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Abstract

Powered by the learning capacity of deep neural networks, generative models have facilitated
the scalable modeling of complex, high-dimensional data and are extensively used in various
fields. In practical scenarios, deep generative models (DGMs) are often required not only
to produce authentic samples but also to optimize synthetic samples for some desired
properties. While existing DGMs are capable of generating data meeting users’ expectations
using desired class/attribute labels or an off-shelf evaluator, acquiring complete knowledge
pertaining to the target property is an indispensable prerequisite for obtaining the labels or
the evaluator, which is unmet in many real-world applications. In addition, discrete labels
have limited description capacity, which cannot capture intra-category differences.

This thesis resorts to human preferences that are more readily accessible, which are
typically represented by comparisons among a list of samples and can provide fine-grained
information. Motivated by real-world problems, preferences-guided desired data generation
can be defined in terms of the dataset level or the instance level, which means generating
the desired data based on a given dataset or a single sample, respectively. Particularly, a
preference-guided generative model at the dataset level can automate the design of biological
data or generate images that align with user interests; a preference-guided generative model at
the instance level can facilitate tasks like style transfer and facial expression generation. This
thesis focuses on deep generative modeling from human preferences in different scenarios.
Specifically,

• First investigation on preference-guided desired data generation at the dataset level.
We incorporate pairwise preferences into the existing framework of DGMs to generate
high-quality desired data, i.e., part of the training dataset. To be specific, we introduce
an additional pairwise ranking loss over the critic of Wasserstein Generative Adversarial
Network, which slightly shifts the learned distribution of the generative model towards
the desired data distribution. Our model converges to the desired data distributions by
multi-step distribution shifts.

• A new and more efficient generative modeling paradigm for preference-guided desired
data generation at the dataset level. We introduce a new generative modeling paradigm



iv

to learn the desired data distribution from partial preferences. Specifically, we design an
adversarial ranking framework, which is proven to estimate a relativistic f -divergence
between the desired data distribution and the generated data distribution. This approach
shifts the generative model’s distribution towards the desired data distribution in a
single step, resulting in reduced training expenses.

• Preference-guided desired data generation at the instance level. We propose an
adversarial ranking paradigm for generating desired data for single input samples
based on comparisons in terms of specified attributes. In particular, we aim to generate
a series of realistic versions of the input image with smooth changes on the attributes,
a.k.a., high-quality fine-grained image-to-image (I2I) translation. The adversarial
training between the ranker and the generator enhances the ability of the ranker
and encourages a better generator. Meanwhile, our ranker enforces a linearizedly
continuous change between the generated image and the input image, which promotes
a better fine-grained control over the interested attribute.
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Chapter 1

Introduction

This thesis focuses on deep generative modeling from human preferences. Preference is a
natural expression of user opinions [Fürnkranz and Hüllermeier, 2017], which can be used to
align generative models with human needs [Yao et al., 2022, Yu and Kovashka, 2020]. This
chapter briefly introduces the background, the research problems studied in this thesis, and
the contributions of this thesis.

1.1 Background

Intelligent agents are constantly generating, acquiring, and processing data. Generative
models, one of the subfields of artificial intelligence, view the world under the lens of
probability. In such a worldview, we can think of any kind of observed data, called X ,
as a finite set of samples from an underlying distribution, called Pr. At its very core, the
goal of generative models is to approximate this data distribution with a chosen model Pg

given access to the dataset X . The learned model Pg can be used for data sampling or data
transformation [Goodfellow et al., 2014, Zhu et al., 2017]. Recent advances in parameterizing
these models using deep neural networks [Goodfellow et al., 2016], combined with progress
in stochastic optimization methods [Kingma and Ba, 2015], have enabled scalable modeling
of complex, high-dimensional data, such as images [Zhu et al., 2017], video [Zhou et al.,
2021], speech [Yi and Mak, 2020] and text [Yang et al., 2020].

Despite the great success of deep generative models, these models themselves have
inherent limitations. For examples, generative adversarial networks (GANs) suffer from the
mode collapse issue [Che et al., 2017]. Variational autoencoders (VAEs) are deficient for the
poor data quality [Bredell et al., 2023]. More importantly, while vanilla generative modeling
is an interesting technical problem, it has limited practical relevance, especially for those
generative models that are only capable of generating data [Goodfellow et al., 2014] rather
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desired data region

training data

generated data

dataset-level desired data generation instance-level desired data generation

Figure 1.1 Desired data generation in terms of the dataset level and the instance level. The
former scenario aims to learn the distribution of user-desired data when only partial instead
of the entire dataset possesses the desired properties, while the latter one targets at generating
a series of realistic versions of each sample with desired changes on some specific attributes.

than providing an estimate of the density function. After all, such models merely provide more
data (e.g., images), and the world has no shortage of data observations under the prosperity
of the Internet. In contrast, controllable generative models can generate data to match some
user-desired properties, meeting the needs of many real-world applications [Engel et al.,
2018]. Fig. 1.1 displays two scenarios of desired data generation. DGMs for inverse material
design [Sanchez-Lengeling and Aspuru-Guzik, 2018] is a typical example of desired data
generation in terms of the dataset level, where the DGMs model the material space from
a database of existing materials and the generative process would be controlled towards
desirable properties (See Section 4.7.3 for case studies). Desired data generation in terms
of the instance level can be instantiated as the fine-grained image-to-image (I2I) translation
task [Wu et al., 2019b], which translates an input image into the desired ones with changes
in some specified attributes (See Section 6.4).

Great success has been driven in the field of using some predefined attribute/class labels
or a well-specified evaluator to direct the generation process of deep generative models
(DGMs) [Mirza and Osindero, 2014, Asokan and Seelamantula, 2020, Engel et al., 2018,
Gupta and Zou, 2019, Samanta et al., 2020]. However, in many real-world applications,
human may not be able to explicitly articulate the data they are interested in via the desired
class/attribute labels or high rewards from the evaluator. Instead, more naturally, human
would often implicitly describe their preferences for data by ranking two or more samples in
terms of certain interested properties [Fürnkranz and Hüllermeier, 2017]. More importantly,
labels/evaluators are argued to be more restricted than preferences. To be specific,

• Complete vs. partial knowledge about the properties. Deriving the desired data via
labels/evaluators requires complete knowledge about the target properties, which is
expensive and is not available in many real-world applications [Christiano et al., 2017].
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In contrast, preferences can be easily collected with partial ranking relation in terms of
the interested properties among small subsets of dataset. For example, when asked to
produce images of young faces, DGMs can model a conditional distribution conditioned
on “young” labels or be optimized to only generate images for which an age evaluator
output small values. Nevertheless, either the labeling of “young” faces or the age
evaluator relies on facial feature information across all ages. Instead, preferences
simply involve comparisons of facial features among several images. Therefore, it is
not necessary to label all training data when resorting to preferences, but not when
relying on labels/evaluators.

• Coarse vs. fine-grained. Class labels or attribute labels have limited description
capacity [Parikh and Grauman, 2011] since such category-level labels cannot cap-
ture intra-category differences. Instead, human preferences can be used to describe
fine-grained information [Parikh and Grauman, 2011, Chen et al., 2013, Raman and
Joachims, 2014]. For example, people may feel tangled when asked to determine
whether a face in an image is smiling or not. This is because there are many images
that are difficult to categorize, aside from a small number of obvious smiling and
non-smiling images. Instead, people can compare a set of images and rank them in
terms of the strength of the smile attribute.

• When desired data is insufficient. Since generation conditioned on class labels is
dominated by those classes with sufficient training observations, a class with limited
samples would be overlooked by the generative model. But differently, generation
guided by preferences can stress the modeling for “preferred class” (See Section 5.6.4
for empirical support).

Some works on instance-level desired data generation started to use human preferences
to guide the generation of DGMs [Yu and Kovashka, 2020, Saquil et al., 2018]. However,
they suffer from the conflict between the data quality of generation and the modeling for
preferences, thus unable to achieve high-quality desired data generation. Therefore, in this
thesis, we aim to develop new frameworks that can incorporate human preferences into
DGMs while reconciling generation quality and the modeling for preferences. Particularly,
we are the first one to apply human preferences to dataset-level desired data generation.

1.2 Research Questions

In this thesis, we focus on DGMs with human preferences to handle two scenarios of desired
data generation (Fig. 1.1). We formulate concrete research questions as follows.
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Research question 1: How can we incorporate human preferences into the existing frame-
work of DGMs in order to bias the generative process towards desired properties?

We propose including preferences in the learning of Generative Adversarial Network
GAN) [Goodfellow et al., 2014] due to its flexible formulation and advanced capacity of
high-quality data generation. To be specific, Relativistic GAN (RGAN) [Jolicoeur-Martineau,
2019], a GAN variant that learns the distribution of given training data via an adversarial
training between a critic and a generator, regards the critic values as the indicators of sample
quality, which are analogous to ranking scores. Motivated by this, we consider taking
the critic values as ranking scores that can reflect user preferences over samples, which is
achieved by a ranking loss for pairwise preferences based on the critic values. Consequently,
our new critic can guide the generator towards the desired data distribution. The proposed
framework is called Differential-Critic GAN (DiCGAN).

As will be explained in Chapter 4, DiCGAN learns the desired data distribution by a
sequence of minor corrections, where each correction shifts the distribution of generative
model towards the desired data distribution slightly. With multi-step shifts, the new training
samples (i.e., generated samples introduced into the training dataset after one minor cor-
rection) need to be manually annotated, increasing training costs. Therefore, we consider
proposing a novel generative model that can align the distribution between the desired data
and the generated data once for all as follows.

Research question 2: Can we design a new preference guided generative modeling
paradigm to learn a desired data distribution at the dataset level in single step, thereby
avoiding annotation costs for generated samples?

Motivated by the adversarial classification defined in GANs [Goodfellow et al., 2014]
and learning to rank [Cao et al., 2007b], we propose an adversarial ranking game between a
ranker and a generator, each with their own objectives about rankings based on preferences
that favor generated samples differently. It turns out that the ranker estimates a distribution
divergence between the desired data and the generated data, and the generator is to minimize
the divergence to obtain the desired data distribution.

Beyond considering desired data generation at the dataset level, it naturally comes to the
following research question.

Research question 3: How can we achieve desired data generation at the instance level by
using human preferences?

In particular, we aim at generating a series of realistic versions of the input image
only with desired changes on a certain specific attribute, a.k.a. fine-grained image-to-
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image (I2I) translation. We propose another new adversarial ranking framework consist-
ing of a ranker and a generator for this problem. The adversarial ranking process en-
hances the ability of the ranker and encourages a better generator. As a result, the gener-
ator can translate an input image to the desired counterpart with smooth subtle changes
in terms of the interested attributes.

1.3 Thesis Contributions

In the following, we summarize the key contributions of this thesis.

1. We propose Differential-Critic GAN (DiCGAN) to learn the desired data distribution
when only partial instead of the entire dataset possesses the desired properties. This
is the first work that applies partial knowledge about the properties, i.e., human
preferences, to desired data generation at the dataset level, which is superior over
previous works that rely on labels/evaluators requiring comprehensive knowledge
about the properties. DiCGAN converges to the distribution of desired samples by
multi-step distribution shifts, where each step slightly biases the generative model
towards the desired data distribution guided by the preferences. We provide theoretical
and empirical support for the convergence. We apply DiCGAN to generate images
that meet the user’s interest on two authentic datasets and design biological products
with desired properties on a gene dataset sourced from the real world. Our DiCGAN
achieves better performance in learning the user-desired data distribution than various
baselines, especially in the cases of insufficient desired data and limited supervision.

2. We propose a new generative model, called Generative Adversarial Ranking Net
(GARNet), which can directly enable a distribution alignment between the generated
data and the desired data under the context of human preferences. Thus, GARNet is
a more efficient generative modeling paradigm than DiCGAN for preference-guided
desired data generation at the dataset level, which can prevent additional annotation
costs for synthetic samples through a single-step distribution shift. In particular, we
design GARNet as an adversarial ranking game between a ranker and a generator,
which turns out minimizing a divergence between the generated data distribution and
the desired data distribution. We also provide empirical and theoretical support that the
distribution learned by GARNet is determined by the ranking score vector given by the
users, which can enable a more flexible user control. We apply GARNet to generate
user-desired images in terms of variaous interested properties, i.e., discrete/continuous
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property, single/multiple properties and to boost imbalance class learning by promoting
the generation of minorities.

3. We propose Translation via RIval Preferences (TRIP) for fine-grained image-to-image
translation task (namely, desired data generation at the instance level), which is the first
framework that reconciles the goal for fine-grained translation and the goal for high-
quality generation. TRIP also consists of an adversarial game between a ranker and a
generator, which improves the capacity of the ranker and incentivizes the generator
to produce high-quality outputs with smooth changes on the specified attributes. In
addition, the ranker enforces a linearizedly continuous change between the generated
image and the input image, which provides a more fine-grained control over the
interested attributes. TRIP is applied to fine-grained facial expression generation and
style transfer on real-world datasets, achieving the state-of-art results.

1.4 Thesis Outline

Prior to delving into the thesis topic on generative modeling from human preferences, we
conduct some preliminary studies to investigate fundamental issues and applications of
(controllable) DGMs. One study proposes a novel regularization to escape from mode
collapse in GANs. Another proposes a conditional Variational Auto-Encoder (VAE) with
disentanglement regularization that achieves better clustering results compared to vanilla
DGMs. The two preliminary studies paved a basis for the exploration on generative modeling
from human preferences. (1) In the first study, we will clarify that WGAN would not suffer
from the mode collapse issue, so our DiCGAN built on it would maintain good sample
diversity. (2) The second study preliminarily explores the potential of controllable DGMs
compared to vanilla DGMs, highlighting the greater practical significance for our subsequent
investigations.

About generative modeling from human preferences, in terms of the dataset level, we
explore how to incorporate preferences into the existing framework of DGMs. We further
develop a new and more efficient generative modeling paradigm to learn a desired data
distribution from preferences. In terms of the instance level, we propose a new framework that
achieves the state-of-art results on high-quality fine-grained image-to-image (I2I) translation.
The thesis is organized as follows:

• Chapter 2 introduces the related work.

• Chapter 3 introduces some preliminary studies, namely, DGMs with diversity and
disentanglement regularization.
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Figure 1.2 The organization of this thesis.

• Chapter 4 incorporates preferences into the existing framework of DGMs for dataset-
level desired data generation, which relates to Contribution 1 in Section 1.3.

• Chapter 5 designs a new generative modeling paradigm that is more efficient for
preference-guided desired data generation at the dataset level, which relates to Contri-
bution 2 in Section 1.3.

• Chapter 6 develops an effective framework for instance-level desired data genera-
tion, especially for fine-grained image-to-image translation tasks, which relates to
Contribution 3 in Section 1.3.

• Chapter 7 concludes the thesis.

The organization of this thesis is in Fig. 1.2.

1.5 Publications

The work present in this thesis resulted in a total of five papers (i.e., 1 to 5 listed in the
following). Other listed works are collaborative works with peers during my PhD.
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Chapter 2

Literature Review

This chapter discusses works related to this thesis. Specifically, Section 2.1 reviews two
deep generative modeling frameworks that are studied in this thesis. Section 2.2 presents
current relevant works on desired data generation and discusses research gaps. Section 2.3
introduces techniques to learn from human preferences.

2.1 Deep Generative Models (DGMs)

Generative models learn to capture the statistical distribution of training data, allowing to syn-
thesize samples from the learned distribution. Traditional methods, such as SMOTE [Chawla
et al., 2002], MWMOTE [Barua et al., 2012] for replicating data distribution through syn-
thetic oversampling, Gaussian mixture models [Bishop, 2006] for maximizing data likelihood,
score matching [Hyvärinen et al., 2009] and noise-contrastive estimation [Gutmann and
Hyvärinen, 2010] for specifying learned probability density analytically up to a normalization
constant, as well as Bayesian networks (belief networks) [Heckerman, 2008] representing
variables and their conditional dependencies through a directed acyclic graph, have been stud-
ied over the past decades. In recent years, equipped with deep neural networks, generative
models, e.g., Generative Adversarial Networks (GANs) [Goodfellow et al., 2014], Variational
Autoencoders (VAEs) [Kingma and Welling, 2014], normalizing flows [Papamakarios et al.,
2021], diffusion models [Ho et al., 2020], have achieved tremendous success in modeling
complex, high-dimensional natural signals. In particular, this thesis involves GANs and
VAEs, which are two of the most commonly used and efficient deep generative models. We
introduce basic knowledge about them in the following.

GAN [Goodfellow et al., 2014] performs generative modeling by learning a generator G
that maps low-dimensional latent space Z to data space X , i.e., G : Z →X , given samples
from the training data distribution, namely, x ∼ Pr(x). The goal is to find G that achieves
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Table 2.1 Main mathematical notations in this thesis.

Notation Explanation
X data space/training data X = {xn}N

n=1
Z latent space
Y class labels Y = {y1,y2, . . . ,yT} endowed with an order y1 > y2 > .. . > yT
O score space for a continuous property
y(x) function that maps sample x to its class label
o(x) function that maps sample x to its underlying ground-truth ranking score
Pr(x) the distribution of training data
Pd(x) the distribution of user-desired data
Pg(x) the distribution of generated data
P(z) the distribution of input noise
x1 ≻ x2 x1 is preferred over x2, x1,x2 ∈ X
s preferences, s := s1 > s2 > .. . > sl,si ∈ X
xg generated sample, xg ∼ Pg
S a collection of pairwise/list preferences over training data X
π(s) ground-truth score vector for preference s
s(R) target preference to train the ranker, i.e., s(R) := s1 > .. . > sl > xg

s(G) target preference to train the generator, i.e., s(G) := xg > s1 > .. . > sl

v continuous attribute variable
G generator
D discriminator/critic
R ranker

Pg(x) = Pr(x), where Pg(x) is the distribution of fake data x = G(z). In order to train the
generator G, GAN introduces another network, i.e., discriminator D, to discriminate real
data from fake data. The generator G is trained to produce images that are conceived to be
realistic by the discriminator D. Two networks are trained alternately until the generator
successfully fools the discriminator. Vanilla GAN’s objective is defined as follows:

min
G

max
D

EPr(x) [logσ (D(x))]+EPg(x) [log(1−σ (D(x)))] , (2.1)

where σ (D(x)) is the probability that the input data is real and σ is the sigmoid function.
WGAN [Arjovsky et al., 2017b] is a stable variant of GANs defining the loss functions in

terms of the non-transformed discriminator D, called critic. Specifically, WGAN measures
the quality of fake data in terms of the Wasserstein distance (W-distance) between the real
data distribution and the fake data distribution. The W-distance is approximated by the
difference in the average critic values between the real data and the fake data. WGAN’s
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objective is defined as follows:

min
G

max
D

EPr(x) [D(x)]−EPg(x) [D(x)] , (2.2)

where D is the critic enforced with a 1-Lipschitz constraint [Gulrajani et al., 2017]. Note our
work in Chapter 4 is developed based on WGAN by building the ranking on its critic.

While owning distinguished abilities in generating sharp images, GANs suffer from
several challenging problems. Mode collapse is one of the major challenges which refers to
poor diversity in generated samples [Hong et al., 2019].
Work 1: In our preliminary study (Section 3.1), we target at solving this issue and propose a
new GAN variant to promote mode diversity.

VAE [Kingma and Welling, 2014] learns a generative model that can be used to generate
new samples by sampling from the learned latent space distribution. It uses a probabilistic
approach that involves learning the parameters of two probability distributions: the encoder’s
and the decoder’s output distribution. The encoder maps the input data to a distribution over
the latent space, and the decoder maps the latent space back to the data space. Its training
objective is to maximize the variational lower bound (VLBO) of the data log-likelihood, i.e.,
the right side of the following equation:

Ex [logP(x)]≥ Ex
[
Ez∼Q(z|x)[logP(x | z)]−KL[Q(z | x)∥P(z)]

]
. (2.3)

P(x) is short for the training data distribution Pr(x) here. In the VLBO, the first term is a
reconstruction loss that measures the difference between the input data and its reconstruction;
the second term is a regularization loss that encourages the latent space distribution to be
close to a prior distribution P(z).

2.2 Controllable DGMs for Desired Data Generation

While vanilla generative models lack the ability to control the generation of data and thus
have limited practical significance, various controllable generative models fill in the gaps and
realize greater potential in real-world applications [Engel et al., 2018].
Work 2: Our preliminary study (Section 3.2) explores that controllable VAEs can achieve
better clustering results compared to vanilla DGMs.

Controllable DGMs can generate data that matches specific properties, also referred to
simply as “desired data”. Properties can be either discrete or continuous. For a discrete
property, desired data usually refers to some specific classes of data. For a continuous
property, desired data can be those with high evaluation values w.r.t. the property. As
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discussed in Fig. 1.1, controllable DGMs for desired data generation can be considered either
at the dataset level as well as at the instance level. We particularly review related work in
terms of these two aspects in the following, so as to motivate our main work of this thesis.

2.2.1 Dataset-level Desired Data Generation

Controllable DGMs based on Labels/Functions

Vanilla DGMs, like GANs [Goodfellow et al., 2014, Arjovsky et al., 2017b], VAEs [Kingma
and Welling, 2014], can be adapted to learn a user-desired data distribution. A naive way is to
first select the samples possessing the desired property, which can be desired classes of data or
data with high evaluation values w.r.t. the properties. Then we perform regular GAN training
only on the selected samples to derive the desired data distribution. However, constructing
a desired subset as training data relies on complete knowledge about the properties, which
may not be accessible in real applications (explained in Section 1.1 in details). Even, such
methods would fail when there are insufficient desired samples.

Conditional DGMs [Mirza and Osindero, 2014, Odena et al., 2017, Miyato and Koyama,
2018, Sohn et al., 2015, Li et al., 2020b, Pumarola et al., 2020, Ho and Salimans, 2022]
derived desired data distribution via a conditional distribution conditioned on desired
class/attribute labels. However, the labeling of desired data and undesired data also requires
complete knowledge about the properties. On the other hand, the generation performance
of condition-based GAN is governed by the respective conditions with sufficient training
observations. When the desired data is limited, the conditional modeling is dominated
by the major classes, i.e., undesired data, resulting in a failure to capture the desired data
distribution.

A few works [Engel et al., 2018, Gupta and Zou, 2019, Samanta et al., 2020] proposed to
apply a ready-to-use evaluator for the target property to control the generation of generative
models, where the synthetic data are optimized to have high evaluation values. However, the
evaluator may not exist in real-world applications [Christiano et al., 2017] since it necessitates
complete knowledge about the property.
Work 3&4: Chapter 4 is the first work targeting dataset-level desired data generation by using
human preferences that are more accessible and require less supervision since it is simply
partial knowledge about the property (see Section 1.1 for details). Further, we propose a new
generative modeling paradigm, which is more efficient for preference-guided desired data
generation in Chapter 5.
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2.2.2 Instance-level Desired Data Generation

Since this thesis particularly focuses on the fine-grained image-to-image (I2I) translation
task for desired data generation at the instance level, we review related work on this task in
the following.

Controllable DGMs based on Binary Attributes

Many works conducted fine-grained I2I translation based on coarse binary attributes that
indicate the presence (or absence) of some certain attributes in an image. Though it is feasible
to interpolate the binary attributes, the interpolation quality is unsatisfactory since the models
are only trained on binary-valued attributes and thus the interpolation is ill-defined [Berthelot
et al., 2018, Wu et al., 2019b]. Apart from the defect of using binary attributes, the following
works have other shortcomings inherited from the adopted generative models.

Autoencoder-based methods can provide a good latent representation of the input image.
Some works [Lample et al., 2017, Liu et al., 2018, Li et al., 2020b, Ding et al., 2020] proposed
to disentangle the attribute-dependent latent variable from the image representation based on
binary attributes but resorted to different disentanglement strategies. Then the fine-grained
translation can be derived by smoothly manipulating the attribute variable of the input image.
However, the reconstruction loss, which is used to ensure the image quality, cannot guarantee
a high fidelity of the interpolated images.

Flow-based works proposed incorporating feature disentanglement mechanism into
flow-based generative models [Kondo et al., 2019]. However, the designed multi-scale
disentanglement requires large computation. Liu et al. [2019] applied an encoder to map
the attribute space to the latent space of flow-based model by resorting to a binary attribute
classifier, which however fails to capture fine-grained attribution information.

GAN-based methods are widely adopted frameworks for high-quality image generation.
He et al. [2019], Lin et al. [2021] directly modeled the attributes with binary classification,
which cannot capture fine-grained attribute information, and hence fail to make a smooth
control over the attributes. Wu and Lu [2020] maximized mutual information between the
interpolated attribute code and the generated images for fine-grained facial expression, but the
experimental results show the loss of facial details and identity information in the synthesized
expression.

Diffusion model based methods were mainly focusing on binary I2I translation [Li et al.,
2023, Kwon and Ye, 2023, Zhao et al., 2022, Saharia et al., 2022]. To our best knowledge,
there is not published work on fine-grained I2I translation at the time of writing this thesis.
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Controllable DGMs based on Other Priors

Deng et al. [2020] embedded 3D priors into adversarial learning. However, it relies on
available priors for attributes, which limits the practicality. Alharbi and Wonka [2020]
proposed an unsupervised disentanglement method. It injects the structure noises to GAN
for controlling specific parts of the generated images, which makes global or local features
changed in a disentangled way. However, it is unclear how global or local features are related
to facial attributes. Thus, it is difficult to change specific attributes. Some studies [Pumarola
et al., 2018, Ling et al., 2020, Xia et al., 2021] achieved fine-grained facial expression
generation via Action Units (AU) annotations, which describes in a continuous manifold the
anatomical facial movements defining a human expression. However, such a prior for AU
is not always available for all applications. Wu and Lu [2020] proposed an unsupervised
disentanglement method, but it relies on a pretrained GAN that can translate any input facial
image to a neural face. Huang and Yin [2022] combined Active Appearance Model (AAM)
and cycleGAN [Zhu et al., 2017] for fine-grained facial expression generation. AAM can
encapsulate the learned patterns of facial shape and texture variations associated with different
expressions, which, however, requires careful image pre-processing and is computationally
intensive.

Controllable DGMs based on Preferences

Two works applied GAN as a base for fine-grained I2I translation using relative attributes
(RAs)1, which refers to the preferences of image pairs on the strength of the interested
attributes. The main differences lie in the strategies of incorporating the preference over
the attributes into the image generation process. RCGAN [Saquil et al., 2018] adopted
two critics consisting of a ranker, learning from the relative attributes of real images, and a
discriminator, ensuring the image quality. Then the combination of two critics is aimed to
guide the generator to produce high-quality fine-grained images while interpolating RAs on
the generation. However, since the ranker is only trained with real images and generalizes
poorly to generated images with interpolated RAs, the ranker would induce the generator to
generate out-of-data manifold images which is opposite to the target of the discriminator,
resulting in poor-quality images. RelGAN [Wu et al., 2019b] applied a matching-aware
discriminator 2, which learns the joint data distribution of the triplet constructed with a pair

1Note that “relative attribute” is a widely used name in the field of I2I translation for the preferences of
image pairs on the strength of the interested attributes.

2The matching-aware discriminator is modeled as a binary classifier as original GAN [Goodfellow et al.,
2014]. The difference is that the matching-aware discriminator distinguishes real triplets from fake triplets
while the discriminator in original GAN distinguishes real images from fake images.
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of images and a discrete numerical label (i.e., relative attribute). In order to enable a smooth
translation, RelGAN further interpolated the RAs on generated images while enforcing a
constraint of interpolation quality. However, the constraint destroys smooth interpolation.
Work 5: We develop a new framework for high-quality fine-grained image-to-image transla-
tion using relative attributes (preferences) in Chapter 6.

2.3 Learning from Human Preferences

Learning to rank [Lin, 2010] learns a ranking score function from human preferences, where
the function can compute ranking scores based on input features which, in turn, induces a
ranking. Existing work falls into three categories: pointwise, pairwise and listwise ranking.
The pointwise methods [Nallapati, 2004] utilize the order information per item from all the
input preferences to define the ranking function and transform ranking into regression on
single objects. Since these methods require global ranking information to assign scores to
each item, they cannot be applied to the crowdsourcing scenario where partial preferences
are collected [Pan, 2019]. The pairwise learning to rank organizes their inputs as pairwise
comparison between pairs of items. The methods usually transform ranking into classification
on object pairs [Burges et al., 2005, Cao et al., 2006], namely, predicting the preference of one
item over another, e.g., +1 label for “better” or −1 label for “worse”. The listwise methods
model partial ranking lists, which directly maximizes consistency between the predicted
ranking and the ground-truth ranking [Bruch et al., 2020]. The typical listwise ranking is
ListNet [Cao et al., 2007b], whose loss function is defined as cross entropy between two
parameterized probability distributions of permutations. one distribution is calculated via the
predicted scores and the other is via the ground truth.

Ordinal regression [Gutiérrez et al., 2015] is a relevant branch in which all samples are
required to be ranked on the same scale and are associated with an ordinal label. In contrast,
preference learning involves comparing a list of partial samples from the dataset, and the
rankings only need to be consistent within the list. Therefore, preference learning is more
flexible and applicable to real-world scenarios.

2.4 Summary

In this chapter, we motivate our preliminary research on DGMs. Then, we discuss issues of
existing work on desired data generation and highlight the significance of our main work,
which is summarized as follows.
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Issues of dataset level desired data generation and our solutions. Current methods
all resort to complete knowledge about the property to select the desired data in order to
learn the desired data distribution. Such knowledge is expensive and not in line with many
real situations. On the other hand, all methods need to label the entire training data, which
incurs huge costs. In this thesis, we propose learning the desired data distribution by human
preferences, which only requires partial knowledge about the properties and can reduce the
burden of labeling the whole training data [Pan et al., 2018, 2022, Liu, 2009]. Therefore,
our work has the advantage of utilizing less and more accessible supervision than existing
approaches (see Section 4.7 for empirical support).

Issues of desired data generation at the instance level and our solutions. While most
existing methods resort to binary attributes, their fine-grained I2I translation is unsatisfactory
as the binary attributes have restrictive description capacity. Some GAN-based works begun
to conduct fine-grained I2I translation via RAs (preferences) but suffer from conflicting two
goals: the goal of interpolating RAs on generated images for fine-grained translation and the
goal for good-quality generation. We propose a new GAN framework for I2I translation using
RAs in this thesis, which is the first GAN framework that reconciles the goal for fine-grained
translation and the goal for high-quality generation.



Chapter 3

DGMs with Diversity and Disentanglement:
A Preliminary Study

Our frameworks for generative modeling from human preferences are mainly built on GANs.
Thus, to better understand GAN, we conduct a preliminary study on it, which targets solving
its one of significant issues, mode collapse (Section 3.1). In addition, we study that a
conditional DGM has better potential on downstream tasks than vanilla DGMs, which
verifies the application prospect of controllable generation (arguably a broader topic to which
this thesis belongs). Particularly, a disentangled VAE framework is proposed to improve
clustering results on complex data contaminated by the unwanted factor (Section 3.2).

3.1 DGM with Mode Diversity

GAN is a powerful generative model known for its capability of generating sharp images.
However, it is poor at generating diverse data, which refers to the mode collapse issue. Many
works were proposed to solve it. In all, they can be summarized into two types: one is to
make changes in the paradigm of the vanilla GAN [Hoang et al., 2018, Park et al., 2018,
Gurumurthy et al., 2017, Lin et al., 2018, Salimans et al., 2016, Arjovsky et al., 2017a]; the
other is to add an extra regularization term [Che et al., 2017, Du et al., 2018, Li et al., 2018].

In terms of the first type, some works increased the number of generators [Hoang et al.,
2018, Park et al., 2018] motivated by forcing one generator to cover one different subset of
the data. Gurumurthy et al. [2017] changed the simple latent distribution into a mixture of
Gaussian model in order to increase the modeling power of the prior distribution. Lin et al.
[2018] modified the discriminator to distinguish among multiple samples to improve mode
diversity for GANs, similar motivation to mini-batch discrimination [Salimans et al., 2016].
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(a) GAN with mode collapse (b) SR-GAN

Figure 3.1 (a) Problem: GAN suffers from the mode collpase, i.e., only generating one out
of three modes. (b) Our solution (SR-GAN): red panels are the estimated support of real
data. They are used to penalize the generated modes with no/scarce samples and guide the
generator to disperse samples with all modes.

Some changed the original divergence to a new divergence metric, like Wasserstein distance
[Arjovsky et al., 2017a].

The second type is to add an explicit regularization in the GAN’s objective to improve
mode diversity, which also motivates our work. In particular, there are two works most
related to ours [Li et al., 2018, Du et al., 2018]. DAN-S [Li et al., 2018] used Maximum
Mean Discrepancy to tell the difference between the real data distribution and the generated
data distribution and used it as a regularization for GAN while LBT-GAN [Du et al., 2018]
utilized the likelihood of the real data to guide the generator to cover all modes of the data
through the density estimator. These two works are based on the statistics of the real data.
However, LBT-GAN defines a bilevel optimization problem and has a high computational
cost. DAN-S needs to define one more discriminator to discriminate among multiple samples.

Our idea to address mode collapse is also based on the estimation of real data statistics.
But differently, we propose to estimate the support of the real data distribution, namely,
capturing the regions in data space where the probability density lives. In doing so, we solve
an easier problem than density estimation.

3.1.1 Support Matching as a Mode Regularizer

In this section, an extra regularization is introduced to improve mode diversity. In Fig. 3.1a,
we can observe that when mode collapse arises, the support of the real data distribution,
namely, the domain of data space, and the support of the generated data distribution cannot be
matched, which motivates us to use such consistency as a regularization for GANs (Fig. 3.1b).
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Support Estimation on Real Data Distribution

The support of a probability distribution refers to the regions in data space where the proba-
bility density is larger than zero [Schölkopf et al., 2001]. Support Vector Data Description
(SVDD) [Tax and Duin, 2004] is one of the methods to estimate the support. It finds a
minimum hypersphere to enclose all the input data and regards sample points outside the
sphere as outliers of the data. The model is defined as follows:

min
c,R,ξξξ≥0

R2 +η

ℓ

∑
i=1

ξi

s.t.∥c−φ (xi)∥2 ≤ R2 +ξi, ∀i = 1, . . . ,N,

(3.1)

where R is the radius of the sphere. η is a nonnegative constant, which gives the trade-off
between the two error terms: volume of the sphere and the number of rejected objects. c is
the center of the sphere. ξi is slack variable for the training sample xi. N is the number of the
training samples. φ denotes a feature map to map input instances into the feature space.

ClusterSVDD In our method, we use ClusterSVDD [Görnitz et al., 2018] to capture the
sub-structures of the support. This method unifies SVDD and k-means clustering, which fits
K hyperspheres that can be defined by its centers and radius {ck,Rk}K

k=1, on the support of
the real data distribution. With {ck,Rk}K

k=1, we calculate the cluster label yi for each sample
and collect samples with regard to each cluster Xk as follows:

yi = argmink∈{1,...,K} ∥ck−φ (xi)∥2−R2
k , ∀i = 1, . . . ,N, (3.2)

Xk = {xi|yi = k, i = 1, . . . ,N} , ∀k = 1, . . . ,K. (3.3)

Each Xk is then used to solve one SVDD optimization problem (3.1). The procedure is
repeated until convergence.

Support Matching as a regularizer

We use support matching between the real data distribution and the generated data distribution
as a mode regularizer. With estimation on the support of the real data distribution, each sphere
in ClusterSVDD will cover one sub-structure of the support, which can be also referred to
one mode of the data. Therefore, the estimated spheres can be regarded as mode indicators
for the generator to tell whether there is data generating in a certain mode.

We use the estimated spheres {ck,Rk}K
k=1 to evaluate the support of the generated data

distribution and align it with that of the real data distribution. Specifically, we use Eq. (3.2)
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to divide generated data into K groups {Xk}K
k=1 and match the size of the groups between

the real data and the generated data. K is set to the number of the modes in the data. If
some mode is missed by the generator, the size of its corresponding group would be zero,
i.e., |Xk| = 0, which causes the difference between the real data and the generated data.
Such difference will guide the generator to generate data that is not covered currently. Since
argmin function has no derivative, we instead replace it with softmax function for calculating
the regularization term in GAN’s objective as follows:

fk(xi) =
exp(−β (∥ck−φ (xi)∥2−R2

k))

∑ j exp(−β (
∥∥c j−φ (xi)

∥∥2−R2
j))

. (3.4)

The matching of the support between the real data distribution and the generated data
distribution is regarded as a regularization for GAN. In short, the objective of SR-GAN
consists of two terms, i.e., the discriminator and the generator:

min
D

EPr(x)[− logD(x)]+EP(z)[− log(1−D(G(z)))], (3.5a)

min
G

EP(z)[− logD(G(z))]+λ ∗∑
k
(EPr(x)[ fk(x)]−EP(z)[ fk(G(z))])2, (3.5b)

where G is denoted as the generator network. D is denoted as the discriminator network.
P(z) is the distribution of the input noise. Pr(x) is the distribution of the real data. λ balances
the image quality and the mode diversity.

3.1.2 Experiments

We apply our proposed SR-GAN on synthetic datasets and real-world datasets to evaluate
the performance of SR-GAN in terms of improving mode diversity.

Baselines We compare SR-GAN with the vanilla GAN [Goodfellow et al., 2014], LBT-
GAN [Du et al., 2018] and DAN-S [Li et al., 2018]. LBT-GAN and DAN-S are similar
methods to ours, i.e., defining a regularization for GAN based on the statistics of the real
data distribution.

Model Architectures & Hyperparameters Following [Metz et al., 2017], fully con-
nected networks (FCNs) are used for the generator network and the discriminator network on
the synthetic datasets and the SatImage dataset. A recurrent neural network (RNN) is used for
the generator and a convolutional neural network (CNN) for the discriminator (RNN-CNN)
on the MNIST dataset. Furthermore, the FCNs are also applied for the generator and the
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(a) GAN (b) LBT-GAN (c) DAN-S (d) SR-GAN

Figure 3.2 Visual comparison of generated samples on the 2D ring data (Upper) and the 2D
grid data (Lower). More overlapping between the generated samples and the real samples
denotes a better generation.

discriminator (FCN-FCN) on MNIST following [Li et al., 2018]. We keep the architectures
similar for all GANs in order to make a fair comparison.

In terms of the hyperparameters, the number of clusters K in CSVDD is set to the number
of classes in the datasets. The trade-off factor λ is set to 1 for synthetic datasets and the
SatImage dataset, 10 for MNIST with the RNN-CNN architecture and 50 for MNIST with
the FCN-FCN architecture. β is set to 10 for all datasets. See Appendix for more details.

Synthetic Datasets

We construct two synthetic datasets following [Du et al., 2018]: (1) 2D ring, i.e., mixture of
eight 2D Gaussian distributions with covariance matrix 0.02I arranged in a ring; (2) 2D grid,
i.e., mixture of 100 2D Gaussian distributions with covariance matrix 0.01I arranged in a
10-by-10 grid.

To quantify the mode collapsing scenario, we adopt the following two metrics to measure
the quality and diversity of the generated data.

Percentage of High Quality Samples (PHQS) [Srivastava et al., 2017] A sample is
counted as a high quality sample if it is within three standard deviations of its nearest mode.
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Table 3.1 Data quality (measured by PHQS), and mode diversity (measured by NMC) on
the 2D ring and the 2D grid data. The results are averaged over five trials, with the standard
error reported. Higher is better for both two metrics.

2D Ring 2D Grid
PHQS (%) NMC (Max 8) PHQS (%) NMC (Max 100)

GAN 0.2±0.14 0.4±0.24 7.7±1.46 9.4±1.69
LBT-GAN 10.4±3.82 7.8±0.20 14.5±2.70 100.0±0.00

DAN-S 47.5±5.46 8.0±0.00 15.7±0.44 99.4±0.24
SE-GAN 91.7±0.97 8.0±0.00 45.3±2.46 100.0±0.00

We regard one Gaussian component as one mode. Therefore PHQS can be regarded as an
indicator for the quality of generated samples. Let l∗i be the index of the nearest mode for the
i-th sample:

l∗i = argminl∈{1,...,L} d(G(zi),µl), ∀i = 1, . . . ,N, (3.6)

where µl is the mean of the l-th Gaussian component. L is the number of the components in
the Gaussian mixture. d is a distance metric between the generated sample and the mean of
one mode. PHQS is defined as follows:

PHQS =
1
N

L

∑
l=1

HQS(µl) =
1
N

L

∑
l=1

N

∑
i=1,l∗i =l

I(d(G(z j),µl)< ε), (3.7)

where HQS denotes high quality samples. I is an indicator function. ε is set to three standard
deviations in the experiment.

Number of Mode Covered (NMC) [Srivastava et al., 2017] We use NMC to measure
the mode diversity. A mode is counted as a covered mode if the generator creates at least one
high quality samples of the mode. The NMC is defined as follows:

NMC =
L

∑
l=1

I(HQS(µl)≥ 1). (3.8)

Fig. 3.2 shows the visualization of samples generated by GAN and its variants on the 2D
ring and the 2D grid datasets, respectively. We can observe that: (1) the vanilla GAN suffers
from severe mode collapse problems on both datasets. Regarding the 2D ring data (Fig. 3.2
Upper), GAN only generates samples near one mode. Regarding the 2D grid data (Fig. 3.2
Lower), GAN covers few modes. (2) In terms of LBT-GAN, DAN-S and SR-GAN, all real
samples are surrounded by the generated samples, which means that they can cover all modes
of the data. (3) The density of the data generated by GAN’s variants is not equal to that of the
real data. However, SR-GAN can learn a closer distribution comparing to other baselines.
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Table 3.2 Mode diversity (measured by NMC), and data quality (measured by KL) on
SatImage. The results are averaged over five trials, with the standard error reported. Higher
is better for NMC; lower is better for KL.

NMC (Max 6) KL
GAN 2.0±0.77 1.38±0.390

LBT-GAN 6.0±0.00 0.21±0.018
DAN-S 6.0±0.00 0.06±0.019

SR-GAN 6.0±0.00 0.02±0.005

Table 3.1 reports the evaluation using PHQS and NMC in terms of the data quality and
the mode diversity, respectively. It shows that: (1) regarding the 2D ring data, GAN generates
0.2% PHQS and less than one mode in average. Regarding the 2D grid data, GAN generates
7.7% PHQS and around nine out of 100 modes. We thus conclude that the mode collapse
indeed happens in the vanilla GAN. (2) However, LBT-GAN, DAN-S, and our SR-GAN do
not encounter mode collapse problems on both two datasets. (3) In addition, our SR-GAN
achieves the highest PHQS, which means that SR-GAN can generate more high quality
samples than LBT-GAN and DAN-S.

SatImage Dataset

We then apply SR-GAN on a simple real-world dataset, i.e., SatImage dataset1. This dataset
contains 4,435 instances with 36 attributes and 6 classes, where each class is regarded as one
mode.

Number of Mode Covered (NMC) We also use NMC to evaluate the mode diversity on
SatImage. The number of modes here is estimated using a trained classifier [Che et al., 2017].
We do not count high quality samples as above since it is hard to evaluate it on real-world
datasets. Instead we count a mode as a covered mode if the number of its samples is greater
than α%× #samples

#modes (α = 10).
KL The KL divergence between the generated samples and the real samples over class

[Metz et al., 2017] is used to evaluate the quality of the generated data.
It shows in Table 3.2 that (1) GAN only generates around two out of six modes, which

denotes that GAN also suffers from a severe mode collapse problem on the simple real-world
dataset. (2) LBT-GAN, DAN-S and our SR-GAN can cover all modes of the SatImage data.
(3) In addition, our SR-GAN achieves the lowest KL divergence, which means that it can
learn a more accurate data distribution.

1https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/multiclass/satimage.scale



3.1 DGM with Mode Diversity 25

(a) Real (b) GAN (c) LBT-GAN (d) DAN-S (e) SR-GAN

Figure 3.3 Visual comparison of generated samples on the MNIST data. First column:
real samples from the MNIST dataset. Upper column 2-5: the generation with the FCN
generator and the FCN discriminator. Lower column 2-5: the generation with the RNN
generator and the CNN discriminator, which needs a more complex balance between the
asymmetric architecture and thus is harder to train. The training of LBT-GAN with the
RNN-CNN architecture is unstable and provides meaningless results.

MNIST Dataset

We further explore the superiority of our SR-GAN in terms of improving mode diversity on a
more complex dataset: MNIST [Lecun et al., 1998]. It consists of 28×28 images with zero
to nine digits. We adopt two architectures: FCN-FCN and RNN-CNN.

Instead of doing the support estimation on raw image data directly, we apply support
estimation on the embedding space [Chalapathy and Chawla, 2019]. Particularly, we use
deep neural networks [Hu et al., 2017] as feature extractors and input the discrete embedding
features into ClusterSVDD. The dimension of the features is set to that of the input noise.

Evaluation We use NMC and KL introduced in Sect. 3.1.2 to measure the diversity and
the quality of the generated data, respectively.

MNIST with the FCN-FCN architecture The upper panel of Fig. 3.3 shows that: (1)
the vanilla GAN and LBT-GAN both suffer from a severe mode collapse issue on MNIST.
The visualization shows that they only generate few of ten digits. (2) DAN-S and SR-GAN
can significantly mitigate the mode collapse. However, the performance of SR-GAN is
inferior to that of DAN-S. That is because, in SR-GAN, we train the support regularization
independently from the GAN’s objective for simplicity. A better result could be achieved
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Table 3.3 Mode diversity (measured by NMC), and data quality (measured by KL) on MNIST
with two architectures. The results are averaged over five trials, with the standard error
reported. Higher is better for NMC; lower is better for KL. The results of LBT-GAN is
unavailable since it generates meaningless samples.

MNIST (FCN-FCN) MNIST (CNN-RNN)
NMC (Max 10) KL NMC (Max 10) KL

GAN 2.6±0.25 1.57±0.038 2.8±0.80 1.70±0.240
LBT-GAN 4.0±0.00 1.28±0.107 - -

DAN-S 10.0±0.00 0.01±0.001 1.8±0.20 1.86±0.110
SR-GAN 8.2±1.36 0.50±0.259 10.0±0.00 0.12±0.025

through training them in a unified framework, which we leave for a future work. The results
in Table 3.3 (Left) is consistent with the visualization results.

MNIST with the RNN-CNN architecture The RNN-CNN architecture is asymmetric,
resulting in a more complex power balance [Metz et al., 2017]. Therefore, its training is
much harder than the previous FCN-FCN architecture.

The lower panel of Fig. 3.3 shows that: (1) the samples generated by GAN, LBT-GAN
and DAN-S with the RNN-CNN architecture are less sharper compared to the results with
the FCN-FCN architecture. This is because the asymmetric RNN-CNN architecture is harder
to train. LBT-GAN even generates meaningless samples. (2) The images generated by GAN
and DAN-S share only one single style within one mode. (3) SR-GAN achieves the best
performance and covers all modes. It can generate diverse styles for the digits. The results in
Table 3.3 (Right) are consistent with the visualization.

3.1.3 Summary

In this part, we address the mode collapse problem by aligning the support of the generated
data distribution with that of the real data distribution. The experiments show that our
SR-GAN can avoid the mode collapse and also improve the data quality. SR-GAN introduces
a simple extra regularization for GAN and does not modify any paradigm of GAN. Therefore
the proposed support regularization term can be easy to be applied to other GANs, like
conditional GAN, to solve the mode collapse problem.
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3.2 Disentangled DGM for Cluster Analysis

Clustering is an essential technique for unsupervised data analysis, whose objective is to
partition samples into groups so that the samples in the same group are similar while those
from different groups are significantly different [Jain et al., 1999]. A desired clustering
structure is expected to be semantically meaningful to humans [Xie et al., 2016]. In other
words, a clustering algorithm should partition data in terms of the factor of interest [Jacob
et al., 2016], e.g., the digital type of the MNIST data [Lecun et al., 1998].

Standard clustering [Cheng, 1995, Xie et al., 2016] is capable of capturing the desired se-
mantic structures embedded in the clean raw data. However, in many real-world applications
where the data commonly contains other variation factors, the discovery of the clustering
structure in terms of the factor of interest would be adversely affected by these unwanted
factors [Listgarten et al., 2010] (Fig. 3.4). While attaining interested features directly is
infeasible in unsupervised clustering, undesired information is accessible in many practical
scenarios, which can be removed so as to deliver more precise clustering results. For example,
the variance in the source of data (e.g., different platforms for collecting images, which have
different lighting conditions) may have a biased effect on the clustering structure, because the
difference between clusters could be caused by the source of data instead of intrinsic semantic
distinctions. Such information which indicates the unwanted factor can be obtained during
data collection [Saenko et al., 2010]. Moreover, in some clustering tasks, domain experts can
beforehand identify the unwanted factor that might cause spurious associations [Jacob et al.,

Not Wearing 
Glasses

Wearing 
Glasses

Male Female

Distracted clusters

Desired clusters

Figure 3.4 Motivation: raw images contain two important factors: gender and glass. Suppose
clusters with green solid lines are the desired clustering results, where the partitions are based
on the gender factor only. Standard clustering algorithms that neglect the unwanted factor
obtain clusters distracted by the glass factor, denoted by red dash lines. Notably, the face (a
man wearing glasses) with the warning sign is viewed incorrectly grouped.
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2016]. Therefore, in this study, we perform clustering while removing the negative effect of
the unwanted factor.

Previous methods [Jacob et al., 2016, Gagnon-Bartsch and Speed, 2012] simply projected
raw data onto the subspace orthogonal to the space expanded by the unwanted factor under
the linear assumption before clustering. Specifically, they decompose the data into linear
combinations of the desired factor and the unwanted factor. In the linear space, they remove
the unwanted information by simply subtracting the unwanted covariate from the data. In
parallel, Benito et al. [Benito et al., 2004] applied an improved SVM which finds a linear
hyperplane to separate two classes (i.e., the binary unwanted factor) in a supervised manner
and then projects the raw data on this hyperplane. Such a method cannot scale to the scenario
with multiple classes beyond the binary unwanted factor argued in [Johnson et al., 2007].
In summary, all previous approaches are limited to the raw feature space, which may not
capture high-level and representative features to describe the interested factor as well as the
unwanted factor. In addition, these methods only consider linear dependence between the
data and the unwanted factor for clustering, which oversimplifies the real situations. The two
flaws restrict existing methods from applying to complex real-world data, where both the
factor of interest and the unwanted factor are non-linearly embedded in the raw data.

Other works potential for this task relate to two clustering branches. One is alternative
clustering [Niu et al., 2013, Wu et al., 2018, 2019a], which finds an alternative clustering
given a dataset and an existing pre-computed clustering. It maximizes the dependence
between the clustering subspace and the alternative clustering partition while simultaneously
minimizes the dependence between the subspace and the given clustering partition. Then
the obtained clustering results can filter out the information of the unwanted clustering
structure. However, these methods are restrictive to pre-defined kernel functions used for
evaluating the dependence, which are not flexible and have limited description power. The
methods only work well for low-dimensional and simple datasets. Another is fair clustering,
particularly the most recent work [Li et al., 2020a] proposed to learn fair and clustering-
favorable representations for clustering by filtering out unfair attributes from representations.
In particular, it incorporated the advance of representation learning in deep learning into
clustering framework. However, their model separately learns the deep representation module
and the clustering module, which requires a careful balance between these two modules. In
addition, the adversarial training designed for the removal of the unfair factor also increases
the difficulty of model training.

In the following, we present a new clustering framework called COUF, which removes
the unwanted factor in the semantic latent space of complex data through a non-linear
dependence measure during clustering.
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3.2.1 Clustering without the Unwanted Factor (COUF)

Definition 1 (Clustering without the unwanted factor). Let X ∈ RN×U be a dataset with N
samples and U features. Let C = [c1,c2, . . . ,cN ]

T ∈ {0,1}N×V be the corresponding labels
with regards to a certain unwanted factor c, where Ci, j = 1 if xi belongs to class j and Ci, j = 0
otherwise; V is the number of categories. Our goal is to find a partition Ωx ∈ΠK,x, such that
Ωx is uninformative of c. The objective is formulated as:

min
Ωx∈ΠK,x

F(Ωx), s.t. Ωx ⊥ c, (3.9)

where ⊥ denotes that two variables are independent. ΠK,x denotes all feasible K-partitions
of X 2. Ωx represents a K-partition in the space where x is located. F is the clustering
objective, whose minimization aims at optimizing the quality of clustering. For instance, the
k-means clustering objective is F = ∑

K
k=1 ∑

N
n=1 ωnk ∥xn− ek∥2

2, where ek is the k-th cluster
centroid. ωnk ∈ {0,1} denotes the cluster assignment which equals 1 if xn is assigned to the
k-th cluster and 0 otherwise.

Deep semantic clustering in the latent space

Representation learning can output high-level and abstract representations [Vincent et al.,
2010]. Thus, we perform clustering in the latent space to capture the semantic structure of
complex data. To be specific, we jointly learn latent representations and clustering within a
deep neural network (DNN). The clustering loss is built over the representations extracted
from DNNs [Xie et al., 2016, Niu et al., 2022].

Let’s consider a general task (e.g., data reconstruction) that involves encoding the data x
into its latent representation z using the posterior Q(z | x), which serves as an encoder. The
objective of deep semantic clustering includes the objective L for representation learning and
the objective F for clustering on the representations. Namely,

min
q, Ωz∈ΠK,x

L(Q,x)+ηF(Ωz). (3.10)

Ωz denotes a partition in the space where z resides. ΠK,x is defined similarly as ΠK,x in
Eq. (3.9). η is a trade-off parameter that balances representation learning and clustering.

In particular, we choose Variational AutoEncoder (VAE) [Kingma and Welling, 2014]
to compute L(Q,x), because VAE includes modeling of Q(z | x), and VAE based clustering

2A K-partition of a set X denotes a collection of K mutually disjoint non-empty subsets whose union is X.
Namely, Ωx = (Ω1,Ω2, . . . ,ΩK), where

⋃K
i=1 Ωi = X ,Ωi∩Ω j = /0,1≤ i ̸= j ≤ K.
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can obtain good clustering-favorable representations and is effective for various complex
datasets [Jiang et al., 2017].

Clustering with representations invariant to unwanted factor

Eq. (3.10) conducts semantic clustering without considering the existence of the unwanted
factor c. To eliminate the negative impact of c on the target clustering structure Ωz, we
propose deep semantic clustering without the unwanted factor. Recalling Eq. (3.9), our
objective is formulated as:

min
q, Ωz∈ΠK,x

L(Q,x)+ηF(Ωz),

s.t. Ωz ⊥ c.
(3.11)

Since a partition Ωz is defined over the whole dataset while c is collected per sample, directly
implementing Ωz ⊥ c is complex and incurs large computational costs. Instead, we impose
an alternative independence constraint between the sample representation z and the unwanted
factor c, i.e., z⊥ c, both of which are defined at the sample level.

Proposition 1. Let Z = {z1,z2, . . . ,zN}T ∈ Z be the representation set of the dataset X .
Suppose the clustering algorithm A takes Z as an input and returns a partition Ωz of Z .
Namely, A : Z −→Ωz. If z⊥ c, then we naturally have Ωz ⊥ c.

Proposition 1 demonstrates clustering over representations z that is invariant to the
unwanted factor c can derive a clustering structure Ωz that is uninformative of the unwanted
factor c. Thus, our objective can be reformulated as:

min
q, Ωz∈ΠK,x

L(Q,x)+ηF(Ωz),

s.t. z⊥ c.
(3.12)

The independence constraint z⊥ c is still a strong condition and is difficult to be optimized di-
rectly. We apply the minimization of the mutual information I(z,c) to approximate it [Moyer
et al., 2018]. Adding the term I(z,c), the objective Eq. (3.12) is further formulated as:

min
q, Ωz∈ΠK,x

L(Q,x)+η1I(z,c)+η2F(Ωz). (3.13)

where η1 and η2 are the hyper-parameters that balance the three losses. In Eq. (3.13), the
interested clustering factor, which is embedded in the representation z, and the unwanted
factor c can be semantically described in the latent space [Xie et al., 2016, Vincent et al., 2010].
Meanwhile, these two factors are disentangled in the latent space. By optimizing Eq. (3.13),
we can obtain a semantic clustering structure Ωz that is irrelevant to the unwanted features.
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Figure 3.5 Graphical model of our COUF. x and c denote an observed sample and the
corresponding observed unwanted factor, respectively. e = {e1,e2, . . . ,eK} denotes clustering
centroids. A latent representation z is generated based on a clustering centroid picked from e
according to the group assignment ω . θ is the parameter of a decoder which decodes z and c
into x. The rectangle is “plate notation”, which means that we can sample x,c, z, and ω for
N times while θ and e remain fixed.

The overall clustering framework

To summarize, our framework jointly trains with three modules. First, the VAE structure is
adopted as the feature extractor module for learning semantic features. Further, we introduce
one disentangling module (Fig. 3.6) over the latent space derived by VAE, to disentangle
the unwanted factor c and other salient information z encoded in the data (i.e., z⊥ c). Last,
a clustering module (Fig. 3.7) based on the soft k-means is incorporated within the VAE
structure to perform clustering on the factor of interest that is embedded in z only.

Variational autoencoder According to our graph model (Fig. 3.5), we formulate the
statistical (non-linear) dependence between x and c in the latent space. Namely,

P(x,z,c) = P(z,c)P(x | z,c),

where z is the latent variable of x.
Similar to VAE [Kingma and Welling, 2014], the variational lower bound for the expecta-

tion of conditional log-likelihood E(x,c) [logP(x | c)] can be deduced as follows:

E(x,c) [logP(x | c)]≥ E(x,c)
[
Ez∼Q(z|x)[logP(x | z,c)] −KL[Q(z | x)∥P(z)]

]
. (3.14)
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Figure 3.6 Disentanglement via mutual information minimization.

The conditional decoder P(x | z,c) takes both z and c as input. We simplify the distribution
of z to only depend on the input x, optimized by the encoder Q(z | x). P(z) is the prior
distribution which is defined as a Gaussian noise.

Following VAE, we parameterize the approximate posterior Q(z | x) with an inference
network (encoder) fφ that encodes a data sample x to its latent embedding z, and parame-
terize the likelihood P(x | z,c) with a conditional decoder gθ that produces a data sample
conditioned both on the latent embedding z and the observed factor c (Fig. 3.5). Usually, a
particle zn is sampled from Q(z | x) for reconstructing xn [Kingma and Welling, 2014]. Then,
the loss function (minimization) based on the Monte Carlo estimation of the variational lower
bound in Eq. (3.14) is defined as:

LVAE =
N

∑
n=1

ℓr (xn,gθ (zn,cn))+
N

∑
n=1

KL[Qφ (z | xn)∥P(z)], (3.15)

where ℓr denotes the reconstruction loss, which can be instantiated with, e.g., mean squared
loss or cross-entropy loss. LVAE is used to calculate the first term L(Q,x) in Eq. (3.13).

Disentanglement by minimizing mutual information By minimizing the mutual infor-
mation I(z,c) between the latent variable z and the unwanted factor c, the unwanted factor is
disentangled from other salient information in the latent space.

Lemma 1 (MI upper bound [Moyer et al., 2018]). The mutual information between the latent
representation z and the unwanted factor c, i.e., I(z,c), is subject to a variational upper
bound:

I(z,c)≤−H(x | c)−Ex,c,z∼q[logP(x | z,c)]+Ex[KL[Q(z | x)∥Q(z)]]. (3.16)

As I(z,c) is not directly computable, we instead use its upper bound Eq. (3.16). The
constant H(x | c) will be ignored. The third term on the right of Eq. (3.16) is hard to calculate
since it contains the empirical marginal distribution Q(z). We follow Moyer et al. [2018] to
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approximate it using the pairwise distances:

KL[Q(z | x)∥Q(z)]≈∑
x

∑
x′

KL
[
Q(z | x)∥Q(z | x′)

]
.

By framing Q(z | x) and P(x | z,c)) as VAE’s encoder fφ and decoder gθ , respectively,
the loss function is finally defined as:

LMI =
N

∑
n=1

ℓr (xn,gθ (zn,cn))+
N

∑
n=1

N

∑
m=1

KL[Qφ (z | xn)∥Qφ (z | x′m)] (3.17)

The minimization of I(z,c), the second term in Eq. (3.13), is thus replaced by the minimiza-
tion of its upper bound, i.e., LMI.

Clustering over the c-invariant embedding Eq. (3.17) enables us to filter out the in-
formation of the unwanted factor c from the latent code z. For the sake of efficiency, we
apply k-means algorithm to conduct clustering on the c-invariant embedding z. Note that
k-means is a limit case of the Expectation-Maximization algorithm for Gaussian mixture
model [Bishop, 2006]. Thus, the latent embedding z can be roughly said generated with
the following process [Jiang et al., 2017] (Fig. 3.5): (1) a clustering centroid ek is picked
from e according to the corresponding clustering assignment ω; (2) a latent embedding z is
generated based on ek.

Particularly, the k-means clustering loss is defined as:

Lcluster =
N

∑
n=1

K

∑
k=1

ωnk ∥zn− ek∥2
2 . (3.18)

Lcluster is used to compute the third term F(Ωz) in Eq. (3.13). e = {e1,e2, . . . ,eK} are the
collection of K centroids. ωnk ∈ {0,1} refers to the group assignment that assigns the latent
embedding z to its closest clustering centroid. Namely,

λnk =
exp
(
−τ ∥zn− ek∥2

2

)
∑

K
i=1 exp

(
−τ ∥zn− ei∥2

2

) , (3.19a)

ωnk =

{
1 k = argmax j λn j

0 otherwise
, (3.19b)

where k = 1,2, . . . ,K. τ is the temperature and is set to 5 in the experiment.
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Clustering Centroids

Figure 3.7 Clustering over c-invariant embedding z. The first blue circle means that z and e
determine ω according to Eq. (3.19) while the second one means that ω and e determine z̃
according to Eq. (3.20).

Due to the reconstruction loss in VAE (Eq. (3.15)), the latent representations would
contain many sample-specific details, which is detrimental to clustering. We follow [Pan and
Tsang, 2021] to introduce the following skip-connection formulation to unify the reconstruc-
tion goal and the clustering goal. Namely,

ẑn = hψ (zn, z̃n) , where z̃n =
K

∑
k=1

ωnkek. (3.20)

Note that z̃n is one of K clustering centroids as ωnk is a one-hot assignment. hψ constructs a
new latent representation ẑn that incorporates not only the original c-invariant embedding
zn but also its belonging clustering centroid z̃n as the input of the decoder (Fig. 3.8). hψ is
implemented as a linear layer.

Our proposed framework: COUF Integrating all three modules comes to our Clustering
withOut Unwanted Factor (COUF) (Fig. 3.8). The final objective of COUF is formulated as:

L(Θ,e) =LVAE +η1LMI +η2Lcluster, (3.21)

where Θ = {θ ,φ ,ψ} denote the network parameters and e represent clustering parameters.
η1 and η2 are the trade-off parameters.

Clustering structure. After training the model, the clustering structure Ωz =(Ω1,Ω2, . . . ,ΩK)

is calculated by:
Ωk = {zn | ωnk = 1,n = 1,2, . . . ,N},

where k = 1,2, . . . ,K and ωnk is defined in Eq. (3.19b).
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Figure 3.8 The architecture of our Clustering without the Unwanted Factor (COUF).

Alternative update with stochastic optimization In Eq. (3.21), two types of parameters,
i.e., network parameters Θ, and clustering parameters e, are coupled together, which hinders
them from joint optimization. We adopt coordinate descent [Wright, 2015] to alternatively
optimize Θ and e. Fixing e, the network parameters Θ is updated with gradient descent:

Θ
(t) := Θ

(t−1)−κ

∂L
(

Θ,eee(t−1)
)

∂Θ

∣∣∣∣∣
Θ=Θ(t−1)

, (3.22)

where κ is the step size. t is the iteration index.
Fixing Θ, the clustering parameters e is updated with gradient descent:

e(t) := e(t−1)−κ

∂L
(

Θ(t),e
)

∂e

∣∣∣∣∣
e=e(t−1)

. (3.23)

The gradient of clustering parameters can be calculated analytically.
To make our COUF scalable to large-scale problems, we apply mini-batch stochastic

gradient updates for all parameters. However, such an update for clustering centroids e would
be unstable because the clustering centroids estimated by different mini-batch data may be
of great discrepancy. To overcome this limitation, we apply the exponential moving average
(EMA) update for the centroids since the EMA update yields good stability [Van Den Oord
et al., 2017, Kaiser et al., 2018]. Specifically, each centroid ek is updated online using the
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Algorithm 1 Clustering withOut the Unwanted Factor (COUF)

1: Input: Observed data {(xn,cn)}N
n=1 with sample xn ∈ Rd and the unwanted factor

cn ∈ {0,1}G, network { fφ ,gθ ,hψ}, #centroid K, #epoch M, batch size B.
2: Output: network { fφ ,gθ ,hψ}, clustering centroids e = (e1,e2, . . .eK), clustering assign-

ment {ωnk}.
3: Initialize: network parameters {φ ,θ ,ψ} and clustering centroids e.
4: for epoch= 1,2, . . . ,M do
5: for iteration= 1,2, . . . ,⌊N

B ⌋ do
6: Sample a mini-batch of pairs {(xn,cn)}B

n=1.
7: Calculate clustering assignment {ωnk} by Eq. (3.19).
8: Update network parameters {φ ,θ ,ψ} by Eq. (3.22).
9: Update clustering centroids e using Eq. (3.24).

10: end for
11: end for

assigned neighbor representations in the mini-batches {zb}B
b=1:

B(t)
k := B(t−1)

k × γ +
B

∑
b=1

ω
(t−1)
bk × (1− γ),

µ
(t)
k := µ

(t−1)
k × γ +

B

∑
b=1

ω
(t−1)
bk × z(t−1)

b × (1− γ),

e(t)k :=
µ
(t)
k

B(t)
k

,

(3.24)

where γ ∈ [0,1] is a decay parameter, which is set to 0.995 for all datasets. The training
algorithm is summarized in Algorithm 1.

Theoretical analysis

In this section, we theoretically analyze that optimizing network parameters Θ of COUF
in Eq. (3.21) is equivalent to (1) maximizing the lower bound of the mutual information
between the representation and the interested clustering structure, while (2) minimizing the
upper bound of the mutual information between the representation and the unwanted factor.

Theorem 1. Assume a fixed clustering structure, i.e., the clustering centroids e= {e1,e2, . . . ,eK}
and the clustering assignments {ωn}N

n=1, where ωn is a K-dimensional one-hot vector and
ωnk is defined in Eq. (3.19b). The minimization of our clustering object Lcluster is equivalent
to maximizing the variational lower bound of the mutual information between the representa-
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tion z and the interested clustering structure, represented by the group assignment ω , i.e.,
I(z,ω).

The proof is put in Appendix A.

Corollary 1. Let L′(Θ) denote the objective of Eq. (3.21) for optimizing network parameters
Θ = {θ ,φ ,ψ}. Given the observed data pairs {(xn,cn)}N

n=1, the clustering assignments
{ωn}N

n=1 and the centroids e, L′(Θ) is subject to the following lower bound:

L′(Θ)≥−E(x,c)[logP(x | c)]+η1I(z,c)−η2I(z,ω). (3.25)

From Corollary 1, we conclude that the optimization for Θ when fixing e, i.e., Eq. (3.22),
is to learn a clustering-favorable representation, which is invariant to the unwanted factor.

3.2.2 Experiments

Dataset. We conduct experiments on five public high-dimensional image datasets, which
have various numbers of clusters. Their statistics are summarized in Table 3.4. More details
are desrbied in Appendix A.

Implementations. We employ a multi-layer perception (MLP) VAE architecture (described
in the Appendix) for all datasets. Compared with those AE-based clustering methods [Xie
et al., 2016, Guo et al., 2017], our COUF introduces only one extra linear layer for Eq. (3.20),
which bring negligible network parameter overhead. We apply COUF to raw data for
UCI-Face, Rotated Fashion and MNIST-USPS considering their simplicity. Inspired by the
recent state-of-art (SOTA) clustering methods [Tsai et al., 2021, Niu et al., 2022], which
rely on structured representations to achieve superior performance on complex datasets,
we apply COUF to the extracted features for Office-31 and CIFAR10-C considering their
complexity. We use ImageNet-pretrained ResNet50 [He et al., 2016] to extract features for
Office-31 following the SOTA clustering method on Office-31 [Li et al., 2020a]. We use
MoCo [He et al., 2020] to extract features for CIFAR10-C following the SOTA clustering

Table 3.4 The statistics of datasets. The digit in the brace indicates the number of categories.

Dataset #sample #dim #cluster (K) unwanted factor (V )
UCI-Face 1,872 32×30 4 identity (20)

Rotated Fashion 30,000 28×28 5 cloth category (6)
MNIST-USPS 67,291 32×32 10 source of digit (2)

Office-31 3,612 224×224×3 31 domain source (2)
CIFAR10-C 40,000 32×32×3 10 corruption type (4)
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method on CIFAR10-C [Niu et al., 2022]. Note that these feature extractors do not utilize any
supervision regarding the datasets. Throughout all tasks, the dimension of centroids is set to
10 following [Xie et al., 2016, Guo et al., 2017]. The centroids are randomly initialized. We
adopt the Adam optimizer. The default learning rate, training epoch, and batch size are 5e-4,
1,000, and 256, respectively.

Baselines. The method that removes the unwanted factor in the raw space via linear
projection, i.e., RUV [Jacob et al., 2016] is included as our first baseline. Further, we extend
RUV to eliminate the unwanted factor in the latent space. In Particular, we first train AE to
obtain the latent representations for UCI-Face, Rotated Fashion, and MNIST-USPS. We use
the extracted features described above as the representations for Office-31 and CIFAR10-C.
Then, we apply RUV to remove unwanted information from the representations. We name
these two baselines as RUVx and RUVz, respectively. We also consider Iterative Spectral
Method (ISM) [Wu et al., 2019a]) and Deep Fair Clustering (DFC) [Li et al., 2020a] as our
baselines since these two methods can be deemed as the same objective as ours (Eq. (3.9)).
For a fair comparison, we take raw images of UCI-Face, Rotated Fashion and MNIST-USPS
and extracted features of Office-31 and CIFAR10-C as input for all the baselines except for
RUVx, which takes raw data as input.

Metrics. We evaluate different clustering methods with two widely-used clustering
metrics, i.e., accuracy (ACC) and normalized mutual information (NMI). For both two
metrics, values range between 0 and 1, and a higher value indicates better performance.

Table 3.5 Comparison of various methods w.r.t. clustering validity, ACC (↑) and NMI (↑).
The best results are highlighted in bold. The second-best results are underlined.

Dataset Metric ISM DFC RUVx RUVz COUF

UCI-Faces
ACC 0.763 0.394 0.380 0.539 0.824
NMI 0.454 0.087 0.163 0.322 0.570

Rotated Fashion
ACC N.A. 0.539 0.579 0.993 0.985
NMI N.A. 0.351 0.516 0.969 0.940

MNIST-USPS
ACC N.A. 0.825 0.457 0.785 0.919
NMI N.A. 0.789 0.379 0.756 0.837

Office-31
ACC 0.659 0.692 0.186 0.673 0.724
NMI 0.671 0.718 0.232 0.714 0.728

CIFAR10-C
ACC N.A. 0.283 0.208 0.357 0.458
NMI N.A. 0.186 0.085 0.317 0.311
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Performance comparison

The quantitative results of our COUF and various baselines on five datasets are summarized
in Table 3.5. We observe that:

(1) COUF is better than all baselines. COUF obtains superior results on all datasets.
This is because it adopts an effective non-linear dependence measure, i.e., mutual information,
and jointly trains a representation module, a clustering module, and a disentanglement module,
which can learn clustering-favorable representations invariant to the unwanted factor.

(2) Latent space is better than raw space. Non-linear correlation is better than linear
correlation. RUVz achieves better performance than RUVx, which shows that removing
the unwanted factor in the latent space is more effective than in the raw space of the image
datasets. RUVz obtains worse results than our COUF on the four datasets since RUVz simply
adopts linear projection and heavily relies on the extracted representations beforehand, which
cannot deal with these complex datasets where the desired clustering factor and the unwanted
factor are coupled non-trivially in the latent space. RUVz performs slightly better than COUF
on Rotated Fashion. It is probably because the rotation factor (desired) and the cloth category
factor (unwanted) are linearly separable in the latent space.

(3) DFC originally designed for two categories degenerates on the dataset with
more categories (i.e., UCI-Faces, Rotated Fashion, and CIFAR10-C). On one hand, more
categories may increase the difficulty of adversarial training, making it unable to effectively
remove the unwanted factor. On the other hand, the constraint to maintaining the clustering
structure in DFC is harder to satisfy in this situation. Specifically, the constraint requires
training a DEC [Xie et al., 2016] for each category of data. For example, it needs to train
a DEC on around 93 images for UCI-Face, which would suffer from insufficient training
samples.

(4) ISM cannot be executed on large-scale datasets, i.e, Rotated Fashion, MNIST-USPS
and CIFAR10-C because it performs clustering with full batch data training. Specifically,
it requires a memory complexity of O(n2) and needs to store a data matrix with a size
larger than 10k×10k for these datasets, which is beyond our computing capacity. On the
small-scale datasets, i.e., UCI-Faces and Office-31, ISM is still inferior to our COUF.

Efficacy of removing the unwanted factor for clustering

To demonstrate the gain of clustering that takes into account the removal of the unwanted
factor, we include the comparison with standard clustering methods, which neglects the
unwanted factor and performs clustering directly on raw data or data representations, namely,
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Table 3.6 COUF compared with standard clustering w.r.t. clustering validity, ACC (↑) and
NMI (↑) on three simple image datasets.

Dataset Metric k-means IDEC COUF

UCI-Faces
ACC 0.266 0.356 0.824
NMI 0.002 0.069 0.570

Rotated Fashion
ACC 0.487 0.602 0.985
NMI 0.414 0.611 0.940

MNIST-USPS
ACC 0.506 0.789 0.919
NMI 0.447 0.766 0.837

k-means [Bishop, 2006], IDEC [Guo et al., 2017]3, PICA [Huang et al., 2020] and SPICE [Niu
et al., 2022]4. We apply PICA and SPICE only on Office-31 and CIFAR10-C considering
that they were proposed for complex image datasets. For a fair comparison, we take raw
images of UCI-Face, Rotated Fashion and MNIST-USPS and extracted features of Office-31
and CIFAR10-C as input for the methods except for PICA. PICA takes raw images of all
datasets as input since it needs to conduct image augmentations for partition confidence
maximization [Huang et al., 2020].

Table 3.7 COUF compared with standard clustering w.r.t. clustering validity, ACC (↑) and
NMI (↑) on two complex image datasets.

Dataset Metric k-means IDEC PICA SPICE COUF

Office-31
ACC 0.648 0.634 0.440 0.231 0.724
NMI 0.689 0.690 0.536 0.341 0.728

CIFAR10-C
ACC 0.247 0.420 0.220 0.313 0.458
NMI 0.225 0.380 0.178 0.294 0.311

Improved by removing the unwanted factor. Table 3.6 and Table 3.7 show that:
compared with standard clustering methods, our COUF achieves superior performance on
all datasets. It verifies the claim that our COUF which explicitly removes the influence
of the unwanted factor performs better than the standard clustering methods. Note that
PICA obtains poor results since it conducts clustering on raw features (k-means on MoCo
extracted feature achieves better results than PICA on raw features also reported in [Tsai
et al., 2021]). And SPICE performs worse than IDEC because it applies a discriminative

3IDEC is a representative AE-based clustering method.
4PICA and SPICE are recently proposed self-supervised clustering methods. SPICE is the SOTA standard

clustering method.
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All data T-shirt/top Trouser Pullover Dress Coat Shirt

Figure 3.9 t-SNE on latent representations and clustering centroids from COUF (1st raw)
and IDEC (2nd raw) on Rotated Fashion, respectively. The big grey dots are the centroids.
The small dots are the representations, of which the colors denote the ground truth category
labels.

model for clustering, which is more vulnerable to the unwanted factor than IDEC which is
AE-based clustering.

To further illustrate the effectiveness of removing the unwanted factor, we visualize the
latent representations and the clustering centroids for our COUF and IDEC (i.e., standard
clustering that neglects the existence of the unwanted factor) on Rotated Fashion, respectively.
Invariant representations. From the t-SNE visualization of our COUF (the first row of
Fig. 3.9), we can see that: (1) the clusters are well separated and the centroids are located at
the center of each cluster. (2) These categories’ representations are not only well aligned with
each other, but also the whole data’s representations. This demonstrates that our COUF’s
latent representations are invariant to the unwanted factor, i.e., the cloth category label.
(3) Each centroid represents one of the five rotation angles in the dataset. In addition, the
reconstruction of the centroids is exactly the Fashion-MNIST objects, which demonstrates
our COUF captures semantic clustering structures.

The t-SNE visualization of IDEC (the second row of Fig. 3.9) shows that: (1) IDEC
obtains an inferior clustering structure due to the negative impact of the unwanted factor.
Specifically, the cloth category introduces variances into the data, making the derived structure
away from the desired one w.r.t. the rotation factor. (2) These categories’ representations are
neither aligned with each other nor with the representation of the entire data. It demonstrates
that IDEC’s latent representations are corrupted by the unwanted factor, i.e., variances of
cloth category.

Disentangled centroid reconstruction. We can reconstruct the centroids conditioned on
the unwanted factor for COUF. The first row of Fig. 3.10 shows that (1) the latent embedding
z and the unwanted factor c are well disentangled. In particular, the information of the
unwanted factor is well captured by c. (2) The centroids from COUF can capture all rotation



42 DGMs with Diversity and Disentanglement: A Preliminary Study

category factor
T-shirt/top
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Coat

Shirt

COUF

IDEC

Figure 3.10 The centroids’ reconstruction of COUF and IDEC on Rotated Fashion (28×28).
Each column is conditioned on the same clustering centroid. Each row is conditioned on
different labels of the cloth category factor.

mitchell

megak

night

phoebe

identity factor

Figure 3.11 The centroids’ reconstruction of COUF on UCI-Face (32× 30). Each row is
conditioned on different labels of the identity factor. Each column is conditioned on the same
clustering centroid.

angles. When conditioned on the same clustering centroid, the reconstructions present the
same angle.
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MNIST

USPS

digit source factor

Figure 3.12 The centroids’ reconstruction of COUF on MNIST-USPS (32×32). Each row is
conditioned on different labels of the digit source factor. Each column is conditioned on the
same clustering centroid.

The second row of Fig. 3.10 shows that (1) IDEC does not have the ability to disentangle
the unwanted factor c from the latent space and cannot control the generation by being
conditioned on c. (2) Its centroids do not capture all rotation angles in the dataset but some of
them capture the cloth categories. For example, e1 and e2 represent the shirt and the trouser
with the same angle, respectively.

We also reconstruct the centroids on UCI-Face and MNIST-USPS in Fig. 3.11 in Fig. 3.12,
respectively. In their centroids’ reconstruction, the latent embedding z and the unwanted
factor c are also well disentangled. The centroids can capture clear structures, i.e., the pose
angle for UCI-Face and the digit type for MNIST-USPS, respectively. On Office-31 and
CIFAR10-C, we do not reconstruct the centroids on these datasets as the extracted features
are used as model input.

Ablation study

We study the effectiveness of each module by excluding it from our COUF framework.
Table 3.8 shows that: (1) our COUF gets the best results, which justifies the necessity

of each module. (2) Without the disentanglement module to remove the unwanted factor
via mutual information, the clustering performance drops significantly since the unwanted
factor would distract desired clustering results. (3) A poor clustering structure is obtained
without the clustering module because it fails to derive clustering-friendly representations.
(4) The clustering performance is worse when excluding both the clustering module and
the disentanglement module. (5) The other two modules cannot function without the VAE
module. So we did not collect the result for COUF without the VAE module. Nevertheless,
the VAE module allows clustering to be performed in the latent semantic space, which can
have better clustering results5.

5This can be said verified by the improvement of RUVz compared to RUVx in Section 3.2.2.
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Table 3.8 Effectiveness of different modules in COUF on Rotated Fashion. “Clu” means the
clustering module. “Dis” means the disentanglement module.

Metric w/o Clu w/o Dis w/o VAE w/o Clu & Dis COUF
ACC 0.513 0.857 - 0.487 0.985
NMI 0.376 0.803 - 0.414 0.940

Label(%)

Pe
rfo

rm
an

ce

Figure 3.13 The clustering performance (ACC, NMI) of COUF given partial labels regarding
the unwanted factor on Rotated Fashion. “Classifier ACC” denotes the test accuracy of the
classifier. x axis denotes the proportion of labeled data. IDEC is the baseline that performs
clustering without removing the unwanted factor.

Extension to the incomplete unwanted factor

We explore the performance of COUF given different amounts of labeled data w.r.t. the
unwanted factor on Rotated Fashion. Applying COUF to this semi-supervised setting, we first
train a classifier on the labeled data and use it to predict labels for the remaining unlabeled
data. Then COUF is naturally applied to these fully-annotated data. Particularly, we employ
a convolutional neural network (CNN) classifier for the classification. IDEC is adopted as
the baseline following the same setting as COUF.

We plot the test accuracy of the classifier (calculated on the remaining unlabeled data)
and the clustering performance (ACC and NMI) of COUF in Fig. 3.13 with the percentage
of labeled data from 0.1% to 100%. It shows that (1) compared to IDEC which does not
consider the unwanted factor, our COUF can improve the clustering performance even with
a very small amount of labeled data. (2) When there are less than 0.5% labeled data, the
test accuracy of the classifier is low, smaller than 0.5. Accordingly, the results of COUF are
relatively not so good since there are more than 50% samples assigned with wrong labels.
(3) When the labeled data is larger than 1%, there are more than 50% samples assigned with
true labels. Though the percentage of label noise is still very high, COUF can perform well
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since the correct labels dominate and the structured representations can be robust to label
noise [Yu et al., 2020]. In conclusion, our COUF can work well even given a small amount
of labeled data regarding the unwanted factor.

3.2.3 Summary

We have introduced a general framework COUF for a new stream of clustering that aims to
deliver clustering results invariant to the pre-designated unwanted factor. COUF is the first
deep clustering framework that eliminates unwanted factors in the semantic latent space of
data through nonlinear dependency measures, which can more effectively remove unwanted
information of complex data and thus obtain better clustering results. Our theoretical
analyses reveal that COUF’s losses are approximations to the mutual information between
the representation and the unwanted factor as well as that between the representation and
the interested clustering factor, which rigorously guarantees its efficacy in eliminating the
unwanted factor and clustering. Empirical results demonstrate that COUF in general achieves
better results on various image datasets than various baselines. In particular, COUF, i.e.,
a controllable DGM, consistently performs better than vanilla DGMs on all datasets for
clustering tasks. In addition, COUF can generate desired samples specified by a certain factor
or a clustering structure (Fig. 3.10, Fig. 3.11 and Fig. 3.12).

The future work can be explored from the following two directions. (1) We can extend
our COUF to more situations as we make no assumptions specific to the form of data or the
unwanted factor. Therefore, we can apply COUF to other types of data, e.g., text data, and
time series data. In addition, COUF can be extended to use the unwanted factor with continu-
ous values, such as the continuous “income” attribute in a human-related dataset [Redmond
and Baveja, 2002]. (2) We can explore a joint training paradigm for the semi-supervised
situation in which the unwanted factor is partially labeled, while we empirically studied the
situation in a two-stage training paradigm (Section 3.2.2).



Chapter 4

Incorporating Preferences into DGM

From this chapter, we start to delve into the main topic of this thesis (Fig. 1.2). We will study
how human preferences can be incorporated into Wasserstein GAN (WGAN) in this chapter.
As clarified in Chapter 3, WGAN would not suffer from the mode collapse issue, thus
our framework built on it would maintain good sample diversity. Specifically, we propose
Differential-Critic Generative Adversarial Network (DiCGAN) to learn the distribution of
user-desired data when only partial instead of the entire dataset possesses the desired property.
DiCGAN introduces a differential critic that learns from pairwise preferences, which are
partial knowledge about the property and can be defined on a part of training data. The
critic is built by defining an additional ranking loss over the WGAN’s critic. It endows
the difference of critic values between each pair of samples with the user preference and
guides the generation of the desired data instead of the whole data. For a more efficient
solution to ensure data quality, we further reformulate DiCGAN as a constrained optimization
problem, based on which we theoretically prove the convergence of our DiCGAN. Extensive
experiments on a diverse set of datasets with various applications demonstrate that our
DiCGAN achieves state-of-the-art performance in learning the user-desired data distributions,
especially in the cases of insufficient desired data and limited supervision.

4.1 Problem Statement

User-desired data may refer to some certain class of data among multiple class datasets, or
observations with/without some particular attributes or properties. Such data can be induced
from human preference, which can be represented as an ordering relation between two or
more samples in terms of the desired property.

A universal criterion to help derive a user-desired data distribution can be constructed
based on a score function. Following the score-based ranking literature [Cao et al., 2007a],
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(a) Training data (b) GAN (c) DiCGAN

Figure 4.1 t-SNE of 50K MNIST samples from (a) training data, (b) GAN and (c) DiCGAN,
respectively. Training on MNIST, DiCGAN learns the distribution of small digits, i.e., digit
zero, while GAN learns the distribution of the entire dataset.

we suppose that there exists a numeric score associated with each sample, reflecting the
user’s preference for the sample. A higher score indicates that its corresponding sample is
preferred by the user. In detail, let f () denote a score function that maps sample x to score
f (x). Let T denote the threshold to discriminate the desired data from the undesired data.
That is, if a sample’s score f (x) exceeds a predefined threshold T , namely, I( f (x)> T ) = 1,
the sample x is desired by the user. I() is a sign function, which equals 1 if its condition is
true and 0 otherwise. For the sake of explanation, we use Pr(x),Pd(x),Pu(x) to denote the
distribution of the whole data, the user-desired data and the undesired data, respectively.

Current literatures [Gupta and Zou, 2019, Arjovsky et al., 2017b, Mirza and Osindero,
2014] needs to explicitly label desired/undesired data in order to learn the distribution of
the desired data Pd(x). Namely, the desired data Xd = {x|I( f (x)> T ) = 1,x ∼ Pr(x)}. The
undesired data Xu = {x|I( f (x)≤ T ) = 1,x ∼ Pr(x)}. However, the assumption that the score
function f () is predefined may be too restrictive for real applications, where no universal and
explicit criteria exist. Second, the definitions of the desired/undesired samples are highly
dependent on the choice of the threshold T . Third, labeling over the entire dataset incurs
high costs.

Instead of relying on a predefined score function (global knowledge), we propose to learn
the desired data distribution in a straightforward manner from the user preferences. Here, we
consider general auxiliary information, i.e., the pairwise preferences, to represent the user
preferences, due to its simplicity and easy accessibility. For any two samples x1,x2 ∼ Pr(x),
let x1 > x2 denote that x1 is preferred over x2 according to the user’s preference over the
samples. Let X be the training samples, i.e., X = {x ∼ Pr(x)}. A collection of pairwise
preferences S is obtained by:

S =
{

s = (x1,x2)|x1 > x2,x1,x2 ∈ X}
. (4.1)
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S can be defined on part of the dataset.

Remark 1. We can construct S by first randomly drawing sample pairs from part of the
training samples and then asking the user to select the preferred one from each pair.

Definition 2 (Problem Setting). Given the training samples X and the pairwise preferences
S, the target is to learn a generative model Pg(x) that is identical to the distribution of the
desired data Pd(x), i.e., Pg(x) = Pd(x) (See Fig. 4.1 for an example).

4.2 Differential Critic GAN for User-Desired Distribution

Instead of adopting WGAN’s critic for quality assessment, we present the differential critic
for modeling pairwise preferences. The differential critic can guide the generation of the
user-desired data.

4.2.1 Pairwise Preference

We consider incorporating pairwise preferences into the training of GAN.
The score-based ranking model [Zhou et al., 2008] is used to model the pairwise prefer-

ences. It learns the score function f (), of which the score value, called ranking score in the
model, is the indicator of the user preferences. Further, the difference in ranking scores can
indicate the pairwise preference relation. That is, for any pair of samples x1,x2, if x1 > x2

then f (x1)− f (x2)> 0 and vice versa. For any pairwise preference s : x1 > x2, the ranking
loss we consider is as follows:

h(s) = max(0,−( f (x1)− f (x2))+m) , (4.2)

where m is the ranking margin. For other forms of ranking losses, the reader can refer
to [Zhou et al., 2008].

Instead of learning the score function independently of GAN’s training, we consider
incorporating it into GAN’s training, guiding GAN towards the generation of the desired data.
The critic in RGAN [Jolicoeur-Martineau, 2019] is similar to the score function, where the
critic values are used to describe the quality of samples. We are motivated to take the critic
values as the ranking scores and define the ranking loss on the critic directly. In particular,
the difference in the critic values for each pair of samples reflects the user’s preference over
the samples.
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Figure 4.2 Illustration of why DiCGAN can learn the user-desired data distribution. (a)
DiCGAN’s critic pushes fake data towards the real desired data while WGAN’s critic pushes
fake data towards all the real data. (b) The change of DiCGAN’s critic direction is driven
by the preference direction. Note that the preference direction is learned from all pairwise
preferences.

4.2.2 Loss Function

We build DiCGAN based on WGAN and the pairwise ranking loss is defined over the
WGAN’s critic. The loss function for DiCGAN is defined as:

min
G

max
D

EPr(x) [D(x)]−EPg(x) [D(x)]−λ
1
|S| ∑s∈S

[h(s)] , (4.3)

where h(s) is the pairwise ranking loss (Eq. (4.2)). f () is approximated by the critic D.
Namely, h(s) ≈ max(0,−(D(x1)−D(x2))+m). λ is a balance factor, which will be dis-
cussed further in section 4.3. Similar to WGAN, we formulate the objective for the differential
critic LD and the generator LG as:

LD =
1
b

b

∑
i=1

(D(xi)−D(G(zi)))−λ
1
ns

ns

∑
j=1

h(s j),

LG =
1
b

b

∑
i=1
−D(G(zi)).

(4.4)

where b is the batch size. ns is the number of preferences sampling from S .
The advantages of DiCGAN are twofold. (1) The introduced ranking loss in DiCGAN

is defined on the critic directly. Apart from WGAN, it can be easily applied to other
GAN variants developed based on the critic, e.g., RGAN. (2) The construction of pairwise
preferences involves the undesired data. Thus, the undesired samples are also utilized during
the training and they, together with desired samples, provide the generation direction of the
desired data for the generator.

(a) (b)
Real data

Fake data

Undesired data

WGAN critic� boundary
direction

DiCGAN critic� boundary
direction

Preference direction
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We argue that the differential critic in DiCGAN can guide the generator to learn the
user-desired data distribution. As shown in Fig. 4.2, the differential critic in DiCGAN
provides the direction towards the real desired data. We denote the critic direction as the
moving direction of the fake data, which is orthogonal to the decision boundary of the critic.
Referring to Eq. (4.3), DiCGAN’s critic loss consists of two terms: the vanilla WGAN loss
and the ranking loss. The vanilla WGAN loss imposes the critic direction from the fake
data to the real data. Meanwhile, the ranking loss induces a user preference direction, which
points from the undesired data to the desired data. Combining these two effects, the critic
direction of DiCGAN targets the region of the real desired data only.

The above proposed DiCGAN (Eq. (4.3)) however requires sensitive hyperparameter tun-
ing during the training. Revisiting the objective (Eq. (4.3)), the first two terms (WGAN loss)
can be considered as the WGAN regularization, which ensures the generated data distribution
is close to the whole real data distribution, i.e., Pg≈ Pr. The third term (ranking loss) serves as
a correction for WGAN, which makes WGAN slightly biased to our target of learning the de-
sired data distribution, i.e., Pg = Pd. Therefore, the WGAN regularization serves as the corner-
stone of our DiCGAN. Particularly, if the desired data distribution is close to the whole data
distribution, the ranking loss easily corrects the WGAN to achieve the desired data distribu-
tion. Otherwise, satisfactory performance of DiCGAN may require the online hyperparameter
tuning of λ during the training process. Thus, it is hard to train with Eq. (4.3) in this case.

4.3 Reformulating DiCGAN to Ensure Data Quality

In this section, we reformulate DiCGAN as a form with a hard constraint. This form indicates
that the tuning for Eq. (4.3) relies largely on the distance between the distributions of the
desired data and the undesired data. Further, it inspires us to derive a more efficient solution –
minor correction and major correction.

According to the above analysis, the WGAN loss serves as the cornerstone of our
DiCGAN and the pairwise ranking loss serves as a correction for WGAN. Thus, we consider
reformulating the objective of DiCGAN, i.e., Eq. (4.3) into an equivalent objective with a
hard WGAN constraint:

min
G

max
D
−∑

s∈S
[h(s)] ,

s.t. d(Pr,Pg) =
∣∣∣EPr(x) [D(x)]−EPg(x) [D(x)]

∣∣∣≤ ε.

(4.5)

where ε > 0. Note that we impose an explicit non-negative constraint on d(Pr,Pg), to highlight
that it is a distance metric. It is still equivalent to WGAN loss from its definition. Eq. (4.3)
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Wasserstein distance

Ranking loss

noise z

(a) (b)

Figure 4.3 DiCGAN architecture and training. DiCGAN is alternately trained with step (a)
and (b). (a) Training DiCGAN at one minor correction. (b) Replacing data after one minor
correction. 1⃝ denotes the shared differential critic D. 2⃝ denotes that S is constructed from
X using Eq. (4.1). 3⃝ denotes data replacement using Eq. (4.7).

is the Lagrangian function. Since Eq. (4.5) imposes a hard constraint on the WGAN loss,
it is more difficult to optimize compared to Eq. (4.3). However, more efficient solutions of
DiCGAN can be explored by analyzing Eq. (4.5) regarding the hard constraint on d(Pr,Pg).

In terms of a minor correction situation, this means the desired data distribution Pd is
close to the real data distribution Pr. Therefore, the hard constraint dominates the training
goal of DiCGAN. By assigning a proper λ to ensure the constraint is satisfied, Eq. (4.3) can
learn the distribution of the user-desired data while ensuring data quality.

In terms of a major correction situation, this means the desired data distribution Pd is
quite diverse from the real data distribution Pr. Therefore, DiCGAN needs to achieve an
equilibrium between the correction, imposed by the ranking loss, and the hard constraint,
imposed by the WGAN loss. However, a large correction may not ensure the quality of
the generated data, since the WGAN loss, used to guarantee the image quality, is defined
between the generated data and the whole real data. To avoid the major correction, we
propose to break the major correction into a sequence of minor corrections to ensure data
quality. Namely, at each minor correction, we first use the generator G to generate ng samples,
denoted as Xg:

X e
g ←{Ge(z1), . . . ,Ge(zng)}, {zi ∼ p(z)}ng

i=1, (4.6)

where e is e-th minor correction. Then we replace partial old training samples with the
generated samples:

X e+1←X e \X e
o ∪X e

g , (4.7)

where X e
o are the old (least-recently added) ng samples in X e.
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Algorithm 2 Training algorithm of DiCGAN
1: Input: training data X , pairwise preferences S
2: Initilization: balance factor λ , #generated samples ng, #pairs ns, batch size b, #iterations per

minor correction nminor, #critic iterations per generator iteration ncritic
3: Pretrain D and G
4: repeat
5: % Shift to the user-preferred distribution
6: Generate samples using Eq. (4.6)
7: Replace partial old samples in X with Xg using Eq. (4.7)
8: Obtain pairwise preferences S using Eq. (4.1)
9: % Training of D and G at a minor correction

10: for l = 1, . . . ,nminor do
11: for t = 1, . . . ,ncritic do
12: Sample {xi}b

i=1 from X , {zi ∼ p(z)}b
i=1

13: Sample {s j}ns
j=1 from S .

14: Train the differential critic D using LD in Eq. (4.4)
15: end for
16: Train the generator G using LG in Eq. (4.4)
17: end for
18: until converge
19: Output: generator G for desired data distribution

Due to the ranking loss, the generated data distribution Pe
g is closer to the desired data

distribution Pd, compared to the constructed Pe
r at each minor correction. Therefore, the

iterative replacement (Eq. (4.7)) can gradually shift the real data distribution Pr towards
the desired data distribution Pd. Namely, d(Pr,Pd) > · · · > d(Pe

r ,Pd) > d(Pe+1
r ,Pd) > · · · .

According to the monotone convergence theorem, d(Pe
r ,Pd) will converge to zero when

e→ +∞. So only a minor correction needs to be imposed on Pe
g by optimizing Eq. (4.3)

at each minor correction. Iteratively, the generated distribution Pg shifts towards Pd. The
training algorithm is summarized in Algorithm 2. The architecture and training of DiCGAN
can be seen in Fig. 4.3. For the sake of easy optimization, we pretrain the differential critic D
and the generator G using vanilla WGAN.

4.4 Convergence Analysis

In this section, we analyze the convergence of our DiCGAN under the minor correction and
the major correction, respectively. In the case of the minor correction, we prove that the
distribution of generated data Pg(x) converges to the distribution of user-desired data Pd(x)
via adversarial training of GAN given that the differential critic of DiCGAN converges to the
score function whose score describes the user’s preference for the sample. In the case of the
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major correction, Pg(x) is proven gradually moving towards Pd(x) with a sequence of minor
correction as one minor correction shifts Pg(x) towards Pd(x) with a certain small distance.

Suppose the training data X = {x1,x2, . . . ,xn}, where n is the number of training sam-
ples. Their corresponding scores o = f (x) are {o1,o2, . . . ,on}, which describes the user’s
preference for the sample. The maximum score among the samples is denoted as omax while
the minimum one is omin.

Proposition 2. In the case of the minor correction, i.e., d (Pr(x),Pd(x))≤ ε , Pg(x) converges
to Pd(x).

Proof. According to the theory of learning to rank [Liu, 2009], by setting an appropriate λ ,
we have D converge to the score function f () iff S is sufficient. Then the real desired data
will be assigned higher scores than the real undesired data.

With Eq. (4.4), the generator is optimized to generate samples with scores as high as
possible while the critic is optimized to assign the generated samples lower than the training
samples. As only training samples preferred by the user are assigned with high scores, when
the adversarial training converges, the generated samples are alike samples with high scores,
i.e., the desired data, which shares the same principle in [Goodfellow et al., 2014, Arjovsky
et al., 2017b]. Therefore, Pg(x) converges to Pd(x).

Proposition 3. In the case of the minor correction where d (Pr(x),Pd(x))≤ ε and Pg(x) =
Pd(x), we can prove that EPg(x) [D(x)] = EPr(x) [D(x)]+δ , for some δ > 0.

The proof is left in Appendix B.

Corollary 2. The minor correction moves Pg towards Pd with distance δ compared to Pr, i.e.,
d(Pr,Pd)−d(Pg,Pd) = δ .

Proposition 4. In the case of the major correction, i.e., d (Pr,Pd) = T0, the distance between
Pg(x) and Pd(x) converges to d(Pk

g ,Pd) = T0− kδ after k minor corrections.

The proof is put in Appendix B

Corollary 3. In the case of major correction, Pg(x) converges to Pd(x) after K minor
corrections, where K = ⌈T0

δ
⌉.

Proof. Since d(Pk
g ,Pd)>= 0 and d(Pk

g ,Pd) = T0−kδ decreases as k increases, d(Pk
g ,Pd) con-

verges to zero when k→+∞ according to the monotone convergence theorem. Specifically,
when k = ⌈T0

δ
⌉, d(Pk

g ,Pd) = 0.

From Proposition 2 and Corollary 3, we conclude that in DiCGAN, the distribution of
generated samples Pg(x) converges to Pd(x).
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4.5 Discussions

In this section, we discuss the technical novelty and some possible variants of DiCGAN.

4.5.1 Technical Novelty of DiCGAN

Our DiCGAN’s technical novelty and its significance in terms of the following four aspects:

• The first one to apply user preferences for desired data generation. Current approaches
for desired data generation require expensive global knowledge, which is usually not
available. Our DiCGAN uses local knowledge only – local ranking information about user
preferences.

• New insight for critic value. Our DiCGAN considers the critic values as the ranking
scores that represent user preferences. Based on this insight, we can incorporate user
preferences into GAN’s learning instead of learning the score function for user preferences
independently of GAN’s training:

1. Naive combination between user preferences and GAN does not work. Introducing
an additional critic that learns from user preferences onto WGAN would lead to the
conflict between WGAN’s original critic for good quality generation and the extra critic
for desired data generation.

2. As critic values can represent data quality and user preferences, we define a differential
critic by defining an additional pairwise ranking loss on the WGAN’s critic and build
DiCGAN (Eq. (4.3)). Then the original WGAN’s critic loss encourages:

x1 > x2 for x1 ∼ Pd(x) and x2 ∼ Pu(x);

and the ranking loss encourages:

x1 > x2 for x1 ∼ Pr(x) and x2 ∼ Pg(x).

The critic would guide the generation with high critic values, encouraging the genera-
tion of user-desired data with good quality.

• Efficient solution by an equivalent form with a hard constraint. The naive form of DiC-
GAN (Eq. (4.3)) requires heavy hyper-parameter tuning when there is a large distance gap
between the distributions of the desired data and the whole data. Thus, we propose an equiv-
alent form of DiCGAN (Eq. (4.5)). Based on it, we derive a more efficient solution in terms
of minor correction and major correction, which can always ensure good data quality.
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• The first rigorous model for desired data generation. To the best of our knowledge, no
previous work theoretically studies this problem. The above three points pave the way for
the theoretical convergence proof of desired data generation:

1. Because of DiCGAN’s form with a hard distance constraint, we can analyze the conver-
gence of DiCGAN under the minor correction and the major correction.

2. Since we interpret the critic values in DiCGAN as the ranking scores, the relationship
between the user preferences (reflected by ranking scores) and the distribution distance
(represented by critic values) [Proposition 3 and Corollary 2] can be derived. This is the
first time that such a relationship is rigorously shown.

4.5.2 Pairwise Regularization to Generator

We claim that adding the pairwise regularization to the generator requires heavy supervision
and is invalid. Our DiCGAN thus does not consider such regularization.

As the target is to learn the desired data distribution, the regularization on the generator
can be used to make the critic values of the generated samples larger than those of the
undesired samples. Specifically, a selector is first applied to give a full ranking for the
training data, and then the bottom K0 samples are picked up as the undesired samples. The
pairwise preferences are then defined over the generated samples and the undesired samples.
Note that the undesired subset of the training data requires labeling all training data.

We consider two cases of adding the regularization to the generator. First, we only add
the pairwise regularization to the generator (PRG-1). Second, we add the regularization to
the generator together with the regularization on the critic (PRG-2).

The objective for PRG-1 is as follows:

LD = EPr(x) [D(x)]−EPg(x) [D(x)] ,

LG = EPg(x) [D(x)]−λ
′ 1
|S ′| ∑

s∈S ′
[h(s)] ,

(4.8)

where h(s) is Eq. (4.2). S ′ is the pairwise preferences constructed between the generated
data and the undesired data, i.e., S ′ =

{
s = (x1,x2)|x1 > x2,x1 ∼ Pg(x),x2 ∼ Pu(x)

}
. Now

the generator consists of two terms, the original WGAN loss on the generator aims to
achieve EPg(x) [D(x)]>EPr(x) [D(x)], while the regularization aims to achieve EPg(x) [D(x)]>
EPu(x) [D(x)]. Since the undesired data is a subset of the real data, i.e., {x|x ∼ Pu(x)} ⊆
{x|x ∼ Pr(x)}, the WGAN loss always dominates the training of the generator. Therefore,
PRG-1 degenerates to WGAN.
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(a) Data

Feature

(b) WGAN

Feature

real (desired)
real (undesired)
fake

(c) DiCGAN

Figure 4.4 Comparison of the critic in (b) WGAN and (c) DiCGAN. DiCGAN’s critic can
assign higher critic values for real desired data than real undesired data while WGAN’s critic
cannot. “Feature” is obtained by using kernel PCA to project the output on the second last
layer of the critic into 1D space.

The objective for PRG-2 is as follows:

LD = EPr(x) [D(x)]−EPg(x) [D(x)]−λ
1
|S| ∑s∈S

[h(s)] ,

LG = EPg(x) [D(x)]− lambda′
1
|S ′| ∑

s∈S ′
[h(s)] , (4.9)

where S is constructed based on (4.1). Although the generator consists of two terms, the same
as our analysis about PRG-1, the extra pairwise regularization on the generator is invalid.
Meanwhile, the extra pairwise regularization on the critic works like that in DiCGAN.
Therefore, the whole framework degenerates to DiCGAN.

4.6 Case Study on Synthetic Data

To gain an intuitive understanding of the differences between our DiCGAN and WGAN
regarding the critic and the generator, we conduct a case study on a synthetic dataset.

The synthetic dataset consists of two concentric circles by adding Gaussian noise with a
standard deviation of 0.05, which is a 2D mixture Gaussian distribution with two modes (See
Fig. 4.4a). The samples located on the inner circle are considered to be the desired data, while
the samples on the outer circle are defined as the undesired data. By labeling the desired
data as y = 1 and the undesired data as y = 0, we can construct the pairwise preference for
two samples x1 and x2 based on their labels. Namely, x1 > x2 if y1 = 1∧ y2 = 0, and vice
versa. The pairs are constructed within each mini-batch. Our target is to learn the distribution
of the desired data (i.e., samples on the inner circle), using the whole data along with the
constructed pairwise preferences.
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Figure 4.5 (a-b) Visualization of the generated samples from WGAN and DiCGAN. The fake
data is expected to overlap with the real desired data only. (c) Probability density function
(PDF) vs. sample distance to the origin.

4.6.1 WGAN vs.DiCGAN on Critic

Experiment setting: we fix the generator and simulate the fake data as the 2D Gaussian blob
with a standard deviation of 0.05 (green pluses). We first train the critic until convergence.
Then, we project the output on the second last layer of the critic into 1D space using kernel
principal components analysis (PCA), to obtain the projected features. To explore the
difference between the critics of WGAN and DiCGAN, we draw the curve of the critic values
versus the projected features for WGAN and DiCGAN, respectively (Fig. 4.4b, 4.4c).

From Fig. 4.4b, 4.4c, we can see: (1) in terms of the real data and the fake data, the
critic of both WGAN and DiCGAN can achieve perfect discrimination. Meanwhile, the
projected features of the real data and those of the fake data are also completely separated;
(2) in terms of the real desired data and the real undesired data, the critic of DiCGAN assigns
higher values to the desired samples, compared to the undesired samples. This is because our
ranking loss expects a higher ranking score (i.e., critic value) for the desired sample. (3) In
contrast, the critic of WGAN assigns lower values to the desired data since the desired data
is closer to the fake data compared to the undesired data.

4.6.2 WGAN vs. DiCGAN on Generator

Experiment setting: we train the critic and the generator following the regular GANs’ training
procedure. The generation results of WGAN and DiCGAN are shown in Fig. 4.5a, 4.5b.

DiCGAN (shown in Fig. 4.5b) only generates the user-desired data. Namely, generated
data covers the inner circle. In contrast, WGAN (shown in Fig. 4.5a) generates all data.
Namely, generated data covers the inner circle and the outer circle. As the critic in DiC-
GAN can guide the fake data towards the real data region and away from the undesired
data region, the generator thus produces data that is similar to the real desired data. Be-
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cause the critic in WGAN pushes the fake data to the region of all real data, the generator
finally produces the whole real-alike data.

Further, we calculate the distance from the real samples to the origin and plot the
probability density function versus the distance in Fig. 4.5c. We also do this for the generated
samples from WGAN and DiCGAN, respectively. It shows that DiCGAN only captures one
mode of the real data distribution, consistent with the results that DiCGAN only produces
desired samples. In contrast, WGAN captures all modes of the real data distribution, meaning
that WGAN generates all real data.

4.7 Experimental Study

Our DiCGAN for desired data generation has various applications in the real world. In
particular, we apply our DiCGAN to two applications: 1) generating images that meet the
user’s interest for a given dataset, which can be used for image search [Yu and Kovashka,
2020]. 2) optimizing biological products with desired properties, which can automate the
process of designing DNA sequences for usage in medicine and manufacturing [Gupta and
Zou, 2019]. In these applications, we verify that our DiCGAN only using local knowledge
(i.e., user preferences) outperforms current methods relying on global knowledge when labels
of desired data are limited. Furthermore, we study the relation between critic values and user
preferences as well as the effects of each component in DiCGAN.

Baselines We compare DiCGAN with WGAN [Arjovsky et al., 2017b], CWGAN [Mirza
and Osindero, 2014], FBGAN [Gupta and Zou, 2019] and GAN-FT. 1) WGAN is trained
with only the desired data to derive the desired data distribution. 2) CWGAN is the extension
of GAN with a conditional label c. To train CWGAN, we split the training data into the
desired class (c = 1) and the undesired class (c = 0) based on global knowledge. Then
p(x|c = 1) is the desired data distribution. 3) FBGAN adopts an iterative training paradigm
to derive the desired data distribution. First, FBGAN is pre-trained with all training data.
At each training epoch, FBGAN resorts to an extra selector to select the desired samples
from the generated samples and use them to replace the least-recently added samples in the
training dataset. Then FBGAN performs regular GAN training with the updated training
data. 4) GAN-FT is to fine-tune a pre-trained GAN with a classification loss on desired
data. It is possible to use GAN loss defined between the generated data and the desired data
to constrain the quality of desired data during the fine-tuning of GAN-FT. This is actually
similar to the baseline WGAN that is trained on the desired subset of training data. Thus
it would still suffer from poor data quality issues when there is limited desired data in the
training dataset.
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(a) WGAN (b) CWGAN (c) FBGAN (d) GAN-FT (e) DiCGAN

Figure 4.6 Generated images on MNIST by (a) WGAN, (b) CWGAN, (c) FBGAN, (d)
GAN-FT and (e) DiCGAN

.

Iter 0 (1.0%) Iter 200 (16.1%) Iter 400 (28.2%) Iter 1000 (95.8%) Iter 2000 (99.9%)

Figure 4.7 Generated images of DiCGAN on MNIST during the training process. DiCGAN
learns the distribution of small digits, which gradually generates more small digit images.
The % denotes the percentage of zero digits in 50K generated samples.

Datasets MNIST [Lecun et al., 1998] consists of 28× 28 images with digit zero to
nine. 50K training images are regarded as training data. CelebA-HQ [Karras et al., 2018]
is the high-quality subset of Celeb Faces Attributes Dataset, which has 30K face images
of celebrities. We use all images as the training data and resize them to 64×64. The gene
sequence dataset [Gupta and Zou, 2019] contains 3,655 gene sequences with a maximum
length of 156 codings for proteins collected from the Uniprot database. All methods applied
to the datasets use the same supervision for a fair comparison. On MNIST and CelebA-HQ,
we resort to class labels to derive the desired data distribution. On the gene sequence dataset,
we resort to an analyzer that can evaluate the desired property for genes to derive the desired
data distribution.

Remark 2. Considering pairwise preferences over explicitly labeling what the user considers
to be good data or not is beneficial especially given the limited supervision, which will be
verified in the following experiments.

Evaluation Metric: To evaluate the performance of learning the desired data distri-
bution, we calculate the percentage of desired data (PDD) in GAN’s generation. PDD =
|{x|x is desired,x∈Xg}|

|Xg| ×100%, where Xg are generated samples.
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4.7.1 Capturing Small Digits on MNIST

Suppose the user is interested in learning the distribution of small digits on MNIST. Zero is
the smallest digit of MNIST, thus as the desired data.

Networks & Hyperparameters By a coarse grid search, the balance factor λ is set
to 1. The ranking margin m is set to 1 following [Cao et al., 2006]. The batch size b
is set to 50. The network architecture of the critic and generator in our DiCGAN are
based on WGAN-GP [Gulrajani et al., 2017]. See Supplementary for details. The base-
lines share the same architecture for a fair comparison. The optimizer is Adam [Kingma
and Ba, 2015] with a learning rate of 1e-4 and β1 = 0.5,β2 = 0.9. The number of critic
iterations per generator iteration ncritic is 5.

Training As for WGAN and CWGAN, zero digits in the training data are regarded
as the desired samples (c = 1), whose size is 4,950. The other digits are labeled as the
undesired samples, whose size is 45,050 (c = 0). WGAN is only trained with the desired
data. CWGAN conditions on c to model a conditional data distribution p(x|c) for MNIST.
For GAN-FT, we first pre-trained WGAN-GP with all digit images. Then we fine-tuned
its generator with a classifier loss that makes the generated samples classified as digit zero.
FBGAN and our DiCGAN both introduce the generated samples into the training dataset
during the training. The labels of the generated samples are obtained by resorting to a
classifier, pre-trained for digit classification. At every training epoch, FBGAN generates
50K samples and requests the classifier to label them. Then the selector in FBGAN will rank
the images using their corresponding labels, where the smaller digits are ranked higher. The
selector selects the generated images with digits ranked in the top 50%, i.e., small digits, as
the desired data to replace old training data. As for DiCGAN, the pairwise comparison can
be obtained for two images x1 and x2 according to their predicated label y1 and y2, namely
x1 > x2 if y1 < y2, and vice versa. At each iteration, #pairwise preferences ns is 25. #iteration
per minor correction nminor = 200. #generated samples for each minor correction ng = 50K.

Fig. 4.7 presents the generated MNIST images randomly sampled from the generator of
DiCGAN. It shows that the generated MNIST digits gradually shift to smaller digits during
the training, and converge to the digit zero. For each method, we sample 50K samples from
the generator and calculate the percentage of digit zero and digits zero to four among the

Table 4.1 Percentage of desired data in the generation (PDD) of various GANs on MNIST.
Best results are highlighted in bold. Top 1 means digit zero. Top 5 means digits zero to four.

Method Original WGAN CWGAN FBGAN GAN-FT DiCGAN
Top 1 9.9 97.3 95.0 100.0 100.0 100.0
Top 5 51.1 98.2 96.4 100.0 100.0 100.0
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(a) (b) (c)

Figure 4.8 Comparison of DiCGAN and FBGAN on MNIST. (a) plots used #EP per epoch.
(b) plots PDD versus the training epoch. (c) plots PDD versus the number of supervision.

generated digits for quantitative evaluation. In Table 4.1, only small digits are generated by
DiCGAN and FBGAN; WGAN and CWGAN can also learn the distribution of the desired
digit since the dataset is simple and has relatively sufficient data for the desired digit. The
visual results shown in Fig. 4.6 are consistent with the quantitative results. However, when
the dataset is complex and the desired data is insufficient, WGAN and CWGAN fail, which
is described in Sect. 4.7.2. GAN-FT also only generates digit zero, but it suffers from mode
collapse problem. The generated images have low diversity (Fig. 4.6d). This is because there
lacks data quality guarantee during the later fine-tuning stage.

Comparison of DiCGAN and FBGAN

Though FBGAN achieves good performance in learning the desired data distribution, it
requires a lot of supervision information from the selector. We calculate the number of
effective pairs (#EP) used in DiCGAN and FBGAN, respectively. #EP in DiCGAN denotes
the total number of explicitly constructed pairs during the training, i.e., #EP = ∑

ne
i=1 ∑

nminor
j=1 ns.

As for FBGAN, its selector ranks all generated samples and selects the desired samples from
them at each epoch. Therefore, #EP can be induced by the implicit pairs implied by the
desired generated samples versus the undesired generated samples, i.e., #EP = ∑

ne
i=1 ngd×ngu,

where ne is the number of training epochs. where ngd and ngu denote the number of desired
samples and undesired samples in the generation, respectively.

Fig. 4.8a plots FBGAN’s and DiCGAN’s used #EP at each epoch, respectively. It shows
that (1) the #EP used in DiCGAN is much smaller than that in FBGAN at each training
epoch; (2) the total #EP used in DiCGAN is significantly less than that in FBGAN, which
can be reflected from the shadow area. In total, DiCGAN used 9.53e4 effective pairs while
FBGAN used 2.02e8 effective pairs. Our DiCGAN is scalable to the large training dataset,
e.g. MNIST. #EP in DiCGAN is linearly correlated to the training size. In contrast, #EP in
FBGAN is determined by ngd and ngu, which are both linearly correlated to the training size.
Thus, #EP in FBGAN is quadratically correlated to the training size.
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(a) FBGAN (b) DiCGAN

Figure 4.9 The generated results of (a) FBGAN and (b) DiCGAN on MNIST given limited
supervision.

We plot the ratio of digit zero in the generated data (PDD) of DiCGAN and FBGAN
during the training process in Fig. 4.8b. It shows that DiCGAN converges faster than
FBGAN.

Comparing DiCGAN and FBGAN given the limited supervision

We conduct the experiment on MNIST. Specifically, the query amount of resorting to the
pre-trained classifier to obtain the prediction of the generated samples is restricted to 5K for
both FBGAN and DiCGAN.

Table 4.2 shows that DiCGAN can learn the desired data distribution, generating 99.7%
zero digits, while FBGAN fails, generating 10.3% digit zero, which is consistent with the
visual results in Fig. 4.9a and Fig. 4.9b.

Table 4.2 PDD on MNIST given limited supervision.

Method Top 1 Top 5
FBGAN 10.3 52.6
DiCGAN 99.7 99.9

We explore the gap in the performance between DiCGAN and FBGAN evolves as the
number of supervision increases on MNIST. Specifically,the query amount of resorting to
the pre-trained classifier to obtain the prediction of the generated samples is restricted to
5K,50K,100K,150K,200K,500K for both FBGAN and DiCGAN.

Fig. 4.8c plots PDD versus the number of supervision for FBGAN and DiCGAN, respec-
tively. It shows that (1) DiCGAN always learns the desired data distribution even given the
limited supervision; (2) when given the limited supervision, FBGAN fails to learn the desired
data distribution, i.e., achieving a small PDD; (3) FBGAN performs better and achieves a
higher PDD, narrowing the performance gap with DiCGAN as the number of supervision
increases.
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Table 4.3 Percentage of desired data in the generation (PDD) and image quality (FID) of
various GANs on CelebA-HQ. The best results are highlighted in bold. The second best
results are underlined. The strikethrough on PDD of WGAN and GAN-FT denotes that they
suffer from severe low-quality issues (large FID), generating very blur face images (Fig. 4.10)
and thus its PDD is not really meaningful.

Method Original WGAN CWGAN FBGAN GAN-FT DiCGAN DiCGANstyle
PDD 22.1 76.0 8.3 24.7 99.7 33.4 57.0
FID - 115.4 79.7 51.6 107.1 49.7 36.5

4.7.2 Capturing Old Face Images on CelebA-HQ

Suppose the user is interested in learning the distribution of old face images on CelebA-HQ.
Networks & Hyperparameters The balance factor λ and the ranking margin m is set

to 1. The batch size b is set to 64. The network architecture of the critic and generator in
our DiCGAN are based on WGAN-GP [Gulrajani et al., 2017]. See Appendix for details.
The baselines share the same architecture for a fair comparison. The optimizer is Adam
with a learning rate of 2e-4 and β1 = 0.5,β2 = 0.999. ncritic is set to 5. Further, we use an
advanced GAN architecture, StyleGAN (https://github.com/NVlabs/stylegan2) [Karras et al.,
2020b] to implement our DiCGAN, denoted as DiCGANstyle. The networks are optimized
with Adam with β1 = 0,β2 = 0.9. The generator G’s learning rate is 1e-4 while the critic D’s
is 3e-4 [Heusel et al., 2017]. ncritic is set to 1.

Training There are 6,632 old face images, labeled as desired, and 23,368 young face
images, labeled as undesired, in the training data. WGAN is only trained with the constructed
desired dataset. CWGAN conditions on c to model a conditional data distribution p(x|c).
A classifier, pre-trained for classifying young faces and old faces, is adopted for predicting
the labels for the generated face images. Particularly, the query amount of resorting to the
classifier is restricted to 30K. As for FBGAN, at every training epoch, FBGAN generates 5K
images, and those classified as old faces are selected by the selector to replace the old training
data. As for GAN-FT, we first pre-trained WGAN-GP with all images including young faces
and old faces. Then we fine-tuned the pre-trained generator with the classifier loss that makes
the generated samples classified as old faces. As for DiCGAN, the generated face image
classified as an old face is preferred over the face image classified with the young attribute.
At each iteration, ns is set to 64. nminor is set to 1K. ng is set to 1K. As for DiCGANstyle, at
each iteration, ns is set to 64. nminor is set to 500. ng is set to 30K.

We visualize the generated face images randomly sampling from the generator of each
model in Fig. 4.10. For each model, we sample 50K samples from the generator and
then calculate the percentage of old face images (PDD) and the image quality score, i.e.,
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(a) WGAN (6/9) (b) CWGAN (1/9) (c) FBGAN (3/9)

(d) GAN-FT (9/9) (e) DiCGAN (4/9) (f) DiCGANstyle (6/9)

Figure 4.10 Generated images on CelebA-HQ by (a) WGAN, (b) CWGAN, (c) FBGAN, (d)
GAN-FT, (e) DiCGAN and (e) DiCGANstyle. The red boxes refer to the images which are
classified as old images.

Frechet Inception Distance (FID) among the generated samples for quantitative evaluation in
Table 4.3. From Fig. 4.10 and Table 4.3, (1) though WGAN mainly generates desired data,
it has poor generation since its training data only consists of the desired subset, and thus
is insufficient, which has only 6,632 face images. The generated face images are blurred.
Meanwhile, WGAN’s FID score is the highest among all methods, i.e., 115.4, quantitatively
showing the poorest generation quality. (2) CWGAN has better generation quality than
WGAN as it is trained with sufficient training data, 30K samples, but fails to shift towards
the desired data distribution. There is only one old face image out of 9 randomly sampled
images in the visualization result. Its PDD (8.3%) is smaller than the training data (Original,
22.1%). This is because the undesired data, i.e, the majority in the training data, dominates
the generation of CWGAN. (3) FBGAN can achieve relatively good quality, with relatively
small FID, but only slightly shift towards the distribution of desired data (PDD=24.7%)
due to limited supervision. (4) GAN-FT almost generates old faces, but the quality is
poor, verified by a large FID quality score and low-quality visual results in Fig. 4.10d. (5)
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Iter 4K (6/25,27.7%) Iter 6K (8/25,31.4%) Iter 8K (9/25,40.3%)

Iter 10K (12/25,46.0%) Iter 12K (13/25,51.2%) Iter 14K (14/25,57.0%)

Figure 4.11 Generated images of DiCGANstyle on CelebA-HQ during the training process.
DiCGANstyle learns the distribution of old faces, which gradually generates more old face
images. The red ticks refer to the images which are classified as old images. The % denotes
the percentage of old faces in 50K generated samples.

DiCGAN achieves the best image quality among all the methods. Its FID score is the lowest.
In addition, DiCGAN shifts more towards the desired data distribution than CWGAN and
FBGAN, proven by a larger PDD.

On the other hand, WGAN-GP architecture is limited to approximating the complex
distribution of CelebA-HQ data and thus cannot generate images with very high quality.
Then, the introduction of generated samples into the training data will degrade the quality
of generation. Therefore, DiCGAN implemented with WGAN-GP architecture is restricted
with certain amounts of minor corrections and data replacement in order to obtain a good
quality, achieving relatively low PDD. This problem can be improved by introducing a more
advanced GAN architecture, StyleGAN. DiCGANstyle can conduct more minor corrections
and use more generated data to replace the training data, finally making the training data
distribution shift very close to the desired data distribution. Thus, DiCGANstyle’s generation
contains more desired samples than DiCGAN, i.e., larger PDD in Table 4.3. Meanwhile, the
generation has good quality with the best FID. We present generated images of DiCGANstyle
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Figure 4.12 Nearest neighbors of generated desired images in the training dataset. The
distance is measured by the ℓ2 distance between images. Images on the left of the red vertical
line are samples generated by our DiCGAN. Images on the right are top 5 nearest neighbors
in the training dataset.

during the training process in Fig. 4.11. There gradually appears more desired face images,
i.e., old face images in DiCGANstyle’s generation.

Fig. 4.12 shows the nearest neighbors of generated old images in the training dataset
(given old face images), which demonstrates that our DiCGAN is not simply memorizing
training images, but generates novel desired images. Thus, DiCGAN can perform data
augmentation for desired samples.

4.7.3 Simulating Synthetic Genes with Antimicrobial Properties

Consider the biologist is interested in designing genes coding for antimicrobial peptides
(AMPs), which are peptides with broad antimicrobial activity against bacteria, viruses, and
fungi [Izadpanah and Gallo, 2005]. We can apply our DiCGAN to help optimize the gene
coding for AMPs from an existing gene sequence dataset [Gupta and Zou, 2019]. Namely,
our target is to learn the distribution of genes coding for AMPs on the gene sequence dataset.

Networks & Hyperparameters Both the balance factor λ and the ranking margin m
are set to 1. The batch size b is set to 64. All methods are implemented with the networks
as FBGAN [Gupta and Zou, 2019]. The code of the network architecture can be found
on FBGAN’s official implementation (https://github.com/av1659/fbgan). The networks are
optimized with Adam with a learning rate of 1e-4 and β1 = 0.5,β2 = 0.9. ncritic is set to 10.

Training There is no labeling about whether the genes have the desired property in the
training data. Therefore, WGAN, CWGAN, and GAN-FT cannot be applied. Following
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(a) FBGAN (b) DiCGAN

Figure 4.13 Comparison of (a) FBGAN and (b) DiCGAN on the gene sequence dataset.
The dashed line denotes the mean value. The normalized edit distance is calculated between
synthetic proteins and real desired proteins. A smaller distance denotes the generated genes
are more similar to the desired genes.

FBGAN [Gupta and Zou, 2019], we resort to an analyzer that can evaluate the property for
genes. We pertain FBGAN and DiCGAN as vanilla WGAN using 3,655 gene sequences.
Then, we train FBGAN and DiCGAN with 2K gene sequences and collect the results for
each method. Here we limit the amount of querying the analyzer to 6K. nminor is set 31. ng

is set to 500.
Sample selection in FBGAN The selector in FBGAN selects desired samples based on

the evaluation of the analyzer, which is able to predict the probability of a gene coding for
AMPs. Specifically, the analyzer first estimates the probability of generated genes coding for
AMPs. Then, the generated genes with the estimated probability over 0.8, considered as the
desired genes, are selected by the selector to replace the old training data.

Pairwise preferences construction in DiCGAN We consider the analyzer 1 as the user,
where a larger predicted value denotes that the gene is preferred for coding AMPs. Then,
the pairwise comparison can be obtained for a pair of samples x1 and x2 according to their
predicated values p(x1) and p(x2), i.e., x1 > x2 if p(x1) > p(x2), and vice versa. At each
iteration, ns is set to 64. nminor is set to 31.

The difference between genes is evaluated via the Normalized Edit Distance (normalized
Levenstein distance, NED) between the proteins coded by the corresponding genes [Gupta
and Zou, 2019]. The similarity of a generated gene to the desired gene can be evaluated
using the averaged NED between its corresponding protein and all real desired proteins (i.e.,
AMPs). Particularly, a smaller NED w.r.t. AMPs denotes the generated genes more similar
to genes coded for AMPs.

1Or we can ask biological experts to compare pairs of samples in terms of the desired property if the desired
properties cannot be expressed objectively.
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In Fig. 4.13, we compare DiCGAN and WGAN w.r.t. the NED between AMPs and the
synthetic proteins. It shows that the synthetic proteins of DiCGAN shift toward a lower edit
distance from AMPs, compared to the pretraining stage, i.e., WGAN. It means more genes
coded for AMPs are generated by DiCGAN. However, FBGAN fails to shift its distribution
towards the distribution of genes coding for AMPs.

Table 4.4 Percentage of desired data in the generation (PDD) and gene quality (%VG) of
various GANs on the gene sequence dataset. The best results are highlighted in bold.

Method FBGAN DiCGAN
PDD 29.0 98.8
%VG 57.8 67.0

Further, we sample 50K genes from the generator for quantitative evaluation, which is
collected in Table 4.4. The generated genes with the probability of coding for AMPs over 0.8
is considered as the desired genes. Then, the percentage of the desired genes among all 50K
generated genes (PDD) is calculated. Particularly, almost all genes generated by DiCGAN
can be classified as the desired genes, i.e., 98.8%. In contrast, FBGAN generates 29.0%
desired genes. DiCGAN can learn the distribution of desired genes. However, FBGAN fails
to derive the desired data distribution due to limited supervision.

On the other hand, we calculate the percentage of valid genes (%VG) 2. The %VG of
DiCGAN is 67.0% while that of FBGAN is 57.8%, which clarifies our methods achieve
better quality than FBGAN. Their quality degradation compared to pre-trained WGAN is
due to the introduction of generated genes as training data.

4.7.4 Study on critic values versus user preferences

We apply DiCGAN to evaluate the critic values for all undesired data and all desired data
on MNIST, CelebA-HQ, and the gene sequence dataset, respectively. Then we calculate the
mean critic values for desired data and undesired data, respectively, with 95% confidence
interval. Meanwhile, we conduct the two-sample one-sided t-Test [Welch, 1947] for their
mean critic values under the null hypothesis of equal means and the alternative hypothesis
that the mean of the desired data is greater than that of the undesired data.

The results in Table 4.5 show that the average critic value for desired data is significantly
larger than that of undesired data with a very small p-value. Therefore, it verifies the claim

2Correct gene structure is defined as a string starting with the canonical start codon “ATG”, followed by an
integer number of codons of length 3, and ending with one of three canonical stop codons (“TAA”, “TGA”,
“TAG”) [Gupta and Zou, 2019].
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Table 4.5 The mean (with 95% confidence interval) and the two-sample one-sided t-Test
results of critic values for desired data and undesired data on MNIST, CelebA-HQ, and the
gene sequence dataset.

Dataset
mean critic value p value

(desired vs. undesired)desired undesired

MNIST 1.5±0.01 0.2±0.01 0.00
CelebA-HQ 0.9±0.02 0.4±0.01 2.58e-285

gene 8.9±0.14 8.1±0.05 3.54e-24

(a) top 1 (b) top 5

Method top 1 top 5
Original 9.9 51.1

DiCGAN (λ = 0) 9.1 54.6
DiCGAN (ng = 0) 24.0 87.8

DiCGAN 100.0 100.0

(c) PDD

Figure 4.14 Ablation study on MNIST. (a-b) PDD vs. epoch in the generation of DiCGAN
(λ = 0), DiCGAN (ng = 0) and DiCGAN. (c) PDD in the data from the original dataset,
DiCGAN (λ = 0), DiCGAN (ng = 0) and DiCGAN.

(mentioned in Sect. 4.2) that the ranking loss can encourage high critic values to be assigned
to the real desired data while low critic values are assigned to real undesired data.

4.7.5 Ablation Study

The objective in our DiCGAN (Eq. (4.3)) consists of two components, i.e., the WGAN
loss, which serves as the cornerstone of DiCGAN, and the ranking loss, which serves as
the correction to WGAN. Meanwhile, we introduce the operation of replacement (Eq. (4.7))
during the model training.

To analyze the effects of the correction for WGAN (the third term in Eq. (4.3)) and the
replacement operation, we plot the percentage of desired data in the generation (PDD) versus
the training epoch for DiCGAN (λ = 0), DiCGAN (ng = 0) and DiCGAN in Fig. 4.14a,
4.14b. Meanwhile, the converged percentage of desired samples (PDD) is reported in
Fig. 4.14c.

1) Without the correction term (λ = 0), DiCGAN cannot learn the desired data dis-
tribution. The PDD of DiCGAN (λ = 0) remains constant during training on MNIST
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(a) PRG-1 (PDD=13.9) (b) PRG-2 (PDD=99.4)

Figure 4.15 Generated digits and PDD of (a) PRG-1 & (b) PRG-2.

(Fig. 4.14a, 4.14b) compared with that of the original dataset (Fig. 4.14c). This is because
the WGAN term in DiCGAN (λ = 0) focuses on learning the training data distribution.

2) Without the replacement (ng = 0), DiCGAN makes a minor correction to the gener-
ated distribution. In Fig. 4.14a, 4.14b, the PDD of DiCGAN (ng = 0) slightly increases
compared with the original dataset. This is consistent with our analysis that the correction
term would drive the generation towards the desired data distribution.

3) DiCGAN learns the desired data distribution with a sequential minor correction.
The PDD of DiCGAN grows with training and reaches almost 100% when convergence.
The correction term drives DiCGAN’s generation towards the desired data slightly at each
epoch. With the iterative replacement, the minor correction sequentially accumulates, and
finally the generated distribution shifts to the desired data distribution.

4.7.6 Pairwise regularization on the Generator

As discussed in Sect. 4.5.2, the pairwise regularization is possibly added to the generator.
We consider two cases of adding the regularization to the generator. First, we only add the
pairwise regularization to the generator (PRG-1). Second, we add the regularization to the
generator together with the regularization on the critic (PRG-2).

We conducted experiments on MNIST to show the effectiveness of these two methods.
λ and λ ′ are both set to 1. As shown in Fig. 4.15, PRG-1 failed to learn the desired data
distribution. PRG-2 can learn the desired data distribution. The quantitative results are
consistent with the visual results, with 13.9% and 99.4% PDD, respectively.

4.8 Summary

We propose DiCGAN to learn the distribution of the user-desired data from the entire dataset
using the pairwise preferences. This is the first work to promote the ratio of the desired data
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by incorporating user preferences directly into the data generation, thanks to our proposed
new insight for critic value (discussed in Section 4.5.1 in detail). We empirically demonstrate
the efficacy of DiCGAN in two real-world applications – generating images that meet the
user’s interest for a given dataset and optimizing biological products with desired properties.
Especially, our DiCGAN outperforms baselines in the cases of insufficient desired data and
limited supervision.

Though it is superior to existing methods in terms of desired data generation when
there is insufficient desired data, our DiCGAN cannot handle the case when there are
extremely limited desired data, e.g., few-shot even one shot. This is because the distribution
of desired data cannot be accurately modeled in such a scenario. Furthermore, as shown in
our experimental study, high-resolution high-quality desired image generations require an
advanced GAN architecture, which incurs heavy computational costs. There is an ongoing
research direction of GAN that aims to generate high-resolution high-quality data with light
architecture designs, which can mitigate such a limitation. Last, the idea of DiCGAN can also
be extended to other GAN variants that relies on a critic, such as RGAN [Jolicoeur-Martineau,
2019].



Chapter 5

Generative Adversarial Ranking based on
Preferences

As demonstrated in Section 4.3, DiCGAN relies on multi-step distribution shifts to converge
to desired data distribution, which leads to costly annotation on generated samples. In
this chapter, we propose a new generative modeling paradigm to learn the desired data
distribution from human preferences in single step. To be specific, we propose a new
adversarial training framework – generative adversarial ranking network (GARNet) to learn
from human preferences among a list of samples so as to generate data meeting user-specific
criteria. Verbosely, GARNet consists of two modules: a ranker and a generator. The
generator fools the ranker to raise generated samples to the top; while the ranker learns
to rank generated samples at the bottom. Meanwhile, the ranker learns to rank samples
regarding the interested property by training with preferences collected on real samples. The
adversarial ranking game between the ranker and the generator enables an alignment between
the generated data distribution and the desired data distribution with theoretical guarantees
and empirical verification. Specifically, we first prove that when training with full preferences
on a discrete property, the learned distribution of GARNet rigorously coincides with the
distribution specified by the given score vector based on user preferences. The theoretical
results are then extended to partial preferences on a discrete property and further generalize to
preferences on a continuous property. Meanwhile, numerous experiments show that GARNet
can retrieve the distribution of user-desired data based on full/partial preferences in terms of
various interested properties (i.e., discrete/continuous property, single/multiple properties).
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5.1 Problem Statement

Let X = {xn}N
n=1 denote a training dataset with N samples, S = {sm}M

m=1 denote a collection
of M preferences defined on subsets of X . In particular, each s ∈ S is an ordered list, namely,

s := s1 > s2 > .. . > sl, and si ∈ X , ∀i = 1,2, . . . , l, (5.1)

where 2 ≤ l≪ N denotes the number of samples contained in s. l is usually different for
different preferences. Our target is to learn a generative model Pg(x) that is equal to the
desired data distribution Pd(x) conditioned on partial preferences S. To be specific, Pd(x)
should allocate high density to global high-ranked data while low or even zero density to
global low-ranked data1.

Remark 3. The problem defined above is similar as that in Chapter 4 (Def. 2). But differently,
the given preferences are listwise instead of pairwise. In addition, the target distribution
is a generalized user-desired data distribution that has fine-grained density for data with
different preferences.

For example, as shown in Fig. 5.1, we assume that shoe images with different strengths in
terms of the open attribute are distributed evenly. The collected pairwise preferences reveal
that users prefer more open shoes. Accordingly, the generative model is expected to learn
a distribution that assigns its density on shoe images with large open values. Note that the
generative model has the advantage of generating novel images different from the training
data [Song and Ermon, 2019].

Density

Training data
 Generated data


Figure 5.1 Illustration of desired data distribution learning guided by users’ preferences (on
open attribute).

1User preferences help to derive a global ranking over all the data [Cao et al., 2007b, Lu and Boutilier,
2011]. Global high-ranked data denote those data ranked high in the global ranking. Global low-ranked data
denote those data ranked low in the global ranking.
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5.2 GARNet for Preferences w.r.t. a Discrete Property

First of all, we consider a scenario in which the ranking relation among training samples is
based on a discrete property. In particular, each training sample belongs to one of a finite set
of classes which possess a natural order.

Definition 3 (Preferences w.r.t. a discrete property). Let X = {xn}N
n=1 be a set of training

instances and Y = {y1,y2, . . . ,yT} be a set of class labels endowed with an order y1 > y2 >

.. . > yT , where T is the number of ordered classes. Assume each training instance xi is
assigned with a label y(xi) ∈ Y , where y(·) is a function that outputs the label for a sample.
The preference over a group of samples {xi1 ,xi2 , . . . ,} ⊆ X is defined as

xi1 > xi2 > xi3 > .. . ,

if y(xi1)> y(xi2)> y(xi3)> .. . .
(5.2)

We ignore the preference lists containing samples with the same labels since such
preference lists can be simply transformed into the preferences (Eq. (5.2)) by removing
redundant samples [Pan et al., 2022].
Example. Suppose users prefer small digits on the MNIST dataset. Then for digits 0 to 9, the
order would be 0 > 1 > 2 > .. . > 9, according to which users express their preferences over
MNIST images.

In the following part of this section, we propose a framework called generative adversarial
ranking net (GARNet) for the distribution learning guided by the above-mentioned prefer-
ences (problem definition in Section 5.1). Our GARNet consists of a ranker R (parameterized
by θR) and a generator G (parameterized by θG). In particular, an adversarial ranking process
is defined between the generator and the ranker. Namely, they are trained against the goal of
rankings defined between the real data and the generated data (See Fig. 5.2). The competition
between the generator and the ranker drives the generated distribution Pg(x) (simplified as
Pg) aligned with the desired data distribution Pd(x) (simplified as Pd).

Remark 4. It is impossible to manipulate PDF of different classes based on preferences.
The class label information for the data is inaccessible since our target problem is given
partial/full preferences.

5.2.1 Given Full Preferences

We open the description of our GARNet with the case given a collection of full prefer-
ences S = {sm}M

m=1. That is, the length of each preference l is equal to the number of ordered
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Figure 5.2 Framework of GARNet.

classes T . Namely

s := s1 > s2 . . . > sl, l = T where si ∈ X , ∀i = 1,2, . . . , l. (5.3)

A full preference s would include samples from all ordered classes. Consequently,

y(si)≡ yi, ∀s ∈ S and ∀i = 1,2, . . . ,T. (5.4)

Denoting Pi as the distribution of data Xi = {x|y(x) = yi,x ∈ X}, then we have si ∼ Pi.

Listwise Ranking

The ranker R learns a ranking function from the preferences S. We employ ListNet [Cao
et al., 2007b], which is a cross entropy based learning-to-rank loss and can handle preference
lists that are not equally informative by assigning different losses according to their degree
of agreement with the consensus global ranking [Lin, 2010]:

LCE (π(s),R(s)) =−
l

∑
i=1

σ(π(s))i logσ(R(s))i. (5.5)

With a slight abuse of notation, s = (s1,s2, . . . ,sl). π(s) denotes the ground-truth score
vector for the preference s, which can be explicitly or implicitly given by humans [Cao
et al., 2007b]. R(·) denotes the score vector for the preference s predicted by the ranker R.
In specific, the ranker R acts as a nonlinear feature extractor with a scalar output. Given
feature matrix w = [w1,w2, . . . ,wl] of l samples, the ranker R outputs a score vector R(w) =

[R(w1),R(w2), . . . ,R(wl)], where R(wi) ∈ R. σ(·) is a softmax function that takes a list of
scalar values r = [r1,r2, . . . ,rl] as input, i.e., σ(r)i =

eri

∑
l
j=1 er j . σ(π(s))i calculates the top-1

probability of object si, i.e., the probability of si being ranked on the top given the scores
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of all the objects π(s). Similarly, σ(R(s))i gives the top-1 probability of object si given the
score vector R(s).

Generative Adversarial Ranking

Given a preference s and a generated sample xg = G(z)∼ Pg(x), where z∼Z is a random
noise, the ranker R incorporates the generated sample xg into the ranking list s and outputs a
new ranking score vector as R(s,xg). Motivated by vanilla GAN [Goodfellow et al., 2014]
which designs a target real/fake label for each generated sample to trigger the adversarial
game between the discriminator and the generator, we construct a target preference for a
generated list of samples consisting of s and xg, i.e., (s,xg), as adversarial supervision. To
promote the competition between the ranker R and the generator G, we design the target
preference in two different ways, namely,

target preference for R s(R) := s1 > .. . > sT > xg, (5.6a)

target preference for G s(G) := xg > s1 > .. . > sT . (5.6b)

The generator fools the ranker to grade the generated samples as the best (Eq. (5.6b)); while
the ranker learns to rank them at the lowest position (Eq. (5.6a)). Then, we define the
objective for the ranker R and the generator G as follows, respectively,

sup
R:X→R

E
s∼S

xg∼Pg

[
LCE

(
π
(
s(R)
)
,R
(
s(R)
))]

, (5.7a)

sup
G:Z→X

E
s∼S

xg∼Pg

[
LCE

(
π
(
s(G)
)
,R
(
s(G)
))]

. (5.7b)

Thus, the training loss for the ranker and the generator with the mini-batch data can be
formulated as follows, respectively:

LR =−
B

∑
i=1
LCE

(
π

(
s(R)i

)
,R
(

s(R)i

))
, (5.8a)

LG =−
B

∑
i=1
LCE

(
π

(
s(G)

i

)
,R
(

s(G)
i

))
, (5.8b)

where B is the batch size. The training algorithm is summarized in Algorithm 3.
In most GAN variants, the objective function of the discriminator at optimum is a

divergence [Jolicoeur-Martineau, 2020, Goodfellow et al., 2014, Arjovsky et al., 2017b].
In the following, we prove that training the ranker in GARNet (Eq. (5.7a)) is equivalent
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Algorithm 3 Generative Adversarial Ranking Net

1: Input: Training dataX = {xn}N
n=1, user preferences S = {sm}M

m=1, batch size B, ranker R
and generator G.

2: Output: Generator G for desired data distribution, i.e., Pg(x) = Pd(x).
3: repeat
4: Sample a mini-batch preferences {si}B

i=1 from S .
5: Get fake samples {xgi}B

i=1 from the generator G, i.e., xgi = G(zi) where zi is a random
noise.

6: Following Eq. (5.6a), construct preferences {s(R)i }B
i=1 for the ranker R.

7: Train the ranker R according to Eq. (5.8a).
8: Following Eq. (5.6b), construct preferences {s(G)

i }B
i=1 for the generator G.

9: Train the generator G according to Eq. (5.8b).
10: until convergence

to estimating a divergence between the desired data distribution Pd(x) and the generated
data distribution Pg(x). The generator in GARNet (Eq. (5.7b)) is trained to minimize the
divergence so as to achieve Pg(x) = Pd(x).

Definition 4 (Divergence). Let P ∈ S and Q ∈ S be probability distributions where S is the
set of all probability distributions with common support. A function D : (S,S)→ [0,+∞) is a
divergence if it respects the following two conditions:

D(P,Q)≥ 0,

D(P,Q) = 0⇐⇒ P = Q.
(5.9)

Theorem 2 (Relativistic f -divergence [Jolicoeur-Martineau, 2020]). Let f : R→ R be a
concave function such that f (0) = 0, f is differentiable at 0, f ′(0) ̸= 0, supv f (v) = M > 0,
and argsupv f (v)> 0. Assume P and Q are two distributions with support X , we have that

D f (P,Q) = sup
C:X→R

2 E
x∼P
x̃∼Q

[ f (C(x)−C(x̃))] (5.10)

is a relativistic f -divergence.

Theorem 2 demonstrates the optimal discriminator in relativistic GAN [Jolicoeur-Martineau,
2019] estimates a relativistic f -divergence between the real data distribution and the gen-
erated data distribution. Its discriminator that is adapted from the concave function f (z) =
log(sigmoid(z))+ log(2) defines a pairwise ranking loss between a real sample and a fake
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sample, and we find that

f (C(x)−C(x̃)) = log(
1

1+ e−(C(x)−C(x̃))
)+ log(2)

= log(
eC(x)

eC(x)+ eC(x̃)
)+ log(2)

1
= LL2R(π(s),C(s))+ log(2),

(5.11)

1 is valid if π(s) = [0,−∞] and s := x > x̃ where x∼ P and x̃∼ Q.
Inspired by the connection between the relativistic f -divergence (Eq. (5.10)) and the

tailored loss of our GARNet (Eq. (5.6a), Eq. (5.7a)), we conjecture that the optimal ranker of
our GARNet also implicitly estimate a relativistic f -divergence, but between the desired data
distribution and the generated data distribution. Accordingly, we introduce a new relativistic
f -divergence between the desired data distribution Pd and the generated data distribution Pg

which generalizes the targeted data distribution P(x) in Theorem 2 to the mixture distribution
Pd = ∑

T
i=1 qiPi

2 with a user-specified mixing ratio where q1 > q2 > .. . > qT
3 and ∑i qi = 1.

Theorem 3 (Relativistic f -divergence between Pd and Pg). Let f : R→ R be a concave
function such that f (0) = 0, f is differentiable at 0, f ′(0) ̸= 0, supv f (v) = M > 0, and
argsupv f (v) > 0. Let Pd be the mixture distribution of the whole ordered data, i.e., Pd =

∑
T
i=1 qiPi, where q1 > q2 > .. . > qT and ∑i qi = 1. Let Pg be the distribution of generated

data xg. We have that

D f (Pd,Pg) = sup
C:X→R

E
s1∼P1
...

sT∼PT
xg∼Pg

[
f

(
T

∑
i=1

qiR(si)−R(xg)

)]
(5.12)

is a relativistic f -divergence between Pd and Pg.

According to Definition 4, we prove that D f (Pd,Pg) is a divergence between Pd and Pg

following the three steps:
#1 Prove that D f (Pd,Pg)≥ 0.
#2 Prove that Pd = ∑

T
i=1 qiPi = Pg =⇒ D f (Pd,Pg) = 0.

#3 Prove that D f (Pd,Pg) = 0 =⇒ Pd = ∑
T
i=1 qiPi = Pg.

The details are left in Appendix C.

2Pi is the distribution of Xi = {x|y(x) = yi,x ∈ X}.
3User-desired data distribution is considered to allocate a larger density to the higher-ranked class.
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Proposition 5. Given the training dataset X = {xn}N
n=1 and a collection of full prefer-

ences S = {sm}M
m=1, where each preference s := s1 > s2 . . . > sT ∈ S and si ∼ Pi. let

Pd =∑
T
i=1 qiPi be the mixture distribution of the whole ordered data where qi =σ

(
π

(
s(R)
))

i
.

Let Pg be the distribution of generated data xg. Given a fixed generator G, the optimal
ranker R∗ of our GARNet (Eq. (5.7a)) approximates the relativistic f -divergence between Pd

and Pg, i.e., D f (Pd,Pg), if π

(
s(R)
)
= [a+(T −1)d,a+(T −2)d, . . . ,a,b] and 1

ea−b → 04.

The detailed proof is left in Appendix C.

Remark 5. In theory, it seems feasible to directly adopt the following objective to learn Pd

according to Theorem 3.

sup
R:X→R

E
s1∼P1
...

sT∼PT
xg∼Pg

[
f

(
T

∑
i=1

qiR(si)−R(xg)

)]
, (5.13a)

sup
G:X→R

E
s1∼P1
...

sT∼PT
xg∼Pg

[
f

(
R(xg)−

T

∑
i=1

qiR(si)

)]
, (5.13b)

where the concave function f can be defined as f (z)= log(sigmoid(z))+ log(2) like Jolicoeur-
Martineau [2019]. However, in practice, the above objective cannot provide sufficient gra-
dient for the generator G to learn well. In the early training, the generator G is poor, and
the ranker R can easily assign lower values to the generated sample xg than real samples.

∑
T
i=1 qiR(si)−R(xg) would be large and then gradient vanish occurs.

Corollary 4. The optimal ranker of GARNet (Eq. (5.7a)) defines a relativistic f -divergence be-
tween the distribution of top-1 data P1 and the generated data distribution Pg, i.e., D f (P1,Pg)

when e−d → 0.

Proof. According to the definition of q1 in Theorem 5, we have

q1 =
ea+(T−1)d(

∑
T
i=1 ea+(T−i)d

)
+ eb

=
ea+(T−1)d

ea+(T−1)d
(
1+ e−d + . . .+ e−(T−1)d + eb−(a+T−1)d)

)
=

1
1+ e−d + . . .+ e−(T−1)d + eb−(a+T−1)d)

>
1

1+Te−d

(5.14)

4In practice, when a−b≥ 10, 1
ea−b ≈ 0. Thus, we set a−b = 10 in our experiments.
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(a) d = 0.1 (b) d = 0.5 (c) d = 1 (d) d = 5

Figure 5.3 GARNet learns the distribution Pd with different pre-specified score vectors
π(s) from full preferences w.r.t. a discrete property on MNIST (preferring small digits,
i.e., 0≻ 1 . . .≻ 9). q = σ(π(s)) calculates the ground-truth top-1 probabillity of each digit
class. q̃ calculates the proportion of different digit classes for generated data from GARNet.
The digit values for the generated data are evaluated by a pretrained classifier for digit
classification.

Since 1
1+Te−d < q1 < 1, we have q1→ 1 following the Squeeze theorem [Stewart et al., 2020]

when e−d → 0. The proof is completed.

Proposition 6. Given the optimal ranker R∗ as demonstrated in Theorem 5, the generator of
GARNet (Eq. (5.7b)) is minimizing the divergence between Pd and Pg, i.e., D f (Pd,Pg).

Proof. Given R∗, the objectives for the generator can be formulated as:

sup
G:Z→X

E
s∼S

xg∼Pg

[
LL2R

(
π
(
s(G)
)
,R∗
(
s(G)
))]

. (5.15)

We update the parameters of generator θG as follows:

θ
t+1
G = θ

t
G +∇θG E

s∼S
xg∼Pg

[
LL2R

(
π
(
s(G)
)
,R∗
(
s(G)
))]

, (5.16)

which maximizes the ranker’s output for the generated samples R∗(xg). Then, D f (Pd,Pg)

will be minimized.

Proposition 5 and Proposition 6 demonstrate that the distribution learned by our GARNet
(Eq. (5.7)) is determined by the pre-specified score vector π(s). We present a case study on
MNIST [Lecun et al., 1998] to justify it by setting d to 0.1,0.5,1,5, respectively. As shown
in Fig. 5.3, the proportion of generated data from GARNet is almost consistent with the top-1
probability calculated by the specified score vector, i.e., q = σ(π(s)).

In terms of preferences over a discrete property, the most desirable data is supposed to
belong to the global top-1 class, i.e., y(x) = y1. As clarified in Corollary 4, we can simply set
up a sufficiently large d to achieve this goal.
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(a) d′ = 0.1 (b) d′ = 0.5 (c) d′ = 1 (d) d′ = 5

Figure 5.4 GARNet learns the distribution Pd with different pre-specified score vectors π(s)
from partial preferences (2≤ l ≤ 10) w.r.t. a discrete property on MNIST (preferring small
digits). d′ is the common difference of the ground-truth score vector π

(
s(R)
)

for Eq. (5.18a).
q̃ calculates the proportion of different digit classes for generated data from GARNet. q is
copied from the results in Fig. 5.3 for references.

5.2.2 Given Partial Preferences

In many situations, full preferences are not available. Instead, only partial preferences5 of
length l less than the number of ordered class T are accessible [Lin, 2010]. Namely,

s := s1 > s2 > .. . > sl, l < T. (5.17)

Similarly, we construct the adversarial ranking process between the ranker and generator:

ranker s(R) := s1 > .. . > sl > xg; (5.18a)

generator s(G) := xg > s1 > .. . > sl. (5.18b)

We adopt the objective (Eq. (5.7)) to learn the desired distribution Pd(x) via the adversarial
ranking (Eq. (5.18)). Thanks to the consistency of the score function (Lemma 2), our GARNet
can still learn the desired data distribution from the partial preferences.

Lemma 2 (Consistency of the score function [Xia et al., 2008]). Given a collection of
partial preferences S = {sm}M

m=1, where 2≤ |sm| ≤ T , the ListNet loss (Eq. (5.5)) adopted
in our GARNet can recover the optimal score function for the ranker if S contains sufficient
preferences and the samples X are well covered6.

According to Lemma 2, the optimal ranker will recover s1 > s2 > .. . > sT > xg. Therefore,
GARNet can still learn a desired data distribution from partial preferences, which assigns
greater density to higher-ranked data. We present a case study on MNIST [Lecun et al.,

5Partial preferences can be of different lengths in the training dataset.
6It doesn’t mean to include every sample into the preferences but requires the samples included to be

approximately uniformly distributed in the score space.
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1998] with partial preferences (2≤ l ≤ 10). We set the ground-truth score vector π

(
s(R)
)

for Eq. (5.18a) as [a+(l−1)d′,a+(l−2)d′, . . . ,a,b] similar in Proposition 5. As shown
in Fig. 5.4, the proportion of generated data from GARNet is larger when the digit class is
ranked higher, which is consistent with user preferences. Especially, when d′ is sufficiently
large, GARNet only generates high-ranked data, namely, digit zero and one. We found
that training on relatively long preferences (7 ≤ l ≤ 10), GARNet can converge to top-1
data distribution when setting d′ = 5. Note the resultant proportion per digit q̃ is no longer
consistent with pre-specified values q as the y(si)≡ yi, ∀s ∈ S and ∀i = 1,2, . . . ,T does not
hold anymore for partial preferences.

5.3 GARNet for Preferences w.r.t. a Continuous Property

We consider a scenario that the ranking relation among training samples is based on a
continuous property. Particularly, each training sample xi is associated with an underlying
score o(xi) that that represents the user’s preference for xi in terms of the property.

Definition 5 (Preferences w.r.t. a continuous property). Given a training dataset X =

{xn}N
n=1, where each training instance xn ∈ X has an underlying ground-truth ranking

score o(xn) ∈ [A,B]⊆O in term of a certain continuous property, the preference among a
list of samples {xi1 ,xi2 , . . . ,} ⊆ X is defined as

xi1 > xi2 > xi3 > .. . ,

if o(xi1)> o(xi2)> o(xi3)> .. . .
(5.19)

Example. Suppose users prefer smiling face images. Then users will assign higher
preferences to those images have bigger smiles, i.e., the score for sample x in terms of the
“smiling” attribute o(x) is larger.

Theorem 4. Given a collection of preferences in terms of a continuous property over [A,B],
see Eq. (5.19), it can be transformed equivalently to the preferences in terms of finite ordered
classes if we consider the samples with close ranking scores as ties.

Proof. According to Heine-Borel theorem [Jeffreys et al., 1999], we have

O = {(oi− εi,oi + εi)|oi ∈ [A,B],εi > 0, i = 1,2, . . . ,T ′}, (5.20)

which is a finite subcover of [A,B]. Without loss of generality, we assume

o1 > o2 > .. . > oT ′ . (5.21)
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(a) d = 0.1 (b) d = 0.5 (c) d = 1 (d) d = 5

Figure 5.5 GARNet learns the distribution Pd with different pre-specified score vectors
π(s) from full preferences w.r.t. a continuous property on LFW (preferring smiling faces).
q = σ(π(s)) calculates the top-1 probabillity of each digit class. q̃ calculates the proportion
of different digit classes for generated data from GARNet. The scores for the generated data
are evaluated by a pretrained ranker for ranking face images w.r.t. the smile attribute. Top 1
represents images ranked top 20% in terms of the smile attribute; top 2 represents images
ranked between top 20% and top 40%; so on and so forth.

Then, we can construct the following set of internals to cover the score interval [A,B]:

O =
( ⋃

i=T ′,...,2

[oi− εi,oi + εi)
)
∪ [o1− ε1,o1 + ε1], (5.22)

where oT ′− εT ′ = A,o1 + ε1 = B,oi + εi = oi−1− εi−1, i = T ′, . . . ,2.
Meanwhile, we define a pair of samples within the same internal as a tie following Zhou

et al. [2008], namely
xm = xn

for any o(xm),o(xn) ∈ Oi,
(5.23)

where Oi = [oi− εi,oi + εi), i = T ′,T ′−1, . . . ,2 and O1 = [o1− ε1,o1 + ε1].
By assigning the same label yi to all samples within each interval Oi, we can obtain a set

of ordered class labels {yi}T ′
i=1 where y1 > y2 > .. . > yT ′ , namely

y(xi)≡ yi

if o(xi) ∈ Oi.
(5.24)

To sum up, the preferences in terms of a continuous property (Definition 5) approximate the
preferences in terms of T ′ ordered classes.

Remark 6. The assumption of Eq. (5.23) is in line with real-world applications. People
usually cannot distinguish a pair of samples when the difference is small and would annotate
them as ties [Zhou et al., 2008], where εi is the indistinguishable score difference for each
Oi. Nevertheless, for o(x1) ∈ Oi−1 and o(x2) ∈ Oi, x1 and x2 are indistinguishable when
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o(x1)−o(x2) is small. Assigning them as two ordered classes yi−1 and yi is reasonable when
the order between yi−1 and yi is not significant by setting T ′ to be sufficiently large.

According to Theorem 4, learning from the preferences in terms of a continuous property
can be discretized as learning from the preferences over a finite number of ordered classes.
Therefore, we can adopt GARNet which defines an adversarial ranking goal (Eq. (5.6)) to
learn the desired data distribution from full preferences in terms of the continuous property.
We present a case study on LFW [Huang et al., 2008] w.r.t. the smile attribute in Fig. 5.5
to justify this. Simply, we discrete the continuous ranking w.r.t. the smile attribute into five
ordered classes. That is, images ranked top 20% in terms of the smile attribute is assigned as
top 1 class; images ranked between top 20% and top 40% in terms of the smile attribute is
assigned as top 2 class; so on and so forth. Similar in Fig. 5.3, we specify different score
vectors π(s) by setting d to 0.1,0.5,1, respectively. As shown in Fig. 5.5, the proportion of
generated data from GARNet is almost consistent with the top-1 probability calculated by
the specified score vector, i.e., q = σ(π(s)).

Similarly, we can adopt GARNet (Eq. (5.18)) to learn the desired data distribution from
partial preferences in term of the continuous property. Note that in practice, we do not
explicitly discretize the continuous ranking scores to a finite number of classes and define a
so-called top-1 class as the most desirable data. Instead, we suppose the generative model is
more consistent with user preferences if the generated data has higher ranking scores.

5.4 GARNet for a Mixture of Preferences

We extend our GARNet to a more general circumstance where a mixture of user preferences
are collected from distinct groups of users. Particularly, we consider a simple situation where
each group of users rank the samples in terms of a specific attribute, i.e., {Su}Uu=1. The
objective of GARNet in this context can be formulated as follows:

sup
R:X→R

U

∑
u=1

E
su∼Su
xg∼Pg

[
LCE

(
π
(
s(R)u
)
,Ru
(
s(R)u
))]

, (5.25a)

sup
G:Z→X

U

∑
u=1

E
su∼Su
xg∼Pg

[
LCE

(
π
(
s(G)

u
)
,Ru
(
s(G)

u
))]

. (5.25b)

For simplicity, we extend the scalar output of the ranker R to a U dimension vector so as to
learn from {Su}Uu=1 simultaneously. Ru is the u-th output of the ranker.



5.5 Discussions 85

Conditional GARNet When provided a mixture of preferences where one group of prefer-
ences might be conflicting with another, GARNet can achieve a compromise performance,
which will be empirically verified in the experiment. However, for exactly opposing at-
tributes, like being both “open” and “not open”, a practical way is to model them using
two separate GARNets or extending our GARNet to its conditional version, denoted as
CGARNet, conditioned on each group of preferences. The extension is similar as extending
GAN to conditional GAN [Mirza and Osindero, 2014]. Both the ranker and the generator
can be conditioned on an attribute label.

5.5 Discussions

In this section, we discuss how current GANs variants can be extended to preference-guided
generation and their defects. To simplify the discussion, here we aim to learn the distribution
that is most consistent with user preferences, i.e., the distribution of top-1 data P1.

Preferences guided generative adversarial learning To apply vanilla GAN (denoted as
GAN-0) [Goodfellow et al., 2014] for this application, an intuitive way is to first construct a
dataset consisting of the user-desired samples and then perform regular GAN training on this
dataset to obtain a generator that purely outputs the desired samples. Two possible strategies
can be applied:

(1) Selecting desired samples using partial preferences directly (GAN-1): A new dataset
is constructed by selecting top-1 samples from each partial preference sm. Since the top-
1 samples in partial preferences are not necessarily the global top-ranked samples, this
produces biased training data that inevitably involves undesired samples. As a result, the
derived distribution is not precisely user-desired. On the other hand, it would suffer from
insufficient data issues when the amount of training data is small.

(2) Selecting desired samples with a ranking proxy (GAN-2): Specifically, we train a
global ranking proxy using partial preferences [Cao et al., 2007b] and then apply the proxy
to select the global high-ranked samples as a new training dataset. For example, the top
30% of the training samples are selected as the desired dataset. In spite of its feasibility,
this strategy may also incur insufficient data issues especially when the desired data in the
original training dataset is limited.

Feedback GAN (FBGAN) [Gupta and Zou, 2019] is based on the second strategy and
remedies its drawbacks by introducing the high-ranked generated samples into previous
training data. Since the ratio of the high-ranked samples gradually increases in the training
data along with the training epoch, all training data will ideally converge to the user-desired
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samples. However, FBGAN may suffer from severe data quality issues since plainly treating
the generated samples as the training data will degrade the generation quality.

GANs plus a ranking module Another idea is to introduce a ranker as an extra critic [Saquil
et al., 2018] to promote the generation of user-desired samples while the original GAN’s
discriminator is kept as a critic to guarantee the generation quality, which is dubbed as
GAN-RK.

Similarly, the ranker learns to rank samples from partial preferences and outputs high rank-
ing scores for user-desired samples. The discriminator can be a classifier that distinguishes
real from fake [Goodfellow et al., 2014] or define a distribution discrepancy [Arjovsky et al.,
2017b]. For the generator, apart from the goal of aligning the generated distribution with the
real distribution guided by the discriminator, an extra goal is in pursuit of generating samples
with high-ranking scores judged by the ranker. However, both goals are conflicting since one
requires the generator to synthesize samples alike the whole data samples while the other
requires the generation of partial data samples, i.e., samples with high-ranking scores. Thus,
learning the desired data distribution cannot be well achieved.

Generator with Naive Ranker Another naive approach is to just have a ranker that learns
from user preferences on real data to guide a generator, which is called GR. However, such
an approach would suffer from poor data quality issues since there is no modeling for data
authenticity in this model.

5.6 Experiments

We empirically verify that our GARNet can learn a distribution of high-ranked data from user
preferences. Furthermore, we demonstrate the potential of GARNet in improving imbalanced
class learning.

Dataset: (1) MNIST dataset [Lecun et al., 1998] consists of 28×28 images with digit
zero to nine. We use its training set (50K images) for experiment. We suppose that users
prefer smaller digits of MNIST. An image with a smaller digit value will be ranked higher.
For instance, the partial ranking list over four digits 1,3,2,9 is s := 1 > 2 > 3 > 9. As there
are 10 digits in total, the maximal length of the preferences l can be 10. Without loss of
generality, the length of the preferences included in the training data varies from 2 to 10.
(2) Labeled Faces in the Wild (LFW) dataset [Huang et al., 2008] consists of 13,143 celebrity
face images from the wild. LFW-10 consists of a subset of 2,000 images from LFW along
with about 500 pairwise comparisons for one attribute. We take the pairwise comparisons in
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terms of smile attribute as the user preferences for the training data. Since LFW10 has limited
pairwise comparisons, we exploit a pretrained ranker to augment more preferences for the
training data. In addition, as LFW10 has limited training images, i.e., 1K images, we take
13,143 images from LFW as our training data also. Specifically, we pretrain a ranker to learn
to rank images in terms of smile attribute from given pairwise comparisons of LFW10. Then
we use the ranker to output ranking scores for all training samples of LFW and construct
pairwise preferences based on the scores. If face image xa has larger smile than face image
xb, then the preference is s := xa > xb.
(3) UT-Zap50K dataset [Yu and Grauman, 2014] contains 50,025 shoe images from Zap-
pos.com. It contains pairwise comparisons over several attributes. We use all pairs, i.e.,
UT-Zap50K-1, UT-Zap50K-2, and UT-Zap50K-lexi as training data. The pairwise compar-
isons in terms of comfort (4,483 pairwise comparisons), open (4,351) and sporty (4,085)
attributes are taken as the user preferences for the training data, respectively. We exploit a
pretrained ranker to augment more preferences for the training data. We pretrain a ranker to
rank images in terms of the attribute from given pairwise comparisons and then construct
pairwise preferences based on the scores evaluated by the ranker. If shoe image xa is more
comfort/open/sporty than shoe image xb, then the preference is s := xa > xb.

Baselines: We consider GAN [Goodfellow et al., 2014], FBGAN [Gupta and Zou, 2019],
GAN-RK [Saquil et al., 2018] (GAN plus an additional ranker) and GR (a generator with
a ranker that is only trained with partial preferences) as our baselines. In terms of GAN,
it is trained with three kinds of subsets: the entire data, the subset made up of local high-
ranked samples (top-1 samples in the partial preferences), and the subset made up of global
high-ranked samples (e.g., top 10% for MNIST; top 50% for LFW and UT-Zap50K) selected
by a surrogate ranker. These three variants are denoted as GAN-0, GAN-1, and GAN-2,
respectively.

Network & Hyperparameters: All methods are implemented based on WGAN-GP
architecture (DCGAN version) [Gulrajani et al., 2017] unless specifically mentioned. For the
training we use the Adam optimizer [Kingma and Ba, 2015] with learning rate 2∗10−4 and
β1 = 0.5,β2 = 0.999. According to Proposition 5 and Corollary 4, we set the ground-truth
score vector for s(R) as π

(
s(R)
)
= [10+ 5(l− 1),10+ 5(l− 2), . . . ,10,0] for all datasets,

which can make GARNet learn a user-desired data distribution. We simply set the ground-
truth score vector for s(G) as π

(
s(G)
)
= [10+5l,10+5(l−1), . . . ,10,0]. For MNIST, the

batch size used is 50. The training iteration is set to 100K. For LFW and UT-Zap50K,
the batch size is 64. The training iteration is 200K. The training images are resized to
32× 32 unless specifically mentioned. To rank images in terms of certain attributes, we
adopt a pairwise ranking loss in Burges et al. [2005]. The pretrained VGG16 [Simonyan and
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(a) GAN-0 (b) GAN-1 (c) GAN-2 (d) FBGAN

(e) GAN-RK (f) GR (g) GARNet

Figure 5.6 Comparison w.r.t. the generation of user preferred digits (small digits) on MNIST.

Zisserman, 2015] is used to map an image to its ranking score. Our code develops based on
Pytorch [Paszke et al., 2017].

Evaluation Metrics: (1) For MNIST, mean digit (MD) is adopted as a performance
measure for the generation of preferred digits. The digit values for the generated data will be
evaluated by a pretrained classifier for digit classification. For each method, we randomly
generate 50K digits and calculate their MD.
(2) For LFW and UT-Zap50K, mean score (MS) is adopted as a performance measure for
the generation of user preferred face images. The scores are evaluated by a pretrained
ranker that learns to rank images in terms of the target attribute from the given preferences.
Frechet Inception Distance (FID) [Heusel et al., 2017] measures the visual quality w.r.t. the
high-ranked real face images. For each method, we randomly select 50K generated images
and conduct the evaluation.

5.6.1 Preferences w.r.t. Discrete Digits

In this section, we apply GARNet to generate the user preferred digits on MNIST using the
partial preferences.

According to Fig. 5.6 and Table 5.1, we highlight that only our GARNet successfully
learns the distribution of the top-ranked digits from user preferences. Table 5.1 shows that
except for GAN-0, GAN-RK, and GR, other methods have smaller MD compared to the
training data (denoted as real). It means that those generative models can learn from user
preferences to some extent. However, only FBGAN and GARNet can converge to generate
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Table 5.1 Comparison of various methods on MNIST w.r.t. mean digit (MD, ↓). Best results
are in bold. FBGAN suffers from mode collapse (Fig. 5.6d). GR generates meaningless
results (Fig. 5.6f), so its MD is not collected.

Method Real GAN-0 GAN-1 GAN-2 GAN-RK GR FBGAN GARNet
MD 4.45 4.49 0.75 0.15 4.63 - 0.00 0.00

top-ranked digits with MD 0.00. On the other hand, GAN-0 is the vanilla GAN that is trained
with all training data, so its MD is close to that of real images. GAN-RK fails to learn from
user preferences because of the conflict between the discriminator and ranker. GR cannot get
any meaningful generations because it does not involve a distribution matching between real
and generated samples. Therefore, its MD is not applicable.

Fig. 5.6 shows that: (1) GARNet generates top-ranked digit (digit 0), with high quality
as shown in Fig. 5.6g. (2) According to Fig. 5.6b, GAN-1 still generates digits that are
not ranked top, like digit two, since the constructed training subset contains undesired
samples. (3) GAN-2 achieves better performance than GAN-1 but still fails to converge to
the distribution of the top-ranked digit. (4) FBGAN suffers from mode collapse of which the
generated digit zeros are exactly the same. Meanwhile, it suffers from low-quality issues due
to the introduction of generated samples.

5.6.2 Preferences w.r.t. a Continuous Attribute

As described in experiments on MNIST, GAN-1, GAN-2, FBGAN and our GARNet can
learn from the user preferences. Therefore, we only compare GARNet with these baselines
on generating user preferred facial images on LFW w.r.t. the smile attribute as well as
generating user preferred shoe images on UT-Zap50K w.r.t. the comfort, open and sporty
attribute, respectively.

Table 5.2 Comparison on LFW face data and UT-Zap50K shoe data w.r.t. performance
measure (MS, ↑) and quality score (FID, ↓). The best results are highlighted in bold. Since
FBGAN suffers from mode collapse (large FID; see its generated images in Appendix), its
MS is not collected.

Dataset
MS FID

Real GAN-1 GAN-2 GARNet GAN-1 GAN-2 FBGAN GARNet
LFW (smile) 0.59 1.41 1.14 2.29 47.55 37.40 89.36 22.22

UT-Zap50K (comfort) -5.06 -2.66 -0.91 -0.90 49.20 77.99 253.53 39.16
UT-Zap50K (open) -0.36 0.93 0.99 3.75 63.92 112.93 265.49 46.78

UT-Zap50K (sporty) 4.09 5.28 4.48 7.07 41.02 84.59 431.44 32.87
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(a) smile (b) comfort (c) open (d) sporty

Figure 5.7 Comparison of GAN-1 (Row 1), GAN-2 (Row 2) and our GARNet (Row 3) in
terms of score density. The green point denotes the mean score of generated samples while
the red point denotes that of real samples.

We quantitatively evaluate the performance of learning from users’ preferences by mean
score (MS) and the generation quality by FID in Table 5.2. Meanwhile, we plot the score
density for generated samples of various methods and training samples in Fig. 5.7. The
evaluation results on LFW (smile) show that: GAN-1, GAN-2, and GARNet shift to a
distribution of data with larger scores, which means they can learn from user preferences and
generate face images with large smiles. (1) Our GARNet learns the best desired distribution,
indicated by a best MS, along with best image quality, indicated by a lowest FID score.
(2) GAN-1 and GAN-2 have poorer quality than GARNet. (3) FBGAN suffers from mode
collapse and even generates meaningless images (see Appendix), which is verified by its
large quality score (FID). Similar results can be concluded on UT-Zap50K.

For further visual quantification, we place GARNet’s generated samples and training
samples (a.k.a. real samples) w.r.t. their scores on the smile axis in Fig. 5.8a. GARNet
mainly (over 95%) covers those real images ranked top 50% in terms of the smile attribute.
GARNet even generates images with higher scores than the maximum scores in the LFW
dataset, which shows its potential for generating data beyond existing rankings. We place
GARNet’s generated samples and training samples (a.k.a. real samples) w.r.t. their scores on
the comfort axis in Fig. 5.8b. Over 75% generated images cover those real images ranked
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(a) LFW
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Figure 5.8 Real images (32×32, above the axis) vs. generated images (GARNet, below the
axis) w.r.t. the score axis of attributes. The percentile rank of a given score is the percentage
of scores in its frequency distribution that are less than that score. Real (generated) percentile
rank means calculated among real (generated) images.
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Figure 5.9 GARNet for multiple attributes. Images (64×64) are placed w.r.t. the “comfort”
and “open” score. The results are obtained by a state-of-art GAN, thus have better quality.

top 50% in terms of the comfort attribute. Results on the open and sporty attributes can be
seen in Appendix.

5.6.3 User Control on a Mixture of Preferences

To demonstrate that GARNet can generalize to a mixture of user preferences, i.e., preferences
on multiple attributes, we conduct the experiments in terms of comfort and open attributes
as the training data. To achieve a better generation, we apply the state-of-art GAN with a
fixed augmentation probability 0.2 [Karras et al., 2020a]. Meanwhile, the training images
are resized to 64×64 for better resolution.
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Figure 5.10 The generated samples (32× 32) and the score density (open ↑, score ↑) for
CGARNet conditioned on open and not open attributes, respectively. The green point denotes
the mean score of generated samples while the red point denotes that of real samples.

In Fig. 5.9, we visualize real images and generated images by ordering them using two
pre-trained rankers defined over the open and comfort attributes, respectively. It is observed
that GARNet generates shoe images that are more comfort or more open. In addition, the
least comfort or the least open shoe images are not generated by GARNet as they are disliked
by users.

It is worth mentioning that GARNet achieves a compromise between a pair of moderate
conflicting attributes. Intuitively, open and comfort are conflicting attributes. For example,
sport shoes are thought comfortable but may be slightly open. As shown in Figure 5.9,
learning from preferences w.r.t. open and comfort attributes, GARNet converges to avoid
generating samples ranked lowest in either of two attributes but generates relatively close
and comfort shoes.

Conditional GARNet

We apply our conditional GARNet (CGARNet) for exact opposing attributes, i.e., open and
not open.

Fig. 5.10 shows that: (1) When conditioned on open attribute, CGARNet generates shoe
images with large open attribute values, with a score density that locates on a region of large
open score values. (2) When conditioned on not open attribute, CGARNet generates shoe
images with small open attribute values, with a score density that locates on a region of small
open score values.

5.6.4 GARNet vs. GANs conditioned on Labels

In this section, we show that generation conditioned on preferences outperforms generation
conditioned on labels in extremely imbalance class learning. Note conditional generation can
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(a) Performance gain matrix (b) GARNet (c) Elastic-infoGAN

Figure 5.11 (a) GARNet boosts imbalance classification on MNIST with digit six as the
minority class. The gain matrix (zero is not presented) is obtained by C′-C, where C′ and
C are the confusion matrix calculated on GARNet boosted data and original MNIST data,
respectively. The color denotes the confusion matrix (%) on original MNIST data. (b-c)
Visual results of GARNet and Elastic-infoGAN on MNIST extremely imbalanced data.

generate samples for the minority data, showing a promising application for imbalanced data
classification by promoting the minority via data augmentation in a pre-processing manner.

Experimental setup: On the MNIST dataset [Lecun et al., 1998], we randomly pick up
0.5% samples of the digit six to constitute the minority class. All samples of the rest classes
are retained. Note the imbalance ratio reaches to minor/major ≈ 1

200 . We construct partial
preferences simply by preferring digit six than any other class. We compare the classification
performance of a CNN classifier (CNN) without and with data augmentation by GARNets.

Baselines: Elastic-infoGAN [Ojha et al., 2020] is a state-of-art generative model for
imbalanced data generation. Standard GAN trained only with minor class is excluded as
a baseline since there are insufficient training samples (0.5% ∗ 4,951 ≈ 25) for training a
generative model.

Fig. 5.11b shows that our GARNet successfully generates the user-desired data, i.e., digit
six. Though there are limited digit six images in the training set, we can construct sufficient
partial preferences between the minor class and the major classes. Therefore, our GARNet
can learn a direction of user preferences and generate the desired data. In contrast, Fig. 5.11c
shows that Elastic-infoGAN fails to generate digit six since it relies on class labels and the
samples of digit six are too limited.

Therefore, our GARNet can be used to improve imbalance class learning via data aug-
mentation but Elastic-infoGAN cannot. Fig. 5.11a shows the combined confusion matrix of
two settings: with augmentation by GARNet and without augmentation. The color indicates
the confusion matrix of CNN with imbalanced data, where every class has a high purity
except digit six which is a bit confusing with digit four, five, and eight. By replenishing the
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digit six with GARNets, we train the same CNN architecture (CNN-GARNet). It shows that
the purity of digit six increases by 8.9%, demonstrating GARNets can efficiently augment
the minority data in imbalanced scenarios.

5.7 Summary

This chapter presents a novel adversarial ranking framework, GARNet, to learn from human
preferences. In particular, we prove that GARNet is equivalent to optimizing a divergence
between the desired data distribution (determined by the given score vector) and the generated
data distribution, which theoretically guarantees GARNet as a good estimator of the desired
data distribution. Meanwhile, we empirically show GARNet can obtain corresponding distri-
butions when different given score vectors are specified. Extensive experiments demonstrate
GARNet can learn the distribution best matches user preferences compared to various base-
lines. A study of imbalanced class learning validates the advantage of preference-guided
GARNet over GAN conditioned on labels.

The new generative modeling paradigm in the context of human preferences is especially
proposed under the generative adversarial framework. It would be interesting to extend
this paradigm that aligns the distribution of a user-specified subset of training data with the
generative model to e.g. diffusion models [Ho et al., 2020].



Chapter 6

Refining Image-to-Image Translation by
Rival Preferences

Having explored preference-guided desired data generation at the dataset level in Chapter 4
and Chapter 5, we target preference-guided desired data generation at the instance level in
this chapter. We propose a new model TRIP for fine-grained image-to-image translation
(namely, instance-level desired data generation) by using the preferences over image pairs
on the strength of a specific attribute. In particular, we simultaneously train two modules: a
generator that translates an input image to the desired image with smooth subtle changes with
respect to the interested attributes; and a ranker that executes rival preferences consisting
of the input image and the desired image. Rival preferences refer to the adversarial ranking
process: (1) the ranker thinks no difference between the desired image and the input image
in terms of the interested attributes; (2) the generator fools the ranker to believe that the
desired image changes the attributes over the input image as expected. RAs over pairs of
real images are introduced to guide the ranker to rank image pairs regarding the interested
attributes only. With an effective ranker, the generator would “win” the adversarial game by
producing high-quality images that present desired changes over the attributes compared to
the input image. The experiments on two face image datasets and one shoe image dataset
demonstrate that our TRIP achieves state-of-art results in generating high-fidelity images
which exhibit smooth changes over the interested attributes.
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RCGAN

TRIP

RelGAN

FN

Input

Figure 6.1 Fine-grained facial attribute (“smile”) translation on CelebA-HQ dataset. v is a
variable that controls the desired change of the “smile” attribute for the generated images.

6.1 Problem Statement

Let X = {xn}N
n=1 denote a training dataset with N samples, S = {sm}M

m=1 denote a collection
of M preferences defined on subsets of X . In particular, each s ∈ S is an ordered list, namely,

s = y≥ x, x,y ∈ X . (6.1)

Our target is to learn a generator that can generate a series of realistic versions of input
image x that possess smooth changes on specific attributes by conditioning on a continuous
attribute variable v, namely, ŷ = G(x,v) (Fig. 6.1). Note that the preferences here refer to
the preferences of pairs of images on the strength of the interested attributes, which is called
“relative attributes” (RAs) in the remaining of this chapter.

Remark 7. We consider pairs {(x,y)|y = x}, called “ties” in learning to rank for better
ranking prediction [Zhou et al., 2008].

6.2 TRIP for Fine-grained I2I translation

As clarified in Section 2.2.2, most existing work on I2I translation relies on binary attributes,
obtaining unsatisfactory performance on fine-grained translation due to the limited description
capacity of binary attributes. While some GAN-based works, i.e., RCGAN and RelGAN
begun to improve fine-grained I2I translation by RAs, but they fail to reconcile the goal for
fine-grained translation and the goal for high-quality generation, because their attribute model
that is only trained with RAs on real images cannot generalize well to the generated images
with interpolated RAs (See Section 2.2.2 for more details). In this section, we propose a new
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Figure 6.2 The network structure of TRIP. The main novelty is two folds: (1) the design
of ranker and (2) the adversarial ranking process, which are denoted in red. 1⃝ and 2⃝
denote different image pairs, i.e., real image pairs and generated image pairs, corresponding
to Fig. 6.3 and Fig. 6.4, respectively. R and D denote the rank head and the GAN head,
respectively.

model, Translation via RIval Preferences (TRIP), feeds RAs on real images as well as on
generated images to model RAs and maintains rival preferences to coordinate the two goals.

We open our description with the one-attribute case. The whole structure of TRIP is
shown in Fig. 6.2, which consists of a generator and a ranker. The generator takes as input an
image along with a continuous latent variable that controls the change of the attribute, and
outputs the desired image; while the ranker delivers information in terms of image quality
and the preference over the attribute to guide the learning of the generator. We implement the
generator with a standard encoder-decoder architecture following [Wu et al., 2019b]. In the
following, we focus on describing the detailed design of the ranker and the principle behind
it. Then we propose our TRIP model and extend it to the multiple-attribute case. Last, we
compare our TRIP with RCGAN and RelGAN in technical details.

6.2.1 Ranker for Relative Attributes

Relative attributes (RAs) are assumed to be most representative and most valid to describe
the information related to the relative emphasis of the attribute, owing to its simplicity and
easy construction [Parikh and Grauman, 2011, Saquil et al., 2018]. For a pair of images
(x,y), RAs refer to their preference over the specific attribute: y > x when y shows a greater
strength than x on the target attribute and vice versa.

Pairwise learning to rank is a widely-adopted technique to model the relative attributes [Parikh
and Grauman, 2011]. Given a pair of images (x,y) and its relative attribute, the pairwise
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learning to rank technique is formulated as a binary classification [Cao et al., 2006], i.e.,

R(x,y) =

{
+1 y > x;
−1 y < x,

(6.2)

where R(x,y) is the ranker’s prediction for the pair of images (x,y) (Fig. 6.3).

Figure 6.3 The ranker model to learn relative attributes for real image pairs.
.

Further, the attribute discrepancy between RAs, distilled by the ranker, can then be used
to guide the generator to translate the input image into the desired one.

However, the ranker is trained on the real image pairs, which only focuses on the modeling
of preference over the attribute and ignores image quality. To achieve the agreement with the
ranker, the generator possibly produces unrealistic images, which conflicts with the goal of
the discriminator.

6.2.2 Ranking Generalization by Rival Preferences

According to the above analysis, we consider incorporating the generated image pairs into
the modeling of RAs, along with the real image pairs, to reconcile the goal of the ranker
and the discriminator. Consequently, the resultant ranker will not only generalize well to
the generated pairs but also avoid providing untrustworthy feedback by distinguishing the
unrealistic pairs from the real pairs.

Motivated by the adversarial training of GAN [Goodfellow et al., 2014], we introduce an
adversarial ranking process between a ranker and a generator to incorporate the generated
pairs into the training of ranker. To be specific,

• Ranker. Inspired by semi-supervised GAN [Odena, 2016], we assign a pseudo label to
the generated pairs. In order to avoid a biased influence on the ranking decision over real
image pairs, i.e., positive (+1) or negative (-1), the pseudo label is designed to be zero.
Note that a generated pair consists of a synthetic image and its input in order to connect
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the ranker prediction to the latent variable.

R(x,∆) =


+1 (∆ = y)∧ (y > x);
−1 (∆ = y)∧ (y < x);
0 ∆ = ŷ.

(6.3)

where ŷ denotes the output of the generator given the input x and an attribute variable v,
i.e., ŷ = G(x,v). In particular, v controls the desired change of attributes for the generated
images. ∆ is a placeholder that can be either a real image y or a generated image ŷ.

• Generator. The goal of the generator is to achieve the consistency between the ranking
prediction R(x, ŷ) and the corresponding latent variable v. When v > 0, the ranker is
supposed to believe that the generated image ŷ has a larger strength of the specific attribute
than the input x, i.e., R(x, ŷ) = +1; and vice versa.

R(x, ŷ) =

{
+1 v > 0;
−1 v < 0.

(6.4)

We denominate the opposite goals between the ranker and the generator w.r.t. the
generated pairs as rival preferences1. Such preferences extend the adversarial game defined
on binary classification [Goodfellow et al., 2014] to ranking. An intuitive example of the
rival preferences is given in Fig. 6.4 for better understanding.

Figure 6.4 Rival Preferences for the generated image pairs between the ranker and the
generator, which ensure the ranker generalizes well to the generated pairs. Ψ denotes
[-1,0)∪ (0,1].

The ranker is promoted in terms of the following aspects: (1) The function of the
ranker on the real image pairs is not changed. First, the ranker learns to correctly rank real
image pairs by optimizing the first term in Eq. (6.6a). Second, the generated image pairs
are uniformly sampled regarding their latent variables v ∈ [−1,1], which contain positive

1“Rival” is not only used to denote “adversaral”, but also more in compliance with the theme of ranking
since it has an extra meaning as “competitive”.
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rankings (sgn(v) = +1) when conditioned on v > 0 and negative rankings (sgn(v) = −1)
when conditioned on v < 0. By assigning label “0” (the second term in Eq. (6.6a)), the
ranking output for all generated image pairs can thus be neutralized while ensuring the
ranking performance on the real image pairs. (2) The ranker avoids providing biased
ranking prediction for unrealistic image pairs. As we constrain the generated pairs at the
decision boundary, i.e, R(x, ŷ) = 0, the ranker is invariant against large variances of generated
pairs [Chapelle et al., 2008]. Especially, the influence of unrealistic features contained in
the generated pairs on the ranking decision is suppressed. (3) The ranker can capture the
exclusive difference over the specific attribute through the adversarial process. Since the
ranker rejects to give effective feedback for unrealistic image pairs, only the realistic image
pairs can attract the attention of the ranker. Therefore, the ranker only passes the effective
information related to the target attribute to the generator.

The rank head loss (Eq. (6.6)) is effective for smooth translation, which will be empirically
validated in Section 6.4.4. Nevertheless, the ranking loss focuses on the difference of a
pair of samples, so it is somehow inferior for the relativistic quality of single samples. We
empirically find that our adversarial ranking loss can guarantee a superior attribute-specified
quality but only boost a relatively good realistic quality (Section 6.4.4). To further improve
the realistic quality, we introduce a parallel GAN head following the feature layer to ensure
the image quality together with a rank head, shown in Fig. 6.2. The GAN head loss focuses
on the quality of single samples and can further improve the ranker’s ability to distill realistic
features. The function of different losses is summarized in Table 6.1.

According to the above analysis, the ranker would not evoke conflicts with the goal of
the image quality. Therefore, we successfully reconcile the two goals of image quality and
the extraction of the attribute difference. With a powerful ranker, the generator would “win”
the adversarial game by producing realistic pairs consistent with the latent variable.

Remark 8 (Assigning label 0 to similar real image pairs). We follow Parikh and Grauman
[2011] to assign label 0 to pairs {(x,y)|y = x}, called “ties” in learning to rank [Zhou et al.,
2008]. Label 0 denotes that there is no difference between x and y w.r.t. the specified attribute.
The learning of these pairs can further improve the ranking prediction [Zhou et al., 2008].
Note that assigning label 0 to the similar real pairs and the generated pairs have a same
physical meaning.
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6.2.3 Linearizing Ranking Output for Smooth Translation

Eq. (6.4) models the relative attributes of the generated pairs as a binary classification, which
would fail to enable a fine-grained translation since the subtle changes implied by the latent
variable are not distinguished by the ranker. For example, given v1 > v2 > 0, the ranker gives
same feedbacks, i.e., sgn(v1) = sgn(v2) = +1, for (x, ŷ1) and (x, ŷ2), where ŷ∗ = G(x,v∗).
This loses the discrimination between the two pairs. To achieve the fine-grained translation,
we linearize the ranker’s output for the generated pairs so as to align the ranker prediction
with the latent variable. We thus reformulate the binary classification as the regression:

R(x, ŷ) = v. (6.5)

Given two latent variables 1 > v2 > v1 > 0, the ranking prediction for the pair generated from
v2 should be larger than that from v1, i.e., 1 > R(x, ŷ2)> R(x, ŷ1)> 0. The ranker’s outputs
for the generated pairs would be linearly correlated to the corresponding latent variable.
Since the ranker’s output for a generated pair reflects the difference between the generated
image and the input image, the generated image can change smoothly over the input image
according to the latent variable.

As explained in Section 6.2.2, the ranker’s generalization to the generated pairs is boosted
by rival preferences. On the other hand, to make the ranker better generalize to have linearized
ranking outputs for the generated pairs, we tailor-design the structure for the ranker and adopt
the least square loss for the ranking predictions. Specifically, (1) the rank head in the ranker is
designed to output real values R(x,y), i.e., the last layer being the linear dense layer (Table 1
in Supplementary). Denoting the mapping before the last layer as f and the parameter of the
last layer as w, the term (R(x,y)− r)2 in Eq. (6.6a) can be reformulated as (wT f (x,y)− r)2.
This actually learns the prediction of discrete RAs as a regression problem, which makes it
easy to generalize the ranker to have a continuous ranking predictions. (2) The least square
loss allows our ranker to produce soft prediction values for real discrete RAs since the loss
has a small penalty when the prediction is close to the ground truth (Fig. 2 2 in [Martins and
Astudillo, 2016]). Such flexibility enables our ranker to capture the discrepancy of different
real image pairs w.r.t. the specific attribute. As a result, our ranker is capable to provide a
continuous ranking predictions 3

2Comparison among commonly used losses (including the least square loss and the cross-entropy loss) for
binary classification.

3In Fig. 6.15, the ranker’s outputs for the real image pairs locate at a neighborhood area of -1, 0, and 1 when
convergence (iteration 99K), which almost covers the range from -1 to 1.).
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Table 6.1 The function of different losses in our TRIP.

Loss Smooth translation
High-quality generation

Realistic Attribute-specified

Rank head (Eq. (6.6)) ✓ ✓ ✓

GAN head (Eq. (6.7)) ✗ ✓ ✗

6.2.4 Translation via RIval Preferences (TRIP)

In the following, we introduce the loss functions for the two parallel heads in the ranker. The
overall network structure can be seen in Fig. 6.2.

Loss of rank head R: the loss function for the rank head and the generator is defined as:

LR
rank = Ep(x,y,r)

[
(R(x,y)− r)2

]
+λEp(x)p(v)

[
(R(x,G(x,v))−0)2

]
; (6.6a)

LG
rank = Ep(x)p(v)

[
(R(x,G(x,v))− v)2

]
, (6.6b)

where r =


1 y > x

0 y = x

−1 y < x

denotes the relative attribute and v is the latent variable to control

the attribute changes. p(x,y,r) are the joint distribution of real image preferences. Let
ŷ = G(x,v). p(x) is the distribution of the training images. p(v) is a uniform distribution on
[−1,1]. λ is the weight factor that determines the strength of adversarial training between
the ranker and the generator.

By optimizing LR
rank (Eq. (6.6a)), the ranker is trained to predict correct labels for real

image pairs and assign label 0 for generated pairs, i.e., Eq. (6.3). By optimizing LG
rank

(Eq. (6.6b)), the generator is trained to output the desired image ŷ, where the difference
between ŷ and x is consistent with the latent variable v, i.e., Eq. (6.5). Therefore, the ranker
learns to distill the discrepancy from the interested RAs. Meanwhile, the two rival goals on
the generated pairs raise an adversarial training between the ranker and the generator. That
is, the generator urges the ranker to predict that there are desired changes in the generated
images while the ranker predicts that there are no changes. The competitive game promotes
the improvement of two modules simultaneously.
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Loss of GAN head D: to be consistent with the above rank head and also ensure a stable
training 4, a regular least square GAN’s loss is adopted:

LD
gan = Ep(x)

[
(D(x)−1)2

]
+Ep(x)p(v)

[
(D(G(x,v))−0)2

]
; (6.7a)

LG
gan = Ep(x)p(v)

[
(D(G(x,v))−1)2

]
, (6.7b)

where 1 denotes the real image label while 0 denotes the fake image label.
Jointly training the rank head and the GAN head, the gradients backpropagate through

the shared feature layer to the generator. Then our TRIP can conduct the high-quality
fine-grained I2I translation.

6.2.5 Extended to the Multiple Attributes

To generalize TRIP to multiple (K) attributes, we use vectors v⃗ and r⃗ with K dimension to
denote the latent variable and the preference label, respectively. Each dimension controls the
change of one interested attribute. In particular, the ranker consists of one GAN head and K
parallel rank head. The overall loss function is summarized as follows:

LR
rank = Ep(x,y,⃗r)∑

k

[
(Rk (x,y)− r⃗k)

2
]
]+λEp(x)p(⃗v)∑

k

[
(Rk (x,G(x, v⃗))−0)2

]
; (6.8a)

LG
rank = Ep(x)p(⃗v)∑

k

[
(Rk (x,G(x, v⃗))− v⃗k)

2
]
, (6.8b)

where Rk is the output of the k-th rank head. v⃗k and r⃗k are the k-th dimension of v⃗ and r⃗,
respectively.

6.3 Discussions

In this section, we analyze the advantages of TRIP in technical details. For better under-
standing, we compare TRIP with the two most related state-of-art works, i.e., RCGAN and
RelGAN. In particular, we plot the correspondence between the generated pairs (consisting
of the generated images and the coupled input images) and the ranker score in Fig. 6.5. For
simplicity of presentation, we omit the input images.

4The least square GAN loss is demonstrated to possess superior training stability compared to the original
GAN loss in [Mao et al., 2017].
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Figure 6.5 Correspondence between the ranker and the generated images by TRIP, RCGAN,
and RelGAN, respectively. TRIP: the generated images (deep green line) lie on the data
manifold (green curved surface), which have high quality. Meanwhile, they are linearly
correlated to the ranker scores, which delivers smooth translation. RCGAN: the generated
images (blue line, as distinct from the color of data manifold) are out of the data manifold,
although exhibiting linear correlation with the ranker output. RelGAN: the generated images
gather on the data main manifold within three green circles, and fail to spread out linearly
with its discriminator score.

6.3.1 TRIP Compared with RCGAN

Different critics (to guide the generator). Our TRIP applies an adversarial ranker 5 (Fig. 6.2),
to reconcile the goal for fine-grained translation and the goal for high-quality generation
(See Fig. 6.5a.). RCGAN applies two critics to model the two goals separately: a vanilla
ranker 6 to model the goal for fine-grained translation and a discriminator to model the goal
for high-quality generation. However, the two goals are difficult to coordinate during the
training stage.

Adversarial ranking vs. Vanilla ranking (namely, whether generated pairs are used to
train the ranker or not). Except real image pairs, the ranker of our TRIP is also trained with
the generated pairs, which targets an opposite goal of the generator. With such adversarial
ranking, our ranker can have better generalization to the generated pairs (explained in
Section 6.2.2). By contrast, the ranker of RCGAN is only trained with real image pairs
(vanilla ranking), which generalizes poorly to the generated image pairs and would induce
the generator to generate out-of-data manifold images (empirically verified in Section 6.4.1;
see Fig. 6.5b.).

Regression-based ranking loss vs. Binary classification-based ranking loss. Benefiting
from the least square loss, we can easily generalize the ranker to have continuous ranking
predictions on the generated pairs to guide the generator for smooth translation (See the
explanation in Section 6.2.3.). The ranker of RCGAN uses binary classification (sigmoid)

5A ranker equipped with adversarial ranking.
6A ranker equipped with vanilla ranking.
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based ranking loss on the generated pairs to guide the generator, which is inferior for smooth
translation (empirically verified in Section 6.4.1 and Section 6.4.3).

6.3.2 TRIP Compared with RelGAN

Ranker vs. Matching-aware discriminator. TRIP distills the attribute difference by modeling
RAs with a ranking model. In contrast, RelGAN resorts to a matching-aware discriminator
to learn attribute information. Specifically, the discriminator judges whether an input-output
pair matches the RAs or not with binary classification. Namely, the pair (x,y) along with its
ground-truth RA label r is classified as 1 while the pair (x,y) along with the wrong RA label
r is classified as 0. Compared to a binary classifier, the ranker in TRIP is more effective to
capture subtle differences exclusively regarding the target attributes.

Adversarial ranking vs. Interpolation. TRIP introduces an adversarial ranking process,
ensuring that the ranker can criticize the generated images with continuous RAs during
its training process. Thus, TRIP can perform fine-grained control over the (ranker-guided)
generator regarding the target attributes. Instead, RelGAN generalizes to output images with
continuous attribute differences by resorting to interpolation over the discrete RAs, which is
ill-defined [Berthelot et al., 2018] and needs extra constraints (interpolation loss, which will
be discussed in the following point).

Maintaining the linear tendency or not. TRIP: recalling Eq. (6.5), the ranker’s outputs for
the generated pairs are linearly correlated to the corresponding latent variables (See Fig. 6.5a).
So the generated image G(x,v) can change smoothly over the input image x according to the
RA. RelGAN: recalling its interpolation loss in Sect 3.5 of [Wu et al., 2019b],

min
G

Ep(x)p(r)p(α)[∥DInterp(G(x,αr))∥2],

where r ∈ {−1,0,1} and α ∈ [0,1]. DInterp recovers the interpolation ratio and assigns
label 0 to non-interpolated images. Such interpolation loss aims at forcing interpolated
images to be indistinguishable from non-interpolated images, which is designed for high-
quality interpolation but destroys smooth translation (See Fig. 6.5c). Experiment results in
Section 6.4.1 and Section 6.4.3 verify our claim.

6.4 Experiments

In this section, we compare our TRIP with various baselines on the task of fine-grained I2I
translation. We then verify that our ranker can distinguish the subtle difference in a pair of
images. Thus, we propose to apply our ranker for evaluating the fine-graininess of image
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pairs generated by various methods. We finally extend TRIP to the translation of multiple
attributes.

Datasets. All experiments are conducted in the real-world datasets with discrete RAs
r ∈ {+1,0,−1}. In particular, we use two face image datasets, i.e., the high quality subset
of Celeb Faces Attributes Dataset (CelebA-HQ) [Karras et al., 2018] and Labeled Faces
in the Wild with attributes (LFWA) [Liu et al., 2015], and one shoe image dataset, i.e.,
UT-Zappos50K dataset (UT-Zap50K) [Yu and Grauman, 2014]. CelebA-HQ consists of 30K
face images of celebrities with 40 binary attributes. LFWA has 13,143 images with 73 binary
attributes. UT-Zap50K contains 50,025 catalog shoe images together with corresponding
edge images [Isola et al., 2017], where the binary label is 1 when an image is a shoe image
and is 0 when an image is an edge image. We resize the images to 256× 256 for three
datasets. The relative attributes are obtained for any two images x and y based on the binary
labels, following the former work [Saquil et al., 2018, Wu et al., 2019b]. Thus we can make a
fair comparison with other baselines in terms of same supervision information. For instance,
for “smile” attribute, we construct the comparison x > y when the “smile” label of x is 1
while the “smile” label of y is 0, and vice versa. We find that all methods fail to achieve
satisfactory results on the shoe dataset using the discrete relative attributes. To enhance the
fine-grained translation on UT-Zap50K, we augment the training images by mixing up shoe
images with the corresponding edge images [Zhang et al., 2018]. Specifically, a mix-up
image is obtained by (1− γ)x+ γy, where y is a shoe image and x is y’s corresponding edge
image. The corresponding mix-up label is γ , where γ ∈ (0,1).

Implementation Details. As the translation is conducted on the unpaired setting, the cycle
consistency loss Lcycle is usually introduced to keep the identity of faces when translation [Zhu
et al., 2017, Wu et al., 2019b, He et al., 2019]. An orthogonal loss Lo and the gradient penalty
loss Lgp are added to stabilize the training following [Wu et al., 2019b]. The weighting
factors for Lgan, Lcycle, Lo and Lgp are λg, λc, λo and λgp, respectively. Except λg = 0.5 for
CelebA-HQ, λg = 5 for LFWA and λg = 2.5 for LFWA, we set the same parameter for all
datasets. Specifically, we set λ = 0.5, λc = 2.5,λgp = 150,λo = 10−6. We use the Adam
optimizer with β1 = 0.5 and β2 = 0.999. The learning rate is set to 1e-5 for the ranker and
5e-5 for the generator. The batch size is set to 4. We split the dataset into training/test with a
ratio 90/10 for face datasets. We use 40K shoe-edge image pairs (80K images in total) and
the corresponding mix-up images (40K images in total) as training data and 10,025 shoe-
edge image pairs (20,050 images in total) as test data for UT-ZAP50K dataset. We pretrain
our TRIP only with Lgan to enable a good reconstruction for the generator. By doing so, we
ease the training by sequencing the learning of our TRIP. That is, we first make a generation
with good quality. Then when Lrank begins to be used to train TRIP, our ranker can mainly
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focus on the relationship between the generated pairs and its corresponding conditional v,
rather than handling the translation quality and the generation quality simultaneously. All the
experiment results are obtained by a single run. Each run contains 100K iterations.

Baselines. We compare TRIP with FN [Lample et al., 2017], RelGAN [Wu et al., 2019b]
and RCGAN [Saquil et al., 2018]. We use the released codes of FN, RelGAN and RCGAN.

Evaluation Metrics. Following [Wu et al., 2019b], we use four metrics to quantitatively
evaluate the performance of fine-grained translation. Standard Deviation of Structural
SIMilarity (DSSIM) measures the performance of fine-grained translation. Mean Square
Error (MSE) and Frechet Inception Distance (FID) measure the visual quality for shoe
dataset and face datasets, respectively. Accuracy of Attribute Swapping (AAS) evaluates the
accuracy of the binary image translation. The swapping for the attribute is to translate an
image, e.g., from “smile” to “no smile”.

• DSSIM. We first apply the generator to produce a set of fine-grained output images
{x1, . . . ,xl} by conditioning an input image and a set of latent variable values from −1
to 1 with a step 0.2. Then l = 1−(−1)+0.2

0.2 = 11. We compute the standard deviation of
Structural SIMilarity (SSIM) between xi−1 and xi as follows:

DSSIM = σ ({SSIM(xi−1,xi) | i = 1, · · · ,11}) . (6.9)

We calculate DSSIM for each image from the test dataset and average them to get the final
score. Smaller DSSIM denotes better smooth translation.

• MSE. For shoe→edge in UT-ZAP50K, the input-output examples are paired. Namely, the
input image (shoe) and the output image (edge) only differ in their style, i.e., photo style
and edge style, respectively. Then the mean square error between the translated images
from generative models and the ground-truth output images can be calculated to measure
the visual quality of translation. We conduct translation for all images in UT-ZAP50K
dataset, obtaining 50,025 generated pairs, and calculate the MSE. Smaller MSE denotes
generation with better quality.

• FID. As the input-ouptut examples in face datasets are unpaired, we evaluate the statistical
difference between the translated images and the training dataset to measure the visual
quality. It is calculated with 30K translated images on CelebA-HQ dataset and 13,143
translated images on LFWA dataset. Smaller FID denotes generation with better quality.

• AAS. The accuracy is evaluated by a facial attribute classifier that uses the Resnet-18
architecture [He et al., 2016]. To obtain AAS, we first translate the test images with the
trained GANs and then apply the classifier to evaluate the classification accuracy of the
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Figure 6.6 Comparison of fine-grained facial attribute (“smile”) translation on LFWA dataset.

translated images coupled with its swapping attribute. Higher accuracy means that more
images are translated as desired.

RelGAN

TRIP

Input

FN

Figure 6.7 Comparison of fine-grained translation (“shoe→edge”) on UT-Zap50K dataset.

Table 6.2 Fine-grained performance (DSSIM) and image quality (FID/MSE) of FN, RCGAN,
RelGAN and TRIP on CelebA-HQ, LFWA and UT-ZAP50K. The best results are highlighted
in bold. Considering the value range, we round four decimal places for DSSIM and round
two decimal places for FID and MSE. RCGAN fails to make fine-grained translations w.r.t.
the “mouth” attribute on CelebA-HQ and “shoe→edge” on UT-ZAP50K. So we do not
collect their results.

Model
Fine-grained (DSSIM) Image quality (FID/MSE)

LFWA UT-Zap50K LFWA (FID)CelebA-HQ
Smile Gender Mouth Cheekbones Smile Frown shoe→edge

CelebA-HQ (FID)
Smile Gender Mouth Cheekbones Smile Frown

UT-Zap50K (MSE)
shoe→edge

FN 0.0066 0.0049 0.0395 41.48 48.66 42.79 43.15 12.59 11.37 6987.76
RCGAN 0.0079 0.0106 - 398.05 418.06 - 385.27 437.93 425.59 -
RelGAN 0.0137 0.0159 0.0023 10.92 31.29 9.55 10.28 16.76 16.21 6973.37

TRIP

0.0122 0.0036 0.0075 0.0039
0.0084 0.0138 - 0.0099
0.0512 0.0924 0.0261 0.0510
0.0030 0.0077 0.0017 0.0028 0.0008 0.0005 0.0010 10.19 26.47 7.18 9.50 22.25 23.65 6187.88



6.4 Experiments 109

Figure 6.8 Image comparison of TRIP (second row) with RelGAN (first row) w.r.t. the “smile”
attribute. The 1st column is input image. Other columns are generated images conditioning
on v =−1,−0.5,0.5,1 from left to right.
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100

Smile Gender  Mouth Cheekbones Smile Frown Shoe2edge

CelebA-HQ LFWA UT-ZAP50K

Translation accuracy (AAS)

FN RelGAN RCGAN TRIP

Figure 6.9 Translation accuracy (AAS, higher is better) of FN, RCGAN, RelGAN and TRIP 
on CelebA-HQ, LFWA and UT-ZAP50K. RCGAN fails to make fine-grained translations 
w.r.t. the “mouth” attribute on CelebA-HQ and “shoe→edge” on UT-ZAP50K. So we do not 
collect their results.

6.4.1 Fine-grained Image-to-Image Translation

We conduct fine-grained I2I translation on a single attribute. On CelebA-HQ dataset, we 
translate images in terms of “smile”, “gender”, “mouth open” and “high cheekbones” at-
tributes, respectively. On LFWA dataset, we translate images in terms of “smile” and “Frown” 
attributes, respectively. On UT-ZAP50K dataset, we translate the shoe images to edge images, 
i.e., “shoe→edge”. We show that our TRIP achieves the best performance on the fine-grained 
I2I translation task comparing with various strong baselines in the following three metrics.

Visual results. Fig. 6.1, Fig. 6.8 and Fig. 6.6 show that: (1) all methods can translate the 
input image into “more smiles” when v > 0 or “less smiles” when v < 0 on CelebA-HQ and 
LFWA, respectively. The degree of changes is consistent with the numerical value of v. (2) 
Our TRIP’s generation achieves the best visual quality, generating realistic output images
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Figure 6.10 The box plot of the ranker’s output for generated pairs with different values of
the latent variable.

that are different from the input images only in the specific attribute. In contrast, FN suffers
from image distortion issues. RelGAN’s generation not only changes the specific attribute
“smile”, but is also influenced by other irrelevant attributes, e.g., “hair color”. RCGAN
exhibits extremely poor generation results. Fig. 6.7 shows that: FN and TRIP can translate
shoe images into edge images smoothly but RelGAN fails.

Fine-grained score. We present the quantitative evaluation of the fine-grained translation
in Table 6.2. Our TRIP achieves the lowest DSSIM scores for three datasets, consistent with
the visual results. Note that a trivial case to obtain a low DSSIM is when the translation
is failed. Namely, the generator would output the same image no matter what the latent
variable is. Therefore, we further apply AAS to evaluate the I2I translation in a binary
manner. RelGAN, RCGAN and TRIP mostly achieve over 95% accuracy except for FN
(Fig. 6.9). Under this condition, it guarantees that a low DSSIM indeed indicates the output
images change smoothly with the latent variable.

Image quality score. Table 6.2 presents the quantitative evaluation of the image quality.
(1) Our TRIP achieves the best image quality with the lowest FID scores. (2) FN achieves
the best FID on LFWA dataset. Because the FN achieves a relatively low accuracy of the
translation, < 75% in Fig. 6.9, many generated images would be the same as the input image.
It means that the statistics of the translated images are similar to that of the input images,
leading to a low FID. (3) RCGAN has the worst FID scores, consistent with the visual results
in Fig. 6.1 and Fig. 6.6.

6.4.2 Physical Meaning of Ranker Output

As shown in Fig. 6.10, (1) for a large v, the ranker would output a large prediction. It
demonstrates that the ranker indeed generalizes to synthetic imaged pairs and can discriminate
the subtle change among each image pair. (2) The ranker can capture the whole ordering
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instead of the exact value w.r.t. the latent variable. Because the ranker that assigns 0 to the
generated pairs inhibits the generator’s loss optimizing to zero, although our generator’s
objective is to ensure the ranker output values are consistent with the latent variable. However,
the adversarial training would help the ranker to achieve an equilibrium with the generator
when convergence, so that the ranker can maintain the whole ordering regarding the latent
variable.

From Fig. 6.1 and Table 6.2, it shows that when conditioning on different latent variables,
our TRIP can translate an input image into a series of output images that exhibit the corre-
sponding changes over the attribute. We then evaluate the function of our ranker using these
fine-grained generated pairs. It verifies that our ranker’s output well-aligns to the relative
change in the pair of images.

We further evaluate fine-grained I2I translations w.r.t. the “smile” attribute on the test
dataset of CelebA-HQ (Fig. 6.10). The trained generator is applied to generate a set of G(x,v)
by taking as inputs an image x and v =−1.0,−0.5,0.0,0.5,1.0, respectively. Note we use
the test images with smiles for a negative v, or the test samples without smiles otherwise.
Then we collect the output of the ranker for each generated pair and plot the density in terms
of different v.

6.4.3 Linear Tendency on the Latent Variable

As our ranker can reveal the changes between image pairs, which is verified in the sec-
tion 6.4.2, we use it to evaluate the subtle differences between the fine-grained synthetic
image pairs generated by various baselines.

We generate the fine-grained pairs on the test dataset of CelebA-HQ w.r.t. the “smile”
attribute. Each trained model produces a series of synthetic images by taking as input a
real image and different latent variables. The range of the latent variable is from -1 to 1
with step 0.1. Then the ranker, pre-trained by our TRIP, is applied to evaluate the generated
pairs and group them in terms of different conditioned latent variables for different models,
respectively. In terms of each group, we calculate the mean and the standard deviation (std)
for the outputs of the ranker (Fig. 6.11).

Fig. 6.11 shows that (1) the ranking output of TRIP exhibits a linear trend with the lowest
variance w.r.t. the latent variable. This demonstrates that TRIP can smoothly translate the
input image to the desired image over the specific attribute along the latent variable. (2)
The ranking output of RCGAN behaves like a tanh curve with a sudden change when the
latent variable is around zero. It means that RCGAN cannot smoothly control the attribute
strength for the input image. In addition, RCGAN has the largest variance on the ranking
output due to the low quality of the generated images, which introduces noises to the ranker’s
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v RelGAN RCGAN FN TRIP

−1. 0.165 0.268 0.256 0.157

−0.5 0.164 0.265 0.137 0.107

0. 0.030 0.354 0.089 0.042

0.5 0.183 0.273 0.122 0.121

1. 0.172 0.290 0.222 0.159

Figure 6.11 The first three subfigures plot the ranker’s output for generated pairs in terms of
different latent variables. The curve shows the mean of the output, while the shaded region
depicts the standard deviation of the output. We summarize the standard deviation in the
table for better understanding.

Results(3)/(4)

(4)
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Input

Figure 6.12 Qualitative evaluation of ablation study on CelebA-HQ (“smile” attribute). Lrank,
Lgan, (3) and (4) refer to Eq. (6.6), Eq. (6.7), Eq. (6.4), and Eq. (6.5), respectively.

prediction on the generated pairs. (3) RelGAN manifests a three-step like curve, which
indicates a failure of fine-grained generation. This is mainly because of its specific design of
the interpolation loss. (4) FN presents a linear tendency like TRIP, which denotes that it can
make a fine-grained control over the attribute. However, the mean of the ranking output for
the generated pairs is relatively low in FN, since it fails to translate some input images into
the desired output images. This is verified by its low translation accuracy (Fig. 6.9), lower
than 85%. In addition, FN also exhibits a large variance of the ranking output due to the poor
image quality.
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6.4.4 Ablation Study

In Fig. 6.12 and Table 6.3, we show an ablation study of our model. (1) Without (w/o) Lrank,
the generated images exhibit no change over the input image. The generator fails to learn
the translation function, which is demonstrated by an extremely low translation accuracy
(AAS). (2) TRIP with only the vanilla ranking loss, i.e., w/o Lgan & λ = 0, performs poor in
terms of both the realistic quality and the attribute-specified quality. It produces unrealistic
images, with a very high FID. Meanwhile, the generated images change in terms of another
aspect (the background color of images) rather than the “smile” attribute along with the
controlled variable, with a low AAS. (3) TRIP only with the adversarial ranking loss, i.e.,
w/o Lgan, yields relatively realistic images. The generated images change exclusively in
terms of the “smile” attribute along with the controlled variable. However, this model is still
inferior over the model with Lgan (i.e., TRIP) w.r.t. the realistic quality. (4) Setting λ = 0, i.e.,
without considering the adversarial ranking, the performance of facial image manipulation
collapses, obtaining a low translation accuracy (AAS). (5) When optimizing with Eq. 6.4,
i.e., not linearing the ranking output for the generated pairs, the fine-grained control over the
attributes fails, getting a high DSSIM score. (6) With our TRIP, the generated images present
desired changes consistent with the latent variable and possess high quality.

Table 6.3 Quantitative evaluation of ablation study on CelebA-HQ (“smile” attribute). The
models in columns 2 to 7 correspond to the models in rows 1 to 6 of Fig. 6.12, respectively.
without (w/o); with (w).

Model w/o Lrank w/o Lgan&λ = 0 w/o Lgan λ = 0 CLS (3) TRIP

AAS 9.73 46.2 98.47 55.7 92.37 97.69
DSSIM 1.51E-05 0.0016 0.0058 0.0011 0.0163 0.0030

FID 29.00 428.35 78.08 8.55 11.33 10.19

6.4.5 Extension to Multiple Attributes

We conduct fine-grained I2I translation with both “smile” and “male” on CelebA-HQ to
show that TRIP can generalize well to multiple attributes. A two-dimension variable is used
to control the change of both attributes, simultaneously.

The generated images conditioning on different v⃗ are shown in Fig. 6.13. (1) TRIP can
disentangle multiple attributes. When v⃗ = [−1,0]/[1,0], the generated images O-1,0/O1,0

appear “less smiling”/“more smiling” with no change on the “male” attribute. When v⃗ =
[0,−1]/[0,1], the generated images O0, -1/O0,1 appear “less masculine”/“more masculine”
with no change in the “smile” attribute. In addition, a fine-grained control over the strength
of a single attribute is still practical. (2) TRIP can manipulates the subtle changes of multiple
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attributes simultaneously. For example, when conditioning v⃗ = [1,−1], the generated image
O1, -1 appear “less smiling” and “more masculine”.

6.4.6 Convergence of TRIP

TRIP converges to an equilibrium when the generator produces the realistic image with
desired changes over the input image regarding the target attribute, and the ranker makes
reliable prediction for the difference between the translated images and the input image w.r.t
the target attribute.

To justify our claim, we plot the training curve of the ranker and the generator, respectively,
as shown in Fig. 6.14. It demonstrates that the ranker and the generator are trained against
each other until convergence.

Further, we plot the distribution of the ranker’s prediction for real image pairs and
generated image pairs with different RAs r ∈ {+1/0/−1} using the ranker in Fig. 6.15. (1)
At the beginning of the training, the ranker gives similar predictions for real image pairs with
different RAs. The same observations can also be found on the generated image pairs. (2)
After 100 iterations, the ranker learns to give the desired prediction for different kinds of
pair, i.e., > 0 (averaged) for pairs with RA (+1), 0 (averaged) for pairs with RA (0) and < 0
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Figure 6.13 Fine-grained I2I translation with “smile” and “male” attributes. The middle is
the input image.
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Training step
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Figure 6.14 The curve of training loss. The ranker and the generator are trained against
each other until convergence. Ranker loss = LR

rank + λgLR
gan + λgpLgp. Generator loss =

LG
rank +λgLG

gan +λgpLcycle.

(averaged) for pairs with RA (−1). (3) After 9,900 iterations, TRIP converges. In terms of
the real image pairs, the ranker output +1 for the pairs with RA (+1), 0 for the pairs with
RA (0) and −1 for the pairs with RA (−1) in the sense of average. This verifies that our
ranker can give precise ranking predictions for real image pairs. In terms of the generated
pairs, the ranker outputs +0.5 for the pairs with RA (+1), 0 for the pairs with RA (0) and
−0.5 for the pairs with RA (−1) in the sense of average. This is a convergence state due to
rival preferences. We take pairs with RA (+1) as an example. The generated pairs with RA
(+1) are expected to be assigned 0 when optimizing the ranker, and to be assigned +1 when
optimizing the generator. Therefore, the convergence state should be around 0.5.

6.5 Summary

This chapter proposes TRIP for high-quality fine-grained I2I translation. TRIP elegantly
reconciles the goal for fine-grained translation and the goal for high-quality generation
through adversarial ranking. It broadens the principle of adversarial training by extending
the adversarial game on the classification to ranking. The adversarial ranking between the
ranker and the generator is defined on comparisons between pairs of samples, which can
trigger a high-quality generation conditioned on a continuous variable. By contrast, the
adversarial classification between the discriminator and the generator is defined on single
samples (or together with labels), which can trigger a high-quality unconditional generation
(or a high-quality generation conditioned on a discrete variable).

Since the supervised pairwise ranking and the unsupervised generation target are incor-
porated into a single model function, TRIP can be deemed as a new form of semi-supervised
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Figure 6.15 The density plot of the ranker’s output for real image pairs (first row) and
generated pairs (second row) with different relative attributes r ∈ {+1/0/−1}, respectively,
during the training process.

GAN [Odena, 2016]. The empirical experiments demonstrate that TRIP achieves state-of-art
results in generating high-fidelity images that exhibit smooth changes exclusively w.r.t. the
specified attributes according to the fine-grained score and the quality score. One interest-
ing future direction is to extend our idea to semi-supervised ranking [Duh and Kirchhoff,
2011] given that it has been theoretically proven that semi-supervised GAN can improve the
performance of semi-supervised classification [Dai et al., 2017].



Chapter 7

Conclusion

Generative modeling from human preferences that aims to generate data meeting user needs
can be applied to various application fields, such as inverse generative design [Sanchez-
Lengeling and Aspuru-Guzik, 2018], creative art [Bernardo et al., 2016]. Inspired by
real-world problems, this thesis mainly studies desired data generation at the dataset level and
at the instance level, respectively. In addition, we conduct two preliminary studies on DGMs,
which solve the mode collapse issue in GANs and propose a disentangled VAE framework to
improve clustering. The overall work of this thesis is present in Fig. 1.2. In the following,
we summarize the main contributions of this thesis.

The first work to apply human preferences for dataset-level desired data generation.
Unlike existing work that guides the DGMs by labels or evaluators, which requires complete
knowledge about the properties that is expensive to access in real-world applications, prefer-
ences are simply partial knowledge about the properties and can be more readily available.
Our proposed work DiCGAN in Chapter 4 incorporates preferences directly into the data
generation based on the insight of considering the critic values as the ranking scores that
represent user preferences, which results in biasing the generative model towards the desired
data distribution. The implementation of DiCGAN is simply incorporating an additional
ranking loss based on preferences into the critic of WGAN, which can also be extended
to other critic-based GAN frameworks. Furthermore, the reformulation of DiCGAN as a
constrained optimization problem inspires a training paradigm with multi-step distribution
shift and the theoretical proof of the convergence to the desired data distribution. Empirical
studies demonstrate that our DiCGAN can generate images to meet the user’s interest on
MNIST and CelebAHQ and help design biological products with desired properties on the
gene sequence dataset, outperforming than various baselines that relies on labels/evaluator
especially in the cases of insufficient desired data and limited supervision.
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A novel generative adversarial learning paradigm that can learn the distribution
of a user-specified subset of training data in a single step with theoretical guarantees.
For a more efficient way of generative modeling from human preferences in the dataset-
level desired data generation problem, we further propose a generative adversarial ranking
framework GARNet in Chapter 5, which consists of an adversarial ranking between a ranker
and a generator. Consequently, GARNet optimizes a relativisitic f-divergence between the
desired data distribution and the generated data distribution. This reveals a new generative
modeling under the context of human preferences, which can directly enable a distribution
alignment between the generated data and the desired data (part of the training data). We
empirically justify our GARNet can learn a desired data distribution (determined by the
given score vector) from full preferences in terms of discrete and continuous properties.
We further show that our GARNet can better retrieve the desired data distribution from
partial preferences than existing (conditional) GAN variants on three image datasets. We
also validate the advantage of preference-guided GARNet over GAN conditioned on labels
in imbalanced learning.

The first framework that reconciles the modeling for preferences and data quality
for desired data generation at the instance level. In particular, we consider the fine-
grained image-to-image translation task. Existing work suffers from the conflict between
the goal for fine-grained translation and the goal for high-quality generation. We proposed
TRIP to coordinate these two goals in Chapter 6. TRIP inherits the idea of generative
adversarial ranking paradigm from GARNet, playing an adversarial game between a ranker
and a generator. Such a adversarial ranking game is beneficial for triggering a high-quality
generation conditioned on a continuous variable in the scenario of instance-level desired data
generation, while the adversarial classification game usually triggers a high-quality generation
conditioned on a discrete variable. In addition, our tailor-designed objective of the generator,
which enforces ranking predictions consistent with the conditioned continuous attribute
variable, promotes a better fine-grained control over the interested attribute. Experiments
on two face image datasets and one shoe dataset in terms of single/multiple attributes show
that our TRIP outperforms existing baselines in both generation quality and fine-grained
translation performance.

Finally, we discuss some future directions. (1) Instance-based human preferences. In
some real-world applications, it is nontrivial to describe desired designs in terms of specified
properties. Instead, a set of instances are often provided as exemplars to conceptualize the
desired properties. Based on information retrieval [Liu et al., 2009], the given instances can
be regarded as queries to construct ranking lists. This would be a new kind of instance-level
desired data generation that takes an instance as a condition to generate data that possess
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the similar properties as the conditioned instance. (2) Generative modeling from a mixture
of preferences. Our frameworks are basically modeled under the homogeneity assumption
of rank aggregation that only one ground truth full ranking exists [Lin, 2010]. When
preferences are sampled from heterogeneous user groups, it is supposed to consider mixture
rank aggregation [Zhao et al., 2016]. We conduct a preliminary exploration for a simple case
where the group affiliation of each preference is known (Section 5.6.3 and Section 6.4.5).
We leave the general case of a mixture of preferences for future work. (3) Preference-guided
diffusion model. As diffusion models have recently been growing popular generative models
due to their stable training and high-quality generation capabilities [Croitoru et al., 2023],
it is promising to consider human preferences under this framework. One simple idea is to
apply a ranker to guide the generation to satisfy the desired properties. But the trade-off
between sample quality and diversity may arise like classifier-guided diffusion model [Ho
and Salimans, 2022], which needs more explorations.
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Appendix for Chapter 3

A.1 Proof of Theorem 1 in COUF

Proof. Based on the definition of mutual information, we have

I(z,ω) =
∫

P(z,ω) log
P(z,ω)

P(z)P(ω)
dzdω

=
∫

P(z,ω) log
P(ω | z)

P(ω)
dzdω.

Assume P(x,c,z,ω) = P(x,c)P(z | x,c)P(ω | x,c,z) = P(x,c)P(z | x,c)P(ω | x,c), where
P(ω | x,c,z)=P(ω | x,c) follows the conditional independence. Since P(ω | z)=

∫
P(x,c,ω |

z)dxdc =
∫ P(z|x,c)P(x,c)

P(z) P(ω | x,c)dxdc is intractable, we introduce an auxiliary distribu-
tion Q(ω | z) as an approximation to P(ω | z) [Alemi et al., 2017]. Because

KL[P(ω | z)||Q(ω | z)]≥ 0 =⇒
∫

P(ω | z) logP(ω | z)dω ≥
∫

P(ω | z) logQ(ω | z)dω,

we obtain

I(z,ω)≥
∫

P(z,ω) log
Q(ω | z)

P(ω)
dzdω

=
∫

P(z,ω) logQ(ω | z)dzdω−
∫

P(ω) logP(ω)dω

=
∫

P(z,ω) logQ(ω | z)dzdω +H(ω).
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H(ω) can be ignored as it is independent of our optimization procedure. We can rewrite
P(z,ω) =

∫
P(x,c,z,ω)dxdc =

∫
P(x,c)P(z | x,c)P(ω | x,c)dxdc. Then we have

I(z,ω)≥
∫

P(x,c)P(z | x,c)P(ω | x,c) logQ(ω | z)dxdcdzds

= E(x,c)∼P(x,c)Ez∼P(z|x,c)Es∼P(ω|x,c) logQ(ω | z)dω

= LI(z,ω).

The auxiliary distribution Q(ω | z) can be naturally defined by our k-means clustering module
(Section 3.2.1). Accordingly, we have

Q(ωnk = 1 | zn) =
exp
(
−τ ∥zn− ek∥2

2

)
∑

K
i=1 exp

(
−τ ∥zn− ei∥2

2

) . (A.1)

Note that we approximate the posterior P(z | x,c) by the VAE encoder Q(z | x) constrained
with the minimization of I(z,c) and usually one particle zn is sampled from Q(z|x) to
reconstruct xn [Kingma and Welling, 2014]. Together with the given clustering assignment
ωn ∼ P(ω | x,c), we have

LI(z,ω) =
N

∑
n=1

K

∑
k=1

ωnk log
exp
(
−τ ∥zn− ek∥2

2

)
∑

K
i=1 exp

(
−τ ∥zn− ei∥2

2

) , (A.2)

where k = 1,2, . . .K. The value of Eq. (A.1) approaches zero for all k except for the one
corresponding to the smallest distance [Bishop, 2006, Kulis and Jordan, 2012]. Thus we have

Eq. (A.2) =⇒
τ−→+∞

−
N

∑
n=1

K

∑
k=1

ωnk ∥zn− ek∥2
2 .

Therefore, we can obtain
Lcluster ≥−I(z,ω), (A.3)

which completes the proof.

A.2 More Experimental Setup of COUF

We introduce five image datasets in details as follows:

1. The face dataset from the UCI KDD repository, called UCI-Face [Bay et al., 2000],
contains face images of 20 people in four different poses, in which the face identity is
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set as the unwanted factor. Clustering on face poses while ignoring face identity can
be applied in applications such as pose recognition [Liu et al., 2010].

2. The Rotated Fashion-MNIST dataset, called Rotated Fashion, is constructed by intro-
ducing the rotation factor into the Fashion-MNIST dataset [Xiao et al., 2017], which
has 10 classes of objects. Particularly, we pick up images from the cloth categories,
i.e., “T-shirt/top”, “Trouser”, “Pullover”, “Dress”, “Coat” and “Shirt”, for simplicity.
We first randomly sample 1,000 images from each of the six classes (zero degree).
Then, each image is augmented with four views of 72, 144, 216, and 288 degrees,
respectively. Thus, there are five categories of the rotation factor and 30,000 images
in total. The cloth category is regarded as the unwanted factor. Clustering in terms of
cloth rotation can be applied in applications that emphasize cloth diversity [Sun et al.,
2020, Ma et al., 2020].

3. MNIST-USPS is the union of all training samples from MNIST [Lecun et al., 1998]
and USPS [Hull, 1994], consisting of digit zero to nine. The source of digits is the
unwanted factor.

4. Office-31 [Saenko et al., 2010] consists of images with 31 different categories collected
from three distinct domains: Amazon, Webcam, and DSLR. Each domain contains
all the categories but with different shooting angles, lighting conditions, or forms
of presentation, etc. We select samples from Amazon and Webcam as training data
following [Li et al., 2020a]. The source of collected data is regarded as the unwanted
factor.

5. The corrupted CIFAR10 dataset, named CIFAR10-C [Hendrycks and Dietterich, 2019],
contains image corruptions for CIFAR10 images with 10 object classes. There are
four main categories of corruption and 15 fine-grained categories: Weather (frost,
fog, snow, spatter), Blur (Gaussian, zoom, defocus, glass, motion), Noise (impulse,
shot, Gaussian, speckle), and Digital (elastic transform, JPEG, pixelation, brightness,
contrast, saturate). Particularly, we consider one in each main category of corruptions,
namely, frost, Gaussian blur, impulse noise, and elastic transform for simplicity. The
corruption type is regarded as the unwanted factor.
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Appendix for Chapter 4

B.1 Proof of Proposition 3 in DiCGAN

Proof. Without loss of generality, we represent Pr(x) and Pg(x) in a fine-grain formulation.
Namely,

Pr(x) = (1−α)Pd(x)+αPu(x), Pg(x) = Pd(x), (B.1)

where α ∈ [0,1] is a very small value such as d (Pr(x),Pd(x))≤ ε is satisfied.
Furthermore, according to our definition of the ranking model, the score for the desired

data should be higher than that of the undesired data, namely

D(x)

> T, if x∼ Pd(x);

≤ T, if x∼ Pu(x),
(B.2)

where omin < T < omax. (1) (omin,omax) is introduced since the critic score is always bounded;
(2) T denotes some value to discriminate the desired data from undesired data.

Taking into consideration of both Eq. (B.1), (B.2), we have

EPr(x) [D(x)] =
∫

[(1−α)Pd(x)+αPu(x)]D(x)dx (B.3)

=
∫

[(1−α)Pd(x)]D(x)dx+
∫

[αPu(x)]D(x)dx

=
∫

Pd(x)D(x)dx−α(
∫

Pd(x)D(x)dx−
∫

Pu(x)D(x)dx).

Considering that (1) Pd(x) and Pu(x) are always positive; (2) D(x) is continuous and bounded
on the domain of x with respect to Pd(x) and Pu(x), respectively, we have the following
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derivations according to the mean value theorem for integrals:

∃ ξd ∈ (T,omax],
∫

Pd(x)D(x)dx = ξd

∫
Pd(x)dx = ξd;

∃ ξu ∈ [omin,T ],
∫

Pu(x)D(x)dx = ξu

∫
Pu(x)dx = ξu.

Since ξd > ξu, we have

α

(∫
Pd(x)D(x)dx−

∫
Pu(x)D(x)dx

)
= α(ξd−ξu)> 0.

=⇒ Eq. (B.3) = EPd(x) [D(x)]− δ ,where δ = α(ξd− ξu) > 0. Furthermore, by replacing
Pd(x) with Pg(x), we have

EPg(x) [D(x)] = EPr(x) [D(x)]+δ ,

for some δ > 0.

B.2 Proof of Proposition 4 in DiCGAN

Proof. The major correction is divided into a sequence of minor corrections. In the first
minor correction, the training data distribution is Pr(x). Derived by Corollary 2, after this
minor correction, we have

d(Pr,Pd)−d(P1
g ,Pd) = δ .

With d (Pr,Pd) = T0, we can get

d(P1
g ,Pd) = T0−δ .

In the second minor correction, we can replace all training samples with the generated
samples obtained in the first correction. Thus, the training data distribution becomes P1

g (x).
After two minor corrections, similarly, we can get

d(P2
g ,Pd) = T0−2δ .

So on and so forth. After k minor corrections, we can get

d(Pk
g ,Pd) = T0− kδ .
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Appendix for Chapter 5

C.1 Proof of Theorem 3 in GARNet

Proof of Eq. (5.17) being a relativistic f -divergence.

Proof. Recalling Eq. (C.9), we have

D f (Pd,Pg) = sup
R:X→R

E
s∼S

xg∼Pg

[
LCE

(
π
(
s(R)
)
,R
(
s(R)
))]

−→ sup
R:X→R

E
s1∼P1
...

sT∼PT
xg∼Pg

[
log

1

c+ e−((∑
T
i=1 qiR(si))−R(xg))

]

1
= sup

R:X→R
E

s1∼P1
...

sT∼PT
xg∼Pg

[
log

1

c+ e−((∑
T
i=1 qiR(si))−R(xg))

+ log(c+1)

]

2
= sup

R:X→R
E

s1∼P1
...

sT∼PT
xg∼Pg

[
f

(
T

∑
i=1

qiR(si)−R(xg)

)]
,

(C.1)

where 1 is valid due to the addition of a constant. 2 is obtained by denoting f = log 1
c+e−z +

log(c+1). Accordingly, f is a concave function; f (0) = 0; f is differentiable at 0; f ′(0) ̸= 0;
supx f (x) = M > 0; and argsupx f (x)> 0.
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Let Rw(x) =C′ ∀x ∈ X (worst possible choice of R), where C′ is a constant.
Let R∗ = argsup

R:X→R
E

s1∼P1
...

sT∼PT
xg∼Pg

[
f
(
∑

T
i=1 qiR(si)−R(xg)

)]
be the best possible choice of R.

#1 Prove that D f (Pd,Pg)≥ 0.

D f (Pd,Pg) = E
s1∼P1
...

sT∼PT
xg∼Pg

[
f (

T

∑
i=1

qiR∗(si)−R∗(xg))

]
≥ E

s1∼P1
...

sT∼PT
xg∼Pg

[
f (

T

∑
i=1

qiRw(si)−Rw(xg))

]

∑
T
i=1 qi→1

======⇒
1

D f (Pu,Pg)≥ 0.

(C.2)

1 is based on Eq. (C.6b).
#2 Prove that Pd = ∑

T
i=1 qiPi = Pg =⇒ D f (Pd,Pg) = 0.

D f (Pd,Pg) = E
s1∼P1
...

sT∼PT
xg∼Pg

[
f

(
T

∑
i=1

qiR∗(si)−R∗(xg)

)]
1
≤ E

s1∼P1
...

sT∼PT

[
f

(
T

∑
i=1

qiR∗(si)− E
xg∼Pg

[
R∗(xg)

])]

2
≤ f

 E
s1∼P1
...

sT∼PT

[
T

∑
i=1

qiR∗(si)

]
− E

xg∼Pg

[
R∗(xg)

]
= f

(
T

∑
i=1

qi E
si∼Pi

[
R∗(si)

]
− E

xg∼Pg

[
R∗(xg)

])

3
= f

(
T

∑
i=1

qi E
x∼Pi

[R∗(x)]− E
x∼Pg

[R∗(x)]

)
= f

(∫
R∗(x)

T

∑
i=1

qiPidx−
∫

R∗(x)Pgdx

)
4
= f (0) = 0,

(C.3)
where 1 and 2 follow Jensen’s inequality for concave function f . 3 is valid due to change
of variables. 4 is valid because Pg = ∑

T
i=1 qiPi. Since D f (Pd,Pg)≥ 0 (Eq. (C.2)), we have

D f (Pd,Pg) = 0.
#3 Prove that D f (Pd,Pg) = 0 =⇒ Pd = ∑

T
i=1 qiPi = Pg.

We prove this by contraposition. Namely, we prove that Pd ̸= Pg =⇒ D f (Pd,Pg) ̸= 0.
LetH= {x|Pd(x)> Pg(x)}. Since Pd ̸= Pg, we haveH ̸= /0.
Let u=

∫
H Pd(x)dx=⇒ (1−u)=

∫
X\H Pd(x)dx. Let v=

∫
H Pg(x)dx=⇒ (1−v)=

∫
X\H Pg(x)dx.

Then, we have u > 0,v > 0, and u > v.
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Let R′(x) =

∆ if x ∈H

0 else
, where ∆ ̸= 0.

Let L(∆) = E
s1∼P1
...

sT∼PT
xg∼Pg

[
f
(
∑

T
i=1 qi

(
R′(si)−R′(xg)

))]
. Then,

L(∆) = E
s1∼P1
...

sT∼PT
xg∼Pg

[
f

(
T

∑
i=1

qi
(
R′(si)−R′(xg)

))] 1
≥ E

s1∼P1
...

sT∼PT
xg∼Pg

[
T

∑
i=1

qi f (R′(si)−R′(xg))

]

=
T

∑
i=1

E
si∼Pi
xg∼Pg

[
qi f (R′(si)−R′(xg))

] 2
=

T

∑
i=1

E
xd∼Pi
xg∼Pg

[
qi f (R′(xd)−R′(xg))

]
=
∫
X

∫
X

f (R′(xd)−R′(xg))(
T

∑
i=1

qiPi(xd))Pg(xg)dxddxg
3
= E

xd∼Pd
xg∼Pg

[
f (R′(xd)−R′(xg))

]
=
∫
H

∫
H

f (R′(xd)−R′(xg))Pd(xd)Pg(xg)dxddxg +
∫
H

∫
X\H

f (R′(xd)−R′(xg))Pd(xd)Pg(xg)dxddxg

+
∫
X\H

∫
H

f (R′(xd)−R′(xg))Pd(xd)Pg(xg)dxddxg

+
∫
X\H

∫
X\H

f (R′(xd)−R′(xg))Pd(xd)Pg(xg)dxddxg,

(C.4)
1 follows Jensen’s inequality for concave function f . 2 is valid due to the change of

variables. 3 is obtained by denoting Pd = ∑
t
i=1 qiPi.

Since u(1− v)> v(1−u), we have that ∃∆∗ > 0s.t.L(∆∗)> 0 according to Lemma A.3
in Jolicoeur-Martineau [2020]. Thus, if we let ∆ = ∆∗, we have

Eq. (C.4) > 0
∑

T
i=1 qi→1

======⇒
1

D f (Pu,Pg) = E
s1∼P1
...

sT∼PT
xg∼Pg

[
f (

T

∑
i=1

qiR∗(si)−R∗(xg))

]
≥ E

s1∼P1
...

sT∼PT
xg∼Pg

[
f (

T

∑
i=1

qiR′(si)−R′(xg))

]
> 0

(C.5)
1 is based on Eq. (C.6b).
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C.2 Proof of Proposition 5 in GARNet

Proof. First of all, given the definition of π

(
s(R)
)

, we have

lim
1

ea−b→0
qT+1 = lim

1
ea−b→0

σ

(
π

(
s(R)
))

T+1
= lim

1
ea−b→0

eb

eb +∑
T
j=1 ea+(T− j)d

1
= 0, (C.6a)

lim
1

ea−b→0

T

∑
i=1

qi = lim
1

ea−b→0
1−qT+1

2
= 1. (C.6b)

where 1 , 2 follow the Squeeze theorem [Stewart et al., 2020] given 0 < qT+1 <
1

ea−b and
1

ea−b → 0.
According to Eq. (5.5), we have

LL2R

(
π
(
s(R)
)
,R
(
s(R)
))

=
T+1

∑
i=1

σ(π(s(R)))i logσ(R(s(R)))i (C.7)

1
=

(
T

∑
i=1

qi log
eR(si)

eR(xg)+∑
T
j=1 eR(s j)

)
+qT+1 log

eR(xg)

eR(xg)+∑
T
j=1 eR(s j)

= log
e∑

T
i=1 qiR(si)(

eR(xg)+∑
T
j=1 eR(s j)

)1−qT+1
+qT+1 log

eR(xg)

eR(xg)+∑
T
j=1 eR(s j)

2
= log

1

eR(xg)−∑
T
i=1 qiR(si)+∑

T
j=1 eR(s j)−∑

T
i=1 qiR(si)

.

1 follows the definition of the target preference s(R) in Eq. (5.6a). 2 is valid due to
Eq. (C.6a) and Eq. (C.6b).

Meanwhile, when the ranker is approaching the optima R∗ for a fixed generator G,
i.e., σ

(
R∗
(
s(R)
))

= σ

(
π
(
s(R)
))

, we have R∗(s(R)) = π

(
s(R)
)
+ δ due to the translation

invariance of softmax [Laha et al., 2018], i.e., σ(r+δ ) = σ(r). Therefore, R∗(s(R)) is also
arithmetic progression with a common difference of −d same as π

(
s(R)
)

. Then, we have

R∗(s j)−
T

∑
i=1

qiR∗(si) =
[
R∗(s1)− ( j−1)d

]
−

T

∑
i=1

qi
[
R∗(s1)− (i−1)d

]
= R∗(s1)−

(
T

∑
i=1

qi

)
R∗(s1)−

(
j−1+

T

∑
i=1

qi(1− i)

)
d

1
=

(
T

∑
i=1

qii− j

)
d = c j.

(C.8)
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where c j is a constant ∀ j = 1,2, . . . ,T , exclusively determined by the pre-specified score
vector π(s). 1 is valid due to Eq. (C.6b).

Therefore, the objective for the ranker R can be approximated as follows:

Eq. (5.7a)
1
≈ sup

R:X→R
E

s∼S
xg∼Pg

[
log

1

c+ e−(∑
T
i=1 qiR(si)−R(xg))

]
2
= sup

R:X→R
E

s1∼P1
...

sT∼PT
xg∼Pg

[
log

1

c+ e−((∑
T
i=1 qiR(si))−R(xg))

]

3
= sup

R:X→R
E

s1∼P1
...

sT∼PT
xg∼Pg

[
log

1

c+ e−((∑
T
i=1 qiR(si))−R(xg))

+ log(c+1)

]

4
= sup

R:X→R
E

s1∼P1
...

sT∼PT
xg∼Pg

[
f

(
T

∑
i=1

qiR(si)−R(xg)

)]
,

(C.9)

1 is reasonable because ∑
T
j=1 eR(s j)−∑

T
i=1 qiR(si) in Eq. (C.7) would degenerate to a constant

c = ec1+c2+...+cT following Eq. (C.8), being independent of the ranker when the ranker is
approaching the optima. 2 is valid as y(si)≡ yi according to Eq. (5.4). 3 is valid due to
the addition of a constant. 4 is obtained by denoting f (z) = log 1

c+e−z + log(c+1).
Note f is a concave function; f (0) = 0; f is differentiable at 0; f ′(0) ̸= 0; supx f (x) =

M > 0; and argsupx f (x)> 0. According to Theorem 3, the optimal ranker of our GARNet
approximately estimates a relativistic f divergence.



Appendix D

Appendix for Chapter 6

D.1 More Experimental Setup of TRIP

D.1.1 Network Architectures

Table D.1 The architecture of our ranker is adapted from the discriminator of RelGAN [Wu
et al., 2019b]. LReLU represents the Leaky ReLU with a negative slop being 0.01. N f , S f ,
Ss, Sp and K denote the filter number, the filter size, the stride size, the padding size, and the
attribute number, respectively.

Component Input→ Output Shape Layer Information
Feature Layer 2× (h,w,3)→ 2×

(h
2 ,

w
2 ,64

)
Conv-(N f =64,S f =4,Ss=2,Sp=1),LReLU

2×
(h

2 ,
w
2 ,64

)
→ 2×

(h
4 ,

w
4 ,128

)
Conv-(N f =128,S f =4,Ss=2,Sp=1),LReLU

2×
(h

4 ,
w
4 ,128

)
→ 2×

(h
8 ,

w
8 ,256

)
Conv-(N f =256,S f =4,Ss=2,Sp=1),LReLU

2×
(h

8 ,
w
8 ,256

)
→ 2×

( h
16 ,

w
16 ,512

)
Conv-(N f =512,S f =4,Ss=2,Sp=1),LReLU

2×
( h

16 ,
w
16 ,512

)
→ 2×

( h
32 ,

w
32 ,1024

)
Conv-(N f =1024,S f =4,Ss=2,Sp=1),LReLU

2×
( h

32 ,
w
32 ,1024

)
→ 2×

( h
64 ,

w
64 ,2048

)
Conv-(N f =2048,S f =4,Ss=2,Sp=1),LReLU

Rank Layer 2×
( h

64 ,
w
64 ,2048

)
→
( h

64 ,
w
64 ,2048

)
Subtract( h

64 ,
w
64 ,2048

)
→
( h

64 ,
w
64 ,2048

)
Conv-(N f =1,S f =1,Ss=1,Sp=1),LReLU( h

64 ,
w
64 ,2048

)
→
( h

64 ×
w
64 ×2048

)
Flatten( h

64 ×
w
64 ×2048

)
→ (K,) Dense

GAN Layer
( h

64 ,
w
64 ,2048

)
→
( h

64 ×
w
64 ×2048

)
Flatten( h

64 ×
w
64 ×2048

)
→ (1,) Dense

D.1.2 Datasets

The collected RAs based on binary attributes contain fine-grained comparisons for the two
face image datasets since their face images with same annotations may still have different
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Table D.2 The architecture of our generator is quite similar to RelGAN’s [Wu et al., 2019b].
The switchable normalization, denoted as SN, is applied to all layers excluding the last layer.

Component Input→ Output Shape Layer Information
Down-sampling (h,w,3+K)→ (h,w,64) Conv-(N f =64,S f =7,Ss=1,Sp=3),SN,ReLU

(h,w,64)→
(h

2 ,
w
2 ,128

)
Conv-(N f =128,S f =4,Ss=2,Sp=1),SN,ReLU(h

2 ,
w
2 ,128

)
→
(h

4 ,
w
4 ,256

)
Conv-(N f =256,S f =4,Ss=2,Sp=1),SN,ReLU

Residual Block (×6)
(h

4 ,
w
4 ,256

)
→
(h

4 ,
w
4 ,256

)
Conv-(N f =256,S f =3,Ss=1,Sp=1),SN,ReLU

Up-sampling
(h

4 ,
w
4 ,256

)
→
(h

2 ,
w
2 ,128

)
Conv-(N f =128,S f =4,Ss=2,Sp=1),SN,ReLU(h

2 ,
w
2 ,128

)
→ (h,w,64) Conv-(N f =64,S f =4,Ss=2,Sp=1),SN,ReLU

(h,w,64)→ (h,w,3) Conv-(N f =3,S f =7,Ss=1,Sp=3),Tanh

strengths w.r.t. the specific attribute. In Fig. D.1a, x1 ≻ x2 and x3 ≻ x4 are two pairs of
different degrees of comparisons. For the shoe dataset, their collected RAs based on same
binary attributes contain pairwise comparisons with same degrees. This is because their
images annotated with same annotations have same strengths w.r.t. the specific attribute. In
Fig. D.1b, x1 ≻ x2 and x3 ≻ x4 are two pairs of same degrees of comparisons.

1 0binary attribute

(a) “smile” attribute

1 0

(b) “shoe & edge” attribute

Figure D.1 Relative attributes constructed based on given binary attributes.

D.1.3 Hyperparameter Settings

Standard Deviation of Structural Similarity (DSSIM) 1 Wu et al. [2019b] is used to set
hyperparameters. Meanwhile, Accuracy of Attribute Swapping (AAS) Lample et al. [2017]
is used to choose the optimal training epoch 2.

1DSSIM is to evaluate the performance of fine-grained translation.
2AAS is an auxiliary evaluation metric to avoid the trial case where the translation is failed but with low

DDSIM, namley, the generator outputs the same image no matter what the latent variable v is.
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Frechet Inception Distance (FID)/mean square error (MSE) 3 Saquil et al. [2018], Wu
et al. [2019b], He et al. [2019] is not used for model selection. Because we found that TRIP
equipped with the adversarial ranking paradigm can maintain a good-quality generation in a
certain range of the hyperparameters.

3FID/MSE is to evaluate the quality of generation
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