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Abstract

Graph analysis serves as a cornerstone in numerous real-world applications, span-

ning domains like social networks, knowledge graphs, fraud detection, and tra-

jectory monitoring. In this thesis, we focus on three fundamental problems in

graph analysis: reachability queries, path enumeration, and path compression,

each nuanced by distinct constraints within expansive graphs. Our work ad-

vances a suite of innovative and efficient strategies to address these challenges.

The first problem considers the reachability between nodes in a temporal

graph, encapsulating connectivity insights. Specifically, vertices in a tempo-

ral graph are connected by edges with time stamps, and there could be multi-

ple edges connecting two nodes. Existing approaches assume a time-respecting

path, which fails to capture relationships between entities in the same group or

activity. To address this, we propose the span-reachability model, which identi-

fies relationships between entities in a given time period. We adopt a two-hop

cover approach and propose an index-based method to efficiently answer span-

reachability queries.

In the second problem, we further explore the paths between given nodes

to explore the connectivity in detail. We delve into the exploration of hop-

constrained time interval s-t path enumeration in temporal graphs. To effectively

tackle this challenge, we first propose a data structure named TIPST bundle

to avoid repeated visits and maintain intermediate results in a compact way.

It leads to a significant reduction in space complexity for each bundle. We

then propose an algorithm named TDDL-DFS leveraging the distance labels. In

the search process, these labels are dynamically updated to prune the fruitless

branches, which is a is a polynomial delay algorithm.

The third problem deals with path compression in large graphs to handle

the considerable scale of path sets as query results. The challenge comes with
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the numerous number of regularly generated paths in networks. We propose

the Overlap-Free Frequent Subpath (OFFS) compression method that allows

retrieval of any individual path while compressing the overall size. We leverage

a lookup table to match frequent common subpaths to supernodes and adopt a

bottom-up framework to construct the lookup table in given iterations. Each

path is shortened by replacing subpaths with corresponding supernodes in the

table. Several optimizations are proposed to improve the compression ratio and

speed.

We conduct extensive experiments on real-world datasets to demonstrate

the effectiveness and efficiency of our proposed approaches. Our approaches

outperform baseline methods significantly in terms of query answering time,

compression ratio, and enumeration time.
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Chapter 1

Introduction

The graph models are widely used to represent the relationships between entities,

which play an essential role in both academia and industry. With the rapidly

growing number of graphs being collected and maintained every day, graph anal-

ysis has emerged as a crucial research field in various applications such as so-

cial networks, database management systems, fraud detection, and trajectory

monitoring[49, 68, 104]. However, we observe that the challenges come with the

considerable data scale and complex side information of graphs[61, 48, 100, 67].

In this thesis, we undertake a comprehensive examination of the issue pertaining

to the connectivity of two nodes. Reachability queries involve determining the

presence of a path connecting two specified nodes within a given graph, thus

affording a succinct evaluation. Addtionally, path enumeration provides furhter

details beyond reachability, entailing the discovery of all feasible pathways be-

tween two nodes. The inherent complexity of this challenge is further exacer-

bated by the involvement of temporal data, thereby introducing an additional

stratum of intricacy. Furthermore, the effective management of path sets as-

sumes paramount significance, especially as the magnitude of data escalates due

to the recurring nature of these queries. To tackle these challenges, we propose a

1



Chapter 1

novel span-reachability model that identifies relationships between entities in a

given time period and develop a static index-based method to efficiently answer

span-reachability queries. For the path enumeration problem, we put forward a

strategic bundling approach, a distance-based indexing scheme to achieve poly-

nomial delayed searchs and yield compact results. To handle the ever-growing

number of paths as query results, we propose the compression method based on

Overlap-Free Frequent Subpath (OFFS), which uses a tailored dictionary to com-

press paths. This thesis provides effective and efficient solutions to connectivity

queries, path compression, and constrained path enumerations in graphs. We

provide the detailed background, motivations, and contributions of each problem

as follows.

Span reachability in temporal graphs. Determining the existence of a path

between two query vertices is a crucial problem in network analysis, known as

computing the reachability between vertices. Existing works have extensively

studied this problem, resulting in numerous algorithms that offer efficient so-

lutions [6, 23, 26, 28, 85, 103, 105, 99, 53, 97, 91]. Reachability queries have

wide-ranging applications in various domains, including road networks, social

networks, collaboration networks, PPI (protein-protein interaction) networks,

and XML and RDF databases. Our study specifically benefits several real-world

applications:

• Biology Analysis. In PPI networks, identifying whether two proteins par-

ticipate in the same biological process or molecular function is critical

[54]. When monitoring protein activities over a specific period, two pro-

teins that belong to the same biological organization may not have direct

time-respecting paths but may be controlled by or interact with a common

protein. Our model can identify relationships between these proteins.

• Security Assessment & Recommendation. In the context of assessing secu-

2



Chapter 1

rity, it is important to determine whether a particular person is associated

with a known terrorist [13]. When organizing a terrorist activity, there

may be several phone calls among suspects in a short time period. Finding

a time-respecting path from the known terrorist to others can be challeng-

ing, especially when not all people in the organization take orders from the

terrorist. Our model can capture related suspects of a targeted terrorist.

Similarly, in social networks, our model can detect whether two users are

involved in a social group during significant events such as the FIFA World

Cup and the Olympic Games.

• Money Transaction Monitor. In e-commerce platforms and bank systems,

we often have a graph in which each vertex represents a user account and

each edge with a timestamp represents a money transaction between two

user accounts. Detecting whether there is a path between two user accounts

is critical for monitoring money transactions or illegal financial activities

such as money laundering and fake transactions. Normally, a series of

money transactions should follow an increasing order of timestamps. How-

ever, skilled users may borrow untraceable money to complete a transfer

and avoid monitoring. For example, an account in the transaction path

may transfer money to the next account in advance and receive the money

from the prior account later. The existing order-dependent reachability

model cannot capture this activity, but our model can be used by setting

a specified time interval.

In these real-world applications, graph edges are associated with temporal

information, adding an extra layer of complexity to the problem. Therefore, it is

of significance to further dig into the problem of reachability in temporal graphs.

The problem of vertex reachability in temporal graphs has been addressed

in existing literature using the concept of time-respecting paths. An existing

3



Chapter 1

method to model the temporal reachability is based on the concept of time-

respecting paths [50, 57, 51]. Specifically, a vertex u reaches v if there exists a

path connecting u and v such that the times on the path follow a non-decreasing

order. For example, in the temporal graph G of Figure 1.1, v6 reaches v10 since

there exists a path {⟨v6, v2, 5⟩, ⟨v2, v1, 6⟩, ⟨v1, v10, 8⟩} connecting them and the

times 5, 6, 8 are in a non-decreasing order. Semertzidis et al. [86] also model

the temporal reachability that two vertices u, v are reachable if there exists path

connecting them and the times of all edges in the path are consistent, i.e., u, v

are reachable in a snapshot of the temporal graph at a given time.

v10

v1

v2

v3

v12 v5

v7

v6

v4

v8

v11

v9

2

1

1
1

1

3

3

6

4
5

4 8

8

9 7
6

5

93
6

7

5
6

4

Figure 1.1: A temporal graph G where each number represents the timestamp
of the edge below

Unfortunately, in many scenarios of temporal graph mining, we may only

focus on the relationship between vertices in the projected graph of a small time

interval without addressing any order limitation in the edge sequence. Here, the

projected graph is the static graph containing all edges at times falling in the

interval. For example, Gurukar el al. [46] compute the communication motifs in

temporal graphs and show that two edges sharing a common vertex are related

if the difference of their timestamps is very small. Authors in [96, 65] compute

the community structures called ∆-clique and (θ, k)-persistent-core, respectively,
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in temporal graphs. Their models require that the resulting subgraph satisfies

some structural properties (e.g. vertex degree threshold) in the projected graph

of a time interval. The aforementioned two reachability models are too strict

and might fail to capture entity relationships in these scenarios.

Therefore, we introduce a new span-reachability model. Given a temporal

graph and a time interval I, a vertex u span-reaches v if u reaches v in the pro-

jected graph of I. We investigate the efficient answering of the span-reachability

query for an arbitrary pair of vertices and any possible time interval. Take G of

Figure 1.1 for instance, we have v1 span-reaches v8 in the time interval [3, 5], since

there exists a path {⟨v1, v5, 5⟩, ⟨v5, v8, 4⟩} from v1 to v8 in the projected graph

of [3, 5]. Besides, we also study a θ-reachability problem, which is a generalized

version of span-reachability. Given a time interval I and a length threshold θ,

two vertices are θ-reachable in I if they are span-reachable in a θ-length subin-

terval of I. Taking the above case of monitoring money transactions, a more

general task is to identify whether there exists a transaction chain between two

accounts finished in a short period over a long monitoring period. Note that

when the length of query interval equals to θ, θ-reachability is equivalent to

span-reachability. The other special case is that when θ is 1, it is equivalent to

the disjunctive historical reachability model studied in [86].

Time interval paths in temporal graphs.

Graphs play a crucial role in modeling relationships between entities across

various domains, including social networks, road networks, web graphs, biological

networks, and collaboration networks[49, 68, 104]. Among the essential topics

in graph analytics[24, 34, 22], investigating the connectivity between two given

vertices in a graph is of paramount importance. Specifically, a hop-constrained

s-t path enumeration query[79] deals with a graph G, a source vertex s, a target

vertex t, and a hop constraint k, aiming to identify all simple paths from s to

5



Chapter 1

t where the number of hops in each path does not exceed k. Please note that

in this paper, we exclusively focus on simple paths since paths with loops (i.e.,

containing repeated vertices) are less intriguing and could significantly inflate

the total number of s-t paths.

Remarkably, in real-world applications, graphs commonly include temporal

information associated with their edges. However, most existing algorithms for

hop-constrained s-t path enumeration focus on simple graphs and assume queries

without additional constraints. This approach neglects the importance of ana-

lyzing the temporal dynamics within a network, which is becoming increasingly

significant. While the problem of hop-constrained s-t simple path enumeration

has received considerable attention and has been thoroughly studied, the tem-

poral dynamics of networks are poorly captured by their static structures[61].

This limitation hinders more real-world applications, where graphs are often

time-stamped, and path enumeration involves temporal constraints. Temporal

graphs find a wide range of applications, particularly in knowledge graphs, so-

cial networks, transportation systems, and financial markets, where information

flows over time, and relationships between entities constantly evolve. Unlike tra-

ditional graphs, temporal graphs offer a more detailed representation of system

dynamics, empowering researchers to analyze not only connectivity but also the

temporal characteristics of relationships between entities. Gaining insights into

the changes in these relationships over time opens up new avenues for valuable

insights and informed decision-making across diverse domains.

Motivation. In this paper, our focus lies in studying the problem of hop-

constrained time interval s-t path enumeration. An existing method to

model the temporal connectivity is based on the concept of time-respecting

paths[50, 57, 51]. Specifically, given a source vertex s, a target vertex t, it

aims to enumerate all paths from s to t in such a way that the timestamps along

6
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the path adhere to a non-decreasing order. For instance, considering the same

temporal graph G depicted in Figure 1.1, from v6 to v10, there exists a path

{(v6, v2, 5), (v2, v1, 6), (v1, v10, 8)} connecting them and the times 5, 6, 8 are in a

non-decreasing order. This model proves useful in representing how influence

broadcasts over time.

Unfortunately, in various temporal graph mining scenarios, the main focus

revolves around understanding vertex relationships within a projected graph over

specific time intervals. In such cases, the order of the edge sequence becomes less

significant and is often overlooked. The projected graph represents a snapshot

that consolidates all edges occurring within the specified interval. For instance,

Gurukar et al. [46] explore communication motifs in temporal graphs, emphasiz-

ing that two edges with a common vertex are related if their timestamp difference

is minimal. Similarly, researchers in [96, 65] delve into community structures in

temporal graphs. Their models require that the resulting subgraph adheres to

specific structural properties, such as a vertex degree threshold, within the pro-

jected graph of a time interval. Moreover, real-life applications often introduce a

hop constraint when enumerating s-t paths[79]. This constraint arises from the

significant reduction in vertex relationship strength with an increasing number

of hops. It is widely known that in practical situations, the number of paths can

grow exponentially in correlation with the number of hops in real-life graphs.

Therefore, imposing a hop constraint is a crucial means to manage complexity

and ensure relevant results in practice.

Time interval paths. In this paper, we study the problem of hop-constrained

time interval s-t path enumeration. Given a directed temporal graph, a source

vertex s, a destination vertex t, a hop constraint k, and a temporal interval

[ts, te], we aim to efficiently enumerate all time interval paths from s to t only

using edges with timestamps in the given interval [ts, te] with number of hops

7



Chapter 1

not larger than k.

Example 1. In the temporal graph G of Figure 1.1, suppose the time in-

terval is [3, 5] and the hop constraint is k, there exists a time interval path

{(v1, v5, 5), (v5, v8, 4)} from v1 to v8 with all timestamps falling into [3, 5].

Applications. The proposed model offers an effective means to delve into the

intricate relationships between entities, allowing us to concentrate on item in-

teractions within specific time periods. Several real-world applications stand to

benefit significantly from this study. For example:

• Knowledge Graph Completion. Knowledge graphs are key to various appli-

cations, including recommendation systems, search engines, and question-

answering. Due to their inherent incompleteness, the task of knowl-

edge graph completion, which involves predicting missing relations, holds

paramount importance. In recent years, Path Ranking (PR) algorithms

(e.g., [89, 90]) have garnered increasing attention. These algorithms enu-

merate paths between entities in a knowledge graph and employ these

paths as features to train models for predicting missing facts [72]. An im-

portant consideration is that lengthy paths may not effectively capture the

relationship between two entities, as the strength of their relation tends to

decline significantly with the number of hops (i.e., interactions). Moreover,

the emergence of temporal knowledge graphs[40] adds a new dimension of

significance, where temporal constraints play a crucial role.

• Biology Analysis. Protein-Protein Interaction (PPI) networks are a type of

biological network that represents physical interactions between proteins

in a cell. One of the key tasks in PPI analysis is to determine whether two

proteins participate in the same biological process or molecular function

[54]. When monitoring protein activities within a specific time frame, it

8
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is possible that two proteins belonging to the same biological organization

might not have direct time-respecting paths. However, they could be in-

fluenced or interact with a common protein. Our model offers a valuable

approach to enumerate and analyze the relationships between these pro-

teins. This enables researchers to gain a comprehensive understanding of

the underlying molecular mechanisms in biological processes.

• E-Commerce Merchant Fraud Detection. In e-commerce platforms and

bank systems, we encounter graphs where each vertex represents a user

account, and edges with timestamps denote money transactions between

accounts. In monitoring financial activities, such as money laundering

and fake transactions[10], it becomes crucial to detect the existence of a

path between two user accounts. Typically, a series of money transactions

should follow an increasing order of timestamps. However, skilled malicious

users may exploit techniques like borrowing untraceable money to evade

monitoring. For instance, an account in the transaction path might transfer

money to the next account in advance and receive funds from the prior

account at a later time. The existing order-dependent reachability model

fails to capture such activities, but our model effectively addresses this by

setting a specified time interval. By incorporating temporal constraints,

we gain a more comprehensive view of money transaction patterns and

bolster the detection of illicit financial practices.

Challenges. The primary challenge in solving this problem lies in the vast

search space, even for a small k value, as the number of paths may exponentially

increase with respect to k. Overcoming this complexity is crucial to finding

practical solutions. Additionally, the temporal constraints add another layer of

complexity, demanding efficient algorithms capable of processing substantial vol-

umes of data swiftly. Handling the temporal properties of edges, including their

9
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start and end times, poses an additional challenge in ensuring the accuracy of

the results. Furthermore, maintaining the temporal results proves problematic,

as their size grows linearly with the number of temporal stamps and exponen-

tially with k. Therefore, the development of efficient and accurate algorithms

for hop-constrained time interval s-t path enumeration and path maintenance in

temporal graphs is of paramount importance and possesses significant potential

to impact a wide array of real-world applications.

DFS-based Solution. To address this problem, a straightforward method is to

directly process a hop-constrained time interval depth-first search from the source

vertex and output the time interval path when meeting the terminate vertex.

While this method works in finding the desired paths, it exhibits considerable

time and space complexity, making it impractical for large graphs.

To achieve efficient query processing and enhance scalability, we propose an

online solution called Temporal Dynamic Distance Labels Depth-First Search

(TDDL-DFS), which leverages temporal bundles and dynamic distance labels.

Specifically, our approach begins by compacting interval paths based on snap-

shots of temporal graphs, organizing the timestamps on edges, and introducing

the notion of TIPST bundles to avoid redundant searches. This strategic ap-

proach effectively reduces unnecessary computations, leading to improved search

efficiency. Additionally, given a query q(s, t, te, te), for each vertex u in the tem-

poral graph, we maintain a distance label d′s(u) from the source vertex s and a

distance label dt(u) to the terminate vertex respectively. Given a query interval

[ts, te], we traverse the search space starting from s, determining if reaching t is

possible by considering both the distance label and the timestamps on the edges.

We output the result and decrease the distance label if reaching t in less than

k hops. Alternatively, if reaching t within k hops is not feasible, we increase

the distance label to block that particular search branch. This combination of

10
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temporal bundles and dynamic distance labels significantly enhances the per-

formance and efficiency of our approach for Time Interval Path Enumeration

queries in temporal graphs.

Contributions. Our principal contribution in this paper is summarized as

follows.

• We present a novel temporal path model based on time intervals, which

effectively illustrates the intersections between entities within specific pe-

riods of a temporal graph. Utilizing this model, we introduce a new data

structure called TIPST bundles to prevent redundant visits and store

intermediate results in a more efficient manner during the search process.

• We develop a novel algorithm called TDDL-DFS, which leverages the hi-

erarchical structure of the temporal graph and employs a distance-based

index to efficiently prune the search space. Our theoretical analysis demon-

strates that TDDL-DFS is a polynomial delay algorithm with O(kms log θ)

time per output, where ms is the number of edges in the snapshot and k

is the hop constraint. The overall time complexity is O(kmsδ log θ), and

the space complexity is O(kδ), where δ represents the number of output

bundles.

• We perform comprehensive experiments on real-world graphs with diverse

characteristics. The experimental results demonstrate the scalability and

efficiency of our proposed algorithm in handling hop-constrained time in-

terval s-t path enumeration queries in temporal graphs. Specifically, we

demonstrate that our TDDL-DFS algorithm outperforms the baseline sig-

nificantly, with a speed improvement of up to three orders of magnitude.

Furthermore, we observe that TIPST bundles play a pivotal role in reduc-

ing space costs substantially, with potential reductions of up to five orders

11
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Figure 1.2: A simplified transaction in a purchase action

of magnitude.

Path compression in large graphs. The graph data model is widely used

in various applications, including social analysis, e-commerce transactions, the

World Wide Web, cybersecurity, and protein interactions, to capture complex

relationships between entities. In a graph, paths refer to a sequence of vertices,

where each adjacent pair of vertices is connected by an edge. Many graph-based

analysis tasks generate paths through various queries, such as shortest paths on

road networks, planning routes in public-transaction networks, routing records

in telephone networks, or message transmissions in social networks. Inevitably,

a set of paths needs to be recorded in these applications. Real-life graphs usually

contain millions or billions of edges and vertices, and sophisticated analytics over

such big graphs can produce an abundance of paths. However, many overlaps

among paths can make the total path size significantly greater than the graph

size, making it challenging to store paths effectively and reduce space usage.

Therefore, it is essential to find effective methods for reducing the space cost of

these paths.

To illustrate the above concept, take the platform of Alibaba Cloud for in-

stance, where a graph model is used to facilitate daily analysis and monitoring.

In an e-commerce system as shown in Figure 1.2, whenever a buyer submits an

order, a network message is sent to a series of middle-tier servers via the Internet,

which are represented by vertices in the graph model. The communication be-

12
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Figure 1.3: An example in Alibaba Cloud Service

tween the servers is denoted by an edge, and a purchase action can be described

by a path in the graph. Each step in the path may involve multiple machines,

and maintaining a transaction path for a user action helps locate affected users

when an anomaly is detected in a specific machine.

A more general case is illustrated in Figure 1.3. Many devices are deployed

on the platform Alibaba Cloud to support a wide range of services. Network

messages between machines are recorded as IP pairs in system logs. An IP

address may match a host server, a portable device, a client machine, or a

gateway. The topological relationship between IPs in a certain task is denoted

as IP hops (path). Two common instances of utilizing IP paths in daily system

maintenance are identifying affected nodes and locating anomalies. In the former

case, when there is an anomaly in a host server, it is necessary to identify all

affected segments for altering routing plans. By retrieving all indexed IP paths

containing the issue node, we can fetch all affected IP nodes accurately. In the

latter case, when network issues are reported by customers, we need to investigate

all intermediate IP nodes of network transactions for troubleshooting, which can

be done by collecting all IP paths with given terminals.

13
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Storing IP paths facilitates many services in Alibaba Cloud, while the number

of paths can be numerous. For instance, a table to record IP hops usually

accumulates more than 50 GB of data from nearly one million data transmissions

in one day. There are massive data to be collected by more tables every day.

One may try to organize all paths as a whole and apply generic compres-

sion methods[30, 2, 1]. However, they are designed for general data, and their

compression quality for path compression is poor compared with our tailored

approach according to our experiments. In addition, generic compression meth-

ods do not support decompressing part of data, which is an essential need in

aforementioned applications. One may also attempt to divide paths into several

fine-granularity blocks and compress them individually. However, this approach

leads to a significant drop in compression performance.

Graph summarization is another related work that aims to reduce a large

graph to a smaller one without sacrificing the correctness of certain graph queries.

The lossless graph summarization aims to reduce a big graph to a smaller one,

without sacrificing the correctness of certain graph queries. In contrast, we aim

to compress a set of paths so that each path can be retrieved individually. To

apply the graph summarization techniques, an input graph is expected. An

intuitive idea is to generate a graph using all edges in the set of paths. However,

even never compressing/summarizing the graph, we cannot correctly identify

every path without side information. Take two paths, {a, b, c} and {d, b, e}, for
instance. We unearth a star-like graph with them, where the vertex b is the

center with four neighbors. In this case, even if starting from a to recover the

path {a, b, c}, we cannot avoid spurious answers as there are four neighbors of

b. Namely, we fail to recover paths from the graph correctly and the graph

summarization techniques do not work in our case.

Therefore, we propose a compression method called Overlap-Free Frequent

14
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Subpath (OFFS) to address the challenge of the considerable data scale of IP

paths while allowing for retrievals of any individual path. Our approach in-

volves building a lookup table to match a series of frequent common subpaths to

supernodes. Each path is then shortened by replacing subpaths with correspond-

ing supernodes in the table. We adopt a bottom-up framework to construct the

lookup table in given iterations and propose several optimizations to improve

the compression ratio and speed.

Contributions. To sum up, the principle contributions of this thesis composed

of the aforementioned 3 works are summarized as follows:

• We introduce a span-reachability model and investigate a generalized

version called θ-reachability. Based on that, we propose an index-

based method using two-hop cover, optimizing index construction and θ-

reachability query processing efficiency. Addtionally, our experiments on

17 real-world datasets validate the effectiveness of our optimizations and

the efficiency of our solutions.

• We pioneer the study of this problem, enumerating hop-constrained s-t

paths in a given interval. Our algorithm introduces bundling strategy to

prevent redundant visits and store intermediate results in a more efficient

manner. Then we develop a novel polynomial delayed algorithm called

TDDL-DFS, which employs a distance-based index to efficiently prune

the search space. Furthermore, comprehensive experiments on real-world

graphs show the scalability and efficiency of our proposed algorithm.

• We implement a lightweight compression method, Overlap-Free Frequent

Subpath (OFFS), for path sets. By leveraging a lookup table based on

global information, we identify frequent common subpaths and compress

them into supernodes, resulting in shorter paths and improved compres-
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sion. To address match collision challenges, we devise an algorithm for con-

structing a supernode table that effectively handles overlapping subpaths.

Extensive experiments on real datasets demonstrate the effectiveness and

efficiency of our approach, achieving a high compression ratio in a shorter

time compared to straightforward methods.
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Literature Review

In this chapter, we provide an overview of the related research in connectivity

analysis and path management in large-scale graphs. We begin by reviewing

reachability in temporal graphs, static graphs and dynamic graphs. Then we

introduce existing works of path enumeration in simple graphs and complicated

graphs, top-K shortest path enumeration, and reachability queries. Additionally,

we review existing works related to path compression in simple graphs, including

generic compression, lightweight compression, database management systems,

trajectory simplification, string compression, and graph summarization.

2.1 Span Reachability in Temporal Graphs

Reachability in Temporal Graphs The time-respecting path is defined in [57]

to model the reachability problem in temporal graphs. The similar concept is

also studied using the terms journey [102, 37] or non-decreasing path [25]. Based

on the time-respecting path, an index-based algorithm to efficiently answer the

reachability problem in temporal graphs is studied in [101] and is improved

in [110] for the distributed environment. The historical reachability problem is

17



Chapter 2 2.2. TIME INTERVAL PATHS IN TEMPORAL GRAPHS

studied in [86]. Given an interval [t1, t2] and a pair of vertices u, v, the conjunctive

historical reachability of u, v is true if for each possible t ∈ [t1, t2], there exists

a path connecting u, v and all timestamps in the path are t. The disjunctive

historical reachability of u, v is true if there exists a timestamp t ∈ [t1, t2] and

a path connecting u, v in which all timestamps in the path are t [86]. Other

mining problems in temporal graphs can be found in surveys [51, 21, 75].

Reachability in Static Graphs & Dynamic Graphs A large number of

works have been done to design an index for answering the reachability query in

static graphs [6, 23, 26, 28, 85, 103, 105, 99, 53, 97, 91]. Interested readers can

find more details in surveys [108, 18]. Several works study the index maintenance

in dynamic graphs [20, 85, 106, 111]. Estimating reachability based on random

walks is studied in [87].

Note that even though the concept of the two-hop cover has been studied or

used in several existing works [9, 4, 28, 98], our method is not a naive extension of

existing techniques. Unlike the previous studies, our method is carefully tailored

for temporal graphs. The proposed optimizations for index construction centers

mainly on the relationships between different time intervals, such as containment

and intersection.

2.2 Time Interval Paths in Temporal Graphs

Path Enumeration in Simple Graphs. Existing works on the problem of

enumerating s-t paths[59, 78] aim at providing a succinct structure to represent

paths. Rather than storing each path explicitly, these studies concentrate on

efficient abstraction methods for path representation. However, their scalability

is limited, typically only accommodating graphs with a few thousand vertices.

Additionally, enumerating all s-t paths (or cycles) without the hop constraint is
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a classical problem[56, 93, 16]. Recently, several pruning-based works [79, 44, 83]

are proposed to answer the hop-constrained s-t queries q(s, t, k) in simple graphs.

These methodologies, which adopt a backtracking strategy based on a depth-first

search framework, have all demonstrated performance of O(km) per output.

The state-of-the-art method, PathEnum[92], constructs a lightweight index to

reduce the number of edges involved in the enumeration, thereby optimizing the

running time by circumventing costly pruning operations. It is important to

note that ignoring the temporal constraints and directly enumerating all paths

before filtering the valid ones can result in significant time and space costs. This

is because the complexity would be multiplied by O(θk). Such an approach

becomes highly inefficient for large temporal graphs, making it impractical for

real-world scenarios.

Path Enumeration in Complicated Graphs. In the context of distributed

graphs, [48] proposes a new hybrid search paradigm that utilizes a divide-and-

conquer approach to enumerate s-t paths. Additionally, [67, 66] address s-t path

enumeration in labelled graphs and uncertain graphs, respectively, by imposing

additional constraints in the query. However, in their cases, the side information

is not explicitly included in the outputs, and the timestamps between vertices are

ordered while labels are unordered, making it challenging to directly extend their

methodologies to our scenario. Another recent work, 2SCENT[61], is proposed

to enumerate all simple temporal cycles. Notably, this approach requires non-

decreasing time order and does not involve hop constraints, distinguishing it

from our problem setting. Overall, while these methodologies offer valuable

insights into handling path enumeration in various graph settings, they do not

directly address our specific scenario of hop-constrained time interval s-t path

enumeration in temporal graphs.

Top-K Shortest Path Enumeration. Top-K shortest path enumeration
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q(s, t,K) is a valuable tool utilized in a wide range of applications, including

route planning, network optimization, and logistics management. It facilitates

efficient decision-making by providing multiple alternative paths ranked by their

lengths. The query evaluation, conducted using Top-K shortest path algorithms

[32, 39, 69, 8], aims to enumerate all paths shorter than a given threshold k.

To achieve this, the parameter K is set to a sufficiently large value, allowing

the process to terminate once the latest output path exceeds the length limit k.

While these algorithms proficiently yield the results of the hop-constrained enu-

meration problem, it is pertinent to note that their result enumeration operates

based on the ascending order of the result lengths, which consequently adds to

the unnecessary computational overhead.

Reachability Queries. Reachability queries q(s, t) in simple graphs aim to

determine whether a path exists between two given vertices s and t. Existing

methods[9, 6, 26, 103, 105, 99, 53, 91], such as pruned landmark labeling[9],

involve constructing an index during an offline preprocessing step to efficiently

handle subsequent queries. These methods evaluate queries using pre-computed

information, and the index retains distance information to a set of vertices for

each vertex in the graph, preserving global statistics. Additionally, there are

plenty of works[57, 101, 110, 100] focusing on reachability queries in temporal

graphs. Span reachability defined in [100] focuses on the reachability between

s, t within a given time interval [ts, te] in a temporal graph. Their primary focus

lies in achieving a balance between index construction costs and query efficiency.

It is worth noting that the answer of reachability queries is a boolean value while

the detailed paths are expected in our case.
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2.3 Path Compression in Large Graphs

Generic Compression When it comes to compression scheme, a straightfor-

ward idea is generic compression, such as zlib[30], lz4[1], and zstd[2], which

typically reduce file sizes using classic LZ77[112], LZ78[113], or their variants.

However, these algorithms are typically used in default block mode, where they

only consider duplication within the local block. Since the effective minimal size

of a block, 1 KB, is much larger than a path, it is not efficient to use these

algorithms for data retrieval in path compression.

Lightweight Compression In contrast to generic compression schemes,

lightweight compression algorithms are less computationally expensive while

achieving similar or even better compression rates in finer granularity. Five

basic categories of lightweight techniques are identified in a recent survey [29]:

frame-of-reference (FOR) [42, 114], delta coding (DELTA) [64, 84], dictionary

compression (DICT) [114, 3], run-length encoding (RLE) [84, 3], and null sup-

pression (NS) [84, 3]. These techniques focus on different data levels. FOR,

DELTA, DICT, and RLE consider the logical data level, while NS addresses

the physical level of bits or bytes. FOR represents each value as the difference

to a given certain value, DELTA represents each value as the difference to its

predecessors, and DICT replaces values as symbols in the dictionary. It is eas-

ier for NS to omit unnecessary zeros after representing smaller values with the

aforementioned three schemes. Finally, RLE deals with continuous sequences of

occurrences of the same value, i.e., runs, and each run is represented as its value

and length.

Database Management System Modern systems usually use data compres-

sion engines to deal with the exponentially growing data volume. Several works

[43, 36, 5] have aimed at performing read-only operations directly on compressed
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data in database management systems. These works apply the idea of lazy

decompression to avoid redundant compression and decompression operations.

CompressDB by Zhang et al.[109] proposes an efficient technique to support

write operations like updates, inserts, and deletes directly on compressed data.

However, the finest granularity of compression and decompression of these meth-

ods is usually 1 KB to be compatible with existing systems, which is much larger

than that of a path and is therefore unsuitable for path compression.

Trajectory Simplification With the development of location-based services,

it is becoming increasingly costly to collect, store and transmit trajectory data.

There have been works on line simplification to reduce the trajectory size while

preserving necessary information. They can be classified into two classifica-

tions, batch solutions, like the classic Douglas-Peucker algorithm [31], Bellman

algorithm [14] and Top-Down Time Ratio [74], and online solutions like Open

Window[58] and Dead Reckoning [94]. It is worth noting that all of them exploit

temporospatial metrics such as Synchronous Euclidean Distances [81], directions,

speeds etc. to compress trajectories, which are not available in our case. In ad-

dition, lossy compression is usually acceptable for trajectories but does not work

for our application.

String Compression String columns serve as necessary components in modern

database systems and there are plenty of works on string compression. Classical

string compression methods usually consider the special quality or operation of

string, several works [11, 15] study the order-preserving compression of strings,

[12] proposes a method specifically for compressing keys in B-trees and [35] ex-

plores string matching of LZ compressed string. Recent works focus on Single

Instruction Multiple Data (SIMD), CPU-level parallelism, to improve the effi-

ciency of compression. BRPFC [62] adopts strong dictionary compression based

on Re-Pair Front Coding, and FSST [17] adopts a lightweight method based

22



2.3. PATH COMPRESSION IN LARGE GRAPHS Chapter 2

on DICT. However, these methods usually come with hard-coded solutions or

require specific constraints of order-persevering in compressed data like lexico-

graphical order, which is inappropriate in our case.

Graph Summarization Graph summarization aims at reducing big graphs to

smaller ones by contracting vertices or edges into more compacted supernodes

(merged nodes) and superedges (edges between supernodes)[70]. Most work

focuses on simple graphs without side information or labels. Based on the

core methodology, they can be categorized into four classifications, grouping-

based[60, 71], bit-compression based[77], simplification-based[88], and influence-

based methods[73]. Grouping approaches are among the most popular tech-

niques for summarization. The utility-driven graph summarization[60] allows

users to provide different utilities to measure the data loss and outputs sum-

maries within bound, which can be lossless. Recently, Fan et al.[33] propose a

scheme to contract obsolete components, stars, cliques, and paths into supern-

odes, prioritize up-to-date data and store extra synopsis on disk. In contrast to

compression, which aims at minimizing the data size as small as possible, those

summarization methods explore structural patterns[70]. Several works[63, 82]

aim at answering queries on graphs with no correction set. Namely, a correction

set is the extra information of edge correction needed for recreating graphs from

summarization. In another latest work, Yong et al.[107] propose an algorithm

called LDME, which summarizes the input graph into a summary graph with

correction sets at billion-scale. For complicated cases like Resource Descrip-

tion Framework (RDF) graphs, [41] formulates weak/strong node equivalences

based on property relations and proposes algorithms with incremental versions

to output typed summarizations considering RDF ontologies.
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Span Reachability in Temporal

Graphs

3.1 Chapter Overview

This chapter presents a comprehensive account of the methodological details

and evaluation results of our work on span reachability in temporal graphs,

which is published in [100]. In Section 3.2, we provide formal definitions of

the span reachability problem. Following this, Section 3.3 introduces a naive

online baseline and explains the basic ideas of the index-based method. We

then proceed to Section 3.4, which details how indexes are constructed, and

Section 3.5, which illustrates how span reachability queries can be answered

using indexes. Section 3.6 reports the experimental results, which demonstrate

the effectiveness and efficiency of our proposed methods. Finally, Section 3.7

concludes the chapter.
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3.2 Preliminary

Let G(V , E) be a directed temporal graph, where V and E denote the set of ver-

tices and the set of temporal edges respectively. Each temporal edge e ∈ E
is a triplet ⟨u, v, t⟩, where u, v are the vertices in V and t is the connec-

tion time from u to v. Without loss of generality, we assume t is an inte-

ger since the timestamp in real-world applications is normally an integer. We

use n = |V| and m = |E| to denote the number of vertices and the num-

ber of temporal edges respectively. Given a vertex u ∈ V , the out-neighbor

set of u is defined as Nout(u) = {⟨v, t⟩|(u, v, t) ∈ E}, and the in-neighbor

set is defined similarly. The out-degree (resp. in-degree) of u is denoted as

degrout(u) = |Nout(u)| (resp. degrin(u) = |Nin(u)|). Given a time interval [ts, te],

the projected graph of G in [ts, te], denoted by G[ts,te], where V (G[ts,te]) = V and

E(G[ts,te]) = {(u, v)|(u, v, t) ∈ E , t ∈ [ts, te]}. The length or width of an interval

[ts, te] is the number of timestamps in the interval, i.e., te − ts + 1. Given the

temporal graph G in Figure 1.1, its projected graph in the interval [2, 4] is given

in Figure 3.1.

v1 v2 v3v5

v7

v4

v8

v11

v9

Figure 3.1: The projected static graph of G in the time interval [2, 4]

Based on the concept of the projected graph, we define the span-reachability

as follows.

Definition 1. (Span-Reachability) Given a temporal graph G, two vertices

u, v, and a time interval [ts, te], u span-reaches v in [ts, te], denoted as u⇝[ts,te] v,

if u reaches v in the projected graph G[ts,te].

25



Chapter 3 3.2. PRELIMINARY

Given the temporal graph G in Figure 1.1, we have v1 ⇝[2,4] v3 since v1

reaches v3 in the projected graph of [2, 4] in Figure 3.1. We define the first

problem studied in this paper based on Definition 1 as follows.

Problem 1. Given a temporal graph G, an arbitrary pair of vertices u, v, and

a time interval I, we aim to efficiently answer whether u span-reaches v in the

interval I.

In addition to identifying the span-reachability, we further define a general-

ized reachability model in a temporal graph G as follows.

Definition 2. (θ-Reachability) Given a temporal graph G, two vertices u, v,

a parameter θ, and a time interval [ts, te] s.t. te − ts + 1 ≥ θ, u θ-reaches v if

there exists an interval [t′s, t
′
e] ⊆ [ts, te] such that t′e − t′s + 1 = θ and u reaches v

in G[t′s,t′e].

Example 2. Given the temporal graph G in Figure 1.1, let θ = 3. We have v1

3-reaches v12 in the interval [1, 5] since there exists an interval [3, 5] ⊆ [1, 5] such

that the length of [3, 5] is 3 and v1 reaches v12 in the projected graph G[3,5].

Relationship of Two Reachability Models. Given an arbitrary pair of

vertices u, v, a threshold θ and a time interval I, we also study the issue of

computing θ-reachability from u to v in I, denoted by Problem 2. Definition 1 is

a special case of Definition 2 when θ is equal to the length of the input interval.

We also see a growing strictness from Definition 1 to Definition 2, which is shown

in the following lemma.

Lemma 1. Given an arbitrary pair of vertices u, v and an interval I, u span-

reaches v in I if u θ-reaches v in I.

For ease of presentation, we assume the input temporal graph is a directed

graph, and our proposed techniques can easily handle undirected graphs. We
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omit the proofs of several lemmas and theorems when they are straightforward

due to space limitation.

3.3 Solution Overview

We give an overview of our solution in this section. We start by presenting a

straightforward online algorithm for our research problems and then introduce

several basic ideas of our index-based method.

3.3.1 A Straightforward Online Approach

Given a time interval [ts, te], the span-reachability of two vertices u and v in [ts, te]

can be answered by a modified bidirectional breath-first search. Specifically, we

begin by alternatively picking one of u and v in each round, and exploring the

unvisited vertices that are reachable from u or can reach v. We have u reaches v

once the search scopes of two vertices intersect. The detailed pseudocode of this

approach is given in Algorithm 1. Note that we assume u ̸= v in all proposed

algorithms to answer the reachability queries in this paper. Alternatively, we

directly return true without the algorithm invocation.

In line 1, Ru and Rv are used to collect all vertices that u can reach and all

vertices that can reach v, respectively. In line 5, Qu ∪Qv = ∅ means there does

not exist any unexplored vertex for both u and v. The variable toggle initialized

in line 4 represents the processed vertex in the last iteration, and we process u

in lines 7–15 if toggle = v. We explore the out-neighbors of all vertices in the

queue in lines 9–15. In line 11, we only access edges whose time falls into the

input interval. We return true if a common vertex of Ru and Rv is found in

line 12, or push the new found vertex into the queue in line 14. The algorithm

essentially performs a bidirectional BFS in the projected graph G[t1,t2]. The time
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complexity of Algorithm 1 is given as follows.

Algorithm 1: Online-Reach()

Input: a temporal graph G, two vertices u and v, and an interval [t1, t2]
Output: the span-reachability of u and v in [t1, t2]

1 Ru ← {u}, Rv ← {v};
2 Qu ← a queue containing u;
3 Qv ← a queue containing v;
4 toggle← v;
5 while Qu ∪Qv ̸= ∅ do
6 if toggle = v ∧Qu ̸= ∅ then
7 toggle← u;
8 l ← |Qu|;
9 for 1 ≤ i ≤ l do

10 w ← Qu.pop();
11 foreach ⟨w′, t⟩ ∈ Nout(w) : t ∈ [t1, t2] do
12 if w′ ∈ Rv then return true;
13 if w′ ̸∈ Ru then
14 Qu.push(w

′);
15 Ru ← Ru ∪ {w′};

16 else
17 repeat lines 7–15 to search the vertices that reach v by toggling

between u and v, and replacing the subscript out with in

18 return false;

Lemma 2. The running time of Algorithm 1 is bounded by O(m+ n).

Proof. Observe that every vertex is marked as either visited or not visited in

Algorithm Algorithm 1, indicating that it will be traversed at most once. For

each dequeued vertex w from the queue Qu, the computational cost incurred by

iterating through all its neighbors amounts to degrout(w) + 1 (or degrin(w) + 1

when in the toggled mode). Consequently, the overall computational complexity

is determined as: O(
∑

w∈V (degrout(w)+degrin(w)+2)) = O(2m+2n) = O(m+

n).
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Likewise, Problem 2 can be answered by invoking Algorithm 1 as a subrou-

tine. We can sequentially check each possible θ-length subinterval in the given

query interval [t1, t2] and return true immediately if u reaches v in any one of

them. In the worst case, the time complexity of this algorithm is bounded by

O((t2 − t1 − θ) · (n+m)).

Even though the bidirectional search method can successfully answer span-

reachability queries and θ-reachability queries, the algorithms suffer from a poor

scalability since the whole graph may be visited during query processing. One

might ponder an alternative strategy, involving the construction of a projected

graph before executing an online reachability algorithm. As far as we are con-

cerned, the state-of-the-art work of refined online search approach for reachabil-

ity queries is [95]. Nevertheless, it is imperative to acknowledge the substantial

overhead incurred by this approach. Enumerating all nodes and edges alone en-

tails a computational complexity of O(m + n). Furthermore, a prerequisite for

preprocessing the input graph into a directed acyclic graph (DAG) significantly

diminishes the online nature of the process. Consequently, the prospect of opti-

mizing performance with respect to time complexity remains elusive. To improve

query efficiency, we propose an index-based method in the following section.

3.3.2 The Time Interval Labeling Index

We introduce our index structure called Time Interval Labeling (TILL-Index) in

this section. TILL-Index adopts the idea of two-hop cover (or two-hop labeling)

[9, 4]. In a nutshell, for each vertex u, we maintain an in-label set Lin(u) and

an out-label set Lout(u). Each item in Lin(u) is a triplet ⟨w, ts, te⟩ which means

that w reaches u in the projected graph G[ts,te]. Each item in Lout(u) is a triplet

⟨w, ts, te⟩ which means that u reaches w in G[ts,te]. A triplet is called a w-triplet

if the first item of the triplet is w. We call ⟨u, v, ts, te⟩ a reachability tuple
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Table 3.1: A Time Interval Labeling of G

Lin(v2) ⟨v1, 2, 2⟩ ⟨v1, 7, 7⟩ Lout(v2) ⟨v1, 6, 6⟩ Lin(v3)
⟨v1, 2, 4⟩ ⟨v1, 4, 5⟩ ⟨v2, 3, 4⟩ Lin(v4) ⟨v1, 1, 4⟩ ⟨v1, 4, 5⟩
⟨v2, 3, 5⟩ ⟨v2, 1, 4⟩ ⟨v3, 1, 1⟩ ⟨v3, 5, 5⟩ ⟨v3, 6, 8⟩ Lout(v4)
⟨v3, 4, 4⟩ Lin(v5) ⟨v1, 2, 3⟩ ⟨v1, 5, 5⟩ ⟨v2, 3, 3⟩ Lout(v5)
⟨v3, 4, 4⟩ Lout(v6) ⟨v1, 5, 6⟩ ⟨v2, 5, 5⟩ ⟨v4, 6, 9⟩ Lin(v7)
⟨v1, 7, 7⟩ Lout(v7) ⟨v3, 3, 6⟩ Lin(v8) ⟨v1, 1, 3⟩ ⟨v1, 2, 4⟩
⟨v1, 4, 5⟩ ⟨v2, 1, 3⟩ ⟨v2, 3, 4⟩ ⟨v3, 8, 8⟩ ⟨v5, 1, 1⟩ ⟨v5, 4, 4⟩
⟨v6, 9, 9⟩ Lout(v8) ⟨v3, 4, 6⟩ ⟨v4, 6, 6⟩ Lin(v9) ⟨v1, 1, 1⟩
⟨v1, 3, 7⟩ ⟨v2, 1, 4⟩ ⟨v3, 1, 1⟩ ⟨v7, 3, 3⟩ Lout(v9) ⟨v3, 6, 6⟩
Lin(v10) ⟨v1, 8, 8⟩ Lout(v10) ⟨v1, 9, 9⟩ Lout(v11) ⟨v1, 3, 3⟩
Lout(v12) ⟨v1, 6, 9⟩ ⟨v10, 6, 6⟩

if u ⇝[ts,te] v, and we say a vertex w covers a reachability tuple ⟨u, v, ts, te⟩
if u ⇝[ts,te] w and w ⇝[ts,te] v. For ease of presentation, we focus mainly on

Problem 1 now. Problem 2 can also be solved based on the TILL-Index, and

Section 3.5 will discuss its solution in detail by extending the techniques in

answering Problem 1. Given two vertices u and v, u span-reaches v in an interval

[t1, t2] if any one of the following equations holds:

1. ∃⟨v, ts, te⟩ ∈ Lout(u): [ts, te] ⊆ [t1, t2];

2. ∃⟨u, ts, te⟩ ∈ Lin(v): [ts, te] ⊆ [t1, t2];

3. ∃⟨w, ts, te⟩ ∈ Lout(u), ⟨w′, t′s, t
′
e⟩ ∈ Lin(v): w = w′ ∧ [ts, te] ⊆ [t1, t2] ∧

[t′s, t
′
e] ⊆ [t1, t2].

Based on the above equations, a TILL-Index is a minimal index that can

be used to answer correctly all possible span-reachability queries in G. Here,

by minimal, we mean that removing any item in the index cannot correctly

determine all possible span-reachability in the graph. We will give detailed proof

of correctness and minimality in Section 3.4.2. An example of a TILL-Index of

the temporal graph G in Figure 1.1 is given in Table 3.1.
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Example 3. Assume that we aim to answer the span-reachability from v6 to v3

in the time interval [4, 8]. We first locate the out-label set of v6 in Table 3.1,

which are Lout(v6) = {⟨v1, 5, 6⟩, ⟨v2, 5, 5⟩, ⟨v4, 6, 9⟩}. The in-label set of v3 are

Lin(v3) = {⟨v1, 2, 4⟩, ⟨v1, 4, 5⟩, ⟨v2, 3, 4⟩}. We can see that there is a common

vertex v1 such that both ⟨v1, 5, 6⟩ ∈ Lout(v6) and ⟨v1, 4, 5⟩ ∈ Lin(v3) fall in the

query interval [4, 8]. Therefore, the answer of this query is true.

Even though the idea of two hop cover is simple, it is non-trivial to efficiently

compute a small TILL-Index and answer the reachability queries based on the

index. We give the details about index construction and query processing in

Section 3.4 and Section 3.5, respectively.

3.4 Index Construction

3.4.1 The Labeling Framework

We begin by presenting several basic concepts before introducing the details of

the index construction.

Definition 3. (Dominance and Skyline Reachability Tuple) Given

two vertices u and v, a reachability tuple ⟨u, v, t′s, t′e⟩ dominates ⟨u, v, ts, te⟩ if
[t′s, t

′
e] ⊂ [ts, te]. A reachability tuple ⟨u, v, ts, te⟩ is a skyline (or non-dominated)

reachability tuple (SRT) if it is not dominated by other tuples.

Given a vertex u, we also use the term skyline in Definition 3 for the triplets

in Lout(u) (resp. Lin(u)) since a triplet ⟨w, ts, te⟩ ∈ Lout(u) represents a reacha-

bility tuple ⟨u,w, ts, te⟩. In constructing TILL-Index, we only need to compute

labels that can cover all SRTs since a vertex covering an SRT also covers all its

dominating tuples. Therefore, our research task in the index construction is to

cover all SRTs in the graph with the total index size as small as possible.
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The Minimum Two-Hop Cover. [28] studies the two-hop cover for the short-

est distance and reachability queries in general graphs. They proved that com-

puting the minimum two-hop cover is NP-hard and can be transformed to a

minimum cost set cover problem [27]. They use a greedy algorithm to compute

a two-hop cover and achieve an O(log n) approximation factor. The proposed

algorithm is inefficient since a procedure of densest subgraph computation is in-

voked every time they select a vertex to cover several reachability (or shortest

distance) vertex pairs.

Hierarchical Two-Hop Cover. The aforementioned theoretical results also

hold in our scenario, and we omit the detailed proof. Due to the difficulty of

the optimal cover computation, we adopt a hierarchical labeling approach [9, 4]

which follows a strict total order on the vertices in G, and we will prove the

minimality of our TILL-Index under the total order constraint. We use O to

denote the vertex order. We say the rank of a vertex u is higher than that of a

vertex v if O(u) < O(v). By the total order, we mean to sequentially process

each vertex in O. Once we process a vertex w, we add w and corresponding

intervals to the labels of u and v for all uncovered reachability tuples containing

u, v covered by w. Intuitively, a vertex playing an important role in G should

be put at the front of the order. Next, we adopt the ordering method in [53].

Given each vertex u, we use the formula (degrin(u)+1)× (degrout(u)+1) as the

importance of u. We sort the vertices in a decreasing order of their importance

and break the tie by selecting a vertex with smaller ID. Given the total vertex

order, we immediately have the following lemmas for our TILL-Index.

Lemma 3. Given an arbitrary vertex u, for every triplet ⟨w, ∗, ∗⟩ in Lout(u) ∪
Lin(u), O(w) < O(u).

Lemma 4. Given an SRT ⟨u, v, ts, te⟩ in G, let w be the first vertex (the highest

rank) in O that can cover ⟨u, v, ts, te⟩. w ̸= u ̸= v. There exists a triplet
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⟨w, t′s, t′e⟩ ∈ Lout(u) such that [t′s, t
′
e] ⊆ [ts, te] and a triplet ⟨w, t′′s , t′′e⟩ ∈ Lin(v)

such that [t′′s , t
′′
e ] ⊆ [ts, te].

Without loss of generality, we maintain only skyline triplets in labels of TILL-

Index since a dominated triplet can be always replaced by a corresponding sky-

line triplet without influencing calculation’s accuracy. We define an important

concept in computing TILL-Index as follows.

Definition 4. (Canonical Reachability Tuple) A reachability tuple

⟨u, v, ts, te⟩ is a canonical reachability tuple (CRT) if (i) ⟨u, v, ts, te⟩ is a skyline

reachability tuple, and (ii) there does not exist a vertex w such that u⇝[ts,te] w,

w ⇝[ts,te] v, O(w) < O(u), and O(w) < O(v).

Given a vertex order O and a vertex u, we say a tuple is an SRT (resp. CRT)

of u if the tuple is an SRT (resp. CRT) containing u and the rank of u is higher

in the tuple. We have following lemmas based on Definition 4.

Lemma 5. Given an arbitrary vertex u and any (skyline) triplet ⟨w, ts, te⟩ in
Lout(u) (resp. Lin(u)), ⟨u,w, ts, te⟩ (resp. ⟨w, u, ts, te⟩) is a CRT.

Lemma 6. For each CRT ⟨u, v, ts, te⟩ in G, there is a triplet ⟨u, ts, te⟩ in Lin(v)

if O(u) < O(v). If this is not the case, there is a triplet ⟨v, ts, te⟩ in Lout(u).

Example 4. The labels in Table 3.1 are computed following the total alphabetical

order of the vertices in G of Figure 1.1. For the in-labels of v8, we can find that

the rank of all vertices v1, v2, v3, v4, v5 and v6 appearing in Lin(v8) have ranks

higher than v8. For an arbitrary triplet ⟨v2, 3, 4⟩ in Lin(v8), there does not exist

any vertex with higher rank than v8, and v2 that can cover the reachability tuple

⟨v2, v8, 3, 4⟩.

Based on Lemma 5 and Lemma 6, there is a one-to-one correspondence be-

tween CRTs and triplets in TILL-Index. It now follows that we can construct
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TILL-Index by computing all CRTs. A framework to construct TILL-Index is

presented in Algorithm 2.

Algorithm 2: A Framework of Index Construction

1 for 1 ≤ i ≤ n do
2 ui ← the i-th vertex in the order O;
3 compute all SRTs of ui;
4 compute all CRTs by refining the computed SRTs;
5 add corresponding triplet of each CRT to in-labels or out-labels of

other vertices;

In the framework, we process each vertex sequentially in the vertex order.

In line 3, the SRTs of ui can be computed in two phases. One computes all

vertices and corresponding time intervals that are reachable from u, while the

other computes those that can reach u. Taking the first one as an example, a

basic implementation uses a queue to maintain the discovered reachable triplets

of ui. To be specific, the queue is initialized as a special triplet containing ui.

We iteratively pop a triplet ⟨v, ts, te⟩, which means u can reach v in [ts, te]. For

each out-neighbor ⟨v′, t⟩ of v, we expand ⟨v, ts, te⟩ to ⟨v′,min(ts, t),max(te, t)⟩,
which means ui reaches v′ in the interval [min(ts, t),max(te, t)]. We mark this

new triplet ⟨v′,min(ts, t),max(te, t)⟩ as discovered and push it into the queue if

it is not dominated by other discovered triplet, and remove all its dominating

discovered triplets. In line 3, for every SRT computed in line 2, we check whether

there exists a vertex with a higher rank that can cover the SRT based on Def-

inition 4. This can be done by performing a query processing procedure based

on the labels computed by higher-rank vertices. The details of query processing

will be given in the Section 3.5. If yes, we omit such SRT, and derive all CRTs

when all SRTs are checked.
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3.4.2 Theoretical Analysis

We prove the correctness and the minimality of TILL-Index computed by Algo-

rithm 2.

Theorem 1. (Correctness) The span-reachability query of any pair of ver-

tices can be correctly answered (any one of three conditions presented in Sec-

tion 3.3.2 holds) based on the index computed by Algorithm 2.

Proof. The theorem can be easily derived according to Definition 4, Lemma 5

and Lemma 6.

Theorem 2. (Minimality) For any vertex u and any triplet ⟨w, ts, te⟩ in Lin(u)

or Lout(u) of the index computed by Algorithm 2, there exists a pair of vertices

u′, v′ and a corresponding interval [t′s, t
′
e] such that the span-reachability of u′ and

v′ in [t′s, t
′
e] cannot be correctly answered after removing ⟨w, ts, te⟩.

Proof. Given a triplet ⟨w, ts, te⟩ ∈ Lout(u), we prove that after removing

⟨w, ts, te⟩, the span-reachability from u to w in [ts, te] cannot be correctly an-

swered. If this query can be correctly answered, then at least one of the fol-

lowing two condition hold: (i) there exists a triplet ⟨u, t′s, t′e⟩ in Lin(w) such

that [t′s, t
′
e] ⊆ [ts, te]; (ii) there exists a triplet ⟨v, t′s, t′e⟩ ∈ Lout(u) and a triplet

⟨v, t′′s , t′′e⟩ ∈ Lin(w) such that [t′s, t
′
e] ⊆ [ts, te] and [t′′s , t

′′
e ] ⊆ [ts, te].

Given that ⟨w, ts, te⟩ ∈ Lout(u), we have O(w) > O(u) according to Lemma 3,

and a triplet containing u cannot appear in Lin(w) and Lout(w). Therefore,

condition i cannot hold. Condition ii holds if v covers the reachability tuple

⟨u,w, ts, te⟩ and the rank of v is higher than those of u and w. This contradicts

Lemma 5 that ⟨u,w, ts, te⟩ is a CRT. This completes the proof of the theorem.
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3.4.3 Implementation

The basic implementation incurs high computational cost. We discuss several

techniques to efficiently compute SRTs and CRTs as follows.

Efficient SRT Computation

We propose a priority queue based method to efficiently compute all SRTs of a

given vertex. A key idea of this method is given in the following lemma.

Lemma 7. Given a vertex u and a set of known SRTs S containing u, a reacha-

bility tuple ⟨u, v, ts, te⟩ is an SRT if (i) ⟨u, v, ts, te⟩ is not dominated by any other

SRT in S, and (ii) the length of [ts, te] is the smallest among those of all tuples

that are not in S.

Example 5. We consider the temporal graph G in Figure 1.1. Assume that we

aim to compute SRTs of v5. For ease of presentation, we only consider the SRTs

starting from v5. Initially, S = ∅ and we have several reachability tuples with the

smallest interval length. They are ⟨v5, v3, 4, 4⟩, ⟨v5, v8, 1, 1⟩, and ⟨v5, v8, 4, 4⟩, and
all of them are SRTs. Now we have S = {⟨v5, v3, 4, 4⟩, ⟨v5, v8, 1, 1⟩, ⟨v5, v8, 4, 4⟩}.
⟨v5, v8, 4, 8⟩ is not an SRT since it is dominated by ⟨v5, v8, 4, 4⟩ in S, and

⟨v5, v12, 4, 5⟩ is an SRT since its interval length is smallest among all possible

reachability tuples except the SRTs in S.

Based on Lemma 7, to compute all non-dominated reachability triplets (a

target and the corresponding time interval) from a vertex u, we preserve all dis-

covered reachability triplets in a priority queue, and always pop the triplets with

the smallest time interval length in the priority queue. According to Lemma 7,

a popped triplet ⟨v, ts, te⟩ must be an SRT if it is not dominated by any previ-

ously found SRT. We compute the new interval of each neighbor of v that can
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be reached from ⟨v, ts, te⟩ and push the corresponding new triplet into the pri-

ority queue if necessary. Following this, we compute all SRTs when the priority

queue is empty. A detailed pseudocode of our final algorithm will be given in

the following section.

Efficient CRT Computation

We reduce the CRT checks by making use of the transitive property of the

dominance relationship. The following lemma provides an early termination

condition in the search of SRT computation.

Lemma 8. Given a reachability tuple ⟨u, v, ts, te⟩ and a vertex w, for any reacha-

bility tuple ⟨u, v′, t′s, t′e⟩, we have w covers ⟨u, v′, t′s, t′e⟩ if (i) w covers ⟨u, v, ts, te⟩,
(ii) [ts, te] ⊆ [t′s, t

′
e], and (iii) v span-reaches v′ in [t′s, t

′
e].

Given the i-th vertex ui in O, assume that we have detected a vertex v that ui

can reach in an interval [ts, te], and the corresponding tuple ⟨ui, v, ts, te⟩ has been
covered. Based on Lemma 8, we immediately terminate any further exploration

of v since all other vertices that are reachable from ⟨v, ts, te⟩ must have been

covered too. By adopting this pruning technique, we not only avoid a large

number of CRT checks but also reduce the search scope in SRT computation.

We give the pesudocode of the final algorithm for the index construction by

combing two optimization techniques in Algorithm 3.

In Algorithm 3, we use a parameter ϑ to achieve a trade-off between the index

size and the index coverage practically. ϑ represents the largest interval length

of span-reachability query that TILL-Index can support. In most applications,

users may be only interested in the span-reachability queries in a small-length

interval. We will show the index size and its construction time under different

ϑ selections in Section 3.6.
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Lines 4–16 of Algorithm 3 compute all reachable verices and corresponding

intervals from ui. As discussed in Section 3.4.3, we always pop a triplet ⟨v, ts, te⟩
with the smallest value of te − ts in line 8. Based on Lemma 8, we check if the

reachability tuple ⟨ui, v, ts, te⟩ has been covered in line 10. Here, ui ⇝L
[ts,te]

v

means the answer of the span-reachability query from ui to v in [ts, te] is true

according to the current TILL-Index L (L includes the in-label Lin and out-label

Lout of every vertex). Note that L dynamically increases during the execution

process of the algorithm. We omit this tuple and stop further exploration of

it if it is covered by the previously computed index (line 10). Lemma 7 and

Lemma 8 guarantee that ⟨ui, v, ts, te⟩ must be an CRT, and we safely add ui

with corresponding interval to the in-labels of v in line 11. Lines 12–16 explore

the out-neighbors of v. We omit the neighbor with higher rank in line 13 since

their reachability tuples have been covered in previous iterations. We compute

the updated reachability interval for each neighbor v′ in line 14. We push the

triplet into the priority queue in line 16 if the interval gap is not larger than the

threshold ϑ.

Example 6. We give a running example of Algorithm 3. The default value of

the parameter ϑ is +∞. Given a graph G in Figure 1.1 and an alphabetical

order, assume that we have processed the first 4 vertices. We have i = 5 in

line 3 and ui = v5 in line 4. The priority queue is initialized with one special

element ⟨v5,+∞,−∞⟩. We pop ⟨v5,+∞,−∞⟩ in line 8 and scan out-neighbors

of v5 including ⟨v3, 4⟩, ⟨v8, 1⟩, and ⟨v8, 4⟩. We omit the out-neighbor ⟨v3, 4⟩ since
O(v3) > O(v5) in line 13, and push ⟨v8, 1, 1⟩ and ⟨v8, 4, 4⟩ into Q. Assume the

next popped triplet in line 8 is ⟨v8, 1, 1⟩. v8 has only one out-neighbor ⟨v4, 6⟩
and we have t′s = 1, t′e = 6 in line 14. We push ⟨v4, 1, 6⟩ into Q. In the next

round, we pop ⟨v8, 4, 4⟩ and push ⟨v4, 4, 6⟩ into Q. Now, Q contains two triplets,

⟨v4, 4, 6⟩ and ⟨v4, 1, 6⟩. We do not push any new triplet into Q in the following
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Algorithm 3: TILL-Construct∗()

Input: a temporal graph G(V , E), a vertex order O and a parameter ϑ
Output: the TILL-Index of G

1 foreach u ∈ V do
2 Lin(u),Lout(u)← ∅;
3 for 1 ≤ i < n do
4 ui ← the i-th vertex in O;
5 Q ← an empty priority queue;
6 Q.push(⟨ui,+∞,−∞⟩);
7 while Q is not empty do
8 ⟨v, ts, te⟩ ← Q.pop();
9 if ui ̸= v then

10 if ui ⇝L
[ts,te]

v then continue;

11 else Lin(v)← Lin(v) ∪ {⟨ui, ts, te⟩};
12 foreach ⟨v′, t⟩ ∈ Nout(v) do
13 if O(v′) ≤ O(u) then continue;
14 t′s ← min(ts, t), t

′
e ← max(te, t);

15 if t′e − t′s + 1 > ϑ then continue;
16 else Q.push(⟨v′, t′s, t′e⟩);

17 repeat lines 2–16 to construct Lout of each vertex by toggling
between the subscripts in and out;

rounds since both ⟨v4, 4, 6⟩ and ⟨v4, 1, 6⟩ are covered by v3, and the condition in

line 10 holds. Till now, we have computed all CRTs of v5 which start from v5.

Let Cout
≤ϑ (u) (resp. C

in
≤ϑ(u)) be the set of all CRTs containing u whose interval

length is not larger than ϑ and the first (resp. second) item is u. Let c≤ϑ =

maxu∈V(max(|Cout
≤ϑ (u)|, |C in

≤ϑ(u)|) and d be the largest out-degree or in-degree of

the vertices in the graph, i.e., d = maxu∈V max(degrout(u), degrin(u)). The time

complexity of Algorithm 3 is summarized as follows.

Theorem 3. The running time of Algorithm 3 is bounded by O(ndc≤ϑ(log dc≤ϑ+

c≤ϑ)).

Proof. We first focus on one iteration of line 3. Based on Lemma 5 and Lemma 6,
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line 11 is performed O(c≤ϑ) times. We scan the out-neighbors of v′ if line 11 holds.

Therefore, lines 13-16 are performed O(dc≤ϑ) times, and the total number of

items appended to the priority queue is bounded by O(dc≤ϑ). In line 10, we check

whether ⟨ui, v, ts, te⟩ is covered by prior verices. This can be done by sequentially

scanning the existing out-label of ui and in-label of v and returning true if there

is a common vertex in the interval [ts, te]. The running time can be bounded

by O(|Cout
≤ϑ (ui)| + |C in

≤ϑ(v)|) or O(c≤ϑ). In line 7 and 16, it requires O(log dc≤ϑ)

to push a new item or get the top item in the priority queue. By combing the

results, we have the total time complexity O(ndc≤ϑ(log dc≤ϑ + c≤ϑ)).

Undirected Graphs. In undirected graphs, we only need to maintain one label

set for each vertex. Therefore, we omit line 17 of Algorithm 3 when constructing

the index of an undirected graph.

3.5 Query Processing

We study the query processing strategies based on the TILL-Index computed by

Algorithm 3. We discuss the algorithm to answer the span-reachability followed

by a full discourse of the algorithms for the θ-reachability query.

3.5.1 Span-Reachability Query Processing

Our first step is to present several basic pruning strategies to check span-

reachability. Given a vertex u, let tmin(Nout(u)) (resp. tmax(Nout(u))) be the

smallest (resp. largest) timestamp in out-neighbors of u. tmin(Nin(u)) and

tmax(Nin(u)) are defined similarly. We have the following lemmas.

Lemma 9. A vertex u span-reaches a vertex v in [t1, t2] only if there exist a

neighbor ⟨w, t⟩ ∈ Nout(u) and ⟨w′, t′⟩ ∈ Nin(v) such that t ∈ [t1, t2] and t′ ∈
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[t1, t2].

Lemma 10. A vertex u span-reaches a vertex v in [t1, t2] only if t2 ≥
max(tmin(Nout(u)), tmin(Nin(v))) and t1 ≤ min(tmax(Nout(u)), tmax(Nin(v))).

We can check the conditions in above two lemmas simply by scanning the

neighbors of each query vertex. If the conditions do not hold, we immediately

return false and do not invoke any query processing procedure.

Given a pair of query vertices u, v and an interval [ts, te], a straightforward

method to answer the span-reachability of u and v is to scan Lout(u) and Lin(v).

Let Lout(u)[ts,te] (resp. Lin(u)[ts,te]) be the set of all triplets in Lout(u) (resp.

Lout(v)) falling in the interval [ts, te]. We answer true if there exists a common

vertex in Lout(u)[ts,te] ∪ {u} and Lin(v)[ts,te] ∪ {v}. Otherwise, we return false.

This can be done by using a hash table to preserve the vertices.

To improve the query efficiency, we group the triplets in the out-label or

in-label of each vertex by their target vertices (the first item in the triplet).

Let V(Lout(u)) be the set of vertices in the reachability triplet of Lout(u), i.e.,

V(Lout(u)) = {v ∈ V|⟨v, ts, te⟩ ∈ Lout(u)}. Given a vertex w in V(Lout(u)),

we use Lout(u)w to denote the intervals that u can reach w in Lout(u), i.e.,

Lout(u)w = {[ts, te]|⟨w, ts, te⟩ ∈ Lout(u)}. We check the span-reachability in

two phases. In the first one, we check if there exists a common vertex in u ∪
V(Lout(u)) and v∪V(Lout(v)). This can be done in a merge sort like strategy by

arranging the vertices in the label of each vertex by their ranks. Once finding a

common vertex w, we further check if there exist intervals falling in the query

interval in Lout(u)w and Lin(v)w, respectively. If yes, we immediately return

true. Otherwise, we resume the search and look for the next common vertex.

Recall that in Algorithm 3, the triplets appended to the out-label or in-label of

each vertex follow the order of the vertex rank. Therefore, the group operation

can be done naturally in the index construction without incurring extra cost.
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To check whether there exists an interval falling in the query interval, we

sort the intervals of each vertex in chronological order. So, given two intervals

[ts, te] and [t′s, t
′
e], [ts, te] is prior to [t′s, t

′
e] if (i) ts < t′s, or (ii) ts = t′s ∧ te < t′e.

Therefore, given a query interval [t1, t2] and an arbitrary interval [ts, te], if an

interval [t∗s, t
∗
e] ⊆ [t1, t2] exists, [t∗s, t

∗
e] must appear after [ts, te] if ts < t1 or

appear before [ts, te] if te > t2. This sorting task can be done at the end of

Algorithm 3 after all labels are completely computed. The time usage for sorting

can be bounded by O(nc≤ϑ log c≤ϑ), and this would not increase the total time

complexity in Theorem 3.

[1,4] [4,5] [3,5] [1,4] [1,1] [5,5] [6,8]

v1 0 v2 2 v3 4

0 1 2 3 4 5 6

Lin(v4) :
<latexit sha1_base64="p8feN20cz5wxORCO2HnuVJ5GKOc=">AAAB/nicbVDLSsNAFL3xWeMrKq7cDBahbkoiBcVV0Y0LFxXsA9oQJtNJO3TyYGZSKCHgr7hxoYhbv8Odf+O0zUJbD1w4nHMv997jJ5xJZdvfxsrq2vrGZmnL3N7Z3du3Dg5bMk4FoU0S81h0fCwpZxFtKqY47SSC4tDntO2Pbqd+e0yFZHH0qCYJdUM8iFjACFZa8qxj08x6BHN0n3sZi/LK2KudX3tW2a7aM6Bl4hSkDAUanvXV68ckDWmkCMdSdh07UW6GhWKE09zspZImmIzwgHY1jXBIpZvNzs/RmVb6KIiFrkihmfp7IsOhlJPQ150hVkO56E3F/7xuqoIrV3+VpIpGZL4oSDlSMZpmgfpMUKL4RBNMBNO3IjLEAhOlEzN1CM7iy8ukdVF17KrzUCvXb4o4SnACp1ABBy6hDnfQgCYQyOAZXuHNeDJejHfjY966YhQzR/AHxucPEyuUQw==</latexit><latexit sha1_base64="p8feN20cz5wxORCO2HnuVJ5GKOc=">AAAB/nicbVDLSsNAFL3xWeMrKq7cDBahbkoiBcVV0Y0LFxXsA9oQJtNJO3TyYGZSKCHgr7hxoYhbv8Odf+O0zUJbD1w4nHMv997jJ5xJZdvfxsrq2vrGZmnL3N7Z3du3Dg5bMk4FoU0S81h0fCwpZxFtKqY47SSC4tDntO2Pbqd+e0yFZHH0qCYJdUM8iFjACFZa8qxj08x6BHN0n3sZi/LK2KudX3tW2a7aM6Bl4hSkDAUanvXV68ckDWmkCMdSdh07UW6GhWKE09zspZImmIzwgHY1jXBIpZvNzs/RmVb6KIiFrkihmfp7IsOhlJPQ150hVkO56E3F/7xuqoIrV3+VpIpGZL4oSDlSMZpmgfpMUKL4RBNMBNO3IjLEAhOlEzN1CM7iy8ukdVF17KrzUCvXb4o4SnACp1ABBy6hDnfQgCYQyOAZXuHNeDJejHfjY966YhQzR/AHxucPEyuUQw==</latexit><latexit sha1_base64="p8feN20cz5wxORCO2HnuVJ5GKOc=">AAAB/nicbVDLSsNAFL3xWeMrKq7cDBahbkoiBcVV0Y0LFxXsA9oQJtNJO3TyYGZSKCHgr7hxoYhbv8Odf+O0zUJbD1w4nHMv997jJ5xJZdvfxsrq2vrGZmnL3N7Z3du3Dg5bMk4FoU0S81h0fCwpZxFtKqY47SSC4tDntO2Pbqd+e0yFZHH0qCYJdUM8iFjACFZa8qxj08x6BHN0n3sZi/LK2KudX3tW2a7aM6Bl4hSkDAUanvXV68ckDWmkCMdSdh07UW6GhWKE09zspZImmIzwgHY1jXBIpZvNzs/RmVb6KIiFrkihmfp7IsOhlJPQ150hVkO56E3F/7xuqoIrV3+VpIpGZL4oSDlSMZpmgfpMUKL4RBNMBNO3IjLEAhOlEzN1CM7iy8ukdVF17KrzUCvXb4o4SnACp1ABBy6hDnfQgCYQyOAZXuHNeDJejHfjY966YhQzR/AHxucPEyuUQw==</latexit><latexit sha1_base64="p8feN20cz5wxORCO2HnuVJ5GKOc=">AAAB/nicbVDLSsNAFL3xWeMrKq7cDBahbkoiBcVV0Y0LFxXsA9oQJtNJO3TyYGZSKCHgr7hxoYhbv8Odf+O0zUJbD1w4nHMv997jJ5xJZdvfxsrq2vrGZmnL3N7Z3du3Dg5bMk4FoU0S81h0fCwpZxFtKqY47SSC4tDntO2Pbqd+e0yFZHH0qCYJdUM8iFjACFZa8qxj08x6BHN0n3sZi/LK2KudX3tW2a7aM6Bl4hSkDAUanvXV68ckDWmkCMdSdh07UW6GhWKE09zspZImmIzwgHY1jXBIpZvNzs/RmVb6KIiFrkihmfp7IsOhlJPQ150hVkO56E3F/7xuqoIrV3+VpIpGZL4oSDlSMZpmgfpMUKL4RBNMBNO3IjLEAhOlEzN1CM7iy8ukdVF17KrzUCvXb4o4SnACp1ABBy6hDnfQgCYQyOAZXuHNeDJejHfjY966YhQzR/AHxucPEyuUQw==</latexit>

[5,6] [5,5] [6,9]v1 0 v2 1 v4 2
0 1 2

Lout(v6) :
<latexit sha1_base64="46uSrf4/Zwb9p9h9/wRzc7suyO4=">AAAB/nicbVDLSsNAFJ34rPEVFVduBotQNyURUXFVdOPCRQX7gDaEyXTSDp3MhJlJoYSAv+LGhSJu/Q53/o3TNgttPXDhcM693HtPmDCqtOt+W0vLK6tr66UNe3Nre2fX2dtvKpFKTBpYMCHbIVKEUU4ammpG2okkKA4ZaYXD24nfGhGpqOCPepwQP0Z9TiOKkTZS4BzaWRcjBu/zIBOpziuj4OL0OnDKbtWdAi4SryBlUKAeOF/dnsBpTLjGDCnV8dxE+xmSmmJGcrubKpIgPER90jGUo5goP5uen8MTo/RgJKQpruFU/T2RoVipcRyazhjpgZr3JuJ/XifV0ZWfUZ6kmnA8WxSlDGoBJ1nAHpUEazY2BGFJza0QD5BEWJvEbBOCN//yImmeVT236j2cl2s3RRwlcASOQQV44BLUwB2ogwbAIAPP4BW8WU/Wi/Vufcxal6xi5gD8gfX5A9IQlLw=</latexit><latexit sha1_base64="46uSrf4/Zwb9p9h9/wRzc7suyO4=">AAAB/nicbVDLSsNAFJ34rPEVFVduBotQNyURUXFVdOPCRQX7gDaEyXTSDp3MhJlJoYSAv+LGhSJu/Q53/o3TNgttPXDhcM693HtPmDCqtOt+W0vLK6tr66UNe3Nre2fX2dtvKpFKTBpYMCHbIVKEUU4ammpG2okkKA4ZaYXD24nfGhGpqOCPepwQP0Z9TiOKkTZS4BzaWRcjBu/zIBOpziuj4OL0OnDKbtWdAi4SryBlUKAeOF/dnsBpTLjGDCnV8dxE+xmSmmJGcrubKpIgPER90jGUo5goP5uen8MTo/RgJKQpruFU/T2RoVipcRyazhjpgZr3JuJ/XifV0ZWfUZ6kmnA8WxSlDGoBJ1nAHpUEazY2BGFJza0QD5BEWJvEbBOCN//yImmeVT236j2cl2s3RRwlcASOQQV44BLUwB2ogwbAIAPP4BW8WU/Wi/Vufcxal6xi5gD8gfX5A9IQlLw=</latexit><latexit sha1_base64="46uSrf4/Zwb9p9h9/wRzc7suyO4=">AAAB/nicbVDLSsNAFJ34rPEVFVduBotQNyURUXFVdOPCRQX7gDaEyXTSDp3MhJlJoYSAv+LGhSJu/Q53/o3TNgttPXDhcM693HtPmDCqtOt+W0vLK6tr66UNe3Nre2fX2dtvKpFKTBpYMCHbIVKEUU4ammpG2okkKA4ZaYXD24nfGhGpqOCPepwQP0Z9TiOKkTZS4BzaWRcjBu/zIBOpziuj4OL0OnDKbtWdAi4SryBlUKAeOF/dnsBpTLjGDCnV8dxE+xmSmmJGcrubKpIgPER90jGUo5goP5uen8MTo/RgJKQpruFU/T2RoVipcRyazhjpgZr3JuJ/XifV0ZWfUZ6kmnA8WxSlDGoBJ1nAHpUEazY2BGFJza0QD5BEWJvEbBOCN//yImmeVT236j2cl2s3RRwlcASOQQV44BLUwB2ogwbAIAPP4BW8WU/Wi/Vufcxal6xi5gD8gfX5A9IQlLw=</latexit><latexit sha1_base64="46uSrf4/Zwb9p9h9/wRzc7suyO4=">AAAB/nicbVDLSsNAFJ34rPEVFVduBotQNyURUXFVdOPCRQX7gDaEyXTSDp3MhJlJoYSAv+LGhSJu/Q53/o3TNgttPXDhcM693HtPmDCqtOt+W0vLK6tr66UNe3Nre2fX2dtvKpFKTBpYMCHbIVKEUU4ammpG2okkKA4ZaYXD24nfGhGpqOCPepwQP0Z9TiOKkTZS4BzaWRcjBu/zIBOpziuj4OL0OnDKbtWdAi4SryBlUKAeOF/dnsBpTLjGDCnV8dxE+xmSmmJGcrubKpIgPER90jGUo5goP5uen8MTo/RgJKQpruFU/T2RoVipcRyazhjpgZr3JuJ/XifV0ZWfUZ6kmnA8WxSlDGoBJ1nAHpUEazY2BGFJza0QD5BEWJvEbBOCN//yImmeVT236j2cl2s3RRwlcASOQQV44BLUwB2ogwbAIAPP4BW8WU/Wi/Vufcxal6xi5gD8gfX5A9IQlLw=</latexit>

Figure 3.2: The data structure used to store Lin(v4) and Lout(v6)

Example 7. Figure 3.2 shows the data structure used to store the labels of each

vertex. We take Lin(v4) and Lout(v6) as examples. All triplets in these two label

sets can be found in Table 3.1. Two arrays are used to store the triplets in

the label of each vertex. One interval array stores the intervals for each vertex

in the label, and the other vertex array stores all vertices in the label and the

start position of their intervals in the interval array. For Lin(v4) in Figure 3.2,

the intervals of v1, v2, and v3 are marked by white, light gray and dark gray,

respectively. The intervals of v2 in Lin(v4) in the interval array start from the

position of v2 (i.e., 2), and end at the position of the next vertex v3 in the vertex

array (i.e., 4).

A complete pseudocode of the span-reachability query processing is presented
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Algorithm 4: Span-Reach()

Input: TILL-Index of G, two vertices u and v, and an interval [t1, t2]
Output: the span-reachability of u and v in [t1, t2]

1 i, i′ ← 1;
2 while i ≤ |V(Lout(u))| ∧ i′ ≤ |V(Lin(v))| do
3 w ← the i-th vertex in V(Lout(u));
4 w′ ← the i′-th vertex in V(Lin(v));
5 if w = v ∧ ∃[ts, te] ∈ Lout(u)w : [ts, te] ⊆ [t1, t2] then return true;
6 else if w′ = u ∧ ∃[t′s, t′e] ∈ Lin(v)w′ : [t′s, t

′
e] ⊆ [t1, t2] then return

true;
7 else if O(w) < O(w′) then i← i+ 1;
8 else if O(w) > O(w′) then i′ ← i′ + 1;
9 else if ∃[ts, te] ∈ Lout(u)w : [ts, te] ⊆ [t1, t2] ∧

∃[t′s, t′e] ∈ Lin(v)w′ : [t′s, t
′
e] ⊆ [t1, t2] then

10 return true;

11 else i← i+ 1, i′ ← i′ + 1;

12 return false;

in Algorithm 4, and is self-explanatory. In lines 5, 6, and 9, we use the binary

search method described above to find a subinterval of [t1, t2].

Example 8. Assume that we aim to answer the span-reachability from v6 to v4

in the interval [3, 5]. We scan the vertex array of Lout(v6) and Lin(v4) to look for

a common vertex. We first find a common vertex v1. However, there does not

exist a subinterval of [3, 5] of v1 in the interval array of Lout(v6). We continue

to search the next common vertex and find v2. We find there exist a subinterval

[5, 5] of v2 in Lout(v6) and a subinterval [3, 5] of v2 in Lin(v4). Therefore, we

return true for this query.

Theorem 4. Given a pair of vertices u and v, the running time of Algorithm 4

is bounded by O(|Lout(u)|+ |Lin(v)|).
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3.5.2 θ-Reachability

Based on the idea for the span-reachability query processing, we study the θ-

reachability query in this subsection. Given two vertices u, v, a threshold θ and

an interval [t1, t2], a straightforward idea to answer the θ reachability query is to

invoke Algorithm 4 for every possible interval (from [t1, t1+θ−1] to [t2−θ+1, t2]).

The time complexity of this method is O((t2 − t1 − θ) · (|Lout(u)| + |Lin(v)|)).
We improve the time complexity to O(|Lout(u)| + |Lin(v)|) by taking a sliding

window based approach. Before discussing the details of the algorithm, we show

that u θ-reaches v in [t1, t2] if one of the following equations holds:

1. ∃⟨v, ts, te⟩ ∈ Lout(u): [ts, te] ⊆ [t1, t2] ∧ te − ts + 1 ≤ θ;

2. ∃⟨u, ts, te⟩ ∈ Lin(v): [ts, te] ⊆ [t1, t2] ∧ te − ts + 1 ≤ θ;

3. ∃⟨w, ts, te⟩ ∈ Lout(u), ⟨w′, t′s, t
′
e⟩ ∈ Lin(v): w = w′ ∧ [ts, te] ⊆ [t1, t2] ∧

[t′s, t
′
e] ⊆ [t1, t2] ∧max(te, t

′
e)−min(ts, t

′
s) + 1 ≤ θ.

Based on the conditions above, we can follow the same framework of Algo-

rithm 4. We add the limitation te− ts+1 ≤ θ in line 5 and line 6 of Algorithm 4

respectively to check the first two conditions. To check the third condition of

finding a common vertex w in V(Lout(u)) and V(Lin(v)), we first filter out all

intervals in Lout(u)w and Lin(v)w not found in [t1, t2]. With the concept of slid-

ing window, the window is always θ. Recall that the intervals in each label are

sorted in chronological order. The initial start time of the window is the smallest

start time of the remaining intervals in the labels. If both the first intervals of

two labels fall in the sliding window, we return true. Alternatively, we filter out

the interval with the smallest start time and move the sliding window forward

to the next smallest start time of the intervals. This step is repeated until no

interval remains.
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The pseudocode to answer the θ-reachability query is given in Algorithm 5.

Lines 5 and 6 correspond to the θ-reachability conditions 1 and 2 respectively.

Lines 9–20 correspond to condition 3. In lines 10 and 11, we use a binary search

to locate the first interval falling in [t1, t2]. The condition of line 15 holds if all

intervals of Lout(u)w (or Lin(v)w) in [t1, t2] are scanned, and we break the loop.

Line 17 holds if we find a pair of intervals falling in the same sliding window. In

lines 19 and 21, we move the sliding window with a new start time of min(ts, t
′
s).

Theorem 5. Given a pair of vertices u and v, the running time of Algorithm 5

is bounded by O(|Lout(u)|+ |Lin(v)|).

Example 9. Given a query interval [1, 8] and θ = 3, assume that we aim to

answer 3-reachability from v6 to v4. The out-label and in-label of v6 and v4 are

given in Figure 3.2, respectively. In line 9 of Algorithm 5, we find a common

vertex v1 in V(Lout(v6)) and V(Lin(v4)). We have [ts, te] = [5, 6] in line 13 and

[t′s, t
′
e] = [1, 4] in line 14. The conditions in lines 15, 17,and 19 do not hold. As

a result, line 21 is executed. In the next iteration, we have [t′s, t
′
e] = [4, 5] and

[ts, te] is kept constant. The condition in line 17 holds, and true is returned.
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Algorithm 5: ES-Reach∗()

Input: TILL-Index of G, a parameter θ, two vertices u and v, and an interval [t1, t2]
Output: the θ-reachability of u and v in [t1, t2]

1 i, i′ ← 1;
2 while i ≤ |V(Lout(u))| ∧ i′ ≤ |V(Lin(v))| do
3 w ← the i-th vertex in V(Lout(u));
4 w′ ← the i′-th vertex in V(Lin(v));
5 if w = v ∧ ∃[ts, te] ∈ Lout(u)w : [ts, te] ⊆ [t1, t2], te − ts ≤ θ then return true;
6 else if w′ = u ∧ ∃⟨w′, t′s, t

′
e⟩ ∈ Lin(v) : [t

′
s, t

′
e] ⊆ [t1, t2], t

′
e − t′s ≤ θ then return

true;
7 else if O(w) < O(w′) then i← i+ 1;
8 else if O(w) > O(w′) then i′ ← i′ + 1;
9 else if ∃[ts, te] ∈ Lout(u)w : [ts, te] ⊆ [t1, t2] ∧

∃[t′s, t′e] ∈ Lin(v)w′ : [t′s, t
′
e] ⊆ [t1, t2] then

10 k ← the position of the first interval [ts, te] ∈ Lout(u)w s.t. [ts, te] ⊆ [t1, t2];
11 k′ ← the position of the first interval [t′s, t

′
e] ∈ Lin(v)w′ s.t. [t′s, t

′
e] ⊆ [t1, t2];

12 while k ≤ |Lout(u)w| ∧ k′ ≤ |Lin(v)w′ | do
13 [ts, te] the k-th interval in Lout(u)w;
14 [t′s, t

′
e] the k′-th interval in Lin(v)w′ ;

15 if [ts, te] ̸⊆ [t1, t2] ∨ [t′s, t
′
e] ̸⊆ [t1, t2] then

16 break;

17 else if max(te, t
′
e)−min(ts, t

′
s) ≤ θ then

18 return true;

19 else if te − ts > θ ∨ ts < t′s then
20 k ← k + 1;

21 else k′ ← k′ + 1;

22 i← i+ 1, i′ ← i′ + 1;

23 else i← i+ 1, i′ ← i′ + 1;

24 return false;
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3.6 Experiments

Table 3.2: Network Statistics

Dataset M |V| |E| ϑG

CollegeMsg D 1,899 59,835 16,736,181
Chess D 7,301 65,053 99
Slashdot D 51,083 140,778 1,157,361,660
MathOverflow D 24,818 506,500 203,068,736
Facebook f U 63,731 817,035 1,232,231,923
Epinions D 131,828 841,372 944
Facebook wp D 46,952 876,993 134,873,285
AskUbuntu D 159,316 964,437 225,834,442
Enron D 87,273 1,148,072 1,401,187,797
SuperUser D 194,085 1,443,339 239,614,928
Digg D 279,630 1,731,653 1,247,032,805
Wiki U 118,100 2,917,785 239,001,193
Prosper D 89,269 3,394,979 2,142
Arxiv U 28,093 4,596,803 3,649
Youtube U 3,223,589 9,375,374 225
DBLP U 1,314,050 18,986,618 76
Flickr D 2,302,925 33,140,017 197

We conducted extensive experiments to evaluate the performance of our proposed

algorithms, summarized as follows:

• Online-Reach: Algorithm 1.

• Span-Reach: Algorithm 4.

• ES-Reach: a naive method to answer θ-reachability by invoking several runs

of Span-Reach(). More details can be found in Section 3.5.2.

• ES-Reach∗: Algorithm 5.

• TILL-Construct: A basic implementation of Algorithm 2. We use a queue

to compute all SRTs and get CRTs by checking whether every SRT can be
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covered by existing labels. More details can be found in Section 3.4.1.

• TILL-Construct∗: Algorithm 3.

All algorithms were implemented in C++ and compiled using a g++ compiler

at a -O3 optimization level. All the experiments were conducted on a Linux

Server with an Intel Xeon 2.7GHz CPU and 180GB RAM.

Datasets. We conducted experiments on seventeen publicly-available real-world

graphs. The detailed statistics of these datasets are summarized in Table 3.2.

M demonstrates the types of datasets, where D represents the directed graph

and U represents the undirected graph. ϑG demonstrates the number of atomic

units between the smallest timestamp and the largest timestamp. All networks

and corresponding detailed descriptions can be found in SNAP1 and KONECT2.

The rest of this section is organized as follows. Section 3.6.1 provides the

performance of answering span-reachability queries. Section 3.6.2 evaluates the

index construction algorithms, and Section 3.6.3 reports the performance of an-

swering θ-reachability queries.

3.6.1 Span-Reachability Query Processing

We evaluate the performance of span-reachability query processing. To generate

input queries, we randomly pick 100 vertex pairs in each graph G. For each

vertex pair, we randomly generate subintervals of [1, ϑG] and only keep intervals

if the conditions in Lemma 9 and Lemma 10 are satisfied. We repeat this step

until 10 intervals are found. This strategy works because the query algorithm

is only invoked if the conditions in Lemma 9 and Lemma 10 hold. As a result,

we fully prepare 1000 span-reachability queries. We report the running time of

Span-Reach with Online-Reach as a comparison in Figure 3.3.

1http://snap.stanford.edu/data/index.html
2http://konect.cc
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Figure 3.3: Performance of span-reachability query processing

We can see that the running time of Span-Reach is at least two orders of

magnitude smaller than that of Online-Reach in all datasets in the experiment.

For example, in the largest dataset Flickr, Online-Reach takes over 300 seconds

while our Span-Reach algorithm takes only about 1.4 ms (1s= 103ms= 106µs).

3.6.2 Index Construction

This section is devoted to evaluating the performance of index construction al-

gorithms.

Index Size

We report the index size of all datasets in Figure 3.4, and also add the size of

datasets as a comparison. We can find that in several large datasets, the index

size is smaller than the graph size. For example, in Flickr, the dataset takes

about 400 MB while the index takes only about 350 MB.

Indexing Time

The running time of TILL-Construct∗ for all datasets is reported with

TILL-Construct as a comparison in Figure 3.5
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Figure 3.4: Index Size
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Figure 3.5: Indexing Time

Note that the running time of TILL-Construct on several datasets are not

given as the algorithm cannot finish in six hours. It is clear that in comparing

all reported times of TILL-Construct, TILL-Construct∗ is at least two orders of

magnitude faster. In the largest dataset Flickr, TILL-Construct∗ takes about 1.5

hours to compute TILL-Index. TILL-Construct∗ takes about 1 second on Chess,

which is the shortest on all reported times. By contrast, the running time of

TILL-Construct on Chess is about 20 minutes.
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Varying ϑ

The running times and index sizes of TILL-Construct∗() are presented in Fig-

ure 3.6 by varying the input parameter ϑ from 20% to 100% of ϑG for each

dataset G. Note that ϑ = ϑG is equivalent to the default setting ϑ as +∞. Due

to limited space here, Figure 3.6 shows only the results of four datasets — En-

ron, Youtube, DBLP and Flickr. The results for other datasets display similar

trends.

We can see from figures (a)–(d) that the increasing speed of running time

becomes small when both the vertex and edge sampling ratio increases. For

example, the running time of TILL-Construct∗ on Flickr is about 14 minutes

when the edge sampling ratio is 20%. It reaches to 22 minutes, 35 minutes and

73 minutes when the edge sampling ratio is 40%, 60%, and 80% respectively.

Finally, on the ratio of 100%, the time reaches about 90 minutes. The increasing

trends for the index size in figures (e)–(h) are similar and even more gentle.

Figure 3.6 (a)–(d) reports the running times. We can see that the increases

on both Enron and DBLP are not obvious (does not exceed 20 seconds) from

20% to 100%. The lines are almost linear in Youtube and Flickr, which start

from about 500 seconds and 25 minutes, ending at about 750 seconds and 1.5

hours, respectively. Figure 3.6 (e)–(h) reports the index size. The change on all

reported datasets is very small. The group of figures shows that the index size

and indexing time are confined even though we do not set any interval length

limitation (ϑ = +∞) in TILL-Construct∗.
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Figure 3.7: Scalability of index construction
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Figure 3.6: Varying ϑ of TILL-Construct∗
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Scalability

This experiment tests the scalability of our index construction algorithm. Again,

with limited space, we only report the results for four real-world graph datasets

as representatives — Enron, Youtube, DBLP and Flickr. The results on other

datasets show similar trends. For each dataset, we vary the graph size and graph

density by randomly sampling vertices and edges from 20% to 100%. When

sampling vertices, we derive the induced subgraph of the sampled vertices, and

when sampling edges, we select the incident vertices of the edges as the vertex

set.

3.6.3 θ-Reachability Query Processing

The performance of answering θ-reachability is evaluated next. To prepare the

input queries, we adopt the same strategy described in Section 3.6.1 and ran-

domly pick 100 vertex pairs and 10 intervals for each vertex pair. For each

interval, we set θ as a fraction of its length, and adjust the fraction from 10% to

90%. The running time of ES-Reach∗ on four representative datasets is given in

Figure 3.8, with ES-Reach as a comparison.

We can see from Figure 3.8 that ES-Reach∗ is faster than ES-Reach on all

parameter settings. Their times trend towards equal when θ increases, since two

algorithms are equivalent when θ is the length of the query interval. For the

performance of ES-Reach∗, it is clear that all lines present roughly downward

trends.
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Figure 3.8: Performance of θ-reachability query processing

3.7 Conclusion

In this chapter, we define a span-reachability model to capture entity relation-

ships in a specific period of temporal graphs. We propose an index-based method

based on the concept of two-hop cover to answer the span-reachability query

for any pair of vertices and time intervals. Several optimizations are given to

improve the efficiency of index construction. We also study the problem of θ-

reachability, which is a generalized version of span-reachability. We conduct

extensive experiments on 17 real-world datasets to show the efficiency of our

proposed algorithms.
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Time Interval Paths in Temporal

Graphs

4.1 Overview

In this chapter, we introduce the proposed TDDL-DFS’s methodological details

along with its evaluation results.

In Section 4.2, we provide formal definitions of time interval paths and pro-

jected graphs of directed temporal graphs. Based on these ideals, we formally

define the problem of hop-constrained time interval s-t (TIPST) path enumera-

tion in the temporal network and introduces a straightforward method based on

the Depth First Search (DFS). Following this, Section 4.3 puts forward the idea

of path bundles. Section 4.4 studies a DFS-based approach leveraging dynamic

distance labels. Section 4.5 proves the correctness and analyses the theoretical

performance. Section 4.6 reports the experimental results. Section 4.7 concludes

the chapter.
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4.2 Preliminary

Given a directed temporal graph G = (V , E), where V represents the set of

vertices and E represents the set of temporal edges. In this graph, e(u, v, t) ∈ E
represents a directed temporal edge from u to v at time t. Let n and m denote

the number of vertices and edges, respectively, such that n = |V| and m = |E|.
Additionally, we use θ to represent the number of time stamps, where θ = |T |,
and T is the set of time stamps. We use omega to denote an inclusive time

interval, where ω = [ts, te] with ts and te as starting and ending time.

Definition 5 (Time interval path). A time interval path p between two nodes

vs, vt ∈ V within the inclusive interval ω is a sequence of temporal edges

(vs, v1, t1), (v1, v2, t2), ..., (vk−1, vt, tk), such that for all 1 ≤ i ≤ k, ti ∈ ω and all

edges in p belong to E . We denote the length of path p as |p|, which corresponds

to the number of hops. Another more compact notation for a time interval path

is vs
t1−→ v1

t2−→ v2...
tk−→ vt. Given a hop constraint k, a path p is hop constrained

if |p| ≤ k.

A time interval path is considered simple if each vertex in p is distinct. When

referring to time interval paths, we will focus on simple time interval paths.

Definition 6 (Projected Graph). Given a time interval ω, the projected graph

of G in ω is denoted as Gts,te. The set of vertices V (Gts,te) = V and the set of

edges E(Gts,te) = (u, v)|e(u, v, t) ∈ E , t ∈ ω.

In particular, we refer to the corresponding projected graph of [0,+∞] as

a static graph, denoted as Gs, where V (Gs) = V , E(Gs) = (u, v)|e(u, v, t) ∈ E .
Additionally, we use ms = |E(Gs)| to denote the number of edges in the static

graph. Note that any projected graph or static graph is simple, and it can be

disconnected. For the temporal graph in Figure 1.1, its projected graph in the
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(a) Projected graph in [3, 6]

v11

v1 v5

v2 v6

v8

v12

v10

v7 v9 v3 v4

(b) Static graph

Figure 4.1: Corresponding projected graph and static graph

interval [3, 6] is shown in Figure 4.1a, and the corresponding static graph is

illustrated in Figure 4.1b.

4.2.1 Problem statement

In this work, we study the problem of hop-constrained time interval s-t (TIPST)

path enumeration in the temporal network, which is defined as follows.

Definition 7 (hop-constrained time interval s-t path enumeration). Given

a temporal network G(V , E), a hop-constrained time interval s-t path query

q(vs, vt, k, ω), we aim to enumerate all simple time interval paths P (q) from vs

to vt within ω such that ∀p ∈ P, |p| ≤ k. To make it clear, we name the problem

as TIPST here and throughout the chapter.

Suppose the query is q(v1, v3, 5, [3, 6]) for the temporal graph in Figure 1.1,

the paths satisfying the query are illustrated in Figure 4.2, note that different
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v1 v5 v8 v4 v35 4 6 4

v1 v5 v35 4

Figure 4.2: An example of time interval paths

from simple paths, they are stamped with time intervals in [3, 6].

4.2.2 Straightforward Method

Hop-Constrained Time Interval Depth-First-Search. One straightfor-

ward approach to solve the hop-constrained temporal interval path enumeration

problem is to perform a Depth-First Search (DFS) starting from the source node

s with a maximum of k hops. To maintain the current state during the search,

we use two stacks: one for node IDs (Si) and another for timestamps (St). The
size of the stack is denoted by |S|, and p(Si,St) represents the corresponding

temporal path with a length equal to |p(Si,St)|, which can be either |Si| − 1

or |St|. Importantly, we ensure not to revisit any node already present in Si to
ensure the output path remains simple (Line 5). Additionally, we verify whether

the timestamp t on each edge satisfies the query constraint (Line 5), ensuring

that t is no earlier than the starting time ts and no later than the ending time

te. The time complexity of the TI-DFS algorithm is O((n · θ)k), where n is the

number of vertices and θ is the number of timestamps, and the space complexity

is O((n · θ)k). Please note that the factor of n · θ arises from considering the

presence of n potential vertices and θ distinct timestamps at each search depth.

4.3 Temporal Bundled Solution

In this section, we present a bundled solution tailored for the TIPST query.
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Algorithm 6: TI-DFS(u, tc,Si,St)
Input: A vertex u, a timestamp tc, a stack of IDs of vertices Si and a

stack of timestamps St
1 Si.push(u),St.push(tc);
2 if u == t then
3 output p(Si,St) where Pt ← Pt ∪ p(Si,St);
4 else if |p(Si,St)| < k then
5 for each out-going edge {v, tuv} of u where v /∈ Si, tuv ∈ [ts, te] do
6 TI-DFS(v, tuv,Si,St);

7 u is unstacked from Si and tc is unstacked from St;

4.3.1 Motivation

As mentioned earlier, TI-DFS is a straightforward adaptation from simple graphs

to temporal graphs for handling TIPST queries. However, this approach can lead

to redundant searches in our specific case. The problem arises from the failure to

fully consider the projected graph with a given interval of the temporal graphs.

Consequently, unnecessary computations are performed, impacting the overall

efficiency of the algorithm.

Example 10. Consider the process of Algorithm 6 for the given temporal graph

shown in Figure 1.1 and the query q(v2, v4, 3, [1, 6]). Initially, we have two possi-

ble choices for the outgoing edges from v2: e(v2, v1, 6) and e(v2, v5, 3). However,

selecting e(v2, v1, 6) would lead to a search depth that exceeds the hop constraint of

3, resulting in no valid output. Therefore, we proceed with the edge e(v2, v5, 3),

which starts from v2 within the time interval [1, 6]. In the next hop, from v5,

there are three optional edges: e(v5, v3, 4), e(v5, v8, 1), and e(v5, v8, 4). All of

these edges fall within the time interval [1, 6]. Depending on the chosen edge,

the rest of the path will be different. If we select the branch with e(v5, v3, 4), the

subsequent path could either be {e(v3, v4, 1)} or {e(v3, v4, 5)}. On the other hand,

if we choose e(v5, v8, 1) or e(v5, v8, 4), the rest of the path will be {e(v8, v4, 6)}.
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In the example provided, after removing the edge e(v5, v8, 1) from Si and St,
the subsequent search branch starts from e(v5, v8, 4). Remarkably, we observe

that despite having different timestamps, e(v5, v8, 1) and e(v5, v8, 4) share the

same vertex ID. Consequently, the algorithm ends up repeatedly searching the

same branch from the same node v8, resulting in redundant computations. We

note that revisiting the same branch is inevitable since the states in St do not

affect the subsequent checks in line 5 of Algorithm 6. Even worse, it leads to

considerable space costs. For instance, assuming an average of 10 timestamps

between each pair of adjacent vertices and a hop constraint of 4 (a moderate

case in real life), the runtime memory cost would be increased up to 104 times,

most of which is redundancy and unnecessary. To overcome this issue and im-

prove efficiency, we propose a novel data structure that leverages the projected

graph of the temporal graph with a given interval to compactly organize the

involved timestamps. This approach effectively reduces redundant searches and

substantially improves space efficiency, leading to a more optimized and practical

solution for path enumeration in temporal graphs.

4.3.2 Bundled Time Interval DFS Approach

To optimise the number of repeated visits in DFS, we proposed the idea of bundle

for TIPST path enumeration.

Definition 8 (TIPST bundle). A TIPST bundle B in a temporal graph G =

(V , E) satisfying q(vs, vt, k, ωq) consists of a sequence of vertices v0 = vs, . . . , vl =

vt and sets of time intervals {ω1, ..., ωl} such that 1 ≤ l ≤ k and ∀1 ≤ i ≤ l, ωi ⊂
ωq. Additionally, for any edge (vi, vi+1, t) ∈ E , we have t ∈ ωi if t ∈ ωq. We

denote the TIPST bundle B as v0
ω1−→ v1

ω2−→ v2...
ωl−→ vl.

The set of time interval paths represented by B, denoted P(B) is defined as:
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P(B) = {v0 t1−→ v1...
tk−→ vk|∀i : ti ∈ ωi&(vi−1, vi, ti) ∈ E}

A TIPST bundle is called minimal if ∀i = 1...k, ω− ⊂ ωi it holds that

P(v0 ω1−→ ...vi
ωi\ω−

−−−→ ...
ωk−→ vk) ⊊ P(v0 ω1−→ ...vi

ωi−→ ...
ωk−→ vk)

Lemma 11. Let B be a TIPST bundle, there exists a unique minimal TIPST

bundle B′ such that P(B) = P(B′).

Remarkably, we define the length of a TIPST bundle B as |B|, which corre-

sponds to the number of hops. For any path p ∈ P (B) within the bundle, we

have |p| = |B|.

Lemma 12. Let B be a TIPST bundle, if B is constrained by a maximum of k

hops, then for any path p ∈ P (B), we have |p| ≤ k.

This lemma ensures that TIPST can accurately represent all valid interval

paths for a given query q(s, t, k, ω). The bundle B containing all paths with a

maximum of k hops from s to t within the specified time interval ω correctly

captures all the feasible paths, allowing for efficient and accurate enumeration.

v2 v5 v83 1 v46

v2 v5 v83 4 v46

v2 v5 v33 4 v41

v2 v5 v33 4 v45

(a) Time interval paths

v2 v5 v83 1,4 v46 v2 v5 v33 4 v41,5

(b) TIPST bundles

Figure 4.3: An example of time interval paths to TIPST bundles

Figure 4.3 showcases the results for the query q(v2, v4, 3, [1, 6]) in Figure 1.1.

The paths that belong to the same bundle are effectively grouped with dotted

boxes in Figure 4.3a, while the corresponding bundles are visually represented in

Figure 4.3b. Besides, the length of bundles equals the length of contained paths,

which is 4 in the figure. It is important to note that paths can be bundled only
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if they share the same sequences of vertex IDs. This bundle-based optimization

significantly reduces the search space by eliminating redundant computations,

thus enhancing the overall efficiency of the algorithm for time interval path

enumeration in temporal graphs.

4.3.3 Algorithm Description

Algorithm 7: TI*-DFS(u, itvc,Si,Sitv)
Input: A vertex u, a time interval itvc, a stack of IDs of vertices Si and

a stack of time intervals Sitv
1 Si.push(u),Sitv.push(itvc);
2 if u == t then
3 output B(Si,Sitv) where Bt ← Bt ∪ B(Si,Sitv);
4 else if |B(Si,Sitv)| < k then
5 for each out-going neighbor v of u such that v /∈ Si do
6 find the valid interval itv(u,v) from u to v with binary search;
7 if itvuv is not empty then
8 TI*-DFS(v, itv(u,v),Si,Sitv);

9 u is unstacked from Si and itvc is unstacked from Sitv;

In practical implementation, we efficiently track the valid sets of timestamps

using time intervals, which are usually organized in non-decreasing order, rep-

resenting the chronological order in most applications. To represent the cor-

responding TIPST bundle B(Si,Sitv), we utilize a stack of vertex IDs Si and
another stack of intervals Sitv in the TI*-DFS algorithm (Algorithm 7). For

each pair of adjacent vertices (u, v), the time set ω(u,v) can be represented as

[tmin, tmax], where tmin and tmax are the lower and upper bounds of the timestamps

between u and v that satisfy the query interval [ts, te]. Since the timestamps be-

tween vertices are naturally organized in non-decreasing order as ground truth

in most real-life scenarios, we can efficiently obtain itv(u,v) using binary search
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in line 6 and enumerate the timestamps within that interval when necessary. If

the interval is valid, we proceed with the search in line 8. We output results if

we find the terminal vertex (lines 2-3) or backtrack (line 9) during the traversal.

This efficient representation and retrieval of time intervals using stacks effec-

tively optimize the performance for time interval path enumeration in temporal

graphs.

Example 11. Consider the same query q(v2, v4, 3, [1, 6]) as in Example 10, where

we aim to find the path between vertices v2 and v4 with a hop constraint of 3

within the time interval [1, 6]. The search begins at v2, and after identifying v1

as a fruitless branch, we proceed to explore v5. We push v5 into the stack Si and
record the interval [0, 1) in the stack Sitv. This interval indicates that we can

retrieve valid timestamps between v2 and v5 from the 0-th position (inclusive)

to the 1-th position (exclusive) in the set 3. In the next hop, when we push v3

into the stack Si and update the interval to [0, 1), we successfully reach the target

vertex v4. The updated stacks are Si = v2, v5, v3, v4 and Sitv = [0, 1), [0, 1), [0, 2).

It is noteworthy that there is no need to store timestamps explicitly with the graph

in the memory as ground truth, which helps optimize space usage. Likewise,

for the next output in the other branch, the stacks become Si = {v2, v5, v8, v4}
and Sitv = {[0, 1), [0, 2), [0, 1)} respectively. This effective bundling and pruning

strategy in Algorithm 7 enable us to avoid repeated searches and output more

compact results, significantly enhancing the efficiency of the path enumeration

process. Better still, it also optimizes memory usage, making our algorithm a

more practical and effective solution.

Lemma 13. The time complexity of TI*-DFS is O((n · log θ)k) and the space

complexity is O(nk).

Note that log θ in the time complexity of the algorithm is due to the two

binary searches performed for each outgoing neighbor. Additionally, the value
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of θ no longer affects the space complexity, as we only need to store an interval

(two integers) between any pairs of adjacent vertices.

In our evaluation of real-world datasets, we observed a wide range of values

for θ, ranging from 100 to 1,000,000. This significant variability indicates con-

siderable costs associated with the baseline approach. However, the introduction

of the TIPST bundle idea not only accelerates the algorithm but also results in a

reasonable runtime space cost, making it a more efficient and practical solution.

4.4 Dynamic Distance Label

In this section, we present a polynomial delay algorithm, namely TDDL-DFS.

4.4.1 Motivation

TI*-DFS utilizes the temporal constraint, but it falls short in exploring the

hop constraint, resulting in reduced efficiency. As a remedy, we introduce a

pioneering approach called Temporal Dynamic Distance Labelling DFS (TDDL-

DFS) to address these limitations. Our method aims to learn from previous

shortcomings by employing a strategy of blocking and increasing distance labels

for nodes in dead-end branches. Conversely, we unblock and decrease labels for

nodes whenever a solution is obtained, allowing for improved exploration and

search efficiency.

As demonstrated in Example 11, although v1 is a valid choice within the

interval [1, 6], it yields no output in this branch. Furthermore, it results in

excessive and unnecessary computations due to the considerable number of out-

neighbors of v1. To resolve this issue, a deeper analysis of the distances between

nodes becomes imperative.
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4.4.2 Distance Label

One might question the potential benefits of using static labels to record the

distances between vertices in order to prune unnecessary branches. On the one

hand, the time complexity of this method, O((n·log θ)k), remains non-polynomial

in theory. On the other, we have observed that static labels cannot accurately

reflect the current states of stacks and outputs in practice. Specifically, the actual

distance from a vertex u to the target t should be increased if the intermediate

vertices between u and t have already been visited. One possible approach to

address this is to aggressively update the distance labels while updating the

stacks, as seen in T-DFS [55]. However, this method incurs prohibitive overhead

due to the BFS operation required for label updates. Instead, we adopt a passive

approach that focuses on the results of each search branch to update the labels.

The core idea behind our proposed method is to increase the labels whenever

encountering a dead end and decrease them whenever nodes in between produce

valid outputs.

4.4.3 Algorithm Description

The pseudo-code for our proposed Temporal Dynamic Distance Labelling DFS

(TDDL-DFS) approach is illustrated in Algorithm 8. The algorithm begins with

the initial call to TDDL-DFS(s, tc = ∅,Si = ∅,Sitv = ∅) for the given query

q(s, t, k, ω).

In the algorithm, dv(u) represents the distance from vertex u to vertex v,

while d′v(u) represents the distance from vertex v to vertex u. During initial-

ization, we perform a BFS from s to update d′s(u) and a reverse BFS from t to

update and dt(u) respectively. Specifically, if there is no path between them or

d′s(u) + dt(u) > k, we set both d′s(u) and dt(u) to k + 1.
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Algorithm 8: TDDL-DFS(u, itvc,Si,Sitv)
Input: A vertex u, a time interval itvc, a stack of IDs of vertices Si and

a stack of time intervals Sitv
1 Si.push(u),Sitv.push(itvc);
2 D ← k + 1;
3 block u;
4 if u == t then
5 output B(Si,Sitv) where Bt ← Bt ∪ B(Si,Sitv);
6 u is unstacked from Si and itvc is unstacked from Sitv;
7 return 0;

8 else if |B(Si,Sitv)| < k then
9 foreach out-going neighbor v of u such that

v /∈ Si, |B(Si,Sitv)|+ dt(v) ≤ k do
10 find the valid interval itv(u,v) from u to v with binary search;
11 if itv(u,v) is not empty then
12 d←TDDL-DFS(v, itv(u,v),Si,Sitv);
13 if d < k + 1 then D ← min(D, d+ 1) ;

14 if D == k + 1 then
15 dt(u)← k + 1− |B(Si,Sitv)|;
16 else UpdateL(Si, u,D, k) ;
17 u is unstacked from Si and itvc is unstacked from Sitv;
18 return D;

1 Procedure UpdateL(Si, u, l, k)
2 if dt(u) > l or u is blocked and dt(u) == l then
3 dt(u)← l;
4 unblock u;
5 foreach incoming neighbor v of u do
6 if v /∈ Si and d′s(v) + dt(u) + 1 <= k then
7 UpdateL(Si, v, dt(u) + 1, k);
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For each visited node u, we initially assume that it cannot reach t and set

the temporal record of distance D to k + 1 in Line 2. If we find the target,

i.e., u == t, we add the current TIPST bundle to the result in Line 4. If there

are remaining hops, we continue the search through the out-neighbors of u in

Lines 8-13. For each neighbor v /∈ Si, we check if its recorded distance to the

target dt(v) is available for the remaining hops, as well as the existence of valid

temporal intervals in Lines 9-11.

If there is no valid output after exploring all possible search branches, that

is D remain unchanged, we need to increase the distance label dt(u) and set the

value to k+1− |B(Si,Sitv)| in Line 15. This indicates that t cannot be reached

with k − |B(Si,Sitv)| hops left and we should never visit it when the stack has

the same size as |B(Si,Sitv)|. Note that the updated value k + 1 − |B(Si,Sitv)|
will always be larger than the label value of dt(u) before in this case. It is

because if dt(u) ≥ k + 1 − |B(Si,Sitv)| before u is visited, u cannot pass the

check of hop constraint in Line 9 and will never be visited. Otherwise, if D is

updated, it means that u is included in any valid output considering the current

stack. In this case, we need to broadcast to unblock and decrease the labels of

potential vertices in Line 16, as shown in UpdateL. It is important to note that

d represents the number of hops from v to t, and D is set to the minimum value

of d+1 in Line 10 to reflect the existence of shortest valid outputs. Additionally,

UpdateL only continues broadcasting when dt(u) > l or when u is blocked and

dt(u) == l. It skips any neighbor v if it has been in Si or d′s(v) + dt(u) + 1 > k,

which does not have the potential to reach t within k hops.

Example 12. Suppose the temporal graph is as shown in Figure 1.1, and the

query is q(v1,v9, 8, [0, 6]). Assume the current state is Si = {v1, v2, v5, v3} and

Sitv = {[0, 1), [0, 1), [0, 1)}, there are three possible search branches starting from

v4, v8, v9 respectively. Starting with v4, it passes the hop-constraint check since
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|Si| + dt(v4) < 8. However, there is no valid output due to the collision with v3

in the stack. Consequently, dt(v4) is increased to 4 when v4 is popped. Moving

on to the next candidate, v9 is the target and produces a valid TIPST bundle for

Si = {v1, v2, v5, v3, v9} and Sitv = {[0, 1), [0, 1), [0, 1), [0, 1)}. On the other hand,

the last option, v8, cannot pass the interval check and will not be visited. When v3

is popped, it triggers UpdateL since dt(v3) == 1 and v3 is blocked. The update is

then broadcasted to v4, correctly setting dt(v4) to 2. During the subsequent check

of v4 when Si = {v1, v2, v5, v8} and Sitv = {[0, 1), [0, 1), [0, 2)}, v4 successfully

passes the hop-constraint check. As a result, we correctly obtain the next output

when Si = {v1, v2, v5, v8, v4, v3, v9} and Sitv = {[0, 1), [0, 1), [0, 2), [0, 1), [0, 1)}.

4.5 Analysis

We begin by focusing on the correctness of distance labels for each vertex. Given

the current TIPST bundle B(Si,Sitv), and we suppose there exists a path p from

u to t for the given query. For for every vertex v ∈ p, excluding u and not in Si,
we define dt(u) as correct if and only dt(u) ≤ |p|. It is worth noting that dt(u)

is always considered correct when u ∈ Si.

Lemma 14. Given a temporal graph G, a TIPST query q and a vertex v ∈ V,
if there exists a TIPST bundle D from s to t with |p(B)| ≤ k, and suppose the

distance labels of every vertex is corrected maintained, then for any v ∈ p at the

i-th position where 0 ≤ i < |p|, we have d′s(v) ≤ i and dt(v) ≤ k − i.

Proof. If 0 ≤ i < |p|, then v = p[i] must be reachable from s and reachable to t

within i and |p|− i hops respectively given the current distance label. Moreover,

we have |p| ≤ k based on the definition of TIPST query, thus, dt(v) ≤ |p| − i ≤
k − i, which suggests it should be reachable to t within k − i hops.
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We proceed to prove the correctness of updating dyamic distance labels in

Algorithm 8.

Theorem 6. For any vertex u, the distance label dt(u) is correctly updated in

Algorithm 8.

Proof. If the vertex u is visited and pushed into Si, dt(u) is always correct since it
will never be updated until it is popped. When updating the value of dt(u) after

exploring all possible search branches, there are two possible cases: increasing or

decreasing dt(u). In the case where there is no valid output as in Line 14, dt(u) is

increased since dt(u)+|B(Si,Sitv)| < k+1 for u to pass the hop-constraint check.

Otherwise, dt(u) is set to D and we broadcast the changes through UpdateL in

Line 16. Note that D ← min(D, d + 1) suggests D is correctly updated with

the minimal distance to the target t considering the current Si. Thus, dt(u) is

correctly updated when u is popped from Si.
Another case is when u is not present in Si and is updated through UpdateL.

In this case, it must satisfy one of two conditions: either dt(u) > l or u is blocked

with dt(u) == l. If dt(u) > l, it indicates that u has been visited before, and the

label is increased due to fruitless explorations. dt(u) is decreased and unblocked

in this case since there exists a path from u to t according to Line 6 in UpdateL.

Likewise, we correctly unblock u when u is blocked and dt(u) == l. Thus, dt(u)

is correctly updated through UpdateL.

According to this theorem, the distance labels are correctly maintained.

Given the correctness of the updates of labels, the correctness of Algorithm 8

immediately follows since it is based on dynamic distance labels.

Theorem 7. Algorithm 8 is a polynomial delay algorithm with O(kms log θ) time

per output. The time complexity of it is O(kmsδ log θ), where δ is the number of

TIPST bundles. The space complexity of it is O(kδ).
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Proof. Suppose a vertex u is unstacked twice while there is no new output in

Algorithm 8. Let |S1| and |S2| denote the stack size after u is pushed into Si
at the first and the second time, respectively. After u is unstacked for the first

time, d′t(u) is increased to k − |S1| + 2. Since no new output is generated, the

UpdateL function will not be triggered, and therefore, the distance label remains

unchanged when u is pushed into the stack for the second time.

When u is visited for the second time, it implies that |S2| + d′t(u) ≤ k, and

we can deduce that |S2| < |S1|. This is because the label will be increased by at

least one when encountering a dead end and being unstacked. Since d′t(u) < k,

it indicates that a vertex cannot be visited and pushed into a stack more than k

times unless there is any output. Additionally, an edge in the static graph will be

visited whenever u is pushed into the stack. Considering the cost of unblocking

in the UpdateL function, an edge in the static graph will be visited at most k+1

times before a new output is found or the call terminates.

It is important to note that each time an edge is visited, we check the existence

of a valid interval, which incurs a cost of log θ. Therefore, TDDL-DFS is a

polynomial delay algorithm with O(kms log θ) time complexity per output. The

overall time complexity of the algorithm is O(kmsδ log θ).

The space complexity of Algorithm 8 is O(kδ) since we need to spare O(k)

space for each valid output.

4.6 Experimental Study

4.6.1 Experimental Setting

We conducted experiments on 8 publicly-available real-world graphs. The de-

tailed statistics of these datasets are summarized in Table 4.1. θ is the number
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of atomic units between the smallest timestamp and the largest timestamp. ms

is the number of edges in the accordingly static graph. All networks and corre-

sponding detailed descriptions can be found in SNAP1 and KONECT2.

Table 4.1: Real-world networks

Dataset n m ms θ

CollegeMsg 1,899 59,835 20,296 58,911
Chess 7,301 65,053 60,046 100
Slashdot 51,083 140,778 131,175 90,345
MathOverflow 24,818 506,550 239,978 505,784
Epinions 131,828 841,372 841,372 936
Facebook 46,952 876,993 274,086 867,939
AskUbuntu 159,316 964,437 596,933 960,866
Prosper 89,269 3,394,979 3,330,225 1,259

We conducted extensive experiments to evaluate the performance of our pro-

posed algorithms:

• TI-DFS: Algorithm 6 considering the hop constraint and time interval.

• TI*-DFS: Algorithm 7, a bundled DFS considering the hop constraint and

time interval.

• TDDL-DFS: Algorithm 8, the proposed method with dynamic distance

labels.

All algorithms were implemented in C++ and compiled using a g++ compiler

with the -O3 optimization level. All the experiments were conducted on a Linux

Server with an Intel Xeon 2.7GHz CPU and 180GB RAM.

The rest of this section is organized as follows. Section 4.6.3 compares the

performance of baselines answering TIPST queries. Section 4.6.3 illustrates the

1http://snap.stanford.edu/data/index.html
2http://konect.cc/
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effectiveness of bundles in compression. Section 4.6.5 demonstrates the scalabil-

ity of the proposed method with varying hop constraints k and time intervals

t.

4.6.2 Metrics

We next describe our metrics of query performance in experiments.

Compression ratio. Suppose the cost to store TIPST bundles equals the

number of output |B|, and the corresponding number of time interval paths is

|P(B)|, the compression ratio, CR of the set of TIPST bundles B is CR =
|P(B)|
|B| .

Throughput. Suppose the time cost to get |B| TIPST bundles for query

q(s, t, k, itv) is t, the throughput to measure the speed of q is defined to be
|B|
t
.

4.6.3 Comparison with Baselines

In this subsection, we conduct an evaluation of the time efficiency of the algo-

rithms by analyzing their query response time and throughput. We perform a

random generation of 30 query pairs (s, t) for each time interval, where the source

vertex s can reach the target vertex t within k hops in different windows of size

θ/3. We begin by comparing the average running time of the three algorithms

across all eight datasets. For Prosper, Slashdot, and Facebook, we set k = 8 to

achieve similar performance with other graphs, while for the remaining datasets,

we set k = 6. In cases where an algorithm fails to complete within 72 hours, we

assign its runtime as Inf . The results, illustrated in Figure 4.4a, demonstrate

that the proposed TDDL-DFS algorithm outperforms the other two algorithms

significantly. TDDL-DFS achieves query response times that are 1-3 orders of
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Figure 4.4: Comparison with baselines on running time and throughput

magnitude faster than TI*-DFS, while TI-DFS often exceeds the time limit. The

inferior performance of TI-DFS can be attributed to its failure to consider the

projected graph shared by paths and its repetitive search for paths within the

same bundle. On the other hand, TI*-DFS performs better than TI-DFS by

avoiding redundant computations with the assistance of bundles. However, it

still struggles to eliminate useless search branches, which is not satisfactory in

practical scenarios. Additionally, we observe that for datasets with coarse times-

tamps, such as Chess, TI*-DFS exhibits similar performance to TI-DFS. This is

because the average number of paths in a bundle is approximately 1 when θ is

small.

Next, we compare the running speed of TI*-DFS and TDDL-DFS using

throughput as the metric of efficiency, measured in terms of results per second.

As shown in Figure 4.4b, the proposed TDDL-DFS achieves throughput that is

1-3 orders of magnitude faster than TI*-DFS. Moreover, the average throughput

of TDDL-DFS is around 50,000 results per second, making it highly competitive
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for real-time applications. These findings demonstrate the outstanding perfor-

mance and efficiency of TDDL-DFS, making it a promising solution for time

interval path enumeration in temporal graphs.
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Figure 4.5: Changes of compression ratio with hop-constraint k and interval size
t

4.6.4 Effectiveness of Bundles

Table 4.2: Compression ratio of bundles

Dataset θ |P(B)| |B| CR

CollegeMsg 58,911 1,282,528,263 724,714 1,769.70
Chess 100 15,744 9,332 1.69
Slashdot 90,345 431,173 132,205 3.26
MathOverflow 505,784 35,658,711,811 31,774,449 1,122.24
Epinions 936 1,635,738 1,635,738 1.00
Facebook 867,939 9,188,873,087 155,874 58,950.65
AskUbuntu 960,866 88,739,520 1,895,453 46.82
Prosper 1,259 27,004 16,391 1.65

In this section, we demonstrate the effectiveness of TIPST bundles in improv-

ing compression ratios CR. The results, as shown in Table 4.2, underscore the

significant impact of TIPST bundles on datasets such as CollegeMsg, MathOver-

flow, Facebook, and AskUbuntu. The findings highlight the substantial reduc-

tion in runtime memory costs and search space redundancy achieved through the

bundled approach. Notably, certain datasets exhibit CR values ranging between
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1 and 10, possibly attributed to coarsely distributed timestamps. This evidence

validates the efficiency of TIPST bundles in optimizing storage and enhancing

the overall performance of the algorithm for time interval path enumeration in

temporal graphs.

To further visualize the relationship between the Compression Ratio CR and

different hop-constraints k for queries, we present Figure 4.5a, Figure 4.5c, and

Figure 4.5b depicting the changes in CR for three representative datasets: Col-

legeMsg, MathOverflow, and Facebook. The default interval size is set to 1/3 of

θ. The plots clearly demonstrate that the changes in CR increase exponentially

with higher hop-constraints k. This observation underscores the necessity of im-

plementing TIP bundles to optimize runtime memory utilization and expedite

query response times, making it a crucial strategy for improving the efficiency

of our approach.

Additionally, to examine the relationship between CR and different interval

sizes, we present Figure 4.5d, Figure 4.5f, and Figure 4.5e. The default hop-

constraint remains consistent with Section 4.6.3. The outcomes of these plots

reveal that CR remains stable despite changes in the interval size. These findings

collectively support the adoption of TIPST bundles as an effective strategy for

reducing memory usage and improving query performance, further validating the

efficiency and effectiveness of our approach.

Scalability with hop-constraint k. The assessment of the running speed of

TDDL-DFS on 8 graphs, with varying hop-constraint k, is presented in Figure

4.6. The results demonstrate that throughput exhibits an exponential increase

as k increases, highlighting the scalability of the algorithm.
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Figure 4.6: Impacts of hop-constraint k on throughput
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Figure 4.7: Impacts of time interval size t on throughput

4.6.5 Scalability

Scalability with interval size. The evaluation of the running speed of TDDL-

DFS is depicted in Figure 4.7, where different interval sizes are considered relative

to the maximum time interval of the datasets. Our observations indicate that

the throughput remains stable or gently increases with the growth of the query

interval. This promising trend can be attributed to the augmented potential

for leveraging bundles as the interval size grows, ultimately contributing to the

overall performance improvement.
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4.7 Conclusion

In this paper, we defined a time interval path model to capture entity rela-

tionships in a specific period of temporal graphs. Building upon this model,

we investigated the problem of hop-constrained time interval s-t path enumera-

tion and proposed a novel and efficient DFS-based method called TDDL-DFS.

Leveraging bundled structures and dynamic distances, TDDL-DFS significantly

optimizes the search process by avoiding repeated and fruitless searches. Theo-

retical analysis demonstrated that TDDL-DFS is a polynomial delay algorithm

with O(kmsθ) time per output, and the space complexity for each output is O(k).

In our practical evaluation, we conducted extensive experiments on 8 real-world

datasets to demonstrate the efficiency and effectiveness of our proposed algo-

rithm.
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Chapter 5

Path Compression in Large

Graphs

5.1 Overview

In this chapter, we introduce the proposed OFFS’s methodological details along

with its evaluation results, which is published in ICDE 2023[52]. In Section 5.2,

we provide formal definitions of paths and (de)compression. Following this, Sec-

tion 5.3 introduces the framework of (de)compression of dictionary-based meth-

ods for path compression. We then proceed to Section 5.4, which put forwards a

baseline for table construction based on gross frequencies. Section 5.5 details the

proposed bottom-up framework of table construction with merge and expansion

and Section 5.6 provides the complexity analysis and runtime cost. Section 5.7

reports the experimental results, which demonstrate the effectiveness and effi-

ciency of our proposed methods. Finally, Section 5.8 concludes the chapter.
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5.2 Preliminary

In this section, we introduce definitions of graphs and simple paths. In addi-

tion, we present the definitions of four representative distance measures between

trajectories.

5.2.1 Problem Statement

Given a directed graph G = (V,E), where V is a set of vertices and E ⊆ V × V

is a set of edges, e(u, v) denotes a directed edge from u to v. A path P is a

sequence of vertices {v1, ..., vl} such that ∀1 < i ≤ l, e(vi−1, vi) ∈ E. A path P is

simple if all vertices in P are distinct. When the context is clear in the rest, we

use the term ”path” to represent ”simple path” for short. We use |P | to denote

the number of vertices in P . Given two integer x and y with x < y ≤ |P |, we
use P [x : y] to denote the subpath from x-th vertex to (y − 1)-th vertex, and x

is starting from 0. Likely, we use P [x] to denote x-th vertex in P . For example,

given a path P = {1, 2, 3, 5, 8, 13}, we have P [1 : 4] = {2, 3, 5} and P [4] = {8}.

Lossless compression and decompression. In this topic, we study the prob-

lem of lossless compression of a set of simple paths with access to any individual

path. Specifically, given a set of paths P , our aim is to find a compression scheme

f : P ⇒ (P ′, R), where P ′ is a set of contracted paths and R is the compression

rule. Meanwhile, there exists a decompression scheme fT : (P ′, R)⇒ P that re-

stores P from P ′ with R losslessly. Given any subset Q′ ⊆ P ′, fT : (Q′, R)⇒ Q

returns its corresponding uncontracted paths Q ⊆ P without decompressing the

other compressed paths in P ′ −Q′.
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5.3 The Framekwork

In this section, we give an overview of our proposed framework and then intro-

duce the details of decompression and compression.

5.3.1 Overview

To improve the compression quality for our problem, we adopt the framework

of dictionary compression DICT, which contracts each input path into a shorter

path with the assistance of a lookup table. The paths in our problem come from

the same graph, and common subpaths appear repeatedly in different paths.

Our basic idea is to merge those common subpaths into supernodes. We record

the corresponding subpath for each supernode in the lookup table.

5.3.2 Decompression and Compression

We first introduce the decompression scheme as shown in Algorithm 9. Given a

supernode table ST and an arbitrary compressed path, we scan the compressed

path. When meeting a supernode, we look up the supernode table and replace

the supernode with the corresponding subpath. In line 4, ST [Pc[pos]] derives

the subpath for the supernode Pc[pos], and ⊕ is a concatenation operation. If

Pc[pos] is not a supernode, we keep the original vertex and continue to scan.

To deal with an overwhelming number of path decompression queries, we can

process paths in parallel to improve efficiency.

Lemma 15. Given a compressed path Pc, decompressing Pc takes O(|P |) time,

where P is the decompressed path.

Assume that we already have a supernode (lookup) table. The compression

scheme is presented in Algorithm 10. We use ST −1 to represent the inverted
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lookup table, which returns a supernode given a subpath. In lines 3–9, we adopt

a greedy strategy to match subpaths to supernodes. We use a parameter δ to

denote the longest length among all compressed subpaths. Starting from the

first vertex pos = 0, we find the longest subpath in P such that a matching

supernode exists. If a matched subpath exists (line 5), we replace it with the

corresponding supernode in line 6. Otherwise, we skip the vertex at the current

position (line 8) and start matching from the next vertex in the next iteration.

Lemma 16. Given a path P , compressing P takes O(|P | · δ2) time, where δ is

the longest subpath length in the lookup table.

Note that the square of δ comes from δ times possible hashes of up to δ

elements, but never mind since δ is small in practice. In our evaluation and real

deployment, δ is set as 8.

Based on that, we will give straightforward ideas on how to build ST and

ST −1 in the following subsections.

Algorithm 9: Decompress(Pc,ST )
Input: A compressed path Pc and a supernode table ST
Output: An orginal path P

1 P ← ∅;
2 pos← 0;
3 for 0 ≤ pos < |Pc| do
4 if Pc[pos] ∈ ST then P ← P ⊕ ST [Pc[pos]] ;
5 else P ← P ⊕ Pc[pos] ;

6 return P ;

5.4 Frequent Subpaths

One naive solution for table construction comes from brute-force enumeration.

The cost of testing the compression performance of each table is O(|P| · δ2) as
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Algorithm 10: Compress(P,ST −1)

Input: A path P and an inverted supernode table ST −1

Output: A compressed path Pc

1 Pc ← ∅;
2 pos← 0;
3 while pos < |P | do
4 for min(δ, |P | − pos) ≥ l > 1 do
5 if P [pos : pos+ l] ∈ ST −1 then
6 Pc ← Pc ⊕ ST −1[P [pos : pos+ l]];
7 break;

8 if l = 1 then Pc ← Pc ⊕ P [pos : pos+ 1] ;
9 pos← pos+ l;

10 return Pc;

Lemma 16 shows. More specifically, given the maximum supernode size δ, the

number of candidates is bounded by δ · |P|. The possible number of tables com-

posed of c supernodes is
(
δ·|P|
c

)
. It is bounded by O(min((δ · |P|)c, (δ · |P|)δ·|P|−c))

and is beyond polynomial time. For instance, if we set δ as 8, and construct

a table of the top 1,000 out from 12,500 paths, a toy case compared to real-

life datasets, the estimated cost 1000001000 has too many digits to count and

becomes unacceptable for applications.

Instead, we are exploring in another way via finding frequent patterns, which

is one of the classic topics in data mining. There are several methods on that,

such as Apriori[7] and FP-Tree[47]. As far as we know, the state-of-the-art solu-

tion for computing frequent subpaths is Apriori for Frequent Subpaths (AFS)[45].

AFS adopts a bottom-up framework as in Algorithm 11 to get the result sets Li

of length i through iterations. It starts from short frequent subpaths of length

one in line 1. Next, it joins current frequent subpaths with outgoing edges of

the last element in the subpath (suppose there is a graph as ground truth), and

checks whether the extended subpath excluding the first element is in the last set
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Li−1 in line 4. After that, it counts their gains (i.e., the product of frequency and

length) in data paths and keeps candidates with gains larger than a threshold k

in line 5. Then it increases the count of iterations i and checks whether i has

reached the target l, if so returns results and ends the process, otherwise goes to

the next iteration.

Algorithm 11: AFS(P, l, k)
Input: A set of paths P, the maximum length l, and a threshold k
Output: A set of frequent subpaths L
// initialize the set with nodes

1 L1 ← {v|v ∈ P};
2 i← 2;
3 while i ≤ l do
4 Ci ← JoinWithCheck(Li−1, i− 1);
5 Li ← CountGain(Ci,P, k, i);
6 i← i+ 1;

7 return L← L1, ..., Ll;

1 Procedure JoinWithCheck(L, i)
2 C ← ∅;
3 foreach P = {v0, v1, ..., vi−1} ∈ L do
4 foreach u as neighbor of vi−1 do
5 P ′ ← {v0, v1, ..., vi−1, u};
6 if P ′[1 : i+ 1] ∈ L then
7 C ← C ∪ {P ′};

8 return C;

However, (1) the time complexity of this method is unacceptable. Suppose

that we gain |L| subpaths of length i in i-th iteration and there are n nodes

in the graph, then the cost to extend in each iteration is O(i · n · |L|) due to

checks in Li−1. Assume the number of subpaths returned in line 12 is λ, it will

cost O(l2 · n · λ) in total. Even worse, (2) unlike Apriori for sets, the generated

longer subpaths in Ci are not guaranteed valid on data paths, as the constraint
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Algorithm 11: AFS(P, l, k) (continued)
9 Procedure CountGain(C,P, k, i)

10 L← ∅;
11 foreach P ∈ P do
12 j ← 0;
13 while j + i ≤ |P | do
14 if P [j : j + i] ∈ C then
15 increase P [j : j + i].count;

16 j ← j + 1;

17 foreach subpath ∈ C do
18 if subpath.count ≥ k then
19 L← L ∪ {subpath};

20 return L;

of order and adjacency of paths is stricter than that of sets. Therefore, it is

essential to prune the useless subpaths by identifying them on datasets once

more. It requires another O(l2 · |P|) where |P| is the node number in P. (3)

Another serious issue is that the generated subpaths tend to be overlapped with

each other and be covered by the longer subpaths. Namely, they cannot be

matched effectively due to match collisions. According to our observation, (1)

and (2) make it take too much time to generate a tiny table, whose compression

quality is far from satisfactory. Instead, we come up with two more practical

one-pass baselines named RSS and GFS. RSS stands for randomly sampling all

candidates, which does not consider any measure. GFS stands for gross frequent

subpaths, which picks top candidates in the order of a gross measure.

The process of one-pass baselines carries out the following steps as Algo-

rithm 12 shows, where H is a hash table to maintain all vertex sequences and

corresponding weights. The weight of a vertex sequence seq in H is initialized

by 1 once found. We increase the weight of seq in H every time it is matched

elsewhere. At the start, it traverses paths and counts frequencies of all subpaths
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Algorithm 12: TConstruct(P)
Input: A set of paths P
Output: A lookup table ST , and its inverted table ST −1

// collect and count O(|P |2) subpaths

1 foreach P ∈ P do
2 foreach 0 ≤ i < |P | do
3 foreach i < j ≤ |P | do H.add(P [i : j]);

4 if |H| > λ then pick λ items in H via its rule;

5 create a table ST for decompression and an inverted table ST −1 for
compression from H;

1 Procedure H.add(seq)
2 if seq ∈ H then H[seq]← H[seq] + 1 ;
3 else H[seq]← 1 ;

(lines 1–2). Then it picks the top λ with its rule if the number of candidates in

H is more than the given threshold λ (line 4). Consequently, it builds a lookup

table based on the remaining candidates(line 5). It is easy to realize that AFS

serves as lines 1—4 in picking top candidates, however, the cost makes it impos-

sible to build a large enough table in practice. Instead, we exploit RSS and GFS.

RSS is a naive solution that randomly samples c out of candidates without con-

sidering any measure. GFS is named after the measure gross weighted frequency

(for subpaths), the product of frequency and size. It works as the equivalent of

AFS if we set the maximum size of candidates as l in lines 2—3. Better still,

GFS solves both problems (1)(2) of AFS via collecting subpaths and counting

their frequencies directly in data paths. Specifically, it takes O(l2 · |P|) to collect

and count all subpaths and O(l · |P| · log(λ)) to pick the top λ. Although GFS

is suitable for pattern mining like AFS, we will show in the following that it is

not an ideal measure for compression. Sometimes it is even worse than the most

naive solution RSS, due to the problem (3). We will introduce a more efficient

strategy focusing on the match collision issue in Section 5.5.
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Table 5.1: Supernode tables with different measures

ST ST ∗

subpaths supernodes subpaths supernodes
v2, v3, v5, v8, v12 u0 v2, v3, v5, v8, v12 u∗

0

v2, v3, v5, v8 u1 v13, v21 u∗
1

v3, v5, v8, v12 u2 v17, v9 u∗
2

v2, v3, v5 u3 v2, v2 u∗
3

v3, v5, v8 u4

v21v10 v2 v3 v5 v8 v13

v9v2 v5 v8 v11 v17

v6v1 v2 v3 v5 v8 v12 v20 v13

v9v3 v5 v7 v15 v17

v12

v21

v21v2 v3 v22 v15 v13 v33

v9v1 v8 v7 v6 v17 v16

With ST  

With ST*  

Figure 5.1: Compression with tables of frequent subpaths

5.5 Supernode Table Compression

5.5.1 Match Collision Issue

We clarify why the gross weighted frequency is far from a good choice for com-

pression. As aforementioned, a straightforward and naive solution is to consider

both frequency and size, as GFS does, to pick the most common subpaths. It is

reasonable for frequent pattern mining, however, it is not an ideal measure for

compression. Here is an instance to show its drawback due to match collision

issues.

Example 13. Assume there is a path set as in Figure 5.1, the maximum size

of supernodes is 5, and the capacity of the lookup table is 5. Note that if two
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candidates have the same weighted frequency, we prefer the longer one unless it

has a frequency of 1. Following the scheme of collecting and selecting in Algo-

rithm 12, the final supernode table ST is composed of u0 = {v2, v3, v5, v8, v12},
u1 = {v2, v3, v5, v8}, u2 = {v3, v5, v8, v12}, u3 = {v2, v3, v5}, u4 = {v3, v5, v8}.
And the result of performing Algorithm 10 with that is as dotted boxes in Fig-

ure 5.1 shows, where only two paths get compressed. Suppose the issue is con-

sidered, and somehow the table ST ∗ is composed of u∗
0 = {v2, v3, v5, v8, v12} ,

u∗
1 = {v13, v21}, u∗

2 = {v17, v9}, u∗
3 = {v2, v3} under the same given constraints.

Then the result after compression will be like solid boxes in Figure 5.1 with each

path contracted, which has a better compression quality as well as a smaller table

size.

The problem with GFS is that only one-fifth of the table is helpful for com-

pression performance, while the rest contribute nothing since they have been

covered as shown in Table 5.1. In other words, the gross weighted frequency is

inappropriate given a limited capacity λ. The result includes too many over-

lapped subpaths that it fails to give good compression performance. In contrast,

candidates in a good lookup table are supposed to be complementary, like u∗
0,

u∗
1, and u∗

2 in ST ∗.

That suggests it unreasonable to generate and add every possible frequent

subpath greedily in Algorithm 12. The naive solution has serious computational

redundancy and misses potential complementary candidates due to the match

collision issue. More specifically, the overlapping problem lies in the process of

extending and counting supernodes. For instance, suppose {v2, v3, v5, v8, v12} is
matched in Figure 5.1, the frequencies of others appearing within that matched

interval will never count under the compression framework in Algorithm 10.

The practical frequencies of them during matching are definitely zero in this

case. Following this idea, we put forward our measure to solve matched collision
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issues, practical weighted frequency, the product of practical frequency and size.

The difference between gross and practical frequencies is that only the valid ones

following the compression scheme count instead of counting occurrences at any

position. Based on that, we will give a detailed description of how to construct

a representative lookup table.

5.5.2 Identifying Supernodes by Merge and Expansion

We introduce our method to compute the supernode table. The key is selecting

a set of vertex sequences that frequently appear in many paths.

Our idea is to start by considering some frequent pairs of vertices (i.e., edges)

as supernodes. Then in each iteration, we extend the current candidate vertex

sequences to a set of new longer sequences. The number of iterations is controlled

by a parameter τ .

The formal pseudocode for table construction is described in Algorithm 13.

Lines 1–2 add all edges in the path set to the hash tableH as the initial candidate

patterns (supernodes). Next, for each path P in each iteration, we start from the

first node and identify the target sequence with the assistance of LongestPrefix,

that matches a corresponding supernode in the candidate set H (line 5). Every

time we identify a matched sequence (line 9), we increase the weight of the

supernode in H (line 4 of Algorithm 14). At the end of each iteration, we

generate new supernodes based on the current supernode (lines 10–15) and skip

the sequence (line 16) to identify new patterns.

Merge and Expansion. We generate new candidate supernodes in each iter-

ation using two strategies, merge and expansion, to leverage the latest matches

as much as possible. Specifically, the merge strategy concatenates a pair of con-

tinuous supernodes found in a path (lines 10–13). Note that the length of a

compressed sequence is bounded by δ. We cut the later part if the size of the
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Algorithm 13: TConstruct∗(P)
Input: A set of paths P
Output: A supernode table ST and an inverted supernode table ST −1

// initialize H
1 foreach P ∈ P do
2 foreach e ∈ P do H.add(e);
3 for 1 ≤ i ≤ τ do
4 foreach P ∈ P do
5 match← LongestPrefix(0, P, i,H);
6 pos← |match|;
7 while pos < |P | do
8 pre match← match;
9 match← LongestPrefix(pos, P,H);

// Merge

10 if |pre match|+ |match| ≤ δ then
11 H.add(pre match⊕match);

12 else
13 H.add(pre match⊕match[0 : δ − |pre match|]);

// Expansion

14 if |match| > 1 ∧ |pre match| < δ then
15 H.add(pre match⊕ P [pos]);

16 pos← pos+ |match|;

17 if |H| > λ then keep top-λ items in H;
18 create a supernode table ST for decompression and an inverted table

ST −1 for compression from H;
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Algorithm 14: LongestPrefix(pos, P, i,H)
Input: A position indicator pos, a path P , an iteration indicator i, the

supernode table H
Output: A prefix of P

1 l ← min(2i+1, δ, |P | − pos);
2 while l > 1 and P [pos : pos+ l] ̸∈ H do
3 l ← l − 1;

4 if l > 1 then H.add(P [pos : pos+ l]);
5 return P [pos : pos+ l];

Table 5.2: Candidates and weights during table updates

Stage Initialization 1st iteration 2nd iteration Finalization
candidates weights candidates weights candidates weights subpaths supernode ids
v2, v10 1 v3, v5, v8, v12 2 v2, v3, v5, v8, v12 2 v2, v3, v5, v8, v12 u∗

0

Top-5 v2, v3 1 v3, v5, v8 2 v13, v21 3 v13, v21 u∗
1

... ... v3, v5 3 v17, v9 3 v17, v9 u∗
2

v17, v9 1 v13, v21 3 v2, v3 2 v2, v3 u∗
3

v9, v16 1 v17, v9 3 v3, v5, v8, v12 1

merged sequence exceeds δ (lines 12–13). As for the expansion strategy, a com-

plement to merging, it adds the following vertex to the sequence (lines 14–15).

We only keep at most λ items in H in each iteration. Here we use the same input

and constraints in Example 13 to show how to construct a supernode table from

scratch.

Example 14. Suppose the input is as Figure 5.1, and we update the lookup table

Table 5.2 in two iterations, along with initialization and finalization. Primarily,

we initialize the table with all 26 edges with frequency one, where the weight sug-

gests existence. In the first iteration, the maximum size of matched supernodes is

two whenever calling LongestPrefix. If there are two adjacent successful matches,

take {v3, v5} and {v8, v12} for instance, we not only increase their weights by

one, but also count for the results of merge and expansion, {v3, v5, v8, v12} and

{v3, v5, v8}. The top 5 candidates after the first iteration are shown in Table 5.2.

Then, the maximum size of supernodes increases to four, which is also the value

91



Chapter 5 5.5.3 Practical Implementation

of l in Algorithm 14 for the next iteration. Likewise, we keep matching, counting

and picking the top 5 at the second iteration. After that, the candidate table

is updated to include more representative sequences like {v2, v3, v5, v8, v12} and

exclude overlapped ones like {v3, v5, v8}. During finalization, we drop the use-

less ones with weight one, like {v3, v5, v8, v12}, and generate the same ST ∗ as in

Table 5.1.

5.5.3 Practical Implementation

We give a detailed description of how to identify the longest matched supernodes

in Algorithm 15.

As aforementioned, the upper bound for identifying the longest matched

supernode at any position is O(δ2), because we only store the exact key in the

hash table and the cost of each hash is linear to the size of sequences. The

drawback is that there will be much redundancy in hashing common prefixes

when we start identifying the prefix from the longest length.

Example 15. Assume the inputs i and pos of Algorithm 14 make l ≥ 8 in

line 1, P is {v8, v5, v0, v9, v1, v3, v4, v2}, and the return value is {v8}. That is,

we meet the worst case with no valid matched supernode. During identification,

we compute and combine the hashes from v8 to v2 at the beginning. However,

there is no matched key in H, so we pop the back v2. We repeat hashing and

popping back until only v8 remains and return it. The total cost for that is

(8 + 2)(8− 2 + 1)/2 = 35, where the common prefix are involved repeatedly.

It is not difficult to realize the problem lies in the storing data structure,

namely, the hash table does not support prefix key matching. However, we

cannot afford to store all possible prefixes either, as it requires O(δ2) space for

each supernode. It is a reasonable tradeoff between space and time costs to
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leverage a multi-level hash scheme. Specifically, all supernodes with sizes no

larger than α are kept in a one-level hash map H1. The others are maintained in

a two-level hash map H2 with the primary key P [pos : pos+α] and the secondary

key P [pos+ α : pos+ l].

Algorithm 15: LongestPrefix∗(pos, P, i,H)
Input: A position indicator pos, a path P , an iteration indicator i, the

supernode table H
Output: A prefix of P

1 l ← min(2i+1, δ, |P | − pos);
2 if l ≤ α then
3 while l > 1 and P [pos : pos+ l] ̸∈ H1 do
4 l ← l − 1;

5 if l > 1 then
6 H1.add(P [pos : pos+ l]);

7 else if P [pos : pos+ α] ∈ H2 then
8 while l > α and P [pos+ α : pos+ l] ̸∈ H2[P [pos : pos+ α]] do
9 l ← l − 1;

10 if l > δ then
11 H2[P [pos : pos+ α]].add(P [pos+ α : pos+ l]);

12 else
13 H1.add(P [pos : pos+ α]);

14 else
15 return LongestPrefix∗(pos, P [0 : pos+ α], i,H);
16 return P [pos : pos+ l];

Based on that, we implement our scheme for identifying the longest matched

supernodes in Algorithm 15. Line 1 starts with initializing the possible maximum

size l for matching. If it is too small to have a secondary key for matching (line

2), the process is reduced to what Algorithm 14 does in lines 3—6, otherwise,

we look it up in H2. If there is a match of the primary key P [pos : pos + α]

in H2, we just move on matching the remaining suffix as the secondary key

P [pos + α : pos + l] (lines 8—9) and increase the weight for successful matches
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of suffixes (lines 10—11) or prefixes (lines 12—13), otherwise, it falls back to H1

with its prefix P [pos : pos + α] (line 15). Besides, a small trick to optimize the

matching in lines 7—13 is that there will always be a valid key of P [pos : pos+α]

in H1 if it exists in H2. It guarantees that we never fall back to lines 3—6

whenever line 7 is satisfied. Line 16 returns the longest matched subpath.

Lemma 17. Given a path P , compressing or identifying longest matched supern-

odes in P takes O(max(|P | · α2, |P | · (δ − α)2)) time, where α is the maximum

length of the primary hash key and δ−α is the maximum length of the secondary

hash key.

As we can get in Lemma 17, the refined upper bound is less than O(|P | · δ2)
and the optimal value of α is supposed to be approximately δ/2.

Example 16. Assume the input is the same as in Example 15, and the return

value is still the worst case {v8}, and α is 5. Since 8 > 5, there remain two

possible cases, (1) the prefix {v8, v5, v0, v9, v1} is not matched in two-level hash

table H2, the total cost in this case is (5 + 2)(5 − 2 + 1)/2 = 14 in line 3—6,

otherwise, (2) it is matched as primary key in H2, then the upper bound for

hashing is 5 + (3 + 1) · 3/2 = 11. And the maximum value 14 is less than 35 in

Example 15.

In practice, it works pretty fine for simple paths. And we will cover other

path types in the following.

Other Path Types. Our proposed algorithms can also process other path

types. We provide two instances as follows, including undirected paths and

weighed paths.

For paths in undirected graphs, it is straightforward to apply our method for

directed graphs by selecting an arbitrary terminal as the start. If both undirected
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and directed paths are included, we additionally use a boolean value for each

path to indicate whether it is directed.

For weighted paths, the challenge comes with weights of edges. Suppose

the paths are represented by u0
w0−→ u1...ul−1

wl−1−−→ ul, where each ui−1
wi−1−−→

ui, 1 ≤ i ≤ l represents an edge weighted wi−1 from ui−1 to ui. We represent

each weighted edge ui−1
wi−1−−→ ui by a new vertex ID if the edge with the same

terminals and the same weight has never been visited before. Otherwise, we use

the existing ID. In this way, we represent a weighed path as an unweighed path

with new IDs, and we can compress them using our algorithm. To decompress

a path, we additionally replace each vertex in the path with the corresponding

weighed edge.

Dynamic Paths. We discuss the case that paths dynamically update. To

insert a new path P , we could compress P using the existing supernode table. To

remove an existing path P , we do nothing but only removing the compressed path

of P . Changing a path can be viewed as a path removal operation followed by a

path insertion operation. When a large number of paths update, the compression

quality may be affected since the supernode table is constructed by frequent

subpaths in old paths. In this case, we reconstruct the supernode table based

on the updated paths.

For paths coming in a stream, we follow the approach of building tables

and then compressing paths. Once the volume of accumulated paths reaches a

certain threshold, we build the supernode table using paths randomly sampled

from them and compress all paths from then on with the constructed table. As

more paths come in and the supernode table becomes outdated, we periodically

reconstruct the supernode table based on the updated paths.

Circles. Note that circles may exist in paths in certain scenarios. Our proposed

algorithms process each path as an integer array and scan elements in the array
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sequentially. We just aim to identify frequent subpaths where repeating vertices

is possible. Therefore, our algorithms still work even if there are circles in the

paths.

5.5.4 Possible Optimizations

As a component of the real-life industrial system of Alibaba Cloud, it is essential

to consider all possible edge cases for comprehensiveness and robustness sake.

The cost of the current version might grow dramatically when the average length

of paths extends to hundreds or even thousands. There are two possible opti-

mizations focusing on that. They have not been tested yet due to the absence

of datasets with longer average lengths at the moment. (1) We can implement

a hybrid framework combining top-down with bottom-up to identify shorter su-

pernodes and longer ones parallelly. (2) We can adopt a new data structure

to serve as Prefix-Tree or Trie[38] for vertex sequences. This structure tailored

for prefixes will identify matches faster with less run-time memory cost. It will

improve the upper bound for each prefix match O(δ2) to O(δ).

5.6 Complexity Analysis

5.6.1 Time Complexity

The time cost for prefix matching during table construction (Algorithm 13) could

be divided into initialization (lines 1—2), iteration (lines 3—17), and finalization

(line 18). As for the main part during iteration, the cost to identify matched

supernodes (line 9) for a path set of total |P| nodes is O(|P| · δ2) bounded by

constant times of hashes. Given the bound of the capacity of the candidate

set λ, the cost to update the table (line 17) is O(|P| · log(λ)). It is derived

96



5.6.2 Space Complexity Chapter 5

from keeping top-λ elements in a min-heap of size λ, with at most |P| updates.
Likewise, the overhead for the initialization with edges (lines 1—2) and the

finalization to return the lookup table (line 18) is O(|P|+ λ · δ). Better still, we
could make it more efficient by sampling. In our observation, it is still effective

to sample less than one percent of all paths during table construction. In sum,

the total cost of i iterations with sample rate s, i.e., one in every s paths, is

O((i · (|P| · δ2 + |P| · log(λ)) + |P| + λ · δ)/s). Note that we set λ linear to |P|
with a fixed factor β in practice. Therefore, that could be further simplified as

O(γ · |P|), where the factor γ = (i · (δ2+ log(|P| ·β))+β ·δ)/s. As we can see, the

total time cost heavily relies on i, δ, β and s. In practice, δ is set as a constant,

and β is large enough to trigger filters only in the last few iterations. There

remain two significant parameters i and s, to which we will pay close attention

in the following experiments.

As for the compression phase in Algorithm 10, what runs likewise as table

construction. The difference is that the table becomes static, where matching

does not lead to merging or expanding. Since it is one-pass travel in the whole

dataset, the upper bound is O(|P| · δ2) with no doubt. Better still, it is safe

for us to run compression with the static table in parallel. More specifically, we

are able to implement pleasing parallelism on a finer granularity as small as a

path in O(|P| · δ2/p) on a p-core machine. Likely, the decompression phase in

Algorithm 9 is also easy to parallelize with the bound O(|P|/p), which makes it

a lightweight and fast method.

5.6.2 Space Complexity

The overhead during compression is under strict control, as stated in the section

before. The runtime memory during table construction in Algorithm 13 only

requires a tiny sample O(|P|/s). The space for the heap of candidates is bounded
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by O(|P| · β · δ) in each iteration. Therefore, the total space cost is O(|P| · ν),
where ν is bounded by O(1/s + β · δ). In our observation, the supernode table

is still effective when the overhead factor ν is less than 0.03.

As for phases of compression and decompression of Algorithm 10 and Algo-

rithm 9, the required space can be as small as several I/O blocks plus dictionary

size O(|P| · β · δ) thanks to our finer granularity. The upper bound of output

size is linear to |P| with a small overhead factor β · δ. In other words, the worst

ratio of input size to output size is (1/(1 + β · δ)). Assume all supernodes are

of length δ, and each subpath is exactly replaced by a supernode, then the ideal

ratio for the best case is δ.

Table 5.3: Real-world paths

Dataset path number node number id number maximum length average length
Alibaba Cloud 171,024,135 2,941,010,457 426,248 30 17.20

Rome 3,426,475 229,972,163 39,078 503 67.12
Porto 36,898,213 1,207,828,790 137,288 1,355 32.73

San Francisco 5,857,208 102,038,897 6,026 103 17.42

5.7 Experimental Study

Using real-life data, we conducted three sets of experiments to evaluate the

(1) impacts of parameters for compression, (2) comparison between OFFS and

baselines in compression ratio and compression speed, and (3) retrieval and scal-

ability.

5.7.1 Experimental Setting

Datasets. We use four real-life datasets to evaluate our algorithm. The first

one is a private dataset from Alibaba Cloud that monitors IP hops from servers

to clients in its network on June 18th 2021. We also use three additional public

98



5.7.1 Experimental Setting Chapter 5

datasets of taxi trajectories[19, 76, 80] which cover trajectories in Rome, Porto

and San Francisco respectively. The details about their path numbers, node

numbers, id numbers, maximum lengths and average lengths are shown in Ta-

ble 5.3. It can be observed that the average length of paths is less than 100 in

all datasets, while the maximum length can be several hundred times larger.

Please note that we make use of the following preprocessing to get datasets

ready for further experiments.

New id. It is easy to assign new ids to IPs in the Alibaba Cloud network,

i.e., integers from zero to indicate different vertices. Trajectories are recorded

as sequences of pairs of {longitude, latitude} in time order. Due to vehicle

movements and GPS errors, it does not make sense to denote distinct pairs by

new ids. Namely, it is abnormal for taxi drivers in the same city to never drive

on the same road. Therefore, we need to increase spatial granularity by dividing

the space into grids based on various time intervals. In this way, we merge nodes

in the same grid into one.

Simple path. There can be duplicated nodes in the same path as a consequence

of several reasons. (a) Noise. Whenever we encounter a sequence of adjacent

duplicate vertices, we keep only the first one and drop the rest. (b) Cycle. We

solve the loop issue by cutting before the first recurring node and generating two

shorter paths. In addition, we prune the trivial data by discarding paths of size

no more than 2. Having solved (a)(b), we can rest assured that the output paths

always stay simple.

Group set. The generated path sets are grouped according to given rules for

future mining in the dataset of Alibaba Cloud. Likewise, we organize paths of

taxi drivers into sets. For instance, we classify them according to their starting

and ending vertices, or passing vertices of interest. Note that although paths are

distinct in a given set, they can recur among sets.
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Implementation details. We then provide the necessary details about the

baseline implementations.

The algorithms were implemented in C++ and compiled by clang++ 14.0.6

with -O3. We conducted all experiments on a Unix machine with eight processors

of 3.20 GHz and 16 GB memory. It is essential to note that, in compliance with

the data confidentiality principles of Alibaba Group, we were obliged to conduct

experiments on our work computer, thus necessitating a distinct experimental

environment from the prior two scenarios.

All competitors involved work under the framework of building lookup dictio-

naries and compressing data path by path. The sample rate for table construc-

tion is set to 128 during comparison. The dictionary of Dlz4 is constructed using

zdict with enough samples, as suggested in the official documentation. Specifi-

cally, we pick one in every 128 as sample, and divide them into blocks of 1 KB for

training a dictionary. We attempted to allocate blocks path by path or provide

more samples but it did not make a difference in our observation. As for RSS and

GFS, the table capacity c is the same as for OFFS. In our observation, they still

take too much time for the candidate collection given a limited supernode size.

Therefore, we set the threshold 5 · c to speed them up during table construction.

For OFFS, we set the maximum length of primary keys α to 5, the maximum

length of subpaths in the table δ to 8, and the factor between the table capacity

and the input size β to 500. Last but not least, all of them are implemented with

OpenMP default parallelism during compression and decompression for fairness.

5.7.2 Metrics

We next describe our metrics of compression performance in experiments.

Compression ratio. Suppose the cost to store contracted paths and rule is

|P ′| + |R| with the raw size of paths |P |, the compression ratio, CR of the
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corresponding compression scheme f : P ⇒ (P ′, R) is CR =
|P |

|P ′|+ |R| .
Compression speed. Given the time of compression and decompression Tc, Td,

the compression speed is defined as CS =
|P |
Tc

, likewise, the decompression speed

is defined as DS =
|P |
Td

. For any partial decompression fT : (Q′, R) ⇒ Q,Q ⊆
P with decompression time Tpd, the partial decompression speed is defined as

PDS =
|Q|
Tpd

.

5.7.3 Impacts of Parameters

We first study the impacts of two significant parameters during table construc-

tion, the number of iterations i and the exponent k of the base 2 as the sample

rate. The results are shown in Figure 5.2. We provide a detailed analysis of their

impacts in terms of CR and CS in the following.

(1) As i changes from 0 to 3, CR increases rapidly. Note that the maximum

size of current candidates reaches δ at the third iteration. Thereafter, it grows

gently as i changes from 3 to 9. On average, it increases by 3 as the maximum

size of supernodes in the table grows, and by 0.6 as more iterations are involved

to refine the candidates.

(2) As k increases from 0 to 7, CR slowly decreases. Meanwhile, the sample

size goes from the full set to less than one percent. It then drops sharply as k

changes from 7 to 15. On average, the drop from 0 to 7 is 0.7, while it becomes

almost half from 7 to 15.

(3) CS becomes half as i changes from 0 to 4. Then it drops again by half as

i increases from 4 to 9. Not surprisingly, the differences are significant when the

main update in the table is to extend supernodes in the first three iterations.

Thereafter, as the candidates in the table change less, the differences in CS

become smaller.
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Figure 5.2: Impacts of parameters i (a–d) and k (e–h) on compression speed and
compression ratio

(4) CS increases sharply by 20 times as k changes from 0 to 7. It then slowly

doubles with k increasing from 7 to 15. When k is small, the table construction
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Figure 5.3: Comparison with baselines on compression ratio and compression
speed

phase accounts for most of the time cost, so CS changes considerably. While

k becomes larger, the compression phase accounts for most of the time cost.

Meanwhile, it might suffer from more useless matches during compression, which

affects CS.

(5) Regarding the trade-off between CS and CR, we pick two sets of (i, k),

the default mode (4, 7) and the the fast mode (2, 7). The default mode continues

to refine candidates after the maximum size of candidates reaches δ, while the

fast mode finishes the table construction after that. We denote them as OFFS

and OFFS* for the following comparison.
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5.7.4 Comparison with Baselines

We then compare the proposed OFFS with two sets of baselines. Dlz4 serves

as representative of generic compression methods, while RSS and GFS work as

naive DICTs. Experiments are conducted on all datasets focused on CS and

CR. The results shown in Figure 5.3 tell us the following.

(1) CR of OFFS is 5.11 on average as shown in Figure 5.3a, which is more

than 3 times that of Dlz4 and 1.5 times those of RSS and GFS. Note that all

dictionaries are trained from sufficient samples, which means the larger samples

will not make a difference to CR. The result shows that OFFS works much

better than Dlz4 and enhances a lot compared with GFS. It comes from the

optimization of practical weighted frequency. We are not surprised to find that

the average CR of GFS is worse than that of RSS due to match collisions. As for

the quick mode, OFFS* only loses 0.33 compared to OFFS. These observations

in Figure 5.3a suggest that OFFS improves a lot from Dlz4, providing better

and stabler CR compared to the naive DICT solutions.

(2) CS of OFFS is 135 MB/s on average. It is 3 times faster than Dlz4

and 4 times faster than naive DICTs, while OFFS* further improves the speed

of OFFS by 1.5 times. Figure 5.3b shows that naive DICTs are slower than

Dlz4. Specifically, the gap could be an order of magnitude in large datasets

like Porto and Alibaba Cloud. This suggests inefficiency and redundancy during

the candidate collection process of naive DICTs in our case. As we notice in

the Alibaba Cloud dataset, the speed drops when the space cost exceeds the

available memory and causes a memory swap with I/O. Despite our attempts

to avoid I/O, it cannot be neglected when the input size is large enough. It is

preferable to adopt a more advanced stream mode that simultaneously handles

reading and processing for that. However, here we leave it as a pressure test of
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Figure 5.4: Decompression comparison and scalability test

an extreme case of limited memory space. The result shows that OFFS is still

more robust compared to baselines, and it is faster in CS and much better in

CR when I/O is inevitable.

5.7.5 Retrieval and Scalability

We next evaluate the speed of data retrieval with decompression and the scala-

bility of table construction. Note that all decompression processes start from the

results in memory to avoid I/O impacts. For either full or partial decompression,
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the output is the same set or subset as the input before compression, which is

lossless. To test the scalability of table construction, we randomly pick paths

to simulate the real-world case where we build a table based on first arriving

samples.

(1) We first compare the DS of whole datasets between OFFS and baselines.

Note that the DS of Dlz4 is almost ideal without reallocating memory because

the exact sizes of input paths are recorded. It is to avoid memory issues on

datasets like Porto whose maximum length is hundreds of times of average length.

The results in Figure 5.4a show that OFFS is competitive against Dlz4 with DS

around 1000 MB/s. It is not surprising to find that all DICT-based methods have

approximately the same DS since they follow the same decompression strategy

bounded by O(|P|/p).

(2) We next compare PDS between Dlz4 and OFFS with scalability from

1 to 100 percent of whole datasets. As shown in Figure 5.4b, DS of OFFS

is 0.75 on average of that of Dlz4, and the average PDS is around 500 MB/s

when the sample rate is 1 percent. It suggests that OFFS can handle partial

decompression for data retrieval efficiently.

(3) We then demonstrate the scalability of OFFS based on various sample

rates for table construction. The test sample rates change from 20 to 100 percent.

As shown in Figure 5.4c, CR changes from 4.4 to 5.1 with the sample rate

changing from 20% to 100%. In other words, the relative loss of CR is less than

15% when building on a sample as tiny as 20%. Better still, the CR of OFFS

is more than 2.5 times that of Dlz4 with 20% sampling in our observation. It

shows that OFFS is capable to build a more representative table than that of

Dlz4 under scalability tests.
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5.8 Conclusion

In this chapter, we present Overlap-Free Frequent Subpath, a strategy inspired

by real-life cases from Alibaba Cloud to effectively reduce the overall size of path

sets with easy retrievals to compressed paths. Specifically, we take advantage

of a bottom-up framework of merge and expansion during the table construc-

tion stage to count practical weighted frequencies and refine the lookup table

with iterations. Moreover, the granularity as finer as a path makes it friendly

for parallelism in both compression and decompression stages. We clarify how

to solve the challenge of match collisions of overlapped subpaths during table

construction, provide analyses of time and space complexity, and compare with

baselines in evaluation to highlight the performance of OFFS. Experiments show

that OFFS dramatically improves compression ratio and compression speed, has

competitive decompression speed, and demonstrates the scalability of table con-

struction based on tiny samples.
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EPILOGUE

In this chapter, we summarize the works presented in this thesis and describe

possible future research directions. In this thesis, we focus on efficient connectiv-

ity analysis and path management in massive graphs. The main contributions

of this thesis can be concluded as follows:

• Span Reachability in Temporal Graphs. We define a span-

reachability model to capture entity relationships in a specific period of

temporal graphs. We propose an index-based method leveraging the con-

cept of two-hop cover to answer the span-reachability query for any pair

of vertices and time intervals. Notably, the proposed index construction

method is guaranteed optimal both in terms of space and time complexity.

Additionally, we address the problem of θ-reachability, a generalized ver-

sion of span-reachability, and present an optimized solution with improved

time complexity.

• Time Interval Paths in Temporal Graphs. We address the problem

of enumerating time interval paths in temporal graphs, known as TIPST

path enumeration, by introducing an efficient algorithm called TDDL-DFS.

108



Chapter 6

Our algorithm incorporates novel temporal bundled dynamic labeling tech-

niques, optimizing both time and space complexity to handle a considerable

number of outputs during runtime processing. The theoretical analyses

further establish the correctness and polynomial delay per output of our

algorithm, providing robust assurances regarding its reliability and effi-

ciency.

• Path Compression in Large Graphs. We present Overlap-Free Fre-

quent Subpath (OFFS), a lossless strategy inspired by real-life cases to

effectively reduce the overall size of path sets with easy retrievals to com-

pressed paths. The proposed method is based on a bottom-up framework

of merge and expansion during the table construction stage to refine the

lookup table with iterations. We address the challenge of match collisions

of overlapped subpaths during table construction to increase the compres-

sion ratio and provide analyses of time and space complexity.

Future Work and Research Opportunities. There are still some open prob-

lems and opportunities that need further research.

• Grouped Span Reachability in Temporal Graphs. Instead of con-

sidering a pair of nodes, grouped reachability focuses on the connectivity

of a pair of groups of nodes. To address this problem, we could propose a

novel grouped-based index for span reachability.

• Parallel and Distributed Computing for Path Enumeration in

Temporal Graphs. Future work includes designing and implement-

ing parallel and distributed algorithms for path enumeration in temporal

graphs to optimize performance, scalability, and fault tolerance by lever-

aging the power of multiple processing units and distributed resources.

109



Chapter 6

• Incremental Framework for Path Compression. Dynamic graphs

with updated edges and nodes are common in path processing. A potential

avenue for future work is to design an incremental framework to construct

the supernode table when the paths are updated dynamically. With each

new path, we can update the supernode table incrementally instead of

recomputing it from scratch.
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