
1

Vol.:(0123456789)

Scientific Reports | (2023) 13:18335 | https://doi.org/10.1038/s41598-023-44586-6

www.nature.com/scientificreports

SSH‑DAuth: secret sharing
based decentralized OAuth using
decentralized identifier
Danda Prudhvi Krishna 1, R. Ramaguru 1,6, K. Praveen 1,6, M. Sethumadhavan 1,6,
Kattur Soundarapandian Ravichandran 2, Raghunathan Krishankumar 3 &
Amir H. Gandomi 4,5,6*

OAuth2.0 is a Single Sign-On approach that helps to authorize users to log into multiple applications
without re-entering the credentials. Here, the OAuth service provider controls the central repository
where data is stored, which may lead to third-party fraud and identity theft. To circumvent this
problem, we need a distributed framework to authenticate and authorize the user without third-party
involvement. This paper proposes a distributed authentication and authorization framework using a
secret-sharing mechanism that comprises a blockchain-based decentralized identifier and a private
distributed storage via an interplanetary file system. We implemented our proposed framework in
Hyperledger Fabric (permissioned blockchain) and Ethereum TestNet (permissionless blockchain).
Our performance analysis indicates that secret sharing-based authentication takes negligible time for
generation and a combination of shares for verification. Moreover, security analysis shows that our
model is robust, end-to-end secure, and compliant with the Universal Composability Framework.

Authentication and authorization play a crucial part in security frameworks by affirming a client’s identity and
allowing access to web applications. Therefore, organizations should deploy robust authentication mechanisms
to verify the identity of the end users and prevent data breaches. In 2016, 154 million US voter records were
exposed due to data breach1. In the same year, the world tech firm Capgemini had a database leak of personal
information of potentially millions of users of a global recruiting firm2. Generally, many web applications are
being developed and used for availing various services; as a result, users are required to remember multiple login
credentials, which becomes a monumental task. Various frameworks have been proposed to overcome this, such
as Single Sign-On (SSO)3 in which end users are validated only once at a trusted platform called the Identity
Provider (IdP) and afterward login to different Service Providers ( Sp ) without re-entering credentials. Thus, SSO
simplifies user authentication by remembering the master credentials. Companies like Google, Facebook, and
Microsoft have used SSO to authenticate legitimate users.

In the current generation, providing security for communication on the Internet is a complex and challeng-
ing task. SSO is susceptible to attacks like XML injection, On-Path Attacks, and Authentication bypass due to
improper implementation on the client side. Various methods like privacy-based adaptive SSO4 make the system
simple for the user and provide authentication security to Sp for their applications. Verifiable Encryption SSO5,
which uses a mathematical algorithm via a one-time pad (OTP) for authentication, was proposed for securing
SSO. Security Assertion Markup Language (SAML)6 and OpenID Connect7 are the most widely implemented
protocols in SSO. The OAuth 2.0 framework8 provides authentication and authorization using the user’s creden-
tials in an existing centralized identity provider. OpenID Connect builds an identity layer on top of the OAuth
2.0 framework.

OPEN

1TIFAC‑CORE in Cyber Security, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore,
India. 2Department of Mathematics, School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore,
India. 3Information Technology Systems and Analytics Area, Indian Institute of Management Bodh Gaya, Bodh
Gaya, Bihar 824234, India. 4Faculty of Engineering and Information Technology, University of Technology
Sydney, Ultimo, NSW 2007, Australia. 5University Research and Innovation Center (EKIK), Obuda University,
1034 Budapest, Hungary. 6These authors contributed equally: R. Ramaguru, K. Praveen, M. Sethumadhavan,
Kattur Soundarapandian Ravichandran, Raghunathan Krishankumar and Amir H. Gandomi. *email: gandomi@
uts.edu.au

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-44586-6&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2023) 13:18335 | https://doi.org/10.1038/s41598-023-44586-6

www.nature.com/scientificreports/

Motivation and objective
There are limitations in the current SSO, and our framework addresses these limitations by leveraging the latest
technologies. The motivation and objectives of the proposed work are as follows:

•	 To improve user identity management by creating a more secure and reliable authentication and authoriza-
tion system that takes advantage of blockchain technology’s decentralized, & immutable nature.

•	 To prevent unauthorized access and lessen the danger of data breaches, user identities are distributed and
protected utilizing secret sharing.

•	 To establish a system resilient to single points of failure and impervious to censorship and hacking, the work
investigates the use of the Interplanetary File System (IPFS).

•	 Traditional authentication techniques can be more prone to new dangers as technology develops. We aim to
develop secure and privacy-conscious SSO systems, paving the way for more reliable and user-centric identity
management solutions across diverse services.

Our contribution
In this paper, we proposed and implemented a blockchain-enabled distributed authorization scheme designed to
perform SSO in the zero-trust environment. We have added a secret-sharing mechanism allowing participants
to split the user Decentralized Identifier (DID) into several shares so that each user has a mandatory share of
their DID. The DID can only be reconstructed when sufficient shares are combined with a mandatory share for
authorization. The following are the main contributions of our framework.

•	 Using our model, participants can authenticate independently without relying on a Trusted Third Party (TTP).
•	 We showed that our proposed model is secure based on the universal composability framework and guar-

antees fairness by authenticating the users through DID and smart contracts.
•	 To the best of our knowledge, this is the first work proposed on a Distributed Authentication framework

based on DID using a secret sharing mechanism.
•	 There are limitations in OAuth2.0, and our framework addresses these limitations by leveraging the latest

technologies. Table 1 compares our proposed model with the OAuth2.0 framework.

Preliminaries
Identity access management
Identification of authorized users who can use the appropriate resources within the organization is made through
the Identity Access Management (IAM) system9. The three types of access management include Independent
Identity Management (IIM), Centralized Identity Management (CIM), and Federated Identity Management
(FIM). IIM and FIM model supports multiple IdP’s whereas CIM System has only one IdP. SSO approach, which
Google and Microsoft widely adopt, falls under the FIM model. Here in our framework, we are following the
FIM model.

Authentication schemes
This section reviews various authentication schemes in which the users must prove their identity before access-
ing data.

Security assertion markup language (SAML)
SAML was developed by the OASIS foundation and was released in March 2005. It is an open standard for
authorization and authentication, allowing two web entities to exchange data. SAML assertions are used as secu-
rity tokens for authenticating the users. As this assertion contains security claims about the subject, the validity
of these claims should be certified. This validation can be done using Extensible Markup Language (XML) sig-
natures, which should cover the entire SAML assertion. SAML supports XML, HTTP, SOAP, and other protocols
that can transfer XML Signatures. The working of SAML is described through the timeline diagram in Fig. 1.

Table 1.   Comparison of OAuth2.0 with SSH-DAuth.

Factors OAuth2.0 SSH-DAuth

Centralization Centralized Decentralized

DID Enabled Not used Used

Data confidentiality Public key infrastructure Secret Sharing

Data privacy Not anonymous Pseudo-anonymous

Availability Single point of failure No downtime

Transaction anonymity Not Anonymous Pseudo-anonymous

3

Vol.:(0123456789)

Scientific Reports | (2023) 13:18335 | https://doi.org/10.1038/s41598-023-44586-6

www.nature.com/scientificreports/

Figure 1.   Timeline diagram of SAML.

Figure 2.   Timeline diagram of OpenID Connect and OAuth.

4

Vol:.(1234567890)

Scientific Reports | (2023) 13:18335 | https://doi.org/10.1038/s41598-023-44586-6

www.nature.com/scientificreports/

OpenID connect and OAuth
OpenID Connect is an open authentication standard that adds a fundamental identity layer to OAuth. It allows
clients to verify the end-user’s identity via authentication performed by an authorization server. OAuth, an
authorization standard developed by Twitter and Google, gives brief assets for legitimate clients to get to third-
party applications. In expansion, it gives clients designated security to server assets on behalf of an asset owner.
The working of the OpenID and OAuth is described through the timeline diagram in Fig. 2. The comparison
between SAML, OpenID Connect, and OAuth2.0 has been shown in Table 2.

Self‑sovereign identity model
The Self-Sovereign Identity (SSI) model provides a secure digital identity in which the user controls their
information10. This model provides a trusted relationship between the user and websites to access the protected
resources without relying on any central repository. SSI is made of claims, proofs, and assertions, whereby
claims are the identities the user creates when registering with the blockchain. Proofs are documents that act
as evidence for the claims, and assertions are stored in the user’s device that the other parties validate to check
whether the claims are valid.

Decentralized identifiers
A Decentralized Identifier (DID)12 is a globally unique and persistent identifier developed as a standard by the
World Wide Web Consortium (W3C) as shown in Fig. 3 that offers verifiable and decentralized digital identity.
DIDs are essential components of SSI, created and controlled by individual users. A DID maps to a DID docu-
ment that contains a series of claims about the user’s identity. It is communicated as the linchpin of SSI and
employs blockchain or another Distributed Ledger Technology (DLT) to secure privacy and security concerns.
It provides faster verification, privacy protection, and selective disclosure of information through the Zero-
Knowledge Protocol (ZKP). Each DID has its method, as shown in Table 3

Blockchain technology
Blockchain Technology is a decentralized computation and distributed ledger platform that efficiently stores
immutable transactions in a verifiable manner through a rational decision-making process among multiple
parties in an open and public system14. Blockchain allows individuals and companies to instantly store and

Table 2.   SAML, OpenID Connect and OAuth2.0 Specifications.

SAML OpenID connect OAuth2.0

Open Standard for Authorization and Authentication Authentication Authorization

Developed by OASIS OpenID Foundation Twitter and Google

Developed in 2001 2014 2006

Primary usecase is SSO for Enterprise Apps Consumer Apps API Authorization

Used from 2001 2014 2012

When to use User or corporate partner to access web service Authenticate users without an account Temporary resource access to 3rd party apps on a legiti-
mate user’s behalf

Security XML Signing Access token validation Access token validation

Figure 3.   Sample DID. Source:w3.org11.

Table 3.   Active DID Method Specifications.

Method DID prefix

Sovrin did:sov:

IPDB did:ipdb:

Ethereum uPort did:uport:

IPFS did:ipld:

Amrita13 did:avvcyber:

5

Vol.:(0123456789)

Scientific Reports | (2023) 13:18335 | https://doi.org/10.1038/s41598-023-44586-6

www.nature.com/scientificreports/

safely exchange data and value. Information in Blockchain is transferred peer-to-peer without any middlemen
or intermediaries. Users have access to see every transaction made on a permissionless blockchain, which is
open and transparent. On the other hand, access and visibility are controlled by a permissioned blockchain.
Bitcoin, the world’s first cryptocurrency, is an example of a permissionless blockchain employing the Proof of
Work (PoW) consensus algorithm. Ripple is a permissioned blockchain network that uses the ledger consensus
protocol to verify each transaction.

Ethereum
Ethereum15 is a permissionless programmable blockchain that stores and executes programs called smart con-
tracts for building decentralized applications (DApps). Ethereum runs on a virtual environment called the
Ethereum Virtual Machine (EVM) to isolate itself from the typical ecosystem. Smart contracts are the funda-
mental building blocks of Ethereum applications. Smart Contracts are self-executing code deployed and executed
on a distributed ledger technology when predetermined conditions are met16, 17. Smart contracts in Ethereum
are written in Solidity language.

Various Ethereum Request for Comments (ERC) standards are available to handle Distributed Identity, which
include but are not limited to ERC-1056: Ethereum Lightweight Identity18, ERC-1207: DAuth Access Delegation
Standard19, ERC-1484: Digital Identity Aggregator20, and ERC-4361: Sign-In with Ethereum21.

Hyperledger fabric
Hyperledger Fabric22 is an open-source blockchain framework developed under the Hyperledger project. It offers
a modular architecture that enables organizations to create permissioned blockchain networks and decentralized
apps. Fabric supports programmable logic called chaincode, private channels, and pluggable consensus algo-
rithms. Chaincode23 is the business logic deployed on the network to enable users to interact with the blockchain
and perform various actions, like reading or modifying the ledger or invoking transactions. Chaincode runs in
a secured docker container isolated from the endorsing peer process. Chaincode initializes and manages the
ledger state through transactions submitted by applications. Chaincode is written in Go, node.js, or Java that
implements a prescribed interface.

IPFS
Interplanetary File System (IPFS)24 is a peer-to-peer network system for storing and accessing data. As a content-
addressed protocol, IPFS splits each file into smaller chunks that are hashed cryptographically and are given a
unique fingerprint called a Content Identifier (CID).

Related works
Many researchers have introduced frameworks for implementing secure authentication. For instance, Teja25
implemented a safe authentication system for preventing phishing attacks by using secret sharing and QR code
scanning. This mechanism works on a dedicated mobile application, which eliminates the process of logging in
via user credentials. According to this system, when the user scans the QR code, the mobile application gener-
ates the code to an authentication server. The server validates the code using Lagrange’s polynomial and gives
access to the user’s protected resources.

Seong-ho Hong26 proposed a new SSI-based OAuth model named Vault-point, which provides decentrali-
zation and integrity to the user. Vault-point uses the Ethereum platform and consists of three types of smart
contracts, namely- Identification contract, Notification contract, and Client management contract. The Iden-
tification contract stores the information related to the user, who can edit, delete, and update his identity. The
Notification contract delivers the client’s authorization request to the corresponding user’s device. In the Client
management contract, the client’s (service provider) information will be stored and executed when the user
wants to connect to the service provider.

Nikos Fotiou proposed a token-based OAuth2.0 using distributed ledger27. In this token system, the resource
server grants permission to the protected user data by validating the ERC-721 token corresponding to the JSON
Web Tokens (JWT) received from the client. Anjum28 developed a distributed framework for storing patients’
medical records (PMR) based on the Ethereum blockchain. The ERC-721 standard tokenizes these records,
which are then stored in the privately distributed storage known as IPFS. Furthermore, to provide complete
control over the medical records of the patients, the proposed framework incorporates a Non-Linear Secret
Sharing (NLSS) scheme of (1, t, n).

Soumyashree29 designed a blockchain-based distributed IoT architecture for secure authentication and key
management. This method specializes in achieving authentication using a one-way hash chain technique, in
which cryptographic hash values are generated from a single key that is impossible to revert. This framework
includes three layers, namely, device, fog, and cloud layers. The access managing nodes (AMNs) displayed in the
fog layer oversee the devices present within the device layer. These AMNs are gathered to create a blockchain
network that generates, distributes, and manages the secret keys. The entire transactions are validated and pro-
cessed by the AMNs between the layers.

Hadjer Benhadj30 introduced a lightweight blockchain-based verification mechanism to eliminate the single
point failure and reduce the communication overhead and validation from the centralized Public-key Infra-
structure (PKI). The strategy addresses these issues by including decentralized blockchain validators’ admission/
revocation details. As a result, no IoT device should add its certificate to each message, as the blockchain network
will validate its entry.

Shibasis Patel31 proposed an authentication service based on the Ethereum blockchain called DAuth, in
which the user’s session will be activated by validating the signatures. Initially, the backend requests the signature

6

Vol:.(1234567890)

Scientific Reports | (2023) 13:18335 | https://doi.org/10.1038/s41598-023-44586-6

www.nature.com/scientificreports/

generated by the user’s message encrypted with their AuthKey and signed using the metamask plugin. After
receiving the request, the backend validates the received signature.

Schiffman32 developed a DAuth authorization mechanism that permits users to access the services from
distributed web applications in a specific and flexible manner. According to this system, DAuth oversees assign-
ing and revoking protected resources by giving a policy-defined set of rules that eliminate the dependency on
a centralized system.

Abbas33 reported an effective decentralized authentication system using blockchain to reduce the overhead
communication latency of patient healthcare records in interconnected healthcare systems. This decentralized
blockchain network helps to migrate patients and staff from one hospital to another without re-authentication.
According to this system, when a patient submits a transaction in the hospital, the nursing station acts as a valida-
tor in an affiliated hospital, performs preliminary checks, such as signature verification and sufficient balances,
and executes the transaction. After a successful transaction, the nursing station adds it to the ledger.

Suresh Babu34 proposed a distributed identity-based authentication scheme to provide trust within the
resource-constrained IoT devices by delivering data protection and access control during unsecured commu-
nication. This model solves the single-point failure of public-key infrastructure (PKI) and private key generator
(PKG) along with its key escrow problem.

Nagendra Kumar Nainar35 introduced a distributed authentication and validation system for user informa-
tion, including data related to public keys within the blockchain. In this process, an electronic device produces
a chunk of data, attaches the signature to the chunk of data, and transmits this chunk to one or more client
devices in response to individual requests or the network address specified within the request. These signatures
are produced by employing a private key of the electronic device. The electronic device stores the data, including
details of a public key related to the private key, in a first ledger entry of a blockchain.

Balaji Balaraman36 presented the idea of a single sign-on solution using blockchain. In this case, suppose a
system receives a registration request from the service provider, then the system conjures the smart contract
to approve whether the credentials match a stored credential in the blockchain. Based on the login credential,
the system creates a single sign-on token in response to the matching stored credential. The system transmits
the single sign-on token to the client’s device and grants access to the system within the peer-to-peer network.

Vinit Kumar37 has proposed a Decentralized Open Authorization Framework in which the authorization
server is split into two servers. Each server receives unique credentials and creates a unique access token. The
individual access tokens are verified and combined into one token at the resource server. The resource server
validates it, and grants access to the protected resources.

Padma38 has presented an authentication and authorization D-Auth mechanism for accessing serverless cloud
applications by providing server-based OTP and token authentication. This mechanism uses a token Introspector
to authorize users to request access services present in the serverless cloud.

Table 4.   Summary of Notations.

Description Notation

User U

Identity provider—Ethereum IdPEth

Identity provider—Hyperledger Fabric IdPHLF

Service provider Sp

Web application WApp

Decentralized identity DID

Hash of DID Hash(DID)

Secret sharing generate SSHGenerate

Decentralized identity of mandatory share DIDMS

Decentralized identity of second share DIDS2

Decentralized identity of third share DIDS3

Decentralized identity of fourth share DIDS4

Hash of DID mandatory share Hash(DIDMS)

IPFS hash of DID second share IPFSHash(DIDS2)

IPFS hash of DID third share IPFSHash(DIDS3)

IPFS hash of DID fourth share IPFSHash(DIDS4)

Secret sharing combine SSHCombine

One of the given share OneOf

Alternative share to OneOf function Other

Adversary A

Ideal simulator SA

Probabilistic polynomial time PPT

Random nonce ω

7

Vol.:(0123456789)

Scientific Reports | (2023) 13:18335 | https://doi.org/10.1038/s41598-023-44586-6

www.nature.com/scientificreports/

Our proposed scheme
Table 4 summarizes the notations used in this paper. As shown in Fig. 4, there are two main modules in our
scheme. The first one is Identity Creation and Registration Phase and the second one is Identity Authentication
Phase.

Protocol design
Let us assume that user U wants to login to a service provide Sp using the blockchain system [Ethereum ( IdPEth )
or Hyperledger Fabric ( IdPHLF)]. There are two key phases in performing this.

Identity creation and registration phase
Initially, a valid identity is created for the user that complies with W3C DID standards. Then comes the user
registration phase. The details are elaborated as follows.

1.	 U submits the details ( Name||Email_ID||SSN ||Blood_Group||Birth_Date||Phone_Number ) to the WApp for
creation of the DID that complies with W3C DID standards.

2.	 The DID is then passed to a (1,3,4) scheme SSHgenerate to generate four shares ( DIDMS ,DIDS2,DIDS3,DIDS4)
as per Algorithm 1, out of which the first share is mandatory to regenerate the DID.

3.	 The DIDMS is the important share that could reveal the DID on combining this with two of the remaining
three shares. This should be kept private and secure by the U.

4.	 The three shares DIDS2,DIDS3,DIDS4 are stored in the IPFS. These shares can now be accessed with their
hash values IPFSHash(DIDS2), IPFSHash(DIDS3), IPFSHash(DIDS4).

5.	 Finally, (Hash(DID)||Hash(DIDMS)||IPFSHash(DIDS2)||IPFSHash(DIDS3)||IPFSHash(DIDS4)) are submitted
to the Blockchain through the smart contract/chaincode by the WApp.

Figure 4.   Proposed scheme.

8

Vol:.(1234567890)

Scientific Reports | (2023) 13:18335 | https://doi.org/10.1038/s41598-023-44586-6

www.nature.com/scientificreports/

Identity authentication phase
In this phase, the User U shall use the Decentralized Identity (DID) to perform single sign-on to the Service
Provider ( Sp ).

	 1.	 U visits the Sp ’s WApp and sign-in either using IdPEth or IdPHLF and provides the DID.
	 2.	 The WApp calculates the Hash(DID) and sent to the Sp.
	 3.	 Sp now verifies the Hash(DID) from the Blockchain to confirm the existence of the valid user.
	 4.	 If the provided DID belongs to the valid U, then ( Hash(DID)||OneOf (IPFSHash(DIDS2), IPFSHash(DIDS3),

IPFSHash(DIDS4))) is provided by the Blcockchain to the Sp.
	 5.	 Sp now uses OneOf (IPFSHash(DIDS2), IPFSHash(DIDS3), IPFSHash(DIDS4)) to fetch one of the shares from

the IPFS.
	 6.	 Sp request for verification from U by providing (Hash(DID)||OneOf (DIDS2,DIDS3,DIDS4)).
	 7.	 U now uses the DIDMS similar to a private key or password to authenticate and submit the same. The WApp

calculates the Hash(DIDMS) to verify it from the Blockchain.
	 8.	 If the hash is found matching, then the WApp fetches one other share from IPFS and performs a combina-

tion operation, SSHCombine(DIDMS ,OneOf (DIDS2,DIDS3,DIDS4),Other(DIDS2,DIDS3,DIDS4)) to reveal
the DID as given in Algorithm 2.

	 9.	 The U now shares the (HashCalculated(DID)||Hash(DIDMS)) to the Sp.
	10.	 Sp now verifies the Hash(DIDMS) from the Blockchain and verifies HashCalculated(DID) by U is same as

Hash(DID) it got initially, thus successfully verifying the U.
	11.	 The Sp will now generate a random nonce ( ω ) and send (ω||OneOf (IPFSHash(DIDS2), IPFSHash(DIDS3),

IPFSHash(DIDS4)) to the U.
	12.	 The U now uses OneOf (IPFSHash(DIDS2), IPFSHash(DIDS3), IPFSHash(DIDS4)) , to fetch one of the shares

from the IPFS as given by Sp , and Hash(ω + OneOf (Share)) is computed. This computed hash value
( HashNonce+Share ) is returned to the Sp.

	13.	 Sp now verifies ( HashNonce+Share ), thus providing multifactor verification.

In the Identity Creation and Registration Phase, we uses smart contract (resp. chaincode) to store the hashes of
the shares to the Ethereum (resp. Hyperledger Fabric) Blockchain. In the Identity Authentication Phase, the Web
Application retrieves the shares from the Blockchain using the smart contract or chaincode. The share generation
and secret reconstruction (i.e., Algorithm 1 and 2) are offchain computations. In our proposed model, we have
used the Solidity programming to write the smart contract and deploy the application in Ethereum Ropsten Test
Network Permissionless Blockchain. We have deployed the chaincode written in Go Language for Hyperledger
Fabric Permissioned Blockchain. Web3.js was used to interface the User Interface with the Blockchain smart
contracts.

Key algorithm: secret sharing scheme
A Secret Sharing Scheme (SSS) is a cryptographic method for breaking a secret into multiple shares and distribut-
ing it among the participants. The dealer distributes the secret to the n participants as shares; when the required
condition is fulfilled (a group of t participants which is a set in the qualified set - ŴQual joined), the secret can
be reconstructed from the shares. This system is called (t, n)-secret sharing scheme. Here39, the least number of
shares t, called a threshold, should be required to reconstruct the secret. An Adversary who discovers shares less
than the threshold will not be able to get the secured secret. Blakley40 utilized a geometric approach to share the
secret among the participants. According to this method, the secret key is the point in the t- dimensional space
at which all the hyperplanes will intersect. Secret sharing schemes are beneficial for storing highly sensitive data,
encryption keys, and missile launch codes. By distributing the data, among the participants, every individual has
command and control over the data, thus minimizing the loss of data due to a single point of failure.

We use an ideal (1, t, n)-SSS to implement our framework. Let the set of participants is denoted as P =
{ p1, p2, p3, . . . , pn }. A SSS with minimal qualified set ŴQM = {A ∈ ŴQual : p1 ∈ A and |A|=t} with p1 as the essential
participant is called (1, t, n)-SSS. Arumugam et al.41 in 2014 proposed the strong access structure-based (1, t,
n)-SSS, which is a special case of Ateniese et al.42 construction. For reconstructing the exact secret without any
change, Cimato et al.43 in 2004, developed an ideal SSS using both OR and NOT as reconstruction operations. In
this paper, we used the ideal (1, t, n)-SSS constructions44 developed by Praveen et al. in 2017. We demonstrated
our experiments for (1, 3, 4)-SSS.

9

Vol.:(0123456789)

Scientific Reports | (2023) 13:18335 | https://doi.org/10.1038/s41598-023-44586-6

www.nature.com/scientificreports/

The following shows an example of (1, 3, 4)-SSS for sharing 0 and 1 bit. Let P = {p1, p2, p3, p4} be the set of

participants. The basis matrices T0(resp.T1) used for sharing bit 0 (resp. 1) are given as T0 =







0 0 0 1 1 1
0 1 1 1 0 1
0 1 1 1 1 0
0 1 1 0 1 1






 and

T1 =







0 0 0 1 1 1
1 0 1 0 1 1
1 1 0 0 1 1
0 1 1 0 1 1






 . Let the data (eg: DID) which we are going to share is represented as a matrix DID =

[

1 0
0 1

]

 .

Any column permutation of the matrix T0(resp. T1) can be used for constructing shares for bit 0 (resp. 1). The
minimal qualified set for (1, 3, 4)-SSS is ŴQM = {{p1, p2, p3}, {p1, p2, p4}, {p1, p3, p4}, {p1, p2, p3, p4}} . For ŴQM ,
six shares of each participant as generated using Algorithm 1 are given as follows.

DIDMS , i.e mandatory shares CSh(1,1) = CSh(1,2) = CSh(1,3) =

[

0 0
0 0

]

 , CSh(1,4) = CSh(1,5) = CSh(1,6) =

[

1 1
1 1

]

are distributed to p1.

DIDS2 , i.e shares CSh(2,1) =
[

1 0
0 1

]

 , CSh(2,2) =
[

0 1
1 0

]

 , CSh(2,3) =
[

1 1
1 1

]

 , CSh(2,4) =
[

0 1
1 0

]

 , CSh(2,5) =
[

1 0
0 1

]

and CSh(2,6) =
[

1 1
1 1

]

 are distributed to p2.

DIDS3 , i.e shares CSh(3,1) =
[

1 0
0 1

]

 , CSh(3,2) =
[

1 1
1 1

]

 , CSh(3,3) =
[

0 1
1 0

]

 , CSh(3,4) =
[

0 1
1 0

]

 , CSh(3,5) =
[

1 1
1 1

]

and CSh(3,6) =
[

1 0
0 1

]

 are distributed to p3.

DIDS4 , i.e shares CSh(4,1) =
[

0 0
0 0

]

 , CSh(4,2) =
[

1 1
1 1

]

 , CSh(4,3) =
[

1 1
1 1

]

 , CSh(4,4) =
[

0 0
0 0

]

 , CSh(4,5) =
[

1 1
1 1

]

and CSh(4,6) =
[

1 1
1 1

]

 are distributed to p4.

The below-given procedure as per Algorithm 2 is used to reconstruct DID. Let us denote
⊗

 as Boolean OR
operation and

⊙

 as Boolean AND operation. According to SSS, participants in any one of the qualified sets of
ŴQM can reconstruct a secret. So here in this example, the qualified set we selected is {p1, p2, p3} in the ŴQM . So
reconstruction of DID using the shares of the participants p1 , p2 and p3 is given as follows. First, generate all �j

using bit -by-bit XOR of participants shares, i.e �1 =
3
⊗

u=1

CSh(u,1) =

[

1 0
0 1

]

 , �2 =
3
⊗

u=1

CSh(u,2) =

[

1 1
1 1

]

 ,

10

Vol:.(1234567890)

Scientific Reports | (2023) 13:18335 | https://doi.org/10.1038/s41598-023-44586-6

www.nature.com/scientificreports/

�3 =
3
⊗

u=1

CSh(u,3) =

[

1 1
1 1

]

  , �4 =
3
⊗

u=1

CSh(u,4) =

[

1 1
1 1

]

  , �5 =
3
⊗

u=1

CSh(u,5) =

[

1 1
1 1

]

 a n d

�6 =
3
⊗

u=1

CSh(u,6) =

[

1 1
1 1

]

 . Now the DID is obtained by applying bit-by-bit AND operation of all �j , i.e

DID =
6
⊙

j=1

�j =

[

1 0
0 1

]

.

Security considerations
Informal security analysis

1.	 Decentralization and Immutable Ledger: Using a blockchain system introduces decentralization and an
immutable ledger, which can enhance security. Since the user identity information is distributed across the
blockchain network, it becomes more resilient against single points of failure and tampering.

2.	 Privacy and Confidentiality: The secret sharing scheme, where the user’s identity is split into multiple shares
stored in IPFS, can improve privacy and confidentiality. It ensures that no single entity holds complete
information about the user’s identity, reducing the risk of data breaches. Also, our assumption is all com-
munications in our protocol are encrypted.

3.	 Data Integrity: The immutability of the blockchain ensures that once the user identity is recorded, it cannot
be altered or deleted without consensus from the network. This prevents unauthorized changes to user data,
enhancing data integrity.

4.	 Secure Hashing: Cryptographic hashing for storing and verifying user information adds an extra layer of
security. Hashing ensures that sensitive information, like the user’s DID and shares, is not stored in plaintext,
making it difficult for attackers to retrieve the original data.

5.	 Authentication Strength: The combination of the secret sharing scheme and blockchain-based verification for
authentication may provide robust security, especially if the secret shares are generated and stored securely.

Universal composability security framework
In this section, we shall analyze the security of the proposed solution under the universal composability security
framework.The basic objective of the Universal Composability (UC) framework is to guarantee that any key
exchange protocol provides the same security as any other protocol which wants to set up session keys between
two parties, even when it runs in parallel with an arbitrary set of other protocols in a distributed communication
network. Here we use UC Framework to authenticate the Decentralized Identifier, and our assumption is that
all communication in our protocol is encrypted.

UC framework follows the approach of “security by emulation of an ideal process.”45, 46 That means a real
protocol πr realizes the task T, if there is an adversary A attacks πr , there also exists a simulator SA that can
do an Adversary Simulation by interacting with Ideal Process F . Also, proof of indistinguishability means that
no environment ( Z ) can conclude with a non-negligible probability of success whether it is interacting with πr
and A or with F and SA for T. In our protocol, the task T is the SSO-based authentication of the Decentralized
Identifier. The Ideal Processes in our scheme are Secret Sharing or Secret Reconstruction ( FSS ), WApp Operations
( FWApp ), IPFS Operations ( FIPFS)and Blockchain Operations(FBO).

Analysis of proposed scheme
Our assumption is all communication is encrypted and transferred via the Internet (HTTPS). Let us assume that
user U wants to login to a service provide Sp using the blockchain system IdP[Ethereum ( IdPEth ) or Hyperledger
Fabric ( IdPHLF)]. There are two key phases in performing this.

Identity creation phase
The user must create a valid identity using the selected blockchain system’s supported wallet or Certificate
Authority (CA).

1.	 U submits the details CT=(Name||Email_ID||SSN ||Blood_Group||Birth_Date||Phone_Number ) to the IdP
through the WApp for creation of the UI (DID) that complies with W3C DID standards. In UC this commu-
nication is represented as

•	 U sends (Register, reg, CT, U, WApp ) to WApp , where reg is the registration tag and SA . SA now sends
(ask, reg, CT, U, WApp ) to WApp.

•	 WApp sends (GenerateDID, reg, DID, WApp , U) to FWApp . FWApp generate DID then transfer (res, reg,
DID, WApp , U) to U and SA.SA now sends (res, reg, DID, WApp , U) to U.

•	 WApp sends (Submit, reg, CT, WApp , IdP) to FBO and SA.

2.	 The DID is then passed to a SSH(1, 3, 4)generate to generate four shares ( DIDMS ,DIDS2,DIDS3,DIDS4) , out of
which DIDMS is mandatory to regenerate the DID and this should be kept private and secure by the U. The
three shares DIDS2,DIDS3,DIDS4 are stored in the IPFS by U. Shares can now be accessed with their hash
values IPFSHash(DIDS2), IPFSHash(DIDS3), IPFSHash(DIDS4) . In UC this communication is represented as

•	 After receiving (res, reg, DID, WApp , U), U sends (SecretShare, reg, DID, U) to FSS . FSS create shares
and writes down (store, DIDMS , U).

11

Vol.:(0123456789)

Scientific Reports | (2023) 13:18335 | https://doi.org/10.1038/s41598-023-44586-6

www.nature.com/scientificreports/

•	 U sends (ask, store, reg, DIDS2 , U, IPFS) to FIPFS and SA . Now SA sends (ask, store, reg, DIDS2 , U,
IPFS) to FIPFS . FIPFS generates IPFSHash(DIDS2) and sends (res, reg, IPFSHash(DIDS2) , IPFS, U) to U
and SA . Now SA sends (res, reg, IPFSHash(DIDS2) , IPFS, U) to U.

•	 Same above given adversarial simulation will happen while submitting shares DIDS3 and DIDS4 to IPFS
by U.

3.	 Finally, CT=(Hash(DID)||Hash(DIDMS)||IPFSHash(DIDS2)||IPFSHash(DIDS3)||IPFSHash(DIDS4)) are submit-
ted to the FBO through the smart contract/chaincode by the WApp . In UC this communication is represented
as

•	 U sends (submit, CT, U, WApp ) to WApp and SA . SA now sends (submit, CT, reg, U, WApp ) to WApp.
•	 WApp sends (submit, reg, CT, WApp , IdP) to FBO and SA.

Identity authentication phase
In this phase, the User U shall use the Decentralized Identity (DID) to perform single sign-on to the Service
Provider ( Sp ).

1.	 U visits the Sp ’s WApp and sign-in either using IdP(IdPEth or IdPHLF  ) and provides the DID.
The WApp calculates the Hash(DID) and sent to the Sp . Sp verifies the Hash(DID) from the
IdP to confirm the existence of the valid U. If the provided DID belongs to the valid U, then
CT=(Hash(DID)||OneOf (IPFSHash(DIDS2), IPFSHash(DIDS3), IPFSHash(DIDS4))) is provided by the IdP to
the Sp . In UC this communication is represented as

•	 U sends (Sign-in, auth, DID, U, WApp ) to WApp and SA , where auth is the authentication tag. SA now
sends (auth, DID, U, WApp ) to WApp.

•	 WApp sends (GenerateHashDID, auth, DID, WApp , Sp ) to FWApp . FWApp then generate Hash(DID) and
transfer (auth, Hash(DID), WApp , Sp ) to Sp and SA.SA now sends (auth, Hash(DID), WApp , Sp ) to Sp.

•	 Sp sends (Checking, auth, Hash(DID), Sp , IdP) to FBO and SA.
•	 If the provided DID belongs to the valid U, then FBO will transfer (auth, CT, IdP, Sp ) to Sp and SA.

2.	 Sp now uses CT=OneOf (IPFSHash(DIDS2), IPFSHash(DIDS3), IPFSHash(DIDS4)) to fetch one of the shares
from the IPFS. In UC this communication is represented as, Sp sends (ask, auth, CT, Sp , IPFS) to FIPFS and
SA . Now SA sends (ask, auth, CT, Sp , IPFS) to FIPFS.

3.	 IPFS will send CT=OneOf (DIDS2,DIDS3,DIDS4) to Sp . In UC this communication is represented as, FIPFS
sends (res, auth, CT, IPFS, Sp ) to Sp and SA . Now SA sends (res, auth, CT, IPFS, Sp ) to Sp.

4.	 Sp request for verification from U by providing CT=(Hash(DID)||OneOf (DIDS2,DIDS3,DIDS4)).In UC this
communication is represented as, Sp sends (ask, auth, CT, Sp , U) to U and SA . Now SA sends (ask, auth,
CT, Sp , U) to U.

5.	 U now uses the DIDMS similar to a private key or password to authenticate and submit the same. The WApp
calculates the Hash(DIDMS) to verify it from the FBO . If the hash is found matching, then the WApp fetches
one other share from IPFS and performs, SSHCombine(DIDMS ,OneOf (DIDS2,DIDS3,DIDS4),Other(DIDS2,

DIDS3,DIDS4)) to reveal the DID. SSHCombine is implemented by the ideal process FSS to generate the DID.
6.	 U now shares the CT=(HashCalculated(DID)||Hash(DIDMS)) to the Sp . Sp now verifies the Hash(DIDMS) from

the IdP and verifies HashCalculated(DID) by U is same as Hash(DID) it got initally, thus successfully verifying
the U. In UC this communication is represented as, U sends (Verify, auth, CT, U, Sp ) to Sp and SA . SA
sends (Verify, auth,CT, U, Sp ) to Sp . Sp sends (Check, auth, Hash(DIDMS) , Sp , IdP) to FBO and SA . Sp also
sends (Check, auth, HashCalculated(DID) , Sp , IdP) to FBO and SA.

7.	 The Sp will now generate a random nonce ( ω ) and send CT=(ω||OneOf (IPFSHash(DIDS2), IPFSHash(DIDS3),

IPFSHash(DIDS4)) to the U. In UC this communication is represented as, Sp sends (Multifactor, auth, CT, Sp ,
U) to U and SA.

8.	 The U now uses OneOf (IPFSHash(DIDS2), IPFSHash(DIDS3), IPFSHash(DIDS4)) , to fetch one of the shares
from the IPFS as given by Sp , and CT=Hash(ω + OneOf (Share)) is computed. This computed hash value is
returned to the Sp . In UC this communication is represented as, U sends (Multifactor, auth, CT, U, Sp ) to Sp
and SA.

9.	 Sp now verifies this Hash, thus providing multifactor verification.

Security against attack scenarios
Next, we define an event E that SA can modify the communications in the Identity creation phase and Identity
authentication phase by calculating new tags like rega and autha respectively instead of reg and auth. SA can also
forge the CT value with a new CTa . The calculation of these values includes hash functions or random functions,
and since it is challenging to construct a PPT algorithm to find a collision of hash functions or random functions,
the success rate of event E is negligible46.

Performance analysis
The performance of the proposed solution depends on the performance of the blockchain (Ethereum or
Hyperledger Fabric), IPFS, and the secret sharing scheme. We have used a Test network in the case of Ethereum
Blockchain, but in real-time, we will use Ethereum Mainnet, where the performance might differ. The transac-
tion time depends on the network load and the gas fees paid. In IPFS, the storage and retrieval time depends on
network latency. With the above-said considerations, the average time to generate shares from the DID is ≈ 4

12

Vol:.(1234567890)

Scientific Reports | (2023) 13:18335 | https://doi.org/10.1038/s41598-023-44586-6

www.nature.com/scientificreports/

–6 ms; uploading a share to IPFS is ≈ 25–28 ms, and the average time to add this identity information to the
blockchain can be considered as δ . Therefore the average time for identity generation and storing the identity in
the blockchain takes ≈ 30–36ms+ δs , where delta is the time required to store the transaction in the blockchain.
Similarly, for the authentication, the average time for share combination is ≈ 1.6ms as shown in Fig. 5.

Discussion
This section discusses the limitations of the previous works and how our solution surpasses these challenges as
shown in Table 5. We also discuss the limitations of our work.

Soumyashree29 have implemented the authentication mechanism using permissionless blockchain only. In
our paper, we implemented the scheme for the permissioned and permissionless blockchains. This dual imple-
mentation, along with the Secret Sharing mechanism, has resulted in improving security. Hadjer Benhadj30
framework involves using keys for authentication, which requires more computational power. On the other
hand, we are using a secret sharing mechanism where users can authenticate independently without using any
trusted third party. The issue with Schiffman32 framework is that the DAuth works on policy-defined rules that
are not universally compatible with most IdPs. In our framework, there is no inclusion of rules; hence, it has the
flexibility to work with any IdP. In the case of decentralized frameworks presented by Kumar V.37 and Padma P.38
the authorization is done based on two third-party servers and enterprise private cloud respectively. In contrast,
our framework stores uses the blockchain network which will be more trustworthy.

Figure 5.   Analysis of functional time.

Table 5.   Comparison of Existing work with SSH-DAuth.

Technology Soumyashree29 Hadjer B.30 Schiffman32 Kumar37 Padma38 SSH-DAuth

Distributed � � � � � �

msBlockchain � � � �

DID �

IPFS �

Secret sharing �

13

Vol.:(0123456789)

Scientific Reports | (2023) 13:18335 | https://doi.org/10.1038/s41598-023-44586-6

www.nature.com/scientificreports/

We have considered Ethereum Blockchain and Hyperledger Fabric for implementing our proposed solution.
We have taken this experiment to show that our model is blockchain agnostic. The model should be implemented
using the corresponding smart contract / chaincode language; otherwise, the model is the same irrespective of the
blockchain. Below, we present the limitations of our proposed solutions as per our understanding and analysis.
These limitations and implications could lead to further work and research.

1.	 Mandatory Share Protection: The security of the user’s DID relies heavily on the secrecy and protection of
the DIDMS share, acting as a private key. If this share is compromised, an attacker could gain unauthorized
access to the user’s identity.

2.	 Smart Contract Vulnerabilities: The smart contract deployed on the blockchain must be thoroughly audited
to avoid security vulnerabilities and withstand potential attacks.

3.	 Centralization of Secret Shares: While the secret sharing scheme distributes shares across IPFS, if all shares
are stored in a centralized IPFS node or managed by a single entity, it could introduce a single point of failure
and compromise security.

4.	 Blockchain and IPFS Security: The security of the chosen blockchain (Ethereum or Hyperledger Fabric) and
IPFS infrastructure are critical. Attackers could exploit vulnerabilities in the blockchain protocol or IPFS
implementation.

5.	 Transaction Anonymity: The proposed approach does not explicitly address transaction anonymity, and the
linkage of a user’s DID to their actions on the blockchain might reduce user privacy.

Conclusion and future works
This paper describes a secure and robust distributed multifactor authentication & authorization protocol using
DIDs and secret sharing based on blockchain. The proposed work addresses several authentication issues, such
as the role of intermediaries, insecure storage, and mutability, that occur in a traditional centralized system by
leveraging blockchain technology. By incorporating the concepts of DID and Secret Sharing, our proposed solu-
tion improves the security, privacy, and trust of the entire ecosystem while allowing for the selective disclosure
of sensitive information. The use of private IPFS and the encryption of its data add to the data’s security and
limit the flow of information within the network. Based on our findings, we can conclude that adding DID and
Secret Sharing increases trust, privacy, and scalability in a peer-to-peer application built on Ethereum. The results
show that the proposed solution provides a seamless and faster user experience than a centralized repository
authenticating system.

It might be possible to decentralize different types of SSOs like Enterprise SSO (ESSO), Cross-Domain SSO,
and Federated SSO. These systems can also adopt a multi-factor authentication framework.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon
reasonable request. The project GitHub repository could be referred47.

Received: 25 April 2023; Accepted: 10 October 2023

References
	 1.	 Zorz, Z. 154 million US voter records exposed following hack. Help Net Security. https://​www.​helpn​etsec​urity.​com/​2016/​06/​23/​

154-​milli​on-​us-​voter-​recor​ds-​expos​ed/ (2016).
	 2.	 Dan, R. Michael Page blames Capgemini over breach of client data. Infosecurity Magazine. https://​www.​infos​ecuri​ty-​magaz​ine.​

com/​news/​recru​itment-​firm-​blames-​capge​mini/ (2016).
	 3.	 Radha, V. & Reddy, D. H. A survey on single sign-on techniques. Procedia Technol. 4, 134–139 (2012).
	 4.	 Liu, Z., Bonazzi, R. & Pigneur, Y. Privacy-based adaptive context-aware authentication system for personal mobile devices. J.

Mobile Multimed. 12(1–2), 159–180 (2016).
	 5.	 Kihara, M. & Iriyama, S. Security and performance of single sign-on based on one-time pad algorithm. Cryptography 4, 16 (2020).
	 6.	 Somorovsky, J., Mayer, A., Schwenk, J., Kampmann, M., & Jensen, M., On breaking SAML: Be whoever you want to be. USENIX

Security Symposium. 397-412 (2012).
	 7.	 Sakimura, N., Bradley, J., Jones, M., De Medeiros, B., & Mortimore, C. OpenID Connect Core 1.0. OpenID Found., S3 (2014).
	 8.	 Hardt, D. The OAuth 2.0 authorization framework. Techreport. (2012).
	 9.	 Liu, Y. et al. Blockchain-based identity management systems: A review. J. Netw. Comput. Appl. 166, 102731 (2020).
	10.	 Preukschat, A. & Reed, D. Self-sovereign identity (Manning Publications, 2021).
	11.	 W3C. Decentralized identifiers (dids) v1.0. https://​www.​w3.​org/​TR/​did-​core/ (2022)
	12.	 Avellaneda, O. et al. Decentralized Identity: Where did it come from and where is it going?. IEEE Commun. Stand. Mag. 3(4),

10–13 (2019).
	13.	 Ramaguru, R., Decentralized identifiers (DID): DID-AVVCYBER for TIFAC-CORE in cyber security, Amrita Vishwa Vidyap-

eetham, Coimbatore. Amrita TIFAC Cyber Blockchain GitHub Repository. https://​github.​com/​Amrita-​TIFAC-​Cyber-​Block​chain/​
DID-​AVVCY​BER/​blob/​main/​did-​avvcy​ber-​v1.​md (2021)

	14.	 Ramaguru, R., Minu, M. Blockchain terminologies. NamChain Open Initiative Research Lab. https://​github.​com/​NamCh​ain-​Open-​
Initi​ative-​Resea​rch-​Lab/​Block​chain-​Termi​nolog​ies (2021).

	15.	 Ethereum. Ethereum.org GitHub Repository. https://​github.​com/​ether​eum/​ether​eum-​org-​websi​te (2020).
	16.	 Szabo, N. Smart contracts: Building blocks for digital free markets. Extropy J. Transhuman Thought, 16 (1996).
	17.	 Introduction to Smart Contracts. Ethereum.org. https://​ether​eum.​org/​en/​smart-​contr​acts/ (2023)
	18.	 Pelle Braendgaard, J. T. ERC-1056: Ethereum lightweight identity. Ethereum Improvement Proposals. https://​eips.​ether​eum.​org/​

EIPS/​eip-​1056 (2018).
	19.	 Wang, B., & Wang, X. ERC-1207: Dauth access delegation standard. Ethereum Improvement Proposals. https://​eips.​ether​eum.​org/​

EIPS/​eip-​1207 (2018).

https://www.helpnetsecurity.com/2016/06/23/154-million-us-voter-records-exposed/
https://www.helpnetsecurity.com/2016/06/23/154-million-us-voter-records-exposed/
https://www.infosecurity-magazine.com/news/recruitment-firm-blames-capgemini/
https://www.infosecurity-magazine.com/news/recruitment-firm-blames-capgemini/
https://www.w3.org/TR/did-core/
https://github.com/Amrita-TIFAC-Cyber-Blockchain/DID-AVVCYBER/blob/main/did-avvcyber-v1.md
https://github.com/Amrita-TIFAC-Cyber-Blockchain/DID-AVVCYBER/blob/main/did-avvcyber-v1.md
https://github.com/NamChain-Open-Initiative-Research-Lab/Blockchain-Terminologies
https://github.com/NamChain-Open-Initiative-Research-Lab/Blockchain-Terminologies
https://github.com/ethereum/ethereum-org-website
https://ethereum.org/en/smart-contracts/
https://eips.ethereum.org/EIPS/eip-1056
https://eips.ethereum.org/EIPS/eip-1056
https://eips.ethereum.org/EIPS/eip-1207
https://eips.ethereum.org/EIPS/eip-1207

14

Vol:.(1234567890)

Scientific Reports | (2023) 13:18335 | https://doi.org/10.1038/s41598-023-44586-6

www.nature.com/scientificreports/

	20.	 Chorlian, A., & Angara, A. ERC-1484: Digital identity aggregator. Ethereum Improvement Proposals. https://​eips.​ether​eum.​org/​
EIPS/​eip-​1484 (2018).

	21.	 Wayne Chang, G. R. ERC-4361: Sign-in with ethereum. Ethereum Improvement Proposals. https://​eips.​ether​eum.​org/​EIPS/​eip-​4361
(2021).

	22.	 Hyperledger. Hyperledger Fabric. https://​www.​hyper​ledger.​org/​use/​fabric. (2021)
	23.	 What is Chaincode? Hyperledger Fabric Documentation. https://​hyper​ledger-​fabric.​readt​hedocs.​io/​en/​relea​se-1.​3/​chain​code.​html

(2018)
	24.	 Benet, J. IPFS - content addressed, versioned, P2P file system (draft 3). https://​ipfs.​io/​ipfs/​QmR7G​SQM93​Cx5eA​g6a6y​RzNde​

1FQv7​uL6X1​o4k7z​rJa3LX/​ipfs.​draft3.​pdf (2014)
	25.	 Taraka Rama Mokshagna Teja, M., & Praveen, K. Prevention of phishing attacks using QR code safe authentication. In Inventive

Computation and Information Technologies: Proceedings of ICACDS 2021. 336, 361–372. Springer (2022).
	26.	 Hong, S. & Kim, H. Vaultpoint: A blockchain-based SSI model that complies with OAuth 2.0. Electronics 9(8), 1231 (2020).
	27.	 Fotiou, N., Pittaras, I., Siris, V. A., Voulgaris, S., & Polyzos, G. C. OAuth 2.0 authorization using blockchain-based tokens. (2020).
	28.	 Anjum, S., Ramaguru, R., & Sethumadhavan, M. Medical records management using distributed ledger and storage. In Advances

in Computing and Data Sciences: 5th International Conference, ICACDS 2021. 5, 52–62. Springer (2021).
	29.	 Panda, S. S. et al. Authentication and key management in distributed iot using blockchain technology. IEEE Internet Things J. 8(16),

12947–12954 (2021).
	30.	 Benhadj Djilali, H., & Tandjaoui, D. Efficient distributed authentication and access control system management for Internet of

Things using blockchain. In Mobile, Secure, and Programmable Networking: 5th International Conference, Mohammedia, Morocco.
51–60 (2019).

	31.	 Patel, S., Sahoo, A., Mohanta, B. K., Panda, S. S., & Jena, D. DAuth: A decentralized web authentication system using Ethereum
based blockchain. In International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN).
1–5 (2019).

	32.	 Schiffman, J., Zhang, X., & Gibbs, S. DAuth: Fine-grained authorization delegation for distributed web application consumers. In
IEEE International Symposium on Policies for Distributed Systems and Networks. 95–102 (2010).

	33.	 Yazdinejad, A. et al. Decentralized authentication of distributed patients in hospital networks using blockchain. IEEE J. Biomed.
Health Inform. 24(8), 2146–2156 (2020).

	34.	 Babu, E. S. et al. A distributed identity-based authentication scheme for internet of things devices using permissioned blockchain
system. Expert Syst. 39(10), e12941 (2022).

	35.	 Nainar, N. K., Pignataro, C. M., Muscariello, L., Compagno, A., & Carofiglio, G. US11140177B2—distributed data authentication
and validation using blockchain. https://​paten​ts.​google.​com/​patent/​US111​40177​B2/​en?​oq=​Patent%​2BNo.%​2B11%​2C140%​2C177
(2021)

	36.	 Balaraman, B., Ferenczi, A. L., Gale, D. L., Jadhav, N. Y., & Naik, H. R. US10642967B2—single sign-on solution using blockchain.
https://​paten​ts.​google.​com/​patent/​US106​42967​B2/​en?​oq=​10%​2C642%​2C967 (2020)

	37.	 Kumar, V., & Gupta, P. (2020). Decentralized open authorization framework: a novel approach of securing resource owner’s cre-
dentials. In 2020 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN)
(pp. 841–845). IEEE.

	38.	 Padma, P. & Srinivasan, S. DAuth-delegated authorization framework for secured serverless cloud computing. Wirel. Pers. Com-
mun. 129(3), 1563–1583 (2023).

	39.	 Bogdanov, D. Foundations and properties of Shamir’s secret sharing scheme research seminar in cryptography Vol. 1 (University of
Tartu, Institute of Computer Science, 2007).

	40.	 Shamsoshoara, A. Overview of Blakley’s secret sharing scheme. http://​arxiv.​org/​abs/​orgar​xiv.​org (2019).
	41.	 Arumugam, S., Lakshmanan, R. & Nagar, A. K. On (k, n)*-visual cryptography scheme. Des. Codes Crypt. 71(1), 153–162 (2014).
	42.	 Ateniese, G., Blundo, C., De Santis, A. & Stinson, D. R. Visual cryptography for general access structures. Inf. Comput. 129(2),

86–106 (1996).
	43.	 Cimato, S., De Santis, A., Ferrara, A. L. & Masucci, B. Ideal contrast visual cryptography schemes with reversing. Inf. Process. Lett.

93(4), 199–206 (2005).
	44.	 Praveen, K., Sethumadhavan, M. & Krishnan, R. Visual cryptographic schemes using combined Boolean operations. J. Discret.

Math. Sci. Cryptogr. 20(2), 413–437 (2017).
	45.	 Chatterjee, U. et al. Building PUF-based authentication and key exchange protocol for IoT without explicit CRPs in verifier data-

base. IEEE Trans. Dependable Secure Comput. 16(3), 424–437 (2019).
	46.	 Liu, Y. et al. A blockchain-based decentralized, fair and authenticated information sharing scheme in zero trust internet-of-things.

IEEE Trans. Comput. 72(2), 501–512 (2023).
	47.	 SeSh-DAuth: Secret sharing based distributed oauth using decentralized identifier. Amrita TIFAC cyber blockchain GitHub

repository.https://​github.​com/​Amrita-​TIFAC-​Cyber-​Block​chain/​SeSh-​DAuth-​Secret-​Shari​ng-​based-​Distr​ibuted-​OAuth-​using-​
Decen​trali​zed-​Ident​ifier (2022)

Author contributions
The methodology and Algorithm were developed by R.R. and P.K. P.K.D. Implemented the system. Program
Verification and Validation is done by K.R. Document Verification and Validation were done by R.K.S. and S.M.
A.H.G. reviewed the article and provide suggestions to improve the paper.

Funding
Open access funding provided by Óbuda University.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to A.H.G.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://eips.ethereum.org/EIPS/eip-1484
https://eips.ethereum.org/EIPS/eip-1484
https://eips.ethereum.org/EIPS/eip-4361
https://www.hyperledger.org/use/fabric
https://hyperledger-fabric.readthedocs.io/en/release-1.3/chaincode.html
https://ipfs.io/ipfs/QmR7GSQM93Cx5eAg6a6yRzNde1FQv7uL6X1o4k7zrJa3LX/ipfs.draft3.pdf
https://ipfs.io/ipfs/QmR7GSQM93Cx5eAg6a6yRzNde1FQv7uL6X1o4k7zrJa3LX/ipfs.draft3.pdf
https://patents.google.com/patent/US11140177B2/en?oq=Patent%2BNo.%2B11%2C140%2C177
https://patents.google.com/patent/US10642967B2/en?oq=10%2C642%2C967
http://arxiv.org/abs/orgarxiv.org
https://github.com/Amrita-TIFAC-Cyber-Blockchain/SeSh-DAuth-Secret-Sharing-based-Distributed-OAuth-using-Decentralized-Identifier
https://github.com/Amrita-TIFAC-Cyber-Blockchain/SeSh-DAuth-Secret-Sharing-based-Distributed-OAuth-using-Decentralized-Identifier
www.nature.com/reprints

15

Vol.:(0123456789)

Scientific Reports | (2023) 13:18335 | https://doi.org/10.1038/s41598-023-44586-6

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

http://creativecommons.org/licenses/by/4.0/

	SSH-DAuth: secret sharing based decentralized OAuth using decentralized identifier
	Motivation and objective
	Our contribution
	Preliminaries
	Identity access management
	Authentication schemes
	Security assertion markup language (SAML)
	OpenID connect and OAuth

	Self-sovereign identity model
	Decentralized identifiers
	Blockchain technology
	Ethereum
	Hyperledger fabric

	IPFS

	Related works
	Our proposed scheme
	Protocol design
	Identity creation and registration phase
	Identity authentication phase

	Key algorithm: secret sharing scheme

	Security considerations
	Informal security analysis
	Universal composability security framework
	Analysis of proposed scheme
	Identity creation phase
	Identity authentication phase
	Security against attack scenarios

	Performance analysis
	Discussion
	Conclusion and future works
	References

