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Abstract 

Lattice metamaterials are artificially engineered materials that are composed of periodic 

cellular microstructures. They possess unusual physical properties that are not 

commonly observable in nature. Lattice metamaterials with exceptional mechanical 

properties have a variety of applications in aerospace, mechanical, vehicle, civil, and 

biomedical engineering. However, the current trial-and-error design method based on 

the intuition and experience cannot explore their full potential. New systematic design 

methods and novel metamaterials with unprecedented properties are in great demand. 

Therefore, this research focuses on developing new systematic and rational design 

methods for finding lattice metamaterials with unusual mechanical properties. Novel 

microstructures that are found by the developed design methods would be studied and 

introduced in this research. 

Firstly, this research developed a discrete topology optimization method for designing 

pentamode metamaterials with at least elastic orthotropic symmetry. Since a large ratio 

of bulk modulus to shear modulus is no more a sufficient condition for non-isotropic 

pentamode metamaterials, a new mathematical optimization formulation for finding 

such a material is established. Novel isotropic, transverse isotropic, and orthotropic 

pentamode microstructures have been found by the proposed design method. 

Secondly, this research proposed a discrete topology optimization method for designing 

three-dimensional metamaterials with ideal elastic isotropy and extreme negative 
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Poisson’s ratio, which are a type of unimode metamaterials. Novel three-dimensional 

strut-based isotropic unimode microstructures have been found, which are also capable 

of exhibiting tunable negative Poisson’s ratios by only altering their volume fractions. 

Thirdly, this research developed a multi-material continuum topology optimization 

method for designing isotropic auxetic metamaterials with zero thermal expansion. The 

density clustering is used to guarantee that all intermediate designs during the 

optimization iterations have at least elastic cubic symmetry. A novel composite 

microstructure is numerically studied through finite element analyses to demonstrate its 

elastic isotropy, auxeticity, and thermal dimensional stability. 

Finally, this research developed a multi-material discrete topology optimization method 

for designing isotropic lattice metamaterials with tunable thermal expansion and tunable 

auxeticity. Effective thermoelastic properties of potential designs described by a 

bi-material ground structure are calculated by using the computational homogenization 

method with beam elements. Novel strut-based composite microstructures are found and 

studied. By tailoring either the cross-sectional radii or the constituent material 

combination of struts, these microstructures can simultaneously exhibit elastic isotropy, 

tunable thermal expansion, and tunable auxeticity. 

 

Keywords: Topology optimization; Pentamode metamaterials; Auxetic metamaterials; 

Unimode metamaterials; Thermal expansion; Tunable properties; Elastic isotropy  
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Chapter 1 Introduction 

1.1. Background 

Lattice metamaterials are artificially engineered materials with unusual properties that 

are not typically observable in nature, which usually consist of periodic arrangements of 

architected microstructures. They open the door to lightweight, smart, tunable, and 

multi-functional materials that can realize a variety of unprecedented engineering 

applications. Advanced additive manufacturing techniques further facilitate 

developments of lattice metamaterials that usually have complicated microstructural 

geometries. 

Mechanical metamaterials have sparked a rising interest owning to their potential 

applications in aerospace, vehicle, civil, and biomedical engineering. By tailoring 

constituent materials and microstructural geometries, diverse lattice metamaterials with 

superior mechanical properties have been reported in recent years. However, most of 

these metamaterials are found by the trial-and-error method based on empirical design 

motifs. Such a conventional design methodology has limited the rapid development of 

mechanical metamaterials and cannot reach their full potential. Therefore, new design 

methods, novel microstructures, and unprecedented functionalities of lattice 

metamaterials are in demand. 

Topology optimization is a numerical technique that optimizes the material distributions 

within a prescribed geometric domain to find structural designs with the best 
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performance under specific constraints. Topology optimization has been broadly 

adopted in practice as a rational design tool for macroscopic engineering structures. Its 

further application in designing microstructures of lattice metamaterials with unusual 

mechanical properties would represent a preferred alternative to conventional 

trial-and-error design methods and have considerable promise for finding novel 

mechanical metamaterials. 

 

1.2. Literature review 

1.2.1. Metamaterials 

Metamaterials are a class of man-made materials with properties that are uncommonly 

present in naturally occurring materials and go beyond those of their constituents. These 

artificially engineered materials provide the capability to enlarge the material property 

space and influence various aspects of our life. Metamaterials have received an 

increasing attention due to their unprecedented properties, novel functionalities, and 

superior performance that are attractive for many applications. Their rapid development 

has been further facilitated by advances in additive manufacturing techniques and 

computational analysis methods. 

Metamaterials initially emerged in the context of electromagnetism as materials capable 

of manipulating electromagnetic waves. In 1968, Veselago [1] predicted materials 

featuring negative values of both permittivity and permeability, which are different from 



Introduction 

3 
 

conventional materials with both positive values. Such electromagnetic metamaterials 

were experimentally verified by using periodic arrays of metal rods [2] and split-ring 

resonators [3]. Since then, the field of metamaterials has grown rapidly and entered 

various aspects of solid physics, including electromagnetic, acoustic, thermal, and 

mechanical metamaterials. A few examples are given in Figure 1.1. 

Photonic crystals are a kind of electromagnetic metamaterials that can forbid the 

transmission of light within specific frequency ranges. This concept was first proposed 

in 1987 by John [4] and Yablonovitch [5]. Photonic crystals are usually composed of 

periodic arrays of multiple dielectric materials with high contrast dielectric indices. Due 

to their ability of manipulating electromagnetic waves, photonic crystals have been 

applied in various optical devices. 

Acoustic metamaterials are materials with engineered internal microstructures that can 

manipulate sound waves in fluids and solids. The first acoustic metamaterial was 

constructed as localized resonant lead spheres coated with rubber, which possess 

effective negative elastic constants [6]. Photonic crystals are a class of acoustic 

metamaterials exhibiting phononic band gaps. Due to their promising capabilities of 

preventing mechanical waves within certain frequency ranges from propagating, 

phononic crystals can be used for sound insulation, frequency filters of acoustic waves, 

and high-resolution acoustic imaging [7]. 

Thermal metamaterials are man-made materials that can control the flow of heat to 
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make many fascinating thermal phenomena become possible, which were first predicted 

in 2008 by Fan et al. [8] and Chen et al. [9]. Currently, the notion of thermal 

metamaterial has been widened to cover metamaterials for manipulating not only 

conduction but also convection and radiation in heat transfer. They have an increasing 

number of potential applications such as thermal cloaking [10] and thermal illusion [11]. 

In this research, we focus on lattice mechanical metamaterials, which are a class of 

materials with unusual mechanical properties and are composed of periodic architected 

microstructures. Materials’ mechanical properties include elasticity moduli, Poisson’s 

ratio, yield strength, fatigue limit, and fracture toughness, etc., which define the 

behavior of materials under the action of forces. Taking cues from natural cellular 

materials like wood and trabecular bone, a variety of lattice mechanical materials have 

been proposed, fabricated, and utilized for diverse applications. For example, using the 

octet-truss unit cell [12] as a fundamental building block, Zheng et al. [13] presented a 

group of ultralight and ultrastiff metamaterials that possess an almost linear correlation 

between stiffness and density for a variety of constituent materials. Later, Berger et al. 

[14] proposed a closed-cell foam with theoretical upper limit of isotropic stiffness. Such 

metamaterials are desirable for designing lightweight structures in aerospace, vehicle, 

and biomedical engineering. Mechanical metamaterials have also demonstrated great 

promise for other numerous applications, including soft robotics, wearable electronics, 

and biomedical devices, etc. 
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Figure 1.1. Metamaterials: a) Split-ring resonators [15]; b) Localized resonant 

rubber-coated spheres [6]; c) Thermal cloaking [10]; d) Ultrastiff foam[14]

In recent years, state-of-the-art additive manufacturing techniques have realized the 

production of mechanical metamaterials with complicated microstructures across 

different length scales, which facilitate the developments in practical engineering 

applications of mechanical metamaterials. Hence, there is an increasing interest in 

finding novel mechanical metamaterials with unique superior properties and new 

functionalities to broaden their application potentials.

Lattice metamaterials possess flexibility in customizing physical properties by altering 

their architected microstructures, and the manipulation of constituent distribution within 

a repeating unit cell is a primary approach to find novel lattice metamaterials. At an 

early stage, inspiration for mechanical metamaterials often came from biological 
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materials, crystalline structures, and artistic fields such as origami and kirigami, etc. 

Later, theorists and experimentalists have turned from observers of nature into creative 

designers of metamaterials [16]. Conventionally, many mechanical metamaterials were 

found by the trial-and-error method based on their intuition, experience, and parameter 

studies. However, in specific circumstances, especially when the structure-property 

relations are vague, such a method is inefficient and may result in a design far away 

from requirements. Moreover, it is usually difficult for the trial-and-error method to find 

metamaterials with multifunctional capabilities that simultaneously possess multiple 

combinations of mechanical, thermal, acoustic, and electromagnetic properties. 

In recent years, the materials-by-design paradigm is rapidly evolving from the 

trial-and-error method, which leads to a variety of rational design methods. It depends 

on improvements in efficiency and accuracy of numerical methods and advances in 

linkages of computational design results to fabrication techniques. Rational design 

methods will make it possible to find lattice metamaterials with mechanical properties 

that are not only beyond their constituents but also unprecedented or previously 

considered to be impossible [16]. Such metamaterials will be creatively predicted 

without using laborious trial-and-error procedures and an excess of experimentation. 

Therefore, developing systematic and rational methods for materials by design are in 

high demand. Topology optimization is such a mathematically driven framework that 

can navigate this challenge by exploring potentials for virtually unlimited structural 

complexity. 



Introduction 

7 
 

1.2.2. Topology optimization methods 

Topology optimization is essentially a numerical process that automatically and 

iteratively distributes materials within a given geometry domain to find a structural 

topology with optimized objective performance when subjected to a set of prescribed 

design constraints. It is therefore an effective design tool for systematically generating 

innovative structures. For continuum structures, topology optimization methods mainly 

include density-based methods [17-19], evolutionary methods [20-22],  level set 

methods [23-25], and the feature-mapping methods [26-28], etc. For discrete structures, 

the most popular topology optimization method is the ground structure method [29, 30]. 

After developments over thirty-five years, nowadays topology optimization has been 

successfully accepted as a rational design tool of macroscopic engineering structures, 

such as aircraft wings [31] and bridge girders [32] in Figure 1.2. 

 

a) 

 

b) 

Figure 1.2. Topology optimization design of engineering structures: a) aircraft wing 

[31]; b) bridge girder [32] 

Density-based methods 

In 1988, Bendsøe and Kikuchi [33] firstly developed a topology optimization method 

based on the computational homogenization. It converts the topology optimization 
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problem of a macroscopic continuum into the size optimization problem of 

microstructures. Later, in 1989, Bendsøe [17] proposed a topology optimization method 

based on a material interpolation model called SIMP (Solid Isotropic Material with 

Penalization). In this method, the geometry of design domain is discretized into a fixed 

finite element mesh, and each element is assigned with an artificial density value. The 

density value one means that the element is full filled with the solid material, while the 

density value zero means that the element contains no solid material at all and is filled 

with an artificial void material. For elements with intermediate density values between 

zero and one, their material properties are interpolated by those of the solid and void 

materials. Besides the SIMP model, Stople and Svanberg [34] proposed an alternative 

material interpolation model in 2001, which is usually used for dynamic problems due 

to its nonzero gradient for zero density value. 

The sensitivity filtering [35] and the density filtering [36] are first introduced into the 

density-based methods to avoid impractical designs with the checkerboard patterns and 

reduce mesh dependence of optimized results. Later, projection schemes are adopted to 

impose constrains on minimum and maximum length scales [37, 38], and these schemes 

can also eliminate grey transition regions [19, 39]. In recent years, as the most 

commonly employed topology optimization method, the density-based method has been 

used in combination of advanced machine learning techniques to discover the 

next-generation design framework [40-43]. 
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Evolutionary methods 

In 1993, Xie and Steven [20] developed the evolutionary structural optimization method 

based on a heuristic criterion. In this method, elements with low strain energy or low 

stress would be gradually removed during the optimization iterations. Later, a 

bidirectional evolutionary structural optimization (BESO) method was proposed by 

Querin et al. [44], which can readd those deleted elements to the neighborhood of 

heavily over-stressed elements. To overcome the checkerboard problem that also exists 

in evolutionary methods, Li et al. [45] proposed a smoothing technique in terms of 

reference factors of filtered elements. Besides minimization compliance and 

minimization stress problems, the hard-kill evolutionary methods have also been 

applied for the thermoelastic [46, 47] and heat conduction [21, 48] problems. One 

advantage of such hard-kill evolutionary methods is the simplicity to be implemented 

with commercial finite element analysis software. In 2009, Huang and Xie [22] 

proposed a new soft-kill BESO method that also utilizes the material interpolation 

model with penalization. 

Level set methods 

In 2003, Wang et al. [23] used the shape derivatives to the objective function as 

evolution velocities of the level set function to design structures with minimum mean 

compliance. Allaire [24] also proposed a level set-based topology optimization method 

based on the Hamilton-Jacobi equation. In such type of methods, contour lines or 

surfaces with zero level set functional value implicitly represent structural interfaces, 
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and then the evolution of level set function under given velocities based on the 

Hamilton-Jacobi equation can realize changes of structural interfaces and topologies. 

Later, the concept of topological derivative is incorporated into level set methods to 

allow creating new holes inside regions filled with solid materials [49, 50]. However, 

evolutions based on the Hamilton-Jacobi equation are subject to the Courant–

Friedrichs–Lewy condition that usually brings slow convergency speed and more 

optimization iterations. Moreover, it is challenging to combine multiple design 

constraints with numerical solutions of the Hamilton-Jacobi equation. Therefore, Wang 

et al. [51] converted the Hamilton-Jacobi equation into a set of ordinary equations by 

using the radial basis function to parameterize the level set function for topology 

optimization. Later, Luo et al. [25] proposed a parametric level set-based topology 

optimization method using the compactly supported radial basis function. This method 

supports using the optimality criteria method or mathematical programming methods to 

update design variables. 

In 2010, Takezawa et al. [52] developed a phase field method for shape and topology 

optimization, which relies on a reaction-diffusion equation with double-well potential 

function. Inspired by this method, Yamada et al. [53] proposed a level set-based 

topology optimization method using the reaction-diffusion equation. In this method, an 

artificial interface energy is adopted as the diffusion term in the evolution equation to 

avoid reinitialization of signed distance function that is usually required for 

conventional level set methods based on the Hamilton-Jacobi equation. Moreover, 
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topological derivatives function as the reaction term to drive the evolution of level set 

function to avoid many numerical problems induced by the conventional convective 

term. 

Feature-mapping methods 

A new category of topology optimization methods was identified by Wein et al. [54] as 

feature-mapping methods, of which the major features are parameterizing the structural 

design by a high-level geometric description and then mapping it onto a fixed mesh. 

In 2014, Guo et al. [26] proposed a topology optimization framework based on moving 

morphable components. In this method, structural topologies are described by 

combinations of solid components that can move and morph during optimization 

iterations. A solid component is described by a level set function, or the so-called 

topological description function, which can be calculated explicitly using a superellipse 

equation for two-dimensional (2D) problems. For such a superellipse-type component, 

design variables include the component’s central coordinates, length, thickness, and 

inclined angle’s sine. Later, this method is modified by using components with variable 

thickness to improve its topology description ability [55] and then extended for 

three-dimensional (3D) problems by using superellipsoid-type components as design 

primitives [56]. 

In 2015, Norato et al. [27] proposed a topology optimization method that projects 

geometries of solid components into density fields. In this method, the 2D solid 



Introduction 

12 
 

component is a rectangular bar with two semicircular ends, of which design variables 

include the coordinates of two ends and the out-of-plane thickness. Zhang et al. [57] 

extended this geometry projection method to use plates with uniform thicknesses as 

solid components for 3D problems. Later, Norato [58] proposed a general geometry 

projection method that uses supershapes as solid components with higher topology 

description ability. Supershapes are a generalization of superellipses and can be 

parameterized by a single equation [59]. In this geometry projection method, the 

geometries of supershapes are differentially mapped into continuous density fields. 

In 2016, Zhou et al. [28] proposed a feature-driven topology optimization method that 

uses geometrical parameters of engineering features as design variables. The 

engineering features are described by explicit level set functions, and the 

Kreisselmeier-Steinhauser function is used for Boolean operations of components. Later, 

Zhang et al. [60] proposed a more general feature-driven topology optimization method 

simultaneously using solid features and void features. Recently, Zhou et al. [61] 

proposed a topology optimization method using worm-inspired geometric features. In 

this method, B-splines with outward and inward offsets of variable thickness are used to 

model 2D complex structural topologies. 

Ground structure methods 

Different from the above continuum topology optimization methods, the ground 

structure method [29] is a discrete topology optimization method for designing truss and 

frame structures. In this method, the geometry of design domain is discretized into a 
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mesh using truss or beam elements, which is called the ground structure. Then, the 

topology optimization problem is usually tackled as a sizing optimization problem for 

this intricately interlinked ground structure. During optimization iterations, a part of 

elements become thicker, while other elements become slenderer and may even 

disappear. Finally, a variety of structures can be described by using the same ground 

structure. It is obvious that the generation of appropriate ground structures is very 

essential for this discrete topology optimization method. 

A full-level ground structure means that all nodes inside the design domain are linked to 

each other, which has the highest topology description ability. However, it also leads to 

a dense total structural stiffness matrix, a high computational cost, and a large number 

of design variable. In 2014, Zegard and Paulino [30] provided a computational 

implementation of generating the ground structure with different connectivity levels for 

irregular regions, and later they extended it into the 3D case [62]. 

1.2.3. Topology optimization design of metamaterials 

Topology optimization has been utilized as an efficient method for circumventing the 

trial-and-error approach and expediting the process of designing microstructures of 

metamaterials to achieve desired properties. Sigmund first proposed that inverse 

problems of finding materials with prescribed elastic properties can be formulated as 

topology optimization problems [63, 64]. Since then, topology optimization design of 

metamaterials has attracted an increasing interest in various physics fields [65, 66]. 
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Electromagnetic metamaterials 

Topology optimization was first employed for the design of photonic band-gap 

materials by Cox and Dobson [67], which maximized band gaps between two specific 

nearby bands of 2D photonic crystals. The level set method [68, 69], the BESO method 

[70, 71], and the phase field method [72] were also adopted to solve this design problem. 

These optimized photonic crystals are composed of two high-contrast dielectric 

materials. Sigmund and Hougaard [73] extended the density-based topology 

optimization method to design multi-material porous photonic crystals with voids filled 

with air, and they obtained optimized designs with simple geometric schemes. Besides 

the gradient-based methods, a derivative-free topology optimization method was 

proposed to design 2D photonic crystals for different electromagnetic wave polarization 

modes [74]. Few 3D photonic crystals were designed by topology optimization, 

although they hold greater practical potential than 2D designs owing to their ability of 

manipulating electromagnetic waves in all directions [66]. Men et al. [75] proposed a 

robust topology optimization method for finding 3D photonic crystals with optimal 

omnidirectional band gaps for different symmetry groups, while Meng et al. [76] only 

considers an asymmetric simple cubic case. Swartz et al. [77] developed a topology 

optimization method that uses nested mesh refinement for designing 3D photonic 

crystals with complete band gaps. 

Besides photonic crystals, topology optimization has been employed for designing other 

types of electromagnetic metamaterials. For instance, Diaz and Sigmund [78] proposed 
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a density-based topology optimization method to design metamaterials with negative 

magnetic permeability, which is based on distributing a copper film that is attached to a 

dielectric plate. Later, the level set methods were also used to design such type of 

metamaterials [79, 80]. Topology optimization methods can also discover 

electromagnetic metamaterials with both negative permittivity and permeability [81, 82], 

or both maximal permittivity and permeability [83, 84]. 

In recent years, advanced analysis methods facilitate topology optimization of 

electromagnetic metamaterials. For example, Nishi et al. [85] employed the 

isogeometric analysis for the high-frequency homogenization method to design 

electromagnetic metamaterials with hyperbolic and bidirectional dispersion properties. 

Murai et al. [86] incorporated a high-contrast homogenization method into the level 

set-based topology optimization for designing electromagnetic metamaterials, which 

can express electromagnetic wave propagation at various frequencies and capture 

atypical phenomena induced by local resonances. 

Acoustic metamaterials 

Since the applications of phononic crystals highly depend on their band gap widths, 

topology optimization methods can be utilized to engineer phononic crystals’ band gaps 

as broad as possible. Sigmund and Jensen [87] first developed a topology optimization 

method to design 2D phononic crystals with the maximized relative band-gap size 

respectively for in-plane and out-of-plane waves, where volume constraints are not 

necessary for this optimization problem. Later, the density-based topology optimization 
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method was extended to maximize the band gap size for bending waves in a plate 

composed of periodic unit cells [88]. The BESO method has also been applied to create 

phononic crystals to achieve maximized band gap size [89] and maximized spatial 

decay of evanescent waves at various frequencies [90]. Topology optimization methods 

using the genetic algorithm have been commonly used for maximizing phononic 

crystals’ band gap size, respectively considering the constraint on the average density 

[91], the simultaneous minimization of the mass [92], the tunability of band gaps [93], 

and the reducing symmetry [94, 95]. Dong et al. [96] employed the multi-objective 

genetic algorithm into topology optimization to simultaneously maximize the complete 

photonic and phononic band gaps of 2D phoxonic crystals. Luo and Li [97] adopted a 

sequential Kriging-based algorithm into the gradient-free topology optimization for 

finding phononic crystals with tunability of band gaps. 

While most of optimized phononic crystals are 2D, a few 3D designs have been 

reported. Lu et al. [98] first used a density-based topology optimization method for 

designing 3D phononic crystals that exhibit all-angle and all-mode band gaps. Later, Li 

et al. [99] combined the fixed-grid finite element method and the BESO method to 

obtain optimized designs of 3D phononic crystals with smooth boundaries. Recently, 

Gao et al. [100] proposed a generalized plane wave expansion method to calculate band 

structures, which provides high computational efficiency for topology optimization of 

3D phononic crystals. 

Besides phononic crystals, multiple other kinds of acoustic metamaterials have been 
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designed by topology optimization methods. For example, the level set-based methods 

have been utilized to find acoustic metamaterials respectively exhibiting negative bulk 

modulus [101], negative mass density [102], high acoustic attenuation [103], and 

hyperbolic dispersion [104]. Dong et al. [105] proposed a topology optimization method 

using the genetic algorithm for the design of anisotropic metamaterials simultaneously 

exhibiting negative mass density, negative elastic modulus, and hyperbolic dispersions. 

Thermal metamaterials 

Applications of topology optimization on thermal metamaterials mainly focus on 

maximizing thermal conductivities of composites. Torquato et al. first developed a 

topology optimization method for maximizing the concurrent conduction of heat and 

electricity in 3D two-phase composites, and they obtained optimized designs with 

material interfaces that are like the Schwartz P and D minimal surfaces [106, 107]. Zhou 

et al. [108] proposed a Matlab code about a modified BESO method for designing 

two-phase microstructures with desirable transport performance in diverse physical 

contexts, which can provide optimized designs like the well-known Vigdergauz 

structures and Kagome lattices. Three-phase microstructures with isotropic maximized 

thermal conductivities were also designed by topology optimization methods [109, 110], 

and 2D optimized designs are different from conventional Vigdergauz structures [111]. 

Torquato and Donev [112] further revealed that the 3D optimized designs in [113] are 

also extremal for a combination of the bulk modulus and the conductivity. Kruijf et al. 

[114] further developed a multi-objective topology optimization method to design 2D 
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composites with tailored bulk modulus and thermal conductivity. However, these 2D 

and 3D composites are not elastically isotropic. Challis et al. [115] proposed that the 3D 

elastically isotropic optimized designs are different from the minimal surfaces. 

Mechanical Metamaterials 

As mentioned before, mechanical metamaterials with exceptional elastic properties are 

the first type of metamaterials utilizing topology optimization as a rational design tool 

in the 1990s [64, 65]. Among a variety of mechanical properties, the maximization of 

bulk modulus or shear modulus is a very common target that has been studied by using 

the density-based method [116, 117], the level set method [118], the BESO method [119, 

120], and the data-driven method using the topology optimization to generate datasets 

[121]. Besides, Guest and Prévost [122] and Wang et al. [123] studied multifunctional 

materials with a balance between high bulk modulus and high fluid permeability. 

Topology optimization methods have been also successfully applied for designing other 

types of lattice metamaterials with unusual mechanical properties, including 

non-positive compressibility in specific directions [124], perfect conversion of elastic 

wave modes [125], coupling effects between torsion and tension/compression [126], and 

multi-platform energy-absorbing stress-strain curves [127], etc. 

 

1.3. Knowledge gaps 

Although topology optimization has been successfully applied as an effective design 
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tool of lattice metamaterials, achieving a broader variety of unusual mechanical 

properties within one microstructure via integrated design is still in great demand. 

Several knowledge gaps in topology optimization of mechanical metamaterials are 

identified as follows: 

1) There is a lack of effective and efficient discrete topology optimization methods for 

designing 3D strut-based metamaterials. Conventional continuum-based topology 

optimization methods are not computationally efficient enough for finding ultra-light 

microstructures. 

2) Most of recent studies about pentamode metamaterials are still based on a 

microstructure that was proposed over two decades ago. A rational design method that 

can systematically find novel pentamode microstructures over a wide scope of effective 

properties is still missing. 

3) 3D isotropic unimode metamaterials that are constructed by single-scale and 

single-phase continua without any mechanism component have not yet been reported in 

literatures. A rational design method for the discovery of such mechanical metamaterials 

is in great demand. 

4) Although auxetic metamaterials with zero thermal expansion (ZTE) have been 

successfully designed by topology optimization methods, they are not elastically 

isotropic. There is a strong need for a systematic design method to find 3D isotropic 

auxetic metamaterials with thermal dimensional stability. 
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5) 3D isotropic metamaterials with simultaneous tunabilities of negative Poisson’s ratio 

and negative thermal expansion are still missing However, microstructures designed by 

continuum topology optimization methods are usually difficult to automatically convert 

into parametric geometries and therefore lack direct tunabilities of effective properties. 

A rational and generic design method based on multi-material discrete topology 

optimization is highly desired for the discovery of such multifunctional and tunable 

metamaterials  

Filling these knowledge gaps can not only provide multiple new rational design tools 

customized for lightweight microstructures, but also generate a series of novel 

metamaterials with potentials to realize unprecedented engineering applications. 

 

1.4. Research contributions 

The key contributions of this research can be categorized into four groups and briefly 

summarized as follows: 

1) A discrete topology optimization method is developed by using a 3D ground structure 

with the geometric orthogonal symmetry. Then a mathematical optimization formulation 

is established for finding pentamode metamaterials with at least orthotropic symmetry. 

Novel pentamode microstructures have been found and studied. 

2) A discrete topology optimization method is developed by using a 3D ground structure 

with the geometric cubic symmetry. Then a mathematical optimization formulation is 
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established for finding metamaterials with ideal elastic isotropy and extreme negative 

Poisson’s ratio (NPR), which are a kind of unimode metamaterials. Novel unimode 

microstructures have been found and studied. 

3) A bi-material continuum topology optimization method for designing 3D isotropic 

microstructures is developed. Then a mathematical optimization formulation is 

established for finding isotropic composite metamaterials with ZTE and NPR. A novel 

ZTE-NPR microstructure has been found and studied. 

4) A bi-material discrete topology optimization method is developed by using a 3D 

bi-material ground structure with the geometric cubic symmetry. Then a mathematical 

optimization formulation is established for finding isotropic auxetic metamaterials with 

negative thermal expansion (NTE). Novel strut-based microstructures with tunable 

thermal expansion and tunable auxeticity have been found and studied. 

This research has not yet prototyped the topologically optimized designs and conducted 

physical in-lab testing, due to the challenge in using current additive manufacturing 

techniques. However, this research will use industrial standard commercial software as 

an easy-to-use design of experiment to demonstrate the effective properties and the 

macroscopic behaviors of the lattice metamaterials designed by the developed methods. 

With advancements in simulation techniques, numerical validation using well-accepted 

commercial software tools has become an essential step in verifying and studying the 

optimized designs before they are physically prototyped and tested. This allows for the 
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evaluation of the design’s performance and necessary adjustments to be made before 

investing in costly physical prototyping and lab testing. Numerical validation also 

allows for further optimization and refinement of the designs to achieve desired 

properties. 

 

1.5. Thesis outline 

This research focuses on topological design of 3D lattice metamaterials with unusual 

mechanical properties. It consists of six chapters and is organized as follows: 

Chapter 1: 

This chapter introduces the background and key contributions of this research. 

Chapter 2: 

This chapter presents a topological design method for finding pentamode metamaterials 

with at least orthotropic symmetry. Novel pentamode microstructures and their effective 

material properties are introduced. 

Chapter 3: 

This chapter presents a topological design method for finding isotropic auxetic 

metamaterials with extreme Poisson’s ratios. Novel unimode microstructures and their 

effective material properties are introduced. 
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Chapter 4: 

This chapter presents a topological design method for finding isotropic auxetic 

metamaterials with zero thermal expansion. A novel NPR-ZTE microstructure and its 

effective material properties are introduced. 

Chapter 5: 

This chapter presents a topological design method for finding isotropic NPR-NTE 

metamaterials. Novel strut-based microstructures and their tunable thermoelastic 

properties are introduced. 

Chapter 6: 

This chapter summarizes the research of this thesis and introduces the prospects. 
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Chapter 2 Design of Pentamode Metamaterials with At Least 

Elastic Orthotropic Symmetry 

2.1. Introduction 

This chapter is a modified version of the journal paper titled “Topological design of 

pentamode lattice metamaterials using a ground structure method”, which was 

published in Materials & Design (Volume 202, 109523). 

Pentamode metamaterials belong to a kind of 3D solid mechanical metamaterials that 

are artificially architected to only bear single mode of stress [128]. A pentamode 

metamaterial has only one non-zero eigenvalue of its sixth-order elastic stiffness matrix 

[128, 129]. Take an isotropic pentamode metamaterial as an example, it has a finite bulk 

modulus but a vanishing shear modulus, and it can only bear hydrostatic stress. In 

contrast, a unimode metamaterial has only one zero eigenvalue of its elastic stiffness 

matrix [128], which will be studied in Chapter 3. Such extreme mechanical properties of 

pentamode and unimode metamaterials are obtained from their microstructural 

geometries rather than constituent materials. 

The pentamode metamaterial was first designed by Milton and Cherkaev in 1995 [128]. 

It consists of a diamond-type unit cell with four double-cone bars jointed at a strictly 

point-like tip. However, lattice structures with such point-like tips cannot be stably used 

in real-world applications. Therefore, the infinitely small joints were given finite 

cross-sections to facilitate manufacturing of the pentamode lattice structures in practice 
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[130]. This conventional diamond-type pentamode microstructure [130] is illustrated in 

Figure 2.1a, which consists of double-cone bars featuring a small diameter at the joints

and a relatively large diameter at the midspan as described in Figure 2.1b. For the 

diamond-type pentamode microstructure, Cai et al. [131] found that using asymmetric 

double-cone bars can increase its ratio of bulk modulus to shear modulus. Huang et al.

[132] quantitatively compared the pentamode behavior and acoustic bandgaps of the 

diamond-type pentamode microstructures with five different cross-sectional shapes, and 

they found that the triangle case performs best with the lower frequency and broader 

bandwidth than other four shapes.

a) b)
Figure 2.1. Diamond-type pentamode microstructure with double-cone bars

Isotropic pentamode metamaterials can uncouple the compression and shear waves, 

since ideally their bulk moduli are infinitely larger than the shear moduli [130]. In other 

words, isotropic pentamode metamaterials are difficult to be compressed while easily to

flow away, for which they are also named as metafluids [133]. Kadic et al. [130] first 

fabricated the diamond-type pentamode lattice structure using the dip-in 

direct-laser-writing optical lithography. Testing results of additively manufactured 

diamond-type pentamode lattice structures revealed that the shear and Young’s moduli 
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scale approximately according to three powers of the ratio between the joint diameter 

and the lattice constant [134], and the elastic modulus and yield stress were decoupled 

from the relative density [135]. 

Pentamode metamaterials are promising for translating the concept of transformation 

optics to transformation elastostatics and transformation elastodynamics [136-142]. In 

2008, Norris [136] investigated the transformation acoustic cloaks and noted that ideal 

acoustic cloaks can be achieved through pentamode metamaterials. Compared with 

conventional inertial cloaks, pentamode acoustic cloaks can avoid mass singularity and 

be engineered with pure solid materials, and they are theoretically broadband since they 

invoke only quasi-static stiffness of pentamode metamaterials [139]. Potential 

applications of pentamode metamaterials in other fields have also been studied recently. 

For instance, Bückmann et al. [143] designed an elasto-mechanical unfeelability cloak 

using the conventional diamond-type pentamode metamaterials to hide hard objects and 

make them unfeelable. Hai et al. [144] used bimodal structures to design 2D unfeelable 

mechanical cloaks to reduce the influence of a hole in the structure on stress 

concentrations and redistribute the strain. Fabbrocino et al. [145] proposed a tunable 

seismic base-isolation device by the combination of pentamode lattices and tensegrity 

structures. 

It should be noted that several so-called pentamode metamaterials given in literatures 

[138-141] are 2D bimode metamaterials in fact. Strictly speaking, they should not be 

classified as pentamode metamaterials, because the sixth-order elastic stiffness matrix 
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of a 3D material is a necessity to define the term of penta referring to five. A pentamode 

metamaterial can be considered as a 3D extension of a 2D bimode honeycomb 

metamaterial that has three linkages jointed at a point. Therefore, Milton and Cherkaev 

[128] noted that a natural candidate might have four linkages jointed at a point, which 

helped to find the diamond-type pentamode microstructure. Inspired by the concept of 

the Bravais lattices, Mejica and Lantada [146] presented a library of microstructures 

that were claimed to be pentamode in 2013, but Xu [147] stated that these 

microstructures are not pentamode at all, although they have large ratios of the bulk 

modulus to the shear modulus. This phenomenon will be explained in Section 2.2 of this 

thesis. In 2015, Xu [147] presented five pentamode microstructures that all have only 

one non-zero eigenvalue of the effective elastic stiffness matrix. In 2019, Li and 

Vipperman [148] and Huang et al. [149] further proposed two isotropic pentamode 

microstructures. From the above, we can find that only seven new pentamode 

microstructures have been found but through ad hoc and empirical design methods since 

1995. A generative design optimization approach that can systematically find novel 

pentamode microstructures is still missing. 

Milton and Cherkaev [128] noted that pentamode metamaterials can be anisotropic. 

However, this possibility was not addressed until 2013, when Kadic et al. [150] 

introduced intentional anisotropy into the conventional diamond-type pentamode 

microstructure by moving just one connection point along the space diagonal. As 

mentioned by Milton et al. [151], pentamode metamaterials should be able to bear any 
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chosen stress rather than only hydrostatic stress. Anisotropic pentamode metamaterials 

are the prerequisite for realizing many applications including acoustic clocks based on 

transformation elastodynamics [150]. Hence, this chapter will focus on topology 

optimization of more general pentamode metamaterials that are not limited to be 

isotropic. An evolutionary ground structure method using the genetic algorithm is 

proposed to find novel pentamode microstructures with at least orthotropic symmetry. 

 

2.2. Necessary and sufficient condition 

This section will rigorously derive the necessary and sufficient condition required for 

elastic constants of pentamode metamaterials with at least orthotropic symmetry. It 

should be noted that the derivation here is valid for linear elasticity. For the 3D elasticity 

problem, Hooke’s law is here considered in the form 𝝈 = 𝑪𝜺, where 𝝈 is the vector of 

stress, and 𝜺 is the vector of strain. For any elastic material with the orthotropic 

symmetry, its elastic stiffness matrix 𝑪 is defined in Equation (2.1). An elastic stiffness 

matrix is always positive semidefinite, i.e., 𝐶𝑖𝑖 ≥ 0 (𝑖 = 1,2,3,4,5,6). 

𝑪 =

[
 
 
 
 
 
𝐶11 𝐶12 𝐶13 0 0 0
𝐶12 𝐶22 𝐶23 0 0 0
𝐶13 𝐶23 𝐶33 0 0 0
0 0 0 𝐶44 0 0
0 0 0 0 𝐶55 0
0 0 0 0 0 𝐶66]

 
 
 
 
 

 (2.1) 

The essential definition of a pentamode metamaterial is that it has only one non-zero 

eigenvalue of its sixth-order elastic stiffness matrix [128]. The characteristic polynomial 
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of 𝑪 in Equation (2.1) can be defined as: 

|𝑪 − 𝜆𝑰| = (𝐶44 − 𝜆)(𝐶55 − 𝜆)(𝐶66 − 𝜆)(𝐴1 + (𝐴2 + (𝐴3 − 𝜆)𝜆)𝜆) = 0 (2.2) 

where 

{

 𝐴1 = 𝐶11𝐶22𝐶33 + 2𝐶12𝐶13𝐶23 − 𝐶11𝐶23
2 − 𝐶22𝐶13

2 − 𝐶33𝐶12
2

 𝐴2 = 𝐶12
2 − 𝐶11𝐶22 + 𝐶13

2 − 𝐶11𝐶33 + 𝐶23
2 − 𝐶22𝐶33

 𝐴3 = 𝐶11 + 𝐶22 + 𝐶33

 (2.3) 

To find the necessary and sufficient condition for this characteristic polynomial to have 

only one non-zero root, we should consider through the following two cases. 

The first case is that at least one of 𝐶44, 𝐶55 and 𝐶66 is positive, e.g., 𝐶44 > 0. If so, 

the only one non-zero eigenvalue should be 𝜆 = 𝐶44, and then the following conditions 

must be satisfied: 

{
 𝐶55 = 𝐶66 = 0
 𝐴1 = 𝐴2 = 𝐴3 = 0

 (2.4) 

Since the elastic stiffness matrix is positive semidefinite, the second equation in 

Equation (2.4) equals to the following condition: 

𝐶11 = 𝐶22 = 𝐶33 = 𝐶12 = 𝐶13 = 𝐶23 = 0 (2.5) 

The derivation for 𝐶55 > 0 or 𝐶66 > 0 is the same. Therefore, the general necessary 

and sufficient condition for this first case is that only one of 𝐶44, 𝐶55 and 𝐶66 is 

positive while all other elastic constants are zero, which corresponds to a material that 

can only bear one shear stress mode, which is well in line with the definition of 

pentamode materials in [128]. 
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In this work, we will only consider the second case described below for design 

optimization since it is more complicated and physically meaningful. The second case is 

that at least one of 𝐶11 , 𝐶22  and 𝐶33  is positive. If so, the only one non-zero 

eigenvalue should be 𝜆 = 𝐴3 = 𝐶11 + 𝐶22 + 𝐶33, and then the following conditions 

must be satisfied: 

{
 𝐶44 = 𝐶55 = 𝐶66 = 0
 𝐴1 = 𝐴2 = 0

 (2.6) 

For the equation 𝐴1 = 0 in Equation (2.6) to have three real roots as 𝐶12, 𝐶13 and 𝐶23, 

the following conditions must be satisfied: 

{

4𝐶13
2𝐶23

2 − 4𝐶33(𝐶11𝐶23
2 + 𝐶22𝐶13

2 − 𝐶11𝐶22𝐶33) ≥ 0

4𝐶12
2𝐶23

2 − 4𝐶22(𝐶11𝐶23
2 + 𝐶33𝐶12

2 − 𝐶11𝐶22𝐶33) ≥ 0

4𝐶12
2𝐶13

2 − 4𝐶11(𝐶22𝐶13
2 + 𝐶33𝐶12

2 − 𝐶11𝐶22𝐶33) ≥ 0

 (2.7) 

which can be simplified as: 

{

(𝐶13
2 − 𝐶11𝐶33)(𝐶23

2 − 𝐶22𝐶33) ≥ 0

(𝐶12
2 − 𝐶11𝐶22)(𝐶23

2 − 𝐶22𝐶33) ≥ 0

(𝐶12
2 − 𝐶11𝐶22)(𝐶13

2 − 𝐶11𝐶33) ≥ 0

 (2.8) 

These inequality equations require the values of 𝐶122 − 𝐶11𝐶22, 𝐶132 − 𝐶11𝐶33 and 

𝐶23
2 − 𝐶22𝐶33 to have no opposite signs. Combined with the equation 𝐴2 = 0 in 

Equation (2.6), we can know that the following condition must be satisfied: 

𝐶12
2 − 𝐶11𝐶22 = 𝐶13

2 − 𝐶11𝐶33 = 𝐶23
2 − 𝐶22𝐶33 = 0 (2.9) 

which can be simplified to be: 

{

𝐶12 = 𝑎√𝐶11𝐶22

𝐶13 = 𝑏√𝐶11𝐶33

𝐶23 = 𝑐√𝐶22𝐶33

 (2.10) 
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where 

𝑎 = ±1, 𝑏 = ±1, 𝑐 = ±1 (2.11) 

Moreover, from the equation 𝐴1 = 0 in Equation (2.6), we can know that: 

𝐶11𝐶22𝐶33 + 2𝐶12𝐶13𝐶23 = (1 + 2𝑎𝑏𝑐)𝐶11𝐶22𝐶33
                                               = 𝐶11𝐶23

2 + 𝐶22𝐶13
2 + 𝐶33𝐶12

2 ≥ 0
 (2.12) 

This inequality equation additionally requires that: 

𝑎𝑏𝑐 ≠ −1 (2.13) 

Equation (2.11) and (2.13) can be combined to meet the following four cases: 

{

𝑎 = 𝑏 = 𝑐 = 1          or
𝑎 = 1, 𝑏 = 𝑐 = −1   or
𝑏 = 1, 𝑎 = 𝑐 = −1   or
𝑐 = 1, 𝑎 = 𝑏 = −1

 (2.14) 

It should be noted that the condition above also contains the case that only one or two of 

𝐶11, 𝐶22 and 𝐶33 is positive while all other elastic constants are zero. Therefore, the 

necessary and sufficient condition required for elastic materials with at least orthotropic 

symmetry to be pentamode for the second case is the combination of Equation (2.10), 

(2.14) and the equation 𝐶44 = 𝐶55 = 𝐶66 = 0 in Equation (2.6). When satisfying this 

necessary and sufficient condition, the elastic stiffness matrix can be simplified as: 

𝑪 =

[
 
 
 
 
 
 𝐶11 𝑎√𝐶11𝐶22 𝑏√𝐶11𝐶33 0 0 0

𝑎√𝐶11𝐶22 𝐶22 𝑐√𝐶22𝐶33 0 0 0

𝑏√𝐶11𝐶33 𝑐√𝐶22𝐶33 𝐶33 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0]

 
 
 
 
 
 

 (2.15) 

The eigenvector of the only one non-zero eigenvalue 𝜆 = 𝐶11 + 𝐶22 + 𝐶33 is: 
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𝒙 = [𝑎𝑏√𝐶11 𝑎𝑐√𝐶22 𝑏𝑐√𝐶33 0 0 0]
T

 (2.16) 

As mentioned above, a pentamode metamaterial has only one non-zero eigenvalue of its 

sixth-order elastic stiffness matrix [128]. It indicates that there are five independent 

strain cases that each strain case or their linear combinations will produce zero stress 

and zero strain energy [133]. It also indicates that this kind of materials can only bear 

single mode of stress, which corresponds to the eigenvector associated with the 

non-zero eigenvalue [128]. As a special case, isotropic pentamode metamaterials must 

have the following form of elastic stiffness matrix: 

𝑪 =

[
 
 
 
 
 
𝐶11 𝐶11 𝐶11 0 0 0
𝐶11 𝐶11 𝐶11 0 0 0
𝐶11 𝐶11 𝐶11 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0]

 
 
 
 
 

 (2.17) 

For the above elastic stiffness matrix, there is only one non-zero eigenvalue 𝜆 = 3𝐶11, 

and its corresponding eigenvector is [1 1 1 0 0 0]T. We can find that this 

non-zero eigenvalue is exactly three times the bulk modulus 𝐵 = 𝐶11 , and the 

eigenvector indicates that the material can only bear the hydrostatic stress. Therefore, 

isotropic pentamode metamaterials are equivalently identified by a finite bulk modulus 

and a vanishing shear modulus [130, 134]. However, it is not applicable to non-isotropic 

pentamode metamaterials. For pentamode metamaterials with at least orthotropic 

symmetry, we can find that the non-zero eigenvalue 𝜆 = 𝐶11 + 𝐶22 + 𝐶33 is not always 

proportional to its bulk modulus in Equation (2.18), and the eigenvector in Equation 

(2.16) does not always represent hydrostatic stress either. 
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𝐵 =
𝐶11𝐶23

2 + 𝐶22𝐶13
2 + 𝐶33𝐶12

2 − 2𝐶12𝐶13𝐶23 − 𝐶11𝐶22𝐶33

𝐶12
2 + 𝐶13

2 + 𝐶23
2 + 2(𝐶11𝐶23 + 𝐶22𝐶13 + 𝐶33𝐶12 − 𝐶12𝐶13 − 𝐶12𝐶23 − 𝐶13𝐶23) − (𝐶11𝐶22 + 𝐶11𝐶33 + 𝐶22𝐶33)

 (2.18) 

Therefore, a relatively large ratio of the bulk modulus to the shear modulus is no more a 

sufficient condition for non-isotropic pentamode metamaterials. In other words, such a 

ratio cannot be used to identify whether an orthotropic or transverse isotropic material is 

pentamode or not. For example, although the microstructures proposed in [146] have 

large ratios of the bulk modulus to the shear modulus, they are not isotropic and their 

elastic stiffness matrices have more than one non-zero eigenvalues. 

 

2.3. Computational design method 

In this section, we propose a topology optimization method to find novel pentamode 

microstructures with at least elastic orthotropic symmetry. Since potential pentamode 

microstructures to be designed in this chapter have nearly zero effective shear moduli, it 

is expected that these microstructures should behave like mechanisms and consist of 

hinge-type joints. However, it is difficult to obtain an optimized design with hinge joints 

by using topology optimization methods for continuum structures with the solid finite 

elements. Hence, we will propose a ground structure method for design of strut-based 

pentamode microstructures. 

2.3.1. Ground structure with geometric orthogonal symmetry 

The method presented in this work is developed upon the utilization of a prescribed 

ground structure that includes both active and inactive bars to describe potential 
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topologies of designs. We assume that there is a discrete structure with a fixed number 

of bars, which is termed as the ground structure. A portion of the bars is selected as 

active, while the remaining bars are considered inactive. The active bars are those that 

can carry loads and have significant contributions to the mechanical properties of the 

microstructure, while the inactive bars have ignorable influence on the effective 

properties. After removing all inactive bars from the ground structure, a final design 

comprising only active bars is constructed. The topology optimization is then a 

numerical iterative process to determine which bars should be active and which should 

be inactive with the aim of reaching targeted mechanical properties. In other words, the 

active statuses of bars in the ground structure are chosen as design variables. 

For a given set of mesh nodes, the easiest way to generate a ground structure is just 

linking every two nodes. The number of bars for such a fully connected ground 

structure is equal to (𝑛𝑛𝑜𝑑𝑒2 − 𝑛𝑛𝑜𝑑𝑒)/2, where 𝑛𝑛𝑜𝑑𝑒 is the number of nodes. Zegard 

and Paulino [62] proposed a method to generate ground structures in arbitrary 3D 

domains with control in the level of redundancy or inter-connectedness of ground 

structures. However, it cannot guarantee that the optimized designs must have any 

material property symmetry. Therefore, a new ground structure with geometric 

orthogonal symmetry is proposed in this chapter to ensure that the optimized designs 

always have at least elastic orthotropic symmetry. 

We suppose there are 5 × 5 × 5 Cartesian mesh nodes centered at the origin and 

aligned with coordinate axes as shown in Figure 2.2a, and then the corresponding 
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ground structure with geometric orthogonal symmetry will be as shown in Figure 2.2b. 

Due to the geometric orthogonal symmetry, the design variables are changed from 𝝆 to 

�̃� as defined in Equation (2.19), which is still a vector of binary design variables. 

�̃� = [�̃�1 �̃�2 … �̃�𝑛𝑑𝑒𝑠−1 �̃�𝑛𝑑𝑒𝑠] (2.19) 

where 𝑛𝑑𝑒𝑠 is the number of design variables. For the ground structure in Figure 2.2b, 

the numbers of bars and design variables are respectively 2544 and 405. However, for a 

fully connected ground structure, both the bar number and design variables will be as 

large as 7750. 

 a)  b) 

Figure 2.2. Cartesian mesh nodes and the corresponding ground structure 

The bars in the ground structure are divided into five groups as shown in Figure 2.3. 

The bars of the first group are collinear with one coordinate axis and symmetric about 

one coordinate plane. Each of these bars has no mirrored copies in the ground structure 

as shown in Figure 2.3a. Therefore, 6 design variables of this group correspond to 6 bars. 

The second group consists of two types of bars. One type is collinear with one 

coordinate axis and on the side of one coordinate plane. The other type is coplanar with 

one coordinate plane, parallel but not collinear with one coordinate axis and then 
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symmetric about another coordinate plane. Each of these bars has another mirrored copy 

in the ground structure as shown in Figure 2.3b. Therefore, 33 design variables of this 

group correspond to 66 bars. The bars of the third group are coplanar with one 

coordinate plane and on the side of other coordinate planes. Each of these bars has other 

three mirrored copies in the ground structure as shown in Figure 2.3c. Therefore, 90 

design variables of this group correspond to 360 bars. The bars of the fourth group are 

symmetric about one coordinate plane and parallel but not coplanar with other

coordinate planes. Each of these bars has other three mirrored copies in the ground 

structure as shown in Figure 2.3d. Therefore, 24 design variables of this group 

correspond to 96 bars. Finally, the fifth group is obtained by linking every two nodes in 

the same octant and then subtracting bars that already belong to the above four groups. 

Each of these bars has other seven mirrored copies in the ground structure as shown in 

Figure 2.3e. Therefore, 252 design variables of this group correspond to 2016 bars.

Figure 2.3. Five groups of bars in the ground structure
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2.3.2 Computational homogenization method 

Lattice materials are composed of replicated unit cells that are engineered to have 

specific properties, which can be macroscopically considered as a piece of 

homogeneous materials. The computational homogenization method [152] is such a 

numerical technique for calculating effective material properties of periodic architected 

unit cells. Here, we adopt the following energy-based homogenization method to 

evaluate effective elastic stiffness matrices of potential designs described by the ground 

structure: 

𝐶𝑖𝑗
𝐻 =

1

𝑉
𝑼𝑖

𝑇𝑲𝑼𝑗   (𝑖, 𝑗 = 1, 2, … , 6) (2.20) 

where 𝐶𝑖𝑗𝐻 is one of effective elastic constants, 𝑉 is the total volume of the unit cell 

including its voids, 𝑲 is the global stiffness matrix of the unit cell and 𝑼𝑖 is the vector 

of displacement fields in the 𝑖 -th load case. Six load cases are needed for the 

homogenization of a 3D material. In different load case, nodal displacements are 

calculated by considering a different periodic boundary condition. For every two nodes 

of a unit cell that are periodically coincident, e.g., node p and node q, the following 

multi-point equation constraints are imposed on their translational displacements 𝒖: 

𝒖(𝒙𝑝) − 𝒖(𝒙𝑞) =  𝜺(𝒙𝑝 − 𝒙𝑞) (2.21) 

where 𝒙  is the vector of nodal coordinates, and 𝜺  is a matrix composed of 

macroscopic average strains: 
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𝜺 = [

𝜀11 𝛾12/2 𝛾13/2

𝛾12/2 𝜀22 𝛾23/2

𝛾13/2 𝛾23/2 𝜀33

] (2.22) 

where 𝛾 is an engineering shear strain. For each of six load cases, sequentially one of 

six strain components is set as one, and then the rest strain components are set as zero. 

For example, 𝑼1 is calculated with 𝜺 = [1 0 0; 0 0 0; 0 0 0] in the first load case, 

and 𝑼4 is calculated with 𝜺 =  [0 0 0; 0 0 0.5; 0 0.5 0] in the fourth load case. 

It is worthy of note that, for beam elements, the rotational displacements 𝜽  of 

periodically coincident nodes 𝑝 and 𝑞 have the following relationship: 

𝜽(𝒙𝑝) − 𝜽(𝒙𝑞) =  𝟎 (2.23) 

Finally, no matter solid elements, truss elements, or beam elements are used for the 

computational homogenization, translational displacements of one arbitrary node are 

fixed as zero to avoid rigid body motions. 

2.3.3. Mathematical optimization formulation 

After obtaining the homogenized effective elastic stiffness matrix, we should establish a 

fitness function to justify whether it satisfies the necessary and sufficient condition 

derived in Section 2.2 for pentamode metamaterials with at least elastic orthotropic 

symmetry. Firstly, for metamaterials with at least orthotropic symmetry, it is obvious 

that the tension-shear coupling terms in the elastic stiffness matrix must be zero. We 

exclude these terms from the objective function and treat them as equality constraints in 

the mathematical model, because they can be strictly satisfied by guaranteeing that the 
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ground structure has the geometric orthogonal symmetry. Secondly, we rewrite the 

Equation (2.10) as the following form: 

𝑎√𝐶11𝐶22
𝐶12

− 1 =
𝑏√𝐶11𝐶33
𝐶13

− 1 =
𝑐√𝐶22𝐶33
𝐶23

− 1 = 0 (2.24) 

which can be further simplified as: 

(
𝑎√𝐶11𝐶22
𝐶12

− 1)

2

+ (
𝑏√𝐶11𝐶33
𝐶13

− 1)

2

+ (
𝑐√𝐶22𝐶33
𝐶23

− 1)

2

= 0 (2.25) 

Finally, since 𝐶𝑖𝑖 ≥ 0 (𝑖 = 1,2,3,4,5,6) , we can rewrite the equation 𝐶44 = 𝐶55 =

𝐶66 = 0 in the Equation (2.6) as the following form: 

𝐶44 + 𝐶55 + 𝐶66
𝐶11 + 𝐶22 + 𝐶33

= 0 (2.26) 

Therefore, the sum of left-side terms in Equation (2.25) and Equation (2.26) must also 

be zero. Then a general mathematical optimization formulation can be established as 

Equation (2.27). In this formulation, 𝑪𝐻 is the effective elastic stiffness matrix of the 

ground structure calculated by the computational homogenization method considering 

the periodic boundary condition [152], 𝝆 is a vector of binary variables representing 

whether each bar in the ground structure is active or not, 𝑛𝑏𝑎𝑟 is the number of bars in 

the ground structure. A choice of 𝑎 , 𝑏  and 𝑐  that belongs to the four cases in 

Equation (2.14) should be determined in advance. We would emphasize that the 

dominator 𝐶11𝐻(𝝆) + 𝐶22𝐻(𝝆) + 𝐶33𝐻(𝝆) is not necessary in the objective function, 

but it is used to normalize the last term to enhance the optimization performance. 
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Find: 𝝆 = [𝜌1 𝜌2 … 𝜌𝑛𝑏𝑎𝑟−1 𝜌𝑛𝑏𝑎𝑟] 

(2.27) Min:

𝑓(𝝆) =

(

 
𝑎√𝐶11

𝐻(𝝆)𝐶22
𝐻(𝝆)

𝐶12
𝐻(𝝆)

− 1

)

 

2

+

(

 
𝑏√𝐶11

𝐻(𝝆)𝐶33
𝐻(𝝆)

𝐶13
𝐻(𝝆)

− 1

)

 

2

+

               

(

 
𝑐√𝐶22

𝐻(𝝆)𝐶33
𝐻(𝝆)

𝐶23
𝐻(𝝆)

− 1

)

 

2

+
𝐶44

𝐻(𝝆) + 𝐶55
𝐻(𝝆) + 𝐶66

𝐻(𝝆)

𝐶11
𝐻(𝝆) + 𝐶22

𝐻(𝝆) + 𝐶33
𝐻(𝝆)

 

S. t.  {
𝐶𝑖𝑗

𝐻(𝝆) =  0,        𝑖 = 1,2,3    𝑗 = 4,5,6

𝐶45
𝐻(𝝆) =  𝐶46

𝐻(𝝆) =  𝐶56
𝐻(𝝆) = 0

 

The constraints in Equation (2.27) are to ensure that the optimized designs have at least 

orthotropic symmetry. When the objective function value approaches to zero (globally 

minimum value), the necessary and sufficient condition required for elastic constants of 

pentamode metamaterials with at least orthotropic symmetry will be satisfied. It is noted 

that for such an inverse design problem, multiple solutions may exist. 

As mentioned above, the design variables are 0 and 1 logical variables representing 

which bars are active. However, it does not mean that inactive bars are not included in 

finite element analyses of the computational homogenization. That is because the total 

stiffness matrix of a mechanism-type pentamode lattice that only consists of active bars 

is singular in numerical. Therefore, inactive bars are assigned with relatively small axial 

stiffness and then included in the computational homogenization. This can prevent the 

total stiffness matrix from being singular but the effect to the value of the effective 

elastic stiffness matrix is small and acceptable. 
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2.3.4. Geometric constraints

Definitions of intersection and overlap of bars are illustrated in Figure 2.4.

Figure 2.4. Intersection and overlap of two bars

Geometric constraints on intersection and overlap of bars in ground structure methods 

have already been introduced for macro-scale structures [153, 154], but not yet been 

introduced for microstructural designs [63, 64, 155]. In engineering, optimization 

solutions with existence of intersection or overlap of bars are unrealistic designs [154]. 

Such impractical topologies should be avoided for optimized microstructures. Therefore, 

constraints on intersection and overlap of bars should be imposed on optimization 

design of pentamode metamaterials. Cui et al. [154] provided a mathematical 

recognition method for intersection and overlap of bars in 3D ground structures. 

However, it is not computationally efficient, e.g., linear equations should be solved for 

each two bars. Based on calculating the shortest line between two 3D lines, we propose 

a new mathematical recognition method in this chapter.

As illustrated in Figure 2.5, two 3D lines AB and CD do not intersect each other at a 

point, and the line EF is the shortest line between them. Coordinates of the points E and 
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F are defined as:

{
𝒙E = 𝒙A + 𝜇E(𝒙B − 𝒙A)

𝒙F = 𝒙C + 𝜇F(𝒙D − 𝒙C)
(2.28)

The values of 𝜇E and 𝜇F range from negative to positive infinity. 𝜇E can be 

calculated by the following formula, while 𝜇F can be calculated by substituting 

subscripts:

𝜇E =
𝑑ACDC𝑑DCBA − 𝑑ACBA𝑑DCDC
𝑑BABA𝑑DCDC − 𝑑DCBA𝑑DCBA

(2.29)

where

𝑑MNOP = (𝑥M − 𝑥N)(𝑥O − 𝑥P) + (𝑦M − 𝑦N)(𝑦O − 𝑦P) + (𝑧M − 𝑧N)(𝑧O − 𝑧P) (2.30)

When AB and CD intersect, E and F are coincident and the values of 𝜇E and 𝜇F are 

between 0 and 1. When AB and CD are parallel, the dominator in Equation (2.29) is 

zero. Details of the related mathematical derivation can be referred to [156].

Figure 2.5. Shortest line between two 3D lines

Under the assumption that AB and CD are parallel, if points A, B and C are collinear, 

lines AB and CD will be collinear. For three points to be collinear, the following 

equation should be satisfied:
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{

(𝑦B − 𝑦A)(𝑧C − 𝑧A) − (𝑦C − 𝑦A)(𝑧B − 𝑧A) = 0
(𝑥C − 𝑥A)(𝑧B − 𝑧A) − (𝑥B − 𝑥A)(𝑧C − 𝑧A) = 0
(𝑥B − 𝑥A)(𝑦C − 𝑦A) − (𝑥C − 𝑥A)(𝑦B − 𝑦A) = 0

 (2.31) 

For two lines to be coplanar, the following equation should be satisfied: 

AC⃗⃗⃗⃗  ⃗ ∙ (AB⃗⃗⃗⃗  ⃗ × CD⃗⃗⃗⃗  ⃗) = 0 (2.32) 

The flowchart about how to detect intersection and overlap of each two bars is given in 

Figure 2.6. 

It should be noted that the binary genetic algorithm, which will be discussed in Section 

2.3.5, cannot explicitly enforce nonlinear constraints to be satisfied like mathematical 

programming methods do. Therefore, geometric constraints on intersection and overlap 

are added as a penalty term into the original objective function in Equation (2.27). The 

modified objective function is now defined as: 

𝑓(�̃�) = 𝑓(�̃�) + 𝑤
𝑛𝑖𝑛𝑠(�̃�) + 𝑛𝑜𝑣𝑙(�̃�)

𝑛𝑔𝑒𝑜
 (2.33) 

where 𝑛𝑔𝑒𝑜 is the total number of intersection and overlap of the fully active ground 

structure, 𝑛𝑖𝑛𝑠 is the number of intersections of the current design, 𝑛𝑜𝑣𝑙 is the number 

of overlaps of the current design, and 𝑤 is a weighting factor. For a design without any 

intersection or overlap of bars, the penalty value becomes zero, and then the modified 

objective function is the same as the original one. Normalized by the dominator 𝑛𝑔𝑒𝑜, 

the penalty value will not be larger than 𝑤. Since the value of 𝑓(�̃�) would approach to 

zero during the optimization iteration, the value of 𝑤 can absolutely be a small number 

but still relatively large enough compared with zero. Therefore, we choose 𝑤 = 0.001 
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in this work.

Figure 2.6. Flowchart of the detection method for intersection and overlap of bars

It should be noted that ground structures generated by the method in [62] do not have a 

single bar connecting the same nodes with other two bars as shown in Figure 2.7. 

However, these two cases of bars may have different influence on pentamode behaviors

of truss-type microstructures, and we cannot determine which case should be adopted 

for different local locations in the ground structure in advance. Therefore, these two 

cases of bars both initially exist in the ground structure described in Section 2.3.1. 

However, we emphasize that since geometric constraints have been imposed as a 

penalty term in the objective function, such an overlapping case would not exist in the 

final optimized designs.

Figure 2.7. Overlapping bars in the ground structure
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2.3.5. Optimization solver 

Wang et al. [155] studied the design of materials with prescribed nonlinear properties 

using the ground structure method, which used artificial densities of each bar as 

continuous design variables and the mathematical programming method to solve the 

problem. Here, we will also use the ground structure method to design pentamode 

metamaterials, but the genetic algorithm is adopted to solve this discrete optimization 

problem with binary variables. The genetic algorithm is well-known as a global 

optimization method based on natural selection. It randomly generates an initial 

population. During the iteration, individuals with better fitness values in the current 

population will be selected as parents. Elite children are individuals with best fitness 

values, crossover children are generated by combining pairs of parents, and mutation 

children are generated by making random changes to individual parents [157]. A built-in 

Matlab function ga is used for the numerical implementation of the genetic algorithm. 

The genetic algorithm is not often used to solve topology optimization problems for no 

matter continuum or discrete structures, although it is a well-known optimization 

method with global searching capability. The first main reason is that there are usually 

thousands or even millions of continuous design variables in topology optimization 

problems. It is difficult for genetic algorithms to find a good solution for such 

large-scale optimization problems with continuous variables. The second reason is that 

the calculation of the objective and constraint functions with large-scale finite element 

models is computationally expensive. Unfortunately, hundreds of thousands of 
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candidate solution evaluations are very common for the genetic algorithm, while 

mathematical programming methods using sensitivity information usually need only up 

to hundreds of times of finite element analyses. However, the ground structure used in 

this chapter is a very small-scale truss model with only hundreds of binary design 

variables. It is also cheap in computation to run finite element analyses in parallel. 

Therefore, instead of using mathematical programming methods, the genetic algorithm 

is used as the optimization solver to find the global optimal solution, since the discrete 

optimization problem here is relatively small scale and cheap in computation. 

In this chapter, the max number of optimization iterations is set to 200, and the 

population size is 1000. Calculation of the objective function runs in parallel using a 

6-core Intel i7-8750H CPU. For the maximum 0.2 million times of finite element 

analyses and computational homogenization evaluations, it only costs around 25 

minutes when using the ground structure described in Section 2.3.1. It demonstrates the 

high computational efficiency of the genetic algorithm as an optimization solver for the 

developed design method. 

Since the genetic algorithm is a non-deterministic method, there will be different initial, 

intermediate, and final solutions, even when using the same algorithm parameters for 

solving the same optimization problem. This is a merit for the developed design method 

to automatically find more than one metamaterial microstructure exhibiting our desired 

mechanical properties. However, the drawback is that it is inconvenient to duplicate the 

process for finding a specific optimized design. That is because every time running the 



Design of Pentamode Metamaterials with At Least Elastic Orthotropic Symmetry 

47 
 

genetic algorithm will provides us with different optimized designs, although they may 

all satisfy our requirements on effective material properties. Therefore, evolution 

histories of objective and constraint functions are meaningless and not necessary for the 

developed design methods using the genetic algorithms as optimization solvers in this 

research. The maturity of these methods can be convincingly demonstrated by their 

multiple optimized designs that have never been reported in literatures, e.g., a plenty of 

novel pentamode microstructures in the following section. 

 

2.4. Numerical results 

Twenty-four novel pentamode microstructures without any intersection or overlap of 

bars will be provided here to demonstrate the effectiveness of the proposed design 

method, including isotropic, transverse isotropic and orthotropic ones. In this section, 

we will give results for numerical verification of non-isotropic pentamode lattice 

structures. We will further compare the static mechanical performance of two lattice 

structures that are respectively assembled by one novel isotropic pentamode 

microstructure and the conventional diamond-type pentamode microstructure. Moreover, 

we will study on how to further obtain pentamode microstructures with different relative 

densities from the optimization results. 

2.4.1. Novel pentamode microstructures 

As shown in Figure 2.2b, the ground structure is generated by 5 × 5 × 5 mesh nodes 
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with 2544 bars and 405 design variables. The side length of its bounding box is 1 mm. 

The Young’s modulus is 1.138e5 MPa. Constant diameters of active and inactive bars 

are 0.02 mm and 2.0e-6 mm respectively. We define 𝜆max _1  as the maximum 

eigenvalue of the effective elastic stiffness matrix of a lattice, 𝜆max _2 as the second 

maximum eigenvalue, and 𝜆R  as the ratio between them. For perfect pentamode 

metamaterials, 𝜆R should approach infinity. In the following, three tables for material 

properties are given in this section and note that the unit of elastic constants is MPa. A 

smaller scale of 2 × 2 × 2 periodic array is given on the right side in a smaller scale 

together with the microstructure on the left side in each sub-figure. 

Using the developed design method, totally twenty-four novel pentamode 

microstructures have been found, including isotropic, transverse isotropic, and 

orthotropic microstructures. These pentamode microstructures are respectively shown in 

Figure 2.8-Figure 2.10. The corresponding effective elastic stiffness matrices and 

eigenvalue ratios are respectively listed in Table 2.1-Table 2.3. From these tables, we 

can see that the homogenized effective elastic stiffness matrices of these twenty-four 

microstructures all satisfy the requirement of pentamode metamaterials. 

2.4.2. Bearable stress modes of pentamode microstructures 

As mentioned previously, pentamode metamaterials can bear only single mode of stress, 

which is proportional to the eigenvector associated with the non-zero eigenvalue of the 

elastic stiffness matrix [128]. Here, we name it as the bearable stress mode. For 

non-isotropic pentamode microstructures obtained by topology optimization in this 
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chapter, their feature is that they can bear load cases proportional to the Equation (2.16), 

which is named as the bearable load case here. We will give linear static analysis results 

of lattice structures assembled by non-isotropic pentamode microstructures to verify 

that they are stiffer when subjected to their bearable load cases. Two microstructures 

Trans-a and Ortho-a are chosen here as examples. 

Table 2.1. Effective properties of isotropic pentamode microstructures 

 a b c d e f g h 
𝐶11 16.519 22.908 25.546 27.680 34.896 33.707 95.491 125.376 
𝐶22 16.519 22.908 25.546 27.680 34.896 33.707 95.491 125.376 
𝐶33 16.519 22.908 25.546 27.680 34.896 33.707 95.491 125.376 
𝐶12 16.519 22.908 25.545 27.680 34.896 33.707 95.491 125.376 
𝐶13 16.519 22.908 25.545 27.680 34.896 33.707 95.491 125.376 
𝐶23 16.519 22.908 25.545 27.680 34.896 33.707 95.491 125.376 
𝐶44 3.16e-5 3.20e-5 3.19e-5 3.03e-5 3.22e-5 3.35e-5 3.79e-5 6.10e-5 
𝐶55 3.16e-5 3.24e-5 3.19e-5 3.29e-5 3.20e-5 3.35e-5 3.89e-5 5.90e-5 
𝐶66 3.03e-5 3.03e-5 3.22e-5 4.27e-5 3.22e-5 3.35e-5 3.77e-5 4.19e-5 

𝜆max _1 49.558 68.724 76.636 83.040 104.687 101.120 286.472 376.127 
𝜆max _2 6.90e-5 7.19e-5 6.70e-5 8.87e-5 6.69e-5 6.61e-5 6.78e-5 8.09e-5 
𝜆R 7.18e5 9.55e5 1.14e6 9.36e5 1.56e6 1.53e6 4.22e6 4.65e6 

 

Table 2.2. Effective properties of transverse isotropic pentamode microstructures 

 a b c d e f g h 
𝐶11 25.582 34.109 40.349 7.323 51.163 20.417 13.287 51.102 
𝐶22 25.582 8.527 40.349 29.291 12.791 45.937 53.149 22.712 
𝐶33 6.395 34.109 10.087 29.291 51.163 20.417 53.149 51.102 
𝐶12 25.582 17.054 40.349 14.646 25.582 30.625 26.574 34.068 
𝐶13 12.791 34.109 20.174 14.646 51.163 20.417 26.574 51.102 
𝐶23 12.791 17.054 20.174 29.291 25.582 30.625 53.149 34.068 
𝐶44 3.29e-5 3.29e-5 3.44e-5 3.29e-5 3.37e-5 6.65e-5 3.37e-5 4.28e-5 
𝐶55 3.29e-5 3.03e-5 3.27e-5 4.66e-5 3.03e-5 3.29e-5 3.59e-5 3.64e-5 
𝐶66 3.03e-5 3.37e-5 3.44e-5 3.29e-5 3.37e-5 3.03e-5 3.37e-5 3.58e-5 

𝜆max _1 57.559 76.745 90.785 65.905 115.117 86.770 119.584 124.917 
𝜆max _2 7.69e-5 8.34e-5 7.31e-5 7.75e-5 9.45e-5 1.14e-4 7.34e-5 8.35e-5 
𝜆R 7.49e5 9.20e5 1.24e6 8.50e5 1.22e6 7.63e5 1.63e6 1.50e6 
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Table 2.3. Effective properties of orthotropic pentamode microstructures 

 a b c d e f g h 
𝐶11 5.677 7.323 38.291 92.337 77.083 11.046 27.313 90.835 
𝐶22 22.709 29.291 86.156 10.260 34.259 99.413 109.253 10.093 
𝐶33 51.096 65.905 9.573 41.039 8.565 44.183 6.828 40.371 
𝐶12 11.355 14.646 57.437 30.779 51.389 33.138 54.626 30.278 
𝐶13 17.032 21.968 19.146 61.558 25.694 22.092 13.657 60.556 
𝐶23 34.064 43.937 28.719 20.519 17.130 66.275 27.313 20.185 
𝐶44 3.29e-5 3.29e-5 4.39e-5 3.37e-5 4.39e-5 3.48e-5 3.37e-5 3.44e-5 
𝐶55 4.28e-5 4.66e-5 3.37e-5 3.37e-5 4.66e-5 3.61e-5 3.59e-5 3.43e-5 
𝐶66 3.03e-5 3.37e-5 3.29e-5 4.39e-5 3.64e-5 4.98e-5 3.67e-5 3.20e-5 

𝜆max _1 79.482 102.519 134.020 143.635 119.907 154.642 143.394 141.298 
𝜆max _2 8.97e-5 8.13e-5 8.63e-5 8.83e-5 8.20e-5 7.80e-5 8.84e-5 8.08e-5 
𝜆R 8.86e5 1.26e6 1.55e6 1.63e6 1.46e6 1.98e6 1.62e6 1.75e6 

 

The loads and boundary conditions are given in Figure 2.11. The blue cube represents 

the bounding box of the lattice structure assembled by 6 × 6 × 6  periodic 

microstructures, measuring 6 mm on one side. For each pair of the opposite faces, the 

equal magnitude but opposite pressure is uniformly applied. The magnitudes of the 

resultant forces along each axis are 𝐹𝑥 , 𝐹𝑦  and 𝐹𝑧 . Due to the symmetry, only 

one-eighth of the model (i.e., 3 × 3 × 3 microstructures) is used in finite element 

analyses with symmetric boundary conditions. We name the structure assembled by 

transverse isotropic lattices as the lattice Ⅰ and the structure assembled by orthotropic 

lattices as the lattice Ⅱ. For all the lattice structures, the diameters of uniform cylinder 

bars are 0.02mm. These structures are meshed with linear solid elements, and the global 

element seed size is 0.004mm. The Young’s modulus of the constituent material 

Ti6Al4V is 1.138e5 MPa, and the Poisson’s ratio is 0.342. 
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a) Iso-a 

 
b) Iso-b 

 
c) Iso-c 

 
d) Iso-d 

 
e) Iso-e 

 
f) Iso-f 

 
g) Iso-g 

 
h) Iso-h 

Figure 2.8. Isotropic pentamode microstructures (Note: rendered effect) 
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a) Trans-a 

 
b) Trans-b 

 
c) Trans-c 

 
d) Trans-d 

 
e) Trans-e 

 
f) Trans-f 

 
g) Trans-g 

 
h) Trans-h 

Figure 2.9. Transverse isotropic pentamode microstructures (Note: rendered effect) 
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a) Ortho-a 

 
b) Ortho-b 

 
c) Ortho-c 

 
d) Ortho-d 

 
e) Ortho-e 

 
f) Ortho-f 

 
g) Ortho-g 

 
h) Ortho-h 

Figure 2.10. Orthotropic pentamode microstructures (Note: rendered effect) 
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Figure 2.11. Loads and boundary conditions

Six typical load cases applied to each lattice structure are listed in Table 2.4. The fifth 

and sixth cases are respectively proportional to the bearable load cases of the transverse 

isotropic and orthotropic lattice structures. For all these load cases, the vector sum of 

three forces is the same as 1.73205e-2 N.

Table 2.4. Load cases for the lattices

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
𝐹𝑥 / N 1.73205e-2 0 0 1.0e-2 1.15473e-2 4.62887e-3
𝐹𝑦 / N 0 1.73205e-2 0 1.0e-2 1.15474e-2 9.24945e-3
𝐹𝑧 / N 0 0 1.73205e-2 1.0e-2 5.77213e-3 1.38932e-2

The results of linear static finite element analyses using ABAQUS are given below. 

From Figure 2.12 and Table 2.5, we can find that for the lattice Ⅰ, both the displacement 

magnitude and the total strain energy in the fifth load case are the smallest. From Figure 

2.13 and Table 2.5, we can also find that for the lattice Ⅱ, both the displacement 

magnitude and the total strain energy in the sixth load case are the smallest. We 
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emphasize that the total strain energy ratios of the bearable load case to other load cases 

are considerably small. In one word, a lattice structure assembled by non-isotropic 

pentamode microstructures is much stiffer when subjected to its bearable load case.

Figure 2.12. Displacement results of the lattice Ⅰ (Unit: mm)

Figure 2.13. Displacement results of the lattice Ⅱ (Unit: mm)
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Table 2.5. Total strain energy in different load cases (Unit: mJ) 

Lattice Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 
Ⅰ 1.51e-4 1.34e-4 1.14e-3 9.61e-5 8.77e-7 4.25e-4 
Ⅱ 5.82e-4 4.80e-5 1.18e-4 9.93e-5 2.25e-4 6.36e-7 

2.4.3. Comparative analysis 

Here, we will take the novel isotropic pentamode microstructure Iso-f as an example to 

compare the static mechanical performance with the conventional diamond-type 

isotropic pentamode microstructure. Like the models in Section 2.4.2, each lattice 

structure in finite element analyses consists of 3 × 3 × 3 periodic microstructures, and 

symmetric boundary conditions are applied. The values of 𝐹𝑥, 𝐹𝑦 and 𝐹𝑧 are all set to 

0.01 N. We name the lattice structure assembled by the novel isotropic pentamode 

microstructure as the lattice Ⅲ, and the lattice structure assembled by the diamond-type 

microstructure as the lattice Ⅳ. For the lattice Ⅲ, the diameters of uniform cylinder 

bars are 0.02mm. For the lattice Ⅳ, the diameters of double-cone bars are 𝑑 =

0.02 mm and 𝐷 = 0.0241 mm. These two lattice structures have the same material 

volume (0.071 mm3). The mesh information and constituent material properties are the 

same as models given in Section 2.4.2. 

The linear static analysis results are given in Figure 2.14 and Figure 2.15. For the lattice 

Ⅲ, over 90% of the von Mises stresses of Gauss integration points are between 1.2 MPa 

and 1.3 MPa, and the ratio of the maximum value to the minimum value is not over 4. 

The stress distribution in the lattice Ⅲ is relatively uniform. However, the lattice Ⅳ 

suffers from the stress concentration. The maximum von Mises stress of the lattice Ⅳ 
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(146.633 MPa) is much higher than that of the lattice Ⅲ (2.135 MPa). 

 
a) Lattice Ⅲ 

 
b) Lattice Ⅳ 

Figure 2.14. Stress results of the lattices (Unit: MPa):  

 

 
a) Lattice Ⅲ 

 
b) Lattice Ⅳ 

Figure 2.15. Frequency distribution histograms of stress results 

The linear buckling analysis results are given in Figure 2.16. The lowest buckling load 

of the lattice Ⅲ (𝐹𝑥=𝐹𝑦=𝐹𝑧= 0.253 N) is slightly higher than that of the lattice Ⅳ 

(𝐹𝑥=𝐹𝑦=𝐹𝑧= 0.241 N). We can see that the first buckling modes of the two lattices all 

show overall buckling. From the concept of linear static analysis, we can know that 

when the load is close to 𝐹𝑥=𝐹𝑦=𝐹𝑧= 0.253 N, the maximum von Mises stress of the 

lattice Ⅲ is only 54 MPa. However, for the lattice Ⅳ, even when the load is two-thirds 

of its lowest buckling load (i.e., 𝐹𝑥=𝐹𝑦=𝐹𝑧= 0.1607 N), the maximum von Mises stress 

theoretically reaches about 2356 MPa and already exceeds the ultimate bearing strength 
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(1860 MPa) of the constituent material Ti6Al4V. Therefore, no matter the strength or 

buckling, the lattice Ⅲ can bear much higher hydrostatic stress than the lattice Ⅳ. 

 
a) Lattice Ⅲ 

 

b) Lattice Ⅳ 

Figure 2.16. First buckling modes of the lattices 

2.4.4. Pentamode microstructures with different relative densities 

The proposed design method in this work gives a topologically optimal layout of the 

solid bars in the space. Based on the optimized skeleton, pentamode microstructures 

with different relative densities can be obtained by changing the geometric dimensions 

and shapes of the bars. For example, we can introduce the double-cone bars in [130] to 

replace the uniform cross-section bars, and then change the mid-span diameters 𝐷 to 
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obtain different relative densities. We emphasize here that other types of structural 

members rather than double-cone bars can be used to form the pentamode 

microstructures based on the topologically optimized layout.

Take the optimized skeleton shown in Figure 2.8f as the example. For the 

microstructure in Figure 2.17a, the diameter of uniform cylinder bars is 0.02mm. Based 

on the same skeleton, a pentamode microstructure using double-cone bars is generated 

as shown in Figure 2.17b, of which the diameters are 𝑑 = 0.02 mm and 𝐷 =

0.06 mm. The mesh setting and constituent material properties are the same as models 

in Section 2.4.2.

Figure 2.17. Mesh models of pentamode microstructures using solid elements: a) 

Lower relative density; b) Higher relative density

Their effective elastic stiffness matrices, eigenvalue ratios and relative densities 𝜌R are 

listed in Table 2.6, as below. The unit of elastic constants is MPa. We can find that all 

eigenvalue ratios are relatively large enough to consider these two microstructures to be

pentamode, while they are based on the same skeleton but have different relative 

densities (0.256% and 1.143%). It is noted that the homogenized shear moduli of the 

solid structures do not approach to zero, but they are still relatively small enough to 
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allow reasonable pentamode properties. 

A pentamode lattice (Figure 2.18) with 2 × 2 × 2 microstructures as given in Figure 

2.17b is prototyped using a digital light processing 3D printer (Octave Light R1) with a 

rubber-like material (TangoGray FLX950), as shown in Figure 2.19. 

Table 2.6. Effective properties of two pentamode microstructures using solid elements 

 a b 
𝐶11 33.969 108.438 
𝐶22 33.970 108.453 
𝐶33 33.970 108.453 
𝐶12 33.795 107.649 
𝐶13 33.795 107.648 
𝐶23 33.796 107.656 
𝐶44 0.091 0.420 
𝐶55 0.091 0.420 
𝐶66 0.091 0.420 

𝜆max _1 101.561 323.750 
𝜆max _2 0.175 0.797 
𝜆R 581.864 406.004 

𝜌R (%) 0.256 1.143 

 

  
a) 10 × 10 × 10 b) 2 × 2 × 2 

Figure 2.18. Periodic arrays of the pentamode microstructures (Note: rendered effect) 
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A pentamode lattice (Figure 2.18) with 2 × 2 × 2 microstructures as given in Figure 

2.17b is prototyped using a digital light processing 3D printer (Octave Light R1) with a 

rubber-like material (TangoGray FLX950), as shown in Figure 2.19. 

  
a) b) 

Figure 2.19. An additively manufactured specimen with 2 × 2 × 2 microstructures: a) 

Additively manufactured specimen; b) Microscopic photo 

 

2.5. Conclusion 

This work has derived the necessary and sufficient condition required for elastic 

constants of pentamode metamaterials with at least orthotropic symmetry. We found that 

a large ratio of the bulk modulus to the shear modulus is no more a sufficient condition 

for non-isotropic pentamode metamaterials. A ground structure method with the genetic 

algorithm is then proposed to conduct topology optimization of pentamode 

metamaterials with at least orthotropic symmetry. Geometric constraints on intersection 

and overlap of bars are considered in topology optimization with a new efficient 

detection method to obtain realistic designs. Twenty-four novel pentamode 
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microstructures without intersection or overlap of bars are found, including isotropic, 

transverse isotropic and orthotropic ones. The optimization results have demonstrated 

the effectiveness and efficiency of the proposed design method. The further analyses 

have verified that lattice structures assembled by non-isotropic pentamode 

microstructures are much stiffer when subjected to their bearable load cases. From the 

comparative analysis results, we can see that one isotropic pentamode microstructure 

obtained by topology optimization can form lattice structures to bear much higher 

hydrostatic stress than the conventional diamond-type pentamode microstructure. 

Moreover, we proposed that based on the optimized strut skeleton, pentamode 

microstructures with different relative densities can be easily obtained just by changing 

the geometric dimensions and shapes of the bars. 
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Chapter 3 Design of Metamaterials with Ideal Elastic Isotropy 

and Extreme Negative Poisson’s Ratio 

3.1. Introduction 

This chapter is a modified version of the journal paper titled “Three-dimensional 

metamaterials exhibiting extreme isotropy and negative Poisson's ratio”, which was 

published in International Journal of Mechanical Sciences (Volume 259, 108617). 

Mechanical metamaterials have recently sparked a surge of interest due to their 

potentials for diverse applications. However, simultaneously accomplishing multiple 

extreme elastic properties remains a challenge [14, 158]. Within the various kinds of 

mechanical metamaterials, auxetics, a class of materials with negative Poisson’s ratio 

(NPR), have been widely studied for their enhanced mechanical properties and novel 

applications [159-164]. However, in accordance with the current state of the art, auxetic 

metamaterials with simultaneous presence of ideal isotropy [165, 166] and extreme 

negative Poisson’s ratio can be hardly found, which are actually a special type of 

unimode metamaterials. Hence, the aim of this chapter is the rational design of such a 

metamaterial with one zero eigenvalue of its elastic stiffness matrix, which is in contrast 

to pentamode metamaterials studied in Chapter 2. 

Isotropy in materials is a quality that defines the uniformity of its properties in all 

orientations. Isotropy is an important property for applications where consistent 

behavior of materials in different directions is required. This property ensures that the 
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material’s characteristics remain uniform regardless of the direction in which they are 

measured. For example, isotropic materials are often used in structures when there is a 

necessity to withstand forces from all directions without exhibiting preferential behavior. 

However, the fact that a raw material is isotropic does not imply that a resulting lattice 

made from this material maintain this quality, due to factors like differences in design 

and manufacturing of the lattice. These factors can result in variations of effective 

mechanical properties of lattices along different directions. Therefore, when designing 

metamaterials, it is essential to have control over the isotropy of the lattices to ensure 

even stress distribution, deformation, or failure of the lattices. For example, in 

mechanical and aerospace engineering, a lattice structural component needs to have 

uniform mechanical properties (e.g., strength, stiffness, and fatigue) in all directions to 

withstand the loads and stresses that they will be subjected to. Hence, how to design 

lattice metamaterials to gain ideal isotropy is crucial to ensure the reliability, durability, 

and safety of the mechanical products constructed by using lattice structures. 

Poisson’s ratio is defined as a negative ratio of the transverse strain to the axial strain 

when the material is under a uniaxial loading. It is a fundamental material property that 

is independent of the material’s size or scale, so it can be studied and compared across 

different length scales. This is important for understanding the behavior of auxetic 

metamaterials and their potential applications in various fields. Compared to materials 

with positive Poisson’s ratios, auxetic metamaterials exhibit a transverse expansion 

when stretched uniaxially while a transverse contraction when compressed uniaxially, 
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which is illustrated in Figure 3.1. Auxetic metamaterials possess superior mechanical 

properties such as synclastic curvature, indentation resistance, energy dissipation, 

negative compressibility, vibration transmission, and acoustic absorption. These 

exceptional properties give auxetic metamaterials a diversity of potential applications in 

aerospace, automotive, biomedical, and mechanical engineering. Since the development 

of the first man-made auxetic foam by Lakes [167], a variety of auxetic metamaterials 

have been developed, including re-entrant [168-170], chiral [171, 172], rotating units 

[173], and perforated sheets [174]. According to the elasticity theory, the allowable 

range of Poisson’s ratios for 3D isotropic materials is from -1 to 0.5 [175]. For 

anisotropic materials, arbitrary large positive and negative Poisson’s ratios can occur 

along specific directions [176]. If an isotropic material has a Poisson’s ratio at its 

theoretical lower limit of -1, it corresponds to an isotropic unimode material with an 

infinite ratio of shear modulus to bulk modulus [128], meaning that it is hard to shear 

but easy to uniformly deform volumetrically, which makes them suitable for electronic 

flexible screens. This contrasts with isotropic pentamode metamaterials, which have 

Poisson’s ratios at the theoretical upper bound [130]. 

An isotropic 3D structure possessing a Poisson’s ratio -1 was firstly proposed by 

Almgren [177]. However, it consists of sliding collars and springs. It is more a 

macroscopic mechanism than a continuum microstructure. Later, Milton [178] proposed 

two families of 2D isotropic composite materials that exhibit Poisson’s ratios 

approaching -1. However, their Poisson’s ratios can be close to -1 only when their 
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Figure 3.1. Deformation behaviors of materials with different Poisson’s ratios. Grey 

arrows represent uniaxial compression loads. Blue cuboids represent original and 

undeformed structures. Green cuboids represent the deformed shapes of structures.

stiffness ratio of the compliant matrix to the stiff inclusion is nearly zero, and the second 

family is a laminate with three widely separated length scales [179]. A 2D honeycomb 

with a Poisson’s ratio -1 was proposed by Prall and Lakes [171], which is directionally 

isotropic but has a chiral anisotropy. A 2D isotropic microstructure with a Poisson’s 

ratio -1 was proposed by Grima and Evans [173], which contains rotating rigid units.

Several non-isotropic unimode metamaterials have been proposed also based on rigid 

units and pivots [179, 180], and one of them exhibits only positive Poisson’s ratios 

[180]. Bückmann et al. [181] proposed a 3D unit cell that has a Poisson’s ratio -0.932 

along the principal axis and a Zener ratio 1.145 when its connection size is 0.25%. A 3D 

auxetic cellular structure proposed in 2017 claims a Poisson’s ratio approaching -1

[182], but it is not isotropic and exhibits Poisson’s ratios -1 only in three principal 

directions, which was later demonstrated by Wang et al [183]. As mentioned above, a 
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directional Poisson’s ratio -1 is not a limit or special value for non-isotropic materials. A 

2D structure with random networks was claimed to possess ideal isotropy and a 

Poisson’s ratio -0.98, but its Poisson’s ratio along the principal axis is only -0.88 [184]. 

While empirical design motifs have been successful in creating several 3D auxetic 

metamaterials, they may not necessarily lead to optimal or multifunctional properties. 

Numerical design optimization methods can help to explore a larger design space and 

identify previously unknown metamaterial architectures with desirable properties, 

allowing for tailored and optimized metamaterials with specific multifunctionalities. 

Topology optimization has been applied successfully in designing auxetic metamaterials 

[185-195], allowing for the creation of new material architectures, while most of the 

designs have either 2D microstructures [186-192] or 3D non-isotropic microstructures 

[193-195]. For these non-isotropic microstructures [188-195], their negative Poisson’s 

ratios are only exhibited in specific orientations, limiting their potential for applications 

requiring isotropic behavior. 

In this work, a new design method based on topology optimization is developed for 

finding 3D novel microstructures that can simultaneously achieve ideal elastic isotropy 

and extreme negative Poisson’s ratio. The proposed approach is intended to be more 

generic and generative, allowing for the discovery of new metamaterial architectures 

with customized multifunctional properties. 
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3.2. Computational design method 

In this section, we firstly introduce our proposed method for topology optimization, 

which involves using a 3D strut-based ground structure with geometric cubic symmetry. 

Then we discuss the mechanical characteristics of isotropic materials with extreme 

negative Poisson’s ratios. This is important because the optimization process is to find a 

microstructure that meets certain design criteria for desired mechanical properties. 

Finally, we establish a mathematical optimization formulation for designing 

microstructures with ideal isotropy and specific Poisson's ratio. 

3.2.1 Ground structure with geometric cubic symmetry 

The design method developed in this work is based on the ground structure method for 

discrete topology optimization. In the case of discrete topology optimization methods, 

the optimized designs directly consist of struts, which allow for easier manufacturing 

and can generate ultralight structures with less computational cost. Moreover, 

strut-based microstructures with cross-sectional parameters obtained by using discrete 

topology optimization methods can be easily tuned to achieve a range of different 

effective material properties. 

This method involves the use of a prescribed ground structure that includes both active 

and inactive bars to describe potential topologies of designs. The active bars are those 

that compose the optimized structure, while the inactive bars would be removed from 

the final design. The optimization is then a numerical iterative process to determine 
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which bars should be active and which should be inactive to achieve the desired 

mechanical properties. Here, we defined a strut-based ground structure with the 

geometric cubic symmetry. First, a number of grid points are uniformly distributed 

within a cubic design domain, which have equal distances and are aligned with three 

coordinate axes. It is worthy of note that the number of points along each axis is an odd 

number. An increasing number of grid points would lead to not only better ability in 

topological description potentially for creating more different designs, but also an 

increased number of design variables and therefore higher computational cost. In this 

chapter, we use a 5×5×5 grid of points as given in Figure 3.2a for the numerical 

examples. 

The cubic design domain is split into 48 subdomains with the same geometry using nine 

symmetric planes, and one of them is selected and considered to be the primary one, 

which is illustrated in Figure 3.2b. Connecting every two points in the primary 

subdomain by a strut would generate a fully connected ground structure, as displayed in 

Figure 3.2c. However, overlapping bars will exist in such a ground structure, which will 

not enhance its topological description ability but increase the number of its design 

variables. Hence, an iterative process will be used to detect and remove these 

overlapping bars. The iterative process ensures that the ground structure is free of 

overlapping bars while still preserving its topological description ability. By removing 

overlapping bars, we can also simplify the ground structure to have less design variables, 

making the optimization more efficient. 
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Based on such a ground structure free of overlapping bars (Figure 3.2d), we can then 

assemble a whole ground structure for the cubic design domain using mirror operations, 

as shown in Figure 3.2f. Duplicated bars on shared faces between subdomains should be 

merged. It should be noted that the bars of the primary subdomain are classified into 

five groups as given in Figure 3.2d. As presented in Figure 3.2e, for each bar in different 

groups, it has different number of mapping bars in the whole design domain. 

In the proposed design method, active and inactive bars are distinguished to represent 

different designs using the same ground structure. Active bars are bars that can 

significantly carry loads, while inactive bars have ignorable influence on the overall 

structural stiffness and can be removed from the final design. Additionally, active bars 

can have different cross-sectional shapes and sizes, which allows for more flexibility in 

designing microstructures. In this chapter, we define all bars in the ground structure 

with circular sections, and all inactive bars have the same cross-sectional radius 1e-5 

when the cubic design domain’s length is 1. If their radii are set to be exactly zero, the 

total structural stiffness matrix would have singularity problems. Inactive bars can be 

considered as void space, and their presence has a negligible effect on the homogenized 

material properties. 

Although we can use radii of all bars in the primary subdomain as design variables, a 

new strategy is proposed here. Assuming that there are 𝑚  bars in the primary 

subdomain and what we expect as a final optimized design has at most 𝑛 bars in the 

primary subdomain, it is obvious that 𝑛 ≪ 𝑚. Moreover, we usually expect to find 
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novel microstructures without too much complicated geometries. If 𝑛 = 10, there may 

be over three hundred bars in the whole design. Therefore, 𝑛 should be a small integer, 

e.g., 3, 4, and 5. Therefore, design variables are defined as: 𝑛 integer variables indicate 

which bars in the primary subdomain are active, and other 𝑛 continuous variables are 

radii of these active bars. Such definitions can give the following advantages: First, 

compared with conventional ground structure methods using radii of all bars as design 

variables [30], the proposed method has a much smaller number of design variables. 

Second, compared with the ground structure method that only define active and inactive 

bars in Chapter 2, the proposed method can describe a design that consists of active bars 

with a range of cross-sections, which enhances its structural description for geometries 

and tunability for properties. However, the gradient-based optimization solvers cannot 

be adopted since there are both integer and continuous variables in the design. 

Moreover, we usually expect to find novel microstructures without too much 

complicated geometries. If 𝑛 = 10, there may be over three hundred bars in the whole 

design. Therefore, 𝑛 should be a small integer, e.g., 3, 4, and 5. Therefore, design 

variables are defined as: 𝑛  integer variables indicate which bars in the primary 

subdomain are active, and other 𝑛 continuous variables are radii of these active bars. 

Using such definitions, the number of variables is greatly decreased, and there would no 

longer be many bars with intermediate radii in final optimized designs. 

3.2.2 Extreme Negative Poisson’s ratios 

Any design described by the proposed ground structure, which has geometric cubic 
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symmetry, will be at least elastically cubic symmetric, meaning that its elastic properties 

will be identical in three orthogonal principal directions. Then the elastic stiffness 

matrix must have the following form:

𝑪 =

[
 
 
 
 
 
𝐶11 𝐶12 𝐶12 0 0 0
𝐶12 𝐶11 𝐶12 0 0 0
𝐶12 𝐶12 𝐶11 0 0 0
0 0 0 𝐶44 0 0
0 0 0 0 𝐶44 0
0 0 0 0 0 𝐶44]

 
 
 
 
 

(3.1)

Figure 3.2. Generation of a 3D ground structure with the geometric cubic symmetry. a) 

Points in the whole design domain; b) Points in the primary subdomain (purple region); 

c) A fully connected ground structure in the primary subdomain; d) A ground structure 

in the primary subdomain without overlapping bars and consisting of five groups of bars; 

e) Five ground structures in the whole design domain respectively assembled by 

different groups of bars; f) The final ground structure.
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The condition required for elastic isotropy of a material is that the elastic constants must 

satisfy the following equation: 

(𝐶11 − 𝐶12)

2𝐶44
= 1 (3.2) 

Once this condition is satisfied, the isotropic Poisson’s ratio is calculated by: 

𝜈 =
𝐶12

𝐶11 + 𝐶12
 (3.3) 

Besides, the isotropic Young's modulus (E), bulk modulus (K), and shear modulus (G) 

are defined using the same two elastic constants as follows: 

{
  
 

  
 𝐸 =

(𝐶11 − 𝐶12)(𝐶11 +  2𝐶12)

𝐶11 + 𝐶12

𝐾 =
(𝐶11 +  2𝐶12)

3

𝐺 =
(𝐶11 − 𝐶12)

2

 (3.4) 

When the Poisson’s ratio is 0.5, the following elastic properties can be derived from 

Equation (3.3) and (3.4): 

{

𝐶11 = 𝐶12 > 0
𝐸 = 0
𝐾 = 𝐶11
𝐺 = 0

 (3.5) 

Such a solid material belongs to pentamode metamaterials, and its stiffness 

characteristic is an infinite ratio of bulk modulus to shear modulus. 

When the Poisson’s ratio approaches -1, the following material properties can be 

derived from Equation (3.3) and (3.4): 
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{
 
 

 
 
𝐶11 = −2𝐶12 > 0
𝐸 = 0
𝐾 = 0

𝐺 =
3

4
𝐶11

 (3.6) 

Such a material belongs to unimode metamaterials, and its stiffness characteristic is an 

infinite ratio of shear modulus to bulk modulus. Its corresponding elastic stiffness 

matrix is given in Equation (3.7). 

This elastic stiffness matrix has only one zero eigenvalue, and the corresponding 

eigenvector indicates a hydrostatic stress state. We can find that for any non-zero strain 

vector applied to this matrix, the corresponding first stress invariant is always zero. It 

indicates that such a material cannot resist non-zero first stress invariant, which 

corresponds to the volume change. Therefore, for an ideal isotropic unimode 

metamaterial, its volume can be easily changed, but its shape can be relatively hard to 

be changed. It is exactly opposite of isotropic pentamode metamaterials. 

𝑪 =

[
 
 
 
 
 
 
 
 
 
 
 
 𝐶11 −

1

2
𝐶11 −

1

2
𝐶11 0 0 0

−
1

2
𝐶11 𝐶11 −

1

2
𝐶11 0 0 0

−
1

2
𝐶11 −

1

2
𝐶11 𝐶11 0 0 0

0 0 0
3

4
𝐶11 0 0

0 0 0 0
3

4
𝐶11 0

0 0 0 0 0
3

4
𝐶11]

 
 
 
 
 
 
 
 
 
 
 
 

 (3.7) 

 

3.2.3 Mathematical optimization formulation 

Based on Equation (3.2) and (3.3), for an optimized design to achieve both ideal elastic 
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isotropy and a specific Poisson’s ratio 𝜈obj, a necessary and sufficient condition is 

given by 

(
(𝐶11 − 𝐶12)

2𝐶44
− 1)

2

+ (
𝐶12

𝐶11 + 𝐶12
− 𝜈obj)

2

= 0 (3.8) 

Based on this condition, the following optimization formulation is established: 

Find: 𝝆 = [𝜌1 … 𝜌𝑛 𝜌𝑛+1 … 𝜌2𝑛] 

(3.9) 
Min: 

𝑓(𝝆) = 𝜔𝑖𝑠𝑜 (
(𝐶11

𝐻(𝝆) − 𝐶12
𝐻(𝝆))

2𝐶44
𝐻(𝝆)

− 1)

2

+ 𝜔𝑝𝑟 (
𝐶12

𝐻(𝝆)

𝐶11
𝐻(𝝆) + 𝐶12

𝐻(𝝆)
− 𝜈obj)

2

 

+𝜔𝑔𝑒𝑜(𝑁𝑖𝑛𝑠(𝝆) + 𝑁𝑖𝑠𝑜𝑙(𝝆)) 

where 𝝆 represents design variables, 𝑪𝐻 is the effective elastic stiffness matrix of a 

candidate design that is calculated by using the computational homogenization method 

introduced in Section 2.3.2, and 𝜔 represents weight factors for each penalty term. The 

last penalty term functions as geometric constraints on bars. Here, 𝑁𝑖𝑛𝑠 is the quantity 

of intersecting bar pairs within the ground structure, and 𝑁𝑖𝑠𝑜𝑙  is the quantity of 

isolated geometric parts within the ground structure, which are illustrated in Figure 3.3. 

Discrete structures with intersecting bars are impractical and unrealistic [154], which 

should be avoided in the final optimized designs. Besides, a design with isolated 

geometric parts is not what we expected for lattice structures. For the three weight 

factors, we use 1, 40, and 0.1 as their values, respectively, based on our numerical 

experience. We use the genetic algorithm to solve this mixed integer programming 

problem. In numerical implementations, a built-in function ga from the commercial 

software MATLAB [157] is used as a black-box solver. It should be noted that nonlinear 



Design of Metamaterials with Ideal Elastic Isotropy and Extreme Negative Poisson’s Ratio

76

equality constraints cannot be explicitly imposed by the genetic algorithm for 

optimization problems with integer variables. Therefore, the geometric constraints are 

added as a penalty term into the objective function.

Here, we emphasize that the developed design approach is generic to be utilized for the 

discovery of microstructures with wide-ranging Poisson's ratios, including zero and 0.5, 

in addition to negative values. It can be achieved by assigning different values of 𝜈obj

in the objective function. In this chapter, we only focused on optimization design using 

𝜈obj = −1 for finding novel isotropic unimode microstructures. Optimization designs 

using other 𝜈obj values are beyond the scope of this chapter. Moreover, the proposed 

design method has no requirement for specific constituent materials. Using the same 

design method, we can obtain corresponding optimized designs for different constituent 

materials.

a)

b)

Figure 3.3. Geometric constraints: a) Intersecting bars; b) Isolated geometric parts
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3.3. Numerical results 

Using the proposed systematic design method, four novel strut-based microstructures 

have been found, which are three-dimensional, elastically isotropic, and auxetic with 

Poisson’s ratios approaching the theoretical lower limit. As mentioned before, existing 

3D isotropic unimode microstructures designed by conventional intuition-based 

methods, are either constructed with mechanism components [177] or not ideally 

isotropic [181]. However, the four microstructures proposed below possess ideal 

isotropy and totally novel geometries without mechanism components, which 

substantially show the maturity of the developed topology optimization method. 

In this section, these microstructures have been introduced in detail by describing their 

geometries, analyzing their effective material properties, and validating their 

macroscopic mechanical behaviors. 

3.3.1 Novel isotropic auxetic microstructures 

Here, we choose a widely used titanium alloy, Ti6Al4V, as an isotropic linear elastic 

constituent material to be used in topology optimization. As shown in Figure 3.4, four 

novel auxetic microstructures have been found. These microstructures all have the 

geometric cubic symmetry and consist of cylindrical struts with different cross-sectional 

areas. The microstructure Ⅰ has 50 vertices and 72 struts with three types of radii. The 

microstructure Ⅱ has 43 vertices and 84 struts with three types of radii. The 

microstructure Ⅲ has 60 vertices and 108 struts with four types of radii. The 
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microstructure Ⅳ has 49 vertices and 138 struts with five types of radii. 

From the geometric aspect, the microstructure Ⅰ has the simplest geometry, while the 

microstructure Ⅳ has the most complicated geometry. While for the auxetic mechanism, 

all these microstructures belong to the re-entrant type. We emphasize that these 3D 

isotropic unimode microstructures are single-scale, single-phase, and constructed by 

elastic continua without using sliding collars, springs, rotating frames, or rigid units. 

3.3.2 Effective material properties 

For these auxetic microstructures, we know their information about coordinates of each 

vertex, connected vertices of each strut, and ratios between cross-sectional radii of struts. 

Keeping the ratios between radii unchanged, we can easily customize a series of 

microstructures across a spectrum of relative densities based on the same strut skeletons. 

Here, we will numerically investigate about tuning their effective material properties by 

changing their volume fractions. For microstructures with moderate volume fractions, 

solid elements are used in finite element analyses to provide more accurate results, 

because their struts are not slender anymore. Therefore, we use solid elements to 

conduct the computational homogenization for the series of microstructures with a 

range of volume fractions. In this work, the commercial software COMSOL 

Multiphysics was used for conducting numerical analyses for the microstructures with 

varying volume fractions and the macroscopic lattice structures. For the constituent 

material Ti6Al4V, its Young’s modulus is 113.8 GPa, and its Poisson’s ratio is 0.342. 

The mesh models using solid elements all have over millions of degrees of freedom. For 
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the computational homogenization of microstructures in COMSOL Multiphysics, 

periodic boundary conditions are imposed by node-to-node constraints.

a)

b)

c)

d)

Figure 3.4. Novel isotropic unimode microstructures viewed from different angles

(Note: rendered effect): a) Microstructure Ⅰ; b) Microstructure Ⅱ; c) Microstructure Ⅲ; d) 

Microstructure Ⅳ
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Based on calculated effective elastic stiffness matrices, we investigated how effective 

Poisson’s ratios are tunable with volume fractions for the four auxetic microstructures. 

For each curve in Figure 3.5, the horizontal axis describes different volume fractions, 

and the vertical axis represents corresponding effective Poisson’s ratios. Based on tensor 

analyses of anisotropic materials, we can calculate the maximum and minimum 

directional Poisson’s ratios from an elastic stiffness matrix. Therefore, for a given 

volume fraction in the horizontal axis, there would be a range of Poisson’s ratios along 

the vertical axis, leading to a curve with a varying width. A wider width of the curve 

denotes a worse isotropy of the microstructure, although the isotropy of a microstructure 

depends on a variety of factors. In Figure 3.5, each curve starts from the 0.1% volume 

fraction and ends at a volume fraction when the absolute value of the minimum 

Poisson’s ratio is 1.1 times bigger than that of the maximum Poisson’s ratio. For the 

microstructure Ⅰ, its effective Poisson’s ratio is about -0.2451 when the volume fraction 

is about 19.00%. For the microstructure Ⅱ, its effective Poisson’s ratio is about -0.3683 

when the volume fraction is about 9.53%. For the microstructure Ⅲ, its effective 

Poisson’s ratio is about -0.5071 when the volume fraction is about 7.94%. For the 

microstructure Ⅳ, its effective Poisson’s ratio is about -0.4371 when the volume 

fraction is about 18.02%. For all these auxetic microstructures over the variation of the 

volume fraction, the effective Poisson’s ratio approaches -1 when the volume fraction is 

getting small enough. 

Following the visualization scheme described in [196, 197], surfaces of directional 



Design of Metamaterials with Ideal Elastic Isotropy and Extreme Negative Poisson’s Ratio 

81 
 

Poisson’s ratios for four auxetic microstructures with 0.1% volume fractions are given 

in Figure 3.6. For each point on the surface, there is a 3D vector from the origin point to 

it. The direction of this vector represents the loading direction, and the norm of this 

vector represents the absolute value of corresponding physical property. However, since 

directional Poisson’s ratios depend on both the loading direction and the measurement 

direction, they cannot be simply represented by only using single surface, due to infinite 

measurement directions perpendicular to a certain loading direction. Therefore, for each 

loading direction, maximum and minimum values among all the measurement 

directions are calculated and used to create two surfaces. Details about tensor analysis 

and graphical visualizations of elastic stiffness matrix can refer to [196]. 

It is obvious that all those surfaces of directional Poisson’s ratios are almost spheres, 

and relative errors between maximum and minimum values are all below 0.006%, 

which demonstrate that all these microstructures are elastically isotropic. Besides, we 

can clearly see in Figure 3.6 that their effective Poisson’s ratios approach -1, and the 

relative errors are all below 1%. 

From Figure 3.5 and Figure 3.6, we can conclude that the four novel microstructures are 

able to achieve ideal elastic isotropy and extreme negative Poisson’s ratios when having 

low volume fractions. As a lateral comparison, we can find that the microstructures Ⅰ 

and Ⅳ can maintain the elastic isotropy over a wider range of volume fractions, and the 

microstructure Ⅳ has the smallest relative error. 
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  a) 

b) c) 

  d) 

Figure 3.5. Tunable Poisson’s ratios over different volume fractions. a) Microstructure Ⅰ; 

b) Microstructure Ⅱ; c) Microstructure Ⅲ; d) Microstructure Ⅳ 
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a)

b)

c)

d)

Figure 3.6. Surfaces of Poisson’s ratios: a) Microstructure Ⅰ; b) Microstructure Ⅱ; c) 

Microstructure Ⅲ; d) Microstructure Ⅳ. Left column: maximum Poisson’s ratios; Right 

column: minimum Poisson’s ratios.
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  a) 

  
b) c) 

  d) 

Figure 3.7. Tunable Young’s moduli over different volume fractions: a) Microstructure Ⅰ; 

b) Microstructure Ⅱ; c) Microstructure Ⅲ; d) Microstructure Ⅳ. 
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We further investigate how to tailor the effective Young’s modulus through changing the 

volume fraction for these microstructures. For each curve in Figure 3.7, the vertical axis 

represents the corresponding effective Young’s moduli. Figure 3.7 includes surfaces of 

directional Young's moduli for microstructures with two different volume fractions. By 

showing the directional Young's moduli for each curve, Figure 3.7 also provides insights 

into the anisotropy of the microstructures and how it varies with volume fraction. 

Different from Figure 3.6, since absolute values of Young’s moduli can be seen from 

curves, we normalize surfaces of directional Young’s moduli by their Hill averages 

[198]. From curves in Figure 3.7, we can see that effective Young’s moduli are 

increasing rapidly with the increase of the volume fraction. For microstructures with 0.1% 

volume fraction, we can see that all those surfaces of the directional Young’s moduli are 

almost spheres, and relative errors to Hill averages are all below 0.002%, which further 

demonstrates that all these microstructures are elastically isotropic. For microstructures 

with moderate volume fractions at the end of curves, surfaces of directional Young’s 

moduli are still close to spheres, and relative errors to Hill averages are all below 3%. 

Compared with Poisson’s ratios shown in Figure 3.6, Young’s moduli are much closer to 

be elastically isotropic. 

An isotropic pentamode metamaterial has a Poisson’s ratio 0.5, and its stiffness 

characteristic is an infinite ratio of its bulk modulus to its shear modulus [128, 130]. On 

the contrary, for an isotropic unimode metamaterial possessing a Poisson’s ratio at the 

theoretical lower limit -1, its stiffness characteristic is an infinite ratio of its shear 
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modulus to its bulk modulus. Here, we investigated how the shear moduli will change 

with the bulk moduli for the four microstructures, which are shown in Figure 3.8. We 

can see that bulk moduli are decreasing more rapidly that of the shear moduli. For 

microstructures with lower volume fractions, ratios of the shear moduli to bulk moduli 

are larger. For microstructures with 0.1% volume fraction, their bulk moduli are close to 

zero, and ratios of shear moduli to bulk moduli are nearly infinite.

Figure 3.8. Effective bulk moduli and shear moduli. The portion of the curves in the red

dashed rectangles is enlarged to be shown in the green and blue dashed rectangles.

Hence, these four strut-based microstructures can be used for auxetic metamaterials 

with tunability of Poisson’s ratios and stiffness. Using the same strut layout, not only the

theoretical lower limit -1, but also a broad range of negative values can be reached for
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effective Poisson’s ratios by only alternating their volume fractions. We emphasize 

again that this tunning is based on directly increasing or decreasing cross-sectional 

dimensions of struts in a given optimized microstructure, which is totally different from 

other methods that setting different volume fractions as constraints to obtain different 

optimized designs. 

3.3.3 Macroscopic deformation behaviors of lattice structures 

As shown in Figure 3.9, the lattice structures Ⅰ, Ⅱ, Ⅲ, and Ⅳ, are periodically 

assembled by using the isotropic unimode microstructures Ⅰ, Ⅱ, Ⅲ, and Ⅳ. Since the 

computational homogenization is implemented under periodic boundary conditions, the 

number of microstructures used for configuring the bulk material has a strong effect on 

the macroscopic behaviors of the lattice. Here, we use lattice structures composed of 

12×12×12 microstructures with 0.1% volume fractions for numerical simulations to 

analyze their macroscopic deformation behaviors. Numerical simulations have been 

conducted in COMSOL using beam elements. Each lattice structure is compressed 

along the Z-direction and can freely deform in the XY-plane. It is obvious that we can 

use a submodel that consists of 6×6×6 microstructures for a finite element analysis 

considering symmetric boundary conditions, which is illustrated in Figure 3.10a, b. 

Besides, six faces of the analyzed structure are defined in Figure 3.10b. 

Finite element analysis results are given in Figure 3.11 and Figure 3.12, in which 

rainbow colors indicate different negative ratios of the X-direction translational 

displacement to the forced vertical displacement. In Figure 3.11, for the left column, 
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lines with black color represent undeformed geometries viewed from the front face, and 

lines with rainbow colors represent deformed structures in a proper scale. For the right 

column, each lattice structure is viewed from the right face, but all other beams and 

vertices not lying exactly on the right face are invisible. From the left column of Figure 

3.11, we can see that lattice structures keep their shapes almost unchanged when 

  
a) b) 

  
c) d) 

Figure 3.9. Lattice structures periodically assembled by novel isotropic unimode 

microstructures (Note: rendered effect): a) Lattice Ⅰ; b) Lattice Ⅱ; c) Lattice Ⅲ; d) 

Lattice Ⅳ 
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a) b)

c)
Figure 3.10. Symmetric analysis model and expected deformation. a) A 3D structure 

with three orthogonal plane symmetries is under the uniaxial compression. The purple 

region represents one-eighth of the whole structure. b) For the one-eighth sub-structure, 

roller boundary conditions are imposed on the left, front, and bottom faces, while forced 

non-zero vertical displacements are imposed on the top face. c) For a cube (purple color) 

with isotropic Poisson’s ratio -1, it would deform to be a smaller cube (green color) 

rather than a cuboid when uniaxially compressed.

deformed, which are represented by red dash squares. In other words, under a uniaxial

compression, a cube-like lattice structure becomes smaller in all directions but keeps the

shape as a cube. The demonstration of an isotropic material with a Poisson’s ratio -1 is 

illustrated in Figure 3.10c. We can see that displacement ratios shown in the right



Design of Metamaterials with Ideal Elastic Isotropy and Extreme Negative Poisson’s Ratio 

90 
 

column of Figure 3.11 are all below -0.99 for the lattice Ⅰ. However, for other three 

lattice structures, displacement ratios are over -0.99 in partial due to the boundary effect. 

We triple the number of microstructures in each lattice structure for finite element 

analyses, and displacement ratios on right faces are shown in Figure 3.12. We can see 

that displacement ratios are all below -0.99 for the lattice Ⅳ now. Moreover, maximum 

displacement ratios of the lattice Ⅱ and Ⅲ are decreased from -0.9083 and -0.8707 to 

-0.9640 and -0.9543, respectively, which are closer to their homogenized Poisson’s 

ratios. We can see that, when the lattice structure consists of a larger number of periodic 

underline microstructures, the less boundary effect occurs at its outer regions, where 

periodic boundary conditions cannot be satisfied due to a lack of neighboring 

microstructures. Besides, for different microstructures, the dependency of the boundary 

effect on the number of microstructures is also different. 

 

3.4. Conclusion 

In this work, we developed a generic rational design method using topology 

optimization to create mechanical metamaterials possessing both ideal elastic isotropy 

and extreme negative Poisson’s ratio. Using this systematic method, novel 3D 

strut-based microstructures have been designed to demonstrate that ideal isotropy and 

Poisson’s ratios close to -1 can be simultaneously achieved within one integrated design. 

It is worth noting that these 3D unimode microstructures are single-scale, single-phase, 

and constructed by elastic continua without using any mechanism components. 
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a)

b)

c)

d)

Figure 3.11. Negative ratios of the displacement in the X-direction to the forced 

displacement in the Z-direction: a) Lattice Ⅰ; b) Lattice Ⅱ; c) Lattice Ⅲ; d) Lattice Ⅳ.
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a) b)

c) d)
Figure 3.12. Negative displacement ratios of 18×18×18 microstructures: a) Lattice Ⅰ; b) 

Lattice Ⅱ; c) Lattice Ⅲ; d) Lattice Ⅳ

We also numerically investigated customizing their effective material properties over a 

range of volume fractions. These microstructures exhibit ideal elastic isotropy and 

Poisson’s ratios -1 when the volume fractions are sufficiently small. As the volume 

fraction increase, their Poisson’s ratio and stiffness modulus also increase. By 

comparison, the type I and type IV microstructures can maintain their elastic isotropy 

over a larger range of volume fractions. These strut-based microstructures can be 

applied to develop wide-ranging metamaterials with tunability of negative Poisson’s 

ratios and stiffness. We further analyzed macroscopic deformation behaviors of lattices 

structures with periodically arranged microstructures under uniaxial compression. Their 

sizes or volumes can be easily changed, while their shapes almost remain the same.
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Chapter 4 Design of Multi-material Isotropic Auxetic 

Microstructures with Zero Thermal Expansion 

4.1. Introduction 

This chapter is a modified version of the journal paper titled “Design of multi-material 

isotropic auxetic microstructures with zero thermal expansion”, which was published in 

Materials & Design (Volume 222, 111051). 

As introduced in Chapter 3, auxetic metamaterials have drawn great attention due to 

their exceptional mechanical properties and wide-spread applications, such as anti-blast 

equipment, vibration dampeners, smart filtration, and biomedical implants. However, 

3D isotropic auxetic metamaterials with zero thermal expansion (ZTE) are still missing 

and in demand. The coefficient of thermal expansion (CTE) refers to the degree to 

which the length of a material changes in proportion to a change in temperature, 

typically expressed as a fractional value. It is a basic rule of physics that can affect the 

behavior and performance of materials and structures, particularly in applications where 

there are large temperature variations or thermal cycling. Understanding and controlling 

the CTE is therefore important in many fields of engineering and materials science. 

Most of common materials exhibit positive thermal expansion (PTE). They expand 

when they are heated and contract when they are cooled, as illustrated in Figure 4.1. 

This is because the atoms of these materials usually vibrate more vigorously and take up 

more space as the temperature rises, causing the materials to expand. 
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For metamaterials with non-positive thermal expansion coefficients, they exhibit 

unusual thermal deformation behaviors. For example, ZTE is a rare physical property,

while a material with ZTE can maintain its geometrical shape and dimension unchanged 

over a certain temperature range. Hence, a ZTE material is expected to be thermally 

dimensionally stable across a range of temperatures. Since it is hard to find a material in 

nature that can withstand temperature changes without deforming, artificially 

engineered materials with ZTE are in high demand and will find applications in many 

engineering domains, e.g., high-precision devices and optical devices, where 

dimensional stability is crucial for their performance and reliability.

Figure 4.1. Thermal deformation of PTE, ZTE, and NTE materials

In this chapter, we will focus on designing auxetic metamaterials with ZTE, which have 

more potential in practice for wide-ranging applications due to their thermal 

dimensional stability in temperature-changing environments and identical material 

properties in any direction.

Gibson and Ashby [199] showed that the CTE of a single-material open-cell foam is 

equal to the CTE of its constituent material. Therefore, it is theoretically impossible to 
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use a single constituent solid material with a non-zero CTE to design a ZTE 

microstructure. Only for a composite, it is possible to mix two or more constituent 

materials with dissimilar CTE values to achieve ZTE through designs [200, 201]. Hence, 

this chapter will develop a rational design method based on multi-material continuum 

topology optimization to find novel 3D isotropic NPR-ZTE microstructures. 

It is worthy of note that, nowadays multi-material additive manufacturing grows fast for 

fabricating customized components to achieve tailored properties in a single process. It 

has recently been explored to deliver multi-material components, but there are still 

issues in mixing multiple materials with variable composition and properties, such as 

distribution of different metals or alloys within one layer, and multi-material interfacial 

strength. Hence, by using numerical simulation techniques, the objective of this work is 

to provide insights into studying effective properties of topologically optimized designs, 

rather than physical prototyping and testing in a laboratory setting. 

 

4.2. Multi-material continuum topology optimization 

In this section, we develop a continuum topology optimization method for 

systematically designing 3D isotropic NPR-ZTE microstructures. First, we establish a 

mathematical optimization formulation in accordance with the characteristics of 

elastically cubic symmetric materials. Second, the density-based topology optimization 

method and the material interpolation models are briefly introduced. Third, we will 

rigorously derive the sensitivity formulas for the mathematical optimization formulation. 
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Finally, the implementation detail of imposing a geometric cubic symmetry constraint 

on the design domain is introduced. 

4.2.1. Homogenized coefficients of thermal expansion 

The systematic design method proposed in this chapter is under the assumption that 

every intermediate design during the optimization iterations has at least elastic cubic 

symmetry. This assumption is guaranteed by imposing a geometric cubic symmetry 

constraint on the design domain, the detail of which will be given later in Section 4.2.4. 

For any 3D linear elastic material with elastic cubic symmetry, its elastic stiffness 

matrix 𝑪 in the Voigt notation with engineering shear strains is given in Equation (3.1), 

and its CTE tensor 𝒂 must be isotropic as written in Equation (4.1). 

𝒂 = [𝑎11 𝑎11 𝑎11 0 0 0]T (4.1) 

Compared with anisotropic materials, we can see that the number of unique elastic 

constants is reduced from 21 to 3, and the number of unique thermal expansion 

coefficients changes from 6 to 1. Therefore, the definition of concerned material 

properties in topology optimization can be simplified. 

During optimization iterations, the computational homogenization method introduced in 

Section 2.3.2 is employed to evaluate intermediate designs’ effective material properties, 

including effective elastic stiffness matrices and effective coefficients of thermal 

expansion. In finite element analyses using solid elements for the homogenization, the 

periodic boundary conditions in Equation (2.21) can be imposed as multi-point 
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constraints in the matrix form: 

𝑮𝑼 = 𝑸 (4.2) 

where 𝑮 is a constant matrix and 𝑸 is a constant vector. Taking two independent 

equality constraints 𝑢3 − 𝑢1 =  1  and 𝑢4 − 𝑢2 =  0  as the example, they can be 

rewritten in the matrix form as [−1 0 1 0; 0 −1 0 1]{𝑢1 𝑢2 𝑢3 𝑢4}T = {1 0}T. 

Such multi-point constraints can be exactly satisfied by using the Lagrange multiplier 

method for finite element analysis. We give the equilibrium equations as Equation (4.3). 

[𝑲 𝑮𝑇

𝑮 𝟎
] {
𝑼
𝝀
} = {

𝑭
𝑸
} (4.3) 

where 𝝀 is the vector of unknown Lagrange multipliers, and 𝑭 is the nodal force 

vector. For the computational homogenization of 𝑪𝐻 based on prescribed macroscopic 

strains, the nodal values of 𝑭  are all zero except for the fixed node with zero 

displacements. 

Using the computational homogenization method, the vector of effective CTE tensor 

𝒂𝐻 of a microstructure can be calculated by: 

𝒂𝐻 = −𝑪𝐻
−1
𝝈𝑡ℎ (4.4) 

where 𝝈𝑡ℎ is the vector of average stress components calculated in a different load case 

that considers the thermal expansion effect of constituent materials. In this load case, a 

unit temperature increase is applied, and periodic boundary conditions in Equation (2.21) 

are also considered in the finite element analysis, but macroscopic average strain 
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components are all set as zero. The formula of 𝝈𝑡ℎ is: 

𝝈𝑡ℎ =
1

𝑉
∑(∫ 𝑫𝑒(𝑩𝑒𝒖𝜃

𝑒 − 𝜶𝑒)𝑑Ω𝑒
Ω𝑒

)

𝑛

𝑒=1

 (4.5) 

where 𝑫𝑒 , 𝑩𝑒 , 𝜶𝑒 , and Ω𝑒  are respectively the elastic stiffness matrix, the 

strain-displacement matrix, the thermal expansion coefficient vector, and the volume of 

the 𝑒th element in the finite element analysis. The subscript 𝜃 represents the load case 

considering thermal expansion effects. 𝑛 is the total number of elements. 

Since a stress-form 𝝈𝑡ℎ will lead to difficulties on sensitivity derivations, based on the 

following Hill-Mandel lemma [152]: 

𝝈 ∶ 𝜺 = 〈𝝈〉 ∶ 〈𝜺〉 = 〈𝝈 ∶ 𝜺〉 (4.6) 

we can rewrite 𝝈𝑡ℎ to be a mutual energy form as follows: 

𝝈𝑡ℎ = 𝑰 𝝈𝑡ℎ =
1

𝑉
∑(∫ 𝒖𝜙

𝑒 𝑇𝑩𝑒
𝑇 𝑫𝑒(𝑩𝑒𝒖𝜃

𝑒 − 𝜶𝑒)𝑑Ω𝑒
Ω𝑒

)

𝑛

𝑒=1

 (4.7) 

where 𝑰  is an identity matrix representing macroscopic strain fields for the 

homogenization of 𝑪𝐻 , and the subscript 𝜙  represents the six load cases for 

calculating 𝑪𝐻. 

This energy-form 𝝈𝑡ℎ can be further rewritten as the finite element discretization form: 

𝝈𝑡ℎ =
1

𝑉
∑(∫ 𝒖𝜙

𝑒 𝑇𝑩𝑒
𝑇𝑫𝑒𝑩𝑒𝒖𝜃

𝑒 − 𝒖𝜙
𝑒 𝑇𝑩𝑒

𝑇𝑫𝑒𝜶𝑒𝑑Ω𝑒
Ω𝑒

)𝑑Ω

𝑛

𝑒=1

 

=
1

𝑉
(𝑼𝜙

𝑇𝑲𝑼𝜃 −𝑼𝜙
𝑇𝑭𝜃) 

（4.8) 
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4.2.2. Mathematical optimization formulation 

The necessary and sufficient condition for a stiffness matrix 𝑪 given in Equation (3.1) 

to be elastically isotropic is given in Equation (3.2). Once the condition of isotropy is 

satisfied, the Poisson’s ratio 𝜈 and Young’s modulus 𝐸 can be calculated by Equation 

(3.3) and (3.4). When the Poisson’s ratio is required to be a given value 𝜈obj, the 

necessary and sufficient condition required for the elastic constants will be defined as 

Equation (4.9). Moreover, if the given Poisson’s ratio is non-zero, 𝐸  is directly 

proportional to 𝐶12, which is rewritten in Equation (4.10). We can find that the Young’s 

modulus 𝐸 will become larger when 𝐶12 becomes smaller if −1 < 𝜈obj < 0. 

𝜈obj

1 − 𝜈obj
𝐶11 − 𝐶12 = 0 (4.9) 

𝐸 =
1 − 𝜈obj − 2𝜈obj

2

𝜈obj
𝐶12 (4.10) 

To simultaneously achieve three optimization targets, i.e., elastic isotropy, negative 

Poisson’s ratio, and zero thermal expansion, three corresponding quadratic penalty 

terms are added into the objective function. Based on Equation (3.2), the minimization 

of (𝐶11 − 𝐶12 − 2𝐶44)2  can ensure that the optimized microstructure is isotropic. 

Based on Equation (4.9), the minimization of ((𝜈obj/(1 − 𝜈obj))𝐶11 − 𝐶12)
2

 can 

ensure that the optimized microstructure has a Poisson’s ratio approaching the specific 

value. Based on Equation (4.1), the minimization of 𝑎112 can ensure that the optimized 

microstructure has a nearly zero thermal expansion coefficient. Moreover, to avoid an 

optimized design with impractically low stiffness, the minimization of 𝐶12 is also 
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added into the objective function to enhance the Young’s modulus based on Equation 

(4.10). 

Two upper limits are respectively applied to the total volume of all solid materials and 

the volume of one specific solid phase material, which are imposed as the inequality 

constraints. The values of upper limits can be decided depending on the requirements of 

specific application situations. 

To design a 3D microstructure, the design domain for topology optimization is defined 

as a cube. Since one of the optimization targets is to achieve ZTE, at least two phases of 

solid materials with dissimilar CTE values will be required in the design. Therefore, this 

is a multi-material optimization problem, and two types of artificial element densities 

will be used to describe structural topologies. 

Finally, a general mathematical optimization formulation can be defined as in Equation 

(4.11), where 𝝆 is a vector of design variables related to artificial densities of each 

element, 𝑉𝑠 and 𝑉𝑠2 are the material volumes respectively of all solid phases and the 

second solid phase, 𝑉max𝑠  and 𝑉max𝑠2  are the corresponding allowable maximum 

volumes. To enhance the optimization performance, the appropriate values of weight 

factors 𝝎  in the objective function can be normalized by reference values of 

constituent materials. For instance, the four weight factors are respectively 1 𝜔𝑠⁄ , 

1e4 𝜔𝑟𝑒𝑓𝑠
2⁄ , 1e4 𝜔𝑟𝑒𝑓𝑠

2⁄ , and 1e2 𝜔𝑟𝑒𝑓𝑐
2⁄  for the numerical example in Section 

4.3.1, where 𝜔𝑟𝑒𝑓𝑠 and 𝜔𝑟𝑒𝑓𝑐 are respectively selected from the Young’s modulus and 
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the CTE value of one constituent material. 

When the objective function is minimized, the three quadratic penalty terms will all 

approach zero and then ensure that the optimized design is elastically isotropic, has a 

prescribed negative Poisson’s ratio, and has a nearly zero CTE value. 

Find:      𝝆 = [𝝆1 𝝆2] = [𝜌1
1 𝜌2

1 … 𝜌𝑛−1
1 𝜌𝑛

1 𝜌1
2 𝜌2

2 … 𝜌𝑛−1
2 𝜌𝑛

2] 

(4.11) Min:       

𝑓(𝝆) = 𝜔𝑠𝑡𝑖𝑓𝑓𝐶12
𝐻(𝝆) + 𝜔𝑖𝑠𝑜 (𝐶11

𝐻(𝝆) − 𝐶12
𝐻(𝝆) − 2𝐶44

𝐻(𝝆))
2

      +𝜔𝑛𝑝𝑟 (
𝜈obj

1 − 𝜈obj
𝐶11

𝐻(𝝆) − 𝐶12
𝐻(𝝆))

2

+𝜔𝑧𝑡𝑒𝑎11
𝐻(𝝆)2

   

 

S. t.         {
𝑉𝑠(𝝆) ≤ 𝑉max

𝑠

𝑉𝑠2(𝝆) ≤ 𝑉max
𝑠2  

 

4.2.3. Multi-material density-based method 

In the density-based topology optimization method, each element in the mesh is 

assigned with two artificial density variables to represent its material constituent. For 

each element, the first density variable �̃�1 represents the element is solid or void, and 

the second density variable �̃�2 represents which solid material the element will have. 

The value of each artificial density variable continuously varies between 0 and 1. For 

the 𝑒-th element with intermediate densities, the values of its material properties are 

calculated using the following material interpolation models: 

𝑫𝑒 = 𝑫𝑒
1 + �̃�𝑒

1𝑃(𝑫𝑒
2 −𝑫𝑒

1) + �̃�𝑒
1𝑃�̃�𝑒

2𝑃(𝑫𝑒
3 −𝑫𝑒

2) (4.12) 

 

𝜶𝑒 = 𝜶𝑒
1 + �̃�𝑒

1(𝜶𝑒
2 − 𝜶𝑒

1) + �̃�𝑒
1�̃�𝑒

2(𝜶𝑒
3 − 𝜶𝑒

2) (4.13) 
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where 𝑫𝑒𝑙  and 𝜶𝑒𝑙  are respectively the elastic stiffness matrix and the thermal 

expansion coefficient vector of the 𝑙-th phase of constituent materials (𝑙 = 1, 2, 3). 𝑃 

is a parameter of the power-law relationship for the interpolation model in Eq (4.12), 

which is selected as 3 for the numerical example in Section 4.3.1. However, there is no 

need to apply such a power-law interpolation to 𝜶𝑒 in Eq (4.13), since black-white 

optimized designs can already be obtained by using a linearly interpolated CTE value. 

In this chapter, the first phase is void and the rest two are solids. The void will be treated 

as weak material with properties, i.e., 𝑫𝑒1  and 𝜶𝑒1 , to avoid numerical instability, 

defined by designers before the optimization. Hence, weak material properties are 

independent of the second solid density variables and keep unchanged during the 

optimization. 

For the volume constraints in the optimization formulation, they are calculated using the 

following material interpolation models: 

𝑉𝑠 =∑ 𝑣𝑒
𝑠

𝑛

𝑒=1
=∑ (�̃�𝑒

1𝑣𝑒)
𝑛

𝑒=1
 (4.14) 

 

𝑉𝑠2 =∑ 𝑣𝑒
𝑠2

𝑛

𝑒=1
=∑ (�̃�𝑒

1(1 − �̃�𝑒
2)𝑣𝑒)

𝑛

𝑒=1
 (4.15) 

where 𝑣𝑒𝑠 and 𝑣𝑒𝑠2 are respectively the materials volumes of all solid phases and the 

second solid phase for the 𝑒-th element, and 𝑣𝑒 is the spatial volume of the 𝑒-th 

element. 

By changing the elemental density field values of a fixed finite element mesh, the 
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spatial distribution of materials in the design domain can be changed. Therefore, 

optimization of topologies can be realized by linking design variables with elemental 

densities using the density filtering given in Equation (4.16) and the threshold 

projection in Equation (4.17). 

�̂�𝑒
𝑙 =

∑ (𝑟𝑓 − 𝑑𝑒𝑗)𝑣𝑗𝜌𝑗
𝑙

𝑗∈ℕ𝑒

∑ (𝑟𝑓 − 𝑑𝑒𝑗)𝑣𝑗𝑗∈ℕ𝑒

 (4.16) 

where ℕ𝑒 are the set of all neighboring elements whose distance to the 𝑒-th element is 

smaller than a specified filter radius 𝑟𝑓; 𝑑𝑒𝑗 is the Euclidean distance between centers 

of the 𝑒-th and the 𝑗-th elements. 

�̃�𝑒
𝑙 =

tanh(𝛽𝜂) + tanh(𝛽�̂�𝑒
𝑙 − 𝛽𝜂)

tanh(𝛽𝜂) + tanh(𝛽 − 𝛽𝜂)
 (4.17) 

where 𝛽  and 𝜂  are parameters that can be automatically adjusted during the 

optimization. For further details about the filtering and the projection schemes, the 

readers can refer to [19]. 

4.2.4. Geometric constraint 

As mentioned in Section 4.2.1, a geometric cubic symmetry constraint is applied on the 

design domain to guarantee that every intermediate design during the optimization has 

at least elastic cubic symmetry. In this chapter, such a geometric constraint is imposed 

by clustering the densities of symmetric elements. As illustrated in Figure 4.2, the 

cubical design domain is divided into 48 subdomains by 9 symmetric planes. For every 

two elements, respectively from two subdomains, that are symmetric about one of the 
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planes, they have the same density values. In other words, for each element in one 

subdomain, it has the same density values as other 47 corresponding elements. 

Therefore, design variables are assigned to only one of the subdomains, which is named 

as the primary subdomain. 

After elemental density values of the primary subdomain are calculated by the density 

filtering and the threshold projection from the design variables, density values of other 

subdomains can be easily obtained based on the clustering relationship given as follows: 

�̃�𝐸
𝑙 = �̃�𝑒

𝑙       (∀ 𝑒 ∈ ℚ,    ∀ 𝐸 ∈ ℤ𝑒) (4.18) 

where ℚ is the set of all elements in the primary subdomain, and ℤ𝑒 is the set of 48 

elements that are clustered to the 𝑒th element including the 𝑒-th element itself. To 

guarantee that each element in the primary subdomain can find its uniquely 

corresponding 47 elements in other subdomains, the total mesh of the full design 

domain is assembled by the unstructured mesh of the primary subdomain using solid 

elements with repeated mirror operations, which is illustrated in Figure 4.2. 

4.2.5. Sensitivity analysis 

To utilize the benefits of mathematical programming algorithms to solve optimization 

problems, sensitivities of the objective function and the constraint functions to the 

design variables will be rigorously derived here. Based on the chain rule, the sensitivity 

for any function ℋ to a design variable 𝜌𝑘𝑙  is given by: 
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Figure 4.2. Geometric cubic symmetry of a continuum design domain

∂ℋ

∂𝜌𝑘
𝑙 =∑ ((∑

∂ℋ

∂�̃�𝐸
𝑙

𝐸∈ℤ𝑒

)
∂�̃�𝑒

𝑙

∂�̂�𝑒
𝑙

∂�̂�𝑒
𝑙

∂𝜌𝑘
𝑙 )

𝑒∈ℕ𝑘

, 𝑙 = 1, 2 𝑘 = 1, 2, … ,
𝑛

48
(4.19)

For the density filtering, from Equation (4.16) we will have

∂�̂�𝑒
𝑙

∂𝜌𝑘
𝑙 =

(𝑟𝑓 − 𝑑𝑒𝑘)𝑣𝑘

∑ (𝑟𝑓 − 𝑑𝑒𝑗)𝑣𝑗𝑗∈ℕ𝑒

(4.20)

For the threshold projection, Equation (4.17) gives

∂�̃�𝑒
𝑙

∂�̂�𝑒
𝑙 = 𝛽

1 − tanh2(𝛽�̂�𝑒
𝑙 − 𝛽𝜂)

tanh(𝛽𝜂) + tanh(𝛽 − 𝛽𝜂)
(4.21)

The sensitivities of constraint functions with respect to the elemental densities can be 

derived from Equation (4.14) and Equation (4.15) as follows:

{
 
 

 
 
∂𝑉𝑠

∂�̃�𝑒
1
= 𝑣𝑒

∂𝑉𝑠

∂�̃�𝑒
2
= 0

(4.22)

{
 
 

 
 
∂𝑉𝑠2

∂�̃�𝑒
1
= (1 − �̃�𝑒

2)𝑣𝑒

∂𝑉𝑠2

∂�̃�𝑒
2
= −�̃�𝑒

1𝑣𝑒

(4.23)
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In accordance with Equation (4.11), the sensitivity of the objective function with respect 

to any elemental density can be derive by 

∂𝑓

∂�̃�𝑒
𝑙 = 𝜔𝑠𝑡𝑖𝑓𝑓

∂𝐶12
𝐻

∂�̃�𝑒
𝑙 + 2𝜔𝑧𝑡𝑒𝑎11

𝐻
∂𝑎11

𝐻

∂�̃�𝑒
𝑙  

+2𝜔𝑖𝑠𝑜(𝐶11
𝐻 − 𝐶12

𝐻 − 2𝐶44
𝐻) (

∂𝐶11
𝐻

∂�̃�𝑒
𝑙 −

∂𝐶12
𝐻

∂�̃�𝑒
𝑙 − 2

∂𝐶44
𝐻

∂�̃�𝑒
𝑙 ) 

+2𝜔𝑛𝑝𝑟 (
𝜈obj

1 − 𝜈obj
𝐶11

𝐻 − 𝐶12
𝐻)(

𝜈obj

1 − 𝜈obj

∂𝐶11
𝐻

∂�̃�𝑒
𝑙 −

∂𝐶12
𝐻

∂�̃�𝑒
𝑙 ) 

(4.24) 

From Equation (2.20) we can have 

∂𝐶𝑖𝑗
𝐻

∂�̃�𝑒
𝑙 =

1

𝑉

𝜕(𝑼𝑖
𝑇𝑲𝑼𝑗)

𝜕�̃�𝑒
𝑙 =

1

𝑉
(
𝜕𝑼𝑖

𝑇

𝜕�̃�𝑒
𝑙 𝑲𝑼𝑗 + 𝑼𝑖

𝑇 𝜕𝑲

𝜕�̃�𝑒
𝑙 𝑼𝑗 + 𝑼𝑖

𝑇𝑲
𝜕𝑼𝑗

𝜕�̃�𝑒
𝑙 ) (4.25) 

From the equilibrium using the Lagrange multiplier method to deal with periodic 

boundary conditions in Equation (4.3), we can rewrite the above equation as Equation 

(4.26) 

{
𝑲𝑼 = 𝑭 − 𝑮𝑇𝝀
𝑮𝑼 = 𝑸

 (4.26) 

Then differentiating both sides of the above second equation gives 

𝑮
𝜕𝑼

𝜕�̃�𝑒
𝑙 +

𝜕𝑮

𝜕�̃�𝑒
𝑙 𝑼 = 𝑮

𝜕𝑼

𝜕�̃�𝑒
𝑙 =

𝜕𝑸

𝜕�̃�𝑒
𝑙 = 𝟎 (4.27) 

All degrees of freedom (DOFs) are divided into three groups: DOFs of the fixed node 

using the superscript 0, DOFs of the nodes imposed with multi-point constraints using 

the superscript m, and DOFs of the remaining free nodes using the superscript f. As 

mentioned in Section 4.2.1, we can know that 𝑼𝑖0, 𝑭𝑗𝑚 , and 𝑭𝑗
𝑓 are all zero matrices 

for the six load cases to calculate 𝑪𝐻, and therefore we can derive the following 
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equation: 

𝜕𝑼𝑖
𝑇

𝜕�̃�𝑒
𝑙 𝑭𝑗 = 

𝜕𝑼𝑖
0𝑇

𝜕�̃�𝑒
𝑙 𝑭𝑗

0 +
𝜕𝑼𝑖

𝑚𝑇

𝜕�̃�𝑒
𝑙 𝑭𝑗

𝑚𝑇 +
𝜕𝑼𝑖

𝑓𝑇

𝜕�̃�𝑒
𝑙 𝑭𝑗

𝑓𝑇
 

= 𝟎𝑇𝑭𝑗
0 +

𝜕𝑼𝑖
𝑚𝑇

𝜕�̃�𝑒
𝑙 𝟎 +

𝜕𝑼𝑖
𝑓𝑇

𝜕�̃�𝑒
𝑙 𝟎 = 0 

(4.28) 

Substituting Equation (4.26-4.28) into Equation (4.25) leads to 

𝜕𝑼𝑖
𝑇

𝜕�̃�𝑒
𝑙 𝑲𝑼𝑗 =

𝜕𝑼𝑖
𝑇

𝜕�̃�𝑒
𝑙 (𝑭𝑗 − 𝑮

𝑇𝝀𝑗) =
𝜕𝑼𝑖

𝑇

𝜕�̃�𝑒
𝑙 𝑭𝑗 − (𝑮

𝜕𝑼𝑖

𝜕�̃�𝑒
𝑙 )

𝑇

𝝀𝑗 = 0 − 𝟎
𝑇𝝀𝑗 = 0 (4.29) 

Therefore, Equation (4.25) can be simplified as Equation (4.30), which is the sensitivity 

of an effective elastic constant with respect to an elemental density. 

∂𝐶𝑖𝑗
𝐻

∂�̃�𝑒
𝑙 =

1

𝑉
𝑼𝑖

𝑇 𝜕𝑲

𝜕�̃�𝑒
𝑙 𝑼𝑗 =

1

𝑉
(𝒖𝑖

𝑒𝑇
𝜕𝒌𝑒

𝜕�̃�𝑒
𝑙 𝒖𝑗

𝑒) (4.30) 

From Equation (4.8), the sensitivity of macroscopic thermal stress vector can be written 

by 

∂𝝈𝑡ℎ

∂�̃�𝑒
𝑙 =

1

𝑉
(
∂(𝑼𝜙

𝑇𝑲𝑼𝜃)

∂�̃�𝑒
𝑙 −

∂𝑼𝜙
𝑇

∂�̃�𝑒
𝑙 𝑭𝜃 − 𝑼𝜙

𝑇 ∂𝑭𝜃

∂�̃�𝑒
𝑙 ) 

=
1

𝑉
(
𝜕𝑼𝜙

𝑇

𝜕�̃�𝑒
𝑙 𝑲𝑼𝜃 + 𝑼𝜙

𝑇 𝜕𝑲

𝜕�̃�𝑒
𝑙 𝑼𝜃 +𝑼𝜙

𝑇𝑲
𝜕𝑼𝜃

𝜕�̃�𝑒
𝑙 −

∂𝑼𝜙
𝑇

∂�̃�𝑒
𝑙 𝑭𝜃 −𝑼𝜙

𝑇 ∂𝑭𝜃

∂�̃�𝑒
𝑙 ) 

(4.31) 

As given in Section 4.2.1, 𝑼𝜃0 , 𝑭𝜙𝑚 , and 𝑭𝜙
𝑓  are all zero matrices, and therefore: 

𝜕𝑼𝜃
𝑇

𝜕�̃�𝑒
𝑙 𝑭𝜙 = 

𝜕𝑼𝜃
0𝑇

𝜕�̃�𝑒
𝑙 𝑭𝜙

0 +
𝜕𝑼𝜃

𝑚𝑇

𝜕�̃�𝑒
𝑙 𝑭𝜙

𝑚𝑇 +
𝜕𝑼𝜃

𝑓𝑇

𝜕�̃�𝑒
𝑙 𝑭𝜙

𝑓 𝑇
 

= 𝟎𝑇𝑭𝜙
0 +

𝜕𝑼𝜃
𝑚𝑇

𝜕�̃�𝑒
𝑙 𝟎 +

𝜕𝑼𝜃
𝑓𝑇

𝜕�̃�𝑒
𝑙 𝟎 = 0 

(4.32) 
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From Equation (4.26)-(4.28), we can obtain the following equations: 

{
 
 

 
 𝜕𝑼𝜙

𝑇

𝜕�̃�𝑒
𝑙 𝑲𝑼𝜃 =

𝜕𝑼𝜙
𝑇

𝜕�̃�𝑒
𝑙
(𝑭𝜃 − 𝑮

𝑇𝝀𝜃) =
𝜕𝑼𝜙

𝑇

𝜕�̃�𝑒
𝑙 𝑭𝜃 − (𝑮

𝜕𝑼𝜙

𝜕�̃�𝑒
𝑙 )

𝑇

𝝀𝜃 =
𝜕𝑼𝜙

𝑇

𝜕�̃�𝑒
𝑙 𝑭𝜃

𝜕𝑼𝜃
𝑇

𝜕�̃�𝑒
𝑙 𝑲𝑼𝜙 =

𝜕𝑼𝜃
𝑇

𝜕�̃�𝑒
𝑙 (𝑭𝜙 − 𝑮

𝑇𝝀𝜙) =
𝜕𝑼𝜃

𝑇

𝜕�̃�𝑒
𝑙 𝑭𝜙 − (𝑮

𝜕𝑼𝜃

𝜕�̃�𝑒
𝑙 )

𝑇

𝝀𝜙 = 0

 (4.33) 

Substituting Equation (4.33) into Equation (4.31) gives 

∂𝝈𝑡ℎ

∂�̃�𝑒
𝑙 =

1

𝑉
(
𝜕𝑼𝜙

𝑇

𝜕�̃�𝑒
𝑙 𝑭𝜃 + 𝑼𝜙

𝑇 𝜕𝑲

𝜕�̃�𝑒
𝑙 𝑼𝜃 −

∂𝑼𝜙
𝑇

∂�̃�𝑒
𝑙 𝑭𝜃 − 𝑼𝜙

𝑇 ∂𝑭𝜃

∂�̃�𝑒
𝑙 ) 

=
1

𝑉
(𝑼𝜙

𝑇 𝜕𝑲

𝜕𝜌
𝑼𝜃 − 𝑼𝜙

𝑇 ∂𝑭𝜃
∂𝜌

) 

(4.34) 

Based on Equation (4.4), (4.30), and (4.34), we can finally obtain the sensitivity of 

thermal expansion coefficients with respect to an elemental density, based on the 

energy-based homogenization method: 

∂𝒂𝐻

∂�̃�𝑒
𝑙 = −

∂(𝑪𝐻
−1
)

∂�̃�𝑒
𝑙 𝝈𝑡ℎ − 𝑪

𝐻−1
∂𝝈𝑡ℎ

∂�̃�𝑒
𝑙 = 𝑪

𝐻−1
∂𝑪𝐻

∂�̃�𝑒
𝑙 𝑪

𝐻−1𝝈𝑡ℎ − 𝑪
𝐻−1

∂𝝈𝑡ℎ

∂�̃�𝑒
𝑙  

= −𝑪𝐻
−1
(
∂𝑪𝐻

∂�̃�𝑒
𝑙 𝒂

𝐻 +
∂𝝈𝑡ℎ

∂�̃�𝑒
𝑙 ) 

(4.35) 

After obtaining the sensitivities based on finite element analysis results, the method of 

moving asymptotes [202] can be adopted to solve the constrained optimization design 

problem. 

 

4.3. Numerical results 

In the numerical example, a 3D isotropic NPR-ZTE microstructure is topologically 
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designed to demonstrate the effectiveness of the proposed optimization design method. 

In this section, we will show a high-resolution design from different aspects and 

individual geometries of two constituent materials. Based on the computational 

homogenization method, we studied the effective properties of the optimized 

microstructure to validate its auxetic and ZTE properties. We also visualize the spatial 

variation of its elastic properties to quantitatively showcase its elastic isotropy. 

Moreover, we conduct numerical analyses for a lattice structure to verify the 

macroscopic deformation behaviors of the optimized design. 

4.3.1. An isotropic NPR-ZTE microstructure 

For the proposed multi-material topology optimization method, three constituent 

materials are distributed in the design domain. In this chapter, we used Nickel and Invar 

as the two solid phase materials, the properties of which are listed in Table 4.1. An 

artificial weak material is also assigned to voids. 

Table 4.1. Properties of constituent materials 

 Nickel Invar Void 
Young’s modulus (GPa) 200 150 2.0e-7 

Poisson’s ratio 0.31 0.31 0.31 
Thermal expansion 
coefficient (1e-6/℉) 7.3 0.8 7.3 

Density (Kg/m3) 8890 8100 0 

Based on these constituent materials, a multi-material microstructure is finally obtained 

though the optimization design, as shown in Figure 4.3a. Here, the green part is filled 

with Nickel, while the blue part is filled with Invar. The artificial void phase material is 
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not included in this final design. It is achieved by gradually removing regions full filled 

with void phase material from the design domain. Topology optimization will be 

conducted on the updated and remeshed design domain, which uses the last optimized 

design as the initial guess. Since the design domain is approaching the solid part step by 

step, a final optimized design with refined geometric surfaces can be obtained as shown 

in Fig. 4.3, which fully illustrates the effectiveness of this proposed method. Evolution 

histories are not given for these multiple times of topology optimization for the brevity. 

Different views of the topologically optimized microstructure and individual geometries 

of two solid materials are also shown in Figure 4.3b and Figure 4.3c. We can see that 

the microstructure is a composite structure which has a geometric cubic symmetry and 

contains a smaller portion of Invar. Assuming that the design domain for topology 

optimization is a 1mm × 1mm × 1mm cube, the geometrical volume of the optimized 

microstructure is 0.29 mm3, while the volume of Nickel is 0.241 mm3 and the volume of 

Invar is 0.049 mm3. Therefore, the effective mass density of the microstructure is about 

2537 Kg/m3. 

Fabrication of such advanced lattice structures with multiple metallic materials using 

current industrial standard additive manufacturing equipment is challenging, but it is 

possible due to the recent rapid advancement of additive manufacturing techniques. 

Over the past few years, selective laser melting based techniques have been developed 

to manufacture multi-material structures with different metals mostly distributed along a 

specific direction, e.g., the vertical [203] or the horizontal [204] direction. A modified 
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selective laser melting technique, which was combined with point-by-point powder 

dispensing and selective material removal, was also developed to deposit multiple 

metals both within the same layer and across different layers [205]. A selective powder 

deposition technique was invented to deposit up to three different metals simultaneously 

in a single layer [206]. Direct energy deposition techniques with multiple nozzles have 

also been developed for depositing multiple metals with full spatial distributions [207]. 

 

a) 

  

b) c) 

Figure 4.3. An isotropic NPR-ZTE microstructure (Note: rendered effect): a) 

Composite microstructure; b) Isometric view of two constituents; c) Top view of two 

constituents 
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4.3.2. Effective material properties 

To calculate the effective properties more accurately, we remove the part of artificial 

weak material from the voids in the design domain and only re-mesh the solid parts. The 

model used for the computational homogenization will then has about 4.88 million solid 

elements and 2.81 million degrees of freedom, which is shown in Figure 4.4 with a 

zoom in view indicated by the green color dash box. 

The effective elastic stiffness matrix of the microstructure calculated by the 

computational homogenization is given in Table 4.2. The corresponding elastic 

properties in three averaging schemes are also calculated and shown in Table 4.3. For 

theories and formulas of averaging schemes, the readers can refer to [198]. We can see 

that no matter which averaging scheme is used, the optimized multi-material 

microstructure has an effective Young’s modulus 2.6084 GPa and a negative Poisson’s 

ratio -0.4318. 

We further studied the spatial dependence of Young’s modulus, shear modulus, and 

Poisson’s ratio as 3D surfaces, which are shown in Figure 4.5. Besides the graphical 

representations of directional elastic properties, we also quantitatively compare their 

extreme values as listed in Table 4.4. For each directional property, a measure of 

anisotropy is defined as the ratio of its maximum value to its minimum value. We can 

find that the surfaces of directional elastic properties are almost spheres, and the ratios 

of extreme values are all nearly one. Therefore, the microstructure designed in this 

chapter are elastically isotropic. 
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Figure 4.4. Finite element mesh model

Table 4.2. Effective elastic stiffness matrix (GPa)

[
 
 
 
 
 
3.5554 −1.0779 −1.0779 0.0000 0.0000 0.0000
−1.0779 3.5554 −1.0779 0.0000 0.0000 0.0000
−1.0779 −1.0779 3.5554 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 2.2815 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 2.2815 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 2.2815]

 
 
 
 
 

Table 4.3. Average elastic properties

Voigt scheme Reuss scheme Hill scheme
Bulk modulus (GPa) 0.4665 0.4665 0.4665
Shear modulus (GPa) 2.2955 2.2954 2.2955

Young’s modulus (GPa) 2.6084 2.6084 2.6084
Poisson’s ratio -0.4318 -0.4318 -0.4318

We further studied the spatial dependence of Young’s modulus, shear modulus, and 

Poisson’s ratio as 3D surfaces, which are shown in Figure 4.5. Besides the graphical 
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representations of directional elastic properties, we also quantitatively compare their 

extreme values as listed in Table 4.4. For each directional property, a measure of 

anisotropy is defined as the ratio of its maximum value to its minimum value. We can 

find that the surfaces of directional elastic properties are almost spheres, and the ratios 

of extreme values are all nearly one. Therefore, the microstructure designed in this 

chapter are elastically isotropic. 

Table 4.4. Extreme values of directional elastic properties 

 Minimum value Maximum value Anisotropy ratio 
Shear modulus (GPa) 2.2815 2.3166 1.0154 

Young’s modulus (GPa) 2.6024 2.6175 1.0058 
Poisson’s ratio -0.4351 -0.4289 0.9857 

For a comparison, three topologically optimized auxetic microstructures from [194, 195, 

208] are selected to analyze their directional Poisson’s ratios. These microstructures are 

shown in Figure 4.6, and their surfaces of Poisson’s ratios are shown in Figure 4.7. We 

can see that they only exhibit negative Poisson’s ratios in narrow ranges of loading 

directions and even exhibit a large positive Poisson’s ratio in some specific directions. 

The effective CTE values of the microstructure calculated by using the computational 

homogenization are listed in Table 4.5. Compared with the constituent materials, the 

microstructure has a negative isotropic thermal expansion coefficient -2.6247e-9/℉, the 

absolute value of which is relatively very small and can be approximately regarded as 

zero. 
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a) 

 

b) 

 

c) 

 

d) 

 

e)   

Figure 4.5. Surfaces of effective material properties: a) maximum shear modulus; b) 

minimum shear modulus; c) maximum Poisson’s ratio; d) minimum negative Poisson’s 

ratio; e) Young’s modulus (Unit for shear modulus and Young’s modulus: MPa) 

We will further analyze and compare effective properties of a single material 

microstructure when fully filled with only Nickel or Invar, which are listed in Table 4.6. 

Since they are still isotropic, only the Hill scheme of average elastic properties is given 
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here for the sake of simplicity. From the results given in Table 4.6, we can find that the 

composite microstructure has a much smaller thermal expansion coefficient than the 

microstructure filled with pure Nickel or Invar. Furthermore, it can be found that the 

mass density, bulk modulus, shear modulus, and Young’s modulus of the composite 

microstructure are between that of the Nickel and Invar. 

   

a) b) c) 

Figure 4.6. Non-isotropic auxetic microstructures (Reprinted from [194, 195, 208]) 

If intermediate elemental densities of this topologically optimized design are remained, 

such a microstructure without post-processing has a Hill average Young’s modulus 

2.5892 GPa, a Hill average Poisson’s ratio -0.4300, and a nearly zero CTE value 

-2.7394e-9/℉. The relative errors between them and values in Table 4.4-4.5 are 

respectively 0.74%, 0.42%, and 4.37%. Since two CTE values are nearly zero, their 

absolute error is actually very small. Therefore, the post-processed design has almost 

the same performance when compared to the original optimized design with 

intermediate densities. 
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Table 4.5. Effective coefficients of thermal expansion (Unit: 1e-9/℉) 

𝛼11 𝛼22 𝛼33 𝛼23 𝛼13 𝛼12 

-2.6247 -2.6247 -2.6247 0.0000 0.0000 0.0000 

4.3.3. Numerical verifications using a lattice structure 

To further verify the auxetic and ZTE behaviors at the macroscopic level, we conduct 

linear static finite element analysis of a lattice structure, which is periodically assembled 

by using 6 × 6 × 6 microstructures. This composite lattice structure is shown in as 

shown in Figure 4.8a. 

For the verification of its auxetic behavior, the lattice structure is uniaxially compressed, 

while it is free in other directions. For the verification of its ZTE behavior, roller 

boundary conditions are imposed on all out surfaces of the lattice structure to simulate 

surrounding structures which restrict its normal thermal expansion when subject to a 

temperature increase. To reduce the computational cost, we only use one eighth of the 

total structure for finite element analysis by utilizing geometric symmetry, e.g., the part 

given in Figure 4.8b. This smaller lattice structure is periodically assembled by 

3 × 3 × 3 microstructures. 

In the load case of the auxetic behavior, a prescribed displacement along the negative 

Z-direction is imposed on nodes on the plane Z=3mm, while roller boundary conditions 

are imposed on nodes, respectively, on the planes X=0, Y=0, and Z=0. In the load case 

of ZTE, roller boundary conditions are imposed on all outermost nodes, and there is a 

10℉ increase in temperature. The mesh of this lattice structure is assembled by the 
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microstructures as shown in Figure 4.4 with coincident nodes merged. It is a large-scale 

mesh with about 131.82 million solid elements and 75.21 million degrees of freedom. 

 a)  b) 

 c)  d) 

 e)  f) 

Figure 4.7. Surfaces of Poisson’s ratios for non-isotropic auxetic microstructures in 

[193, 194, 207]: Surfaces of minimum negative Poisson’s ratios for three 

microstructures are respectively given in a), c), and e); Surfaces of maximum positive 

Poisson’s ratios for three microstructures are respectively shown in b), d), and f) 
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a)

b)

Figure 4.8. Composite lattice structure (Note: rendered effect): a) Entire lattice structure 

periodically assembled by 6 × 6 × 6 microstructures; b) One eighth of the lattice

structure (in red color) used for finite element analysis

For the load case of the auxetic behavior, the directional displacement results of the 

lattice structure are shown in Figure 4.9a-c. Moreover, the deformed and undeformed 

shapes are respectively plotted on the planes X=3mm and Y=3mm to facilitate the
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observation of its auxetic behavior. As shown in Figure 4.9d and Figure 4.9e, for the 

undeformed shapes, only outlines in black color are plotted, while the deformed shapes 

are plotted as contours to represent the ratio of vertical to horizontal displacements. 

From these displacement results, we can find that the lattice structure exhibits an auxetic 

behavior in the horizontal directions when it is uniaxially compressed in the vertical 

direction. The negative ratio of horizontal to vertical displacements on the right and 

front faces varies from -0.40 to -0.48, which is slightly different from the effective 

Poisson’s ratio -0.43 due to the boundary effect of the lattice structure. When the lattice 

structure consists of more microstructures, the macroscopic behavior of the lattice 

structure should be closer to the homogenized behavior under the periodic boundary 

conditions. 

For the load case of the ZTE behavior, we are concerned with the total reaction forces 

with the surrounding structures. Therefore, the displacement results will not be shown 

here for the sake of simplicity. For this load case, three different finite element analyses 

are conducted for comparison purpose, in which the lattice structures are respectively 

Table 4.6. Comparison of effective properties when filled with different materials 

 Nickel Invar Optimized composite 
Bulk modulus (GPa) 0.5476 0.4107 0.4665 
Shear modulus (GPa) 2.5709 1.9282 2.2955 

Young’s modulus (GPa) 3.0068 2.2551 2.6084 
Poisson’s ratio -0.4152 -0.4152 -0.4318 

Thermal expansion 
coefficient (1e-6/℉) 7.3 0.8 -0.0026 

Mass density (Kg/m3) 2576 2347 2537 
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Table 4.7. Reaction forces of lattice structures filled with different materials (Unit: N)

Nickel Invar Optimized composite

Nodes on the plane
X=3mm

𝐹𝑥 -1.07929 -0.08871 0.00066
𝐹𝑦 0.00000 0.00000 0.00000
𝐹𝑧 0.00000 0.00000 0.00000

Nodes on the plane
Y=3mm

𝐹𝑥 0.00000 0.00000 0.00000
𝐹𝑦 -1.07931 -0.08871 0.00027
𝐹𝑧 0.00000 0.00000 0.00000

Nodes on the plane
Z=3mm

𝐹𝑥 0.00000 0.00000 0.00000
𝐹𝑦 0.00000 0.00000 0.00000
𝐹𝑧 -1.07931 -0.08871 0.00030

a) b) c)

d) e)

Figure 4.9. Displacement results in the NPR load case: a) Displacements in the 

X-direction; b) Displacements in the Y-direction; c) Displacements in the Z-direction; d) 

Negative ratios of displacements in the X-direction to displacements in the Z-direction 

for nodes on the plane X=3mm; e) Negative ratios of displacements in the Y-direction 

to displacements in the Z-direction for nodes on the plane Y=3mm
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two-phase, single-phase with Nickel, and single-phase with Invar. The reaction force 

results are listed in Table 4.7. It can be found that even when compared with Invar, an 

alloy is well-known to have a small thermal expansion coefficient, the normal reaction 

forces of the composite lattice structure are about 295 times smaller. In other words, the 

designed lattice structure can be considered to apply nearly zero reaction forces to its 

surrounding structures when subjected to a temperature change, which demonstrates 

that the designed microstructure has a nearly zero effective thermal expansion. 

 

4.4. Conclusion 

This work has developed a systematic design method to find novel 3D isotropic 

NPR-ZTE microstructures. A new augmented mathematical optimization formulation is 

established by incorporating multiple quadratic penalty terms into the objective function 

to simultaneously meet three design criteria, i.e., elastic isotropy, negative Poisson’s 

ratios, and zero thermal expansion. Moreover, the objective function can also ensure the 

stiffness of the optimized design. In the proposed method, a multi-material topology 

optimization method considering a geometric cubic symmetry constraint is used for the 

design problem. The element density clustering is imposed to guarantee that every 

intermediate design during the optimization has at least elastic cubic symmetry. The 

effective elastic stiffness matrix and thermal expansion coefficients are calculated by the 

energy-based homogenization technique based on finite element analysis. 

A novel isotropic microstructure with both negative Poisson’s ratios and zero thermal 
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expansion has been found to demonstrate the effectiveness of the proposed design 

method. As an example, this 3D NPR-ZTE microstructure has a geometric cubic 

symmetry and consists of Nickel and Invar as constituent materials. Since surfaces of 

directional elastic properties are almost spheres and the ratios of extreme property 

values are all nearly one, this microstructure is elastically isotropic. Numerical analyses 

for a lattice structure are conducted to verify its macroscopic auxetic and ZTE behaviors. 

The results show that the lattice structure shrinks in the horizontal directions when it is 

uniaxially compressed in the vertical direction. The lattice structure also applies nearly 

zero reaction forces to its surrounding structures under a temperature change. 
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Chapter 5 Design of Mechanical Metamaterials with Tunable 

Double-negative Isotropic Properties 

5.1. Introduction 

This chapter is a modified version of the journal paper titled “Multifunctional 

mechanical metamaterials with tunable double-negative isotropic properties”, which 

was published in Materials & Design (Volume 232, 112146). 

As mentioned in Chapter 4, most of common materials have positive CTE values. Only 

a minority of materials exhibit negative thermal expansion (NTE), which include metal 

oxides [209], zeolites [210], and metal-organic frameworks [211], etc. As illustrated in 

Figure 4.1, these materials contract upon heating and expand when cooled, which are 

opposite to PTE materials. NTE materials can be used to compensate the thermal 

deformation of PTE materials and help tailor the overall thermal expansion of 

composite structures to specific positive, zero, or even negative values. This can be 

particularly useful for structures subject to significant temperature variations or thermal 

cycling, e.g., satellites and heat sinks, which usually suffer from thermal stress problems 

and increasing probability of structural failure due to mismatch thermal expansion of 

their constituent materials. For instance, the Cu/ZrW2O8 composite can be used for 

heat sinks in electronic devices to reduce the thermal expansion mismatch with silicon 

chips [212]. The use of NTE materials as thermal-expansion compensators can find a 

wide range of industrial applications, e.g., low-temperature sensors [213], fiber optic 

systems [214], astronomical telescope mirrors [215], and thermoelectric converters 
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[216]. In composites, they can reduce the residual stress caused by thermal mismatch of 

different components, leading to improved durability and performance. 

Natural NTE materials are indeed rare and often have limitations in their properties, 

which has led to increased research interests on artificially engineered materials with 

unusual thermal expansion properties. As listed in Figure 5.1, by carefully designing the 

microstructure of a composite material and selecting appropriate constituent materials, 

achieving a desired NTE or ZTE value becomes possible, even if the constituent 

materials themselves have positive CTE values. This is because the thermal expansion 

behavior of a composite material is decided not only by the CTE of the constituent 

materials but also their arrangement and the relative proportions of each material. These 

materials can possess multiple benefits when compared to natural NTE materials, 

including greater tunability and the ability to be produced on different scales. In 1996, 

Lakes [217] proposed a 2D cellular solid with curved bi-layer ribs that can exhibit 

unbounded values of CTE, where each rib is made of two bonded layers of materials 

with dissimilar CTE values. After that, several microstructures with bi-layer ribs were 

reported to exhibit NTE, e.g., [218-222]. In 2005, some works [223, 224] developed 

strut-based microstructures that exhibit NTE along specific directions. A variety of 

strut-based microstructures that exhibit unusual thermal expansion properties have been 

found over the past twenty years, e.g., [225-235]. There are also some special types of 

architected metamaterials possessing unusual thermal expansion properties, such as 

multi-layered metal lattices [236], origami metamaterials with bi-layer plates [237], and 
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kirigami-inspired hierarchical metamaterials [238]. While there have been successful 

designs of metamaterials with negative thermal expansion, many of them have relied on 

a few existing architectures using empirical or intuitive design approaches. These 

approaches may limit the exploration of novel metamaterial architectures with even 

more unique and desirable properties. 

As mentioned before, auxetic metamaterials are another type of widely studied 

metamaterials exhibiting counterintuitive mechanical deformation behaviors. Nowadays, 

the demands of modern high-precision mechanical equipment necessitate the utilization 

of a combination of these types of deformations, as well as customized and isotropic 

properties. While for a solid material, properties of NPR and NTE/ZTE are not mutually 

exclusive. The combination of NTE and NPR in mechanical metamaterials can offer a 

greater variety of potential applications owing to a unique combination of the multiple 

negative properties, when compared to those metamaterials only having NTE or NPR. It 

can facilitate the invention of new sensors, actuators, soft robotics, and wearable 

technologies. For example, the negative thermal expansion can be utilized for 

temperature sensing and actuation, while the negative Poisson’s ratio can provide 

enhanced flexibility and adaptability to the material. Moreover, such multifunctional 

metamaterials can potentially be used in the construction of high-performance 

composites and protective materials, as they can offer improved resistance to thermal 

and mechanical stresses. 

Hence, the development of mechanical metamaterials with both NTE and NPR has the 
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potential to unlock new avenues for materials by design, and to revolutionize a wide 

range of industries. Although several works have attempted to develop metamaterials 

that can exhibit both NTE and NPR properties [220-222, 233-235], they have been 

designed using empirical design motifs, which limits the discovery of new designs. To 

overcome this limitation, there has been a growing fascination with developing 

advanced numerical design methods that can systematically and generatively create 

multifunctional metamaterials. These methods can be optimized to achieve specifically 

tailored multiple properties and explore a much wider design space. 

Nowadays, topology optimization has proven to be an essential tool to unlock 

distinctive advantages offered by additive manufacturing techniques for allowing 

fabrications of structures with intricate shapes and features. It provides a means for 

designing and optimizing microstructural architectures to achieve counterintuitive 

deformation, such as NPR and NTE. Sigmund and Torquato [239] first utilized a 

density-based method to create composites with extremal thermal expansion behavior. 

Subsequently, various topology optimization techniques were employed to generate a 

couple of auxetic metamaterials exhibiting either zero or negative CTE values. 

[240-243], but they are limited to 2D designs. In Chapter 4, a continuum topology 

optimization method is developed to design 3D multi-material microstructures that can 

simultaneously exhibit elastic isotropy, NPR, and ZTE. 
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Figure 5.1. Metamaterials with unusual thermal expansion properties

However, microstructures designed using continuum topology optimization methods 

often result in highly complex geometries and large material interfaces, making them 

difficult to be converted into parametric models and fabricated even with most 

up-to-date additive manufacturing methods. Additionally, continuum topology 

optimization methods typically necessitate large-scale finite element models to describe 

high-resolution lightweight designs. This is computationally prohibitive and impractical 

for generating a collection of 3D microstructures with a broad spectrum of tunable 

property values. In recent years, one of the significant challenges in materials by design

is achieving tunable performance by using a single microstructure. Although the design 

method proposed in Chapter 4 has higher ability to fully explore potential designs with 

complex geometries, it may be not suited for designing microstructures with parametric 

simple geometries and tunability of properties. However, strut-based microstructures

designed in Chapter 3 possess good tunabilities of effective material properties by 

changing cross-sections of struts. It inspires the study in this chapter to develop a 

generic and rational design method for the discovery of 3D strut-based lattice 

metamaterials that simultaneously possess elastic isotropy, tunable thermal expansion, 
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and tunable auxeticity. We will develop a discrete topology optimization method using a 

multi-material ground structure to create such multifunctional and tunable 

metamaterials with simple microstructural geometries and supports for multiple 

combinations of constituent materials. 

 

5.2. Computational design method 

This section will firstly develop a discrete topology optimization method based on a 3D 

multi-material strut-based ground structure. Then, an optimization formulation is 

established for designing microstructures of lattice materials with desired 

double-negative properties. 

5.2.1. Multi-material ground structure 

By properly selecting constituent materials, designing microstructural geometries, and 

determining the spatial distributions of multiple materials, novel lattice metamaterials 

with unconventional properties can be discovered using topology optimization methods. 

However, most of studies on multi-material topology optimization of metamaterials are 

using continuum-based methods [239-243]. The complex geometries produced by 

continuum topology optimization methods may impede their practical manufacturing 

and applications. Here, we propose a discrete topology optimization method based on a 

3D multi-material ground structure that consists of beams and has the geometric cubic 

symmetry. 
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The procedure of generating a ground structure with geometric cubic symmetry is 

illustrated in Figure 5.2a, which is the same as we proposed in Section 3.2.1. To further 

describe a bi-material candidate design, we need to define three algorithm parameters 

and assign two types of design variables. The algorithm parameters are described as 

follows. Firstly, we should determine 𝑛𝑔𝑝, the number of grid points along a principal 

axis, which is 5 in this work. As shown in Figure 5.2b, with a larger 𝑛𝑔𝑝, the ground 

structure consists of more bars and therefore can describe more complex topologies. 

However, at the same time, it has more design variables that will increase computational 

cost. In this work, we use 𝑛𝑔𝑝 = 5, since a 5 × 5 × 5 Cartesian point grid is sufficient 

for constructing a complicated ground structure as given in Figure 5.2a. Secondly, we 

will decide 𝑛𝑏1 and 𝑛𝑏2, the number of active bars composed of the first or second 

type of constituent material in the primary ground substructure. Since the ground 

structure is geometrically cubic symmetric, small values for these two parameters will 

be employed to create a bi-material design. In this work, we use 𝑛𝑏1 and 𝑛𝑏2 that are 

no larger than 5. The first type of design variables is to determine which bars are active 

in the final design, which consists of index numbers of active bars in the primary 

ground substructure. The first 𝑛𝑏1 and the latter 𝑛𝑏2 integer variables are, respectively, 

related to active bars composed of the first type and the second type of constituent 

material. The second type of design variables is the cross-sectional radius of each active 

bar in the primary ground substructure, which is continuous in a given range. We can 

know that the number of total design variables is 𝑛𝑣𝑎𝑟 = 2(𝑛𝑏1 + 𝑛𝑏2). 
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Based on the proposed ground structure, algorithm parameters, and design variables, a 

variety of strut-based bi-material microstructures with relatively simple geometries can 

be described, which can ease the fabrication and tunability of material properties. For 

instance, as illustrated in Figure 5.2c, a bi-material oct-truss microstructure with ZTE 

[200] can be described by the proposed ground structure. By defining the ground 

structure as a bi-material system, the design can have unusual thermal expansion 

properties due to the structural interaction of struts made of two materials with 

dissimilar CTE values. This multi-material ground structure allows for a wider range of 

tunable properties than a single-material system. It should be noted that in this research, 

different materials within the microstructure are assumed to be perfectly bonded, 

without considering effects induced by joints and graded interfaces. 

5.2.2. Mathematical optimization formulation 

We employ the computational homogenization method [152] to determine the effective 

elastic tensor 𝑪𝐻  and the effective CTE tensor 𝒂𝐻  of a periodic composite 

microstructure. To simulate slender and cylindrical bars within the ground structure, we 

utilize beam elements, which yield sufficiently accurate finite element results. Note that 

inactive bars in the ground structure are not removed from the finite element analysis to 

prevent a singular global stiffness matrix. These bars are composed of the first type of 

constituent material, and they are assigned an identical value for their cross-sectional 

radius, which is small enough to have a negligible impact on the homogenized results. 
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Figure 5.2. Multi-material Ground structure with the geometric cubic symmetry: a) 

Generation procedure; b) Ground structures respectively with 𝑛𝑔𝑝 = 3 and 𝑛𝑔𝑝 = 7; c) 

A bi-material example

During the calculation of homogenized CTE value, different from the method using 

solid elements in Chapter 4, the periodic boundary condition in Equation (2.23) should

also be considered in the finite element analysis using beam elements. Moreover, for 

assembling 𝑭𝜃 in Equation (4.8), the elemental thermal force of a 3D cylindrical beam 

is defined in the local coordinate system as follows:

𝑭𝜃
𝑒 = [

−𝐸𝛼∆𝑇𝐴 0 0 0 0 0
𝐸𝛼∆𝑇𝐴 0 0 0 0 0

]
𝑇

(5.1)

where 𝐸 and 𝛼 are respectively the Young’s modulus and the CTE of the constituent 
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material, ∆𝑇 and 𝐴 are respectively the temperature change and the cross-sectional 

area of the beam. 

The following mathematical optimization formulation is established for designing 

multifunctional metamaterials: 

Find: 𝝆 = [𝜌1 … 𝜌𝑛𝑏1 𝜌𝑛𝑏1+1 … 𝜌𝑛𝑏1+𝑛𝑏2 𝜌𝑛𝑏1+𝑛𝑏2+1 … 𝜌𝑛𝑣𝑎𝑟] 

(5.2) 
Min: 

𝑓(𝝆) = 𝜔𝑖𝑠𝑜 (
(𝐶11

𝐻(𝝆) − 𝐶12
𝐻(𝝆))

2𝐶44
𝐻(𝝆)

− 1)

2

+𝜔𝑝𝑟 (
𝐶12

𝐻(𝝆)

𝐶11
𝐻(𝝆) + 𝐶12

𝐻(𝝆)
+ 1)

2

 

+𝜔𝑐𝑡𝑒
𝛼11

𝐻(𝝆)

𝛼𝑟𝑒𝑓
+ 𝜔𝑔𝑒𝑜(𝑁𝑖𝑛𝑠(𝝆) + 𝑁𝑖𝑠𝑜𝑙(𝝆)) 

where 𝝆 is the vector of design variables that has been introduced in Section 5.2.1, 𝑓 

is the objective function that consists of multiple terms, and 𝜔 is the weight factor for 

each term. Four weight factors are respectively as 100, 1, 0.1, and 0.1 in this work. 

When the value of the first term in 𝑓(𝝆) is close to zero (its minimum value), the 

necessary and sufficient condition of elastic isotropy would be satisfied. The aim of the 

second term is to make the effective isotropic Poisson’s ratio negative and its absolute 

value as larger as possible. However, if we directly use 𝜈 in Equation (3.3) as the 

second term to be minimized, the optimization will tend to obtain non-isotropic designs 

with a very large NPR along principal directions. Based on the classical elasticity theory, 

the theoretical lower limit of an isotropic Poisson’s ratio is -1. Therefore, we use 

(𝜈 + 1)2  as the second term of 𝑓 . Since the minimum value of 𝜈  is -1, the 

optimization will no longer favor non-isotropic designs with 𝜈 ≪ −1, and then this will 
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reduce the conflict between elastic isotropy and NPR. The third term of 𝑓 is to make 

the effective isotropic CTE negative and its absolute value as larger as possible. Since 

every potential design described by the proposed ground structure must have isotropic 

CTE, we can directly use 𝛼11 in Equation (4.1) as the third term to be minimized, 

which is different from the NPR term. 𝛼𝑟𝑒𝑓  is a reference CTE value as the 

normalization factor, which is defined as 10 ppm/℃ in this work. Finally, we 

incorporate two geometric constraints into the objective function and served as a penalty 

term to ensure the design is practical. It should be noted again that it is because 

nonlinear equality constraints cannot be explicitly imposed by the genetic algorithm for 

optimization problems with integer variables. When the fourth term becomes zero (its 

minimum value), the design will not have intersecting bars or isolated parts. 

Since the design variables consist of both integer and continuous variables, the discrete 

topology optimization in Equation (5.2) is a mixed integer programming problem and 

can be solved using the genetic algorithm. Here we use the built-in function ga in 

MATLAB [157] as a black-box optimization solver. 

Once the optimal solutions are found, we will obtain microstructures that 

simultaneously exhibit elastic isotropy, NTE, and NPR. These optimized designs will 

consist of cylindrical struts and have no intersecting bars or isolated geometric parts. 

Therefore, they will possess tunability of effective material properties by altering the 

cross-sectional dimensions of struts. In this work, we aim to find the combination of the 

smallest possible algebraic values of CTE and Poisson’s ratio simultaneously, while 
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ensuring the microstructures remain elastically isotropic. This is a constrained 

multi-objective optimization problem, which can be solved by the built-in function 

gamultiobj in MATLAB. As formulated in Equation (5.3), in this optimization, the 

design variables only include the cross-sectional dimensions of struts, two objective 

functions are the minimizations of Poisson’s ratio and CTE value respectively, and the 

equality constrain function is defined to satisfy the elastic isotropy condition. It is 

worthy of note that nonlinear equality constraints can now be explicitly imposed by the 

genetic algorithm, because this constrained multi-objective optimization problem only 

has continuous variables. Pareto fronts can be obtained by solving this multi-objective 

optimization problem, which represent a series of isotropic microstructures with 

different combinations of NPR and NTE values. 

If the microstructures are not required to remain elastically isotropic, the tunable ranges 

of their principal-directional Poisson’s ratios and isotropic CTE values can be obtained 

by solving the single-objective optimization problem in Equation (5.4). Four objective 

functions in Equation (5.4) respectively correspond to finding the minimal and maximal 

values of Poisson’s ratio and CTE. The genetic algorithm is also adopted as the solver. 

Find: 𝝆 = [𝜌1 … 𝜌𝑛𝑏1+𝑛𝑏2] 

(5.3) Min: {𝐹1
(𝝆) =

𝐶12
𝐻(𝝆)

𝐶11
𝐻(𝝆) + 𝐶12

𝐻(𝝆)

𝐹2(𝝆) = 𝛼11
𝐻(𝝆)

 

S.t. 𝑔(𝝆) =
(𝐶11

𝐻(𝝆) − 𝐶12
𝐻(𝝆))

2𝐶44
𝐻(𝝆)

− 1 = 0 
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Find: 𝝆 = [𝜌1 … 𝜌𝑛𝑏1+𝑛𝑏2] 

(5.4) 
Min: ℎ(𝝆) =

{
 
 
 

 
 
 

𝐶12
𝐻(𝝆)

𝐶11
𝐻(𝝆) + 𝐶12

𝐻(𝝆)
       or

−
𝐶12

𝐻(𝝆)

𝐶11
𝐻(𝝆) + 𝐶12

𝐻(𝝆)
   or

𝛼11
𝐻(𝝆)                             or

−𝛼11
𝐻(𝝆) 

 

 

5.3. Numerical results 

By utilizing the proposed rational design method, it is possible to create 3D strut-based 

lattice metamaterials that exhibit an unprecedented combination of mechanical and 

thermal properties, including elastic isotropy, tunable thermal expansion, and tunable 

auxeticity, which cannot be achieved using conventional materials. However, before 

utilizing the proposed rational design method, it is crucial to identify a suitable 

combination of two constituent materials with different CTE values, yet mechanically 

and chemically compatible [226]. 

According to Takezawa and Kobashi [241], controlling the effective CTE of lattice 

metamaterials fabricated using polymers is challenging due to the strong 

temperature-dependent physical properties of polymers. This issue can be mitigated by 

using metals or alloys as constituent materials, as their physical properties exhibit less 

dependence on temperature. In this work, we investigate three different combinations of 

metals and alloys: Nickel and Invar (N-I), which has been previously utilized for lattices 

in [239]; Al 6061 and Ti6Al4V (A-T), which has been previously utilized for lattices in 
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[229, 244]; and CuCrZr and M300 (C-M), which is supported by a multi-metal additive 

manufacturing technique developed by [206]. Table 5.1 presents their material 

properties. 

The ratios between the two CTE values for the three combinations are 9.125, 2.698, and 

1.683, respectively, while the ratios between the two values of Young’s modulus are 

1.333, 1.652, and 1.484. It can be observed that the N-I combination exhibits a high 

ratio of CTE values and the lowest ratio of Young's moduli, while the A-T combination 

displays a low ratio of CTE values and the highest ratio of Young's moduli. The C-M 

combination, on the other hand, has a very low ratio of CTE values. Notably, in the A-T 

or C-M combination, the constituent material with the higher CTE value has a lower 

Young's modulus than the other constituent material, which contrasts with the N-I 

combination. Additionally, the two Poisson’s ratios are identical for the N-I or C-M 

combination, and slightly different for the A-T combination. 

Table 5.1. Properties listed for constituent materials 

 Nickel Invar Al 6061 Ti6Al4V CuCrZr M300 
Young’s modulus (GPa) 200 150 68.9 113.8 128 190 

Poisson’s ratio 0.31 0.31 0.33 0.342 0.3 0.3 
CTE (ppm/℃) 13.14 1.44 23.2 8.6 17 10.1 

This section presents several novel optimized microstructures through a description of 

their geometries, an analysis of their effective material properties, and a demonstration 

of their macroscopic deformation behaviors. These 3D strut-based microstructures 

exhibit elastic isotropy, tunable auxeticity, and tunable thermal expansion for multiple 
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combinations of constituent materials. 

5.3.1. Novel microstructures 

Figure 5.3 displays five novel microstructures discovered through the proposed design 

method, which are single-scale, bi-material, and strut-based. Their views from different 

angles are given in Figure 5.4. Unlike microstructures with bi-layer ribs previously 

reported in [217-222], each strut in these microstructures is a single-material cylinder 

with a constant cross-section, but different struts may be composed of distinct 

constituent materials and have varying cross-sectional radii. Furthermore, all 

microstructures are re-entrant and exhibit geometric cubic symmetry. The related 

geometry properties of these microstructures are summarized in Table 5.2. The 

microstructures Ⅰ and Ⅱ have simple geometries, and the microstructure Ⅴ has the most 

complicated geometry. 

Table 5.2. Geometry properties of microstructures 

Microstructure Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ 
Number of total vertices 54 45 78 51 75 

Number of types of cross-sectional radii 3 4 6 6 7 
𝑛𝑏1 2 2 3 4 5 
𝑛𝑏2 1 2 3 2 2 

Number of total struts 120 102 156 134 200 
Number of struts composed of the second 

type of constituent material 48 48 96 54 72 

 

5.3.2. Tunable effective material properties 

Here, we numerically investigate the effective material properties of these 
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microstructures. By changing their cross-sectional radii, we expect to obtain a range of 

different thermal and elastic properties. We define the range of variable radii as from 

4e-3 to 1e-2 in this chapter when the length of the unit cell edge is set to one. 

First, as shown in Figure 5.5, we study the tunable ranges of CTE and Poisson’s ratio 

without the constraint of elastic isotropy. This means that while tuning the material 

properties, we do not require the microstructures to remain elastically isotropic. 

Therefore, the Poisson's ratios given in Figure 5.5b are only values in the principal 

directions. However, due to the geometric cubic symmetry of the microstructures, their 

CTE is always isotropic. 

From Figure 5.5a, we can see that except for microstructure Ⅱ with the C-M material 

combination, all microstructures with the N-I, A-T, or C-M material combination exhibit 

a tunable range of NTE. For the N-I or A-T material combination, microstructure Ⅰ 

exhibits a broad range of CTE from moderate PTE values to moderate NTE values, and 

microstructures Ⅲ and Ⅳ can achieve large NTE values. Even for the C-M material 

combination with a low ratio of constituent CTE values, microstructures Ⅰ, Ⅳ, and Ⅴ 

can still exhibit a range of CTE from small PTE values to small NTE values. We also 

consider the tunable ranges of CTE when the two constituent materials are reversed 

within each microstructure. From Figure 5.5a, we can see that all microstructures with 

the reversed material combinations cannot be tuned to possess ZTE or NTE values, but 

they exhibit a tunable range of PTE with values much larger than those of the six 

constituent materials. For microstructure I, the obtainable values of CTE have partially 
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overlapping ranges between the original and reversed material combinations.

a)

b)

c)

d)

e)

Figure 5.3. Novel strut-based bi-material microstructures and their two constituent parts

(Note: rendered effect): a) Microstructure Ⅰ; b) Microstructure Ⅱ; c) Microstructure Ⅲ; d) 

Microstructure Ⅳ; e) Microstructure Ⅴ
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a) b)

c) d)

e)

Figure 5.4. Novel strut-based bi-material microstructures viewed from other two angles

(Note: rendered effect): a) Microstructure Ⅰ; b) Microstructure Ⅱ; c) Microstructure Ⅲ; d) 

Microstructure Ⅳ; e) Microstructure Ⅴ

From Figure 5.5b, we can see that for whether the original or the inverted material 

combinations, all microstructures can exhibit a very broad range of NPR in the principal 

directions. The microstructure Ⅰ can even achieve large NPR values that are close to -0.9. 

For the microstructure Ⅱ with the A-T and C-M material combination and the 

microstructure Ⅳ with the N-I, T-A, and M-C material combination, zero and small 

positive values of Poisson’s ratio are obtainable.
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Figure 5.5. Tunable ranges of properties without elastic isotropy for six combinations of 

constituent materials: a) Isotropic CTE; b) Principal directional Poisson’s ratio

Next, we will investigate the achievable values of the minimum CTE and the minimum 

Poisson’s ratio while imposing the constraint of elastic isotropy. The Pareto fronts for 

five microstructures with three material combinations are respectively given in 

Figure5.6. For all the Pareto fronts, we can see that the smaller is the algebraic value of 
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Poisson’s ratio, the larger is the algebraic value of CTE. Besides, when the absolute 

values of NPR increase, the absolute values of NTE decrease faster. 

For the N-I material with a high ratio of constituent CTE values, microstructure Ⅰ can 

still exhibit NTE when it has a very large NPR (around -0.854). It has a moderate NPR 

(around -0.440) when it achieves NTE (around -18.51 ppm/℃) with the absolute values 

larger than its two constituent CTE values. For the N-I material combination, both 

microstructures Ⅲ and Ⅳ can exhibit very large NTE with absolute values larger than 

the CTE values of all materials listed in Table 5.1. Compared with microstructure Ⅳ, 

microstructure Ⅲ not only has a slightly larger NTE but also has a range of larger NPR 

values. 

For the A-T material with a low ratio of constituent CTE values, all microstructures still 

exhibit NTE and NPR simultaneously, while they are also elastically isotropic. 

Microstructure Ⅰ can exhibit NTE when it has a relatively large NPR (around -0.738), 

but the absolute value of its largest NTE (around -12.46 ppm/℃) is much smaller than 

the CTE value of Al 6061. Only microstructures Ⅲ and Ⅳ can exhibit NTE with 

absolute values larger than 23.2 ppm/℃. 

Even for the C-M material with a very low ratio of CTE values, microstructures Ⅲ-Ⅴ 

exhibit a range of NTE and NPR simultaneously, while they keep elastic isotropy. 

Microstructure Ⅰ also exhibit small NTE when its Poisson’s ratio is larger than -0.511. 

Although microstructure Ⅱ with the C-M material combination cannot exhibit NTE, its 
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PTE values are smaller than its two constituent CTE values.

Figure 5.6. Pareto fronts of CTE and Poisson’s ratio with the elastic isotropy constraint

Moreover, we select every microstructure represented by the data point with the 

smallest algebraic value of CTE, i.e., the right end point, of each Pareto front in Figure

5.6 for further analyses. It can be found that the surfaces of Young’s modulus (See 

Figure 5.7) for these microstructures all exhibit a shape that is like a sphere, indicating 

that these microstructures have elastic isotropy, which is consistent with the constraint 

used in the optimization process to obtain the Pareto fronts. The relative errors between 

the maximal and minimal Young’s moduli being below 0.05% further reinforces this 

observation. These results suggest that the microstructures designed in this study not 

only exhibit tunable thermal and elastic properties but also satisfy the requirement of 

elastic isotropy.
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a) b) c)

d) e) f)

g) h) i)

j) k) l)

m) n) o)

Figure 5.7. Surfaces of Young’s modulus (Unit: MPa): a-c) Microstructure Ⅰ; d-f) 

Microstructure Ⅱ; g-i) Microstructure Ⅲ; j-l) Microstructure Ⅳ; m-o) Microstructure Ⅴ. 

Three columns respectively correspond to the N-I, A-T, and C-M material combinations.
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It should be noted that visualization of evolution histories is not available here for 

multi-objective optimization results, since it would be a dynamic evolution of a curve. 

However, the proposed design method’s maturity can be undeniably confirmed by the 

five optimized microstructures with totally novel topologies and multifunctionalities 

that have not been achieved before in literatures. 

5.3.3. Analyses of lattice structures 

By periodically assembling a cellular microstructure along three principal directions, a 

macroscopic 3D lattice structure can be generated. The novel microstructures in Figure 

5.3 can be used to create lightweight strut-based lattice structures. These composite 

lattice structures can be made of metallic material combinations listed in Table 5.1 or 

any other two compatible materials with dissimilar properties. 

To analyze the macroscopic deformation behaviors of the designed microstructures, we 

used the finite element method to numerically simulate macroscopic lattice structures. 

We assembled these structures using periodic arrays of microstructures and conducted 

the simulations in the commercial software COMSOL using beam elements. The 

geometric symmetry of the lattice structures is utilized to decrease the cost in the finite 

element simulation. For example, in a 2D structure with orthogonal symmetry 

undergoing free thermal expansion with a unit rise in temperature, only a quarter of the 

structure needs to be used in the analysis, as illustrated in Figure 5.8a. The same applies 

to simulating uniaxial compression, as shown in Figure 5.8b. 
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In a 3D lattice structure with orthogonal symmetry, only one-eighth of the structure 

needs to be used in the analysis, as represented by the purple region in Figure 5.8c. The 

right surface of the analyzed substructure is defined in the figure. If the structure 

undergoing free thermal expansion is made of a homogeneous material, the ratio of the 

translational displacement in the X-direction to the length of the structure would be 

equal to the CTE of the material at every point on the right surface. Similarly, if a 

structure undergoing a uniaxial compressive load in the Z-direction is made of a 

homogeneous material, the negative ratio of the translational displacement in the 

X-direction to the forced displacement in the Z-direction will be equal to the Poisson’s 

ratio of the material at every point on the right surface. 

The use of lattice structures composed of cellular and composite microstructures offers 

advantages over homogeneous materials, including greater strength and stiffness, 

improved energy absorption, and enhanced thermal and acoustic insulation. However, 

the ratios of points on the surface of these structures may fluctuate, which will affect 

their effective material properties. To ensure that the microstructures in the lattice 

structure meet the periodic boundary condition and maintain consistent effective 

properties, a certain number of microstructures will be required to infill the structure. 

This is important to minimize fluctuations in the ratios of points on the surface. The 

number of microstructures required to infill the lattice structure may depend on a variety 

of factors, including the size and geometry of the microstructures and the overall size 

and shape of the lattice structure. With a careful configuration, it is possible to minimize 
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the number of microstructures required to meet the periodic boundary condition. This 

can help reduce costs and increase efficiency in manufacturing, while still providing the 

necessary performance characteristics.

Figure 5.8. Reduced models with symmetric boundary conditions for analyses

The focus of this study is on lattice structures assembled using specific microstructures 

represented by the right end points of Pareto fronts in Figure 5.6. As shown in Figure

5.9, each lattice structure is assembled from 24×24×24 microstructures. Due to

geometric symmetry, one-eighth of this structure (12×12×12 microstructures) is used in 

the finite element analysis. For the numerical results in Figure 5.9, black lines represent 

the undeformed structures, and colorful lines describe the deformed structures in a

proper scale, where the values are displacement magnitudes. The results show that the
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lattice structures contract in three principal directions when subjected to a temperature 

increase and exhibit transverse contraction under forced vertical compression. For the 

sake of briefness, the numerical simulations consider the N-I material combination. 

Figure 5.10 presents the displacement ratios on the right surfaces of these lattice 

structures. For the load case simulating free thermal expansion, lattice structures I, IV, 

and V exhibit very small fluctuations between their displacement ratios and effective 

CTE values, with relative errors all below 1%. This indicates a high level of consistency 

in their design. Lattice structures II and III have slightly larger relative errors. However, 

only small regions on the top right corners of lattice III have relative errors over 1%, 

and the largest relative error of lattice II is 1.74%, which is still acceptable. This 

suggests that the design of these lattice structures is generally consistent but may have 

some minor variations. 

Figure 5.10 also presents numerical results for the uniaxial compression load case using 

the same lattice structures. It can be found that lattice IV has the smallest fluctuation 

between the displacement ratios and effective Poisson’s ratio, with relative errors 

around 4%~5%. Except for the regions on the right edges, lattice III has the 

second-smallest fluctuation. For all these lattices, the analysis indicates that most of the 

relative errors are larger than those of CTE, and the regions with large relative errors 

appear on different positions. However, a comparison of the numerical results for lattice 

structures assembled by a smaller number of microstructures shows that the more 

microstructures used to assemble the lattice structure, the fewer fluctuations there are 
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Figure 5.9. Macroscopic lattice structures and their deformations: a) Lattice Ⅰ; b) Lattice 

Ⅱ; ci) Lattice Ⅲ; d) Lattice Ⅳ; e) Lattice Ⅴ. Enlarged views of the lattice structures are 

given in orange dash rectangles (Note: rendered effect). Simulation results (Unit: mm)

using the one-eighth structure are shown in green dashed rectangles for the load cases: 

free thermal expansion (left) and vertical compression (right).

a)

b)

c)

d)

e)
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Figure 5.10. Displacement ratios of points on the right surface of the analyzed lattice 

structures: a-b) Lattice Ⅰ; c-d) Lattice Ⅱ; e-f) Lattice Ⅲ; g-h) Lattice Ⅳ; i-j) Lattice Ⅴ. a, 

c, e, g, i) displacement ratios in the load case simulating free thermal expansion; b, d, f, 

h, j) displacement ratios in the load case simulating uniaxial compression. In each 

subfigure, simulation results are given for two lattice structures that are respectively 

assembled by 6×6×6 microstructures (left) and 12×12×12 microstructures (right)

between the displacement ratios and effective Poisson’s ratios. This also applies to the 

consistency of CTE. By analyzing the relative errors in their properties, this study 

provides insights into how to improve the consistency of these structures and identify 

the required microstructures for different design scenarios.

a) b)

c) d)

e) f)

g) h)

i) j)
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5.4. Conclusion 

The work proposes a rational design method for discovering novel multifunctional 

lattice metamaterials with unusual mechanical properties. The proposed method 

involves a discrete topology optimization approach that uses a 3D muti-material ground 

structure with geometric cubic symmetry. To evaluate the potential designs generated by 

the ground structure, the study employs the computational homogenization method with 

beam elements to calculate effective elastic stiffness matrices and effective coefficients 

of thermal expansion. Based on these calculations, the research formulates a 

mathematical optimization formulation to identify metamaterials that simultaneously 

exhibit elastic isotropy, negative thermal expansion, and negative Poisson’s ratio. This is 

a mixed-integer programming problem that is solved using the genetic algorithm. This 

study can identify novel metamaterial designs that exhibit a combination of properties 

that have not been achieved before. Commercial finite element analysis software is used 

for the design of experiment to investigate the mechanical behaviors of lattice 

metamaterials with three different combinations of metals and alloys. 
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Chapter 6 Conclusions and Prospects 

6.1 Conclusions 

This research has developed a series of systematic and rational design methods based on 

topology optimization for finding four types of lattice metamaterials with unusual 

mechanical properties. A series of novel 3D microstructures have been found by the 

proposed design methods and studied in this research. These new design methods and 

novel microstructures are summarized as follows: 

Chapter 2 focuses on pentamode metamaterials with at least elastic orthotropic 

symmetry. By deriving the necessary and sufficient condition required for their 

elasticity constants, a new mathematical optimization formulation is proposed for the 

design of such type of mechanical metamaterial. A discrete topology optimization 

method is developed by using a 3D ground structure with geometric orthogonal 

symmetry. This method is particularly computationally efficient to find many different 

optimized microstructures that consist of slender struts. Twenty-four novel 3D 

pentamode microstructures are found and studied in this chapter, including isotropic, 

transverse isotropic, and orthotropic ones. This library of microstructures can provide 

more metamaterial options for pentamode cloaking. 

Chapter 3 focuses on 3D lattice metamaterials with ideal elastic isotropy and Poisson’s 

ratios at the theoretical lower limit -1, which are a special type of unimode 

metamaterials. A discrete topology optimization method is developed by using a 3D 
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ground structure with geometric cubic symmetry. Both integer and continuous variables 

are adopted for topological descriptions based on the ground structure. This method has 

a small number of design variables and a good ability of structural description. It is 

computationally efficient to design ultra-light microstructures that consist of struts with 

various cross-sectional dimensions. In the mathematical optimization formulation, 

constraints on intersecting bars and isolated geometric parts are proposed, which 

provide an essential contribution for obtaining practical designs in discrete topology 

optimization of mechanical metamaterials. As numerical examples, four novel isotropic 

unimode microstructures are found and studied in this chapter. These 3D 

microstructures with isotropic Poisson’s ratios at the theoretical lower limit are 

single-scale, single-phase, and constructed by elastic continua, filling an important 

blank of the engineered material library. 

Chapter 4 focuses on 3D isotropic auxetic metamaterials with thermal dimensional 

stability. A multi-material continuum topology optimization method customized for 

designing 3D isotropic microstructures is developed. By imposing the geometric cubic 

symmetry constraint on the design domain with element density clustering, this method 

can guarantee that every intermediate design has at least elastic cubic symmetry and 

then easily obtain elastically isotropic optimized designs. A novel 3D composite 

microstructure is found and studied in this chapter, which simultaneously exhibits 

elastic isotropy, negative Poisson’s ratio, and zero thermal expansion. 

Chapter 5 focuses on multifunctional isotropic metamaterials with tunabilities of 
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thermal expansion and auxeticity. A multi-material discrete topology optimization 

method is developed by using a 3D bi-material ground structure with geometric cubic 

symmetry. Both integer and continuous variables are adopted to describe bi-material 

microstructures that consist of beams with a few types of cross-sections. This method 

can easily generate bi-material microstructures with relatively simpler geometries when 

compared with continuum topology optimization methods. Furthermore, this method 

can provide parametric designs that exhibit tunabilities of effective material properties. 

Five novel 3D strut-based composite microstructures are found and studied in this 

chapter. By tailoring either the cross-sectional dimensions or the constituent material 

combination of struts, these microstructures can simultaneously exhibit a range of 

negative Poisson’s ratios and negative coefficients of thermal expansion while keeping 

elastically isotropic. 

 

6.2 Prospects 

Based on the research results of this thesis, prospective future works are outlined as 

follows: 

1) A systematic design method can be developed for finding fully anisotropic 

pentamode metamaterials. Applications of these pentamode metamaterials in elastic 

cloaks and acoustic cloaks can be studied. 

2) Systematic design methods should be developed for finding lattice metamaterials 
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with other combinations of unusual properties, e.g., pentamode and ZTE/NTE, 

ultra-conductive and ZTE/NTE. 

3) Using the state-of-the-art multi-metallic additive manufacturing technique, 

bi-metallic metamaterials with unusual thermal expansion can be fabricated and 

experimentally studied. 

4) Robust topology optimization methods can be developed to consider both geometric 

and material uncertainties induced by multi-metallic additive manufacturing. 
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