tennis balls - objects (k), (p) and (q); the sealed

soda cans - objects (u), (v), (w); and empty soda cans - objects (r), (s), (t). The CNN

was trained on two of the three objects within each group, but labelled as the same class,

along with all of the previous objects, thereby minimising the likelihood that the CNN will

correctly predict the class due to chance. This means that the accuracy of the CNN can

then be obtained using the third, unseen objects within each group. Therefore showing

that the CNN successfully generalised features common to all three objects within each

group, despite having seen only two of them.
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Figure 6.18: The labelling of the 23 objects organised as single objects or grouped
objects - table tennis balls, tennis balls, and either full or empty soda cans. Each object

in this represents figure represents the full 864 mel-spectrograms.

The data for this section were labelled according to Figure 6.18, implemented by sim-

ply modifying the image file names from which the classes were set to be assigned from.

Here, ResNet-18 was again trained in line with the procedure previously described using

864 cropped mel-spectrograms for each unique object, along with a further 1728 mel-

spectrograms for each pair belonging to each group of objects (since one object is being

held out). The data contained within the dashed box in the figure titled “training and val-

idation set” was split into the standard 80/20 validation set test set split for the purposes
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of training. However, since the performance metric of interest here is how accurately the

CNN can classify the never-before-seen objects belonging to these four groups, the test set

consisted only of the four hold-out objects, with 864 cropped mel-spectrograms each.

Figure 6.19 shows the confusion matrix for the hold-out objects with near-perfect perfor-

mance. This represents an accuracy of 99.83% at predicting the class of a never-before-seen

object out of a potential 15 options; leaving the likelihood that chance is a substantial con-

tributing factor very low. The number of these misclassifications would likely decrease if

the training set contained more than just two instances of an object. As discussed in Sec-

tion 6.1, one of the cited works similarly looks at the classification of objects belonging to

broader object classes, rather than classifying individual objects [47]. That work included

three object classes - filled bottles of water, pieces of paper and rigid objects - which

were excited using a simple shake actuator. Their results showed that a never-before-seen

object belonging to the broader object classes could be recognised with an accuracy of

up to 95.8%. However, with such a small number of potential output classes in the data,

there is a 33.3% chance that the classifier can obtain the correct output due to chance

alone. Similarly, the chosen objects do not represent the most challenging selection, with

rigid objects simply emitting no sound when shaken. Similarly, it can be noted that all

the aforementioned contact techniques utilise high amplitude induced vibrations within

the object by contacting the object, leading to audible non-linearities, like sloshing. In

contrast, this technique excites the response using only an external acoustic field, yet,

this alternative approach presented in this chapter outperforms the existing technique,

obtaining near-perfect classification despite a total of 15 potential class outputs whilst

also introducing non-contact functionality.
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Figure 6.19: The confusion matrix of the test set used in assessing the ability of the
technique to detect broader classes of objects.

6.6 Chapter summary and discussion

This chapter introduced a new non-contact vibro-acoustic object recognition technique

that can rapidly recognise previously characterised objects within seconds. This is achieved

by exciting a small vibrational response using a loudspeaker which is measured using an

LDV and classified using a convolutional neural network trained via transfer learning.

The technique was developed and verified using 23 household objects, however, it is not

only limited to household objects. A bespoke, automated vibro-acoustic response mea-

surement system was developed specifically to enable the rapid collection of quality raw

time data. These were then pre-processed into images for use with the CNN as four data

types: spectrograms and mel-spectrograms, with and without cropping the image above

the excitation frequency.
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The chapter first looked at how the pre-processing approach and training set size may

affect the accuracy of the object classification predictions. From this, three main obser-

vations can be made. Firstly, all the CNN’s accuracies increased for larger training set

sizes; which is a fairly typical outcome. Secondly, the CNNs utilising mel-spectrogram

inputs performed better than those utilising spectrograms. This is likely due to the higher

density of resonances at the lower frequencies, which the mel-scale devotes more space

to, therefore enabling more effective classification and generalisation. Lastly, removing

any spectral information in the spectrogram or mel-spectrogram above the instantaneous

excitation frequency (cropping) increased the accuracy. This is likely caused by cropped

regions containing mostly noise, therefore inhibiting the CNN’s ability to generalise effec-

tively. While all the pre-processing techniques lead to a sufficiently high accuracy when

the training set size was at its largest, the use of cropped mel-spectrograms outperformed

the others with an accuracy of 99.74% ± 0.15% on the test set. As such, only the full

mel-spectrogram data set was used to train CNNs in the subsequent section.

While the aforementioned performance is near-perfect, a practically viable object recogni-

tion technique must be able to detect broader classes of objects, not just specific ones; for

example, all soda cans, not just one specific soda can. To test this, four triplets of similar

objects were grouped together so that the CNN could generalise across them. When the

CNNs predicted the class of the never-before-seen third item in the groups, an accuracy of

99.83% was obtained, confirming that this approach constitutes a practically viable object

detection technique. It is important to note that, when generalising to unseen objects,

the broader object class must contain some vibro-acoustic similarities, however, it can

be reasonably expected that a sufficiently large and diverse training set should still yield

performance comparable to that described here.

While the paper has focused on object recognition, it has been shown that the solution is

highly sensitive to slight differences in the objects while also capable of learning broader

object classes. These features open up many potential applications within various other

fields. For example, this technique could be used for defect detection in production lines,

where physical changes in an item will change its acoustic fingerprint. This is useful when
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all that is of concern is that a defect is present in an item, not what exactly the defect

is, similar to the roles checksums play in computing. Another potential application is the

identification of loose rock in underground mines. Current techniques depend on a worker

tapping the roof with a bar and listening to the sound to determine if it is loose, known

as “roof sounding” [118]. A more high-tech solution employs the use of a vibration sensor

which is similarly tapped on the roof to identify loose rock [119]. However, both require

workers enter the newly created area. Therefore, this technique could scan the roof in an

entirely non-contact manner prior to entering the area, reducing the risk to human life.

Despite the technique’s promising performance, there remain some aspects of the system

which would require further investigation and refinement. Firstly, the loud audible chirp

used to elicit a response from the object makes the system unpleasant to nearby people.

Therefore, it is important to use non-audible frequencies to excite the target. Secondly,

the energy of the speaker should be directed in the approximate direction of the target

rather than being lost to the surroundings to increase the functional range of this tech-

nique. Therefore, integrating an ultrasonic parametric speaker to perform the excitation is

an ideal next step for the system. Following this, an in-depth investigation into the effects

of object distance can be conducted. Thirdly, the automatic acquisition procedure could

be modified to accommodate larger objects with more complex geometries which may not

fit onto a rotary stage.

For practical deployment onto autonomous systems, this system would need to be used

in conjunction with a complementary sensor able to obtain the relative location of the

object of interest. Light Distance and Ranging (LiDAR) sensors are almost ubiquitous on

autonomous robots as they can generate dense 3D maps of the surrounding environment

for navigation and mapping. As such, this technique could naturally be extended to be-

come compatible with this data type. For example, an unknown object-of-interest may be

identified within the LiDAR scan, following which the SLDV can be directed towards it for

further vibro-acoustic interrogation utilising the techniques described in this chapter. A

proof-of-concept system that fuses point cloud and LDV data is described in Appendix A.





Chapter 7

Conclusions and future work

The laser Doppler vibrometer has become an indispensable tool in vibration engineering,

boasting high bandwidths and spatial resolutions unrivalled by traditional contacting ac-

celerometers - all whilst doing so via non-contact means. Since their widespread adoption,

their application envelope as vibration transducers has been steadily expanding, encom-

passing increasingly impactful areas. However, their deployment on mobile platforms has

been largely hampered by the motion the instrument might experience in this scenario.

Despite the associated challenges, the allure of mobile LDV deployment remains since it

can substantially increase land coverage rates whilst simultaneously enabling access to

hazardous or remote areas. This field has already received some interest, with research

into mobile buried landmine detection, intelligence gathering from drones and structural

health monitoring from drones all having received attention. Therefore, this thesis first

aimed to develop the necessary infrastructure needed to enable the mobile deployment of

LDVs and then explored the potential for their integration within autonomous systems.

In the reference frame of the LDV sensor head, the vehicle motion can be divided into two

broad categories: translational motion along the beam axis or translational motion in the

two orthogonal axes, plus the three rotational degrees of freedom. Since the underlying

physics of the LDV dictate that the sensor head is as sensitive to self-vibration in the

beam axis as it is to the target vibration in the beam axis, sensor head vibration could

153
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compromise the measurement. Whereas motion in the five non-beam DOFs would cause

the measurement beam to stray from the intended measurement location and introduce

speckle noise. Two separate approaches can mitigate the effects of these two distinct phe-

nomena, referred to herein as measurement correction and arbitrary tracking.

The best of the pre-existing measurement correction techniques conveniently utilises a sin-

gle contacting accelerometer in order to measure and subsequently subtract any velocity

contribution due to instrument motion. However, improper accelerometer handling sug-

gested that performance gains could be made and the frequency domain-based processing is

limited to stationary signal types. As such, Chapter 3 pioneered the development of a new

time domain signal processing technique - thereby introducing important non-stationary or

transient vibration signal capability - while Chapter 4 delivered a significantly improved

frequency domain-based technique which outperformed the original technique by up to

eight times. An analytical model was then developed, enabling a rigorous sensitivity anal-

ysis of the effects of signal synchronisation. These two techniques were then extended in

Chapter 5 to encompass similar existing work which showed that, by using three precisely

positioned orthogonal accelerometers, similar measurement correction performance can be

achieved under scanning conditions, but with improved signal processing. In all likeli-

hood, the improved signal processing techniques presented herein, based on the existing

hardware arrangement, should become the new gold standard for measurement correction

signal processing.

With the effects of beam axis motion substantially mitigated and compatible with scan-

ning setups, Chapter 5 also presents a novel instrument motion-tracking solution, intended

for downward-facing drone applications. With existing image-based tracking solutions re-

quiring additional onboard computational resources, the resulting weight can make the

technique unsuitable for drone deployments. As such, the proposed solution utilises an

existing SLDV system, and unlike the image-based alternative, this does not require any

modification to the system. This lightweight system functions much in the same way as

a gimbal, but counter-rotates the beam orientation rather than the entire instrument, us-

ing information obtained from an onboard inertial measurement unit. Testing this on a
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Multi-Axial Simulation Table showed the system achieves a 68% reduction in beam motion

during what was equivalent to extreme flight conditions.

Finally, with significant steps forward achieved in both the development of an LDV in-

sensitive to self-vibration, and the introduction of a new tracking technique, the focus of

the thesis shifts towards potential in-field mobile applications. Chapter 6 explores the

common autonomous vehicle task of object recognition, developing a new non-contact

vibro-acoustic object recognition technique. This technique involves the remote acoustic

excitation of an object such that it can be detected by an LDV. The measured responses

were then processed using a range of spectrogram-based techniques and classified using a

convolutional neural network trained via transfer learning. Results show that objects may

be identified with an accuracy of over 99.8%. Potential further applications include loose

rock detection in mines, rapid defect detection on production lines and enhanced clutter

rejection for LDV-based buried landmine detection.

7.1 Future work

The galvanometer gimbal system could be improved in a number of ways. Firstly, the

integration of an inertial measurement unit with a higher output rate would increase the

responsiveness of the system, reducing the introduced error at any instant. Secondly,

the code should be extended such that it may be compatible with any mounting angle.

The mirrors on an SLDV correspond to pitch and yaw, which is straightforwardly tracked

during a downward-facing application as these translate readily to the pitch and roll of

the drone. However, if the system was forward facing, the two orthogonal mirror angles

would need to work in tandem to recenter the target location; these angles can be readily

calculated using a rotation matrix.

The SLDV measurement correction work should be combined with the galvanometer gim-

bal work to show for the first time a viable tracking and measurement correction technique
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which when used in tandem can mitigate the effects of speckle noise, aiming errors and

vehicle vibration. In order to confirm the true efficacy of this combined technique the two

sub-components should be integrated such that the angles of the two orthogonal mirrors

are simultaneously logged, enabling the appropriate measurement correction components

to be calculated for each time step. This naturally lends itself towards the time domain

technique, and since it has both stationary and transient signal compatibility, it will be

applied. This combined system should be experimentally validated on the Multi-Axial

Simulation Table and include a reference measurement as has been done in Chapter 3 and

Chapter 4 such that the performance can be quantified with and without the combined

motion tracking and triaxial measurement correction. If shown to be successful, a real-

world measurement campaign could be conducted which integrates all the measurement

correction and tracking knowledge available herein. For example, drone-based structural

health monitoring or buried landmine detection.

Finally, Appendix A lays the groundwork by describing a proof-of-concept system that

fuses LDV and point cloud data to generate enhanced vibro-acoustic spatially associated

maps for autonomous systems. Here, the LDV data is fused with that of a LiDAR unit

to present a series of interesting scenes. This capability could eventually be combined

with that described in Chapter 6 to allow the autonomous system to glean additional

information about objects within a scene based on their vibration profiles while spatially

associating this to their specific locations within a scene. While not realised within this

thesis, the information gleaned from this when combined with that of the aforementioned

object recognition work could allow autonomous systems to carry out enhanced interroga-

tions of specific objects if, for example, the object is not recognised visually. Similarly, the

vibrational properties of the object in question could be used in industrial settings to infer

the operational state or health of machinery, being regularly autonomously monitored.



Appendix A

Towards enhanced perception for

autonomous systems

This Appendix presents the practical extension of the work described in Chapter 6. Here,

an additional mapping modality is used in conjunction with the SLDV, allowing an au-

tonomous system to locate objects of interest for future vibro-acoustic interrogation using

an LDV.

A.1 Introduction

Chapter 6 describes a non-contact vibro-acoustic object recognition technique, however,

practical deployment of the system in its current form is limited as it requires the object

of interest to be in the same location each time. An additional sensor type can be used

in conjunction with the SLDV to locate objects of interest within the environment so

that they may be vibro-acoustically interrogated. Light Distance and Ranging (LiDAR)

is an active range-resolving optical remote measurement technique. It has become almost

ubiquitous for autonomous systems as it can rapidly generate accurate spatial maps of

the surrounding environment for robot perception and navigation [120]. As such, this

appendix describes the groundwork required to integrate the non-contact vibro-acoustic

157
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object recognition technique presented in Chapter 6 to a practical object recognition tech-

nique for autonomous systems.

A.2 Point clouds and LiDAR fundamentals

A point cloud can be understood as a spatial data type consisting of coordinates, most

commonly polar or Cartesian coordinates. These coordinates generally represent positions

of ‘hits’ in an environment generated by some directional distance sensor. The means by

which a point cloud can be generated varies widely. Some mainstream examples include

structured light scanners [121], stereoscopic cameras [122], and LiDAR scanners [123].

While all these techniques have their advantages and disadvantages, the most common of

them in the context of autonomous vehicles is arguably the LiDAR scanner, as such, this

work will focus on its integration.

LiDAR scanners can take various forms, but at their heart is a time-of-flight (TOF) sensor,

also known as a single point or 1D LiDAR. These TOF sensors consist of a transmitter

and a receiver. The transmitter is typically a laser and emits a short pulse on the order

of a few hundred nanoseconds [124]. This light is subsequently backscattered from an

incident surface in a similar fashion to the light from an LDV. As the sensor collects this

returning light using the receiver optics, the time between emission and detection is used

to calculate the distance to the incident surface, d, given by:

d =
c∆t

2
(A.1)

where c is the speed of light and ∆t is the round-trip journey time of returning pulse [125].

Therefore, by scanning this TOF sensor, or multiple TOF sensors, across an environment,

the surrounding geometry can be mapped. This scanning is most frequently implemented

using an opto-mechanical system, where an actuated mirror surface can direct the mea-

surement beam [126]. This has been previously implemented by using the same orthogonal
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galvanometric scanning mirror setup employed on SLDVs [127], however, the most com-

mon types of scanners are those with continuously rotating reflectors driven by motors

and positional feedback [126]. In these setups, the scanner simultaneously measures the

distance to the incident surface and the current angular position of the TOF sensor using

feedback sensors [128].

Tangential to the LiDAR scanner is the TOF camera, it is a similar device that removes

the need to “scan” in order to generate 3D spatial data. This technique exposes the entire

scene to an infrared light pulse, then collects the returning light using a camera sensitive to

that wavelength [129]. By timing the time taken for the light to return to each individual

pixel on the imaging sensor, a depth map of the scene can be constructed simultaneously

for the entire FOV [130]. However, these cameras generally have a lower range, spatial

resolution and adverse random noise behaviour when compared to LiDAR scanners [131].

A.3 Existing time-of-flight sensor usage with laser Doppler

vibrometry

Polytec first integrated a TOF sensor with an LDV on the PSV-400 SLDV as an optional

addition [132], which has since become an integrated feature on the PSV-500 SLDV [74].

Referred to as the Geometry Scan Unit, the inline TOF sensor enables a sample geometry

measurement by utilising the steering mirrors to scan across the sample surface. Therefore,

providing a static baseline for observing the dynamic vibration of the sample. Similarly, a

TOF camera has been combined with an SLDV to automate the selection of measurement

points on a sample which would otherwise be a lengthy manual procedure [133]. This

technique relies on an existing CAD model of the test sample, then using Viewpoint Fea-

ture Histograms and Iterative Closest Point algorithms, the sample geometry and pose is

automatically determined from the TOF camera data. This removes the lengthy manual

point selection phase in existing approaches and automatically obtains measurements at
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pre-defined measurement locations on the sample surface.

While these existing TOF-LDV techniques are important within the field of vibration en-

gineering, they bear less significance within robotics. Therefore, this section aims to build

on the work described in Chapter 6 by describing how the LDV can be integrated into the

autonomous system workflow rather than integrating LiDAR into the vibration engineer-

ing workflow. As such, the following sections will discuss how vibro-acoustic interrogation

can be used within the context of enhanced perception for autonomous systems.

A.4 Hardware arrangement

A bespoke 3D printed adapter plate was mounted to the face of the SLDV using some

existing mounting holes; this allowed the LiDAR scanner to be mounted above the SLDV

sensor head, as can be seen pictured in Figure A.1. The SLDV used for this work is an

infrared-based Polytech PSV-500 Xtra, as it yields a higher return signal from untreated

surfaces than the more common visible light variants. Whereas the point cloud was ob-

tained using a LiVOX Mid-40 LiDAR scanner as it can generate dense point clouds over a

40◦ cone using a non-repeating scan pattern; therefore, the longer the scan duration, the

denser the point cloud. Both of these instruments are capable of obtaining dense scans

over a similar FOV from under a meter to over a hundred meters making them appropriate

for a wide range of potential applications.
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Figure A.1: Annotated photograph of the SLDV LiDAR sensor system.

A laptop orchestrated the entire scan procedure and conveniently collected the data, as

can be seen in Figure A.2. This was straightforwardly achieved for the LiDAR scanner as

it is designed to interface via an Ethernet port, both receiving commands and returning

the point cloud data. In order to control the SLDV, the galvanometer control box de-

scribed in Chapter 5 was used in the same way as it was in Chapter 6, receiving mirror

angle commands from the laptop over serial communication, then applying the appropriate

voltages to the scanning mirrors in the SLDV. The measurements from the SLDV were

collected by the computer over the microphone jack, again in the same way as Chapter 6.

Each measurement was taken using a sampling frequency of 44.1 kHz for a duration of

1 s, providing a spectral resolution of 1 Hz and a bandwidth of 22.05 kHz. These LDV

measurements were taken over FOV of ±13◦ in both pitch and yaw mirrors at intervals 1.5◦.
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Figure A.2: Block diagram of the SLDV-LiDAR measurement system. Here, a laptop
orchestrates the acquisition of both sensors, straightforwardly achieved with the LiDAR,

and made possible for the SLDV using the galvanometer control box.

A.5 Reference frame alignment

To accurately associate the LDV measurements to the LiDAR data, the relative positions

and angles of the two sensors must be known. This can either be precisely measured or

experimentally derived via a calibration procedure, as done here. The bespoke 3D-printed

mount was designed using 3D files of PSV-500 Xtra provided by the manufacturer such

that there would be no angular misalignment between the two sensors. However, in reality,

there will be a small amount of angular misalignment due to the limited accuracy of fused

deposition modelling 3D printers. For short-range scans, this will have little effect on the

reference frame alignment, however, for longer-range scans the angular misalignment is

amplified. Therefore, it is best to ensure the reference frames are aligned in rotation.

Figure A.3: Photograph of the retro-reflective calibration target used during the refer-
ence frame alignment procedure.
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The reference frame alignment procedure requires retro-reflective targets, shown in Fig-

ure A.3, as their locations can be easily identified within the reflectivity point cloud. The

target is placed within the scene and the LDV laser is directed to its centre, the angles

of the steering mirrors are noted, the laser is switched off and a LiDAR scan is obtained.

This procedure is repeated with the target at various locations within the scene. As long

as the system was not moved between the various scans, the point clouds can be merged,

as seen in Figure A.4 (a). The target can be clearly identified within the scene due to its

high reflectivity at the five chosen locations. This point cloud can then be filtered as to

only include the most reflective points, as seen in Figure A.4 (b).

(a) (b)

Figure A.4: The five merged calibration point clouds coloured by reflectivity. (a) before
and (b) after filtering by reflectivity.

Since each of the calibration target clusters seen in Figure A.4 (b) has an associated pitch

and yaw SLDV beam angle, they can be used to align the two reference frames. The first

stage is the generation of point clouds representing the LDV beam vectors with a prede-

fined resolution; here, lines were generated at the appropriate angles with a resolution of

10 points per mm. These LDV beam vector point clouds and the filtered calibration point

cloud can be seen in Figure A.5 (a). Since the reference frames of the SLDV and the Li-

DAR scanner are not aligned, the LDV beam vectors do not coincide with the calibration

targets as they did during the experiment, as they do not really originate from the LiDAR

scanner origin. In order to align the two reference frames, translational offsets are required,
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and ideally small rotational offsets. Practically, these can be estimated using the Iterative

Closest Point (ICP) algorithm. In this case, applied using the pcregistericp function;

which is an implementation of published work [134, 135]. This algorithm adjusts the LDV

beam vectors’ translation and rotation until they best coincide with the calibration target

clusters, as they did in reality. The outputted transform between the two point clouds

was shown to be (x, y, z) = (1.5 cm, 0.8 cm, -8.0 cm) with Euler angles (α, β, γ) = (0.21◦,

0.15◦, -1.02◦). Therefore, by using this information to apply a coordinate transform to the

LDV beam vector point cloud, the two point clouds can be correctly aligned, as shown in

Figure A.5 (b). This transform is therefore applied to all subsequent scans.

(a) (b)

Figure A.5: The generated LDV beam vector point clouds with the merged and filtered
calibration point cloud. Shown in (a) before and (b) after reference frame alignment.

By applying the inverse reference frame transform in both translation and rotation to the

measured point cloud, both the location of the origin and the direction of the axes are

shifted to correspond to that of the LDV; therefore, the non-scanning SLDV beam axis

would the same as the z axis in the point cloud data. Therefore, to find the angle of a

point in the point cloud relative to the SLDV simple trigonometry can be used, with the

pitch being given by:

ϕ = tan

(
z

x

)
(A.2)

and the yaw being given by:

pcregistericp
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θ = tan

(
y

x

)
(A.3)

where x, y, z are the point cloud Cartesian coordinates. Practically, this means that

the SLDV beam angles θ and ϕ can be calculated for each point in the point cloud such

that they may be correctly associated. However, since there will not be a unique LDV

measurement for every point in the point cloud, they are grouped according to the angular

resolution of the SLDV scans. In this work, the LDV scans were acquired with an angular

resolution of 1.5◦, therefore, any points within the angular range of θ±0.75◦ and ϕ±0.75◦

to a scan angle would be associated with that particular LDV measurement.

A.6 Enhanced perception example application

This section explores one potential application of LDV-LiDAR data fusion to enhance

robotic perception. This proof of concept scenario focuses on the ability of a robot to

take a LiDAR-LDV fused scan, identify and segment objects within the point cloud scene

and analyse each object’s vibration profile. Some potential applications include enhanced

object recognition if combined with the work in Chapter 6; or even autonomous fault

detection in industrial spaces, where regular autonomous inspections could check for any

significant deviation in the vibration profiles of machinery.

In order to showcase the potential, a fused scan was taken of a scene containing an oper-

ational drill and a speaker box outputting a 2 kHz pure tone. The drill was selected as it

represents a fairly reasonable analog of an operating machine, whereas the speaker box was

included for debugging purposes since it would have a clearly identifiable peak. Figure A.6

shows a 3D point cloud alongside a photograph of this scene. The scene here has already

been partially processed by removing any points outside of the region of interest, in this

case, an area on a table. All point cloud processing was performed in MATLAB using the

Computer Vision Toolbox.
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(a) (b)

Figure A.6: The test setup used in the preliminary testing of the system. (a) point
cloud and (b) photograph of the scene.

Figure A.7 describes the processing procedure following the acquisition of both LiDAR and

LDV scans. First, the point cloud is filtered using the pcdenoise function in MATLAB;

this function is an implementation of existing work [136]. In order to decrease processing

times, the scans were also downsampled using the pcdownsample function, which utilises

techniques found in existing work [137]. This downsampling was implemented as a box

grid filter with a spatial resolution of 5 mm. In order to isolate objects within the resulting

point cloud, a plane is fit to the data using pcfitplane; which is an implementation of

the M-estimator Sample Consensus technique [138]. To reduce errors, the fit is limited to

upward-facing planes with a tolerance of 10◦. This prevents surfaces, such as the speaker’s

front face, from being mistaken for the relevant table plane. Similarly, the top surface of

the speaker is not mistaken for the table surface since it can be safely assumed that the

largest plane is that of the table. While in this application, the table surface is identi-

fied, this would similarly work for identifying the floor surface. In these less controlled

environments, additional criteria could be included to reject non-floor surfaces, such as

the relative heights of the planes. Finally, any points within a user-defined tolerance of

the plane, specified here to be 1.5 cm, are subsequently removed, leaving a point cloud

containing just the objects.

pcdenoise
pcdownsample
pcfitplane


Appendix A. Laser Doppler vibrometry and point cloud data fusion 167

To segment the point cloud into multiple point clouds each containing an object, the spa-

tial separation of the objects is utilised. Practically, this involves clustering the data using

the pcsegdist function; this utilises the minimum euclidean distance between points from

different clusters in order to separate them. The results of this can be seen in Figure A.8

for both the drill and the speaker box. It is important to note that this technique breaks

down if the two objects are placed too close to one another, however, later acoustic inter-

rogation could be used to distinguish them.

Figure A.7: Processing applied after acquiring vibration measurements and a point
cloud scan using the LDV and LiDAR, respectively. Here, the processing stage simply
generates spectral-coloured point clouds, however, this could consist of any processing

technique.

Now that each object’s point cloud has been identified, the LDV scans can be associated

with the relevant points; as can be seen in Figure A.7. This is described in Section A.5 but

involves calculating the angle of each point in the point cloud relative to the SLDV origin,

therefore, allowing the points to be grouped accordingly. Since these data were collected

as time data, the next stage is to apply an FFT to convert them into spectra such that

pcsegdist
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they may finally be processed. Ultimately, this work is intended to be used in conjunction

with the work presented in Chapter 6 to enhance object recognition, where objects with

similar or challenging geometries can be interrogated using an LDV measurement. In that

specific scenario, the object coordinates would first be identified and the SLDV would

subsequently be directed in that direction, rather than here, where scans have already

been acquired over the entire SLDV FOV for a post processing-based approach.

(a) (b)

Figure A.8: The point clouds of the objects identified within the scene, with (a) the
drill and (b) the speaker box.

In order to view the highly dimensional data associated with the point cloud, a variety

of data visualisation techniques can be applied. Figure A.9 shows one potential approach

where the points in the drill point cloud are coloured according to the RMS amplitude

of the vibration in each octave. In the lowest frequency range of 11 Hz to 22 Hz, the

rocking motion seems to be highlighted. Similarly, the frequency range of 355 Hz to

710 Hz, the area containing the motor is vibrating with a high amplitude, potentially be-

ing excited by the frequency of the motor rotation. This imaging modality now allows the

autonomous system to infer the operational state of mechanical objects within the envi-

ronment. Additionally, by merging this work with that described in Chapter 6, enhanced

object recognition could be achieved.
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Figure A.9: The point cloud of the first object identified within a scene coloured by the
vibration amplitude in the region over various octaves. The units here are arbitrary as

the analogue-to-digital converter in the mic port is uncalibrated.

A.7 Summary and discussion

This appendix aimed to establish the groundwork to enable the fusion of LiDAR and LDV

sensor modalities for autonomous robots. It extended the work presented in Chapter 6

into a more practically viable object recognition technique by integrating an SLDV into a

LiDAR-based autonomous vehicle application. Although recognition itself was not demon-

strated, the infrastructure behind the merging of the two sensor modalities was developed

along with the automatic localisation of objects of interest within a scene so subsequent

vibro-acoustic interrogation. This is a promising concept as it would enable autonomous

systems to perceive the vibrations of the surrounding world with a high spatial resolu-

tion and sensitivity; unlocking a whole host of new applications. A few examples include
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autonomous fault detection in machinery - where a robot can could roam a warehouse

and autonomously assess the health of the various machines; enhanced object recognition

for autonomous systems, by combining this with the work from the previous chapter, ob-

jects otherwise confused for one another in a LiDAR scan could be distinguished using

their acoustic fingerprint; and enhanced Simultaneous Localisation and Mapping (SLAM),

where the vibrations of the surrounding environment could be used as additional land-

marks. There are likely many more unforeseen applications that are yet to be conceived.

Currently, the system scans the SLDV over the entire field of view, which is time-consuming

and unnecessary, as many of the measurements are not processed. This was convenient for

the post-processing approach applied here but likely not part of the final technique. Ideally,

localising objects of interest within the scene would directly determine the SLDV mirror

angles for further vibro-acoustic interrogation. Secondly, this work can be integrated with

that shown in Chapter 6, where similar objects or objects with difficult geometries can be

better identified using a combined SLDV-LiDAR approach rather than just the LiDAR

data. Finally, this work should be extended into some of the aforementioned applications

beyond object detection.
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