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Abstract 

The human musculoskeletal system is known to weaken as we age, with deterioration more prominent at the 

limb joints. As the lowest joint of the body, the ankle joint must support the full weight of the body during all 

activities and movement tasks, making it very susceptible to injury and cartilage degeneration over time. The 

use of robotic rehabilitation devices for assisting in physiotherapy is not a new concept but has been steadily 

improving over the past decades, and discussion of how improvements can be made through electromyography, 

control systems, and artificial intelligence is the focus of this project.  

Utilising passivity within control systems has shown to remove redundancy requirements and allows less 

conservative controller design, improving performance. Passivating any system through an automated script 

that utilizes linear matrix inequalities and optimisation techniques allows this efficient design, while also 

minimizing perturbation of the original system to retain reliable simulation and control. An optimal input-output 

pairing is also revealed through this analysis, allowing improved robotic design. Originally this technique was 

assumed to be applicable to all systems but was found to be more restrictive during research. A lemma was 

proposed to encapsulate the limitations which stemmed from the relative degrees of the transfer functions 

within the system. 

Reinforcement learning developed an adaptive PID and adaptive admittance controller that could better handle 

uncertain interactions within a human-robot interfacing system. The adaptive PID controller was successful in 

producing better reference tracking abilities than traditional PID controllers in changing environment situations. 

The adaptive admittance controller was also shown to be a viable approach, but was generally outperformed by 

a switching controller.  

Reinforcement learning was also used to try and classify motions from electromyography signals to act as the 

input to a rehabilitation robot. Using secondary data, convolutional neural networks were able to perform this 

classification to a high accuracy, and produce a feature dataset that could be used to classify motions. The aim 

of the reinforcement learning was to identify the essential features needed for classification, and prune the rest 

to create a more efficient categorisation system. Results showed reinforcement learning was not well suited for 

the task of state space reduction, and the more traditional machine learning techniques provided high enough 

accuracy results that reinforcement learning was deemed unnecessary for this task.  

Overall, this project aimed to combine the use of admittance control, reinforcement learning, and passivity-

based process control to improve safety and ease-of-use of wearable ankle-foot orthoses.  

 

Keywords: Ankle Rehabilitation, Ankle-foot orthosis, EMG Signals, Adaptive admittance control, 

Reinforcement learning, Passivity-based process control, Reinforcement learning-based classification  
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Introduction

Introduction

Advancements in medical technologies are increasing the average life expectancy of almost 

every country’s population and improving the quality of life of their citizens. While this is 

undoubtedly a benefit to humans as a species, an aging population leads to new problems that 

must be addressed, especially for countries with falling birth rates. One of the largest problems 

is the degradation of lower limb functionality throughout life; as bodies age they become more 

frail and susceptible to injury, disease, or simply become weaker due to lifestyle changes. A

reduction to freedom of mobility will in most cases cause a decrease to the quality of life of an 

individual, as noted by the correlation between functional independence and quality of life 

(Araujo et al. 2016). For many people, lower limb issues are not a matter of if, but a matter of 

when, as approximately 1 in 9 Australians will suffer some form of osteoarthritis (OA) and over 

50 000 requiring total knee replacement surgery with OA cited as the principal diagnosis (Health 

and Welfare 2020). This value has been increasing every year, along with total hip replacements, 

and only identifies cases where medical intervention was deemed appropriate; many others are 

also likely suffering from less severe but manageable conditions. It is also only one form of lower 

limb disability; other conditions such as hemiplegia/hemiparesis (a side effect caused by stroke, 

which is also extremely prevalent in Australia) is also correlated with an increase in age (Kelly-

Hayes 2010). Diseases such as stroke or OA or lower limb injuries have the potential to cause 

serious impairments to an individual’s ability to perform locomotive tasks. It is therefore 

important to develop solutions to these problems that would allow those who have lost their 

lower limb functionality to recover to a point where they are no longer inconvenienced. These 

solutions may come in many different forms, such as surgery, but all methods will inevitably 

require some form of physical therapy to help the patient. For this reason, this thesis focuses on 

the physical therapy component of the multi-stage solution for lower limb recovery.

For injuries or arthritis specifically a surgical procedure known as total joint replacement can be 

performed to improve mobility of the affected joint. Lower limbs benefit from this procedure 

greatly as the hip, knee, and ankle joints support the weight of the upper body. With knee and 

hip replacements being so common it is important to look at why ankle replacements do not 

also follow this trend, since it can be found that ankle injuries are just as common, if not more 
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so. The lower reported cases of ankle surgeries can be explained by a combination of several 

factors. The belief that ankle injuries are less severe, and therefore not worth investing time into 

professional recovery may reduce the number of people who seek medical assistance. The 

biggest issue, however, is that there is no reliable assistance that can be implemented for long 

term improvements. Unlike total knee or hip replacements, total ankle replacements are unable 

to last for extended time periods, often failing and requiring additional surgical intervention 

within several years (Stratton-Powell 2018). Hip and knee replacements are reported to remain 

successful (require no follow-up intervention) for over 10 years in greater than 90% of the 

patients, yet for ankle replacements only 66-84% (variation based on country) remain successful 

after 10 years (Perry et al. 2022). Due to the less reliable medical resolutions, physiotherapy 

becomes much more important for ankle rehabilitation, which gives justification for the focus 

of this paper being strictly ankle rehabilitation over other lower limb joints. By designing a 

control system for an ankle-foot orthosis (AFO) that is able to efficiently monitor, adjust, and 

assist ankle motions of a subject, it is possible to achieve several advantages of physiotherapy 

without requiring a physiotherapist present, effectively reducing the workload on the 

institution. The workload of the physiotherapy industry is expected to increase alongside the 

aforementioned aging population. Technologies that can reduce the industry burden should be 

invested in now, before they become overwhelmed and the quality of rehabilitation offered is 

negatively affected. There are three types of wearable robotic devices that are commonly 

referred to in literature: orthoses, exoskeletons, and prostheses. Although definitions for these 

terms are somewhat malleable and change between papers, the definitions used within this 

paper are that prostheses replace a portion of a limb, orthoses support a limb with a physical 

ailment, and exoskeletons enhance a fully functioning limb.  

With an understanding of why advancements to rehabilitation are necessary, how to achieve 

these goals becomes the next focus. The design of any robotics system will always contain both 

a mechanical/hardware aspect and a software aspect, where both aspects will be fundamentally 

related and will affect the design process and final outcome. The hardware used in rehabilitation 

robotics is important to consider as it will be in direct contact with humans, making safety a 

primary concern. Although there are a variety of physical options that can be implemented, the 

focus at this stage of the project is on the control engineering of the orthosis device, which falls 

in the category of software development. Hardware design will not be intensely considered and 

any effects the hardware would have on the software are temporarily ignored. The literature 

review will cover a broad scope of assistance devices ranging from treadmill-based rehabilitation 
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to end-effector robotics to wearable orthosis design. The control theory of the system 

determines how the system reacts to a specific input signal which represents a state. An orthosis 

that is capable of determining the users intended motion and produces an assistive force to 

reach the predicted goal can be used to guide ankle motions to what is considered a healthy 

gait. Through repeated use, similar to physical therapy, an ankle rehabilitation robot can assist 

the recovery of ankle disabilities. This could be applied for post-surgery patients similar to how 

rehabilitation therapy is assigned currently, but may also be used as a preventative measure for 

OA patients to help reduce the forces in the ankle joint. Osteoarthritis is due to the degeneration 

of joint cartilage, causing swelling and pain. By both reducing the forces and helping guide the 

user to a gait that helps evenly distribute the forces, the user may be able to slow further 

degeneration which is caused by the uneven force distributions. Ramsey and Hamilton (1976) 

showed that a 1 mm shift in lateral motion for the talus, which can occur due to injuries and 

fractures, can lead to a 42% change in loading pressure. Over long periods of time this loading 

pressure is what causes OA, so by redistributing pressure and providing joint torque assistance 

the degradation of cartilage may be reduced. The redistribution would be implemented by a 

control system that is able to measure forces and produce appropriate actuator motions to 

redirect the ankle orientation. This can be done through traditional control theory or it may 

utilize newer technologies such as artificial intelligence. Both will be discussed throughout this 

report and compared within the literature review. 

For subjects with reduced muscle force production capabilities, the orthosis must be able to 

supply enough additional torque for the ankle joint to reach its intended orientation. For cases 

where the rehabilitation device must do all or most of the work, the process is described as 

“passive rehabilitation”. This is important at the early stages of rehabilitation where patients do 

not have enough muscle strength to move unassisted. Alternatively, when the device is able to 

offer minimal assistance and all motion can be produced from the muscles, the process is known 

as “active rehabilitation” (Meng et al. 2015). Active rehabilitation is much more effective at 

motor training, improving motor plasticity (Lotze et al. 2003), and brain plasticity (Rossini and 

Dal Forno 2004), so the long-term goal of all rehabilitation should be to transition from passive 

to active rehabilitation until assistance is no longer necessary. With long-term progression in 

mind, techniques that require large amounts of data collection become more viable, such as 

using machine learning to compose a dynamical model of the specific user’s motions. Due to the 

nonlinear properties of human motions, changing in reference to the environment and varying 

from subject to subject, the implemented control system must have some form of adaptability. 
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Some proven beneficial examples of these approaches include fuzzy tuning (Yang et al. 2016), 

adaptive admittance control (Yao et al. 2018), and switching regimes (Artemiadis and 

Kyriakopoulos 2011). The necessity to customise the control system of a robotic rehabilitation 

opens up a large field of machine learning to potentially utilise for system improvements. 

As advancements occur in hardware fields such as energy storage/efficiency, sensory 

technology, and actuation technology, the design of control systems must also continue to 

evolve and improve. A generalised control framework is provided by Tucker et al. (2015) to 

display the control system as a hierarchical structure and determine what each layer provides 

to the overall functionality. Although the control systems covered by the literature review will 

not be described in this hierarchical structure, it is beneficial to consider how all the physical 

components interact and identify what aspects of the control system can be associated to that 

specific relation. This report hopes to cover the structure and implementation of control systems 

that will allow an AFO to provide assistive physical rehabilitation through the literature review 

presented below.

Summary of Thesis

To identify potential improvements and effectively develop the control systems of a generic 

rehabilitation robot it is important to have a deep understanding of existing technologies. A 

literature review of the different approaches used in the past illuminates the technical fields 

that are most important for further development. This literature review is presented in Chapter 

2 and details the less-technical aspects of the overall project such as device comparisons or 

practical implementation considerations. From the information collected, the experimental 

tasks were formulated into different stages that would allow compartmentalised activities and 

research to be performed in such a way that each experiment block contributed to the 

overarching project but did not depend on previous or future experiments to avoid progression 

bottlenecking. Each experimental block was documented in an individual chapter, making each 

experimental chapter independent from one another and should (in theory) be comprehensible 

as a standalone report. More technical details are recorded in smaller chapter-specific literature 

reviews when appropriate. 

Chapter 3 is the first experimental block chapter which focuses on passivity-based process 

control and the control configuration selection of multi-input multi-output control systems. 

More specifically, this chapter aims to use optimisation engineering to guarantee a system 

meets the mathematical definition of a passive system for its positive applications to system 
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stability and human safety. The control configuration selection dictates the links between 

system inputs and system outputs, and the effects these pairings have on the overall system. 

This can be measured through mathematical conditions and recordings, which allows 

optimisation tools to be used once again to determine the best input-output pairing for 

guaranteeing system passivity with minimal changes. A mathematical lemma was produced to 

determine whether any given control system could apply this technique to find a meaningful 

solution. The inspiration for this chapter was utilising the mathematical certainty that a passive 

system coupled with a passive system will remain passive, and that the human ankle is passive 

under most circumstances. If the robotic device can then also be forced to be passive through 

optimisation, then the human-machine coupled system will also be passive and will allow the 

system to be much easier to control overall. The control configuration selection was inspired by 

the use of EMG-to-force decoders and their susceptibility to crosstalk between muscle 

activations. By determining which muscle cluster should contribute most to different robotic 

motions the control of the system can be more conservative and susceptible to unpredicted 

movements. Choosing the optimal control configuration selection is equivalent to selecting the 

best muscle cluster to robot movement pairing.  

Chapter 4 focuses on the implementation of reinforcement learning in control systems contexts. 

Reinforcement learning can improve the performance of traditional controllers, or act as a 

replacement entirely. Both methods were attempted to compare system ability to track a 

reference signal that would dictate the movement of a rehabilitation device constructed by 

former students, known as the PaddleBot. This comparison aimed to ascertain which method 

was best suited for rehabilitation, or at the very least determine if they were viable. Using 

reinforcement learning to replace the traditional controller is sometimes referred to as “end-to-

end” learning, which was documented but was not the focus of the chapter. Using 

reinforcement learning to create an “adaptive controller” was the true focus, and was 

performed for both a PID controller and an admittance controller for several different 

environments. The goal was to determine under which operating circumstances the adaptive 

controllers outperformed their more traditional constant counterparts. The inspiration for 

researching adaptive controllers is the constantly changing interactions between humans and 

machines that will require changes in the control loop if optimal performance is desired. The 

forces a human can exert will vary greatly between subjects, but will also vary over the course 

of an exercise routine, so it was believed that an adaptive controller that could adjust as 

necessary would be important.  
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Chapter 5 implemented more reinforcement learning to convert electromyography (EMG) 

signals into user intended motions. The use of bio-signals for machine learning classification is 

not a new idea and has been implemented many times over, however reinforcement learning 

for this purpose was much less prevalent throughout the literature. Experiments were 

performed to compare reinforcement learning to a convolutional neural network for 

classification of EMG data that was sourced from the internet and modified for the task at hand. 

The inspiration from this chapter once again stemmed from the changing bodily output during 

exercises and the necessity to categorise motions at any stage. The more traditional 

classification methods will depend entirely on the training and validation stages of development, 

so attempts to utilise reinforcement learning may hold some benefits in long term applications. 

The chapter acts as a discussion for the limitations of reinforcement learning and what 

components of a rehabilitation device may or may not exploit this technology. Although the 

equipment for EMG collection was available and a script was created for real-time recording, 

the secondary dataset was believed to result in more reliable outcomes for the purposes of the 

chapter due to its rich diversity of participants and proven applications in machine learning. 

Despite the title of this thesis isolating the ankle as the point of interest, the purpose of 

identifying points of improvement within robotic control systems can be applied to a wider 

scope. The ankle remains the dominant focus for its passive properties discussed in the 

literature, however other joints may also possess this characteristic and will be able to benefit 

from these developments as well, with the objective of improving quality of life for those 

dependent on rehabilitation robotics. With this in mind, the applications of each chapter and 

their connections as a whole forms a stronger, more cohesive narrative. The input-output 

pairing of chapter 3 was designed with minimising muscle crosstalk, but the muscle movements 

(the outputs) were fairly limited due to the hinge nature of the ankle. Ankle 

adduction/abduction, and medial/lateral rotation motions can occur, and as such the method 

can still improve rehabilitation by resisting these motions. Other joints such as the wrist may be 

more directly able to utilize the new techniques, as muscle activation per finger or unique hand 

motions enable more obvious output changes.  

It is for similar reasoning that hand motions were used for EMG classification in chapter 5 (along 

with the availability of the data). The novelty of the chapter does not come from classification, 

but the analysis of reinforcement learning in the optimisation of classification. As the kinds of 

movement are not a key variable in this analysis, the difference of upper limb motions over 

lower limb motions will not negatively affect results.  
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Finally, a discussion of each chapters results are presented in chapter 6. How each experimental 

block contributes to the project overall, how the results can be combined, and what this 

research can potentially lead to, are all reviewed to conclude the dissertation.  

Chapter 3 benefits from the reinforcement learning work of chapter 4 by eventually using 

reinforcement learning to confirm the control configuration selection, or search for a 

configuration that leads to a smaller deviation in the system. The work in chapter 5 would also 

ideally be able to simplify plant models represented by nonlinear function approximators to a 

point where they could also apply the optimiser method of input-output pairing, although this 

may not be possible due to the black box nature of neural networks and nonlinear control 

structure.  

Chapter 4 benefits from chapter 3 by pre-establishing the optimal input-output pairing of the 

plant, as the design of the control system will be dependent on this structure. By identifying the 

best pairing to guarantee a passive system as close as possible to the original system, the 

adaptive controllers designed in chapter 4 will be able to control the real-world robotic device 

despite being trained through simulations. The benefits of chapter 5 show that limb motions can 

be classified in real-time, which would allow reference signals to the adaptive controllers to be 

determined by participant current movement intent, as well as further experience into 

reinforcement learning and optimising the training structure. Although not achieved, the 

simplification of the classifier would allow faster updating and remove delays within the system, 

which would in turn positively benefit stability of the control system.  

Chapter 5 benefits from chapter 3 by using the decentralised inputs as the source of features for 

the classifier, rather than indistinguishable features from a convolutional neural network, 

potentially improving the chances of feature reduction. Chapter 4 show the similarities between 

upper and lower limb data and open a direct path to applying adaptive control to upper limb 

rehabilitation.  

Each of these chapter links build the foundation to vast amounts of future work that may be 

researched. Although the chapters are only tangentially related, they should all work in tandem 

and complement each other to result in a more robust control system that uses optimal designs. 

All research chapters rely on experiments that do not involve human participants, instead 

favouring simulated data within chapters 3 and 4, and secondary datasets for chapter 5. This 

lack of user participation is predominantly due to the COVID-19 lockdowns, making human 

interactions completely unavailable for majority of the project both legally and ethically.   
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Literature Review

Existing Technologies

There are many different technologies that go into the proper design of a rehabilitation robot, 

ranging from robot sensor design, to control theory, to material sciences. Each component 

contributes something fundamental to the overall system design to create a functioning 

product. A short review of the already existing robotic devices as a whole is provided below, 

followed by a review of one specific method of human-machine interfacing in the form of 

electromyography. 

2.1.1. Rehabilitation Robotics

Devices created to assist a human in performing physical tasks have existed for most of human 

history. A traditional pirate’s peg-leg is an example of very early artificial limbs and would fall 

into the category of rehabilitation device. As material technologies improved so did these 

prosthetics, and the inclusion of computer technologies have transitioned the field again by 

allowing more intelligent and natural interactions. Rehabilitation robotics has been in 

development for over half a century with papers published in the 1960s that utilised powered 

orthoses. Naturally over time publications became more frequent and advanced, and 

established effective forms of human-robot interaction through different feedback channels

(Meng et al. 2015). Most of the early stages of rehab robotics were location restrictive as they 

had to be anchored to a specific position, whether it be for power supply reasons, feedback 

monitors, or the device was simply too large. This limitation is still pervasive today, but has been 

lessened by improvement to battery technology, computing power and shrinkage, or may simply 

be non-applicable to certain kinds of devices such as treadmill based devices. Both mobile and 

non-mobile devices were researched for the project, however mobile devices unsurprisingly 

align closer to the goals of an ankle-foot orthosis device. It has been recorded that wearable 

robots are more suitable for gait training, while platform robots are better suited for ankle 

exercises only (Zhang, Davies, and Xie 2013).

Non-mobile devices are designed to exist within professional physiotherapy environments to be 

used in conjunction with a professional, rather than a replacement. They provide a well-
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structured set of exercises that help both user and professional complete the tasks in a reliable, 

repeatable manner while also collecting potentially useful user data. One common device is the 

MIT-MANUS system (Hogan et al. 1992) developed in the early 1990s by the Massachusetts 

Institute of Technology for upper limb hemiparesis patients. The MANUS helped guide the user 

through visual feedback to complete horizontal arm movements along with assistive or resistive 

forces that could change depending on the user. A double blind study showed this simple act of 

using the robotic device that assisted in motions increased elbow and shoulder motor function 

(Hidler et al. 2005). These improvements were dissipated at later stages, but the robotic device 

still produced a more rapid improvement (which is very important for faster patient turnover 

and avoiding overwhelming the facility). For similar results for the lower limb, the Lokomat is a 

treadmill-based rehabilitation device that has had success for several decades (Colombo et al. 

2000). As stroke survivors cannot support themselves immediately after the stroke, a device that 

supports their body weight and assists them in even minor leg movement as soon as possible 

has enormous benefits to rehabilitation speed. Other treadmill-based devices have been 

developed with similar ideas, as not requiring a therapist to help support the subject allows 

training times to be increased dramatically. The internal control of these devices have also 

developed over time, with techniques such as using a moving window rather than an exact 

reference having revealed improvements to usability and more active participation from 

subjects (Duschau-Wicke et al. 2010). All the devices shown above have produced results 

showing the benefits of rehabilitation robotics, however they are all large machines suitable 

only for rehabilitation centres.  

 

Figure 2.1. LokomatPro: A moving treadmill based rehabilitation robot developed by Hocoma 
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Mobile devices better fill the previously discussed definitions of prostheses, orthoses, and 

exoskeletons. The primary goal of these devices is to attach to a person and allow them to 

perform their regular daily tasks with assistance, rather than depending on a predetermined 

exercise routine with a physiotherapist. It may remain attached temporarily to assist in 

rehabilitation, or it may remain as a more permanent solution (as a prosthetic would). The 

Hybrid Assistive Leg (HAL) is a lower limb orthosis that was developed for rehabilitation by 

providing assistive torques to the hip and knee, but remained mobile. A design similar to the 

HAL, as seen in Figure 2.2, but with more focus on the ankle rather than hip and knee was the 

imagined device while constructing the overall project. Its use of inertial measurement sensors 

and ground force sensors allow personal gait details to be collected for future improvements to 

the system design or simply customising the rehabilitation process for the individual. HAL-5 

includes EMG electrodes, so using EMG signals to predict user intent and assist in motions is 

already an option for control assistance. The commercialisation of HAL-5 occurred around 2013, 

although HAL-5 supports the upper body as well as the lower limbs, so it has more applications 

than the HAL-3 which is exclusively lower limb. The internal control of the device is not publicly 

available, but the existence and success of the HAL products give credence to an ankle-focused 

device of similar nature.  

 

Figure 2.2. Hybrid Assistive Leg 3 rehabilitation device for lower limb spinal cord injuries (Roboticsbiz 2020) 

An alternative device, the ReWalk, is a similar product to HAL-3 but specifically targeted towards 

paraplegics (no leg use) that enables standing and locomotion. Once again, power is provided 

to the hip and knee while the ankle is left passively affected. No justifications as to why this 

decision was made for either product is easily available, so specific research into the human 

ankle and its role in gait is necessary. The ReWalk power supply comes from a backpack which 

may be inconvenient in some situations, and is naturally very expensive. Hardware design is not 

the focus of this project or literature review, so these shortcomings are ignored at this point in 
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time. The control systems of the devices are what is being analysed for potential improvements 

and gaps in the research. Tucker et al. (2015) published a review focusing on these control 

strategies that are discussed below.  

Tucker proposes a generalized control framework to help identify the interactions between the 

user, the device, and the environment, along with a controller hierarchy that can be used to 

guide project experimental structure. The top level incorporates the estimation of a users intent, 

which is not always reliably achievable or well-defined. The mid level transforms these 

estimations to a pre-defined operational state of the device, effectively converting the 

ambiguous goals into a clearer numerical goal. The low level acts as the classical controller to 

transition the device towards the established desired state. For the future experimental works, 

estimating user intent is most often achieved through the use of electromyography or 

electroencephalography (EEG), as the electrical signals are generated before any muscle 

activations occur. The delay between these two events is what allows device activation to occur 

in time to properly assist in movement and act as a predictor of motion. EMG is discussed in 

more detail in a later subchapter, but EEG has also been used for rehabilitation purposes (Al-

Quraishi et al. 2018). For lower limb control EEG was considered less desirable as electrodes 

attached to the head must be required to connect to the device on the legs. For the purposes of 

daily living, it is unlikely subjects would be excited about wires across the entire body, or even 

just the head-device if wireless transmission was possible (although not researched, this would 

likely slow transmission down to a point of negatively impacting predictive behaviour). With the 

addition of excessive hair causing worse readings, EEG was disfavoured in the project and was 

not intently researched. Most research related to the high level of control hierarchy fell into the 

EMG-to-force or EMG-to-position category, which will be focused on in a later experimental 

chapter. The high level control simply distinguishes between multiple predefined discrete 

categories of intention, such as “walking”, “running”, “standing”, etc. and the conversion from 

this state to intended force or position output occurs at the mid level. Both levels can make use 

of bio-signals to direct the estimation (simple classification) or state calculation (numerical 

output). The most commonly referenced method for these tasks is the use of artificial 

intelligence, specifically neural networks (Zhang et al. 2019). The different approaches will be 

discussed in more detail in section 2.4.  

Reporting the hardware components of these rehabilitation devices is the most common form 

of literature for the field, with several published reviews focusing on these aspects. What is less 

commonly reported is the analysis of which scenarios a device would be best suited for.  
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Most devices discuss use after spinal cord injury, but rehabilitation is necessary for lower limb 

injury and arthritis as well, and these differences are rarely outlined. For knee osteoarthritis, 

pre-surgery therapy is recommended in almost all cases and can often eliminate the necessity 

for surgery altogether (Grande 2016). This source has a clear conflict of interest as the author is 

a physiotherapist actively selling therapy sessions and no external publication could be found 

clearly sharing these claims, however other papers have discussed the non-surgical 

management of lower limb arthritis (Kon et al. 2012). Generally speaking, most rehabilitation 

robotics focus on corrective maintenance and aim to recover lost limb functionality after injury 

or disability. Preventative rehabilitation does exist and would also likely benefit from the same 

control system improvements proposed in this project, but the overall focus will remain on 

ambulatory recovery to help limit the scope of research necessary for progress.  

As mentioned by Stratton-Powell (2018), total ankle replacement is underdeveloped when 

compared to other lower limb joint replacements; a trend which continues into the wearable 

prosthetics. This may be caused by the lower frequency of ankle surgery leading to less interest 

in the topic, as well as the alternate surgery of ankle fusion which is simpler but more motion-

restricting. Naturally research will fill the areas that call for research, so the need for a knee 

rehabilitation device for post knee replacement surgery will drastically outnumber the need for 

post ankle surgery if the primary ankle surgery does not encourage joint motion after the fact. 

Focusing on the ankle in this project provides a sense of novelty within the rehabilitation setting, 

as it is the least common lower limb joint mentioned within the literature. The development of 

an ankle rehabilitation device may in turn lead to TAR being more common, ideally cascading 

into more interest into the area. Despite this, there is still a lot to learn from other robotic joint 

devices, with the techniques developed often directly applicable.  

Discussions of self-perception are also an important factor for widespread use in general society, 

and have already been identified as practical issues (Kobetic et al. 2009), however these 

questions fall outside the scope of the current project.  

 

2.1.2. Electromyography Technologies 

2.1.2.1. General EMG use & application 

When looking into robotic rehabilitation technologies, one of the most crucial steps is the 

human-machine interface (HMI). How the robot interacts with a living human and how the 

human interacts with the robot must make many considerations ranging from how data will be 
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collected to the physical safety of those involved. The human body produces many electrical 

signals known as bio-signals which can be detected using electrode sensors attached to the skin. 

Access to electrical signals that directly relate to human behaviour without any medical 

procedures is an extremely beneficial method for interfacing with a robot due to the intuitive 

nature of using human output electrical signals as the input signals for robotic control. 

Electromyography (EMG) is a specific type of bio-signal that is produced by the musculoskeletal 

system, creating a signal linked to a human’s intended motion. Many robots designed to be worn 

by a human; whether they be prostheses (Au, Berniker, and Herr 2008), orthoses (Fleischer, 

Reinicke, and Hommel 2005), or exoskeletons (Song et al. 2013); use EMG control due to the 

intuitive approach of using the human’s natural intentions as the input. EMG signals are 

generated and can be detected before any muscle forces. This delay between activation and 

force output is called electromechanical delay (Begovic et al. 2014), allowing EMG signals to act 

as a predictor of intent and provide any assistance forces to help complete actions the subject 

may be unable to achieve unaided. The activation of arm muscles was found to be heavily 

related to the arm’s force manipulability, which simply means that, given a specific arm posture, 

identifying specific arm muscle actions through EMG signals was able to predict the force 

generated on three separate axes (Artemiadis et al. 2011). These findings for the upper limbs 

will also be applicable for lower limb force generation, although the decoder will need to be 

adjusted. The method for model training is not clear from the paper, however a linear hidden-

state model is mentioned, which is believed to be some form of linear classifier in high-

dimensional space.  

In reference to rehabilitation and robot control, issues arise with EMG signals when trying to 

standardise between subjects of varying conditions. Healthy subjects will naturally have a 

stronger EMG signal than subjects who suffer from some form of disability such as spinal cord 

injuries or hemiplegia (which seems to be attributed to a limited descending pathway (Song et 

al. 2013) and an absence of spontaneous activity (Chokroverty and Medina 1978)) which makes 

feature extraction from signals more difficult for those who need rehabilitation the most. Many 

papers use healthy subjects as the experimental subjects which may bias the results towards 

favouring EMG techniques where they are not as applicable. These papers are still significant for 

the development of control and hence will be included within the literature review.  

For the purposes of a general rehabilitation robot for the ankle, EMG signals definitely play a 

role. Osteoarthritis causes a reduction in range of motion (Steultjens et al. 2000), but there are 

few papers which examine the EMG signals of OA patients. The restrictions to motion may then 
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be caused by an unwillingness to perform larger motions (as a human’s natural aversion to pain) 

or due to the weakened muscles that occur because of OA. EMG signals can also be used as an 

input for alternate control systems such as switching regimes or dynamics model estimation, 

effectively using the EMG signals to classify the type of movement or the physical parameters 

of the measured muscle. Artemiadis and Kyriakopoulos (2011) used a switching regime model 

to allow continuous motion through 3D space as opposed to the more common discrete control 

which limits positions to a finite and predetermined state in space. The switching regime is also 

customisable for each individual to better estimate motions associated with their specific EMG 

production. This approach is extremely beneficial for clinical application, as EMG signal 

production will change between users based on a myriad of factors that may be out of the 

tester’s control (any obstacles between electrode and muscle, such as body hair or fat) or within 

their control but difficult to perfectly replicate (electrode placement). A controller that only 

allows positioning at predetermined discrete orientations would not be acceptable for activities 

of daily living (ADL) so creative EMG applications must be applied for improvements to 

robustness and smoothness of robotic motion. Instead of relying on one predetermined muscle 

model such as the Hills model (Miller 2018), by using both EMG electrodes and mechanical 

sensors, EMG signals can be collected in conjunction with their produced kinematics and create 

an estimation model through machine learning (Zhang et al. 2012). Using additional angle 

sensors allows a supervised learning approach with a back propagation neural network, as well 

as validate the artificial intelligence system once properly trained. The results from this approach 

can be seen in Figure 6 and 7 of Zhang et al. (2012) for both healthy and spinal cord injury 

patients, showing estimation more than adequate enough for rehabilitation purposes. This 

technique can also be used to create numerous decoding models to associate EMG signals with 

the corresponding motion. EMG pattern recognition is often used for simple classifications of 

gestures in real time (Zhang et al. 2019). Alternate machine learning techniques such as 

convolutional neural networks or reinforcement learning have also been developed for hand 

gesture classification (Song et al. 2018).  

This technique can assist adaptive control systems as the identification of intended motion can 

help determine what motions are likely to follow and what robotic assistance should be 

provided. Although most papers do not seem to be Markovian in nature and each state 

prediction does not rely on the previous state, human behaviour does (Artemiadis and 

Kyriakopoulos (2011) explicitly mentioned that their experiment had no Markovian dynamics, 

although previous cited switching regimes did). A human is unlikely to transition from sitting 
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down to an immediate stair climb action, instead involving both a “stand-up” action and a “flat 

surface walk” in between. Real-time gesture technologies can therefore be useful as a switching 

variable, allowing a switching regime or adaptive control system to best select the appropriate 

control system or dynamical model. Systems that allow easy training of muscle models are likely 

to be very useful for rehabilitation purposes as they can be customised to the subject and be 

updated throughout their progress and changing gait patterns. These models designed through 

EMG signals are known as EMG-Driven musculoskeletal models (EDMM) which are commonly 

used in conjunction with controllers aiming to detect a subject’s effort put in (Yao et al. 2018). 

EMG signals may also be combined with a variety of other sensors such as an inertial 

measurement unit (IMU) sensor to help identify intent. Using only two IMUs on the foot and 

shank allowed ankle power estimated through the use of a random forest model machine 

learning algorithm (Jiang et al. 2019). This EMG alternative is validated through further motion 

tracking and force plate recordings and requires no inverse dynamics calculations or heavily 

monitored environment. Despite majority of this project focusing heavily on EMG as the 

dominant system input, it is important to note the success and efficiency of other data 

collection. It is noted, however, that for stroke-affected individuals often show an imbalance 

between power output from both legs, so IMU sensors must be placed on both legs to account 

for any asymmetries within rehabilitation patients – a consideration not present in the healthy 

subjects used in the aforementioned paper. Similar considerations for osteoarthritis patients 

must be made.  

Most papers seem to have reached consensus on how to process EMG signals into a meaningful 

data. Wavelet analysis which involves full wave rectification, normalization of maximum 

voluntary contraction (MVC) level, band pass filtering and envelope calculation is present in 

multiple papers, including reviews of EMG signal processing (Chowdhury et al. 2013; Raez, 

Hussain, and Mohd-Yasin 2006). EMG signals can be used at several different stages in the 

control loop design, a basic diagram of which is shown in Figure 2.3. One very common 

application is to use EMG signals as the input reference signal to the control system, setting the 

system to converge to a direct measurement of the human’s intent. If the EMG signal can be 

decoded into a meaningful expression of intended force, intended joint torque, or intended joint 

angle, then external sensors can compare measurements to the calculations and actuators can 

be used to assist in achieving the desired reference signal value. 
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Figure 2.3. Generic block diagram of an EMG-based control system. EMG signals act as the control input to the 

system which is then decoded into a desired force interaction value. The closed loop component of the system acts 

as a basic reference tracking loop and aims to minimise the error between the reference signal and the measured 

output signal 

An alternative use for EMG is to use the measurements to formulate an approximation of the 

dynamics of the human body. As previously discussed, there are several different approaches to 

creating a mathematical model for physical representation of the human musculoskeletal 

system. By using EMG signals as an input during a training session the model can be adjusted to 

an individual to provide more accurate interactions. For instance, during different types of 

muscle contractions the muscle stiffness will change. Interacting with a non-stiff environment 

such as stepping on dry sand will result in a different muscle reaction than a stiff environment 

such as a concrete footpath, so EMG sensory values can also be used to predict which 

environment it is interacting with and change the controller to better suit the situation. 

Unfortunately, as with all machine learning techniques, the final model is only as good as the 

training data. This means that the training data used to create the dynamical model must include 

information about every kind of interaction the model may experience; a very difficult task to 

achieve. 

The Hill’s muscle model is a classic model for muscle contraction that allows predictions of 

muscle forces during various motions and can be considered the standard for muscle model 

analysis (Hill 1938). The nonlinear nature of the model and high number of parameters makes 

analysis difficult, but the model can be improved using EMG signals to better adapt to the 

individual and estimate real-time muscle forces. This model is known as a Hill-type 

neuromusculoskeletal model (HNM), but other simpler models can also be constructed such as 

the linear proportional model (LPM) which predicts forces proportional to EMG levels. HNM and 

LPM are all EMG-driven models (making them both forms of EDMM) for the human environment 

but produce different levels of controllability when implemented. Ao, Song, and Gao (2017) 
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showed that HMN generated smoother movements when compared to the LPM, while also 

reducing the amount of physical effort required by the user. This reduction of effort bodes well 

for long-term improvements to ankle injuries, decreasing the loads that are generated within 

the joint that may cause deterioration. The EDMM designed by Yao et al. (2018) could be 

subdivided into three sub-models: an EMG-to-activation sub-model, a musculoskeletal 

geometry sub-model, and a Hill-based muscle-tendon sub-model. When this model was used in 

conjunction with an adaptive admittance controller the system was able to successfully track 

joint angle and torque and provide assistance based off user intent. This paper is very similar to 

our end-goal where we will attempt a design of a different control method that will allow for 

tracking in multiple dimensions, combining theory used for MIMO control systems. 

Instead of trying to model the dynamics of a system an alternate approach can be taken: use the 

EMG signals to design a control law that causes the entire closed loop system to produce the 

correct results. The model required to control the dynamical system will often be less 

sophisticated than the model required to predict the physical system (Brunton 2018). This 

method still uses EMG signals to achieve the goal of a smooth and robust robotic device, 

however due to the trial-and-error nature of changing the control law it is best suited for 

simulations. This is to avoid damage to the device or compromising the safety of any humans 

interacting with the device. 

 

2.1.2.2. Problems with EMG collection 

According to Raez, Hussain, and Mohd-Yasin (2006) the most important concerns about EMG 

signal collection is the signal-to-noise ratio and the signal distortion, notably in the frequency 

domain. These issues are obviously still important and fundamental for EMG control, however 

this paper was written over a decade ago and technological advancements have reduced the 

noise and distortion effects. Other papers reviewed the pre-processing techniques for reducing 

noise and identifying the most common noise sources with appropriate reduction techniques 

(Chowdhury et al. 2013). Inherent noise, electromagnetic noise, electrode movement artefact, 

and crosstalk are all different sources of noise that must be eliminated as best as possible.  

Mentions of electrocardiogram interference were also made, which would need to be 

considered for upper limb rehabilitation devices but will not affect lower limb EMG readings. 

Although EMG is ubiquitous in use for motion estimation it still suffers from many practical 

problems. The most important issue comes from the time-dependence of EMG signals which 
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cause an individual to produce different amplitudes of electrical signals depending on the state 

of the subject. As discussed in (Zhang et al. 2019) the amplitude of an EMG signal is a key 

parameter required for the calculation of many different results desired for feature extraction. 

Often related to fatigue, as the subject becomes tired the EMG signals decrease in power, shown 

through holding of MVC for extended periods of time (Moritani, Muro, and Nagata 1986). The 

changes to amplitude must be considered in any transformation, such as the EMG-to-muscle 

intent decoder, that depends on this value. General noise also makes feature extraction more 

difficult, but smart selection of features to extract can minimize noise-related issues 

(Phinyomark, Phukpattaranont, and Limsakul 2012). The presented features, modified mean 

frequency & modified median frequency, showed a tolerance to white Gaussian noise and 

effective functionality in weak EMG signals. This indicates that careful planning of the feature 

extraction process for EMG signals can expand the scenarios in which EMG pattern recognition 

can be implemented. The experiment was conducted with a finite number of muscle motions 

and worked in discrete space, so a combination of these specific features in continuous motion 

identification has yet to be seen. The core concept, however, is very promising and shows one 

approach to noise robustness design.  

More practical problems also arise in the data collection methodology for surface 

electromyography. Electrode motion, sweat production, and even blood flow are all known to 

cause changes to EMG measurements (Fleischer, Reinicke, and Hommel 2005). These changes 

will occur both within individual patients between experiments, but also between patients; body 

structure plays an important role in the EMG signals produced and how reliably they can be 

collected. Physical factors such as subcutaneous fat thickness cause uncertainties in 

measurements to grow (Nordander et al. 2003), making certain experiments suitable only for 

specific demographics. This makes the design of experiments and wearable devices very difficult 

and a “one-size-fits-all” approach, bordering on impossible. It is also a limitation on single-input 

control systems that will not be able to process all relevant information that is required for a 

reliable and accurate response. Despite these issues with surface EMG collection it is still one of 

the best methods for collecting bio-signals in a rehabilitation setting due to its non-invasive 

nature. 

Fleischer, Reinicke, and Hommel (2005) discuss the limitations of using EMG signals as the 

exclusive input and their inability to consider external forces and torques that may act on the 

robot during standard operation. Use of additional sensor types such as inertial measurement 

units can help supplement the robot to better represent the realistic system dynamics. When a 
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transformation model is designed using EMG signals and joint angle measurements it was shown 

to be important to limit the order of the model, with noise contribution becoming amplified and 

reducing overall quality for orders higher than 20 (Zhang et al. 2012). This approach is quite 

beneficial but is limited to the training data collected for the EMG-angle decoding 

transformation. Zhang et al. in particular restricted motion training to a small number of 

participants and only one movement mode in the form of treadmill walking. Although a good 

start, this does not cover all movement modes that may be necessary for rehabilitation and 

definitely does not cover all movements for ADL. This is a microcosm of the issues from the 

machine learning approaches of EMG control; the control system will only be as good as the 

training data method. No matter how good these models are they will still limit the user’s final 

number of actions performed. This is not as much of a problem in reality than it is on paper, as 

most sufferers of OA or ankle injuries are older people who only need basic movement options 

to retain a high quality of life.  

Muscle crosstalk makes a one-to-one relationship between EMG signal and motion difficult to 

identify, especially for the more intricate motions and high degree-of-freedom models such as 

the hand. Merlo et al. (2009) claimed that “crosstalk occurrences and amplitude on the 

brachioradialis muscle were mainly due to finger and wrist extensor muscles”. Crosstalk issues 

are not as prevalent in ankle muscles, making them less critical to functionality of an ankle robot 

but still worth considering to improve the robustness of the EMG data collection method and 

muscle decentralisation. The muscles that allow ankle dorsiflexion are all extrinsic muscles, 

originating on the femur, tibia, or fibula. The tibialis anterior and gastrocnemius are the primary 

muscles for the dominant ankle degree of freedom, but two other muscles also contribute a 

non-negligible amount, all of which are in close proximity. When combined with other smaller 

muscles also found in the lower limbs it becomes clear why reducing crosstalk becomes 

important for estimating force production from EMG readings. If trying to determine EMG 

readings from smaller muscles then cross-talk becomes more of a problem due to the larger 

muscles dominating the area and electrodes placement being interrupted (Heloyse Uliam et al. 

2012). These issues result in contamination and makes it often impossible to accurately 

determine where physiological signals are originating. 
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Human Considerations

2.2.1. Rehabilitation effectiveness

When designing a robotic system with the intention of physically interacting with humans the 

safety of all persons involved in its enactment becomes the most important consideration. From 

a control theory perspective, stability of a system will be strongly correlated with safety due to 

instability representing unbounded signals. These unbounded signals would in turn produce 

unbounded physical properties such as motor torques of dangerous levels. Establishing a rigid 

range of actions that can be performed by the actuators will prevent potential damages but the 

point of operation may change between users. For instance, the stiffness of a limb joint will vary 

between humans, especially when comparing a healthy subject with an injured in need of 

physiotherapy, whether it be neurological (Bressel and McNair 2002) or musculoskeletal 

(Altman et al. 1986). Altman has studies on osteoarthritis for the hip, knee, and hand, but none 

on the ankle. The stiffness is recorded for all other joints and as such it is reasonable to 

interpolate stiffness to ankle osteoarthritis as well. 

This variation between humans leads to the practice of explicitly setting upper and lower bounds 

being an unsatisfactory method for determining a safe performance range; individual properties 

must be considered. The forces that can be applied by the rehabilitation device is the critical 

factor in rehabilitation performance, but due to safety concerns the controllers must be 

designed quite conservative to limit forces and velocities (Atashzar et al. 2020). These

restrictions curtail potential performance, especially for subjects further into their rehabilitation 

process and require higher forces. This trade-off is a necessary sacrifice as any injuries impacted 

during rehabilitation is likely to cause progress to regress, perhaps to an even worse than the 

initial state depending on the damage. The design process is always trying to find new 

techniques to help improve the system controller without any sacrifice to the user’s safety, such 

as passivity-based approaches. 

The term ‘passivity’ is fairly generic and is used in several fields to define different concepts. 

Passive rehabilitation is performed when all forces that act upon the body are externally 

produced and the internal muscles of the body are not involved in the motion of rehabilitation 

exercises. This is contrasted to active rehabilitation where the motions are performed by the 

internal muscles without external assistance, as a healthy musculoskeletal body would. However 

in the context of this report the term passivity is most often used in reference to energetic 

passivity, where the amount of energy being produced by a system must be non-positive. When 

coupled with a passive system, a second system that adds energy to the original has the potential 
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to cause instability while a system that consumes energy cannot, and as such passive systems 

are preferred for stability purposes. Lee and Hogan (2016b) detail that both energetic passivity 

and mechanical impedance are critical features that must be considered when designing a 

physically human-interactive robot. Thus to achieve coupled passivity both the ankle-foot 

orthosis and the human ankle joint must be passive. It is also noted that improving our 

understanding of the human neuromuscular side of this interaction would allow improvements 

in the design of the robotic AFO controller.  

 

2.2.2. Energetic passivity and interaction forces 

Energetic passivity is present in most environments a robot will interact with as they will be 

constructed from fundamentally passive mechanical components such as springs and dampers. 

However the human body does not meet these criteria and is able to produce its own 

mechanical energy from the chemical energy provided by the digestive system. Furthermore, 

when focusing on a specific joint, feedback delays between the joint and the brain have the 

potential to violate system passivity. This problem is worsened in rehabilitation settings for 

those who suffer neurological disorders that affect nerve communication, such as stroke 

patients. Passivity of a joint describes the generation of mechanical work solely at the interaction 

point between systems and can be characterised using passivity analysis (Lee and Hogan 2016b), 

the mathematical details of which will be discussed at a later section. A second paper by Lee and 

Hogan (2016a) considers the quantitative characteristics of this passivity analysis for a test group 

of young healthy subjects. These tests were not performed to replicate ADL but to measure 

simple muscle activation while sitting. This paper is not supposed to provide all-encompassing 

passivity analysis but is simply a base for future studies on neurologically impaired subject 

passivity to be compared to.  

Mechanical impedance describes the relationship between joint angle displacement and the 

associated force/torque that was required to achieve this result. An accurately identified 

mechanical impedance is a critical factor in dynamic interactions with external objects as it will 

dictate how much force will be applied to achieve the desired goal. This mechanical impedance 

will change depending on whether the muscles are being stimulated, with increased impedance 

in all directions during activation (Hogan 1984) and specifically during locomotion (Lee, Rouse, 

and Krebs 2016). As the mechanical impedance of the robotic system can be designed through 

an impedance controller, identifying the mechanical impedance of the ankle interaction port is 

important for improving performance. Investigations into the human ankle joint found the 
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mechanical impedance to vary over the gait cycle with increases in impedance around the heel 

strike and significant decreases as the foot leaves contact with the ground and begins the swing 

phase. These behaviours can be approximated to a second order model with stiffness, damping, 

and inertia (Lee, Krebs, and Hogan 2014). A highly passive ankle would require less passivity 

within the AFO which makes the design less restrictive in terms of energy dissipation and could 

allow performance improvements. As previously mentioned, the passivity of any given person 

will vary, especially when comparing healthy individuals to neurologically impaired individuals, 

and as such the design of an impedance controller must be user specific. As a patient improves 

their neuromuscular response system throughout rehabilitation they are likely to progress 

towards a healthier and more passive ankle joint and as such the controller must also change 

with the progress of the user.  

This leads to a need for adaptive impedance controllers and artificial intelligence techniques to 

achieve the best possible controller. This approach has been attempted by (Bingjing et al. 2019) 

who used reinforcement learning to adjust and individualise the parameters for an admittance 

controller. These parameters represent the stiffness, damping effects, and inertia of the system; 

together dictating the interaction forces produced between the robotic system and the 

environment (which in the case of rehabilitation is the human). The mathematical details of the 

admittance controller will be discussed later, however Bingjing et al. (2019) performed 

simulations of manual parameter adjustment to present the effects on joint angular 

displacement. The results show that an increase in stiffness or damping will reduce the angular 

displacement, most likely due to both these parameters acting as a form of resistance to a 

driving force. Higher damping values also lead to an increase in rise time, meaning that the 

system takes longer to achieve its peak displacement when more damping is present in the 

system. The inertia of the system showed no strong changes to angular displacement, but 

simulations were limited to small variations in inertial values due to the undesired effects to the 

system damping ratio and natural frequency. These two physical properties of a system can 

dictate how the system responds to disturbances and are important considerations for system 

stability, so large changes to the inertial coefficient may undermine the simulation results in 

representing the real physical system. Experiments were performed for both passive and active 

rehabilitation, both of which are necessary stages of development because of the 

aforementioned changes in energetic passivity and mechanical impedance.  

  



2.3. Control Theory 23

Control Theory

2.3.1. Control theory vs. Artificial intelligence

A robotic device that behaves in accordance with its environment must have sensors to collect 

information about critical components of the environment to act as the inputs to the robot. It 

must also use some form of actuator to determine how the robot will interact with the 

environment, acting as the output of the system. A mathematical model to describe the 

relationship between inputs and outputs is necessary for the desired behaviours to occur and 

allow appropriate responses to be calculated. In traditional control theory this model is called a 

‘transfer function’ and is simply a collection of algebraic expressions structured as a matrix. If a 

system has only one input and one output the system is described as single-input single-output 

(SISO) and the transfer function will return a scalar value. For more complicated systems such 

as rehabilitation devices with multiple sensors and higher degrees of freedom in the range of 

motion, a multi-input multi-output (MIMO) system is required. A MIMO system with r inputs 

and m outputs will require a transfer function matrix in the dimension space of Rmxr. The

element of the transfer function matrix located in the ith row and the jth column will contain a 

transfer function relating the jth input to the ith output. A real-world physical relation like this 

would often be represented by a differential equation, such as what is seen for modelling 

equations of motion or electrical circuit analysis. These differential equations can be converted 

into algebraic equations through the Laplace transform, converting a function of time to a 

function of complex frequency s = σ + iω. Transfer functions are presented in the s-domain

which allows simpler solving and calculation of coupled systems (Nise 2011). 

Transfer functions are difficult to construct for highly complex systems as the mathematical 

models will not be able to contain all the nuances of the system. As many real-world systems 

are nonlinear in nature, or have time-variant properties, a transfer function will not be able to 

appropriately model system behaviour. This limitation will have direct effects on the design of a 

rehabilitation robot that relies on measurements from the human body to determine motion.

The intended goal of using surface electromyography sensors as system input and returning the 

predicted motion the subject intended as system output would result in a highly nonlinear 

model. Using machine learning techniques such as backpropagation neural networks can be 

used for model estimation (Zhang et al. 2012). The construction of such a transfer function 

would be extremely difficult to the point of being infeasible while neural networks are much 

easier to construct and train. Further complications arise from the constantly changing abilities 

of the human body which causes time-dependence in the modelling. Muscle fatigue from 
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overuse will decrease the average force exertion over relatively short timeframes such as a 

single exercise session. Fatigue can be detected through EMG signals by a decrease in EMG 

amplitude and how long a high-frequency signal can be sustained, as higher frequency signals 

directly relate to the MVC (Yousif et al. 2019). Other bodily functions likely to occur during 

exercise such as moisture on the skin will affect the sEMG input readings which will affect the 

input side of the sEMG-force relation (Basmajian and Luca 1985).  

An alternative method to constructing a mathematical model is to utilize artificial intelligence 

techniques to construct this input-output transformation. Artificial neural networks are one 

such technology that allows nonlinear functions to be constructed and automatically adjusted 

by using collected data to slowly train the network to produce desired results. Methods of 

supervised learning (Zhang et al. 2019) and reinforcement learning (Wu, Saul, and Huang 2020) 

are both represented in the literature and show functioning systems that allow the estimation 

of user intention from their sEMG measurements. Supervised learning is best suited for when 

large amounts of sEMG data has been collected along with the recorded motion output that 

each signal produced (or desired to produce, depending on what is trying to be decoded). 

Reinforcement learning does not need this large amount of labelled data to develop the model; 

instead only a set of behavioural rules in the form of a reward function is needed to develop the 

model. For these reasons reinforcement learning is preferred for the development of a 

rehabilitation robot when mass data collection is not feasible. One direct negative of using 

neural networks (NN) instead of constructing a transfer function model is the fact that the 

system acts as a black box; no meaningful information can be extracted from the NN to 

understand the transformation. The musculoskeletal system will not be better understood by 

the results this method produces; however effective transformations can be achieved 

regardless. Another limiting factor for NN is the necessity for large amounts of data to effectively 

train the network. This training process is also susceptible to biases within the data or overfitting 

the data and learning exact patterns rather than the general relationship between input and 

output that would be more widely applicable (Sutton and Barto 2018).  
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2.3.2.State space representation 

When discussing a control system it is important design the mathematical model to represent 

the physical model as accurately as possible. For any given system, the state vector x(t) ∈ Rnx1 

represents all the critical states of a system at time t. The output vector y(t) ∈ Rmx1 denotes all 

the physical measurements that are taken from the system. Using state space representation 

allows a process to be defined by how both the state vector x, and the output vector y, change 

over time with respect to a given input vector u(t) ∈ Rrx1, as seen below: 

 𝑥̇ = 𝐴𝑥 + 𝐵𝑢 (2.1) 

  𝑦 = 𝐶𝑥 + 𝐷𝑢 (2.2) 

 A state space representation can be summarised by the collection of matrices {A, B, C, D} that 

satisfy equations (2.1) and (2.2). These matrices refer to the system in the time domain and 

are labelled as follows with the following dimensions: 

State matrix:   A ∈ Rnxn 

Input matrix:   B ∈ Rnxr 

Output matrix:   C ∈ Rmxn 

Feedthrough matrix:  D ∈ Rmxr 

State space representation can be changed by altering these matrix values without affecting the 

transfer function of the system, G(s), which is the mathematical realisation of how the input 

transforms into the output. The calculation for the transfer function is performed in the Laplace 

domain: 

 𝐺(𝑠) = 𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷 (2.3) 

A transfer function aims to mathematically model the physical processes of change in a real-

world scenario. As such the system transfer function is often referred to as the “process” of the 

system, or the “plant” if actuation is involved (these terms are often used interchangeably). As 

there are an infinite number of ways for a state space representation to result in the same 

transfer function, when constructing a state space representation from a given transfer function 

there are several canonical forms that can be used to standardise the practice and create a 

beneficial state space representation. Each canonical form that may be implemented will 

contain trade-offs that must be considered in reference to the specific model being proposed 

and the intended purpose of the system. The controllability canonical form and the observability 

canonical form are the most common and are best suited for systems that are desired to be fully 
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controllable or fully observable, respectively. The controllability canonical form is used within 

this project as it guarantees full controllability which is important in in rehabilitation robotics. It 

must be possible to reach any point in state space for full range of motion and more importantly 

every state variable must be adjustable by the system to avoid any safety concerns. The 

controllability canonical form does not imply observability of the system is unimportant, nor 

does it suggest the system is not fully observable, as these concepts are not mutually exclusive. 

Full observability is also highly beneficial to the system and should be attempted as well. If as 

system is both fully observable and fully controllable then control becomes much simpler and 

easier to work with.  

Benefits of working with state space representations include the ability to represent nonlinear 

systems or time-variant systems (Nise 2011: 118). State space representation also scales better 

than transfer functions for larger amounts of inputs and outputs. While focusing on ankle 

rehabilitation the number of inputs and outputs are very unlikely to become numerous enough 

to be of concern, but future developments should take this note into consideration. For more 

complex input data arrays or additional degrees of freedom in robotic actuation, state space 

representation may become the more appropriate design tool.  

 

2.3.3.Passivity-based process control theory 

Passivity is an inherent characteristic of a physical system that describes the energy behaviours 

of an input-output relationship. A system may be characterised as passive if the process 

dissipates energy over time rather than producing it, which would be described as a non-passive 

process. Knowledge regarding energy absorption behaviour can significantly help to reduce the 

conservatism of a specific control algorithm. Systems that do fall into the passive category have 

special characteristics that can be used in the design of a controller; using these characteristics 

is known as passivity-based process control (Bao and Lee 2007). One of the most important 

benefits of passivity-based process control comes from the passivity theorem which states that 

the combination of two passive systems through negative feedback guarantees a passive and 

stable closed loop system (Zhang, Bao, and Lee 2002). This has dramatic implications for 

rehabilitation robotics if it can be guaranteed that the human body component of the human-

robot connection is itself passive. If this condition is met then the design of a passive controller 

for the robotic device will guarantee coupled stability. Even if the human component cannot be 

modelled perfectly, as long as it is approximate and it retains its passivity then the controller can 

be designed to guarantee stability by designing the controller to also be passive. This will be true 



2.3. Control Theory  27 
 

 
 

in the presence of unmodelled dynamics, meaning a simplified model of the human can be used 

with no added potential for instability (given that these unmodelled dynamics do not violate the 

passivity of the system). These benefits carry through to testing different controller designs in 

simulation. If said controller reaches stability in simulations on an approximate model then there 

is a guarantee that same controller can be implemented into the real-world physical system 

hardware and still remain stable (Douglas 2021). This is a great benefit both for safety concerns 

in early testing stages and for avoiding any damages to the hardware.  

Unfortunately, for the purpose of rehabilitation only the robotic component of the overall 

system can be designed to be passive; the fundamental requirement of passivity of the human 

cannot be controlled. This condition is also not as straightforward as identifying which joint is 

being coupled to the system. Each joint must have passivity determined individually, which will 

be vary between specific motion patterns. Atashzar et al. (2020) discovered a correlation 

between a subject’s posture and the passivity margins (a measurement of how far from 

passivity/non-passivity the system is). The types of muscle contractions (agonist/contracting vs 

antagonist/relaxing) have a direct effect on this correlation. As different motions will produce 

different muscle contractions it becomes evident there is a direct link between motion pattern 

and joint passivity. These conclusions came from tests on the hip joint, however the ankle joint 

also changes the muscle contractions present depending on the motion. The kinematics and 

dynamics of an ankle vary between walking, running, stair ascent, and stair descent; all kinds of 

actions that would be present within activities of daily living (Hyodo et al. 2017). Even changes 

to the slope of the environment have been shown to affect the dynamics of the ankle which 

would in turn affect the muscle contraction behaviours (Rábago, Aldridge Whitehead, and 

Wilken 2016). These environment-dependent variables will need to be considered in future 

works but walking on a flat surface will be the predominant focus of the project at this point in 

time.  

Variances in passivity between subjects is also a consideration, although these differences can 

be closely aligned to age demographics rather than the individual. Time delays can result in non-

passive behaviour by causing an accumulation of energy in a closed-loop system (Atashzar et al. 

2020). These time delays are caused by the time delay between the human brain and the 

activation of a muscle, and as such this non-passive behaviour is more common in demographics 

with slower central nervous system response time such as the elderly or neurologically impaired 

people(Hunter, Pereira, and Keenan 2016). As these time delays are more expected in an older 

population it is reasonable to expect less passive behaviours overall, however this is 
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contradicted by Chesworth and Vandervoort (1989) which shows no significant differences in 

passive stiffness and torque between three groups of healthy women separated by age bracket. 

The oldest age group consisted of fifteen women between the ages of 61 and 80, all of which 

were classified as healthy. It is possible that this subject selection excluded subjects that did 

suffer from slower central nervous system response times, as joint mobility is known to decline 

more so for males and rapid mobility reduction for ages above 90 (James and Parker 1989). It is 

also possible the term ‘passivity’ is being used in a different context and the current reading of 

these two papers is simply a misinterpretation.  

As a response to the energy accumulation caused by time delay, techniques such as adding 

adaptive damping have been used in the past to dissipate energy (Zhang and Cheah 2015), and 

as such the ideas behind using passivity-based control for rehabilitation purposes has been 

shown to be plausible for the human hand and wrist (Atashzar et al. 2017). Atashzar et al. (2020) 

also mention the user-dependent nature of passivity maps: a tool used to compute 

dependencies of muscle contractions, geometry, posture, and dynamical behaviour. For specific 

results of ankle passivity, Lee and Hogan (2016a) discuss the differences between subjects 

younger than 37 in the passivity of the ankle for quasi-static (remaining still with small, slow 

perturbations from the robot) and steady state dynamic muscle activation. These tests do not 

accurately simulate real-world movement and as such may not describe ankle passivity during 

walking tests. By tracking a percentage of the MVC value, data is collected to relate EMG data, 

ankle torques, and ankle velocities. This data is then used to determine passivity through curl 

analysis and passivity analysis for the quasi-static and steady state dynamic tests, respectively. 

Results showed unimpaired human ankle joints were passive for low frequencies (less than 

approximately 2 Hz) for most subjects, however around 30% produced nonpassive behaviour 

when the soleus muscle was being observed. Behaviour became strictly dissipative over the 

frequency range (10-20 Hz), and dissipative behaviour began falling off for higher frequencies. 

Discovering these operating frequencies show general passive behaviours and as such we 

hypothesise the passivity of other specific motions can be determined, or at the very least 

guided, by analysing their operating frequencies. As the ankle is expected to be strongly passive 

in the 10-20 Hz range, designing the robotic controller to also be passive would be a conservative 

design that may negatively impact performance. We can compensate by reducing the passivity 

restrictions on the controller in this range, allowing the controller to vary over frequencies. A 

switching regime to change between a discrete number of controllers may be implemented for 

a pre-determined number of frequencies ranges.  
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2.3.4. Controllers (PID, impedance, admittance) 

Admittance controllers & impedance controllers 

An admittance controller will control how much a system is able to be admitted through physical 

space given some force as an input. In other words, the controller will ‘admit’ a force to enter 

the system which will in turn produce motion. This system is intended to move and will use 

forces as an input to determine these motions. An impedance controller will control how much 

a system impedes motion, meaning its output will be the force used to impede motion. These 

two concepts are complementary to one another, where if one system acts as an impedance 

then the other must act as an admittance. For the fusion of a human ankle and an AFO, if the 

rehabilitation device is intended to encourage motion from the ankle it is receiving the torque 

produced from the muscles and produces an appropriate angular displacement to assist in 

reaching the desired angle. This scenario requires an admittance controller for the AFO, as 

opposed to an impedance controller which would be better suited for strengthening muscles 

that are already capable of reaching their desired angles. The parameters for said controller will 

be user-specific and must be designed for each individual to effectively function.  

One method for the tuning of the admittance controller parameters is to use reinforcement 

learning methods that can produce values that change over time based on the collected sensor 

data during rehabilitation, such as joint angle error and human-robot contact force (Bingjing et 

al. 2019). Bingjing et al. use a discrete action space that simplifies the assistive torque supplied 

to the user to be either on or off in any given direction. This technique seems better suited for 

passive rehabilitation where the user cannot provide any torque through the musculoskeletal 

system. However as discussed earlier, active rehabilitation which encourages muscular use is 

the more effective form of rehabilitation for ADL. If the goal of the rehabilitation is to stretch 

joint motions to their limits and expand the full range of motions, then this approach is very 

effective and has been shown to benefit stroke patients (Waldman et al. 2013). For 

rehabilitation that aims for precision of joint angle and signal reference tracking, this system 

may struggle to achieve a satisfactory performance level.  

Rehabilitation exercises where the subject aims to follow a predetermined ankle angle path have 

been performed for both passive and active rehabilitation to develop more intricate joint 

motions (Zhang, Xie, et al. 2018). Active rehabilitation required adaptive admittance parameters 

for stiffness (K) and damping (B), along with inertial mass (M), automatically adjusting to the 

subject’s exerted force/torque levels to produce the appropriate resistive force from the robot. 
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This resistive force is calculated based off the error between current position and desired 

position, as well as the aforementioned parameters, and is shown by the control law: 

 𝐹(𝑡) = 𝑀 (𝑋̈(𝑡) − 𝑋̈𝑟(𝑡)) + 𝐵 (𝑋̇(𝑡) − 𝑋̇𝑟(𝑡)) + 𝐾(𝑋(𝑡) − 𝑋𝑟(𝑡)) 
(2.4) 

The variable X represents the measured state variable vector containing displacement values of 

the system. The variable Xr represents the reference state variable vector containing all the 

desired state variable values that the system will aim to converge towards. These variables can 

be replaced with angular measurements (converting the force measurement to a torque 

measurement) directly. The maximum angular displacement possible was also saturated to 

prevent injury during operation. This limitation will vary between subjects, however their 

experiment was only performed on two subjects and as such this did not affect the setup or 

design procedure. The admittance control law is a simple equation of motion relating the 

human-robot interaction force (or torque in this case) with the robot’s inertia, damping, and 

stiffness properties. This is the base for most impedance and admittance controllers, with 

various details of setup presented in other literature (Song, Yu, and Zhang 2019). Song et al. give 

mathematical insight into how these parameters can be chosen given some real-world system 

requirements.  

Although most rehabilitation devices use basic reference tracking which will push the robot to a 

set position, a more effective method is to set an acceptable range of positions to better meet 

each individuals’ abilities (Duschau-Wicke et al. 2010). The range around the tracking path is 

referred to as the “tunnel” or “window”, which encouraged active participation from the user 

indicated through the produced EMG data. With the combination of graphical feedback 

instructions, the majority of users with incomplete spinal cord injury were able to actively 

control gait timing. The authors do note that all tests were performed on a treadmill with 

constant velocity, so although the control of gait timing was successful it was under heavily 

controlled environments and dependent on the swing phase of gait (as the stance phase was 

moved by the treadmill). For non-treadmill walking an additional dimension for windowed path 

control may be necessary to achieve positive results. The window idea can be adapted from 

spatial windows directing position an acceptable interactions force or output torque windows, 

where equation (2.4) must equal a value within the predetermined range.  
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A Proportional-Integral-Derivative (PID) controller is the most commonly utilised controller in 

industry settings due to their simplicity and effectiveness. By inputting a desired value, the 

system will measure the distance between goal and current state and use this error to drive the 

system in a way that reduces error. The error, it’s derivative, and it’s integral are all used in 

calculating the actuation signal, although how much each contributes is generally manually 

tuned and selected. Due to the nature of this signal transformation, the output of the PID 

controller always has the same sign as the input signal, and the error and output will share a 

direction (the derivative component can be set to always be outweighed by the remaining 

components). This is a defining characteristic of a passive system, so all PID controllers are 

passive by default and allow the invocation of the passivity theorem (Zames 1966). With the 

passivity theorem guaranteeing stability between coupled stable systems, having the PID 

controller be guaranteed passive opens many development directions, including designing a 

controller that passivates the closed loop system. Several papers exist discussing the creation of 

PID passivity-based control which exploits the passive properties of PID controllers (Romeo et 

al. 2021). There have also been publications of using passivity theorem-based ideas to guarantee 

finite incremental gain for two nonlinear systems connected through negative feedback (Chaffey 

2022).  

Adding delay into a PID controller can cause the input and output signals to become out of 

phase, so if delay causes phase of ±90° then the controller will lose its passive properties, 

potentially causing energy build-up and unstable behaviours. This is mentioned to elucidate the 

reality that PID controllers can cause issues if not properly designed. For multi-input multi-

output systems the PID system becomes more complex. As there are more than one inputs or 

outputs, the calculation of error is no longer a simple subtraction unless the system is decoupled 

such that one input directly controls one output. Decoupling, or decentralisation, allows each 

error to be calculated separately and simply employing multiple PID controllers for single-input 

single-output systems becomes trivial. Mathematically this PID controller would be a diagonal 

matrix of the individual controllers, and all the benefits of passivity will remain. Overall, PID 

controllers have many positive qualities as long as they are appropriately designed to retain their 

passive characteristics.  

  



2.3. Control Theory  32 
 

 
 

2.3.5. Control Configuration Selection 

MIMO systems can be represented by transfer function matrices which represent the 

contribution of each input signal to each output signal. As the system is being designed, the 

inclusion of specific input or output signals can help structure the system in a way that makes 

control much easier and the mathematics much simpler. From here, choosing each input output 

pairing can have surprising effects on stability due to feedback loop interactions, and aiming to 

decouple these loops as best as possible is fairly common when robustness is desired. There are 

methods for making this selection, and are studied under the topic of control configuration 

selection (CCS). The most basic CCS method is known as the relative gain array (RGA) which has 

developed many extensions over the decades since its conception. The equation for the 

standard RGA of a standard system G(s) is: 

 Λ(𝐺(𝑠)) = 𝐺(0).∗ 𝐺−𝑇(0) (2.5) 

As the system is MIMO and represented by a matrix the multiplication “.*” signifies element-by-

element multiplication. All rows and columns of Λ will sum to unity, and the element [λij] will 

give a scale invariant measure of the dependence of output i on input j. In the most simple terms, 

λij represents the gain between input  j and output i when all other loops are open, divided by 

the gain between input j and output i when all other loops are closed. The best pairing will be 

revealed by which element λij is closest to 1. If the values are too large then the RGA indicates 

high closed loop sensitivity which will lead to high difficulty in controlling the system. If the 

values are negative the RGA indicates instability of the system. It can be noted in the equation 

above that the system is only being observed at a frequency of 0, and as such the RGA does not 

reveal any information about system dynamics. To have this information embedded in the CCS 

it is better suited to use the dynamic relative gain array (DRGA) method. The calculation of the 

DRGA is similar to the RGA, but observes how the relative gains vary with respect to frequency, 

as some pairings may be preferred at specific frequency ranges. The equation for the standard 

DRGA is: 

 Λ(𝐺(𝑠)) = 𝐺(𝑠).∗ 𝐺−𝑇(𝑠) (2.6) 

Despite calculating the RGA by default, the DRGA is not always preferred. The RGA is 

independent of any controller design and disturbances, which is not true for the DRGA. This 

example is simply to underline the various approaches in CCS and there is no “one-size-fits-all” 

approach to CCS method selection; how the pairing is determined will be dependent on the 

system and what characteristics are most important to the designer.  
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Publications on CCS methods that employ passivity are also in existence, however only one 

paper seems readily available and referenced (Bao et al. 2007) and is described as “newly 

introduced interaction analysis” from a textbook published in 2009 (Khaki-Sedigh and Moaveni 

2009). This passivity-based approach does not rely upon diagonal dominance (suggesting loop 

decoupling) and instead use the degree of passivity to determine best closed loop performance 

under decentralised control. A large portion of the experimental work performed later used this 

publication as a reference and guiding point. With the notable gap in literature utilising this 

passivity-based CCS methodology, and the results showing new CCS methods can be created to 

focus on specific system characteristics, it becomes clear the design of a new passivity-based 

CCS method will likely be novel with benefits to the project overall. 

2.3.5.1. Transfer function approximation

Some CCS methods require a transfer function to be in a specific form, such as a strictly proper 

matrix, or a matrix fraction description. For systems with time delay contained within an 

exponential function, it is often required to find an approximation of the system in the standard 

polynomial representation of a transfer function. A Padé approximation can effectively perform 

this estimation, and for the purposes of control systems, a first order approximation produces 

practical results. 

𝑒−𝜃𝑠 ≈
1 −

𝜃
2 𝑠

1 +
𝜃
2
𝑠

(2.7)

By using this approximate equivalence, any transfer function with time delay can be converted 

into a strictly polynomial form to allow for more flexible transfer function manipulation. 

Artificial Intelligence in Rehabilitation

Artificial Intelligence is a fairly generic term that is used for whenever a computer is tasked in 

observing a situation and predicting details about the information perceived without an 

equation producing absolute certainty. It aims to replicate the tasks traditionally performed by 

humans, such as identifying images or not walking into walls; tasks easily performed by humans 

but not by computers or robots. Machine learning is a type of artificial intelligence that helps 

categorise data that it has never experienced by comparing it to large amounts of similar data 

that it has experienced. The data is required to be structured when training, and the features 
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that are to be extracted are selected manually by the architect. Deep learning is a subset of 

machine learning where these features are not manually selected and the network chooses 

them itself, creating a black box system that is difficult to analyse. Deep learning can be used for 

optimisation problems that are based on collecting data, while classical control is optimisation 

that is based on detailed models of the system and the physical dynamics. As it is practically 

impossible to create a detailed model of every individual’s unique motion patterns for 

rehabilitation purposes, deep learning becomes a highly favoured tool in customising 

rehabilitation.  

 

2.4.1. Reinforcement Learning Algorithms 

Reinforcement learning (RL) is heavily used in robotic design for its effectiveness in producing a 

system able to interact with an environment that does not have a pre-established model. Model-

free reinforcement learning allows a model of the environment to be generated through a 

simulation essentially equivalent to trial and error. When designing a controller for a system, 

tuning the parameters to achieve a specific behaviour can be difficult. However by utilising RL 

to tune these parameters, the desired behaviours can be maximised and general patterns can 

be identified to learn overarching desires rather than individual intricacies. Complex, nonlinear 

relationships can be implemented into robotics through this method that would assist in the 

development of a general controller. The first stage in using RL is to select the appropriate 

algorithm for the designated problem-at-hand. If the system can be interacted with through a 

finite number of discrete actions (such as cardinal direction inputs or button clicks) then a deep 

Q-Network (DQN) is best suited. If the system requires a more continuous value (such as a 

torque ranging between 0 and 10 Newton-metres) then some form of an actor-critic network 

will be beneficial. For brevity, only DQN and the twin-delayed deep deterministic policy gradient 

(TD3PG) algorithms will be discussed in detail below, however other algorithms or forms of AI 

have been used for rehabilitation purposes, such as proximal policy optimisation (Anand et al. 

2019) or fuzzy logic (Yang et al. 2016).  
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2.4.1.1.Deep Q-Network 

A DQN can have multiple system outputs, but the values these outputs can take will be limited 

by the DQN design. This limitation does hinder DQN applicability for determining assistance 

levels (which often come in the form of a continuous torque value) but would be well suited for 

more classification tasks that may occur during rehabilitation, such as mode switching. As 

different physical tasks will require different kinds of assistance, a DQN would be able to observe 

the given state and predict which kind of motion is being performed to trigger a change in 

behaviour. Switching regimes are fairly common in rehabilitation for the purposes of 

decomposing complex physical tasks into smaller and easier-to-control tasks (Huang et al. 2020) 

or aiming to remove time-dependence from systems such as EMG decoding (Artemiadis and 

Kyriakopoulos 2011). Although neither of these papers utilise RL to build the switching regimes, 

they do present the benefits of smaller control systems for specific situations. This exact scenario 

could be designed with a DQN in mind, as rather than creating an algorithm to determine current 

state the neural network will return which state will accumulate the highest long term reward. 

There are noted problems with switching regimes such as the transition between states 

potentially causing ‘bumps’ in the control. For any human-interfacing system this unintended 

motion is concerning and potentially dangerous, so improvements become necessary. Huang et 

al. (2021) is able to implement these improvements through the creation of a generic realisation 

of each subsystem to switch between, rather than completely isolated subsystems. The creation 

of this generic subsystem is also something that may be achievable with other RL techniques, 

although not using the DQN algorithm.  

The DQN architecture works the same as other reinforcement learning techniques by 

performing randomly selected actions and recording the resulting reward function accumulation 

to determine how successful a given state-action pairing is for achieving the goals. This 

information is retained in the form of a Q-value, which simply acts as a function that takes 

“current state” and “follow-up action” as inputs and returns a value. By calculating and 

comparing every Q-value for a given state (cycling through possible actions) the best action is 

then determined by the highest Q-value. This technique has been used in other subtasks of 

rehabilitation, such as for the classification of EMG motions and extraction of key features from 

EMG signals (Song et al. 2018). DQN is the primary focus of Chapter 5 in this dissertation.  
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Figure 2.4. Deep Q-Network architecture for converting state recordings to action-defining Q-values 

 

2.4.1.2.Twin-Delayed Deep Deterministic Policy Gradient 

The other heavily featured RL algorithm within this dissertation is the TD3PG algorithm for 

producing continuous signals. Capable of producing continuous actions rather than 

predetermined set values like the DQN, the TD3PG is much better suited for tasks that require 

more precision in the decision making. Both algorithms are used to calculate a Q-function 

through an iterative updating of Bellman equations and reward calculations, but the TD3PG also 

learns a policy simultaneously (which is essentially a function that determines which action is 

best suited for a given state input) from these Q-functions. The TD3PG is simply two deep 

deterministic policy gradient (DDPG) networks operating simultaneously to generate two 

different Q-functions. By then selecting the more conservative Q-function the transitions in 

network learning will be slower, but more robust to sudden changes and overestimating specific 

state-action combinations which will often lead to non-optimal behaviour or even policy failure 

through divergence. Other changes to DDPG include only updating the policy every few step 

instances, and adding noise to the continuous target action to avoid exact action values being 

rated extremely highly and small deviations rated poorly (imagine the difference between an 

impulse signal and a sinc function signal). All techniques combined result in a more robust RL 

agent with improved performance over DDPG (OpenAI 2018).  

For robotic control and human interaction specifically, the input to the TD3PG agent is often an 

amalgamation of the robotic device’s current actuator positioning (often angular values for 

joint-focused work) and any sensor recordings relating to the human, such as EMG recordings 

or inertial measurement unit recordings. Naturally more inputs lead to a more complex system, 

so as few observations as reasonably possible is the most efficient design approach. It has been 

demonstrated that a 2 degree-of-freedom robotic arm can be EMG-controlled through actor-

critic based RL using only 4 recordings: wrist angle, elbow angle, EMG signals 1 and 2 (Pilarski et 
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al. 2011). Although not for rehabilitation purposes, the underlying engineering is similar enough 

to draw meaningful conclusions. Rehabilitation papers use similar techniques, such as (Huang et 

al. 2015) which uses the force and position of each finger as the state used to control a 5 degree-

of-freedom rehabilitation device used for developing fine motor control. A clear correlation 

between the degrees of freedom and number of observed values is present throughout all the 

literature. However for larger motions when there are human-machine interactions present, to 

guarantee safety more measurements are required, such as angular velocity along with the 

omnipresent angular displacement. 

An RL agent capable of fine tuning continuous values can also be used in combination with 

control engineering to help select the appropriate control parameters for use in rehabilitation. 

Controller Tuning with Reinforcement Learning
2.5.1. Adaptive tuning of controllers

Tuning the controller parameters before system operation is the traditional method of control, 

as the assumption that the operating environment will remain constant throughout. For 

complex and time-dependent systems this will result in poor performance as a constant 

controller is unable to account for new disturbances, signals of a different magnitude, or a new 

interaction that requires different responses. Parameters must change during operation, known 

as online or adaptive control, as the system allows the controller to adapt to changes in the 

environment. 

To appropriately guide the user, a general understanding of the expected environmental 

interactions must be known when designing the controller. For rehabilitation, the environment 

that the robot interacts with is the human body, which is capable of changing its dynamic 

properties such as muscle stiffness or maximum force output during gait and basic activities. 

These changes are based on current actions being performed (Hyunglae and Hogan 2013; Li and 

Ogden 2012), muscle fatigue (Toumi et al. 2006), or even changes to their surroundings such as 

temperature (Cornwall 1994). For traversing in everyday life the obstacles interacted with will 

also play a role, as walking on a slope is biomechanically different from level ground walking 

(Pickle et al. 2016). Differences between users will need to be adjusted for, as some users may 

prefer a tighter tracking performance while others prefer a larger margin of error allowing for 

personal input to play a larger role in rehabilitation. These changes should affect the power 

output from a robotic device, however a classic controller may struggle to adapt as necessary 
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while an adaptive controller will allow these changes to be addressed by the control loop. From 

the perspective of the controller-tuning AI, the robotic system would also be considered the 

environment and any changes in its functionality would also need to be addressed by the agent. 

Cases of the agent adapting to the robotic system failing or performing abnormally would be 

considered a form of fault-tolerant control. Adaptive PID controllers have been constructed 

using fuzzy logic (Sam and Angel 2017)-(Ibrahim 2002), and with recursive least square 

algorithms (Fahmy, Badr, and Rahman 2014), both of which showed improvements to reference 

tracking over the non-adaptive PID controller model. Adaptive impedance across a gait cycle has 

also been shown to reduce complications for users suffering from lower limb impairments such 

as drop foot (Blaya and Herr 2004). 

The final goal of the reinforcement learning in this chapter is to produce an appropriate 

mechanical admittance for a robot at any given time. This objective is guided by the discussion 

provided by Lee and Hogan (2016b), which in turn was discussing results presented by Colgate 

and Hogan (1988). This discussion states that the driving point impedance (calculated by the 

input velocity divided by the output force of the system) of a linear system being positive real 

can guarantee coupled stability for a passive Hamiltonian environment. As the positive real 

condition is equivalent to energetic passivity, if a controller can be designed to retain a positive 

real impedance then coupled system stability will be easily achieved. One small complication 

arises in the description of the system being linear; no such guarantee is possible for robotic 

behaviours in general. This requirement isn’t focused on in either paper and as such it is 

temporarily ignored. In the case that linearity is a fundamental condition, linearization of the 

nonlinear system can be performed to test the passivity and stability retention properties.  

2.5.2. Reinforcement learning algorithms for controller tuning 

Using a reinforcement learning agent to learn the relation between user input and necessary 

parameter changing behaviours will allow an adaptive controller to be implemented to best suit 

the environment and interaction behaviours. Previous approaches for the design of an adaptive 

impedance controller have shown that the frequency of impedance parameter updating will 

have an effect on controllability and fluency of operation, as mentioned by Bingjing et al. (2019) 

in reference to using a “discrete impedance parameter” for a welding-assistance robot (Erden 

and Marić 2011). This description of discrete impedance controller seems to be referring to a 

constant value for the mass and damping coefficients used during welding simulations as 

opposed to the variable impedance control when not simulating welding. Regardless, later 

works in rehabilitation showed inferring human intention to continuously adjust parameters 
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could improve flexibility when compared to fixed parameters if different patients are 

considered. This is a prime situation for RL to adjust parameters and the functions that 

determine them based on the physical movements being performed.  

A plethora of different RL-based techniques for automated controller tuning are documented in 

non-rehabilitation fields. Kim et al. (2010) implemented a Natural Actor Critic (NAC) algorithm 

with a recursive least squares filter to learn the optimal impedance parameters for robotic 

contact tasks such as opening a door or movement throughout space. For daily activities this 

result is extremely beneficial as the interaction forces were shown to lower after training, even 

in uncertain environments. Fuzzy logic has also been used in conjunction with RL to convert the 

traditionally discrete Q-learning agents to continuous state space problems, known as fuzzy Q-

learning, and was able to reduce the state-action space at the cost of a guaranteed convergence 

(Kofinas and Dounis 2019). Although this approach is unlikely to be used for the purposes of 

rehabilitation, the combination of fuzzy logic and RL is definitely a strategy that should be 

monitored. Other more basic techniques such as DDPG (Liu et al. 2019) and radial basis function 

(Guan and Yamamoto 2021) are also reported upon, but simply encourage the use of RL in 

rehabilitation without any specific importance.  

Within reinforcement learning terminology an important distinction to make is between model-

free and model-based approaches. A model-based approach requires the system to have a 

perfect model of its environment, including transition probabilities for stochastic environments. 

With this knowledge, the agent will have prior knowledge to what states it can transition into 

and which actions will cause that specific trajectory. For any real-world scenario an accurate 

environment model is rarely available and in many cases not possible to obtain. Tests have been 

performed to try and compare model-based and model free RL in the field of autonomous 

racing, showing significantly better results from the model-based deep learning algorithm, 

Dreamer (Brunnbauer et al. 2021). As the environment is much simpler in map tracing, this result 

does not offer much insight for rehabilitation but does articulate several considerations when 

transitioning from simulations to real robots, such as using a consistent starting point for a 

moderate portion of training data and random placement for the remainder. It is also noted that 

implementing deep reinforcement learning into the real world is more difficult than simulations 

and less documented.  

Adaptive controllers have shown to be able to reject disturbances during online operation 

(Howell and Best 2000). As this does not require any detailed knowledge of the system being 

controlled, it is a useful alternative to the model-based methods previously discussed. Although 
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more data is required as it is less data-efficient, the ease of implementation drastically makes 

up for this shortcoming. It is also noted that the results of the continuous action reinforcement 

learning automata (CARLA) were superior to older manual PID tuning techniques such as Ziegler-

Nichols. This kind of RL is most favoured for systems where changes can be anticipated (like 

gait). One of the dangers of relying heavily on data is the possibility of biases in the data causing 

biases in the trained system, or overfitting to the data available. Studies on the effects of 

overfitting have discussed the increased sensitivity to environmental perturbations, as well as 

the similarities to an under-explored environment making diagnostics less clear-cut (Zhang, 

Vinyals, et al. 2018). The problem of overfitting becomes a larger problem for data collection, as 

any small environmental changes in real-world gait must be present in the training data or 

human safety becomes compromised. Small bumps in a footpath may have never been 

experienced by an agent trained on data collected exclusively within a gait laboratory, and as 

such the data collection stage of RL development becomes increasingly important for 

rehabilitation purposes, if the rehabilitation device is itself not restricted in potential 

environments. Adding model uncertainty speeds learning; aims to incorporate model of 

reference signal into the learning process; assuming a linear model. 
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Decentralisation of MIMO Integral 

Controller Using Passivation

Introduction

With technology expanding at greater speeds than ever and becoming more intertwined with 

every aspect of society, the control systems that can be constructed are becoming more complex 

and ever-present. Smart devices have become common in both business and residential 

settings, allowing data aggregation and analysis on topics never before possible. Connecting 

these devices into a networking system allows dramatic improvements to society; whether it be 

through a smart grid appropriately scheduling devices to minimize economic cost

(Venayagamoorthy et al. 2016), or by simply making device communication more user friendly. 

The Internet of Things (IoT) is a global network that connects smart devices to the internet and 

makes a great example of how device interconnectedness can drastically increase the services 

that can be offered by automated systems and the societal benefit they provide. These services 

can be more efficiently scheduled and run when access to guiding data is available, which is also 

true for systems that are isolated from the greater IoT but communicate within a smaller 

localised network. Although these benefits are vast, the interconnections of smart devices bring 

complexities to a system that must be addressed in order to retain a functioning system. Control 

theory dealing with multi-input multi-output (MIMO) systems is well equipped to deal with 

issues such as device coupling, where one input inadvertently affects outputs that are not 

desired. Additionally, the obvious effect of adding more devices to a system is that the number 

of potential points of failure also increases, so the system must avoid any critical failures that 

may occur due to these coupling effects. Stability of a system can be compromised due to input-

output (IO) coupling and signal time delay (Cao 2014). For a MIMO system with transfer 

functions for every IO relation, every transfer function must be stable to guarantee internal 

stability of the coupled system. For a system with n inputs and m outputs the MIMO transfer 

function can be represented as a matrix with each component being its own transfer function.

𝐺(𝑠) = [
𝑔11(𝑠) ⋯ 𝑔1𝑛(𝑠)
⋮ ⋱ ⋮

𝑔𝑚1(𝑠) ⋯ 𝑔𝑚𝑛(𝑠)
]

(3.1)
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From this information, two important tasks are derived to best design these complex systems: 

minimizing the number of inputs and outputs the system uses without negatively affecting the 

overall performance, and, simplifying the IO relationships to make the control system more 

manageable and efficient. These tasks are not required for single-input single-output (SISO) 

models which are much more easily controlled. If all coupling effects can be minimized to a level 

that any crosstalk can be effectively ignored, then a MIMO system can be perfectly described as 

multiple SISO systems. This setup is known as a “decentralized controller” as each SISO 

controller does not need to interact with one another and no central control is necessary. This 

would be represented by G(s) in (3.1) becoming a diagonal matrix where 𝑔𝑖𝑗(𝑠) = 0 𝑓𝑜𝑟 𝑖 ≠ 𝑗. 

The decentralised control structure is much more common than the centralised approach, 

especially in the last few decades (Bao and Lee 2007: 2). To successfully design a decentralised 

controller it is important that the correct input be paired with the appropriate output, which is 

not always immediately obvious due to the aforementioned signal coupling. This step is known 

as “control configuration selection” or “loop pairing” and must occur before any controller 

tuning takes place. Many different techniques of loop pairing have been developed over several 

decades with new techniques still being proposed relatively recently (Huilcapi et al. 2019; Bao 

et al. 2007). For any papers discussing the control configuration selection it is important to keep 

in mind that control systems discussed must already be decentralised for the loop pairing to 

work. Therefore, a method that decentralises a coupled MIMO system can act as a very useful 

tool in control design.  

An analysis of a system from the perspective of energy transfer can help determine system 

stability and provide an intuitive reasoning behind system responses. Through this lens, specific 

properties arise that categorise systems depending on their energy properties. A system is said 

to be dissipative if the amount of energy that is stored within the system over a finite time 

interval is less than the amount of energy that was supplied to the system in the same time 

period. A system is said to be passive if it is dissipative with respect to a specific supply rate, 

which will be discussed later (Bao and Lee 2007). This definition of passivity brings with it many 

beneficial properties that can be exploited to decentralise a system while retaining system 

stability. This is especially important for the purposes of rehabilitation, where certain human 

joints are passive systems that will allow cohesion between human and machine. This 

information acted as the catalyst into this research, fundamentally tying the results with ankle 

rehabilitation. As a passive system is also minimum phase, ensuring passivity also removes the 

need for excessive fail-safe designs. This chapter focuses on the decentralisation of a MIMO 
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controller using these passivity properties as a proof-of-concept to be used in future complex 

MIMO systems. 

Large portions of this chapter rely on esoteric mathematically-intensive control theory that is 

not applicable to other chapters of the dissertation. To better group the relevant information, a 

secondary literature review is included within this chapter to detail the theory behind passivity-

based process control. A breakdown of the aims and objectives of this chapter are discussed in 

“Objectives” and the practical implementations of discussed theory to achieve these goals are 

discussed in “Methodology”. This chapter aims to establish an easy and repeatable method for 

converting real-world control plants into a passive system as close to the original as possible, 

and determine the best input-output pairing configuration for this transformation. With these 

new designs, real-world robotic systems will be able to retain passivity when coupled with 

specific human joints such as the ankle. From there, controller development can proceed with 

less limitations and more assurance of safety and stability during operation, allowing 

redundancies in the design to be removed which may have been negatively impacting 

performance. 

Literature Review

3.2.1.Matrix Fraction Descriptions

Transfer functions will often be constructed from polynomial numerators and denominators, 

where the degree of the denominator is larger than the degree of the numerator if the transfer 

function is considered strictly proper. With an n-by-n transfer function matrix containing n2

transfer functions it is sometimes beneficial to restructure the system matrix into two separate 

n-by-n matrices that separate numerators and denominators. This is known as a matrix fraction 

description (MFD) and can be implemented in two ways: a left MFD will multiply the inverse of 

the denominator matrix 𝐷(𝑠) to the left-hand side of the numerator matrix 𝑁(𝑠), while a right 

MFD will multiply the inverse of 𝐷(𝑠) to the right-hand side of 𝑁(𝑠) . Within this paper, 

whenever an MFD is referenced it is referring to a right MFD, for which the equation is provided:

𝐺(𝑠) = 𝑁(𝑠)𝐷−1(𝑠) (3.2)

A right MFD can be obtained from a state space description of a given system by designing 

stabilizing state-variable feedback (Goodwin, Graebe, and Salgado 2000: 597). Matrix fraction 
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descriptions are useful for the decomposition of complex proper transfer functions which are 

often found representations of physical systems. For the purposes of this project, if a process is 

strictly passive then it can be stabilised by a decentralised passive controller. A decentralised 

controller is easier to construct by finding the MFD and restructuring the denominator matrix to 

be diagonal. From this form, a state space representation which guarantees the decentralised 

characteristics will be producible. This method is described by Kailath (1980: 403) who utilises 

the controller form realisation for a right MFD.  

3.2.2.Passivity 

All control systems will have energy transfer from the system in both inward and outward 

directions. Energy directed inward is stored in the system which may cause instability, while 

energy directed outward is distributed to the environment. This energy rate of change is called 

the supply rate w(t) and is dependent on the input u(t) and output y(t) of the system. A storage 

function S(x(t)) describes how much energy is stored within the system at any given time-

dependent state x(t), and can be used to determine system behaviour with the supply rate. If 

the amount of energy stored within the system over a time period T = [t0, t1] is less than the 

integral of the supply rate over the same period of time, then some of the energy supplied has 

been lost in the transmission. A system is said to be dissipative if this condition is met for all t1 ≥ 

t0 ≥ 0. 

 
𝑆(𝑥(𝑡1)) − 𝑆(𝑥(𝑡0)) ≤ ∫ 𝑤(𝑢(𝑡), 𝑦(𝑡)) 𝑑𝑡

𝑡1

𝑡0

 
(3.3) 

  

If a system is not dissipative, then excess energy is being generated from somewhere and the 

system may be inherently unstable if this energy build-up cannot be controlled. Excessive energy 

will take some form such as heat or vibrations that may negatively affect the system, so a 

dissipative system is preferred. However, it is important to note that a dissipative system does 

not guarantee stability. If a storage function does not consider every critical state, then any state 

not considered has the potential to cause instability. An example of this would be a state vector 

that contains variables related to motion would be able to predict instability due to motion, but 

energy causing an increase in system temperature would not be considered by the storage 

function and could lead to an unstable temperature and potential system damage.  

A passive system is a specific kind of dissipative system where the initial energy storage S(0) is 

equal to 0 and the supply rate is defined as the product of inputs and outputs: 
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 𝑤(𝑢(𝑡), 𝑦(𝑡)) = 𝑢𝑇(𝑡)𝑦(𝑡) (3.4) 

  

This restrictive supply rate shows that the number of inputs must match the number of outputs 

for the definition of passivity to be met. The passive system is said to be lossless if the equality 

of (3.3) holds with (3.4), or strictly passive if the strict inequality holds. Passive systems have 

several properties that can help identify them and will help in control. One such property is that 

a passive system output signal is bounded to a phase shift within [-90°, 90°] from the sinusoidal 

input. This is a by-product of the power consumption behaviour; the input and output values 

are power conjugates and when multiplied together must return a positive value to show power 

consumption rather than power generation. A second useful property is that the eigenvalues of 

a passive system are guaranteed to be non-negative, however a system with non-negative 

eigenvalues is not guaranteed to be passive unless the system is symmetric. By simply viewing 

the plot of eigenvalues over all frequencies of the system (which can be turned symmetrical 

by (𝐴 + 𝐴𝑇)/ 2), determining passivity is as easy as confirming no negative eigenvalues on the 

produced graph. The physical interpretation of an eigenvalue being positive also ties to the 

power consuming behaviour of the system. In the frequency domain, this property is equivalent 

to confirming positive real condition (that the transfer function is a positive real function).  

 

3.2.3.Passivity Indices 

The degree of passivity, or passivity index of a system is a measurement of how much passivity 

is within a system, with a higher passivity index indicating a system is more passive. From the 

inequality in (3.3) it can be seen that a system is dissipative if not all energy supplied to the 

system is stored, however the amount of energy that is dissipated is not specified. A system that 

dissipates more energy would be considered more dissipative. Similarly, a passive system is 

considered more passive for systems with a larger inequality between the values. Naturally, 

subtracting value from the supply rate while maintaining the storage function will push the 

inequality closer to an equality and make the system less passive, while adding value will make 

the system more passive. As the supply rate function is dependent on both input and output 

there are two ways to adjust the supply rate: change the output through the inclusion of a static 

feedforward system, or change the input through the inclusion of a static feedback system. 

These techniques to achieve passivity are known as input feedforward passivity (IFP) and output 

feedback passivity (OFP), respectively. By using IFP or OFP, a passive system can be made non-
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passive and a non-passive system can be made passive, which allows all the passivity-based 

stability conditions to be applied more globally.  

Input feedback passivity, for a given passive system H, feeds the input signal u through a static 

gain ν (ν > 0), and subtracts from the output signal y. Due to the passivity of H and the static 

nature of the additional system, the combined system H̃ retains the storage function S(x) and 

the input signal u, but with the output ỹ = y – νu. This structure can be seen as a block diagram 

in Figure 3.1(a). Assuming H̃ is passive, and the storage function for time ti denoted as Si, the 

passivity inequality can be expressed as: 

 
𝑆1 − 𝑆0 ≤ ∫ (𝑢𝑇𝑦 − 𝜈𝑢𝑇𝑢) 𝑑𝑡

𝑡1

𝑡0

 
(3.5) 

Equation (3.5) shows that higher values of ν will reduce the difference between stored energy 

and supplied energy over a time period [t0, t1] for the combined system H̃, and H is dissipative 

with respect to the supply rate function provided. This shows that the original system H has an 

excess of passivity of the amount ν, denoted as IFP(ν), as this is how much passivity can be 

compensated by H before the inequality is violated. The passivity must be provided by H and not 

the feedforward gain as the supply rate component from the feedforward block -𝑤𝑓𝑓(𝑢, 𝑦𝑓𝑓) =

−𝑢𝑇𝑦𝑓𝑓 = −𝑢
𝑇(𝜈𝑢) = −𝜈𝑢𝑇𝑢 is guaranteed to be non-positive. This violates what is known as 

the positive real condition. Every passive system is positive real, so identifying that a system is 

not positive real confirms the system is not passive.  

Assuming H is non-passive, similar arguments can be made using a negative ν value such that 

the supply rate for H̃ is provided by 𝑤̃(𝑢, 𝑦) = 𝑢𝑇𝑦 + 𝜈𝑢𝑇𝑢. In this case it is said that H has a 

lack of passivity of the amount ν, denoted by IFP(-ν), and is compensated by the feedforward 

gain (which no longer violates the positive real condition as ν is guaranteed to be negative) to 

force H̃ to be passive. 

Output feedback passivity for a given passive system H, feeds the output signal y through a static 

gain ρ (ρ > 0), and adds to the input signal ũ, which is the input to the combined system H̃. The 

storage function and output signal y are retained, but the input to H becomes u = ũ + ρy. This 

structure can be seen as a block diagram in Figure 3.1(b). Assuming H̃ is passive, and the storage 

function for time ti denoted as Si, the passivity inequality can be expressed as: 

 
𝑆1 − 𝑆0 ≤ ∫ (𝑢𝑇𝑦 − 𝜌𝑦𝑇𝑦) 𝑑𝑡

𝑡1

𝑡0

  
(3.6) 
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Equation (3.6) is the output feedback equivalent to (3.5) and shows that the original system H 

has excess passivity of the amount ρ, denoted as OFP(ρ). Similarly, assuming H is non-passive, a 

negative value of ρ will produce the supply rate 𝑤̃(𝑢, 𝑦) = 𝑢𝑇𝑦 + 𝜌𝑦𝑇𝑦 and show a lack of 

passivity in H, denoted by OFP(-ρ), that can be compensated by the feedback gain to result in a 

passive H̃.  

 

Figure 3.1. (a) Subtraction of a feedforward gain for input feedforward passivity, and (b) Addition of a feedback gain 

for output feedback passivity (Bao and Lee 2007) 

 

3.2.4.Passivation via LMIs 

If a system is not passive but lacks IFP or OFP, then the process can be converted to a passive 

system by adding the appropriate IFP or OFP components mentioned above to push the system 

towards passivity. This process is known as passivation and has many beneficial effects on the 

control of a system since passive systems controlled by a passive controller are also guaranteed 

to be passive. An important caveat is that an unstable system cannot be passivated by IFP and 

must either be stabilised beforehand, or use OFP to passivate. Similarly, OFP cannot passivate a 

system with non-minimum phase. These restrictions are briefly mentions to clarify that both IFP 

and OFP can be useful depending on the circumstances and system being worked upon, but 

neither are applicable in every scenario.   

Obtaining the appropriate feedforward system can be achieved through the application of linear 

matrix inequality (LMI) techniques. An LMI is a mathematical representation of linear 

inequalities used to represent constraints of a system, often used in the field of optimisation. 
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The Kalman-Yacubovich-Popov (KYP) lemma is an LMI that relates the state space representation 

of a system to the stability and passivity of the system. Under the assumption that a system 

output equation has no feedthrough (the state space matrix D=0) the KYP lemma can be 

simplified to the positive-real (PR) lemma, which states the following:  

A stable linear time invariant system is given by the state space equations provided in (2.1) and 

(2.2). The system is passive if and only if there exists a positive definite matrix P such that: 

 
[𝐴
𝑇𝑃 + 𝑃𝐴 𝑃𝐵 − 𝐶𝑇

𝐵𝑇𝑃 − 𝐶 −𝐷 − 𝐷𝑇
] < 0 

(3.7) 

  

For matrix inequalities, matrix 𝑃 ∈ ℝ𝑛  is considered positive definite if the following strict 

inequality is true: 

 𝑥𝑇𝑃𝑥 > 0,       ∀𝑥 ∈ ℝ𝑛 (3.8) 

 

With inequality (3.7) showing passivity is dependent on state space representation it becomes 

clear that changing the state space matrices of a system can affect the passivity. Specifically, the 

output y is dependent on the output matrix C in the same manner that the output y is dependent 

on the feedforward gain used for IFP. By adding an additional feedforward block Cff in parallel 

to the existing output matrix block C, the new combined system 𝐶̃  =  𝐶 + 𝐶𝑓𝑓  can be 

appropriately selected to guarantee (3.7) and (3.8) are true and the new system is passive.  
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Methodology

3.3.1.Controller feedback architecture

For a system with a process G, the addition of a feedforward system Gff allows for the joint 

transfer function G̃ to become a passive system. However as the process of the system is 

representative of its physical properties, the joint process should ideally be as close to the 

original as possible for best modelling practices. It is possible to consider the additional 

feedforward process as part of the controller rather than part of the plant. A semi-equivalent 

closed loop system can be constructed by redirecting the feedforward process into a feedback 

process creating an inner loop with the base controller K. Both designs can be seen in Figure 3.2, 

showing the joint process G̃ in (a) and the joint controller K̃ in (b). The feedback equivalent 

system shows a more intuitive structure with all control structures grouped together into a 

standard closed loop configuration often found in control theory literature. By calculating the 

transfer function equivalence of the total closed loop system (from r to ỹ/y) it becomes evident 

the system is not perfectly equivalent. The feedforward addition of Gff produces an additional 

term in the transfer function at the expense of the guaranteed passivity of G̃. It can be noted, 

however, that the denominator term of the transfer function remains the same (shown below)

and as such both systems can be guaranteed to have the same stability properties which is the 

predominant factor being analysed. Through the lens of stability both transfer functions are 

equivalent and guarantee passivity.

Figure 3.2. General block diagram structure for stability and passivity equivalence using: (a) A feedforward controller 

Gff. (b) A feedback controller Gff. 
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𝑦̃ = 𝑦 + 𝑦𝑓𝑓;    𝑦 = 𝐺𝑢;  𝑦𝑓𝑓 = 𝐺𝑓𝑓𝑢 

𝑢 = 𝐾𝑒;   𝑒 = 𝑟 − 𝑦̃;   

 

𝑢 = 𝐾 (𝑟 − (𝐺𝑢 + 𝐺𝑓𝑓𝑢)) 

𝑢 = 𝐾𝑟 − 𝐾𝐺𝑢 − 𝐾𝐺𝑓𝑓𝑢 

𝑢 + 𝐾𝐺𝑢 + 𝐾𝐺𝑓𝑓𝑢 = 𝐾𝑟 

 

𝑢 =
𝐾𝑟

1 + 𝐾𝐺 + 𝐾𝐺𝑓𝑓
 

 

𝑦̃ = 𝐺 (
𝐾𝑟

1 + 𝐾𝐺 + 𝐾𝐺𝑓𝑓
) + 𝐺𝑓𝑓 (

𝐾𝑟

1 + 𝐾𝐺 + 𝐾𝐺𝑓𝑓
) 

 

𝑦̃ =
𝐺𝐾𝑟

1 + 𝐾𝐺 + 𝐾𝐺𝑓𝑓
+

𝐺𝑓𝑓𝐾𝑟

1 + 𝐾𝐺 + 𝐾𝐺𝑓𝑓
 

 

𝑦̃ = (
𝐺𝐾 + 𝐺𝑓𝑓𝐾

1 + 𝐾𝐺 + 𝐾𝐺𝑓𝑓
)𝑟 

 

 

 

𝐺𝐶𝐿 =
𝑦̃

𝑟
=

𝐺𝐾 + 𝐺𝑓𝑓𝐾

1 + 𝐾𝐺 + 𝐾𝐺𝑓𝑓
 

 

𝑦 = 𝐺𝑢;    𝑢 = 𝐾𝑒;    𝑒 = 𝑟 − 𝑦 − 𝑦𝑓𝑓; 

𝑦𝑓𝑓 = 𝐺𝑓𝑓𝑢 

 

𝑢 = 𝐾(𝑟 − 𝑦 − 𝐺𝑓𝑓𝑢) 

𝑢 = 𝐾𝑟 − 𝐾𝑦 − 𝐾𝐺𝑓𝑓𝑢 

𝑢 + 𝐾𝐺𝑓𝑓𝑢 = 𝐾𝑟 − 𝐾𝑦 

 

𝑢 =
𝐾𝑟 − 𝐾𝑦

1 + 𝐾𝐺𝑓𝑓
 

 

𝑦 = 𝐺 (
𝐾𝑟 − 𝐾𝑦

1 + 𝐾𝐺𝑓𝑓
) 

𝑦 =
𝐺𝐾𝑟 − 𝐺𝐾𝑦

1 + 𝐾𝐺𝑓𝑓
 

𝑦 +
𝐺𝐾𝑦

1 + 𝐾𝐺𝑓𝑓
=

𝐺𝐾𝑟

1 + 𝐾𝐺𝑓𝑓
 

𝑦 =

𝐺𝐾𝑟
1 + 𝐾𝐺𝑓𝑓

1 +
𝐺𝐾

1 + 𝐾𝐺𝑓𝑓

 

 

𝐺𝐶𝐿 =
𝑦

𝑟
=

𝐺𝐾

1 + 𝐾𝐺𝑓𝑓 + 𝐺𝐾
 

 

For a SISO system all transfer functions are commutative and no discrepancy between GK and 

KG exist. For a MIMO system the multiplication of matrices must be performed more carefully, 

but as each matrix can be set to act as a left-hand side or right-hand side multiplication the 

transfer function can be manipulated to act accordingly. The transfer function also clarifies the 

desire for an optimally small Gff, as this term tends towards 0 the two transfer functions 

converge.  

The selection of a base controller is an important step that must occur before any IO pairing 

takes place. A proportional-integral-derivative (PID) controller is a commonplace controller with 

widespread application and comes with the beneficial property of being guaranteed to be 

passive (Romeo et al. 2021). A PID controller is a SISO system, however many can be combined 
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to a MIMO system with each individual PID being placed in the diagonal elements of the MIMO 

transfer function. This diagonal property guarantees the controller is decentralised with no 

crosstalk between signal inputs and outputs; a strictly 1-1 relationship is preserved. To retain 

this decentralisation, the diagonal property the feedback controller must not be broken by the 

feedback controller Gff. This is achievable by structuring Gff to be diagonal as well, which can be 

proven using the standard negative feedback loop equation for MIMO systems: 

 
𝐾 =

𝐾

𝐼 + 𝐾 ∗ 𝐺𝑓𝑓
 

(3.9) 

  

The base controller K represents the MIMO PID controller, the feedback controller Gff represents 

the passivating controller, and the closed-loop controller K̃ would represent the equivalent 

transfer function matrix of the combination of these two controllers.  

Structuring the feedback controller to be diagonal can be done by constructing the state space 

representation matrices {A, B, C} to all be block diagonal. If this condition is met, then the 

transfer function calculated through (3.2) guarantees a diagonal process. The control canonical 

form is constructed in such a way that the state matrix A and the input matrix B are both block 

diagonal by definition if the right matrix fraction description of the transfer function contains a 

diagonal denominator matrix. For an n-by-n MIMO system the denominator matrix will also be 

of size n*n. Each column will have n transfer functions that have potentially different polynomial 

degrees. The maximum degree for the ith column is called the ith column degree and is 

represented by ki. With this information, the state space representation can be constructed to 

guarantee a diagonal transfer function, as such:  

 𝐴𝑐 = 𝐴𝑐
0 − 𝐵𝑐

0𝐷ℎ𝑐
−1𝐷𝑙𝑐 (3.10) 

  𝐵𝑐 = 𝐵𝑐
0𝐷ℎ𝑐

−1 (3.11) 

 𝐶𝑐 = 𝑁𝑙𝑐 (3.12) 

where 𝐴𝑐
0  and 𝐵𝑐

0  are block diagonal matrices formed from n matrices which vary in size 

depending on the column degree: 

 

𝐴𝑐
0 = 𝑏𝑙𝑜𝑐𝑘 𝑑𝑖𝑎𝑔

{
 
 

 
 

[
 
 
 
 
0 0 … 0 0
1 0 … 0 0
0 1 … 0 0
⋮ ⋮ … ⋮ ⋮
0 0 … 1 0]

 
 
 
 

, 𝑘𝑖 × 𝑘𝑖, 𝑖 = 1,… , 𝑛

}
 
 

 
 

 

(3.13) 
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𝐵𝑐
0 = 𝑏𝑙𝑜𝑐𝑘 𝑑𝑖𝑎𝑔 {[

1
0
⋮
0

] , 𝑘𝑖 × 1, 𝑖 = 1,… , 𝑛} 

(3.14) 

  

The coefficient matrices 𝐷ℎ𝑐 , which contains the highest coefficient of each element of the 

denominator matrix 𝐷(𝑠); and 𝐷𝑙𝑐, which contains the remaining lower coefficients for each 

element, will be diagonal and block diagonal respectively as a result of the denominator matrix 

𝐷(𝑠) being diagonal. An example of this is provided in 3.3.3.3 for clarity. These conditions lead 

to the transfer function 𝐺𝑐(𝑠) being diagonal if the matrix 𝐶𝑐 is also block diagonal, which can 

be mathematically deduced through equations (2.3), and (3.10) through to (3.12). Using this 

derived constraint of  𝐶𝑐 , finding a solution to the feedforward system can be achieved by 

identifying this as an optimisation problem. By employing an optimisation solver the output 

matrix 𝐶𝑐 can be chosen such that it must be block diagonal, which guarantees the condition 

that our feedback controller (𝐺𝑓𝑓  in Figure 3.2) is diagonal and our closed loop controller K̃ 

remains diagonal and appropriately designed for a decentralised system. The optimisation 

toolbox YALMIP (Lofberg 2004) is used in conjunction with the optimisation solver MOSEK to 

generate the results in MATLAB 2021a.  

 

3.3.2.Process control configuration selection 

With the structure of the controller and feedback controller known, the system process can be 

permuted in such a way that the input-output relations can be changed as desired. Swapping 

the ith and jth rows of the process transfer function will effectively relabel the ith
 and jth outputs 

of the system to one another while still representing the same physical system. If no controller 

is present, performing this action does not affect the system at all and can be freely performed. 

However once the system is coupled with a controller the ordering of inputs and outputs 

becomes important. Changing the ordering of the process but not the controller will result in a 

different control configuration where the controller relates inputs to different outputs. This is 

known as control configuration selection (CCS) and must occur before the controller is designed, 

since the design will be dependent on this IO coupling. With the prior restriction that the 

controller must be diagonal, a controller can be designed for every CCS to determine which 

process is best suited for the desired operation conditions. 

Since it is subjective and dependent on the user it is difficult to identify any CCS as the 

undisputed best performing configuration, although some can be disregarded as definitely 
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worse. For this research, the CCS that required the least amount of control adjustment to 

become both stable and passive was favoured. This condition can be mathematically 

determined by the output matrix 𝐶𝑓𝑓 from the feedback controller 𝐺𝑓𝑓. The state matrix 𝐴𝑓𝑓 

and input matrix 𝐵𝑓𝑓 are set to be direct copies of the state and input matrices of the process 𝐺 

to simplify the addition of the two transfer functions:  

𝐴𝑓𝑓 = 𝐴;    𝐵𝑓𝑓 = 𝐵;    𝐶𝑓𝑓 will be calculated by the optimisation algorithm 

From Figure 3.2(a) the effect of the feedforward controller can be seen as a parallel addition of 

transfer functions which is achieved mathematically by 𝐺𝑡𝑜𝑡 = 𝐺 + 𝐺𝑓𝑓. Using the state space 

representation and the previously defined values of 𝐴𝑓𝑓 = 𝐴  and  𝐵𝑓𝑓 = 𝐵 , the combined 

transfer function becomes: 

 𝐺𝑡𝑜𝑡 = 𝐶(𝑠𝐼 − 𝐴)
−1𝐵 + 𝐶𝑓𝑓(𝑠𝐼 − 𝐴𝑓𝑓)

−1
𝐵𝑓𝑓 

= 𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐶𝑓𝑓(𝑠𝐼 − 𝐴)
−1𝐵 

  = (𝐶 + 𝐶𝑓𝑓)(𝑠𝐼 − 𝐴)
−1𝐵                      

(3.15) 

 

From this representation it becomes clear that a smaller value of 𝐶𝑓𝑓 will result in less change 

to the overall system. The optimisation solver will aim to minimize the spectral norm of 𝐶𝑓𝑓 to 

find an output matrix value that satisfies all the constraints of the system while also resulting in 

the least overall variance from the original process. The spectral norm of a real matrix 𝑀 is 

defined as the square root of the maximum eigenvalue of 𝑀𝐻𝑀, where 𝑀𝐻 is the Hermitian 

(complex-conjugate transpose) matrix of 𝑀.  

 ||𝑀||2 = √𝜆𝑚𝑎𝑥(𝑀
𝐻𝑀) (3.16) 

 

𝑀𝐻𝑀 is guaranteed to have real eigenvalues and as such the spectral norm represents the 

largest scaling factor caused by the transfer function. MIMO systems will have multiple 

scaling/gain factors in the frequency domain, and so system gain over frequency is defined as 

the value that maximizes gain for an associated input (Goodwin, Graebe, and Salgado 2000). By 

running the optimisation solver for each CCS and comparing spectral norm values it can be 

determined which CCS is able to handle the least amount of change from the original system 

while still achieving the requirements of passivity. The CCS that produces the smallest possible 

spectral norm will be selected as the optimal input-output pairing as it will best represent the 

unmodified physical system that will be able to be decentralised and controlled.  
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3.3.3. Software Development 

With the overall goal of creating a controller that is able to guarantee system stability and 

passivity in the most efficient way possible, it is required to develop automated software in 

stages that build off the previous stages. As the system is required to create a control system 

that contains several characteristics, each characteristic is separated into a separate subtask to 

help structure the software development and guarantee each characteristic is met sufficiently. 

The stages of development can be described as: guaranteeing system stability for safety and 

functionality purposes, guaranteeing system passivity for safety with human coupling, controller 

diagonalisation to guarantee appropriate state-space representation for the final step, and the 

combination of all three steps for each IO pairing to identify the optimal stable-passive-

diagonalised controller system. Each stage is detailed below with the underlying ideas of the 

implementation, however the stages of development and troubleshooting are not discussed in 

detail as they do not offer any insight to the overarching goals and objectives of the project.  

3.3.3.1. Progression stage 1 - Stabilisation 

The first task was to become familiar with the required optimisation software YALMIP and 

develop a practical understanding of how to effectively utilize LMIs in MATLAB. This task was 

performed by constructing a script that guaranteed stability of a system using full state 

feedback. For full state output feedback for the system the output vector y must equal the state 

vector x, and as such the output matrix C must equal unity (𝐶 = 1) and the feedthrough matrix 

D must equal zero (𝐷 = 0). Alternatively, by feeding the state vector directly to the feedback 

line (shown in Figure 3.3) the output of the system can remain a separate value while still 

benefiting from the full-state feedback. By solving the state space equations (2.1) and (2.2) for 

this system we find the new equation: 

 𝑥̇ = (𝐴 − 𝐵𝐾)𝑥 (3.17) 
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Figure 3.3. Block diagram structure of a system utilising full-state feedback without utilising full-state 

output feedback. The system in the red box can be stabilised by appropriately setting feedback gain K 

For a system with the state vector x, the energy within the system is described by the function 

𝑉(𝑥) and is calculated as: 

where 𝑃 ∈ ℝ𝑛𝑥𝑛  is symmetric and will be dependent on the system. As this value function 

represents the physical meaning of contained energy it can also be reasoned that V(x), and 

therefore also P, must be greater than zero (since no system can have negative energy). 

Similarly, for the system to be stable the rate of change of system energy must be negative to 

represent an energy dissipation behaviour. A system with a positive energy derivative would 

represent the accumulation of energy which is not infinitely stable. This condition can be 

represented as the inequality below, where the matrix Q is simply a buffer from zero to remain 

a set distance from the instability condition: 

 𝑑

𝑑𝑡
𝑉(𝑥) = 𝑉̇(𝑥) < 𝑄 

(3.19) 

From this inequality, by applying the product rule and substituting in the traditional state space 

equation 𝑥̇ = 𝐴𝑥  it is possible to derive the Lyapunov inequality which guarantees system 

stability in the form of a linear matrix inequality: 

𝑉̇(𝑥) = 𝑥̇𝑇𝑃𝑥 + 𝑥𝑇𝑃𝑥̇                          

= (𝐴𝑥)𝑇𝑃𝑥 + 𝑥𝑇𝑃(𝐴𝑥)  

= 𝑥𝑇𝐴𝑇𝑃𝑥 + 𝑥𝑇𝑃𝐴𝑥       

= 𝑥𝑇(𝐴𝑇𝑃 + 𝑃𝐴)𝑥          

 𝑉(𝑥) = 𝑥𝑇𝑃𝑥 (3.18) 
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These values can be reduced into the inequalities known as the Lyapunov stability condition, 

which states that a differential equation is stable if and only if there exists a matrix P such that: 

 𝐴𝑇𝑃 + 𝑃𝐴 < 𝑄 (3.20) 

  𝑃 > 0 (3.21) 

If the A matrix in (3.20) is substituted with the appropriate matrix 𝐴̃ = (𝐴 − 𝐵𝐾) from equation 

(3.17) then a bilinear inequality is formed as the goal of the task is to design controller K to 

guarantee stability of the system, and 𝑃 must be determined to exist. As neither 𝑃 nor 𝐾 are 

known values, the multiplication of these unknown variables causes the bilinear inequality that 

cannot be solved to an optimal solution. The inverse matrix 𝑃−1 can be projected onto this 

bilinear matrix inequality to allow for some substitutions and simplify the calculation: 

𝑃−1[(𝐴 − 𝐵𝐾)𝑇𝑃 + 𝑃(𝐴 − 𝐵𝐾)]𝑃−1 < 𝑃−1𝑄𝑃−1 

𝑃−1𝐴𝑇𝑃𝑃−1 − 𝑃−1𝐾𝑇𝐵𝑇𝑃𝑃−1 + 𝑃−1𝑃𝐴𝑃−1 − 𝑃−1𝑃𝐵𝐾𝑃−1 < 𝑃−1𝑄𝑃−1 

𝑃−1𝐴𝑇 − 𝑃−1𝐾𝑇𝐵𝑇  + 𝐴𝑃−1 − 𝐵𝐾𝑃−1 < 𝑃−1𝑄𝑃−1 

By now substituting matrix 𝑅 = 𝑃−1 and 𝑆 = −𝐾𝑃−1, and remembering that 𝑃 is symmetric, 

the inequality becomes a new set of linear matrix inequalities. It can be trivially shown that if a 

matrix is positive definite then it is invertible, and the inverse matrix is also positive definite. This 

guarantees the positive definite constraint of 𝑃 is retained for the new matrix 𝑅: 

 𝑅𝐴𝑇 + 𝑆𝑇𝐵 + 𝐴𝑅 + 𝐵𝑆 − 𝑅𝑄𝑅 < 0 (3.22) 

  𝑅 > 0 (3.23) 

  

As LMIs are convex functions this form can be easily solved through the use of a convex solver. 

However the solver is only able to minimize one matrix while we want both 𝑃 and 𝐾  to be 

minimized. To achieve this we must convert the algebraic equation in (3.22) into a matrix using 

the Schur complement, which states that a block matrix 𝑀  will have the equivalent Schur 

complement: 

 𝑀 = [
𝐴 𝐵
𝐶 𝐷

] 
(3.24) 

 𝑀/𝐷 ≔ 𝐴 − 𝐵𝐷−1𝐶 (3.25) 

By observing the equation in (3.22) it can be deconstructed to have the necessary form for the 

Schur complement in (3.25), which means the equivalent matrix 𝑀 can be defined as: 



3.3. Methodology  57 
 

 
 

 
𝑀 = [

𝑅𝐴𝑇 + 𝑆𝑇𝐵 + 𝐴𝑅 + 𝐵𝑆 𝑅
𝑅 −𝑄−1

] < 0 
(3.26) 

 

The optimiser command in MATLAB uses two parameters: constraints and objective. The 

constraints parameter is a set of LMIs that detail the restrictions placed on the system. For the 

example of stability, the two constraints include the LMI (3.22) and (3.23) which were derived 

from the Lyapunov inequality (3.20), and (3.21). As the variables 𝐴 and 𝐵 are predetermined by 

the system, only values for 𝑅 and 𝑆 are calculated by the solver. The value of 𝑄 is determined 

by the designer depending on their desired stability margin, but for testing purposes was set to 

a zero matrix. These constraints determine the feasible set: a set of every possible unknown 

variable combination that guarantees every constraint is satisfied. The unknown variables are 

known as standard decision variables within YALMIP. From this set, the optimiser aims to find 

the optimal solution with respect to the objective, which in this stability example, is the 

inequality (3.37) as it contains all the necessary decision variables 𝑅  and 𝑆 . The objective 

variable will almost always be represented by a function of the decision variables that are able 

to be set by the optimisation software with the aim of minimising said function by altering these 

variables. Optimal values for 𝑃 and 𝐾 matrices can then be calculated from the results of the 

optimiser and their direct substitutions. A generic representation of the optimiser function is as 

follows: 

 Minimise: Objective 

 Subject to: Constraints 

 

3.3.3.2. Progression stage 2 - Passivation 

The next two tasks involved aiming to passivate a system similar in structure seen in Figure 

3.2(a), with the additional restriction that the system 𝐺 is fully controllable, fully observable, and 

stable. Although these restrictions limit the number of cases that this passivation method can 

be applied, by using the techniques developed in stage 1, even systems that are unstable can be 

stabilised to then further be passivated.  

Passivation was split into two different approaches to determine how the additional system 

would combine with the existing system. For the first case the state space matrices 𝐴 and 𝐵 are 

guaranteed to be equivalent between the default system and the added feedforward system 

(𝐴 = 𝐴𝑓𝑓 and 𝐵 = 𝐵𝑓𝑓), and as such the state vector is equivalent between systems and simple 
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vector addition is possible. This results in the final number of states for the total system to 

remain the same. For the second case the state matrices are not guaranteed to be shared 

between systems. This leads to the total system state matrices becoming a block diagonal matrix 

of both state matrices 𝐴 𝑎𝑛𝑑 𝐴𝑓𝑓 , while the input matrix becomes a vertically concatenated 

matrix from both input matrices 𝐵 𝑎𝑛𝑑 𝐵𝑓𝑓. This results in the final number of states for the 

total system to be the sum of each state vector, which for our experiment meant a doubling of 

states. Increasing the number of variables to calculate causes much less efficient optimisation 

algorithms and will be exacerbated by any dimensionality issues that will occur in the future.  

𝐴𝑡𝑜𝑡 = [
𝐴 0
0 𝐴𝑓𝑓

] ;      𝐵𝑡𝑜𝑡 = [
𝐵
𝐵𝑓𝑓

] 

As the feedforward system is completely within the designer’s control, having the control 

matrices equate in both cases can always be achieved. This is why both methods are valid and 

reveal helpful information about system passivation.  

Both approaches use the optimisation solver to choose an output matrix 𝐶𝑓𝑓 for the additional 

system 𝐺𝑓𝑓 that would cause the total system 𝐺𝑡𝑜𝑡 to become passive. The passivity condition 

can be achieved through using the KYP lemma as the constraints to the optimisation problem, 

seen in (3.7) and (3.8). The objective was originally set to the output matrix 𝐶𝑡𝑜𝑡 which would 

then calculate the feedforward matrix 𝐶𝑓𝑓 = 𝐶𝑡𝑜𝑡 − 𝐶, however an alternative approach was 

tested using a new scalar value 𝛾 that acted as an upper limit to the spectral norm of 𝐶𝑡𝑜𝑡. By 

optimising, and hence minimising, the upper limit of eigenvalues of the output matrix, the 

overall disturbance caused by the system perturbation can be suppressed to a value as small as 

possible. As this is a more direct optimisation of desired behaviour it is expected that results 

from this method will be superior for the purposes of the overall project, however both methods 

are tested for the purposes of analysis. Details of this implementation are provided in section 

3.3.3.4, which is the stage of the project the technique was developed. The spectral norm 

optimisation was retroactively applied to the attempts at passivation to confirm its functionality. 

An important note for this section is that the output matrix being determined by the optimiser 

is non-diagonal or non-block diagonal. This is the primary distinction between stages 2 and 3.  

Tests to confirm the PR lemma functioned as intended and were integrated into the automation 

script by plotting eigenvalues of each transfer function over frequency  𝑠 =  𝑗𝜔 . With the 

knowledge that a passive system will have positive eigenvalues for all values of ω it can be easily 

visually determined whether a system is passive or not. Some systems were deemed non-
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passive due to negative eigenvalues, but on closer inspection of the data, these values were 

extremely small in magnitude and were attributed to rounding errors in the program. Over 

several system tests, all behaviours produced met their expectations, giving great confidence in 

the reliability of this method for guaranteeing passivity.  

3.3.3.3. Progression stage 3 - Diagonalisation 

The next stage in development was to make use of matrix fraction descriptions to guarantee a 

specific state space representation. A MATLAB script was created to take any MIMO proper 

transfer function as an input and return the MFD with a diagonal denominator matrix as the 

output. This structure, when deconstructed using the techniques outlined by Kailath (1980: 403) 

will always generate a state matrix 𝐴 and input matrix 𝐵 that are block diagonal (see (3.13) and 

(3.14)). Through some fairly trivial algebra it can then be proven that the transfer function of 

this state space realisation, when calculated from (2.3), will be diagonal if the output matrix 𝐶 is 

chosen such that it is also block diagonal. An example of the MFD deconstruction for the 

coefficient matrices 𝐷ℎ𝑐(𝑠) and 𝐷𝑙𝑐(𝑠) is provided below: 

𝑁(𝑠) = [
𝑛11 𝑛12
𝑛21 𝑛22

] 

𝐷(𝑠) = [
𝑎4𝑠

4 + 𝑎3𝑠
3 + 𝑎2𝑠

2 + 𝑎1𝑠 + 𝑎0 0

0 𝑏2𝑠
2 + 𝑏1𝑠 + 𝑏0

] 

     𝐷ℎ𝑐(𝑠) = [
𝑎4 0
0 𝑏2

] ;                𝐷𝑙𝑐(𝑠) = [
𝑎3 𝑎2 𝑎1 𝑎0 0 0
0 0 0 0 𝑏1 𝑏0

] 

𝑘 = [4    2] 

By performing these steps and substituting these values into equations (3.10) to (3.14) we can 

guarantee the new system 𝐺𝑓𝑓  will be diagonal and will only affect the direct input-output 

relations with no crosstalk. The output matrix 𝐶𝑓𝑓 can be guaranteed block diagonal when using 

the optimisation solver by setting the standard decision variables only in the appropriate 

positions of the matrix with constant values of 0 in all others. The system is able to solve 

for 𝐶𝑓𝑓 and produce a real matrix with block-diagonal structure, and as such it is possible to 

restrict the feedforward system 𝐺𝑓𝑓  to be diagonal and avoid crosstalk. The intention of the 

overall experiment is to find the smallest feedforward system that guarantees passivity while 

also assuring the addition of a feedforward perturbation does not cause any signal crosstalk 

within the system. A feedforward system that does not change the output at all would be 

optimal, and as such minimizing the output matrix of the feedforward system is the best 

approach to achieve this minimal divergence. The two major developments of this stage 
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included an automated script to calculate an MFD from a transfer function that had a diagonal 

denominator matrix structure, and the extraction of appropriate coefficient values to substitute 

into a restricted state space equation that guarantees a diagonal transfer function.  

A final note is to understand that not every system will have a solution set when constrained by 

so many inequalities. In some cases the optimiser will return an “infeasible solution” which 

suggests that the input system is not capable of being passivated under these strict conditions 

of diagonal control. Solutions in this category must be analysed separately, and discussion as to 

why the solution is infeasible is required.  

 

3.3.3.4. Progression stage 4 – Pairing Selection 

The last stage of progression is to alter the existing script to find the minimal control matrix for 

each permutation of IO pairings. This is, although fairly simple to implement, a computationally 

intensive task for systems with large amounts of inputs and outputs. For n inputs and outputs 

there will be n-factorial permutations that require cycling, with each optimisation during testing 

taking approximately 5 seconds to complete. Under these assumptions, any system with greater 

than six inputs and outputs will take over 6 hours to compute. All experiments were performed 

on systems with three or less inputs and outputs.  

The method for minimizing the output matrix was also adjusted at this stage in the project. 

Instead of minimizing the matrix  𝐶 , the goal is to now minimize the spectral norm of 𝐶 , 

effectively minimizing the energy output of the system. This conclusion was reached as the 

spectral norm of a matrix is equal to the maximum singular value of the matrix, which in turn is 

equal to the square root of the largest eigenvalue of the matrix multiplied by its complex-

conjugate transpose as shown in (3.16). The eigenvalues of a system are inherently connected 

to the stability and energy state of a system, as they are used to determine if a fixed point is 

stable or unstable in differential equations.  

To find the pairing that would produce the smallest spectral norm the optimiser must aim to 

minimize the maximum eigenvalue of 𝐶𝑇𝐶. Unfortunately the optimiser requires the minimising 

parameter be a well-defined variable and the eigenvalues of a matrix must be calculated 

separately, thus cannot be used as the minimizing parameter of the solver. Instead, a new 

parameter 𝛾  was created with the intention to minimize gamma and add the 

constriction 𝐶𝑇𝐶 <  𝛾. This constraint will effectively minimize the spectral norm through the 

suppression of its upper bound 𝛾. To utilize this within the convex solver, the algebraic inequality 
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must take the form of a linear matrix inequality. This was achieved through another 

implementation of Schur’s complement. The algebraic inequality is rearranged into the form 

M/A ≔ D – CA-1B, as follows: 

𝛾𝐼 > 𝐶𝑇𝐶 

𝛾𝐼 − 𝐶𝑇(𝐼−1)𝐶 > 0 

 
𝑀 = [

𝐼 𝐶
𝐶𝑇 𝛾𝐼

] > 0 
(3.27) 

  

By combining the upper bound 𝛾 and the output matrix 𝐶 into one constraint, both variables 

will determine the feasible set while also finding the smallest spectral norm that also satisfies 

the other constraints assuring passivity and stability. The output matrix 𝐶𝑡𝑜𝑡 being suppressed 

in this experiment is the combined output matrix for the original system 𝐺 and the feedforward 

system 𝐺𝑓𝑓. The PR lemma (3.7) and (3.8) is also still used as a constraint to retain overall system 

passivity, and as the total system is guaranteed passive, this guarantees the feedforward system 

is also passive if the original system is assumed non-passive. Since the original system is constant 

and cannot be changed, suppressing the combined system only suppresses the feedforward 

system component in 𝐶 + 𝐶𝑓𝑓 , as seen in (3.15). Once the optimisation was completed the 

spectral norm value was saved in an array and the next IO permutation was run through the 

optimiser through a simple rearranging of the appropriate matrices. A basic example of these 

permutations is shown below, with a generic input 𝑢 and output 𝑦 subject to a diagonal transfer 

function.  

 
[

𝑦1
𝑦2
𝑦3
] = 𝐺{1,2,3} ∗ 𝑢 = [

𝑔1 0 0
0 𝑔2 0
0 0 𝑔3

] ∗ [

𝑢1
𝑢2
𝑢3
]  

(3.28) 

Due to the diagonal nature of the transfer function it is clear that the output 𝑦1 is only affected 

by the input 𝑢1 , 𝑦2  only affected by 𝑢2 , and 𝑦3  only affected by 𝑢3 . If the pairing needs to 

change, then altering the order of the rows of the transfer function will cause this redirection of 

inputs and outputs. If the base transform function G is shown above with the 

permutation 𝐺{1,2,3}, this symbolises the transfer function with the rows of order 1, 2, 3. To 

swap input 2 to control output 3 and input 3 to control output 2, the transfer function must be 

changed to the permutation 𝐺{1,3,2}, as presented below: 
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[

𝑦1
𝑦2
𝑦3
] = 𝐺{1,3,2} ∗ 𝑢 = [

𝑔1 0 0
0 0 𝑔3
0 𝑔2 0

] ∗ [

𝑢1
𝑢2
𝑢3
]  

(3.29) 

It can be trivially proved that changing the row order of a matrix is achieved by multiplying the 

base matrix by an identity matrix with shifted row order to match the desired row order. As the 

transfer function can be calculated as in (3.15), it then becomes clear that to change the IO 

pairings only the row order of the 𝐶 matrix must be permuted. As the IO pairings of the original 

plant are what determines the control configuration selection, only 𝐺 must be permuted and 

not 𝐺𝑓𝑓 . From this, only 𝐶  will be altered between permutations while 𝐶𝑓𝑓  will remain block 

diagonal for every iteration to retain the diagonal nature of  𝐺𝑓𝑓 . For a 2-IO system, the 

optimisation will be performed on the system twice, with the only difference between run-

throughs being the orientation of the 𝐶 matrix from the base transfer function. This matrix will 

have a structure similar to: 

𝐶{1,2} = [
𝑎 𝑏 𝑐 𝑑 𝑒
0 0 0 𝑓 𝑔

] ;          𝐶{2,1} = [
0 0 0 𝑓 𝑔
𝑎 𝑏 𝑐 𝑑 𝑒

] 

Once all control configurations were completed, the pairing that resulted in the lowest spectral 

norm value for 𝐶𝑓𝑓 was deemed the best configuration and chosen as the system best suited for 

decentralisation of a MIMO system. To give credence to the recommended input-output pairing 

that was recommended by this optimisation technique, several other CCS methods were 

implemented for several example systems to compare recommendations.  

 

3.3.3.5. Procedure Summary 

An overall summary of how each developmental step is employed for the overall project is given 

below. To determine the CCS that results in the smallest spectral norm while also leading to 

decentralisation through passivation, the following steps are performed: 

1. Given an m-by-m MIMO system plant 𝐺, confirm stability or use full-state feedback to 

achieve stability 

2. Construct a right MFD of the system such that the denominator 𝐷(𝑠) is diagonal. Use 𝐷(𝑠) 

to choose the state space matrices 𝐴𝑐  and 𝐵𝑐 provided in (3.13) and (3.14) 

3. Use an optimisation solver to determine an output matrix 𝐶𝑓𝑓 to be used in conjunction 

with the aforementioned matrices 𝐴𝑐  and 𝐵𝑐 such that a new transfer function 𝐺𝑓𝑓 is 

diagonal and the combined system 𝐺𝑡𝑜𝑡  =  𝐺 + 𝐺𝑓𝑓 is passivated through feedforward 

system addition.  
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4. Repeat step 3 for every possible permutation of rows in the plant 𝐺 transfer function 

matrix to represent each possible CCS/IO pairing 

5. For each pairing, calculate the spectral norm of the optimised 𝐶𝑓𝑓 matrix and compare 

values to identify the pairing that results in the lowest spectral norm 

6. Design a MIMO PID controller for the selected CCS pairing through standard tuning 

methods 

The optimisation software is licenced by MOSEK for semidefinite programming, while YALMIP is 

an open-source MATLAB optimisation toolbox. For the purposes of this project these tools are 

used to create variables that can be automatically calculated given specific conditions and goals. 

The optimize function is the main draw of this approach to passivation, as it allows linear 

constraints to be listed together to frame the feasibility set and then uses the goal to find the 

optimal value from that set. “Optimize(constraints, goal)” will find the feasible set of states that 

meet every condition contained in “constraints”. These constraints most often exist in the form 

of an LMI, although simple scalar constraints are also valid inputs. Once the feasible set is 

identified, the state that returns the minimal value of the “goal” variable is returned from the 

optimiser. Using this solution for 𝐶𝑓𝑓 allows the calculation of 𝐺𝑓𝑓 that guarantees passivity for 

all frequencies and presents the adjusted mathematical model and the original model (which 

represents the real-world physical system) as closely aligned as possible. A closer and better 

model results in more accurate simulations and the minimal amount of excess passivity helped 

reduce the conservative design features of the controller which may have led to unwarranted 

energy dissipation and lower performance.  

One potential point of contention is how the minimal passivity is applied across the frequency 

domain. The optimiser guarantees the system is passive across all frequencies, however it is not 

clear that the minimal excess passivity is added to the system for all frequencies or only for the 

frequency bands that required the adaptation. If a system is passive at all frequencies excluding 

a small frequency band, the system may add enough passivity to all frequencies to remove this 

non-passive behaviour. Although the minimisation of the spectral norm should prevent this, and 

some experiments do seem to function as intended, some transfer functions are simply given 

extreme amounts of passivity to guarantee passivity without any frequency-dependent bumps. 

No clear explanation for this has been found, however since these results produce equally large 

spectral norms they are naturally filtered out during the control configuration selection process.  
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MATLAB scripts were built for each step to prove each concept is achievable as an isolated 

experiment. All steps were then combined into one single script to confirm the workflow can 

always receive a MIMO plant and return a stable, passive, decentralised MIMO plant as the 

output. All these steps allow the MIMO PID controller to appropriately control each IO pairing 

as individual SISO systems; crosstalk between variables will be reduced as much as possible. For 

the purposes of comparison, a MATLAB script was created to try and replicate the results 

displayed by (Bao et al. 2007). This script was successfully created, however slight deviations 

between some examples were present. These differences showed a change in frequency 

bandwidth by approximately a factor of 10, however this difference was present for all tests and 

as such the pairing conclusions that were made from the test remained the same. Due to the 

fact that pairing conclusions were the same as the paper, and the functionality of this test was 

not of high priority for the project as a whole, the reasons for the discrepancy was not heavily 

researched. 

Results

Each stage of development relied upon small testing examples to show each proof-of-concept 

working as intended on at least one model. Although the examples may not be completely 

inclusive of all possible cases and not as rigorous as an all-encompassing mathematical theorem, 

the results presented do show the viable application of the underlying theory for some base 

cases. Scenarios with obvious exceptions will be explicitly mentioned with potential 

justifications of the differing results, however there are likely to be many different control 

systems that do not function as intended that are not discussed here. The goal of this section is 

simply to achieve basic applicability in some base cases. 

Although the results would be more meaningful if the examples were based around robotic

systems or ankle-foot dynamics, the formulation of these examples is a non-trivial task and 

sourcing existing transfer functions was not easily achievable. To progress with the true goal of 

this chapter, the development of a CCS method relying on optimisation tools, the system models 

used for testing are simple and sourced from other academic literature. The development of a 

mathematical model for an ankle-foot robot can be achieved, but will be dependent on the 

physical properties of the machine such as mass and length. It is therefore best practice to 

confirm the ideas of the mathematics before committing to a robotic build that would incur 

financial costs and restrict future designs. The robotic design was planned for a future stage of 
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the overall project, however due to the COVID-19 pandemic this plan was altered to better suit 

the available facilities such as simulation work.  

3.4.1. Stage 1 – Stabilisation 

By implementing the LMI restrictions derived from the Lyapunov stability inequality onto a 

simple system it is possible to directly compute the appropriate decision variables that stabilise 

the system. The following system was used for testing purposes: 

 𝐴 = [
1 2
3 4

] ;     𝐵 = [
0
1
] ;     𝐶 = [1 0];      𝐷 = [0] 

(3.30) 

This system is unstable, which can be determined by observing the Bode plot and the phase and 

gain margins of the system. Present in Figure 3.4, the magnitude of the system is seen to be 

approximately 0 dB for all frequencies below 0.3 Hz. The phase of the system is approximately -

180° for all frequencies below 0.03 Hz. These two characteristics combined suggest the system 

is unstable for frequencies lower than 0.03 Hz and has a very small phase margin for frequencies 

less than 0.3 Hz which suggests the system is close to instability for low frequencies. 

Alternatively, calculating the transfer function equivalence for the system reveals the 

characteristic equation of 𝑠2 − 5𝑠 − 2 which has a root on the right-half plane and is therefore 

unstable (calculations not included as they are trivial and unimportant).  

 

Figure 3.4. Bode plot of the open loop system presented in state space representation in (3.30). Gain and phase 

margin suggest the system is unstable for small frequency values  

Running the optimiser to calculate the values of 𝑃 and 𝐾 results in one optimisation cycle for 

each element in the objective matrix 𝑀. Three of the four return an error reporting the problem 

is “primal-infeasible” due to an unbounded objective function. The other result returns no errors 

and reports the problem is “primal and dual feasible” with an optimal solution achieved. If no 
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objective is assigned and the optimiser is simply required to find a feasible solution, then no 

errors are produced and values for 𝑃  and 𝐾  are calculated. These values are similar to the 

previous calculation, although there are small differences in the values.  

     𝑃𝑀 = [
2.5655 1.1471
1.1471 1.4184

] ;          𝐾𝑀 = [7.8054   6.4688]; 

𝑃𝑛𝑜𝑀 = [
2.4078 1.0048
1.0048 1.4030

] ;      𝐾𝑛𝑜𝑀 = [7.2294    6.1128] 

It is unclear what causes the discrepancy between results and why the approach with no 

objective resulted in smaller gain values. It is possible that the additional terms in the matrix 𝑀 

that had no bound caused the other values to adjust in non-optimal ways, while the lack of 

objective allowed the algorithm to simply select the optimal values for the decision variables. 

Since the removal of the Schur complement in the objective left it unused a final alternate 

approach was invented, using the Schur inequality (3.26) as a constraint in place of the inequality 

(3.22). Initial results showed a drastic change in 𝑃 values to be multiplied by 1010 and 𝐾 values 

to reduce to approximately 5.5, however this was caused by the singular nature of 𝑄 and the 

inclusion of its inverse in the new constraint. By adjusting the zero matrix to the identity matrix 

with a coefficient of 0.001 the values converged back to reasonable values: 

𝑃𝑀𝑐𝑜𝑛 = [
0.0158 0.0076
0.0076 0.0066

] ;      𝐾𝑀𝑐𝑜𝑛 = [12.6965 9.7507] 

The change in  𝑄  matrix made no significant difference to the previously calculated  𝐾 

or 𝑃 values, so the results of using the Schur inequality is a decrease in the 𝑃 matrix as a trade-

off for an increase in 𝐾 values. As 𝑃 values have no effect on the control of the system directly 

this result is considered worse and the previous approach of simply not utilising the Schur 

complement seems to be superior. Due to the complexity of the optimiser, this inconsistencies 

between constraint/objective structures will not be looked into further.  

Regardless of the error messages, values for  𝑃  and  𝐾  are returned that satisfy both the 

constraints and do stabilise the system when used as closed loop feedback gain. The Bode plot 

for the new closed loop system is shown below with a phase of -180° for large frequencies 

greater than 10 Hz, where the magnitude has already decayed to a value of around -30 dB. This 

shows a very stable system with a gain margin of over 30 dB and an infinite phase margin since 

gain magnitude never crosses the 0 dB line. The closest point occurs around 2.4 Hz with gain at 

-2.7 dB and a phase of -76.6°; the system is very stable at all frequencies.  
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Figure 3.5. Bode plot of the closed loop system presented in state space representation in (3.28) combined with full-

state feedback K. Gain and phase margin suggest the system is stable for all frequency values 

The creation of this new feedback system relied on the premise that full-state feedback was 

utilised, yet based on the output matrix 𝐶 in (3.32) and the dimensions of these two values, it 

appears full-state output feedback was not utilised, with instead the output only being equal to 

the first state. This is due to the structure seen in Figure 3.3 where the state vector is fed back 

directly without relying on system output. This is being reiterated as for more complex systems 

with more than one input and output can cause confusion in how values are calculated. Another 

example involving two inputs and one output was tested and also showed a stable system from 

the optimised 𝐾 values.  

This test showed the ability to use optimisation solvers to determine feedback gain values that 

would guarantee the specific system characteristic of stability. With the proof of concept 

successful, the next stage was to find optimal values that would guarantee system passivity.  

 

3.4.2. Stage 2 – Passivation 

A) Equivalent State Spaces 

As discussed earlier, the addition of a feedforward system can be simple if the state space of 

both systems are equivalent, as it allows the easy combination of transfer functions. Applying 

this method first, the KYP lemma was applied as a constraint to a SISO system with the combined 

output matrix 𝐶𝑡𝑜𝑡 as a decision variable while all other state space matrices were set constant.  
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𝐴 = [

−4 0 0
0 −3 0
0 0 −1

] ;    𝐵 = [
1
−4
5
] ;    𝐶 = [1 2 3];    𝐷 = 0 

(3.31) 

The example system was selected to be stable, full controllable, and fully observable without 

any alteration, but not passive. These were the necessary conditions of passivation, and were 

tested by checking no eigenvalues were positive, and checking the controllability and 

observability matrix were both full rank. Once confirmed, the YALMIP optimiser selects an 

optimal value for 𝐶𝑡𝑜𝑡 that is restricted to the constraints of (3.7) and (3.8), and from that value 

the additional feedforward output matrix  𝐶𝑓𝑓  can be calculated from the equation (3.15) 

as 𝐶𝑡𝑜𝑡 = 𝐶 + 𝐶𝑓𝑓. To confirm the resulting system was passive, the eigenvalues of each system 

(𝐺, 𝐺𝑓𝑓 , 𝑎𝑛𝑑 𝐺𝑡𝑜𝑡) were calculated and plotted with respect to frequency.  

 

Figure 3.6. System passivity represented by frequency-dependent eigenvalues for the objective of Ctot. The default 

system shows slightly negative eigenvalues between 3-10 Hz. The feedforward system and combined system show 

strictly positive eigenvalues across all frequencies 

The original system was shown to be very close to passive with only a small frequency band 

producing negative eigenvalues. The addition of the feedforward system does push the system 

passive, however the eigenvalue change at low frequencies is not a negligible change. These 

results show a passivation that was successful, but seemingly non-optimal. The optimiser 

identifies the objective 𝐶𝑡𝑜𝑡 as unbounded and therefore infeasible. Changing the objective to 

be more directly in line with the goals |𝐶𝑡𝑜𝑡 − 𝐶|  is used to ensure the objective is not 

unbounded (from the absolute function) and that there is minimal change to the output of the 
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system. This change does allow for an optimal solution to be produced with a feedforward 

output matrix of 𝐶𝑓𝑓 = [0 −3.4659 1.0708] but the eigenvalues produced are even larger. 

 

 

Figure 3.7. System passivity represented by frequency-dependent eigenvalues for the objective of |𝐶𝑡𝑜𝑡 − 𝐶|. Both 

feedforward and combined systems are passive with all positive eigenvalues, but with higher values than the previous 

objective approach 

From this it can be assumed that the approach of minimising the difference between the non-

passive system output and the newly passivated system output does not result in the most 

minimal change to passivity. Instead it allows the addition of large amounts of passivity so long 

as the final output is similar to pre-adaptation. It is difficult to optimise with respect to the 

eigenvalues directly, so a new approach of utilising the upper bound of output matrix 

eigenvalues, as seen in (3.27), was attempted, hereby known as the “gamma method”. The 

Schur inequality was added to the list of the constraints while the value for γ was set as the 

objective to minimise. As the goal is to find the feedforward system that changes the eigenvalues 

a minimal amount while still resulting in a passive system, the C matrix that should be 

substituted into the Schur constraint is 𝐶𝑓𝑓. If the goal was to determine the minimal eigenvalues 

for  𝐶𝑡𝑜𝑡  across all frequencies, then the  𝐶  matrices should merely be swapped within this 

constraint. Results of the minimised 𝐶𝑓𝑓 approach are shown in Figure 3.8 to be successful in 

producing a small feedforward system that minimises the divergence between the default and 

combined systems. A small disclaimer must be made in that the eigenvalues are not all strictly 
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positive, and for higher frequencies the calculated values are negative with insignificant 

magnitudes of -1.3x10-10. It is believed that this is the result of rounding issues within the 

MATLAB eigenvalue calculator and can therefore be ignored.  

 

Figure 3.8. System passivity represented by frequency-dependent eigenvalues for the objective of γ. The feedforward 

system is shown to have much smaller values at all frequencies to result in the combined system being as close as 

possible to the default system while also being (approximately) passive 

The resulting feedforward output matrix is calculated to be  𝐶𝑓𝑓 =

[0.1081 −0.3243 0.1351] which is also quite minimal in its effects on the system output. 

Overall these results for the SISO system are promising and show a valid approach to passivating 

stable systems. This test was also repeated on a MIMO system to confirm consistent behaviour. 

The state space representation and final eigenvalue plots are shown below to once again be 

successful in passivation by adding a minimal feedforward system.  

 
𝐴 = [

−4 0 0
0 −3 0
0 0 −1

] ;    𝐵 = [
1 −2
3 −4
5 −6

] ;    𝐶 = [
−1.5 −3 0.5
4 −1 −1.5

] ;    𝐷

= [
0 0
0 0

] 

(3.32) 
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Figure 3.9. Frequency-dependent eigenvalues of (H+HT)/2 for each control system G(s), Gff(s), and Gtot(s) to visualise 

system passivity. The combined system is shown to have strictly positive eigenvalues across all frequencies and as such 

is a passive system. Neither the default system or the feedforward system are passive systems on their own 

As the system has two inputs and two outputs the transfer function is represented by a 2x2 

matrix, hence each system now producing two eigenvalues. Another side effect of the MIMO 

system is the added complexity of combining systems, as it can be seen that directly adding the 

eigenvalues from the default and feedforward system will no longer result in the combined 

system eigenvalues. In this case the combined system has a smaller λ1 than its two components 

which suggests crosstalk between the inputs and outputs.  

 

B) Non-equal State Spaces 

When state matrix and input matrix 𝐴 and 𝐵 are not equal, then the simplification of the overall 

transfer function in (3.15) becomes much more complicated. By calculating the controllable 

canonical form of the system allows the creation of a new system that can be concatenated with 

the previous system. Although they have the same number of states it is still a valid approach to 

system combination. The system tested is the same as shown in (3.31), with the controllable 

canonical form equal to the system seen in (3.33).  

 
𝐴𝑐𝑐𝑓 = [

0 1 0
0 0 1
−12 −19 −8

] ;   𝐵𝑐𝑐𝑓 = [
0
0
1
] ;   𝐶𝑐𝑐𝑓 = [151 69 8];   𝐷𝑐𝑐𝑓 = 0 

(3.33) 
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By using the controllable canonical form as the feedforward system, but with the output matrix 

replaced by the optimiser, the eigenvalues produced by the system have minimal difference 

after passivation, seen in Figure 3.10. The passivation method was the same as the original 

method, using the output matrix as the objective to minimise, on the system below:  

 
𝐴𝑡𝑜𝑡 = [

𝐴 0
0 𝐴𝑐𝑐𝑓

] ;    𝐵𝑡𝑜𝑡 = [
𝐵
𝐵𝑐𝑐𝑓

] ;    𝐶𝑡𝑜𝑡 = [𝐶 𝐶𝑓𝑓];     𝐷𝑡𝑜𝑡 = 0 
(3.34) 

  

The previous method did optimise toward |𝐶𝑡𝑜𝑡 − 𝐶| as to minimise the produced feedforward 

matrix 𝐶𝑓𝑓 , however in this case this is not possible as 𝐶𝑡𝑜𝑡  and 𝐶  share a matrix structure. 

Instead, the optimiser aims to minimise |𝐶𝑡𝑜𝑡|, as 𝐶𝑓𝑓 is the only variable within the objective 

and should therefore be the only component to be affected.  

 

Figure 3.10. Frequency-dependent eigenvalues for original control system G(s) and the concatenated control system 

Gtot(s) to visualise system passivity. Both systems are shown to be nearly identical, with the small dip to negative values 

around 3 Hz removed for the combined system, hence showing passivity 

Several alternative permutations of the block structures in (3.34) were attempted, with the 

controllable canonical form tested in the first position and the default form in the second, and 

with both positions filled by the same form. Each of these attempts resulted in unique 

optimised 𝐶𝑓𝑓 values and eigenvalue plots confirming passivity. Many had large increases to the 

eigenvalues and were therefore discarded as non-desired. However the attempt with both 

blocks being filled by the controllable canonical form resulted in fairly reasonable eigenvalues 

with the maximum peak at the same frequency the non-passivity occurred in the original system. 

This suggests the optimiser was trying to add passivity only where necessary.  

For the application of the gamma method the previous constraints and objective was used, with 

the only difference now being the state space representation and the state dimensions being 

increased. The optimiser worked as intended and suppressed the values of the feedforward 
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matrix to 𝐶𝑓𝑓 = [−0.0003 −0.0763 0.6155] with minimal changes to the eigenvalues while 

also achieving passivity. Different block permutations were again tested, but none had any 

noticeable improvements to the default-controllable combination of (3.34). The MIMO system 

was also tested and confirmed to successfully passivate the system, although this was done 

without a controllable canonical form model as it was too difficult to figure out for the minimal 

information it offered.  

 

 

Figure 3.11. Frequency-dependent eigenvalues of (H+HT)/2 for original control system G(s) and the concatenated 

control system Gtot(s) to visualise system passivity. The default system is shown to have one negative eigenvalue which 

is completely compensated in the combined system.  

 

C) Summary 

Both methods of state space structure were shown to be able to apply the KYP lemma and 

guarantee passivity of the final combined system. The primary difference between methods is 

the resulting number of states which may cause computational problems for systems with large 

numbers of states in both systems that cannot be reduced. When creating a Bode plot for both 

systems (3.31) (replacing 𝐶  with  𝐶 + 𝐶𝑓𝑓 ) and (3.34) it becomes clear there is very little 

difference between the systems, except where the combined states have a slightly higher gain 

for all frequencies. It is currently unclear what causes this difference, however it is clear that the 

block method leads to the least amount of change in the Bode response. Despite this, the 

combined method is much easier to implement and will scale better for larger systems. The 

designer must select their preferred method depending on their system.  
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Figure 3.12. Bode plot comparing state matrix equivalence to block diagonal state matrix

Overall, this experiment confirmed that a stable system can be passivated using the optimisation 

techniques discussed earlier. When combined with the first experimental results, it is now clear 

that a system can be stabilised with full state feedback, and then passivated using feedforward 

system addition. 

3.4.3. Stage 3 – Diagonalisation

Due to the nature of this section there are very little results to present, with all goals simply 

being to create a matrix with an appropriate diagonal or block-diagonal form. Nevertheless, it 

was confirmed that this form could be readily achieved by utilising the equations (3.10)-(3.12)

at the cost of increasing the state vector dimensions. To provide a better understanding of the 

diagonalisation method, an example from the textbook “Linear Systems” by Kailath (1980) is 

presented below with the transfer function (3.35) taken from their example 6.2.1.

𝐺 = [

𝑠

(𝑠 + 1)2(𝑠 + 2)2
𝑠

(𝑠 + 2)2
−𝑠

(𝑠 + 2)2
−𝑠

(𝑠 + 2)2

]

(3.35)
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Each transfer function has more than one matrix fraction description and does not need to be 

presented in a diagonal form. One simple MFD for this transfer function is: 

𝑁 = [
𝑠 0
−𝑠 𝑠2

] ;        𝐷 = [
0 −(𝑠 + 1)2(𝑠 + 2)

(𝑠 + 2)2 (𝑠 + 2)
] 

If this form of MFD was used to determine the state space matrices 𝐴𝑐 , 𝐵𝑐 , and 𝐶𝑐 from (3.10)-

(3.12) the produced matrix of (𝑠𝐼 − 𝐴𝑐)
−1𝐵𝑐 will not be block diagonal, as seen in the LHS of 

Figure 3.13. This can be changed by modifying the MFD to contain a diagonal denominator 

matrix, as follows: 

𝑁 = [
𝑠 𝑠

−𝑠(𝑠 + 1)2 −𝑠] ;        𝐷 = [
(𝑠 + 1)2(𝑠 + 2)2 0

0 (𝑠 + 2)2
] 

 

 

Figure 3.13. Comparison of transfer function component (sI-Ac)*Bc for different matrix fraction description forms. The 

diagonal MFD has a degree of 6 and is block-diagonal, while the non-diagonal MFD has a degree of 5 and is not block-

diagonal 

From this state it becomes clear that the final component of the transfer function, 𝐶𝑐, will cause 

the transfer function  𝐺(𝑠) = 𝐶(𝑠𝐼 − 𝐴)−1𝐵  to be diagonal when it is block diagonal itself. 

Additionally, it can be seen that each element of the matrix per column shares a denominator 

term and only differs in the numerator which is simply the complex frequency variable 𝑠 raised 

to sequentially different powers. Multiplying this matrix by a free matrix on the left hand side 

allows the complete freedom to construct any strictly proper transfer function in the 

appropriate diagonal elements of the resulting matrix. From this knowledge, using the optimiser 

to determine the best values to include while still remaining block diagonal allows the guarantee 

that the new transfer function for the feedforward system will be diagonal and avoid input-

output mixing. Using the feedforward system state matrices in the KYP lemma returns a 

functioning result to guarantee the additional system is passive. Using the combined system 

of 𝐶𝑐 + 𝐶𝑓 returns an “unknown error” message, with the eigenvalue plot showing non-passive 

traits of the combined system. Utilising the gamma method for optimisation replaced the 

“unknown error” message with an “infeasible error” message, which seems to be expressing 

that passivating the system with a diagonal transfer function is not mathematically possible. A 
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workaround to this is to optimise for a total output matrix with the objective being to minimize 

the absolute values in the off-block-diagonal positions to get as close to diagonal as possible. As 

the optimiser is limited to only one objective this prevents the use of the gamma method, but 

does return a feasible result. This approach results in the following output matrix 𝐶𝑓, with non-

zero off-diagonal values. 

𝐶𝑓 = [
1.1525 1.3516 0.1424 0.4154 0.0000 0.5109
2.0000 1.3054 0.1814 −0.4512 3.7106 1.1189

] 

 

It seems to be the case that there is no guarantee that a system can be passivated exclusively 

through the inclusion of a diagonal controller. This outcome seems misinformed, as the sum of 

a small matrix and a dominating diagonal matrix will approximate the diagonal matrix, which 

can itself be designed to be passive. This can also be seen through the effects of the eigenvalues 

of the combined matrix; by setting all diagonal elements to be largely positive so the sum of all 

columns is also positive at all frequencies, the eigenvalues are guaranteed to be positive at all 

frequencies which confirm passivity. The relatively small off-diagonal elements will only 

contribute a small amount to the eigenvalues, as seen through the Gershgorin circle theorem.  

 

As further analysis, a simple MIMO transfer function was calculated by hand to compare to the 

MATLAB code for troubleshooting purposes. Subsequently, a manually designed diagonal 

transfer function was added to the system to prove passivation was possible. The transfer 

function in question is provided below, with the control canonical form state space: 

 

𝐺(𝑠) = [

1

10𝑠 + 1

0.6

10𝑠 + 1

−
0.6

𝑠 + 1

1

10𝑠 + 1

] 

(3.36) 

  

𝐴 = [
−1.1 −0.1 0
1 0 0
0 0 −0.1

] ;      𝐵 = [
0.1 0
0 0
0 0.1

] ;      𝐶 = [
1 1 0.6
−6 −0.6 1

] 

 

By replacing the output matrix 𝐶 with a newly designed matrix 𝐶𝑓𝑓, a new transfer function can 

be constructed equal to: 

𝐺𝑓𝑓(𝑠) = 𝐶𝑓𝑓(𝐴 − 𝑠𝐼)
−1𝐵 = [

𝑐1 𝑐2 0
0 0 𝑐3

]

[
 
 
 
 
 

𝑠

(10𝑠 + 1)(𝑠 + 1)
0

1

(10𝑠 + 1)(𝑠 + 1)
0

0
1

10𝑠 + 1]
 
 
 
 
 

 



3.4. Results  77 
 

 
 

                              = [

𝑐1𝑠 + 𝑐2
(10𝑠 + 1)(𝑠 + 1)

  0

0
𝑐3

10𝑠 + 1

] 

 

This transfer function, when added to the original transfer function G(s) in a feedforward 

structure, can be set to dominate. The total transfer function  𝐺𝑡 = 𝐺 + 𝐺𝑓𝑓  was used to 

calculate the eigenvalues of 𝐺𝑡(𝑗𝜔) + 𝐺𝑡
𝐻(𝑗𝜔) and found all eigenvalues could indeed be forced 

to be positive, coinciding with a forced passivation of the system. In the case where the added 

transfer function was set to 
𝐾

10𝑠+1
 on both diagonal elements of 𝐺𝑓𝑓 then the eigenvalues were 

mostly positive, with some small negative values with magnitudes less than 0.017 (for K=102) 

and 1.7x10-7 (for K=106) for higher frequencies. Altering the value of K would shift the frequency 

at which these negative values first occur, but never completely removed them. It is currently 

unclear whether this very small passivity violation is caused by rounding issues within MATLAB 

or are an indication that passivity is not always possible through diagonal addition. Further 

testing is required to identify limitations and functioning cases, but a potential explanation is 

expressed in section 3.5.2 with the short explanation being that the imaginary component in the 

off-diagonal elements of 𝐺𝑡 + 𝐺𝑡
𝐻 causes issues and should be removed by setting the imaginary 

off-diagonal components of 𝐺𝑡 to be symmetric (while the real component is not restricted).  

 

Changing the transfer function to  
𝐾𝑠

10𝑠+1
 does guarantee positive eigenvalues and hence 

passivity, however this is not achievable by setting the 𝐶𝑓𝑓 matrix values. Setting the transfer 

function to   
𝐾𝑠

(10𝑠+1)(𝑠+1)
, which is possible, shows a clear and unambiguous dip in the 

eigenvalues of 𝐺𝑡 around 0.4 Hz. These results suggest the small negative values produced in 

the other transfer function cases are not rounding error as they follow a similar path. As stated 

before, this seems to contradict the Gershgorin circle theorem and the interpretation of these 

results remains unclear, but discussed in later discussion. It is still believed that passivation is 

possible with the diagonal addition, but only under stricter conditions that may reduce the 

applicability of this pairing method.  

 



3.4. Results  78 
 

 
 

 

Figure 3.14. Eigenvalues of the system  𝐺𝑡 + 𝐺𝑡
𝑇  where  𝐺𝑡 = 𝐺 + 𝐺𝑓𝑓  and  𝐺𝑓𝑓 = 100𝑠/(10𝑠

2 + 11𝑠 + 1) . The 

eigenvalues showing a clear zero crossing to negative values equate to a non-passive system 

 

3.4.4. Stage 4 – Pairing Selection 

Due to the nature of control configuration selection it is difficult to identify the “correct” 

solution. This new proposed method, hereby referred to as the “Optimiser method”, aims to 

recommend the CCS that reduces crosstalk between inputs and outputs while also minimizing 

the divergence from the physical system caused by the controller. This goal is not suitable for 

every scenario and the intention of the system must be considered before choosing which CCS 

method is best suited. The results of different pairing methods can be collected and the final 

pairing recommendations can be compared to one another as a feasibility check. Identifying and 

explaining discrepancies between the proposed and existing methods may help to solidify the 

scenarios in which the optimiser method is best suited. The existing methods tested in this paper 

include the relative gain array (RGA) for its commonplace usage and simplicity, the dynamic 

relative gain array (DRGA) for its ability to consider the frequency dynamics of the system over 

the RGA, and the passivity-based method proposed by Bao et al. (2007) for the benefits of 

comparing with another passivity-focused method. The pairing results for each of these 

methods are shown in Table 3.1 for several examples found throughout the literature.  
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3.4.4.1.Control Configuration Selection Methods & Recommendations 

The RGA method is the simplest of the CCS methods, however it comes with noticeable 

drawbacks. The elements of an RGA will give a scale-invariant measure of the dependence of 

output 𝑗 on input 𝑖, effectively describing the relative gain between inputs and outputs. RGA 

helps analyse fundamental steady state closed loop properties such as stability and robustness 

but does not consider the dynamics. As all real-world transfer functions will be dependent on 

the Laplace variable, looking only at the case for 𝑠 = 0 will not show important properties of the 

system. A system must also be non-singular for the RGA to be calculable, so some systems 

cannot utilise this method.  

The DRGA method fixes these issues by simply calculating the equivalent to the RGA over a 

specified frequency range to show that the relative gain of one pairing may increase or decrease 

depending on frequency. If the system is singular at steady state, varying the frequency value s 

has the potential to produce a non-singular matrix to allow the DRGA to be calculated.  

Using passivity takes the idea of frequency dependence a step further, as one of the definitions 

of a passive system is that the eigenvalues of the system are all positive for all frequencies. 

Therefore, all frequencies must be inherently considered for a system to be defined as passive, 

and the system dynamics will be represented through these results. This allows a direct IO 

pairing to be recommended as opposed to a pairing that fluctuates based on frequency ranges. 

The passivity-based method proposed by Bao aims to produce pairing schemes that are 

decentralised integral controllable (DIC) and passive on a frequency band as large as possible. 

Decentralised integral controllability is simply the determination of whether a system is 

controllable with a decentralised integral controller, viewed through the metric of closed-loop 

performance, and thus can be used in determining which IO pairings are practical. If the system 

is DIC, then the addition of a diagonal controller to the MIMO system becomes much easier and 

it is possible to achieve stable and offset-free control of the overall closed-loop system by tuning 

every loop separately (Bao and Lee 2007: 92). If the system is passive for a larger bandwidth, 

then the steady state gain that can be applied to the system within that band can be infinite 

without negatively affecting stability. These two goals of DIC and steady state passivity result in 

a system with good performance that can be effectively controlled for many input signals. By 

testing every possible pairing scheme for two specific conditions, any pairing that will not result 

in these goals being met can be immediately disregarded, leaving only the viable pairings to be 

compared. These two conditions are as follows: 
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1) The system must be passive at zero frequency, to guarantee the frequency band begins 

at 0. If the scaled passivity index at zero frequency is greater than zero, then the system 

is not DIC and the pairing is rejected 

2) The controller of the system must have output constraints (such as physical or economic 

limitations) that do not limit the control of the system or require large controller gain. If 

plant elements at zero frequency are larger than the output constraints, the process 

outputs will not be controllable through input manipulation and the pairing is rejected 

Any pairings that meet both these conditions can then calculate the passivity index and plot 

against frequency to identify the pairing that results in the largest frequency bandwidth of a 

zero passivity index. This result simply states that no additional feedforward or feedback 

systems need to be added to the system to achieve passivity.  

Table 3.1 - Input-Output Pairing Recommendations from Different Methods 

Example RGA DRGA Passivity-based 

Method 

Optimiser 

Method 

Kailath 6.4.1 [2x2] 

[no delay] 

All equal (u1-y2), (u2-y1) for 

all frequencies 

N/A (u1-y2), (u2-y1) 

Henrion 3.4.1 [2x2] 

[no delay] 

All equal (u1-y1), (u2-y2) for 

all frequencies 

N/A (u1-y2), (u2-y1) 

McAvoy 1.2 [2x2] 

[time delay] 

(u1-y1), (u2-y2) (u1-y2), (u2-y1) for 

frequencies > 0.03 

(u1-y1), (u2-y2) (u1-y2), (u2-y1) 

Bao 6.1 [3x3] 

[time delay] 

(u1-y1), (u2-y3),  

(u3-y2) 

(u1-y1), (u2-y3),  

(u3-y2)* 

(u1-y1), (u2-y3),  

(u3-y2) 

N/A 

Bao 6.3 [2x2] 

[time delay] 

(u1-y1), (u2-y2) (u1-y2), (u2-y1) for 

frequencies > 0.09 

(u1-y2), (u2-y1) (u1-y1), (u2-y2) 

* Pairing recommended for all frequencies except for a small frequency band around 1 Hz 

 

Each CCS method was programmed in MATLAB 2021a. If the pairing method produced equal 

scoring for different pairings, then no one score was better than the others and “All equal” is 

displayed to convey that any pairing can be chosen without negative consequence (according to 

that method). Some methods are incompatible with a specific example due to either limitations 

in the technique or technical issues. For these scenarios “N/A” is substituted as the pairing 

recommendation to represent the lack of meaningful results. For methods that do result in a 
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recommended pairing, the 𝑗𝑡ℎ  input paired with the 𝑘𝑡ℎ  output will be represented by (𝑢𝑗 −

𝑦𝑘). The DRGA results were observed over the arbitrary frequency range of 10-4 Hz to 104 Hz to 

contain any important features of the relative gains. The details of each example are not 

mentioned within the table, which simply gives a general pairing recommendation. The 

passivity-based method was replicated to the best ability, however when comparing examples 

there were discrepancies between the results produced and the results presented in the original 

paper. These discrepancies were seen in the frequency bandwidth that allows an infinite steady 

state gain, but did not seem to affect which pairing scheme is recommended as each pairing was 

equally affected. The passivity-based method shows which frequencies can be operated at for 

good control, while our proposed optimiser method shows which system must be adjusted the 

least amount (and how much that amount is) to be well controlled at every frequency. Further 

developments to the method could allow specified frequency bands to be defined to allow more 

conservative deviations from the original system.  

 

3.4.4.2. Examples 

Case 1 – Kailath (1980: 407) 

The first example tested was sourced from the textbook “Linear Systems” under the chapter 

“State space realisations and matrix fraction descriptions of multivariable systems”. The transfer 

function is presented in (3.35).  

𝐺 = [

𝑠

(𝑠 + 1)2(𝑠 + 2)2
𝑠

(𝑠 + 2)2
−𝑠

(𝑠 + 2)2
−𝑠

(𝑠 + 2)2

] 

This example was selected for its polynomial properties and structuring the design of the 

optimiser method. As such, its practical applications for control are limited and do not represent 

any commonly seen transfer functions for control systems but still provides some insight into 

variation of CCS methods. The case provided by Kailath does not have a reference tracking 

property commonly seen from low-pass filters; instead the system output tends towards 0 

regardless of the input.  

The transfer function matrix is singular at frequency 𝑠 = 0, so RGA analysis is incompatible with 

the example due to the dependence on the matrix inverse. Generalisations exist for singular 

matrices, such as the using the alternative generalised matrix inverse proposed by Uhlmann 

(2019). By implementing this technique the unit-consistent RGA shows an equal effect from one 
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input to both outputs, while the other input has no effect on either output. This example 

showcases the restrictive applicability of RGA and its inability to handle zeros at steady state 

frequency. As the singularity only exists for zero frequency it is possible to view the relative gains 

at small frequencies to analyse the system. These results appear in the DRGA method, which 

will present the limits of the DRGA as frequency approaches 0. From these results the pairing 

recommendation for RGA will equal the pairing recommendation from the DRGA, which in this 

case is a cross-diagonal pairing (input 1 to output 2 and input 2 to output 1).  

The passivity-based method also fails to produce meaningful results for the Kailath example. For 

the two pairings possible for the 2x2 example both pairings are rejected; the off-diagonal pairing 

is rejected due to not being DIC while the diagonal pairing is rejected due to the controller 

output restrictions. With no recommendation of pairing is possible the method fails to provide 

any insight for control. The controller output restrictions are based around arbitrarily defined 

upper limits, so adjusting these values until the conditions have been satisfied show that the 

diagonal pairing does result in a larger frequency bandwidth of passivity (since the off-diagonal 

pairing has no passivity bandwidth) and this pairing could be recommended under specific 

conditions. This pairing recommendation is not recorded in Table 3.1 however, since the upper 

limit constraints had to be set to greater than 10 million, which is considered an unreasonable 

upper bound. This result does produce a point of interest in that the passivity-based method 

recommends a different pairing scheme to both DRGA and the proposed method.  

As a 2x2 system the only possible control configuration selections are the diagonal pairing (𝑢1 −

𝑦1) and (𝑢2 − 𝑦2) or the off-diagonal pairing  (𝑢1 − 𝑦2) and (𝑢2 − 𝑦1). DRGA recommends the 

off-diagonal pairing, to which our proposed pairing method agrees. Comparing the additional 

feedforward systems necessary for passivation show the diagonal pairing resulted a matrix with 

a spectral norm of 3.65x103 compared to 2.95x103 from the off-diagonal pair. Under the 

hypothesis that spectral norm represents both diversion from the natural system and the energy 

necessary to achieve this shift, the off-diagonal pairing is shown to be the more conservative 

CCS. The resulting paring recommendation matches the DRGA recommendation. However since 

there are only two possible pairing schemes and only two CCS methods were applicable to this 

example, the efficacy of the proposed method is still unsupported.  

Case 2 – Henrion and Šebek (2009) 

The second example was taken from a research report chapter detailing matrix fraction 

descriptions for polynomial matrices: 
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𝐺 =

[
 
 
 

𝑠

(𝑠 + 1)2
−𝑠

(𝑠 + 1)2(𝑠 + 2)2

𝑠

(𝑠 + 1)2
𝑠(𝑠2 + 𝑠 − 1)

(𝑠 + 1)2(𝑠 + 2)2]
 
 
 

 

(3.37) 

 

This example is very similar to the previous case, however the transfer function for the second 

input and output has multiple zeros not located at 𝑠 = 0. With one of the zeros located on the 

right-hand plane the system will become unstable at higher gains, restricting the potential 

controllers that can be used to control the MIMO system as a whole. The right-hand plane zero 

also guarantees the system is not minimum phase, which will affect the state size of the state 

space representation used within the optimiser CCS method.  

The transfer function is once again singular at zero frequency which prevents the classical RGA 

calculation. The DRGA method shows a perfect diagonal pairing, with input 1 affecting output 1 

completely with no crosstalk from input 2, at frequencies greater than 5 Hz. This is represented 

through a relative gain of 0 or 1 between unlinked or linked inputs and outputs, respectively. 

For lower frequencies the relative gain values transition from 1 to 2 for linked connections (in 

this case the diagonal pairing) and from 0 to -1 for the unlinked. This suggests the RGA would 

agree with the DRGA pairing recommendation, but would be doubly sensitive to input changes 

affecting the output at lower frequencies.  

 

Figure 3.15. Dynamic Relative Gain Array for system described by (3.37) for input 1-output 1 pairing (blue) and input 

1-output 2 pairing (red) 

The passivity method produces similar issues to case 1 where both pairing options are rejected 

before it is possible to compare results. As with example 1, the diagonal pairing is rejected due 

to an arbitrary controller output limitation while the off-diagonal is rejected for not being DIC 
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and not being passive at zero frequency. By adjusting the controller output upper limits to 5000 

the diagonal pairing can be made viable. This limit is more reasonable than example 1, but 

without context for what this value physically represents it is impossible to determine if the 

example will be effectively controllable through linear multi-loop control. The passivity method 

has certain limitations as to where it can be applied but has been proven as effective for systems 

that do conform to its restrictions. In the case of not rejecting this result, both DRGA and the 

passivity method suggest a different pairing from the optimiser method. With all established 

CCS methods recommending diagonal pairing, our method recommends an off-diagonal pairing 

for the drastically lower spectral norm of 1.80 compared to the diagonal pairing spectral norm 

of 2.26x103. The optimisation toolbox confirms this pairing is feasible with the optimal solution 

given by a matrix with the aforementioned spectral norm.  

Conclusions are difficult to derive from both examples 1 and 2 as neither transfer function is 

traditionally used in control, but both were discussed due to their importance in creating the 

proposed method and its script, as well as establish cases where the proposed method both 

agrees and disagrees with other CCS methods, showing a potential benefit to analysing the 

passivating feedback system.  

Case 3 - Mc Avoy et al. (2003) 

The third example tested was referenced in several papers, which seemingly originated in a 

paper discussing new DRGA techniques: 

 

𝐺 =

[
 
 
 
5𝑒−40𝑠

100𝑠 + 1

𝑒−4𝑠

10𝑠 + 1
−5𝑒−4𝑠

10𝑠 + 1

5𝑒−40𝑠

100𝑠 + 1]
 
 
 

 

(3.38) 

 

Each transfer function has the general structure of a low-pass filter (first order proper transfer 

function component) with time delay (exponential component) and as such is well suited for 

reference tracking systems. For the proposed optimiser method each transfer function must be 

represented as a polynomial in both numerator and denominator to structure the MFD 

correctly. The exponential component representing time delay must therefore be approximated 

into polynomial form using the Padé approximation. A first order Padé approximant was used 

to estimate the time delay at 𝑠 = 0. Bao’s passivity method plots the scaled passivity index on 

the frequency band [0, π] which are all close enough to 𝑠 = 0 that the Padé approximate is 

applicable to the test. To reduce system differences between CCS methods, this Padé 
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approximation was used in every method for calculations. The non-approximated examples 

were also tested and confirmed similar results to their approximations to ensure this approach 

was justified.  

The RGA results recommend a diagonal pairing, which matches the DRGA results for frequencies 

less than 10-2 Hz. At approximately 0.02 Hz the relative gain between inputs changes rapidly and 

settles for frequencies greater than 0.1 Hz to recommend the off-diagonal pairing. This shows 

the dynamics of the system do play an important role in the pairing selection and as such why 

the RGA is not always reliable. However since the DRGA only gives recommendations for specific 

frequencies, using one of the passivity-based methods provides a pairing scheme that should 

consider all frequencies. 

 

Figure 3.16. a) Dynamic Relative Gain Array for system described by (3.38). b) System passivity index based on 

frequency shows the diagonal pairing has a larger frequency bandwidth where the system requires no excess 

passivity and as such has the faster response and larger range of operation for offset-free control 

The passivity method presents the diagonal pairing as the superior scheme, and as such 

disagrees with the DRGA results. This conclusion is based off the scaled passivity index plot seen 

in Figure 3.16 by the diagonal results remaining at zero for a larger frequency band. Since 

established CCS methods use different metrics to determine a recommendation it is not 

uncommon for different pairing schemes to be produced. This also shows that newly developed 

methods may offer additional perspectives that can benefit the control design process. The 

optimiser method shows that the off-diagonal pairing requires an additional feedback system 

with a spectral norm of 1.80x104 while the diagonal pairing has no possible feedback matrix that 

can satisfy all the constraints of the optimiser and as such the solver returns an infeasible 

solution. As a result, only the off-diagonal pairing results in a system that is guaranteed passive 

and decentralised.  
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Case 4 – Bao et al. (2007) 

This example represents a 3x3 distillation column and was referenced by Bao as a point of 

comparison between their passivity-based method and the generalised dynamic relative gain 

method: 

 

𝐺 =

[
 
 
 
 
 
 −
1.986𝑒−0.71𝑠

66.67𝑠 + 1

5.24𝑒−60𝑠

400𝑠 + 1

5.984𝑒−2.24𝑠

14.29𝑠 + 1
0.0204𝑒−4.199𝑠

5𝑠 + 1
−
0.33𝑒−1.883𝑠

3.904𝑠 + 1

2.38𝑒−1.143𝑠

10𝑠 + 1
0.374𝑒−7.75𝑠

22.22𝑠 + 1
−
11.3𝑒−14.78𝑠

35.66𝑠 + 1
−
9.881𝑒−1.59𝑠

11.35𝑠 + 1 ]
 
 
 
 
 
 

 

(3.39) 

 

The Padé approximation was used for this example as well, which resulted in each transfer 

function being strictly proper with the numerator containing a degree of 1 while the 

denominator is of degree 2, represented below: 

 𝐺

=

[
 
 
 
 
 
 

1.986𝑠 − 5.594

(66.67𝑠2 + 188.8𝑠 + 2.817)

−5.24𝑠 + 0.1747

(400𝑠2 + 14.33𝑠 + 0.3333)

−5.984𝑠 + 5.343

14.29𝑠2 + 13.76𝑠 + 0.8929
−0.0204𝑠 + 0.009717

5𝑠2 + 3.382𝑠 + 0.4763

0.33𝑠 − 0.3505

3.904𝑠2 + 5.147𝑠 + 1.062

−2.38𝑠 + 4.164

10𝑠2 + 18.5𝑠 + 1.75
−0.374𝑠 + 0.09652

22.22𝑠2 + 6.734𝑠 + 0.2581

11.3𝑠 − 1.529

35.66𝑠2 + 5.825𝑠 + 0.1353

9.881𝑠 − 12.43

11.35𝑠2 + 15.28𝑠 + 1.258 ]
 
 
 
 
 
 

 

(3.40) 

The number of potential pairing schemes for an n-by-n system is given by n-factorial, and as such 

the addition of an input/output increases the system complexity dramatically. The RGA and 

DRGA matrix are constructed in such a way that the sum of each row or column will equal unity. 

For 2x2 systems this results in each row being the complement to one another and only one row 

needs to be analysed. However for a 3x3 system this is no longer the case and each row must 

be observed to identify all relevant information. These results, displayed in Figure 3.17, show 

input 1 is the predominant factor for output 1 across all frequencies, input 3 is the predominant 

factor for output 2 across all frequencies excluding the small frequency band around 0 Hz where 

input 3 is marginally better, and input 2 is the predominant factor for output 3, excluding the 

same small bandwidth around 0 Hz. This can all be summarised by the recommendation of using 

the “1-1, 2-3, 3-2” pairing. These results were obtained through the Padé approximation and not 

the time-delay form of the transfer function. Without using the Padé approximation the DRGA 

results were terribly noisy and produced graphs that were difficult to parse, although the 

recommended pairing did not change between forms. 
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Figure 3.17. Dynamic Relative Gain Array for system described by (3.40). Results show a clear preferred pairing of i1-

o1 (LHS), i3-o2 (MID), and i2-o3 (RHS) with a small deviation bandwidth around 1 Hz which swaps the input 2 and 3 

pairings 

 

Figure 3.18. Dynamic Relative Gain Array for system described by (3.39). Results show a less clear preference between 

inputs and outputs without the Padé approximation. Pairing of i1-o1 (LHS), i3-o2 (MID), and i2-o3 (RHS) seem to 

remain the dominant pairings 

The passivity-based method confirms this pairing schematic, where out of the six possible 

combinations, only the “1-1, 2-3, 3-2” and the “1-3, 2-1, 3-2” pairings satisfy both conditions for 

the passivity-based method. When compared, the former pairing is shown to have a larger 

frequency bandwidth than the latter, resulting in the same recommendation to the DRGA 

method. The results from Bao’s method are presented in their original paper but do not perfectly 

match the results produced when trying to replicate the method.  
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Figure 3.19. Comparison of the example results (left) and its replicated results (right) for the passivity-based pairing 

method proposed in Bao et al. (2007)  

It can be seen that the bandwidth frequency for the preferred pairing occurs at θb2=3.7x10-2 in 

the original paper, but θb2=4.6x10-1 in the replicated results. This suggests the replicated code 

does not have 100% fidelity to the original paper, although the conclusions do agree for each 

case tested. 

An important note is that the results for the passivity method were produced using the non-

approximation transfer function with exponential components. When the Padé approximation 

was used, the inferior pairing does not pass the conditions and the only remaining pairing of “1-

1, 2-3, 3-2” becomes the recommendation by default. In this instance the approximation did not 

affect the recommendation, but this does show that it can influence the results in non-negligible 

ways and the results must be observed carefully for any system discrepancies. It also means that 

while the DRGA method required the approximation to produce clean results, the passivity 

method required the opposite. This adds an additional layer of variability between methods and 

makes comparisons slightly less direct. It is unlikely this causes any major issues in calculations, 

and as such it is considered reasonable, however it is another factor that must be considered 

during analysis. 

The optimiser method employs the symbolic toolbox in MATLAB for solving the optimisation 

problem, however issues arise due to the high precision used within the transfer function 

coefficients. Attempts to resolve this through rounding were unsuccessful and the produced 

results included extremely large coefficients that could not be utilized by the optimisation 

solver. Each pairing returned the result that the problem was infeasible and not solvable, 

however this violates the law that a system can be passivated if the process lacks input 

feedforward passivity or output feedback passivity, and as such the issue is believed to be strictly 
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caused by limitations in the created script. For this reason no meaningful input/output pairing 

suggestion from the CCS method were produced from this test. This restriction seems to be 

caused by software issues and is not emblematic of any underlying mathematical restrictions. 

Further research can be committed to finding solutions to this problem, but at this time it was 

not deemed fundamental to the overall project. This example was included to highlight that the 

proposed method does have limitations and is not suitable to every system, similarly to the other 

available methods.  

Case 5 - Bao et al. (2007) 

A second example was sourced from Bao et al. (2007) as a 2x2 transfer function with comparable 

time delays for each element: 

 

𝐺 = [

−2𝑒−𝑠

10𝑠 + 1

1.5𝑒−𝑠

𝑠 + 1
1.5𝑒−𝑠

𝑠 + 1

2𝑒−𝑠

10𝑠 + 1

] 

(3.41) 

This transfer function is very similar to case 3, however the time delay for each element is 

smaller and closer to zero, making the Padé approximation more accurate. Similarly to case 3, 

the RGA and DRGA results show a recommendation for diagonal pairing for low frequencies and 

off-diagonal pairing for higher frequencies. The frequency of this transition is approximately 0.09 

Hz. Our optimiser method agrees with this higher-frequency recommendation as the diagonal 

pairing leads to an optimal solution from the optimisation solver and a drastically smaller 

spectral norm of 88.7 compared to 4.35x104. In this scenario both pairing schemes were solved 

with one being superior, as opposed to example 3 which displayed one pairing causing an 

infeasible problem to form and no solutions possible. The passivity-based method disagrees with 

this recommendation, instead favouring the off-diagonal pairing. The bandwidth of the diagonal 

pairing is found to be θb=5.7x10-2 (3x10-2 in paper) while the off-diagonal has a bandwidth of 

θb=2.6x10-1 (1.2x10-1 in paper). There is no distinguishable difference between the base transfer 

function and the Padé approximation, as was expected.  

 

3.4.5. Stage 3/4 Corrections 

Several of the previous examples resulted in the optimiser claiming the KYP lemma was 

infeasible and no solutions existed to satisfy both LMIs (3.7) and (3.8). For the KYP lemma to be 

applicable, the system must be strictly stable. The cases 1-5 in section 3.4.4.2 were analysed to 

show that all systems were indeed strictly stable before feedforward alteration and the KYP 
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lemma should apply as long as 𝐺𝑓𝑓  does not cause instability (which it should not due to 

feedforward control not affecting stability). The issue of infeasibility is intensified by the 

additional Schur constraint (3.27) that is used for constructing an objective to minimize. This 

suggests that not every system was able to be passivated through feedforward addition alone 

and the goal of proving every system to be passifiable was not met, and even disproven. Once 

this was discovered, it was determined that this method was more restrictive than previously 

thought and the following restrictions were included to guarantee feedforward passivity: 

1. For the system 𝐺0 , the relative degree of the off-diagonal elements  (𝑘𝑜𝑑)  must be 

greater than the relative degree of the diagonal elements (𝑘𝑑): [𝑘𝑜𝑑 > 𝑘𝑑].  

2. For the system 𝐺0 , the relative degree of all of the off-diagonal elements must be 

greater than or equal to 2 [𝑘𝑜𝑑 ≥ 2].  

The first restriction guarantees the diagonal elements dominate at higher frequencies and cause 

the system as a whole to become diagonal dominant. For a frequency value contained within an 

open-bounded finite range 𝜔 ∈ (0,𝜔0), the values of 𝐺0 will also be finite and the addition of 

𝐺𝑓𝑓  can always be selected to produce a diagonally dominant 𝐺 = 𝐺0 + 𝐺𝑓𝑓  with sufficiently 

high  𝐾  values within 𝐺𝑓𝑓 . This result is then able to use the Gershgorin circle theorem to 

guarantee eigenvalues are all positive (and hence passive) within the bounded frequency range.  

As the limit of 𝜔  approaches infinity, since the off-diagonal elements have larger relative 

degrees they will tend towards zero faster than the diagonal elements. We can then make the 

generalised claim that, for high 𝜔 values of an n-by-n transfer function, the system is diagonally 

dominant: 

|𝑔𝑖𝑖| > ∑ |𝑔𝑖𝑗|

𝑛

𝑗=1,𝑗≠𝑖

           | 𝑖, 𝑗 = 1, 2, … , 𝑛 

2|𝑔𝑖𝑖| −∑|𝑔𝑖𝑗|

𝑛

𝑗=1

> 0 

For the visualisation of the Gershgorin circle theorem, the diagonal elements 𝑔𝑖𝑖  act as the 

centres for each eigenvalue disk and the sum of off-diagonal magnitudes act as the radius for 

each disk. The inequality directly shows that for each eigenvalue disk, the radius will be less than 

the distance to the origin and as such the entire disk will be contained on whichever side of the 

plane the centre lies upon. The gain values within 𝐺𝑓𝑓 must be set to achieve positive values at 

low frequencies to guarantee the centre lies on the positive plane. 
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The second restriction is derived from the state space structure of the feedforward system 𝐺𝑓𝑓 

guaranteeing each diagonal element is a strictly proper transfer function. As a strictly proper 

transfer function can have a minimum relative degree of 1 and a maximum relative degree equal 

to the denominator degree, then the feedforward system will also share these relative degree 

limitations. The summation of two transfer functions will have a relative degree equal to the 

transfer function with the smaller relative degree. A simple example is provided below: 

𝑟𝑒𝑙𝑑𝑒𝑔 (
1

𝑠𝛼
+
1

𝑠𝛽
) = 𝑟𝑒𝑙𝑑𝑒𝑔 (

𝑠𝛽 + 𝑠𝛼

𝑠𝛼+𝛽
 ) = (𝛼 + 𝛽) − max(𝛼, 𝛽) = min(𝛼, 𝛽)

= {
𝛼      |      𝛼 < 𝛽
𝛽      |      𝛽 ≤ 𝛼

 

To guarantee that system 𝐺 = 𝐺0 + 𝐺𝑓𝑓 has diagonal elements with relative degrees less than 

the off-diagonal elements, then simply choose the relative degree of 𝐺𝑓𝑓 (𝑘𝑓𝑓) to be less than 

𝐺0 off-diagonal relative degrees (that is, 𝑘𝑓𝑓 < 𝑘𝑜𝑑). Due to the aforementioned minimum 

relative degree limitation of 1, it is therefore necessary that the original system 𝐺0 has off-

diagonal elements with a relative degree strictly greater than 1. In other words, to guarantee 

the first condition to always be true, 𝑘𝑜𝑑 ≥ 2. 

As one condition results in the other being true, if either of these conditions are met then the 

system would be able to be passivated using diagonal feedforward addition. To support this, the 

following lemma is supplied:  

Lemma 3.1 (Diagonal Feedforward Passivity Lemma) 

Let the linear time-invariant system 𝐺 ∈ ℝ𝑛×𝑛 be stable. If each non-diagonal element 

of the system has a relative degree greater than or equal to 2, then the system is guaranteed to 

be able to achieve passivity through the summation of a diagonal feedforward system 𝐺𝑓𝑓 ∈

ℝ𝑛×𝑛 that has a relative degree less than off-diagonals.  

Comparing relative degrees can be performed across matrix rows or columns. In cases where 

the system is not symmetric and the condition is met for one dimension but not the other, then 

the comparison can be performed on the symmetric matrix generated by  𝐺 + 𝐺𝐻 . When 

examined, the previous case examples were shown to not meet these conditions and therefore 

had no guarantee of reaching passivity. As examples of these conditions, both positive and 

negative cases for each condition are presented below:  
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3.4.5.1. Restrictive Application Tests 

Test A – Both conditions met 

A system that satisfies both conditions is seen below: 

 

𝐺0 =

[
 
 
 

1

10s + 1

0.6

(10s + 1)(3s + 1)
−0.6

(s + 1)(0.5s + 1)

1

10s + 1 ]
 
 
 

 

 

(3.42) 

The system is stable and satisfies both conditions of relative degrees of the off-diagonals being 

greater than or equal to 2 and the diagonal relative degrees. Assuming lemma 3.1 is true, this 

system should be able to be passivated though the summation of a system 𝐺𝑓𝑓 that contains a 

strictly proper transfer function on the diagonal elements, where the denominator polynomial 

for column 𝑗 is constructed from the lowest common multiple of the denominators in the 𝑗𝑡ℎ 

column of 𝐺0. For the system of (3.42) the feedforward system will have the generic form: 

𝐺𝑓𝑓 =

[
 
 
 
 

𝐾(𝜇1𝑠 + 1)(𝜇2𝑠 + 1)

(10𝑠 + 1)(𝑠 + 1)(0.5𝑠 + 1)
0

0
𝐾(𝜇3𝑠 + 1)

(10𝑠 + 1)(3𝑠 + 1)]
 
 
 
 

 

Experiments were performed by varying the values of 𝜇1, 𝜇2, & 𝜇3 to directly cancel different 

poles to determine the effects on passivity. For each of these tests the constant gain K was swept 

from 0 to 3 in intervals of 0.5. The following table is a summary of which configurations of μ 

resulted in the system 𝐿(𝑗𝜔) = (𝐺0 + 𝐺𝑓𝑓) + (𝐺0 + 𝐺𝑓𝑓)
𝐻

 producing strictly positive 

eigenvalues (indicating passivity of 𝐺 = 𝐺0 + 𝐺𝑓𝑓). 

Table 3.2 - Passivity Dependence of Pole Cancellation and Gain Value 

Variables μ3 

(μ1,μ2)             3 10 

(10, 1) TRUE for K≥2.5 TRUE for K≥1 

(10, 0.5) FALSE TRUE for K≥2 

(1, 0.5) FALSE FALSE 

 

The results show that cancelling the more dominant poles (closer to the origin, with higher μ 

values) resulted in a larger deviation from the original (and non-passive) system. Intuitively, this 
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makes sense as the non-dominant poles do not contribute as much to the system for higher 

frequencies.  

For the cases that are marked as FALSE, as the experiment on tested up to K=3 it is not an assured 

result. However by observing the plots it becomes clear that the general pattern involves a single 

zero crossing followed by an asymptote towards zero on the negative side; the K value changes 

to frequency of the zero crossing, but never removes it completely. Assuming this pattern 

remains for all K values then these systems will never achieve passivity. For the other 

configurations that do achieve passivity for higher K values the negative asymptote behaviour is 

not present and a temporary dip below zero is what causes the non-passivity. This dip can be 

effectively removed with a high enough K value to avoid the double zero crossing altogether. 

The figures below show the eigenvalue plots of two cases to show a successful passivation when 

the most dominant poles were cancelled (Figure 3.20) and when the least dominant poles were 

cancelled (Figure 3.21). 

 

Figure 3.20. Eigenvalue plot showing system passivity dependence on K values with zero placement of μ1=10, μ2=1, 

μ3=10. Passivity is confirmed for values of K≥1 
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Figure 3.21 Eigenvalue plot showing system passivity dependence on K values with zero placement of μ1=1, μ2=0.5, 

μ3=3. Passivity is not confirmed for any values of K 

Systems that are non-passive are represented by dotted lines, while systems that are passive 

are represented by solid lines. The asymptotic behaviour is difficult to see within the plots, but 

the negative dip is much clearer for all values of K in the latter image. Should the system be 

passifiable with higher values of K, that value would be much higher than for the case of 

appropriate zero placements.  

An additional experiment was performed by flipping the rows of the default system to fail both 

conditions, then repeating the experiment. This resulted in very similar responses with the same 

zero configurations being passifiable, which bodes well for the application of the stage 4 

permutations to calculate system spectral norm.  

Test B – Neither condition met 

The system tested for neither condition being satisfied was the simplistic model (3.36) that was 

previously used in determining validity of diagonal passivation.  

𝐺0(𝑠) = [

1

10𝑠 + 1

0.6

10𝑠 + 1

−
0.6

𝑠 + 1

1

10𝑠 + 1

] 

This system has every element characterised by a relative degree of 1, and as such neither of 

the conditions are met. Under the premise of lemma 3.1, this implies there is no guarantee that 

the system will be passifiable using strictly feedforward addition. The lemma makes no claims 
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about the negative cases, and as such it may still be possible for this to achieve passivity. To find 

the appropriate eigenvalues the new matrix 𝐿0 is calculated: 

 

𝐿0(𝜔) = 𝐺0(𝑗𝜔) + 𝐺0
𝐻(𝑗𝜔) =

[
 
 
 

2

100𝜔2 + 1
−

6.6𝑗𝜔

10𝜔2 + 9𝑗𝜔 + 1
6.6𝑗𝜔

10𝜔2 − 9𝑗𝜔 + 1

2

100𝜔2 + 1 ]
 
 
 

 

(3.43) 

Rationalising these transfer functions can be done to have a completely real denominator in all 

elements. This does not seem to reveal any key details of the system, but is included below for 

the sake of completion: 

𝐿0(𝜔) =

[
 
 
 

2

100𝜔2 + 1

−66𝑗𝜔3 − 59.4𝜔2 − 6.6𝑗𝜔

100𝜔4 + 101𝜔2 + 1
66𝑗𝜔3 − 59.4𝜔2 + 6.6𝑗𝜔

100𝜔4 + 101𝜔2 + 1

2

100𝜔2 + 1 ]
 
 
 

 

When the eigenvalues of L are calculated across frequency values 𝜔 ∈ [10−4, 104] there are 

negative values seen starting at approximately 0.16 rad/sec, hits local minimum around 0.5 

rad/sec, then asymptotically approaches 0 from the negative side. This behaviour is only present 

for the first eigenvalue, with the second eigenvalue being strictly positive at all frequencies. This 

only clarifies the default system 𝐺0 is not passive; tests of feedforward addition to produce 𝐺 =

𝐺0 + 𝐺𝑓𝑓 where 

𝐺𝑓𝑓 =

[
 
 
 

𝐾(𝜇𝑠 + 1)

(10𝑠 + 1)(𝑠 + 1)
0

0
𝐾

10𝑠 + 1]
 
 
 

 

were performed to identify the effects of a varying gain 𝐾 and of shifting the position of the 

cancelling zero found in the first element. The zero position, set by μ, was held constant while K 

was scanned from 0 to 10 in intervals of 1. This test was performed several times with the value 

of μ varying from 0.01 to 100 increasing by a factor of 10 each test. The figure below presents a 

summary result for primary eigenvalues of  𝐿(𝜔) = 𝐺(𝑗𝜔) + 𝐺𝐻(𝑗𝜔)  for values 𝜇 =

 0.01, 1, 100 to visually represent the effects of pole cancellation on passivity. The secondary 

eigenvalue was strictly positive in all cases and as such was not considered important enough to 

include in the figure, although there was noticeable differences between μ values. While the 

first two plots for  𝜇 =  0.01,1  followed a similar ‘low-pass’ curve, the plot for  𝜇 = 100 

produced a ‘band-pass’ curve centred on 0.3 rad/sec and a bandwidth of 1 decade. This is not 

likely to be important for this case, but is mentioned to reiterate that both eigenvalues contain 

valid information for system analysis.  
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Figure 3.22. Primary eigenvalue curves of 𝐿(𝑗𝜔) to determine effects of zero placement and K-gain values on system 

passivity 

The lower values of μ show a more prominent ‘dip’ into the negative values, which suggests that 

cancelling the dominant poles causes a greater push towards removing the negative 

characteristics and achieving passivity, without actively completing this goal.  

Failure to passivate the test B system does not guarantee that other systems that do not meet 

the conditions will also fail to be passivated. Strictly speaking, as the experiment was non-

exhaustive in the values of K and μ tested, these results do not even guarantee that THIS system 

is unable to be passivated. Previous examples have shown successful passivity for K values with 

both upper and lower bounds, meaning if the intervals of K are too large it would be possible to 

completely skip over a viable K range. The failure to achieve passivity does lend itself to some 

meaningful analysis when compared to the previous example, which yields contrary results. The 

previous example was very easily passivated for many different zero placements with K-values 
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not fully explored. The opposing results suggest, at the very least, that following the conditions 

creates a system that has a more malleable passivation range which would be extremely 

beneficial for general control and operation robustness. 

 

3.4.5.2.Effects of correction 

With all example systems being confirmed stable then according to the KYP lemma, the system 

can be passivated if and only if there is a feasible solution set to the linear matrix inequality 

constraints (3.7) & (3.8). If YALMIP returns the conclusion that the constraints produce an 

infeasible solution set then the system cannot be passivated without modification. The 

modification of a feedforward addition was assumed to be all was necessary to achieve passivity 

for all systems, however results implied this was not the case. Lemma 3.1 was developed to 

outline the conditions in which a system could be guaranteed passive with a feedforward 

diagonal transfer function addition, but in doing so found that cases 1-5 did not meet either of 

the conditions necessary to invoke the lemma’s claim of guaranteed passivity. All the 

experimental results that were collected were left in this thesis as examples of negative results 

to show the limitations of the proposed optimisation pairing method. This is especially 

important as three out of five cases contained first order systems which are the most commonly 

used representation of physical processes, suggesting this method is not well suited for simple 

models.  

For the system in test A with the transfer function (3.42) the optimiser method confirms the 

problem to be “primal and dual feasible” with an optimal solution if the Schur constraint is not 

included; with the additional constraint the solver still claims the problem is feasible with an 

optimal solution, however the final system G is shown to be non-passive. Even with the simple 

addition of an objective to minimize the solver claims the problem is feasible yet produces a 

non-passive solution; the inclusion of an objective should not affect the feasibility set, only the 

selection of the solution from the set. It should be impossible for the problem to be labelled as 

feasible but produce a non-passive system, yet a non-passive solution claimed to satisfy the KYP 

lemma. The difference in eigenvalue plots is shown below: 
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Figure 3.23. Comparison of passivity between system with no objective (left) and objective to minimize γ under the 

constraint γ ≤ CCT (right). Passivity is shown present for the no-objective problem but not present for the γ-objective 

problem 

The calculated norm values were also heavily influenced by the objective, as they should be. For 

the no-objective result the norm was calculated at 257.987, for the system with no additional 

Schur constraint but an objective function minimising the sum of all elements of C the norm was 

calculated at 80.713, and for the system with the additional Schur constraint and the objective 

of minimising the spectral norm of C the norm was calculated at 78.073. These results are 

promising for the minimisation of spectral norm, however the issue of non-passivity remains 

with no clear explanation of how these results are being produced. The negative value does have 

a magnitude of less than 1x10-9, but follows the negative asymptote for all high frequency values 

and is unlikely to be caused by rounding issues.  

As the solver claims the problem is feasible yet produces a result that should not be possible it 

becomes very difficult to troubleshoot the causes of failure. Due to time constraints no further 

experimentation or analysis can be committed to this problem and the conclusion of the results 

must simply end stating that the optimisation method shows promise for spectral norm 

minimisation and achieving passivity, but the current method for implementation contains 

errors that may hinder results or suggest contradictory solutions.  
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Discussion

3.5.1. Existing pairing methods and applications

The overarching goal of this chapter was to develop a method of input-output selection that can 

be performed easily while also guaranteeing passivity of the final combined system in the most 

conservative approach possible. Each stage of development led to the final script that produced 

the results seen in Stage 4, which compared the recommendations with existing control 

configuration selection methodologies. Which pairing to select will inevitably come down to the 

designer, where each of these CCS methods act simply as an analysis tool to identify features 

which are desired within their system. Each method contains its own benefits and are more 

suitable for specific systems, so the proposed method does not supersede the existing 

technologies but may offer new analysis techniques to improve system passivity, controllability, 

and stability. For instance, Bao et al. (2007) focuses on finding the pairing that maximises the 

frequency bandwidth that a system is already passive. While most techniques aim to minimize 

IO interactions, Bao’s method does not focus on this due to the evidence that some interactions 

may actually help reject load disturbances. It also does not rely on diagonal dominance, which 

is a present factor in the developed optimiser method for cases that are not easily passivated. 

The passivity-based method is beneficial if a system is only needed to be passive in a specific 

frequency band of operation, however if the system must be strictly passive then further 

changes must be made. 

The more simplistic methods of relative gain array and dynamic relative gain array are beneficial 

for cases where system models are accurately known and linear (Khaki-Sedigh and Moaveni 

2009) but can be expanded to weakly nonlinear systems (Kadhim, Birk, and Arranz 2016). None 

of these advanced implementations were required for the cases used in comparison testing, but 

do show the benefit of using existing techniques: they have been developed, expanded, and 

applied to a plethora of cases that reduce the inherent restrictions of the technique. Despite all 

this additional support and documentation, these techniques do not focus on the passivity of 

the system which is the primary focus of the project. Generalised dynamic relative gain is 

another pairing criterion that determines total interaction potential, and would be better suited 

for system analysis looking for minimal input-output crosstalk (Huang, Ohshima, and Hashimoto 

1994). Should generalised dynamic relative gain be used as the pairing method, any interactions 

between signals would be represented negatively regardless of the destabilising effect of the 

cross-talk. Form these examples it becomes clear there is no way to definitively state which 

pairing method should be used, and the decision must be made based on the scenario at hand. 
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The results in Table 3.1 only provide the final pairing suggestion without any remarks as to why 

these suggestions were made. Without further exploration this makes the results fairly abstract 

and difficult to picture, so a step response is provided in Figure 3.24 to show the response for 

each pairing. These response graphs are directly copied from Mc Avoy et al. (2003) and show 

the system response for when the first input is a step response and the second input is zero (left 

column), and when the first input is zero and the second input is a step response (right column). 

These responses are for when the system (3.38) is in a closed loop system with a tuned PI 

controller (with different PI parameter values for each pairing). The response shows the effects 

of crosstalk between inputs and outputs as well as the general ability to track the reference 

input signal. For a step on input 1 it can be seen the diagonal pairing reaches transience faster 

than the off-diagonal pairing but causes a much larger disturbance in output 2 for a longer 

duration. For a step on input 2 the off-diagonal pairing has faster tracking but causes a longer 

sustained disturbance in output 1. An important feature of the system is that both diagonal 

elements have a large time delay of 40 seconds while the off-diagonal elements only have a 

delay of 4 seconds. The off-diagonal pairing is able to exploit this fast response time to a much 

higher degree; this is stated as being valuable enough to outweigh the poorer y1 response, 

although no justifications are given for this claim. Interestingly enough, the exact same example 

was used by Khaki-Sedigh and Moaveni (2009) [Example 2.3.3] as justification for the RGA 

suggestion of the diagonal pairing.  

This example is a good observation as to why pairing selection is no simple question. Where the 

RGA and Bao’s passivity method recommend the diagonal pairing and would achieve better 

responses on y1, the DRGA and optimisation method select the off-diagonal pairing that 

minimises crosstalk in y2.  
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Figure 3.24. Step response comparison of different pairing selections for the McAvoy (2003) example used in Case 3. 

Time is presumed to be measured in seconds and the system output amplitude is unitless  

The pairing methods used to generate the results are far from an exhaustive list. The RGA-based 

techniques can be expanded upon, many of which are mentioned in chapter 3 of the textbook 

by Khaki-Sedigh and Moaveni (2009). As these techniques are not applicable to the current 

problem they are not discussed in detail, however for future expansion these techniques may 

provide valuable assistance for system development.  

The benefits of passivity-based control have been studied in-depth by Bao in several different 

papers focusing on aspects such as robust control using sector stability (Bao et al. 2000), failure-

tolerant control (Bao, Zhang, and Lee 2002), and input disturbance suppression for nonlinear 

systems (Su, Bao, and Lee 2006). Research was also published discussing the important 

properties of decentralised integral controllability and its relation to passivity (Bao, James 

McLellan, and Fraser Forbes 2002). These papers show the applications of passivity-based 

process control are quite expansive to many different efforts and support the belief that 

rehabilitation engineering would thrive with these control technologies. A theorem is presented 

that supports the efforts being made by the optimiser method relying on a diagonal feedforward 
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controller to passivate a system (Theorem 1 of (Bao et al. 2007)). The only additional 

requirement set by this theorem that was not explicitly set within the optimiser method was 

that the feedforward transfer function must also be passive. This was not included as it was 

believed to be inherently true given the system was guaranteed to be stable and diagonal which 

would guarantee positive eigenvalues. The paper also extends to claim and offer proof that once 

the system has been stabilised and passivated, then there exists a MIMO controller that can also 

retain passivity; this conclusion is hugely beneficial for reference tracking systems and can be 

applied to the optimiser method as well. The benefit of the optimiser method over Bao’s 

passivity-based method is that where the passivity method makes a recommendation of IO 

pairing, the optimiser method provides a recommendation of the feedforward passivity system 

along with the pairing. The design aspect of the feedforward system was not the focus of Bao’s 

experimental pairing method and as such was not addressed in the paper. For the optimiser 

method, the resulting combined system will in theory be a small perturbation from the original 

system that can then be controlled as if it were the original system.  

 

3.5.2. Optimiser method shortcomings 

A. Passivation 

One potential point of contention of the optimiser method is how the minimal passivity is 

applied across the frequency domain. The optimiser guarantees the system is passive across all 

frequencies, however it is not clear that the minimal excess passivity is added to the system for 

all frequencies. If a system is passive at all frequencies excluding a small frequency band, the 

system may add enough passivity to all frequencies to remove this non-passive behaviour. 

Although the minimisation of the spectral norm should prevent this, and some experiments do 

seem to function as intended, some transfer functions are simply given extreme amounts of 

passivity to guarantee positive eigenvalues with very minimal frequency-dependent 

considerations. To avoid this behaviour the added transfer function should be constructed to 

have eigenvalues that follow a ‘bandpass’ curve with very small eigenvalues for the frequency 

ranges already passive and within the non-passive range eigenvalues as small as possible to 

achieve passivity. No clear explanation for the poor results have been found; since these results 

produce larger spectral norms than a more restricted addition, they should be naturally filtered 

out through convex optimisation during the control configuration selection process. Despite 

this, if this behaviour occurs for all possible pairings then the final result will produce a system 

that has excess passivity and would lead to an overly conservative controller design. More 
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examples must be tested to try and find a common factor that may cause this issue. Finding 

working examples in itself can be quite difficult due to the personalised aspect of pairing 

selection and no ground-truth pairing is available or even quantifiable.  

B. Dimensionality scaling 

One consideration to be made is how well each pairing method is able to scale with a system’s 

dimensions; as the number of inputs and outputs increase, how long will each pairing method 

require to return a favoured selection. For the most basic method of RGA, the elementwise 

matrix multiplication will cause the number of calculations to scale with quadratic growth, but 

overall time will not likely be a problem for a system with less than 100 inputs and outputs. 

DRGA follows a similar runtime behaviour with the added dependence on frequency range. Both 

the passivity-based method and the optimiser method require calculations from every possible 

permutation of input-output pairings. This will lead to the number of calculations scaling 

factorially and, when combined with the more intensive computations required, the 

computation time will become infeasible for relatively low input counts. Bao’s method has 

opportunities to prune the number of calculations by immediately skipping any system that does 

not meet the conditions of being decentralised integral controllable, which may speed up overall 

computation times but does not address the mathematical foundation of the number of pairings 

scaling as a factorial. Similar pruning may be possible for the optimiser method by disregarding 

any system that does not meet either of the conditions of relative degree. This has the potential 

to drastically decrease the number of computations, as only one element not meeting the 

conditions would eliminate every possible combination sharing that element. Unfortunately as 

the conditions are not logically biconditional, failing the condition check is not enough to be 

certain the system cannot be passivated and it may still be worthwhile to calculate the spectral 

norm and passivity end result. It may still be expedient to perform experiments into the negative 

conditional cases to identify recurring patterns or resulting systems, potentially leading to 

discovering large subsections of pairings that are guaranteed to be non-optimal.  

Along the same lines of dimension scaling, it is important to understand the limitations of the 

conditionals for higher dimensions. As stated earlier, the relative degree of the off-diagonal 

elements must be greater than 1 and the relative degree of the diagonal elements. While easily 

visualised for a 2x2 system, larger matrices show that all non-diagonal elements must meet 

these conditions, not just the off-diagonal elements (diagonal elements from bottom-left to top-

right). These elements will make up the majority of the overall system and can be an extremely 

limiting constraint for real-world modelling. Again, although these conditions are not necessary 



3.5. Discussion  104 
 

 
 

to allow the system to achieve passivity, they are sufficient and would allow much stronger 

assurances during the design process.  

C. System modelling 

To accurately represent a physical system, the relationship between inputs and outputs must be 

represented mathematically through state values using physics first principles. Although this is 

true for every control system, more complex systems are much harder to model accurately and 

as the optimiser method is best suited for complex systems it becomes more difficult to reliably 

implement on real-world examples. Simple systems may not benefit from the minimal 

perturbation goals of the optimiser technique as much as complex systems would, and may 

favour the more basic pairing methods like RGA. Along with this avoidance of complex systems, 

due to the constraints outlined in lemma 3.1 the modelling of the system is guided towards 

higher-order transfer functions which adds further restrictions on the system modelling and 

pairing method selection.  

The final potential problem with forming the system model is the current calculation method 

for the system matrix fraction description. Due to unalterable behaviours within the MATLAB 

symbolic toolbox, the format of transfer function polynomials is always converted to avoid 

decimal values and will instead favour rational fraction representations. When calculating the 

MFD, this representation becomes an issue as the gain values become scaled to much higher 

values that are less manageable. For example, the transfer function  

𝐻 =
−0.2

(18.3𝑠 + 1)(5.6𝑠 + 1)
 

needs to be represented through the MFD, which can be done in an infinite number of forms. 

The desired form is shown on the left, while the MATLAB form is shown on the right, below: 

−0.2(28.3𝑠 + 1)(0.62𝑠 + 1)

(18.3𝑠 + 1)(5.6𝑠 + 1)(28.3𝑠 + 1)(0.62𝑠 + 1)
=

= 
−10(31𝑠 + 50)(283𝑠 + 10)

(183𝑠 + 10)(28𝑠 + 5)(283𝑠 + 10)(31𝑠 + 50)
 

These transfer functions are equivalent mathematically, but cause problems when aiming to 

extract coefficient values. For instance, the coefficient of the highest denominator degree of the 

desired transfer function is 1798.1 while the MATLAB highest degree coefficient is 44 952 852, 

which is 25000 times larger. Although the scaling factor can be easily calculated and the 

coefficients rescaled to their desired values, the symbolic toolboxes resistance to decimal values 



3.5. Discussion  105 
 

 
 

continues to cause problems throughout in system representations. As the structure of the 

feedforward system is directly dependent on the MFD, these results directly affect the optimiser 

output for determining magnitude values for the feedforward output matrix. Converting to 

always represent the denominator matrix as a monic polynomial was attempted with no fruitful 

endpoint. It is believed that these cascading issues do have negative impacts on the optimiser’s 

ability to determine optimal solutions as numerical problems have been flagged as an error in 

several experiments throughout the project. Numerical problems occur when magnitudes 

between variables is too large for the solver to appropriately compare values.  

3.5.3. Optimiser method benefits 

Although the previous sub-chapter focused on all the negative aspects of the proposed 

optimiser method, there are negative aspects to every other pairing method and positive 

aspects to the optimiser method. Structured singular value (SSV) approaches allow pairing 

analysis over frequency ranges of interest and produce a different interaction measurement. 

This may have benefits, but for the purposes of passivity analysis the entire frequency range 

must be explored, making the optimiser method the better suited interaction quantifying 

method. SSV is also required to have a block-diagonal controller and all theorems require the 

assumption that 𝐺0 and 𝐺𝑓𝑓 have the same number of poles in the right-half plane. This makes 

SSV more restrictive in application than the optimisation method, showing even restrictive 

methods to be useful to the field.  

Another benefit is the use of a diagonal feedforward system allows the system to become 

diagonal-dominant for lower frequencies regardless of relative degrees. Becoming diagonal 

dominant allows guaranteed passivity through the Gershgorin circle theorem, centring the 

eigenvalues in excessively passive states. It is mentioned by Bao that diagonal dominance is 

often relied upon in pairing methods and that they strived to avoid this, although no detail was 

given as to why. Mentions are made of signal interactions potentially rejecting load 

disturbances, obviously less applicable in a diagonally dominant system with minimal 

interactions. However for human-robot interactions the disturbances may be generated by the 

human which should not be rejected, and signal interactions are generally undesirable, as such 

avoiding diagonal dominance is not a perceived as important for the task at hand. From this, 

along with the previously developed results, diagonalization should always be possible. In cases 

where the feedforward system not be dependent on the MFD structure and a relative degree of 

0 is possible, this method would allow even further applications as the conditions for guaranteed 

passivity would be nullified.  
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Conclusion

A multi-input multi-output system is able to represent complex real-world physical systems that 

have their behaviour dictated by multiple variables. In the case where these variables affect 

multiple outputs simultaneously, any controller designed to manage the system must consider 

these interactions, and are labelled as “centralised controllers”. A “decentralised controller” is 

able to decouple these variable interactions and isolate specific system characteristics to be 

controlled by specific system inputs. Although both controllers are feasible and have 

advantages, decentralised control is more commonly employed for its ease-of-implementation 

and robust nature. Decentralising a controller therefore allows better disturbance rejection for 

most cases and would be especially useful for systems relying on inconsistent signals such as 

electromyography in rehabilitation settings. There are further underlying system properties that 

are beneficial to basic control and would assist in human-robot interactions. These properties, 

such as stability and passivity, can be augmented into the system through mathematical 

techniques, effectively transforming the system to one which would be better suited for specific 

tasks such as rehabilitation engineering. Where stability guarantees a system’s state values 

remain finitely bound, system passivity guarantees energy dissipation rather than accumulation 

and guarantees stability during system coupling. The additional properties of passive systems 

also reduce the need for fault-tolerant designs or disturbance rejecting controllers, as the worst 

case scenarios failures or disturbances cause would still not violate the stability of the system. 

For late-stage development of robotics, this could lead to a more ergonomic and economic 

design, with less hardware components required for operation. This chapter discussed these 

techniques and how they can be implemented in practice to convert a non-stable non-passive 

system to a state that can be effectively decentralised and controlled by a standard MIMO 

controller for reference tracking or force restricting purposes while also guaranteeing system 

passivity. 

A MATLAB script was created to allow systems that lacked stability or passivity to acquire these 

properties through full-state feedback gain and feedforward passivity gain, respectively. Results 

showed that several examples of non-passive systems could be pushed to passivity through this 

method when performed either manually or using an optimisation toolbox known as YALMIP. 

Further analysis found that not every system was passifiable using a diagonal feedforward 

system, leading to the discovery of conditions that guaranteed passification was possible. A 

system that has relative degree of the diagonal elements greater than or equal to 1 and relative 

degree of the non-diagonal elements greater than or equal to 2 is guaranteed to have a diagonal 
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feedforward system that pushes the system to being passive. This condition, presented as a 

lemma, show the mathematical certainty of the method, however when implemented through 

the optimiser technology the results were self-contradictory. Systems were shown to pass the 

KYP lemma which guarantees the system is passive, yet eigenvalues of the system were shown 

to be negative for certain frequency bands implying the system was not passive. In optimisation 

terms, the optimisation solver claimed the applied constraints produced a feasible solution set, 

yet the solution it would recommend did not fall within the feasible set. The contradictory 

results were present for several (but not all) examples and further analysis is required to 

determine the source of this discrepancy between theory and practice. In spite of this, as the 

KYP lemma was seen functioning appropriately and was considered the more robust test, the 

optimisation method for pairing determination was deemed successful with further research 

justified. This new pairing method will in theory allow a robotic system to be designed passive 

to allow better coupling with a human musculoskeletal system which is also expected to be 

passive. The decentralised nature of the system will allow specific EMG clusters to act as the 

signal inputs and specific motions to act as the output. Future works will continue to try and 

model existing robotic devices present, apply the pairing method to real-world examples, and 

identify the best input-output pairing for controlling a rehabilitation robot with respect to 

passivity.  

The unconventional use of using passivity-based process control in tandem with optimisation 

techniques  is what sets this work separate from its counterparts. While passivity-based process 

control has been used to determine the best input-output pairing, this was applied to systems 

that had some configurations passive by default. The innovative step used here is to determine 

how far each pairing is from becoming passive at the cost of minor alterations. Where the former 

is able to identify which pairing has a small interaction potential between inputs (potentially 

causing uncontrollability in some outputs), the latter is able to identify which pairing can reach 

passivity and naturally couple with a human ankle. The limitations discovered do inhibit the 

widespread use of the passivity optimisation method, but within the realm of robotic design, as 

long as information about the inputs and outputs is known before designing the system, it is 

possible to design a system such that the method is guaranteed to be applicable.  
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Using Reinforcement Learning to 

Construct Adaptive Passive Controller

Introduction

Reinforcement learning (RL) is a form of machine learning that has been developing at a rapid 

rate for the past few decades, with its applications spreading to every field of research. Due to 

the nature of how RL converges on a solution, any problem that can be solved through a trial-

and-error approach is well suited to use RL. Control engineering can benefit from these new 

techniques in cases where the plant processes change over time or are highly nonlinear and 

difficult to model. A traditional Proportional-Integral-Derivative (PID) controller is the most 

common of all controllers, found in many day-to-day technologies and industrial machines. By 

improving the controller, the resulting system output may be closer to the desired performance; 

depending on the system this may have a positive effect on costs, applicability, or customer 

satisfaction. In the case of robotics, the PID controller is used in a closed-loop system to reduce 

the error in reference tracking. A robot instructed to follow a specific reference path through 

physical space will be able to follow said path much closer for a well-tuned controller. 

Rehabilitation robotics can be designed to guide a user through physiotherapy exercises and as 

such would benefit from a reference tracking control system. For a user with limited motor 

ability the robotic device would contribute majority of the work, such as the initial prototypes 

of the LOKOMAT (Colombo et al. 2000) or the wearable ankle device presented by Jamwal et al. 

(2014). Users with stronger muscle outputs would be provided other forms of feedback, such as 

visual stimulus (Duschau-Wicke et al. 2010), to guide them towards the appropriate exercise 

motions, and would still benefit from reference tracking but with additional considerations of 

‘disturbances’ caused by the operator. The tuning of a PID controller has no correct solution and 

is often performed through experience and trial-and-error adjustments. To supplement this 

approach, established tuning methods do exist, such as Ziegler-Nichols (Ziegler and Nichols 

1993) or by the use of an auto-tuner (Mathworks 2022b). This makes PID tuning an opportune 

problem for RL, especially if the PID is designed to be adaptive and changing over time. By 

training an artificial intelligence to perform the tuning task itself, a system that deals with 

uncertainty in its environmental interactions can develop all the benefits of an expert re-tuning 

the system as it is needed during operation. The adaptive controllers are also not limited to 
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simple PID controllers. Impedance or admittance controllers are extremely beneficial in 

regulating the interaction forces of a system, and as such an adaptive admittance controller will 

be able to alter how much force is permitted at any given state. These states are defined by 

dozens of potentially user-specific system measurements and are able to incorporate nuance 

that has the potential to improve the performance and safety of the system overall. As 

mentioned by Lee and Hogan (2016b), knowledge of both energetic passivity and mechanical 

impedance are critical for ensuring coupled stability between human and robot. It is mentioned 

that the driving point impedance of a system being energetically passive is a sufficient condition 

to guarantee that this system, when coupled with a stable passive system, will remain stable. 

For the specific example of an ankle-foot orthosis (AFO), as the human ankle is considered stable 

and passive, coupling the human ankle to an AFO will remain stable if the AFO can remain 

energetically passive.  

Improving the traditional controller design by tuning the parameters with RL allows system 

design to optimise towards a predefined behaviour desired by the system architect. Adaptive 

controllers allow for parameters to change throughout system execution to better suit the 

current conditions. Tuning these parameters based off input data allows RL to make decisions 

from imperceptible patterns in data that humans would never notice. Using a neural network 

(NN) to read system observations and return an appropriate control signal to the physical system 

model is an alternative method and perfectly analogous to using a classical feedback controller. 

In the case where the output of the NN connects directly to the plant and the classical controller 

is bypassed, the system is described as “end-to-end” learning. It is also possible to use the NN in 

conjunction with a classical controller, with the output signals acting as the adaptive controller 

parameters instead of bypassing the controller completely. This method may seem 

unnecessarily indirect, however end-to-end learning has been reported to perform worse than 

adaptive controller tuning (Lee, Lee, and Yim 2020). It is for this purpose that RL is used to help 

in the design of rehabilitation robotics. Attempts at both end-to-end learning and adaptive 

parameter tuning are implemented in this chapter to help develop an understanding of the 

reinforcement learning process, and compare the results of each system with reference tracking 

ability. The development of an RL agent was performed for three separate system configurations 

involving an ankle rehabilitation robot and tracking a desired position reference signal. The 

initial experiment aimed at developing an end-to-end system to directly control torque. The 

second experiment focused around constructing an adaptive PID controller by using the RL agent 

to tune the controller gain values and observe how well they adapted under changing 
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environment conditions. The work on RL-based PID control was published as a paper under the 

title “Comparison of Constant PID Controller and Adaptive PID Controller via Reinforcement 

Learning for a Rehabilitation Robot” and presented at the Australia & New Zealand Control 

Conference 2022. The third experiment expanded upon the second experiment by adding an 

adaptive admittance controller to interact with an environment that the robot has no direct 

control over, nor any prior knowledge on what will be encountered. The final experiment is best 

suited for rehabilitation purposes as human-robot interactions contain large amounts of 

uncertainty in the environment that must be accounted for in the artificial intelligence control 

system. Using RL for control tuning purposes is not a new application, but the novelty of the 

experiments in this chapter comes from the analysis and comparison of results between control 

options to best determine when to use each technique for a specifically designed ankle 

rehabilitation robot.  

A tangential experiment was originally planned to use collected lower limb sEMG data to predict 

and categorise the types of ankle motions that were being performed during standard 

locomotion and daily activities. This EMG-to-motion decoder would have allowed sEMG data to 

function as the system input such that a user’s intended motion trajectory would act as the 

reference signal to the control loop. The rehabilitation robot would then reposition itself to 

match with the user’s intended ankle position and assist in rotational motions. The amount of 

assistance provided by this robot could be adjusted through admittance control and would allow 

both passive and active rehabilitation exercises to be performed. The use of sEMG for gesture 

classification has already been proven feasible for real-time technology applications (Zhang et 

al. 2019), however instead of using supervised learning to train the network this experiment 

planned to use reinforcement learning. Unfortunately due to COVID-19 and time constraints this 

experiment was deprioritised in favour of experiments that did not require close physical 

contact with multiple participants. However progress was still made and discussed further in 

Chapter 5 - . The overarching goal of this chapter is to develop practical skills in reinforcement 

learning to produce a control system that may be implemented into a rehabilitation robot. This 

control system must be able to appropriately assist the user in moving their ankle towards a 

predefined angle with varying degrees of interaction force. The system must also retain its 

energy-passivity to guarantee the total system, when coupled with the user, remains passive. 

This approach will be conducted through an adaptive admittance controller that applies forces 

to retain passivity and minimise excess passivity throughout the simulation. Future works would 



4.2. Methodology 111

aim to retain this passivity and minimal excess passivity during the gait cycle for the system 

coupled with a user. 

This chapter aims to explain the differences between classical control methods and 

reinforcement learning-based control methods such that future rehabilitation robotics will be 

able to make more informed decisions on how to approach design. Ideally, this impact will lead 

to a better understanding of when more advanced controller implementation is warranted and 

will allow more diverse rehabilitation devices to exist in their better suited niche operating 

conditions. 

Methodology

This chapter focuses on identifying where in the ankle rehabilitation robot design process could 

benefit from reinforcement learning and hypothesising how that implementation may be 

performed. Through the literature review, these stages were identified as replacing the 

controller with the function approximator, automatically tuning an adaptive controller, and 

converting bio-signals to user intention. Experiments and simulations were planned for each of 

these stages for the purposes of confirmation that each idea could be used in practice for this 

project’s long-term goals, as well as developing experience in the artificial intelligence field. The 

first experiment focused on developing the basic skills to implement an actor-critic 

reinforcement learning agent to track a step or sine wave reference signal. The second 

experiment, developing an RL agent to adaptively tune a traditional controller, utilized a PID 

controller to determine robot torque values that would improve reference tracking. The third 

experiment expanded upon the second experiment with an admittance controller to help 

interacting with environments with uncertainty. This expansion aims to improve overall safety 

and stability for the user. The reference signal for each system would represent angular 

displacement, making a step input represent aiming for a specific angle and a sine wave input 

represent a continuous back and forward motion of the joint similar to a passive rehabilitation

exercise. 

All simulations were performed using MATLAB 2021a (v9.10) and Simulink (v10.3) and relied 

heavily on the reinforcement learning toolbox. A Simscape multibody model representing a 1 

degree-of-freedom robot available on-campus was used as the plant in the control loop. This 

robotic device, referred to as the PaddleBot, is designed to allow a user to attach their foot to a 

large platform which can be rotated around a fixed point in space. As the input to the model is 
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a torque value and the output is an angular position value the model can be summarised as a 

double integrator. The motor used in the device is a MAXON EC45 brushless 250W motor (part: 

136207) with a nominal torque of 331 mNm and a stall torque of 2540 mNm. This motor is 

combined with a MAXON planetary gearhead GP 62 A (part: 110508) which has a max 

continuous torque of 50 Nm. An image of the PaddleBot can be seen in Figure 4.1, while the 

Simscape multibody model can be seen in Figure 4.2.  

 

Figure 4.1. PaddleBot robotic device mounted on knee-high footstool 

 

Figure 4.2. Simscape multibody model of PaddleBot displayed in orthographic format with an isometric view presented 

in the bottom right. The Simscape model was utilized by all Simulink experiments 
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4.2.1.Estimation of PaddleBot Transfer Function 

An estimation of the transfer function was constructed for the purposes of understanding the 

behaviours of the system. The plant requires a torque as an input and returns an angular 

position, which can be calculated by the physical relation between angular acceleration and 

torque: 

 𝜏 = 𝐼 ∗ 𝜃̈ (4.1) 

 

The moment of inertia is calculated primarily from the foot paddle as it is the dominant mass of 

the system and hangs displaced from the axis of rotation. The moment of inertia can be 

approximated using the parallel axis theorem for a rectangular prism. The connecting arm mass 

is ignored for simplicity, as only the polynomial structure of the transfer function is important, 

not the overall details: 

 
𝐼 =

1

3
𝑚𝑙2 +𝑚𝑟2 

(4.2) 

 where  𝑙  is the foot-length of the paddle and  𝑟  is the distance between the axis of 

rotation and the foot paddle. By using the Laplace transform on (4.1) the transfer function can 

be algebraically constructed as: 

 
𝐺(𝑠) =  

𝜃

𝜏
=
1/𝐼 

𝑠2
 

(4.3) 

This shows that the motor component of the PaddleBot acts as a double integrator. However as 

the paddle mass will also be affected by gravity, additional torque will be present at the system 

input that can be calculated through the equation of motion of a simple pendulum affected by 

gravity:  

 𝜏𝑔 = 𝑚𝑔𝑟 ∗ sin𝜃 (4.4) 

 𝜏 = 𝐼𝜃̈ +𝑚𝑔𝑟 sin 𝜃  

The nonlinear behaviour of the sine function causes problems for transfer function construction, 

but a linear estimation can be made such that sin(𝜃) ≈ 𝜃 for small angles. The estimate transfer 

function is a simple gain present on a negative feedback loop (negative as the gravity component 

g is conventionally negative) and becomes much easier to represent as a linear polynomial 

fraction. The reference tracking ability of the Simscape model, the nonlinear transfer function, 

and the linearised transfer function were compared to confirm whether an accurate transfer 

function had been constructed and whether substitutions between each model could be 
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utilised. Each plant was placed in a PID-controlled closed loop with equal PID controllers, with 

each loop parallel within Simulink, which can be seen in Figure 4.3 below. The same input signal 

was fed to each loop, with the output response recorded by a scope. The moment of inertia (𝐼), 

along with the gravity gain coefficient (𝑚𝑔𝑟), were estimated through calculations and trial and 

error until the output response from the nonlinear transfer function (TF1) sat approximately 

equal to the Simscape model. The linearised transfer function (TF2) utilised these constant gain 

values and simplified into a single transfer function through closed-loop feedback equivalence: 

 
𝐺𝐶𝐿(𝑠) =

𝐺

1 + 𝐺𝐹
=

12

𝑠2 + 13.2
 

(4.5) 

 

The results of the reference tracking showed extreme resemblance between the PaddleBot 

model and TF1, which suggests the transfer function model is accurate and a reasonable 

replacement to the Simscape model if ever necessary. The linearised model also resembles the 

Simscape model, however deviations are present, especially at higher angular measurements. 

This is to be expected due to the approximation being used only being applicable at small angles. 

Therefore, TF2 cannot be reliably used as a substitute plant unless only minimal motions are to 

be expected during operation.  

 

Figure 4.3. Simulink test for transfer function equivalence of the Simscape PaddleBot model, the nonlinear transfer 

function approximation (TF1), and the linearised transfer function approximation (TF2) 
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Figure 4.4. Comparison of output response from the Simscape PaddleBot model (blue), nonlinear transfer function 

approximation TF1 (orange), and linearised transfer function approximation TF2 (green) for a step input (top) and sine 

input (bottom) 
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Figure 4.5. Comparison of error from the Simscape PaddleBot model (blue), nonlinear transfer function approximation 

TF1 (orange), and linearised transfer function approximation TF2 (green) for a step input (top) and sine input (bottom) 

The purposes of creating these model approximations was originally inspired by a need to better 

understand the system response and how to modify the model within a simulation. These 

modifications could be reasoned as changes in the environment that affects output response 

from the system and would be better handled by adaptive controllers. The confirmation that 

the PaddleBot was not a linear transfer function is also beneficial in analysis as it can now be 

definitively stated that applying a gain to the input of the PaddleBot will not be equivalent to 

applying an equal gain to the output. This equivalence would be the case for linear systems but 

not for nonlinear systems, making control more difficult.  
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4.2.2. Stage 1 - Direct Reference Tracking via Reinforcement Learning 

A basic reference tracking control loop measures a process variable and utilizes negative 

feedback to compare the measurement to a desired value represented by a reference signal. 

The error between these two values is used to determine the input signal to the system plant, 

allowing the plant output to reduce the aforementioned error signal, slowly converging to an 

acceptably small level, depending on the system and designer. This structure was used as the 

foundation for the Simulink model; the Simscape model acts as the system plant and returns a 

measured angle to subtract from the reference signal that represents the desired angle of the 

PaddleBot foot pedal. The produced error term is used in conjunction with angular velocity 

measurements and driving torque recordings as the foundational observations of an actor-critic 

reinforcement learning agent, as well as being the independent variables of the reward function. 

The trained agent is then able to transform the observations from the plant into a torque driving 

signal which feeds to the input of the plant. The Simulink model of this closed-loop system is 

provided below: 

 

Figure 4.6. Simulink model for direct reference tracking utilizing the reinforcement learning agent “RL Agent” with 9 

observations and 1 action 
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Traditional ankle range of motion for walking has an upper bound of around 30°, with a larger 

range of 70° for more strenuous activities (Brockett and Chapman 2016). Rehabilitation 

exercises should be used to help recover a full range of motion and as such should push the 

boundaries of each individual. For initial testing an input sine wave of amplitude 0.1 radians 

(≈5.7°) was used for training, as this stays well within the expected range of motion. Tracking a 

sine wave would result in a smooth and constant back-and-forward motion of the ankle, helping 

stretch the muscles. The other form of motion tracking that is desired is for step input values 

that essentially instruct the robot which angle it should currently rest at. This results in more 

abrupt motions that would be less common in ADL, but still have utility in rehabilitation. System 

response to both sine wave and step inputs were recorded for the purposes of analysis. As the 

RL agent is only able to control the torque applied to the PaddleBot and nothing else, changing 

torque to minimize the angular error is how the system functions. The potential actions the 

agent can perform can be limited to match real-world limitations or to improve safety. The 

torque signal was limited to a range of ±3 Nm for both safety concerns of the connected subject 

and the simulation of the existing equipment. Although the physical robot can produce higher 

torque values, a smaller limit was thought reasonable for initial testing and reaching small-

amplitude reference signals as discussed earlier.  

This first experiment acted predominantly as a learning experience and many aspects of the 

design may not be optimal, but achieve acceptable results nonetheless.  

 

4.2.2.1.Observations 

As observations act as the input to the RL neural network system with no memory, the 

observations at any given time sample are the only pieces of available data to the system to 

determine the appropriate action. As the action space of this system is the torque input to the 

PaddleBot, any measurements that may affect the input torque must be present in the 

observations. The most obvious observation is the error measurement between current angular 

position and desired angular position. Without this observation the system would have no way 

of identifying whether the goal was currently reached. From this point it is reasonable to expect 

the derivative and integral of the error to also be useful measurements to let the system know 

how fast the error is changing or how long an error has existed.  
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The measured angle and measured velocity are also used as observations despite covering 

redundant information; the angle measurement can, in theory, be calculated from the error 

observation if the reference signal is constant. However as this angle represents ankle angle it is 

important for the system to determine current angle for safety purposes. For instance, if a 

reference signal is misplaced at a potentially unsafe value (such as 180° from rest) the error 

signal will not be sufficient on its own to alert an issue. Including the direct measured angle as 

an observation, along with its derivative allows better responses to the system reaching the 

edge cases of acceptable operation. Measured velocity is redundant due to the derivative error 

observation, but is included nonetheless to structure the agent to use all available sensor 

readings. The measured angular velocity can be used to calculate angular acceleration through 

another derivative block to use as an observation, avoiding the necessity for a double derivative 

signal.  

The final observations for the system are taken from the actions of the RL agent at a previous 

timestep, along with the discrete derivative to determine how the supplied torque values 

change over time. This allows the system to know what action led to the current states and will 

help determine which actions should be taken to reach desired states the system has not 

experienced beforehand.  

In total, there are 9 observations used for this RL agent, however known redundancies are 

present and simplifications can be implemented to reduce the neural network complexity. These 

simplifications were not implemented as the development of this Simulink model was not of 

high priority, and the computational effort of the system training is not of key importance for 

this project. Future stages of the project involving MIMO systems will need to make these 

considerations more rigorously as computing power and training time become more restricting.  
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Table 4.1 – End-to-End Reinforcement Learning Experiment Observations 

Name Symbol Description 

Error θe  Angular difference between desired angular value and measured 

angular value 

Error Integral ∫ 𝜃𝑒 𝑑𝑡  Integral of angular error to determine duration of error 

across time 

Error Derivative 𝜃̇𝑒 Derivative of angular error to determine rate of change of 

error across time 

Measured Angle 𝜃 Measured angular value of PaddleBot 

Meas. Angle Derivative  𝜃̇  Derivative of measured angle to determine rate of change 

of measured angle across time 

Meas. Velocity 𝜃𝑣  Measured angular velocity of PaddleBot 

Meas. Acceleration 𝜃̇𝑣 Derivative of measured angular velocity to predict PaddleBot 

angular accelerations 

Previous Torque 𝜏𝑡−1 Torque value applied to the PaddleBot at previous time step 

Torque Derivative 𝜏̇𝑡−1 Discrete derivative of torque value applied to PaddleBot to 

determine changes in applied torque across time 

 

4.2.2.2.Reward function 

Reward shaping is arguably the most important task in reinforcement learning, as the reward 

function is the sole guide for how the system determines what it is trying to achieve. A positive 

term in the reward function should be tied to any measurements that move the system towards 

more favourable states, while a negative term should be tied to any measurements that move 

the system towards unfavourable states. For reference tracking, the primary goal is to minimize 

the difference between the reference signal and the measured signal, so using the error value 

as a negative reward value will train the agent to minimize the error, in turn maximizing the 

returned reward. The scale of each of these terms must be tuned such that each term in the 

reward function is appropriately weighted to which measurement values are most important to 

system functionality. For rehabilitation purposes it is desirable to minimize the velocity in which 

the patient is required to move since fast or sudden motions may cause discomfort. However 

the user must still reasonably track the reference signal and as such the negative component 

related to velocity (and acceleration) will be weighted less than the error component. For similar 

reasons to velocity, the input torque to the robotic device should also be minimized for human 

safety concerns and the general reduction of energy used by the system.  
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The angle error, angle velocity, and input torque are the three measurement components used 

in the final reward function, although the error term was constructed as a piecewise function 

and two additional components were included to achieve an appropriate reference tracking 

system. One component is a constant positive reward of +0.1 to encourage further exploration 

and avoid early termination. The other component adds a penalty if the current position in state 

space is not worth exploring, again to avoid early termination. The latter component is related 

to the isdone function: a function that determines early episode termination during training and 

is discussed in a later subsection. The complete reward function is shown in (4.6) which describes 

the reward received at time instance t.  

 𝑟𝑡 = 𝑟𝑒 − 0.01𝜃𝑣
2 − 0.1𝜏𝑡−1

2 + 𝑟𝑖𝑠𝑑𝑜𝑛𝑒 + 0.1 (4.6) 

The reward associated with the measured error of the system is represented as re and takes the 

form of a piecewise function depending on if the measured error is less than a pre-determined 

threshold. By identifying whether the error value is less than a threshold and providing a reward 

for being close to the goal, the number of viable states for the system to aim towards increases 

dramatically and assists with the exploration of state space. For angular reference tracking, the 

threshold is set to 0.1 radians (≈5.7°). This value was selected as a 5° error in a real world 

scenario would be close enough for a subject to be considered close to their desired angle.  

 
𝑟𝑒 = {

1 − 0.1θe
2 ,      |𝜃𝑒| ≤ 0.1

−0.1θe
2,            |θ𝑒| > 0.1

 
(4.6)  

The error value, measured in radians, has a scaling factor of 0.1 simply to keep cumulative 

reward values low and remain at a value comparable to the other penalty values. When also 

considering the error values will be measured in radians and have values less than 1, the error 

term, when squared, will be several orders of magnitude smaller than the constant +1 value 

received when within close proximity. This results in the system valuing low error very highly 

when compared to the remaining terms.  

As discussed earlier, the velocity of the system is not one of the main concerns for the system 

and as such is scaled down further than the other terms. This results in the velocity of the system 

not dictating behaviour by much, but is still considered. The isdone reward function is a simple 

constant depending on the current angluar measurement. If the device has rotated over 90° in 

either direction, a large penalty is applied to singal this behaviour is extremely discouraged. This 

limitation is included from the fact that the human ankle cannot bend to such high degrees and 

the device may cause injury if these values occurred in actuality. The actual human range of 
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motion was not used to account for variations between users and prevent early termination 

occurring too frequently during training.  

 
𝑟𝑖𝑠𝑑𝑜𝑛𝑒 = {

0 ,                 |𝜃| ≤ 1.57
−10,            |θ| > 1.57

 
(4.6)  

The isdone function causes early termination of any given training episode if some condition is 

met during simulation, and as such this event must also result in a large reward penalty to 

discourage the system from terminating early on purpose. The cost of early termination must 

be large enough that the penalty accumulated across one episode is preferrable and exploration 

is encouraged.  

 

4.2.2.3.Early episode termination 

During training, every episode will run a simulation and attempt to maximize the reward by 

changing the actions it performs at each time stage. By trialling different actions from the action 

space, the state trajectory of the simulation will also change. For systems with continuous action 

space and state space there will be a large number of combinations that lead to infeasible or 

potentially dangerous states. If the system begins exploring these areas of state space that have 

no practical utility the system must identify this and stop simulation early. If this act is not done, 

the training of an agent will require potentially exponential increases in computing time and 

resources. Reducing the state space that is explored will improve training times, however it also 

eliminates many potential behaviours. Therefore these behaviours must only be eliminated if 

there is no scenario in which these states are desired or favourable.  

For rehabilitation robotics, these behaviours will represent actions that cause harm to the 

subject. If the robot forces constant rotation in one direction, or any values above the specific 

user’s range of motion, severe damage may be done to the ankle musculoskeletal system. For 

this reason, the early episode termination is set to trigger if the angle measured exceeds ±90° in 

either direction. Although this threshold is much too large for practical application, threshold 

changes can be easily implemented to be more in line with traditional ankle ranges, and even 

customised between individuals. If contact force between robot and human exceeds a threshold 

due to the mechanical resistance of the human, then free motion has been impeded and the 

device should no longer apply external force. This approach was not implemented for this 

experiment as it was not needed for simulation functionality.  
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4.2.2.4.Reinforcement Learning Algorithm & Agent Topology 

The construction of the reinforcement learning agent depends heavily on the tasks that will be 

performed and the environment-generated interactions. With the need for a continuous action 

space for applied torques, as well as a deterministic policy, a deep deterministic policy gradient 

(DDPG) algorithm was implemented. Although twin delayed deep deterministic policy gradient 

(TD3PG) also fits the criteria it was not implemented as it is believed the environment simplicity 

did not warrant the additional computing resources. As DDPG is an actor-critic algorithm, the 

neural networks for both actor and critic must be designed manually to best suit the task at 

hand. The actor network takes the measured states (referred to as observations) as the input to 

the network and returns an action value, which in this case will be a singular scalar value to 

represent torque applied to the device.  

The number of hidden layers within the actor NN, as well as the number of neurons per layer, 

were chosen by considering the mathematical theory of back-propagation neural networks as 

well as some less formal design tips. Determining the correct number of hidden layers has no 

correct solution, however with the knowledge that increasing the NN size will increase 

computation requirements and basic nonlinear functions can be estimated by a single hidden 

layer network, the number of hidden layers used for a relatively simple task should always 

remain less than 3, especially if relying on back propagation (Sutton and Barto 2018: 183). 

Traditionally only 1 hidden layer is sufficient, however 2 hidden layers were included in this 

experiment as the added computation time was not an issue. The number of neurons per hidden 

layer were chosen to fall between the number of input neurons and the number of output 

neurons, most commonly the mean. As the system contains 9 observations and only 1 action, a 

relatively small value of 6 neurons per hidden layer was selected. The construction of the critic 

network followed the same design procedure but with the input of the network including all 

observations and actions while the output produced a training value that adjusted and updated 

the actor network. The structure varied by having two paths that were eventually combined 

through elementwise summation, a technique employed by a provided MATLAB reinforcement 

learning example (Mathworks 2022e).  

Some common issues to consider when designing a neural network include the vanishing 

gradient problem. As backpropagation of a NN updates weights through a calculation that 

utilizes the gradient of the following nodes, if a node has a small partial derivative valued 

between 0 and 1 then chaining through multiple hidden layers causes these derivatives to 

multiply and converge to 0. If this occurs the weights of the NN will no longer update and any 
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further training will see no improvements to performance. As DDPG is a policy gradient method 

the critic network is susceptible to this issue, however by utilizing appropriate activation 

functions such as the rectified linear unit (ReLU) and using a low number of hidden layers can 

minimize the potential effects of the vanishing gradient. Advantages of the leaky ReLU activation 

function were considered but considered unnecessary for this stage in the project. 

The other potential problem that was considered when designing the network was overfitting 

or underfitting data. If a network does not have enough neurons then not all training data can 

be retained in the NN, with the most recent training data overwriting the existing values of the 

system. This problem is known as underfitting, where the network is ill-equipped to reliably fit 

the existing data to an appropriate output. Overfitting stems from the opposite end of the 

problem, where there are too many neurons in the system and all the training data is learned 

exactly. The goal of RL is to learn the general patterns contained within the training data, so 

learning the extreme details of a small set of data will not allow the system to identify broad 

strokes of unseen but similar data in the future. These potential problems are what directed the 

design choices for number of hidden layers and hidden neurons; computing time was another, 

albeit minimal, consideration. Training was performed on a personal home computer overnight, 

and as such the training time was irrelevant as long as it remained under 8 hours.  

 

4.2.3. Stage 2 - PID Control Parameter Tuning via Reinforcement Learning 

The design of the PID controller tuning agent was very similar to the direct reference tracking as 

they shared the objective of minimizing an error value between set-point and process variable. 

The difference arose in the action space of the agent, which instead of outputting a torque value 

directly, would output 3 time-varying coefficient values that would act as the gains for a 

Proportional-Integral-Derivative controller. By comparing Figure 4.6 to Figure 4.7 it becomes 

apparent the only difference between the control loops is the addition of the PID block, which 

acts as a controller to the Simscape PaddleBot plant. The effects of this controller in the original 

design can be considered as subsumed by the RL agent. However, by explicitly including and 

adjusting gain values for the controller the system is able to achieve its goals with more 

precision.  

The training options were set to train the system for 2500 episodes, but an early termination 

criterion was included to reduce the effects of overfitting. This training option ended system 

training if the average reward value for the past 10 episodes exceeded a score of 20. As the 
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reward function predominantly revolved around negative rewards (penalties) if the system was 

able to return a positive value then tracking was being performed to a reasonable level that 

justified ending the training. The score of 20 was chosen arbitrarily to provide a small buffer 

from 0 to guarantee desired behaviours.  

 

Figure 4.7. Simulink model for PID controller reference tracking utilizing the reinforcement learning agent “RL Agent” 

with 15 observations and 3 actions 

Small changes were made to the training of this model when compared to the basic reference 

tracking model. The largest change was the inclusion of initial state variation, allowing the device 

to be better prepared for beginning simulations in non-optimized positions. This is an important 

feature to include before porting to the hardware, as there is no guarantee a human test will 

begin at exactly 0° and may have some inherent angle the system must compensate for before 

starting. This variation was set to randomly begin at any angle between -0.25 and +0.75 radians 

(-14.3° to +43.0°) with a uniform distribution. This range, with dorsiflexion described in the 

negative direction and plantarflexion described in the positive direction, was chosen for its 

approximate coverage of the traditional range of motion for a healthy ankle (Brockett and 

Chapman 2016). Small variations to the gravity vector directions were also made to remove a 

slight angle present in the original model, although this change is unlikely to have any 

measurable effect.  
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 The original experiment used torque as the action and as such was easily restricted to a range 

of ±3 Nm. For the PID model using gains as the action space removed this ability, and indirectly 

restricting torque by restricting gain values was not possible due to the mathematical relation 

shown in (4.7), describing the mathematical structure of a PID controller. The actions produced 

by the RL agent are the PID gain variables 𝐾𝑃 , 𝐾𝐼 , & 𝐾𝐷, yet even when bound the torque output 

will be unbounded due to the dependence on the angular error terms and derivatives.  

As a side note, the equation in (4.7) is for generic PID controllers but is not accurate for the used 

PID controller. For this experiment the derivative of the error signal (dθe/dt) was replaced with 

the derivative of the measured signal (dθ/dt) to avoid the step within the signal and causing 

drastically high derivative values. This substitution can be made as the error signal is calculated 

by  𝜃𝑟 − 𝜃  and the derivative of the reference signal will equal zero, allowing the correct 

derivative to be calculated without what is known as “derivative kick”.  

Multiple different upper-bound values were tested, and the final maximum gain restriction was 

chosen to be 100, while the lower limit was set to 0. As an RL agent with continuous action space 

uses random variation in actions as the method of exploration, the standard deviation of this 

noise distribution must be mathematically related to the action range to appropriately explore 

all options. It is for this reason the action range of 100 was adopted, as when it was combined 

with the equation recommended within the MATLAB noise model documentation (see (4.9)), a 

reasonable standard deviation that was small enough to converge on local maximum reward 

values yet large enough to explore the action space was derived. The remaining changes to the 

observations and reward function were required to adapt to the new task and will be discussed 

below.  

 

4.2.3.1.Observations 

The basic principles to observation selection are used again for the PID reference tracking task. 

Variables that would likely directly affect or correlate to the error value should be included. The 

training reference signal was a multi-step function ranging from +0.4 to -0.2 radians, which 

caused derivative measurements to become unreasonably large. To avoid this issue, instead of 

using the derivative of any measurements, multiple time-instances of these measurements were 

taken. As the neural network has access to multiple time instances, as well as the sample time, 

 
𝜏 = 𝐾𝑃 ∗ 𝜃𝑒 +𝐾𝐼 ∗ ∫𝜃𝑒 𝑑𝑡 + 𝐾𝐷 ∗

𝑑

𝑑𝑡
𝜃𝑒 

(4.7) 
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it is able to calculate the discrete derivative if necessary. The primary measurement, angle error, 

was measured at four consecutive time intervals. This allowed θe(t), θe(t-1), θe(t-2), and θe(t-

3) to act as observations to the system.  

The measured angle and was also taken as an observation for the same safety concerns as the 

previous experiment. As the measured angle is not as important as the angular error 

measurement it was only taken at two consecutive time intervals: θ(t) and θ(t-1). Measured 

angular velocity falls under the same category, however three instances were recorded: θv(t), 

θv(t-1), and θv(t-2). This is likely an unnecessary number of observations given the low impact 

that angular velocity measurements have on the reward function, but was simply chosen for 

ease of transition from a previous attempt iteration. As this observation was predicted to be the 

least relevant, it is expected any connections in the NN will have minimal weights and can be 

pruned in future iterations if computation requirements become a problem.  

Previous torque measurements were taken for three consecutive time intervals as the change 

in torque values is an important consideration in robotics and their longevity. For the calculation 

of torque acceleration a minimum of three measurements are required:  𝜏(𝑡 − 1), 𝜏(𝑡 −

2), & 𝜏(𝑡 − 3).  Torque measurements start one time interval after the other measurements as 

it is considered the output of the feedback loop and therefore cannot be used to calculate itself 

without creating an algebraic loop.  

Similarly, the actual output of the RL agent are the PID gain values which are included as 

observations. The values from the previous time instance,  𝐾𝑃(𝑡 − 1), 𝐾𝐼(𝑡 − 1), & 𝐾𝐷(𝑡 −

1) are included simply to allow the agent to know the previous actions taken, which allows it to 

slowly learn which actions result in state transition patterns.  
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Table 4.2 – PID Reinforcement Learning Experiment Observations 

Name Symbol Description 

Error 

𝜃𝑒(𝑡) Angular error at time t 

𝜃𝑒(𝑡 − 1) Angular error at time t-1 

𝜃𝑒(𝑡 − 2) Angular error at time t-2 

𝜃𝑒(𝑡 − 3) Angular error at time t-3 

Meas. Angle 
𝜃(𝑡) Measured angle at time t 

𝜃(𝑡 − 1) Measured angle at time t-1 

Meas. Velocity 

𝜃𝑣(𝑡) Measured angular velocity at time t 

𝜃𝑣(𝑡 − 1) Measured angular velocity at time t-1 

𝜃𝑣(𝑡 − 2) Measured angular velocity at time t-2 

Input Torque 

𝜏(𝑡 − 1) Motor input torque at time t-1 

𝜏(𝑡 − 2) Motor input torque at time t-2 

𝜏(𝑡 − 3) Motor input torque at time t-3 

Previous Gains 

𝐾𝑃(𝑡 − 1) Proportional gain for PID controller at time t-1 

𝐾𝐼(𝑡 − 1) Integral gain for PID controller at time t-1 

𝐾𝐷(𝑡 − 1) Derivative gain for PID controller at time t-1 

 

4.2.3.2.Reward Function 

Constructing the reward function was also similar between experiments but with several 

changes made to better suit the agent setup, as well as incorporate newly developed techniques 

and experience. The reward function can be divided into five separate terms, each of which 

depend on one of the following key variables: angular error, angular velocity, applied torque, 

simulation runtime, and early termination status. The full equation is expressed in (4.8) with the 

piecewise error reward and the piecewise torque reward expressed in (4.8) and (4.8), 

respectively. The early termination penalty, risdone, remains unchanged from (4.6) (although the 

threshold measurement was converted from radians to degrees), applying a penalty if the 

measured angle reaches unsafe values for a human ankle.  

 𝑟𝑡 = 𝑟𝑒 + 𝑟𝜏 + 𝑟𝑖𝑠𝑑𝑜𝑛𝑒 − |0.01𝜃𝑣| + 0.5 (4.8) 

 
𝑟𝑒 = {

5 − |𝜃𝑒| ,      |𝜃𝑒| ≤ 5°

−|𝜃𝑒|,            |𝜃𝑒| > 5°
 

(4.8) 

  
𝑟𝜏 = {

−|0.01𝜏𝑡−1| ,    |𝜏𝑡−1| ≤ 3
−|𝜏𝑡−1|,             |𝜏𝑡−1| > 3

 
(4.8) 
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The most important change between the two experiments is the change from angular units 

being measured in radians to being measured in degrees. This change has the effective result of 

multiplying the reward values by a factor of 180/π, making the error reward and velocity reward 

contribute more to the overall value and increasing their importance to the system. From this 

change, any values that were squared were changed to absolute values to not over-penalise 

these states. 

The error reward is strictly a penalty if the absolute error measurement is greater than a 

predefined threshold value, currently set at 5°. If absolute error measurement is less than this 

threshold then a positive reward is provided to encourage the system to reach and explore these 

states. The threshold value 5° was arbitrarily chosen as a value that could be considered “close 

enough” to reduce the exploration performed in unreasonable or redundant states.  

The torque reward also acts as a strict penalty if the applied torque is greater than the 3 Newton-

metre restriction previously established. As there is no way to create a hard limit of applied 

torque for this experiment, a soft limit is incorporated into the reward function. This piecewise 

function decreases torque penalty by a factor of 100 if this soft limit is not violated, and as such 

the RL agent will learn not to violate the limit unless the error penalty becomes so large that the 

system determines violating the soft limit to reduce the error penalty is mathematically 

practical. The real-world limitations of the motor-gearhead combination being utilized in the 

demonstration robotic device is a maximum continuous torque of 50 Nm which exceeds the 

healthy ankle dorsiflexion values for all demographics, but is less than values for plantarflexion 

(Moraux et al. 2013). For subjects over the age of 18 the weakest average ankle torque 

measurement was 19.2 Nm, produced by females between ages 60-69 for right-ankle 

dorsiflexion. To avoid any injuries to potential subjects the soft torque threshold for the robotic 

device should not exceed this value. Several tests were performed with a threshold torque 𝜏𝑡ℎ =

20 𝑁𝑚, however results did not differ greatly from the previous threshold value 𝜏𝑡ℎ = 3 𝑁𝑚, 

so findings from the initial value are hereby referenced. 

4.2.3.3.Early Episode Termination 

Early episode termination is identical to the previous experiment setup, triggering an end to an 

episode if the PaddleBot rotates to a state that would cause harm to the participant. Current 

threshold is set to ±90° for simplicity. Although the range of motion for a healthy ankle is notably 

more narrow than this range, it is undesirable to cause episode termination extremely 

frequently, as this will likely cause the training to fall into a local minima and not explore further 

options.  
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4.2.3.4.Reinforcement Learning Algorithm & Agent Topology 

With a continuous action space for gain values, a TD3PG algorithm was used. This neural 

network structure is identical to the DDPG structure implemented within the basic reference 

tracking system, with the notable exception that two critic networks are trained side-by-side 

and the more conservative update is used for each learning iteration. The learning rate for the 

actor network and both critic networks remained at 10-3. Tests were performed with all learning 

rates changed to 10-4, however the results showed less convergence towards an optimal policy, 

possibly explained by the system falling into a local minima and settling for less optimal results. 

As the agent is expected to value correct tracking at all stages of the simulation and the 

simulation is relatively short, the discount factor that reduces the value of late-stage rewards is 

set to 1. This results in no reward discounts for rewards that happen in the distant future, but 

this setting is unlikely to affect the convergence of the training due to each episode lasting at 

maximum 100 time instances.  

For a discrete action space system an RL agent would randomly select one of the finite actions 

that could be taken and analyse the resulting reward accumulated. As this system is required to 

output a continuous action, randomly selecting a finite action is not possible due to the infinite 

degree of refinement that may be taken by the system. Instead, a random action is taken and is 

then compared to the same action taken with an additional noise signal to slightly perturb the 

action taken. It can then be determined if this action returned better or worse reward values 

over the episode and slowly adjust the actions taken in the future accordingly. The exploration 

of the continuous space is achieved with random Gaussian noise combined with the learned 

action values. The standard deviation of this noise will be proportional to the action range of the 

system to guarantee the action range is explored to a reasonable degree throughout training. 

This proportionality is recommended to be between 1% and 10% of the full action range 

(Mathworks 2022c). The formula for the exploration noise standard deviation (σ2) is dependent 

on system sampling time (Ts) and the action space range (𝐴𝑙𝑜𝑤𝑒𝑟 , 𝐴𝑢𝑝𝑝𝑒𝑟): 

 
𝜎𝐸𝑁 =

𝛼 ∗ (𝐴𝑢𝑝𝑝𝑒𝑟 − 𝐴𝑙𝑜𝑤𝑒𝑟)

√𝑇𝑠
 

(4.9) 

where α is the scaling factor to be chosen between 0.01 and 0.1, depending on how 

much exploration is favoured in the training process. For this experiment, α was set to 0.05 to 

appropriately explore the action range. A small noise decay rate of 0.0001 was present across 

the training session but unlikely to have caused any noticeable noise variation within the limited 

training session. 
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For the agent’s network architecture, the number of hidden layers remained the same: 2 hidden 

layers for the actor network, 2 for the observation path of the critic network, and 1 for the action 

path of the critic network. The number of neurons per hidden layer remained equal to the 

average of number of actions and number of observations; with 15 observations and 3 actions, 

each hidden layer contained 9 neurons. The topology of each neural network can be seen in 

Figure 4.8. The addition layer for the critic network symbolises elementwise summation via 

colour coded connections.  

 

Figure 4.8. Neural network architecture for the PID reinforcement learning agent with number of neurons and 

activation functions labelled for each layer. Layers with no activation function are labelled as “no A.F.”. The actor 

network is displayed on the left and the critic network is displayed on the right 

Leaky ReLU activation functions were used for the hidden layers with a scaling value of 0.1. This 

change allows negative values to be passed through the network without being zeroed, but 

reduces their magnitude by a factor of 10 each node. By using this activation function the effects 

of the vanishing gradient problem are reduced, albeit slightly.  

 

4.2.4. Stage 3 - Admittance Control Parameter Tuning via Reinforcement Learning 

The final experiment utilizing single-input single-output systems was structured nearly 

identically to the PID control parameter tuning experiment, however the control loop of the 

system was expanded to better represent the desired functionality. A simulated external 

environment was added after the PaddleBot plant to determine the interaction force between 

the robot and any objects that may impede its motion. This environment is intended to 
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represent the human user that moves their ankle in tandem with the PaddleBot. As such, the 

force experienced will be determined by whether the robot is still able to freely move through 

space, or if the ankle range of motion has been reached and a resistive force is encountered. An 

admittance controller was implemented along the feedback line to convert the interaction force 

into an adjusting position signal to prevent the system tracking a reference signal that would 

cause harm to the user. The admittance controller uses the previous RL techniques to adaptively 

set the controller parameters. Figure 4.9 shows the new control loop including the simulated 

environment and adaptive admittance controller. A simplified diagram of the system is shown 

in Figure 4.10 to help clarify variable descriptions and show how the admittance controller will 

adjust the signal the system converges to, from the original reference signal (theta_r) to the new 

command signal (theta_c). The distinction between these two signals is important as there are 

now two error signals that will determine system behaviour. The command error is what will 

determine the distance from the position goal. The reference error is still an important 

measurement in admittance control, as it dictates the environment interaction forces and can 

be set as needed to achieve a pre-desired interaction force during steady state operation. 

 

Figure 4.9. Control loop utilizing reinforcement learning for an adaptive admittance controller interacting with a 

changing environment 
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Figure 4.10. Simplified diagram of adaptive admittance control loop implemented. The adaptive admittance controller 

is determined by the reinforcement learning agent 

The adaptive PID controller from stage 2 was replaced with a constant PD controller. The integral 

component of the controller was removed due to the PaddleBot plant acting as a double 

integrator; a double integrator following a PID controller can lead to a reduction in the phase 

stability margin and may cause the system to become non-minimum phase. The gain values 

were chosen through trial and error for a system that provided a rise time of approximately 1 

second for each step change. These values were set to 𝐾𝑝 = 75,𝐾𝑑 = 15 for majority of tests. 

The adaptive element of the control loop was transferred to the admittance controller, whose 

parameters represent physical properties of the controller: inertial mass (M), damping (B), and 

stiffness (K). The admittance controller takes the measured environment interaction force and 

returns a trajectory correction signal (Δ𝜃). This signal is added to the reference signal (𝜃𝑟) 

which results in the new command signal (𝜃𝑐). The command signal becomes the input to the 

inner loop and acts as the desired value the system converges towards in the same role the 

reference signal filled in the previous experiment. The error signal is therefore calculated by the 

difference between the command signal and the measured signal, although it is labelled as the 

command error for clarity (𝜃𝑐𝑒), as seen below:  

 Δ𝜃 = 𝜃𝑐 − 𝜃𝑟 (4.10) 

 𝜃𝑐𝑒 = 𝜃𝑐 − 𝜃 (4.11) 

The trajectory correction signal is generated by the admittance controller which follows the 

equation of motion discussed in (2.4). As the system achieves tracking and the command error 

signal converges to zero, the correction signal will converge to the following value: 

 lim
𝜃𝑐𝑒→0

Δ𝜃 = 𝜃 − 𝜃𝑟 (4.12) 
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Assuming the system has perfect tracking then combining (2.4) and (4.12) will allow the 

impedance behaviour of the system to match the mathematical model provided, which can be 

represented by (4.13). This equation can be rearranged for calculating the correction signal 

double derivative which can then be integrated for calculating the output of the admittance 

controller and determining the appropriate trajectory correction Δ𝜃.  

 F(t) = 𝑀Δ𝜃̈ + 𝐵Δ𝜃̇ + 𝐾Δ𝜃 (4.13) 

 Δ𝜃̈ = 𝑀−1(𝐹(𝑡) − 𝐵Δ𝜃̇ − 𝐾Δ𝜃) (4.14) 

There are three parameters in total that can be adjusted to control system impedance, and as 

such the action vector from the RL agent must contain 3 values. However it has been shown that 

changes to the inertial mass can lead to negative impacts on system stability. Varying M values 

lead to rapid changes in the damping ratio and natural frequency of the system (Bingjing et al. 

2019). It was also revealed that changes to M, when compared to changes to B or K, had a 

relatively small impact on the resulting correction signal. As such, it was decided that the inertial 

coefficient would be excluded from the adjustable parameters, focusing only on stiffness and 

damping. This advice has been adopted for the previously specified reasons, along with the 

benefit of reducing the dimensions of the action vector of the reinforcement learning agent from 

3 to 2. It is unclear how the inertial mass parameter was calculated by Bingjing et al., and as such 

system inertia was set to equal 1 for simplicity of calculations.  

The action range was set such that each action would be a continuous value bound between 5 

and 150. The upper limit was implemented to prevent searching an infinite space, and higher 

stiffness values lead to larger interaction forces so the maximum value of 150 will restrict these 

forces to reasonable levels for human experiences. The lower limit was implemented as to 

match the physical meanings of the gain values (a negative spring constant or damping 

coefficient is physically nonsensical). The lower limit of 5 was selected as previous experiments 

with the limit of 0 led to scenarios where tracking error would not diminish over time when 

transitioning from out-of-range operation to in-range operation. Having a positive gain value for 

both stiffness and damping at all times will prevent this behaviour and will cause steady state 

error to decrease over time.  

4.2.4.1.Observations 

The observations used for this experiment followed the same principles as the former 

experiment, taking measured angle, angular velocity, reference error, and input torque at three 
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adjacent time intervals so the neural network was able to observe how the system evolved over 

time based on the actions taken. Additionally, the angular error between the current position 

and the admittance controller-adjusted signal (the command signal) and the interaction forces 

were also included as observations to allow the environment interaction effects to also be 

considered during operation. An additional time instance of the previous gain values were also 

included for each parameter, to ideally assist in identifying the effects of changing the action 

output at any given time.   

Table 4.3 – Adaptive Admittance Reinforcement Learning Experiment Observations 

Name Symbol Description 

Command Error 

𝜃𝑐𝑒(𝑡) Difference between θc and θ at time t 

𝜃𝑐𝑒(𝑡 − 1) Command error at time t-1 

𝜃𝑐𝑒(𝑡 − 2) Command error at time t-2 

Reference Error 

𝜃𝑒(𝑡) Difference between θr and θ at time t 

𝜃𝑒(𝑡 − 1) Reference error at time t-1 

𝜃𝑒(𝑡 − 2) Reference error at time t-2 

Meas. Angle 

𝜃(𝑡) Measured angular displacement of plant at time t 

𝜃(𝑡 − 1) Measured angle at time t-1 

𝜃(𝑡 − 2) Measured angle at time t-1 

Meas. Velocity 

𝜃𝑣(𝑡) Measured angular velocity of plant at time t 

𝜃𝑣(𝑡 − 1) Measured velocity at time t-1 

𝜃𝑣(𝑡 − 1) Measured velocity at time t-2 

Input Torque 

𝜏(𝑡 − 1) Input torque of plant at time t-1 

𝜏(𝑡 − 2) Input torque at time t-2 

𝜏(𝑡 − 3) Input torque at time t-3 

Interaction Force 

𝐹(𝑡) Interaction force between plant and environment at time t 

𝐹(𝑡 − 1) Interaction force at time t-1 

𝐹(𝑡 − 2) Interaction force at time t-2 

Previous Gains 

𝐾(𝑡 − 1) Admittance controller stiffness gain at time t-1 

𝐾(𝑡 − 2) Admittance controller stiffness gain at time t-2 

𝐵(𝑡 − 1) Admittance controller damping gain at time t-1 

𝐵(𝑡 − 2) Admittance controller damping gain at time t-2 
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4.2.4.2.Reward Function 

The reward function also follows the same principles as the previous experiments but has 

adjusted values to appropriately balance each reward term. The error penalty remained 

unchanged and still provides a positive reward if current position is close to the desired position, 

however due to the interactions with the environment preventing the plant from tracking the 

reference signal in all scenarios, an error penalty will accumulate even in cases where the system 

is behaving exactly as desired, signalling that the reward function has been poorly constructed. 

Attempts were made where the error penalty was dependent on the command error (𝜃𝑐𝑒) 

rather than the reference error (𝜃𝑒), however this led to a “chasing a moving target” problem 

where the agent learned to set the command signal to easy-to-track states as it was able to 

control the experienced forces through the actions. The results no longer resembled reference 

tracking and as such this approach was abandoned and reference error was used in the reward 

calculation, as it was for the adaptive PID controller experiment. Although meaningless, these 

results are presented below in Figure 4.11 as they are interesting and show the quirk of 

reinforcement learning behaving in a manner not intended but perfectly matching the specified 

reward function. 

 

Figure 4.11. Reference tracking ability of RL agent when the reward function aims to minimise error between measured 

angle and command signal rather than measured angle and reference angle 

Punishing error between the reference and the measured signal will lead to large reward 

penalties if the reference is beyond the environment-restricted range of motion. To discourage 

perfectly tracking the reference signal, the interaction force penalty that is experienced when 

outside the range of motion must supersede the accumulated error penalty. As the environment 

is set to the equivalent of a spring with a stiffness of 20 N/degree, the forces generate increase 

linearly for every degree the PaddleBot passes the range of motion. This leads to fairly large 
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force measurements that will easily dominate the error penalty term, even when multiplied by 

the constant factor of 0.2 to prevent the term from dominating all others. The velocity penalty 

was increased by a factor of 10 (from 0.01 to 0.1) due to the addition of new terms effectively 

drowning out the previously miniscule value. Despite this change, velocity is still the smallest 

contributor to the overall reward.  

The threshold for torque penalty was increased from 3 Nm to 20 Nm. This change is to more 

accurately represent the torque that would be acceptably applied to a human ankle. Although 

most ankles are able to generate much higher torque values it was determined by Moraux et al. 

(2013) that this torque value varies drastically between age and demographics. For this reason 

the lowest torque value was chosen as to guarantee no individual would be subjected to a 

torque that their muscles would be incapable of producing on their own. This threshold is not a 

hard limit for the system, but simply reduces the experienced penalty by a factor of 100 if the 

applied torque remains lower. This should, in theory, lead the agent to avoid providing actions 

that would lead to excessive torque under ideal scenarios. Since this is not a hard limit, the 

torque applications must be watched carefully for safety concerns. The early episode 

termination penalty is triggered under the same conditions and was similarly amplified by a 

magnitude of 10 to prevent the term from being made insignificant in the presence of all the 

other rewards and penalties combined.  

The force equation mentioned earlier is calculated according to the following equation: 

 

𝐹𝑒𝑛𝑣 = {

20(𝜃𝑙 − 𝜃), 𝜃 ≤ 𝜃𝑙
0                   , 𝜃𝑙 ≤ 𝜃 ≤ 𝜃𝑢
20(𝜃 − 𝜃𝑢), 𝜃 ≥ 𝜃𝑢

 

(4.15) 

For convention, the PaddleBot rotating in the plantarflexion direction (bending foot away from 

tibia) is designated the negative and the dorsiflexion direction (bending foot towards tibia) is 

designated the positive direction. For the example a user was imagined with a maximum 

dorsiflexion of 30° and a maximum plantarflexion of 45°.  Therefore the lower and upper bounds 

for the range of motion were set to  𝜃𝑙 = −40° and 𝜃𝑢 = +25°, respectively. The 5° discrepancy 

was included as a buffer to try and prevent injury and increase response time for the command 

signal reacting to the environment. A positive force corresponds to pushing the PaddleBot in the 

dorsiflexion direction and negative force pushes in the plantarflexion direction, so the 

experienced forces will resist motion outside of the pre-determined range. Although this force 

calculation is not an exact simulation of real world physical impedance and there may be issues 
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in safety for sudden changes between conditions, these issues are reserved for future system 

improvements as the main focus of the experiment is the adaptive admittance control.  

From the environment-force interaction equation from (4.15), it can be seen that while the 

system is within the acceptable range of motion there are no interaction forces. This is not true 

in practice as there will be interaction forces between the human foot and the robot whenever 

either body is attempting to move. This interaction force will likely be minimal and necessary for 

correct operation, so it was ignored for the purposes of the reward function. Every degree past 

the range of motion increases the resistive force by 20 N to make violating the range of motion 

very difficult.  

The reward received at every time interval t is calculated through the following reward function: 

 𝑟𝑡 = 𝑟𝑒 + 𝑟𝜏 − 0.2|𝐹𝑒𝑛𝑣| − 0.1|𝜃𝑣| + 1 + 𝑟𝑖𝑠𝑑𝑜𝑛𝑒 (4.16) 

 
𝑟𝑒 = {

5 − |𝜃𝑒| ,      |𝜃𝑒| ≤ 5°

−|𝜃𝑒|,            |𝜃𝑒| > 5°
 

(4.16) 

 
𝑟𝜏 = {

−0.01|𝜏𝑡−1| ,        |𝜏𝑡−1| ≤ 20
−|𝜏𝑡−1|,                  |𝜏𝑡−1| > 20

 
(4.16b) 

 
𝑟𝑖𝑠𝑑𝑜𝑛𝑒 = {

0 ,                   |𝜃| ≤ 90°
−100,            |θ| > 90°

 
(4.16c) 

 

4.2.4.3.Early Episode Termination 

Early episode termination is identical to the previous experiment setup, triggering an end to an 

episode if the PaddleBot rotates to a state that would cause harm to the participant. Current 

threshold is set to ±90° for simplicity. Some experiments used a threshold of ±60° to be slightly 

more realistic in physical restrictions, but no noticeable difference to training was apparent.  

 

4.2.4.4.Reinforcement learning algorithm and agent topology 

Training an adaptive admittance controller uses very similar methodology to training the 

adaptive PID controller. The TD3PG algorithm was used for the production of a continuous 

action space and previously successful results. Learning rates for all networks initially remained 

at 10-3 due to the system similarities and the previously successful training results, however 

some tests were performed with a learning rate of 10-4 as the training progress indicated the 

system was converging to a solution very quickly and a smaller learning rate may help find an 

alternate solution. The discount factor was changed from 1 to 0.99 to discount later rewards. 
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This change was made due to a recommendation from the OpenAI Spinning Up tutorial (OpenAI 

2018) which states that a non-unity discount factor increases the likelihood of convergence, 

stemming from the guarantee that the reward sum will converge. Conceptually, the reward 

discount factor can be justified with the understanding that rewards at the beginning of the 

simulation are guaranteed, but later rewards may not happen due to early termination. Noise 

exploration was calculated using the same formula of (4.9) but with α = 0.08 as it was believed 

more exploration was necessary to find the optimal gain values. Lower exploration was tested 

as manual parameter tuning showed low gain values were best suited in specific cases of 

environmental interaction, but high values were best suited for other cases so the higher 

exploration noise was eventually implemented. The experience buffer size was also increased 

from 10,000 to 100,000 to retain more experiences throughout training. The full training time 

was set to 4000 episodes which each generate 100 experiences, so setting the experience buffer 

to preserve 25% of all experiences at any one time seemed like a reasonable ratio to both learn 

from the training and avoid catastrophic forgetting of previously learned behaviours.  

Neural network topology for the actor network was retained between experiments, with the 

only change being the number of neurons for each hidden layer. The first hidden layer utilised 

16 neurons, while the second hidden layer only used 8 neurons to try and avoid overfitting that 

had occurred in previous stages of development. The critic network was reshaped to be more 

symmetrical and allow both observations and actions to parse through the same number of 

neuron layers. Figure 4.12 shows the unedited structure of the network.  
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Figure 4.12. Neural network architecture for the Admittance reinforcement learning agent critic network with number 

of neurons and activation functions labelled for each layer. Layers with no activation function are labelled as “no 

Activation”.  The actor network architecture was unchanged from Figure 4.8, but with 22 input neurons, 16 hidden 

neurons/layer, and 2 output neurons

Note: This alternate architecture was trained and tested but showed worse RMSE scores than 

the original architecture, so the original architecture for the adaptive PID controller was utilised 

for calculating the RMSE values presented later in this chapter. The new architecture was left in 

this report to show alternate architecture attempts were made. 

Results

The ability to track a reference signal for a system was measured through the calculation of the 

error between the reference signal (also referred to as the set point) and the measured signal 

(also referred to as the process variable) at any given time. To compare reference tracking 

systems an average score across one full simulation is required. The root mean square error 

(RMSE) can be used for this purpose as it will represent how large the error measurements were 

and how long they persisted in the system. 

𝑅𝑀𝑆𝐸 = (
1

𝑇
∑(𝑟𝑖 − 𝑦𝑖)

2

𝑇

𝑖=0

)

1
2

(4.17)
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For a single experimental simulation, the error at every discrete time interval can be calculated 

to find the average error for the simulation. Each simulation has an equal simulation time Tf and 

sampling time Ts. The total number of samples can then be calculated as T = Tf/Ts. In this 

experiment the simulation time was set to 10s and the sampling time to 0.1s. Any large 

divergences caused by overshoot or undershoot will increase the RMSE calculation, which will 

then be used as the comparison between reference tracking methods, as well as a measurement 

of how each method functions with various input signals. The three most common input signal 

types include the step, the impulse, and the sinusoidal wave. No impulse input tests were 

performed as they do not have as much practical application in rehabilitation. Each input signal 

can be tested to calculate the RMSE to determine if the controller is able to reliably direct the 

physical plant to behave in the desired motion patterns. Three different input signals were 

tested for each stage of the experiments: 

1. A basic sine wave with amplitude of 0.1 (≈5.7°), a frequency of 3 rad/sec, and a bias and 

a phase of 0. The input signal was labelled “Basic Sine” 

2. An offset sine wave with an amplitude of 0.25 (≈14.3°), frequency of 2π rad/sec (exactly 

1 Hz), a bias of -0.15 (≈8.6°), and a phase of 0. This input was structured to crudely 

represent a regular healthy walking gait and was labelled as “Gait Sine” 

3. A multi-step function equal to: 0 from t=0 to t=2, 40° from t=2 to t=4, 6° from t=4 to t=6, 

-10° from t=6 to t=8, and -45° from t=8 to t=10; labelled “Multi-step”  

Two sine wave inputs were tested as the general range of motion for an ankle joint can vary 

dramatically between humans, especially those suffering from disability, so having data to 

compare under the lens of frequency analysis or amplitude analysis may lead to better 

understanding for future user’s preferred motion patterns.  

The primary goal of this chapter was to use artificial intelligence to develop a controller. Therefor 

to justify this approach, the produced adaptive PID controller must surpass the traditional PID 

controller, or the adaptive admittance controller must surpass the traditional admittance 

controller. The admittance comparison will not be as clear-cut as the PID case and revealed 

through RMSE recordings, as perfect tracking is not intended behaviour and additional restraints 

must be formed to incorporate important information such as range of motion violations and 

environmental interactions. Excluding stage 1, the RL agent was trained two separate times: 

once using a multi-step input signal (hereby referred to as the step-trained adaptive system), 

and once with the gait sine wave (hereby referred to as the gait-trained adaptive system). Each 

agent is expected to have higher RMSE recordings for input signals that differ from its training 
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signal as the agent has not experienced these exact situations. However, as long as each control 

loop is compared to its counterpart with the same input signal, this issue is not believed to be 

negatively impactful and can be accounted for easily in the future. Varying the input signal while 

using agents trained with alternate input signals also has the benefit of showing whether the 

adaptive controllers can learn from one specific input and adjust for alternative input signal 

forms, as would be the case for real-world motion tracking and rehabilitation exercises. 

Note: All RMSE measurements are taken in degrees rather than radians to amplify the 

differences in measurements, as values between experiments were very similar in many cases. 

 

4.3.1. Stage 1 - Direct Reference Tracking (End-to-end) 

The original reference tracking agent constructed does not employ any form of controller, and 

instead contains the controller within the RL agent to output the applied torque value directly. 

For this reason, there is no comparable control loop that comparisons can be made in reference 

to. The reference tracking ability can be seen in Figure 4.13 for a basic sine wave, a biased sine 

wave, and a multi-step function.  

 

Figure 4.13. Response output from the RL direct controller for the: basic sine wave (top) gait sine wave (middle) and 

multi-step function (bottom) as the system input signal. RMSE values of Basic, Gait, and Multistep are: 0.454, 6.597, 

and 9.105, respectively. 
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Tracking for the basic sine wave shows small error at all points of the simulation, but the gait 

sine wave shows degeneration of tracking with a larger amplitude (6° for the basic sine versus 

14° for the gait sine) and higher frequency (3 rad/s, or 0.48 Hz for the basic sine versus 2π rad/s, 

or 1 Hz for the gait sine). Naturally a reference tracking system involving larger numbers will 

have larger absolute error values that are used to calculate the RMSE, so it is important to 

determine whether the increase in error can be attributed to the larger input signal amplitude 

or whether it is simply the result of the RL agent training. This concept is covered deeper for the 

adaptive PID stage in section 4.3.2.3, but for this experiment the RMSE values for the basic sine 

wave were clearly affected by both frequency and amplitude. Holding amplitude at 0.1 radians, 

increasing the frequency from 3 rad/sec to 2π rad/sec caused the RMSE value to increase from 

0.4540 to 2.6951. Holding frequency at 3 rad/sec, increasing the amplitude from 0.1 to 0.25 

caused the RMSE value to increase from 0.4540 to 0.8230. These results suggest most errors 

present are caused by the physical limitations of the PaddleBot and its inertia causing a delay in 

reference signal tracking for faster movements.  

The step-function tracking also behaves reasonably, with a clear trade-off between overshoot 

and steady state error occurring at each step. The first step at t=2 and forth step at t=8 show no 

overshoot but leaves a non-negligible steady state error, while the second step at t=4 and third 

step at t=6 have much less of a steady state error at the cost of overshoot. Since there is no 

distinguishable difference between types of error within the reward function there is no reason 

for either approach to be favoured by the RL agent other than which tends to produce less error 

and torque penalties. The agent was trained using a slight variation of the multi-step function, 

with only 3 steps rather than 4. The training steps after t=4 were held for 3 seconds which may 

have biased the agent to learn to favour steady state error at earlier times as it expects them to 

last less time. Although possible, the steady state error for the final step seems to contradict this 

hypothesis and from visual analysis it seems the steady state error should always be considered 

the worse of the two options. Another possibility the results may suggest is the difference comes 

from the magnitude of the step, with larger steps requiring more torque that is discouraged, 

and so a steady state error is produced instead. The step drop between step 1 and step 2 is 34° 

while the drop between step 3 and 4 is 35°, so although the step amplitude may play a role it is 

also unlikely to be the sole contributing factor. The final possibility for the agent’s current 

reasoning between overshoot and steady state error is simply that training had not found the 

optimal solution before training ended and results presented are a suboptimal but functioning 
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reference tracking system. Further experimentation can easily be completed to corroborate this 

theory, but it is not considered important enough to commit any further resources at this time.  

Regardless of the error type, these errors will sum up in the recordings of the RMSE, which were 

recorded to be later compared to the adaptive controller techniques. The basic sine input had 

the smallest value of 0.4540, likely due to the small amplitudes and low frequencies. The gait 

sine wave had an RMSE value of 6.5972 and the multi-step function resulted in the highest RMSE 

value of 9.1049. This does seem to match the visual results presented above, and supports the 

earlier claim that error is predominantly caused by the physical inertia of the robot being unable 

to keep up with the step transitions and higher frequency motions.  

 

4.3.2. Stage 2 - Adaptive PID Controller Reference Tracking 

4.3.2.1. Constant environment RMSE results 

The adaptive PID controller showed promising results with a clear tracking pattern shown for a 

variety of input reference signals. When utilising identical input signals, this tracking was 

noticeably better than the end-to-end direct controller discussed above. However to justify the 

use of an adaptive PID controller it must be compared to a classical PID controller with constant 

gain values. These parameters were calculated from the average gain values from the step-

trained adaptive PID experiment. These values could have been calculated manually, but by 

using the average of the values the RL agent selects it becomes much clearer whether changing 

the gain values during simulation has any merit. By varying the input signal type the average PID 

values change as well, and as such the results for the constant PID controller are split into three 

separate categories, showing three different constant PID systems. Only the gait-averaged 

systems will have reference tracking plots provided below as the other two input signals are 

similar and do not provide any additional information.  

The basic sine reference tracking for each of the trained agents and the constant PID are shown 

below in Figure 4.14, with each approach providing almost exact tracking. The step-trained 

agent has a tiny offset and the gait-trained agent has mild oscillations during the first peak, but 

overall each approach could reasonably be utilised for low-frequency sine tracking.  
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Figure 4.14. Response output for tracking the basic sine wave input in a constant environment. Contains reference 

tracking for constant PID (orange), step-trained adaptive PID controller (green), and gait-trained adaptive PID 

controller (black) 

The gait sine reference tracking is presented in Figure 4.15, with successful tracking for each 

approach. The gait-trained agent repeated the mild oscillatory behaviour at the beginning of the 

simulation, causing a larger overshoot than last time, but settled very quickly. The step-trained 

agent also has the previous problem of slight offset to a worse degree. The absolute difference 

between the step-trained response and the reference signal is still no more than 2° at any given 

time which would likely be indistinguishable to a human positioning their ankle, so all 

approaches could reasonably be utilised for approximate walking gait-pattern tracking. 
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Figure 4.15. Response output for tracking the gait sine wave input in a constant environment. Contains reference 

tracking for constant PID (orange), step-trained adaptive PID controller (green), and gait-trained adaptive PID 

controller (black) 

The multi-step reference tracking comparison is contained in Figure 4.16 and shows the constant 

PID controller with very good tracking. When compared to the adaptive PID controllers, the 

constant PID clearly outperforms the gait-trained agent and very similarly to the step-trained 

agent. The adaptive PID has smaller overshoot percentages but have a slightly longer settling 

time; there is no ‘better’ result between these as it will simply come down to preference, and in 

practice the difference between these results would be imperceptible for rehabilitation 

exercises. The gait-trained agent has large divergences from the previous two approaches, with 

much larger overshoots and oscillations for each of the step transitions. This is likely due to the 

gait-trained agent learning to always expect an upcoming oscillation during its training session, 

so it tries to counteract these predicted motions that never occur for the step input.  
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Figure 4.16. Response output for tracking the multi-step function input in a constant environment. Reference 

tracking for constant PID (orange), step-trained adaptive PID controller (green), and gait-trained adaptive PID 

controller (black) 

This result clearly indicates the importance of the training data available to the RL agent as the 

step-trained agent performs exceedingly better than the gait-trained agent for the input it was 

trained with, and the gait-trained agent performed slightly better for the two sine-based inputs.  

Table 4.4 – RMSE measurements for a constant environment [°] 

Input Signal Adaptive PID Constant PID 

Step-trained Gait-trained Avg. Basic Avg. Gait Avg. Step 

Basic Sine 0.4020 0.1247 0.0143 0.0145 0.0141 

Gait Sine  3.3927 1.0659 0.8859 0.8834 0.8857 

Multi-step 6.6700 9.1187 6.4884 6.4807 6.4836 

 

The root mean square error values aim to summarise the tracking results shown in the above 

graphs as a single value to further the comparisons. The results for the static environment RMSE 

values are presented in Table 4.4 and confirm that the adaptive controller performed better for 

the input signals associated with its training. Results also show that the constant PID controller 

outperformed both adaptive controllers regardless of input signal (with respect to the RMSE). 

When considered with the additional complexities of adaptive controllers, these results suggest 

a constant PID controller is better suited for simple unchanging environments under all 

conditions. 
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4.3.2.2. Changing environment RMSE results 

With the constant PID outperforming the adaptive PIDs for constant environments it was 

theorised that adaptive PID controllers would be better suited for an environment that changes 

during operation and would require system retuning. With respect to the PID controller, the 

environment is considered anything not directly determined by the controller. For more 

advanced system interactions such as the admittance controller, this would include the force 

interactions and physical restrictions, but since the PID system is structured to be simple only 

the PaddleBot can be considered the environment. To simulate a changing environment, a step 

function that multiplied the torque input to the PaddleBot by a value of 1 for t<6 and 0.01 for 

t≥6 was included into the control loop. This step drop effectively reduces the applied torque to 

the plant to 1% of its original value and causes the system to become non-linear, which 

reinforcement learning is well suited to handle. This change can be explained in a real-world 

example by a failure in the power supply, causing the motor to apply less torque than what the 

controller desires. From this perspective, using RL-based adaptive control can be considered a 

form of fault-tolerant control.  

The same two adaptive PID controllers were used from the previous stage, and as such neither 

system was ‘trained’ to expect a change in environment. The agent trained using the multi-step 

function was again labelled “Step-trained” while the agent trained with the gait sine wave was 

labelled “Gait-trained”. Training using the basic sine wave was deemed unnecessary and unlikely 

to present any new insights. These adaptive PID controllers were compared to a constant PID 

which had gain values that were calculated from the average gain values of the adaptive step-

trained controller acting upon the gait sine input. The average gain values for the basic sine and 

the multi-step input were not recorded for this section as they do not vary enough to justify 

discussion. The constant PID controller in this experiment is identical to the previous 

experiment. New averages were not taken for the changing environment system as it was 

believed that the sudden change in gain values would cause gain average to be a less 

representative measurement than the previous simulation. 

The basic sine input in Figure 4.17 shows all controllers have minimal divergence from the 

reference signal before the environment change, with the slight oscillation and offset from the 

gait-trained and step-trained agents from last experiment remaining (as the first 6 seconds of 

these results are identical to the previous results). After the environment change at 6 seconds 

there is a small disturbance present in the two adaptive controllers and a much larger 

disturbance for the constant PID controller. Where the adaptive controllers have some 
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undershoot and do not reach the full peaks of the sine wave, the constant PID drastically 

undershoots the reference and leads to a much larger error. The sine wave swaying remains 

even when the applied torque is drastically reduced, which may be contributed to gravity 

causing a pendulum-effect on the PaddleBot, as these oscillations are centred on the origin 

representing a direct down position in line with gravity. This does not seem to be the whole 

truth, as the final sine trough does have an increased magnitude, which suggests the PID 

controller is still aiming to control the system. This is also supported by looking at the remaining 

input reference tracking plots in Figure 4.17 and Figure 4.18.  

 

Figure 4.17. Response output for tracking the basic sine wave input for a changing environment at t=6 

The gait input shows a more severe deterioration at the environment change, with the adaptive 

controllers overshooting the reference signal consistently. The gait-trained agent generally has 

less overshoot than the step-trained agent on the upswing, but more overshoot on the 

downswing where the step-trained agent has very little overshoot at all; both controllers keep 

the motion in-phase with the reference signal. According to the RMSE values the gait-trained 

agent is favoured over the step-trained agent, likely as the squaring of error leads to a favouring 

of small consistent error over large temporary overshoot error. The constant PID controller both 

overshoots and ends up completely out of phase with the reference signal, which is a very poor 

result and potentially distressing for rehabilitation purposes. The magnitude of the overshoot 

does decrease over time and the constant PID controller may eventually settle if given enough 

time, but this is not guaranteed and is not worth exploring if an adaptive PID controller can 

prevent the issue altogether.  
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Figure 4.18. Response output for tracking the gait sine wave input for a changing environment at t=6 

The multi-step response after the environment change shows both the constant PID and the 

gait-trained adaptive PID controllers fail to appropriately stabilise and track the signal. Although 

the gait-trained agent does have decreasing oscillations it would take too much time to reach 

steady state and should be considered a failure. Additionally, the constant PID controller does 

not seem to converge at all within the 2 second window available, which again should be 

considered a failure. The behaviour does not oscillate about the origin, so at the very least these 

results confirm that the controller is still functioning and causing some form of motor torque to 

be applied to the robot.  

The step-trained adaptive PID results in very good tracking performance even after the 

environment change, with each step having minimal steady state error. This suggests a 

reinforcement learning agent is able to adjust the PID controller to new gain levels that would 

better suit the system as it changes. Since the change in environment was not present during 

training it suggests any changes to the environment could be potentially adjusted for with no 

required knowledge of what the change will be. This result shows RL has potential to adjust a 

rehabilitation robot to adapt to changes in human-robot interactions as an activity takes place; 

a very beneficial ability in the face of constantly changing force outputs, muscle stiffness, and 

unseen disturbances.  
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Figure 4.19. Response output for tracking the multi-step function input for a changing environment at t=6 

The results for the changing environment RMSE values are presented in Table 4.5 and show the 

adaptive PID superiority for a nonlinear or time-variant system. Training dependence was one 

again highlighted as an important consideration when designing the RL system, as the gait-

trained agent performed better for sine-based inputs and vice versa for the step-trained agent. 

The graphs suggest the improvement between gait-trained and step-trained agents was drastic 

for the multi-step input, which is difficult to observe directly from the RMSE measurements. 

Overall, the adaptive PID controllers outperformed the constant PID controller for every input 

signal, regardless of the training setup used. The adaptive PID controllers could be improved 

further by including a variety of input signals during training to better prepare the system for 

these predicted scenarios.  

Table 4.5 - RMSE for a changing environment [°] 

Input Adaptive PID Constant PID 

Step-trained Gait-trained Avg. Gait 

Basic Sine 0.4119 0.1611 0.7113 

Gait Sine 4.3908 2.3477 15.3714 

Multi-step 7.0602 10.9052 11.9725 
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4.3.2.3. Effects of Input signal 

To gain a deeper understanding of how both signal amplitude and frequency affect the RMSE, 

further experiments were performed using a sine wave to detail the results. The input 

amplitude 𝐴 was varied between 0.1 and 0.75 to represent the full range of motion expected of 

an ankle. Healthy subjects would likely have larger amplitudes in range of motion compared to 

subjects with motion restrictions, and as such both ends of the amplitude results correspond to 

important real-world scenarios. The frequency 𝜔 varied between π/2 and 4π radians per second 

to produce repetitive motions that require between 4 seconds and 0.5 seconds, respectively. 

Higher frequency recordings of 10π were performed to collect data on the robotic model 

limitations at higher frequencies, but as they do not correspond to any reasonable rehabilitation 

practices they are omitted from this report. All values calculated with a bias of 𝐵 =  −0.15 and 

a phase value of 𝜙 =  0 using the equation for the input signal below: 

 𝑢(𝑡) = 𝐴 ∗ sin(𝜔𝑡 + 𝜙) + 𝐵 (4.18) 

 Each calculation was performed using the step-trained adaptive PID controller to determine the 

RL agent effectiveness for new input signals. An identical experiment was also conducted using 

the constant PID controller which showed smaller RMSE results for every amplitude-frequency 

combination when compared to the adaptive PID results. These results can be observed in Table 

4.7, however they are of less importance as these results do not illuminate the behaviour of the 

RL agent and its ability to compensate for input variations. 

Table 4.6 - Amplitude-Frequency Effects on RMSE for Adaptive PID [°] 

       Frequency (ω)  

Amplitude (A)  
π/2 π 2π 4π 

0.1 0.906 1.042 1.456 2.412 

0.25 1.140 1.798 3.392 6.067 

0.5 1.824 3.581 6.855 10.208 

0.75 2.657 5.353 10.034 13.602 
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Table 4.7 - Amplitude-Frequency Effects on RMSE for Constant PID [°] 

       Frequency (ω)  

Amplitude (A)  
π/2 π 2π 4π 

0.1 0.857 0.857 0.861 0.955 

0.25 0.860 0.857 0.883 1.361 

0.5 0.872 0.858 0.961 2.288 

0.75 0.889 0.859 1.084 3.310 

 

These values are plotted in 2D to try and identify a pattern that could be used to normalise RMSE 

values for different input signals. Figure 4.20 shows these trends for the step-trained adaptive 

controller with fairly linear amplitude-dependent growth irrespective of frequency; linear 

behaviour also remains for frequency-dependence for low amplitudes, but becomes more 

quadratic for higher amplitudes. Figure 4.21 shows the constant PID controller produces fairly 

linear growth for low frequencies, however a threshold seems to exist somewhere between 2π 

and 4π that causes large errors to grow. This may be biased by the extremely low RMSE 

recordings compressing the data points to appear linear but since the absolute RMSE values are 

so small the reasoning does not seem overly important; in practice any signal amplitude will not 

produce large errors so long as the frequency remains reasonable with reference to human 

motion.  

For the constant PID controller, additional measurements were taken for 3π, 6π, 8π, and 10π to 

illustrate the quadratic relation between frequency and RMSE, although they were not plotted 

for consistency. These results recommend using the constant PID controller for any input signal 

with a low frequency which will be highly applicable for any human-machine interacting system. 

The adaptive controller is generally better suited for nonlinear models and time-dependent 

environments with uncertainty.  

The general result of the adaptive PID controller returning higher RMSE values for sine inputs 

can be seen by comparing the two figures.  
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Figure 4.20. RMSE dependence on input signal amplitude (left) and frequency (right) for the adaptive PID controller 

 

Figure 4.21. RMSE dependence on input signal amplitude (left) and frequency (right) for the constant PID controller 

 

4.3.3. Stage 3 - Adaptive Admittance Controller Reference Tracking 

The adaptive admittance controller performed the same basic experimental setups as the 

previous adaptive controller, by testing the ability of the system to track three different types of 

input signals: basic sine, gait sine, and multi-step function. The primary difference in this case is 

that an obstacle limits motion at pre-determined positions which should stop full tracking from 

being possible, so a direct RMSE value will be less representative of effective performance. The 

obstacle is referred to as the environment, and is utilised in three separate scenarios to 

represent a human body with the parameters of Range of Motion (RoM) and environmental 

stiffness (Ke): 
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1. The environment remains constant with the PaddleBot having unimpeded motion 

within the bounds of [-40°, +25°] and the environment having a stiffness coefficient Ke 

of 20 N/degree 

2. The environment begins in a stiff state, with Ke = 40 N/degree and RoM = [-15°, +15°]. 

Halfway through the simulation at t=5 the environment relaxes and becomes more 

flexible as a human would during stretching, with Ke = 20 N/degree and RoM = [-40, +25] 

3. The environment begins in a relaxed state, with Ke = 20 N/degree and RoM = [-40°, +25°]. 

At t=6 the environment stiffens and becomes less mobile as to represent a human 

suffering injury or fatigue, with Ke = 40 N/degree and RoM = [-15, +15] 

As the primary goal of these experiments is to determine the benefits of adaptive controllers, 

each of these environments were simulated using a variety of different admittance controllers: 

The constant method utilised an admittance controller with constant damping and stiffness 

parameters throughout the entire simulation. These values were equal to 𝐾 = 66.38 and 𝐵 =

59.20 which were derived from the average values of the adaptive method discussed later. This 

approach is the most simple of all methods and functioned as the control for all future 

experiments.  

The switching method behaved similar to the control method, but changed the admittance 

parameters between two different modes depending on whether the system was inside or 

outside the RoM. While the PaddleBot was recorded inside the RoM the controller was set to 

“rigid” mode where 𝐵 = 𝐾 = 140 to encourage close tracking of the reference signal. When 

outside the RoM the controller was set to “malleable” mode with  𝐵 = 𝐾 = 10  to try and 

prevent the system from pushing past the range of motion that represents the humans comfort 

limits that a stiff system would. In this mode, external forces should in theory allow external 

forces to manipulate the system to a higher degree. 

The adaptive method used reinforcement learning to continuously adjust the admittance 

parameters every 0.1 seconds based on the current observations. The actor and critic networks 

used the architecture displayed in Figure 4.8 trained in the new environment simulation. A 

second adaptive method (labelled “adaptive 2”) was also trained and tested with higher levels 

of exploration and the newer critic architecture shown in Figure 4.12, but results for RMSE 

recordings were not as successful.  
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4.3.3.1. Constant Environment 

Using the root mean square measurement for the numerical comparison, it is important to 

identify where the environment prevents complete tracking of the reference signal. For the case 

of the constant environment, only the multi-step function exceeds the viable range of motion, 

so only the multi-step input is expected to be affected by the admittance controller. To account 

for this, the RMSE value of the multi-step is recorded a second time, but will measure error 

between current position and range of motion limit when the reference signal exceeds this. This 

will help determine error while the system is in the standard RoM, and how far from the limit it 

is positioned when operating outside the RoM. Since the system should be pressed against the 

physical limit when the reference surpasses the limit, the error during these states should ideally 

converge to zero. This second RMSE recording is labelled as “clipped step” in Table 4.8 below. 

The visual tracking graphs for the three input signals are shown below as well. Only the multi-

step function is affected by the physical limitations, so the only figure to include a visual 

representation of these restrictions is Figure 4.24.  

 

Figure 4.22. Response output for tracking the basic sine wave input in a constant environment. Contains reference 

tracking for constant admittance (orange), switching admittance (black), and step-trained adaptive admittance 

controllers 1 (green) and 2 (magenta) 

The basic sine wave with an amplitude of 6° shows that every control attempt was essentially 

identical with no meaningful differences. As the signal never approaches the RoM limits there is 

never any external force generated and no altering signal generated. This shows the intuitive 
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conclusion from this fact, in that the admittance controller is never employed and the gain 

values do not affect the final outcome at all. The signal lag is caused by the constant PD controller 

which cannot be changed by the RL agent or the switching method. Manual tuning of this 

controller did show improvements of RMSE, but as these experiments were designed to show 

the effects of admittance controller tuning, the sub-optimal tracking was not considered a 

problem and was simply held constant between tests.  

The gait input signal also shows identical outputs due to the input signal not being large enough 

to interact with the environment. The manual tuning of the PD controller showed improvements 

for the gait signal as well, so the signal lag and amplitude attenuation can be attributed to a 

derivative gain set higher than optimal.  

The multi-step function is the only input signal that leads to environment interaction and as such 

is the only signal that shows differences in tracking. By including the physical bounds on the 

response output plot it becomes clear that each controller is working as intended (with varying 

degrees of success) by pushing the current position back towards the desired range of motion. 

The constant controller leads to the least amount of adjustment as it stays relatively close to the 

reference signal at each step, regardless of boundaries. For the out-of-range steps at t=2 and 

t=8, the switching method returns back to 5° of the respective bound within 1 second and 

remains steady after that. This is the desired behaviour, but unfortunately leads to error within 

the following in-range step as seen at t=4.  

The two adaptive controller methods also show reasonable reaction to reducing out-of-range 

operation, with adaptive 1 having a faster response time at the cost of more overshoot. Visually 

it seems that adaptive 2 has the best response behaviour, but the RMSE values for the clipped 

multistep signal show adaptive 1 had less error overall. In fact, adaptive 1 showed the smallest 

(or equal smallest) RMSE value for every input signal, although the difference was negligible for 

the sine-based signals. 
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Figure 4.23. Response output for tracking the gait sine wave input in a constant environment. Contains reference 

tracking for constant admittance (orange), switching admittance (black), and step-trained adaptive admittance 

controllers 1 (green) and 2 (magenta) 

 

Figure 4.24. Response output for tracking the multi-step function input in a constant environment. Contains reference 

tracking for constant admittance (orange), switching admittance (black), and step-trained adaptive admittance 

controllers 1 (green) and 2 (magenta). The physical restrictions representing the human ankle range of motion are 

shown in red 
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Table 4.8. RMSE measurements of admittance controller for constant environment 

Input Signal Control Method 

Constant Switching Adaptive 1 Adaptive 2 

Basic Sine 2.148 2.148 2.148 2.148 

Gait Sine  8.287 8.287 8.243 8.297 

Multi-step 7.964 8.344 9.477 8.850 

Clipped Step 7.907 6.402 5.856 6.145 

 

As the multi-step row reports the error between position and reference with no consideration 

to environmental impact the data in this row has less importance than the others. If ignored, it 

becomes clear that the adaptive controller performed noticeably better than the non-

reinforcement learning based methods for the step response, and slightly better for the gait 

input.  

 

4.3.3.2. Changing Environments 

The two changing environments were simulated to determine how each admittance controller 

would handle a change in environment that effectively changed the amount of interaction forces 

generated by the environment. The basic sine input is omitted from the following figures and 

tables as it did not reach the environment and was not affected by these changes; every result 

remained 2.148 for both environments. Additionally, as both environments have a more limited 

range of motion at some point in time (±15°) the gait input signal is also affected by the 

environment and requires a “clipped gait” recording for the same reasons discussed earlier for 

the multi-step function. 

Observing Figure 4.25 shows a larger difference between control methods during the more 

restrictive period, as seen by the larger spread of the sine wave amplitudes for times before 5 

seconds. Once the environment restriction is effectively removed, each control method 

converges and the differences become negligible.  
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Figure 4.25. Response output for tracking the gait sine wave input in a changing environment (environment 1). 

Contains reference tracking for constant admittance (orange), switching admittance (black), and step-trained 

adaptive admittance controllers 1 (green) and 2 (magenta). The physical restrictions representing the human ankle 

range of motion are shown in red 

The multi-step function shows the effects of the environment much clearer. Comparing Figure 

4.26 to Figure 4.24, the more restrictive environment shows three of the four methods being 

pulled closer to the physical limitations. The adaptive 1 method is the only method that did not 

cause a significant drop in the final value during the first step, suggesting the adaptive 

admittance controller 1 is more resistant to environmental change than the other controllers. 

Conversely, the second adaptive agent seems to suffer from the opposite problem and produces 

large overshoots for the more restrictive environment that had not been experienced during 

training. The switching method behaves somewhere between the two adaptive models, and 

visually seems to be the best performing tracking, especially when considering the bounds were 

established with an extra 5° buffer included, so the results resting within 5° of the environmental 

limit is an acceptable result. The extra stiff environment also leads to a drop in tracking ability 

for the second step for all controllers, although the drop is more severe for the two RL methods.  

These results show the adaptive methods producing reasonable results for an environment they 

were not trained in, but it does not show how the methods deal with an environment that 

changes during operation until the transition at t=5 seconds. The change in environment does 

not seem to have any immediate or dramatic effects on current position. Since the admittance 

controller only depends on environmental interaction and there is no environmental interaction 
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at the time change, this result is completely expected. Even if the time change happened during 

out-of-range operation the changes would be minimal, as the contribution of the admittance 

controller should be less than the PID controller. The final step also falls to out-of-range 

operation where the switching method is the only result to show any environmental impact 

response.  

 

Figure 4.26. Response output for tracking the multi-step function input in a changing environment (environment 1). 

Contains reference tracking for constant admittance (orange), switching admittance (black), and step-trained 

adaptive admittance controllers 1 (green) and 2 (magenta). The physical restrictions representing the human ankle 

range of motion are shown in red 

The summary RMSE table for this first changing environment is show below. However as the gait 

wave and the multi-step function both operate out-of-range temporarily, the clipped-input data 

is more relevant for proper rehabilitation operation. With this in mind, the switching method 

produced the best RMSE values for both the input signals.  

Table 4.9. RMSE measurements of admittance controller for changing environment 1 

Input Signal Control Method 

Constant Switching Adaptive 1 Adaptive 2 

Gait Sine  8.277 8.288 8.226 8.266 

Multi-step 8.088 11.035 9.614 13.501 

Clipped Gait 7.603 7.541 7.553 7.621 

Clipped Step 9.215 6.789 7.438 7.251 
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The exact same tests were performed for a new changing environment, which begins flexible 

and becomes stiff at time t=6 seconds. All behaviours from this test remained consistent with 

the previous changing environment: The gait wave controllers produced more variant results 

during the stiff period and more conforming results during the relaxed period.  

 

Figure 4.27. Response output for tracking the gait sine wave input in a changing environment (environment 2). 

Contains reference tracking for constant admittance (orange), switching admittance (black), and step-trained 

adaptive admittance controllers 1 (green) and 2 (magenta). The physical restrictions representing the human ankle 

range of motion are shown in red 

The multi-step function once again showed the adaptive controller 1 being much more resistant 

to environmental interactions, but with more oscillations that stayed worse than the constant 

controller. The adaptive controller 2 again produces large swings and overshoot from the 

physical limitations. Neither solution is desirable for rehabilitation unless the environment is 

sufficiently soft and joint stretching is the primary objective.  

The switching method once again showed the best practical result, with the system pulling back 

to the environmental limit once the interaction forces become non-zero. As the switching 

method merely changes the stiffness and damping values between two constant values, the 

results of this method combined with its simplicity make it a very favourable approach to 

pseudo-adaptive admittance control. The summary RMSE table for the second changing 

environment is presented in Table 4.10 below.  
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Figure 4.28. Response output for tracking the multi-step function input in a changing environment (environment 2). 

Contains reference tracking for constant admittance (orange), switching admittance (black), and step-trained 

adaptive admittance controllers 1 (green) and 2 (magenta). The physical restrictions representing the human ankle 

range of motion are shown in red 

Table 4.10. RMSE measurements of admittance controller for changing environment 2 

Input Signal Control Method 

Constant Switching Adaptive 1 Adaptive 2 

Gait Sine  8.282 8.292 8.218 8.271 

Multi-step 8.727 12.665 9.949 13.467 

Clipped Gait 7.758 7.713 7.694 7.769 

Clipped Step 11.567 6.944 10.715 7.931 

 

Reinforcement learning based adaptive control does not seem to be reliably better than the 

constant method, which was not even tuned for optimal performance (the first adaptive average 

was used without change). The switching method shows a lot more promise and produces more 

reliable results for the inputs (when considering the clipped context). As the clipped values 

better represent real-world desires for physical therapy, the switching method showed the best 

RMSE results for the multi-step input by a wide margin and was only minimally worse for the 

gait input to the point that the difference is negligible.  
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From these two changing environments the switching method can be labelled as the preferred 

admittance controller method with reasonable certainty. This method could be considered both 

constant and adaptive control as it does adapt to its environment, but with much less precision 

than the RL-based methods for adaptive control. 

Discussion

Each of the stages of development showed a different niche of control systems engineering that 

could be filled by reinforcement learning to varying degrees of success. The results of Stage 1 

showed direct end-to-end control of the 1 degree-of-freedom PaddleBot was possible, but with 

fairly unsmooth tracking. The response looks ‘bumpy’ in comparison to the future PID tests 

which suggest two possible reasons: First, end-to-end control sets the input torque value directly 

and will therefore not be as smooth as a torque value that is calculated by an error calculation 

and it’s integral and derivative. The nature of end-to-end may simply trade off the smoothness 

inherent in PID control for its direct control. The second possible explanation is that the Stage 1 

testing was the practical introduction for reinforcement learning and is likely to be far from 

optimally implemented. As the project progressed and understanding developed the general 

application of reinforcement learning became better and produced superior results. The bumpy 

response may simply be a result of a poorly designed reinforcement learning controller that may 

be improvable with hyperparameter adjustments and a longer training session. Although no 

further testing will be performed to evaluate this hypothesis, the tests in stage 1 still provide 

enough confidence to consider future end-to-end RL approaches a viable strategy, as there is no 

conclusive evidence that end-to-end is always inferior to controller tuning approaches.  

The remaining two stages focused on tuning an adaptive PID and adaptive admittance controller, 

respectively. 

4.4.1. General PID analysis

4.4.1.1. Comparison of adaptive PID controller versus constant PID controller for constant 

environment

The results of the step-trained RL agent that varies the PID gain parameters over time, when 

compared to a PID controller that uses the average of these time-dependent gains show that 

the constant gain PID controller performed better for every signal input case when the 

environment was static. Both systems performed best when the input signal was a basic sine 
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wave, with RMSE values less than 0.5° for both systems. Although the adaptive PID performed 

worse than the constant PID, the minimal error shows that, in practicality, both systems function 

to an acceptable degree for the purposes of rehabilitation where small angular discrepancies 

are unlikely to have large impact on output of human safety. The discrepancy between adaptive 

and constant controllers is more prominent for the gait sine input, where the RMSE is almost 4 

times larger for the step-trained adaptive PID (3.39 vs 0.88). These results are unexpected as the 

adaptive PID controller should be more flexible and able to achieve anything the constant PID 

controller is able to accomplish. One possible explanation is a non-optimal reinforcement 

learning model setup that requires more observation measurements to appropriately choose 

the actions. As the RMSE is calculated with the overall simulation time, a potential moving 

average of error would help identify RMSE measurements and allow better estimations of long-

term results. As a potential fix: including a negative reward component to discourage gain 

variation the system would develop a ‘gain inertia’ to the action space and would try to minimize 

any variations in gain when possible. This may also result in RMSE values closer to the constant 

PID, although it does not address any underlying issues with the model that may have caused 

the differences in results, and simply aims to replicate a different result. 

The step input is the notable exception to the rule of constant PID outperforming the adaptive 

PID by a large factor. Constant PID and adaptive PID results were very similar in RMSE outcomes 

(3.36 vs 3.32), with a difference that could be ignored in practice for rehabilitation purposes. A 

variation of the multi-step input was the signal used during training and as such it is reasonable 

to assume the RL agent is more adept at minimising error for step-based inputs. An agent trained 

using a gait cycle reference showed better results for the adaptive basic and gait inputs 

compared to the adaptive basic and gait inputs trained using the step; the tracking for the multi-

step function produced worse, but still reasonable, RMSE measurements. This shows that 

training the system with the appropriate input does reduce error, however the constant PID still 

outperformed the gait-trained adaptive PID for a gait input. The discrepancy between these two 

results does diminish, which confirms the idea that the step-trained results were closer to the 

constant results for the multi-step input due to the training, and not an inherent property of 

step-based functions versus sine-based functions. 

These tests do not utilize noise or disturbance signals, two aspects of practical robotics that may 

cause deterioration in overall control. Although classical PID controllers act as disturbance 

rejection quite effectively they are not as capable for noise rejection due to the nature of the 

feedback loop system. Noise causes the system to lose its linear properties and as such the PID 
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with constant gain values becomes unable to handle noise perturbations. Reinforcement 

learning is much better suited for nonlinear systems and as such it is expected that the adaptive 

PID controller would produce better results for a system with included noise. RL is also more 

capable in dealing with uncertainty and changing systems, whether these changes occur in the 

environment or the plant. As the training setup utilized a rigid and unchanging environment 

which does not appropriately represent a human body, the results became biased towards 

systems that performed well for simple interactions. Each of these reasons combined give a 

reasonable explanation for the results favouring the classical constant PID controller over the 

adaptive PID controller. It also identifies the scenarios in which adaptive PID controllers would 

be better suited (Fahmy, Badr, and Rahman 2014), and how RL can assist in the tuning (Lee, Lee, 

and Yim 2020; Qin et al. 2018). 

 

4.4.1.2. Effects of environmental change 

The change in environment that occurs after 6 seconds of simulation is shown to have negative 

effects on the tracking ability of both adaptive and constant PID controllers, with the adaptive 

controllers handling the change noticeably better. For cases where the agent was trained with 

the appropriate input signal, reference tracking remained highly effective throughout the 

simulation.  

Alternate forms of environmental change were briefly explored: multiplying the PaddleBot input 

signal by a factor of 0.01 and 2 showed a representation of an undercompensating actuator or 

an overcompensating actuator, and multiplying the PaddleBot output signal by a factor of 0.01 

and 2 showed a representation of a faulty sensor that returns angular readings much smaller or 

twice as large as reality. The attenuated sensor test showed poor tracking for constant PID 

control and improved but still low-quality tracking for the adaptive controller. The amplified 

sensor test showed much faster response times for both controllers, but this increase led to a 

much noisier and volatile adaptive controller. For the purposes of rehabilitation neither of these 

controllers would be suitable as they would likely cause harm to the user from the rapid snap 

motions, so the adaptive controller is unable to act as fault-tolerant control for a failing sensor. 

This was due to the adaptive controller depending on the measured position angle as an 

important observation and without it, the calculations within the neural network cannot be 

performed. The amplified actuator test showed similar results to the amplified sensor test, with 

response times reduced and faster motions produced. For identical reasons, these fast motions 

are not desirable for a rehabilitation system. The adaptive controller may be able to minimise 
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these negative outcomes with further training and reward tuning, but this was not followed 

upon for the purposes of this project. The attenuated actuator environmental change was the 

successor of the tests and all results presented were based off this approach.  

The gait-trained adaptive controller returned better RMSE values for the sine-based inputs and 

the step-trained adaptive controller returned better RMSE values for the step-based input. 

Despite this, the step-trained controller is considered more successful overall as the RMSE 

values do not incorporate all tracking details, and while the step-trained agent was able to 

provide reasonable tracking for sine-based inputs the gait-trained agent was not able to provide 

reasonable tracking for the step-based inputs. The step-trained agent was more successful in a 

wider variety of cases, where each input signal was followed well enough for ankle motion 

exercises. The effects of the environmental change can be most clearly seen through the multi-

step input signal. Comparing the static environment experiment to the changing environment 

experiment show a longer and larger transient state when the motor signal had been reduced, 

but was still able to settle relatively quickly with only a small steady state error by utilising the 

adaptive controller.  

The constant controller, however, is incapable of tracking the step function and simply oscillates 

for the remainder of the simulation. The oscillations do not oscillate perfectly about the origin 

and as such the motion is unlikely to be a simple gravity-affected pendulum, some component 

of motion must be being produced by the controller. As the simulation only continues for 4 

seconds post-environment change it is possible that the constant PID controller would slowly 

improve over time and eventually reach good tracking. Each input signal did show a still-

changing signal that had not settled to a steady-state behaviour. Again, by considering the real 

world applications of the system, long periods of time will not be present to allow any settling 

behaviours. Results are empirically better for adaptive controllers even in the presence of 

unforeseen circumstances, so no further research was conducted into the long-term behaviours 

of the constant controller. The adaptive controllers were not trained with this change of 

environment and as such it is believed they would be well-suited for any other environmental 

changes that may occur during operation. The RMSE values in Table 4.5 show that the gait-

trained adaptive controller performs almost as bad as the constant controller (10.91 vs 11.97). 

This finding is important in understanding the training stages of adaptive control and that 

improved tracking is not a guarantee for all circumstances. 

Human-robot interactions fall under the high-uncertainty category due to the differences 

between users as well as the internal mechanics of the human body changing during exercise 



4.4. Discussion  168 
 

 
 

and muscle activation. Current setup does not analyse any environmental interaction which 

removes one of the largest sources of uncertainty from the system entirely. As rehabilitation 

robotics is defined by its human interactions, and a human environment is guaranteed to change 

over time, any environment included in testing must also be time-dependent or include 

uncertainty. The model not using any environmental feedback is not a good representation of 

real human interactions, where it has been shown that internal stiffness will vary over a 

traditional gait cycle and general ankle motion. Regardless of these experimental shortcomings, 

both adaptive PID controllers and classical PID controllers returned RMSE values small enough 

to justify their application in rehabilitation robotics where input signal amplitudes and 

frequencies will be restricted for human safety concerns. 

 

4.4.2. Admittance controller analysis 

4.4.2.1. Shortcomings and Potential Expansions 

The results for the admittance controller tests showed that only the multi-step function input 

had a noticeable affect on the system response, as both sine-based inputs remained within the 

a standard human ankle range throughout the simulation. These inputs were chosen to remain 

consistent between PID and admittance testing, along with their proximity to real-world 

motions. Unfortunately following these principles led to uninformative results for the 

admittance testing, and if future experiments are conducted the input signals should be 

adjusted to guarantee interaction with the environment. Alternatively, the environment could 

have been modified to meet the same guarantee, but for similar reasons the environment was 

established to resemble the real-world limitations of the human ankle and reducing it further 

would have negatively impacted this approximation. Because of these limitations in the results, 

most discussion focuses on the multi-step function results.  

For the comparison of adaptive control and constant control: When an interaction force is 

experienced by the system, the constant controller leads to the least amount of adjustment to 

the desired position, as it stays relatively close to the reference signal for each jump in value and 

disregards majority of the experienced forces by exceeding the environmental boundaries. For 

scenarios where the reference signal is strongly controlled and designed by the operator (such 

as in passive rehabilitation with pre-determined exercise patterns) close reference tracking may 

be acceptable, but for future stages where the reference signal is determined by artificial 

intelligence (such as transforming bio-signals into a desired angle position to act as the 
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reference) this may be considered unsafe. A poorly classified reference may lead to the system 

tracking out-of-range to the point of harm, and the constant controller would not contribute 

enough of a component to the command signal that would ensure human safety. Contrary to 

this, the adaptive controllers were shown to be able to change their response depending on the 

experienced forces. This would allow the controller to act non-linearly in cases where the force 

values continued to rise, and could prevent this much more reliably. Through reinforcement 

learning especially, the force component of the reward function can be directly tuned to adjust 

how much the system should favour or disfavour these experienced forces. The poor 

performance may be attributed to a lack of manual tuning for the constant parameter values. 

Even if this was the case, as the stiffness and range of motion of each participant would vary, so 

would the interaction forces. As such, it would be a requirement to tune these parameters in 

reference to these environmental states for every system run-through and would require 

professional input to the system. With the goal of making these technologies more widespread, 

removing the need for professional input is an important contribution that can be achieved, or 

at the very least partially provided by using adaptive controllers.  

Analysis of the tracking results and RMSE values show performance was reasonable but did 

retain large amounts of error at all points. This was more noticeable in the sine-based inputs, 

which had a consistent lag between input and output, along with some amplitude attenuation. 

The cause of this lacklustre performance can be attributed to the constant PD controller used in 

the inner loop. The PD controller was held static at 𝐾𝑃 = 75,𝐾𝐷 = 15 which was not tuned for 

optimal tracking and was instead set for the step response rise time of approximately 1 second. 

This led to not being very good for sine wave inputs, as the error derivate caused significant 

changes to the produced input torque values. Reducing KD in the constant admittance controller 

model led to immediate improvements in tracking. 𝐾𝐷 = 5 would have been a better value to 

use for the sine waves, but caused the rise time of the step response to be much shorter than 

desired. This rapid motion was undesirable for safety concerns, especially for cases with 

environmental interaction where rapidly experienced forces would fail to be incorporated by 

the controller in time.  

Additionally, the RMSE values seem to have relatively consistent differences between control 

methods, so it is believed that even if the tracking was substantially improved, this improvement 

would be present in each of the control methods and none would benefit substantially more 

than any other. Therefore the superior controller method would have likely remained consistent 

between tests even if this change was implemented and a better PD controller was used. This 
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claim is conjecture, so further research into better inner loop control may be worthwhile. One 

potential answer may come from allowing the reinforcement learning-based methods to have 

both the admittance controller and the PD controller be adaptive simultaneously, requiring the 

RL agent to produce 4 actions for the gain parameters of 𝐾𝑃 , 𝐾𝐷 , 𝐵, & 𝐾. Some small attempts 

were made to implement this idea once all other stages had been completed, but no results 

were successful.  

 

Figure 4.29. Reference tracking ability for an RL agent controlling the admittance controller gains B and K, and the PD 

controller gains Kp and Kd. Trained for 5000 episodes 

Two primary training sessions were performed with the only hyperparameter changed being the 

learning rate. A learning rate of 0.001 led to the agent immediately terminating via the terminal 

condition of >60° PaddleBot positioning. A learning rate of 0.0001 led to agent trying to avoid 

motion altogether, with a bare minimum attempt at reference tracking, as seen in Figure 4.29. 

This result shows some promise that may have improved with a longer training session or a 

rebalancing of the reward function, but as this was not a focus of the chapter no real attempts 

were made as of writing. Should this project be continued, utilising adaptive behaviours in both 

controllers is the recommended follow-up approach.  

 

4.4.2.2. Effects of changing environment 

The effects of the changing environment were much less prominent for the admittance 

controller than it was for the PID. The most likely explanation for the massive discrepancy is that 

the change in the environment was simply much lower impact to the overall system, as the 

environment in the admittance represented external impedances to the system while the 
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environment in the PID test was the motor appliance to the PaddleBot controller directly. The 

change in environment for the PID directly affected the control loop’s ability to track reference 

by reducing the amount of angular acceleration applied to the robot, while a change in the 

admittance environment only affected the amount of force experienced by any given angular 

displacement that would feed back into the system and be affected by the internal system gains. 

Although this form of environmental change is more likely to be of interest for this overall 

project as it can represent the different materials a human will come into contact with through 

activities of daily living, it will very likely result in a less pronounced change in the control loop 

when compared to the direct robot environmental changes.  

For the results of these changing environments, although neither of the adaptive controllers are 

optimal, the results do show clear evidence that online tuning of admittance controller 

parameters can have a large impact on system response, and that adaptive admittance 

controllers do have the potential to reduce experienced interaction forces during operation. This 

conclusion is reached simply by observing the different response plots for when external forces 

are experienced (such as Figure 4.24 and Figure 4.26). Regardless of which response had better 

tracking or smaller RMSE values, the effects of the adaptive controller can be seen through the 

dramatic differences between the constant and adaptive controller plots. For optimal behaviour 

further tuning and more robust simulations are required, but for the purposes of identifying the 

feasibility of reinforcement learning-based adaptive control the experiments confirmed the 

approach as viable. The simulated environment was also overly simplistic by experiencing a force 

only outside of the standard range of motion, where the range of motion was set as a hard limit. 

Real world range of motion is much more variable and be more likely to slowly change over the 

course of an exercise session. The overall adaptive response could therefore be improved with 

a more realistic environment that could be modelled through collected data. The modelling of 

this environment would be a large task in and of itself, as subject age and gender demographics 

would have a large effect on the final result, so multiple different environments must be 

calculated from multiple diverse sets of subjects. This falls far outside of the scope of this project, 

but would be greatly beneficial to the field of rehabilitation research for many parties.  

 

4.4.3. Training statistics 

Each stage of development used different training session parameters to cater to the current 

system and reward function. Since each stage was customised it is difficult to compare between 

methods in terms of success. Therefore only a brief description of each training session used to 
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generate the results will be provided to highlight any notable features and potentially assist in 

any attempts to replicate the results.  

The stage 1 training was the introduction to reinforcement learning and as such did not employ 

any advanced techniques. The system was trained for 2000 episodes with the system beginning 

to improve around episode 1400 and stabilising around episode 1600. For a well designed agent 

the calculated reward and the Q0 reward should converge to a solution. This behaviour is 

present within the training shown below, which is encouraging for the design of this agent. As 

stage 1 utilised end-to-end control and the action space was a torque signal limited between 0 

and 20 Nm, it is surprising that the reward increase did not occur for over 1000 episodes when 

compared to the later training statistics.  

 

Figure 4.30. Training results for Stage 1 experiment: Direct reference tracking. Episode reward is presented in blue, 5-

episode moving average is presented in orange, and Q0 is presented in yellow 

The stage 2 training switched the RL algorithm from DDPG to TD3PG and included an early 

termination condition such that if the average reward of training surpasses 20 then the training 

finishes. When implemented without the early termination, the same RL system eventually 

suffered from critical forgetting and was unable to perform the appropriate tasks. The early 

termination helps avoid overfitting and reduce training time, as well as leads to a converging Q0 

value. The reward threshold was selected as the reward function was almost entirely negative 

components, so only very close tracking would produce positive results, with 20 being a small 

buffer from 0. This early termination condition was met during the final training attempt after 
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only 450 episodes, with the agent learning most drastically within the first 50 episodes and 

between episodes 200-300.  

 

Figure 4.31. Training results for Stage 2 experiment: Adaptive PID controller reference tracking. Episode reward is 

presented in blue, 10-episode moving average is presented in orange, and Q0 is presented in yellow 

Stage 3 showed a more steady increase in cumulative reward than the previous 2 stages, with 

the reward increasing from episode 0 to 2000 where the system began to remain steady. A 

drastic drop does temporarily occur around episode 3000 but the system recovers before the 

end at episode 5000. This is an example of training for too long and risking the system overfitting. 

The training duration of the adaptive admittance model was set higher than the previous stages 

as the control loop contained more components interacting and more observations were 

required for calculation. Results seem to suggest this was unnecessary and a maximum training 

time of 2000 episodes would have functioned equivalently. The Q0 values did converge for the 

system at around episode 2000, but later diverged to a point where the plot became distorted 

so Q0 was omitted from Figure 4.32. This further supports the conclusion that early termination 

is an essential component of a viable training schematic, but the conditions will change 

depending on the reward function and the expected behaviour in idealised performance.  
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Figure 4.32. Training results for Stage 3 experiment: Adaptive admittance controller reference tracking. Episode 

reward is presented in blue, 10-episode moving average is presented in orange, and Q0 is presented in yellow 

 

4.4.4.Potential improvements 

The results produced have their use but may not be perfect representations of real-world 

applications. To better transition between simulation and practical robotics some further 

considerations should be implemented. An example of the measurements presenting an 

incomplete real-world understanding is the RMSE values inability to distinguish between angular 

overshoot or undershoot when pushing a joint to the maximum comfort angle. Undershooting 

the goal will not achieve the stretching sensation required to increase motion but also will not 

cause any discomfort to the user. Overshooting will pass the point of comfort and cause 

potential discomfort or even physical damage to the joint. For these reasons a slower response 

time with notable undershoot is preferred over a fast response time with small overshoot, but 

this cannot be represented through purely RMSE measurements. The differences could be 

represented through the reward function for reinforcement learning, increasing the penalty for 

errors that change sign (generated by overshoot). As the reference may change to be above or 

below the current position using just the sign will not provide enough information and even a 

single sign change may be caused by the change in reference signal. For the simulation stage the 

reference transitions can be predictably scheduled and accounted for, but for later stages of 

operation where the reference signals are generated from the user bio-signals the 

determination of what caused the error sign change becomes more difficult. Regardless of the 

generated reference signal, should two sign changes occur within some predefined timeframe 
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then overshoot is guaranteed to occur. From a larger perspective, penalising error sign changes 

within the reward function should lead to a reduced number of oscillations within the system 

response. Similar arguments can be constructed for determining the negative impact of steady 

state error. Early stages of rehabilitation will not require overly precise positioning and a small 

amount of offset from the reference signal will be unlikely to negatively impact the recovery of 

the subject. An early implementation of this idea can already be seen through the reward 

function providing positive reward for measurements within a ±5° threshold of the reference 

signal. In summary, to improve the system to be better suited for practical interactions with a 

human, the reinforcement learning agent should be adjusted to discourage fast response times 

and overshoot, instead favouring rise times closer to 1 second and allow moderate steady state 

errors.   

Other issues with the RMSE recordings is their dependence on the reference signal amplitude. 

Naturally the signals with larger amplitudes produce larger RMSE values, making comparison 

between different input signals more difficult. This amplitude-RMSE relationship was discussed 

in section 4.3.2.3 for the adaptive PID controller, but no tests were performed for stages 1 or 3 

as it was deemed unnecessary. To help compare between different magnitude signals the values 

could be normalised before the RMSE values are calculated, which would require prior 

knowledge of the reference signal and potential operating frequencies. As the types of motions 

being performed would remain relatively consistent between users this model is feasible, and 

would be a requirement for later stages in the project where human interaction is beginning and 

RMSE values need to become more homogenised.  

Finally an improvement that could be made to both the adaptive controller techniques would 

be to incorporate the changing environment into the training sessions. As it stands the agent 

training retained a constant environment and relied on the natural adaptability of a neural 

network to predict the best actions. If the agents were trained to appropriately predict non-

specific changes to the environment then the final agent would likely be better equipped to 

perform successfully in hitherto unseen situations. For the PID example, instead of training with 

a fully functioning actuator the training session could train with the actuator functioning 

correctly 50% of the time and 50% of the time have signal attenuation of a random amount. This 

would in theory lead to better ability to reject uncertainties from the system, however for this 

example the results were already good enough for operation that the increase in training time 

may be unjustified. For the admittance example the increased variations of environment 

changes becomes more useful. Changes in the environment stiffness or the boundary states will 
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be present in all real-world examples and will likely change over time at a more gradual rate 

than what was implemented in the results section. Although possible to include in the model, 

this variation was excluded for the purposes of simplicity and ease of implementation. 

Expanding on the changing environment and including it within the training session may lead to 

a much better agent able to predict experienced forces rather than learning the one specific 

linear equation that was used previously. The ability to predict forces from very short 

interactions will be a crucial feature of the late-project system. Interactions with foreign objects 

will vary the amount of experienced force (pushing against a sponge vs against a rock) which will 

occur during general activities outside a controlled environment. The system must be able to 

provide the necessary assistance on soft grass even if the system was intended for use on 

smooth hard concrete. As such, learning to adapt to a changing environment is crucial for late-

stage rehabilitation. The downside to adding stochastic behaviour into the training session is 

that training will require longer to observe all the possible operating states and may prevent 

solution convergence. 

Conclusion

Reinforcement learning can be used to tune controller parameters to better adapt to a changing 

environment or couple with a human participant at any given point in time. As the system is 

better able to adjust the coupled system, the overall safety and operation will be improved 

which is a highly desired outcome for rehabilitation robotics. The testing of this controller 

parameter tuning was performed on both a PID controller and an admittance controller. 

Proportional-Integral-Derivative controllers are used in a plethora of technologies to assist in 

minimizing differences between desired states and current states. Using reinforcement learning 

to automatically tune a PID controller with no prior knowledge of the system was shown to be 

a viable approach to controller design rather than requiring professional experience or the use 

of an external tuning tool. A twin-delayed deep deterministic algorithm was used for basic 

reference tracking of a single degree-of-freedom robot designed to help guide a human ankle 

joint for rehabilitation purposes. An adaptive PID controller capable of adjusting control based 

on the measurements from the environment can also be produced from RL, although results 

showed lower tracking performance for the adaptive controller than the constant controller in 

time-independent environments. This result is believed to have occurred due to the simplicity 

of the model, with no environmental uncertainty or noise to appropriately adapt to. When a 
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change to the environment was simulated the constant PID controller failed to track the 

reference signal to a reasonable degree while the adaptive controller was able to recover and 

complete the simulation with minimal error. Reference tracking was found to be heavily 

dependent on reference signal amplitude and frequency, with root mean square error values 

increasing linearly with both variables when using the adaptive PID controller. The constant PID 

controller showed less dependence on the amplitude and frequency, but did also increase error 

recordings for high frequencies. Desired amplitudes and frequencies were relatively small and 

slight deviations would not cause any harm to the subject or negatively impact the recovery 

process. As such, small RMSE values were used as the identifier for acceptable performance. 

Overall both controller approaches resulted in RMSE values small enough to be considered 

acceptable for the purposes of rehabilitation in simplistic models and environments. The 

constant controller was shown to be unacceptable for changing environments and the adaptive 

controller was shown to be acceptable only if it had been appropriately trained. 

The use of reinforcement learning in control systems is not a novel application, however there 

was limited rigorous documentation of its effects in changing environments or input signals. The 

focus of adaptability of changing environments transformed the regular application of 

reinforcement learning into a valuable source of information for future researchers. The custom-

designed robotic device led to unique results that are naturally only applicable to this project, 

however the teachings of the chapter are for determining the circumstances in which RL is worth 

implementing. This will carry to other control plants, as the analysis highlights what factors to 

consider and what data to collect for any reference tracking robotic system.  

Admittance controllers allow the measured interaction forces with the environment to 

determine how the system will respond to such forces. By relying on reinforcement learning to 

adjust the gain parameters of the system in real-time, it was theorised that the admittance 

controller would be able to better conform to a safe operating range of motion and improve the 

general tracking ability of the closed-loop system. As with the PID controller, human interaction 

would introduce time-variant features with uncertainty to the environment and would therefore 

require an adaptive nature to appropriately handle operation. In practice there were no clear 

improvements between the reinforcement learning-based admittance controllers and the 

standard switching admittance controller, which alternated gain parameters based exclusively 

off the measured interaction forces. The comparisons were quantified through the RMSE 

measurements, taking into account the environment was simulated to restriction free motion. 

The reinforcement learning method did provide viable results, but does not seem justified in this 
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particular application as the added complexities of implementation do not improve general 

tracking ability. Despite these seemingly negative results, the outcome is still beneficial to the 

overall development as it further guides the rehabilitation device progression path by 

contributing new information.  

For the complex task of human-robot coupling and performing a large variety of physical 

exercises, these results highly recommend the use of an adaptive controller within the 

rehabilitation robot to provide the best assistance possible, with reinforcement learning being 

only one potential technique.  
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Convert sEMG Signals to User-

Intended Position via Reinforcement Learning

Introduction

The design of traditional control systems requires a mathematical model to represent the 

physical system that is in need of controlling; this will describe how the system interacts with 

the environment. These models are usually represented by transfer functions or state space 

representations, but may struggle to accurately encapsulate complex systems that need to be 

controlled. For these cases, a function approximator such as a neural network is capable of 

encoding all the necessary information into the system model without the designer having to 

manually create the characterisation. This allows machine learning to become a very powerful 

tool in identifying potential relationships between many inputs and many outputs. The electrical 

signals produced by the human body from muscle activation has an extremely nonlinear, time-

dependent relationship with the produced motions and interaction forces, however machine 

learning is able to take a myriad of input data and predict the output motions without the 

designer ever rigorously discovering the mathematical relationship. As most relationships in 

reality are nonlinear and time-dependent, machine learning techniques are widely applicable in 

all fields and types of data, while control theory often relies on the linearisation of complex 

systems. This is true for simple hinge joints such as the ankle as well, as the foot can move on 

other axes with a limited degree. Creating a linear model for even basic ankle movements can 

be difficult and shows the necessity for machine learning in a rehabilitation setting. 

Machine learning has already been used for many forms of EMG classification due to its pattern 

recognition abilities. A simple artificial neural network (ANN) with just 1 hidden layer is capable 

of real-time gesture classification (Zhang et al. 2019), but requires the manual choosing of signal 

features to pass into the network. A convolutional neural network (CNN) can avoid the feature 

selection step and learn the features directly from each convolutional layer. High accuracy 

classification has been proven to be achievable with easy-to-use EMG sensors that could be used 

outside of a laboratory environment (Allard et al. 2016). As CNN technologies use 2D data as the 

input, most time-domain signals are converted into a time-frequency domain such as 

spectrograms or wavelet transforms. The number of features that can be extracted from the 

CNN will depend on the network structure and is generally decided by the architect. 
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To simplify the network would be equivalent to removing observable features of the input signal 

which may decrease the classification accuracy if not enough features are observable, however 

it may also increase accuracy and decrease computation requirements if the system is overly 

complex and contains too many features. Determining the correct number of features is difficult, 

but it has been shown that feature reduction can be performed using reinforcement learning 

(RL) to eliminate the unnecessary features that do not meaningfully improve classification 

accuracy (Song et al. 2018). Using reinforcement learning for classification is a fairly unusual 

application, however for optimising a classifier and including information of gesture magnitude 

(with more numerical results rather than categorical) it becomes more appropriate. 

Song et al. (2018) acts as the primary inspiration for the experimental work performed in this 

chapter, although a majority of their work in agent deep Q-network (DQN) design seems to stem 

from Janisch, Pevný, and Lisý (2019) (or a previous version of the same publication), which in 

turn is based on the paper by Dulac-Arnold et al. (2011). Dulac-Arnold focused on the sequential 

feature choosing for classification. EMG data will be converted into a feature data vector such 

that the RL agent is able to find the minimal amount of features per EMG signal that can be used 

to classify a basic gesture. Once this behaviour is learned an RL agent will be utilized to 

determine precise motions with the fewest features possible, and then compared to alternative 

gesture classifiers to validate the approach of RL for classification.  

The experiments performed utilised upper limb EMG data for classifying hand motions, rather 

than lower limb data for classifying ankle positions. There are key differences between these 

types of classification as the ankle motions will be more limited than hand motions, however it 

will be enough for the purposes of identifying the stage of gait the user is currently completing. 

Determining the exact degree of ankle flexion or extension may be beneficial in some cases, but 

it is more difficult to predict accurately, and position of gait cycle maps well to basic hand 

gestures. It is for these reasons that hand gesture classification was deemed similar enough for 

the purposes of feature extraction and model simplification. Collecting enough data to train a 

reliable network with no biases is a monumental task itself, which when combined with the 

obstacles of the COVID-19 pandemic led to this option not being pursued and instead using the 

readily available large dataset for hand motions.  
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Methodology

5.2.1. Electromyography Data Collection & Pre-processing

Constructing an artificial intelligence for classification purposes requires a large amount of data 

to appropriately train the respective model. Due to the natural variances within human EMG 

production the data collection stage becomes especially important to guarantee the final 

product is able to learn these variations. To best cover this complication, data should be 

collected from a wide variety of subjects from differing demographics at various stages of 

exhaustion. Unfortunately collecting a new dataset became logistically and ethically infeasible 

due to the COVID19 pandemic and its restrictions. For this reason an existing EMG database was 

used for training and testing purposes, which was provided by MATLAB (Mathworks 2022a), but 

originally collected by Goge and Chan (2005) with the intention of normalising data to compare 

different forms of pattern recognition (Chan and Green 2007). The EMG data was collected from 

the right forearm using 8 Duo-trode silver chloride electrodes (Ag-AgCl) attached to the skin

surface of 30 different subjects. Each subject performed one trial which consisted of executing 

7 distinct hand gestures four times each in a random order. This trial was repeated 6 times per 

subject within one session, and returned on 3 later days to repeat the session. The provided 

dataset contains 720 EMG trial data files that each contained approximately 94 seconds of 8-

channel EMG recordings. Each gesture was performed for an approximate 3 second period on 

four separate occasions per trial, with 5 seconds of no actions at the beginning and end of 

recording to avoid data cut-off. Each file was sampled at 3 kHz within a bandwidth of 1-1000 Hz. 

No mention of the duration between trials is given, so it is unclear whether subsequent trials 

will suffer from any forms of exhaustion or muscle fatigue. However since the exercises being 

performed are non-intensive and the study is not looking at the effects of muscle fatigue it is 

assumed that there was enough time between trials to completely recover and no fatigue effects 

are present in the training data. For rehabilitation purposes this may lead to a biased training 

set, as the system must be able to similarly categorise gestures performed at full strength and 

partial exhaustion. This missing element in available data will be ignored for the remainder of 

this chapter, however any future data collection must take this into consideration for an all-

encompassing training dataset. Although the data collected from the upper limb cannot be used 

to train an ankle intention decoder, the viability of EMG classification can be confirmed and 

documented to justify future expansions and experiments for the rehabilitation project.

The Chan dataset was used within the MATLAB example “Classify Arm Motions Using EMG 

Signals and Deep Learning” which provided proof that classification was possible using a long 
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short-term memory (LSTM) recurrent neural network structure. With the final goal of the 

chapter being to develop a real-time classification method from EMG signals to a desired joint 

position, the underlying technology of audio-based classification was adapted to EMG signals 

due to their similar signal input behaviour. Audio classification converts a time-domain digital 

signal into a spectrogram displaying the frequency-domain features as a 2D image, then uses a 

CNN as an image classifier. This technique can be applied almost directly to EMG classification, 

however the addition of multiple signal channels increases the information density of the input 

signal and some adjustments must be made.  

 

5.2.1.1. Data Filtering & Selection 

For the purposes of gesture classification each input signal must correspond with one single 

gesture, and as such each EMG trial file was split into individual EMG motion files. As previously 

mentioned, each EMG trial contained 7 gestures performed 4 times each, with empty recordings 

at the beginning and end of the file for padding purposes. As such an expected 21 600 motion 

files should be produced, each falling into one of the following motion categories: 

TABLE 5.1 – GESTURE DESCRIPTIONS 

Gesture Description 

EndData The additional padding data found at the beginning and end of each EMG 

file 

HandClose The act of closing the right hand 

HandOpen The act of opening the right hand 

WristFlexion The act of bending the wrist towards the anterior of the forearm 

WristExtension The act of bending the wrist towards the posterior of the forearm 

Pronation The act of rotating the wrist/forearm to face the ground 

Supination The act of rotating the wrist/forearm to face the sky 

Rest No action 

 

Each trial datafile also had paired labelling data describing the time period for each gesture, 

along with the appropriate gesture label. Using these time periods to automatically split the 

data, results show that only 18199 data samples were produced. This means either the 

completion of each gesture four times per trial was not strictly adhered to, or when the same 

gesture is performed back to back the time period provided combines them into one action. 
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Some of the split gesture files had much longer time periods which suggests the gesture was 

performed multiple times or for a duration longer than instructed. Although this does not 

confirm some motion files contain repeating gestures it does reinforce the assumption, as well 

as raises concerns of validity for the unexpectedly long motion files. Regardless of the reasoning 

the long motion files were filtered out of the datastore as each input file must share the same 

dimensions to be passed into the neural network and normalising data with large variation can 

lead to a decrease in learning capability. Additionally, padding data to match the larger data 

samples also has detrimental effects on training, therefore it is best practice to remove the 

questionable data from the datastore. All motion files that extended past the duration of 10000 

ticks (approximately 3.3 seconds sampled at 3 kHz) were removed from the datastore. All 

remaining files were padded to exactly 10000 ticks to normalise the EMG motion data to a form 

that can be readily processed. The shortest file contained 5629 ticks of EMG data and was 

produced by a wrist flexion gesture. As this file required 4371 ticks of padding data the final file 

would contain 43% padding. As every other file would require less padding, this ratio is 

considered acceptable for the purposes of this experiment. Additionally, it has been 

documented that the position of the EMG sensors during initial data collection would not be 

able to reliably record the motions of supination and pronation. For this reason all files 

corresponding to supination and pronation, along with EndData which represented no motions, 

were also removed from the reinforcement learning datastore. However, supination and 

pronation data was used for the training of the CNN classifier, where both categories were 

combined and labelled as “Unknown” to allow the classifier to default to a setting when 

previously unseen or potentially meaningless data is encountered. 

The final data selection stage reviews the necessity for all 8 channels of EMG data per gesture. 

Goge and Chan (2005) discuss the effects of each EMG channel’s effect on classification accuracy 

and determine that the most important channels are channel 3, 5, 6, and 8; channel 1 is deemed 

the least important. The original paper used auto-regression coefficients to parameterise the 

data and used linear discriminant analysis for the classification. Since different methods are 

being used for classification the effects of each channel may be different, however the channels 

described as “important” were produced by the electrodes closer in proximity to the largest part 

of the muscle, giving the results a biological explanation. Only the four most important EMG 

channels were extracted from the EMG data to allow comparable EMG data to be personally 

collected within the UTS laboratory which is limited to 4 electrode sensors. Data reduction also 

has the added benefit of simplifying the data used in the system such that real-time classification 
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will require less computational power and may run better than using the full 8 channels. The 

predicted loss to classification accuracy will be minimal, with only a 2% difference outlined in 

the original paper.  

The final datastore file count to be used for the reinforcement learning component of the 

experiment was 9904 with each file containing only 4 channels rather than the original 8. This is 

enough data to use in machine learning and establish a viable training, validating, and testing 

dataset. The motion gestures, along with their file count, are provided in the table below: 

Table 5.2 – Gesture File Distribution for Classification 

Gesture HandClose HandOpen Rest Supination Pronation WristExtension WristFlexion Total 

Count 1870 1959 2058 0 0 1906 2111 9904 

% 18.9% 19.8% 20.8% 0% 0% 19.2% 21.3% 100% 

 

5.2.1.2. Data Processing for Convolutional Neural Networks 

The remaining dataset must now be converted from raw time-domain signals into a 2-

dimensional image to be used by a convolutional neural network for its image recognition 

capacities. The image produced is a time-frequency representation of the data to show the 

frequency domain features of the data and how they evolve over time. These representations 

are generically called scalograms, and can be produced through several different methods. One 

common method to achieving this is to use a continuous wavelet transform (CWT) on the time-

domain signal and plot the absolute values from the CWT coefficients. An alternate method is 

to use a sweeping window function over the time-domain signal to extract the frequency-

domain information from the signal using the fast Fourier transform (FFT), as seen in audio 

recognition. Since the EMG classification approach was inspired by audio recognition and CWT 

had been shown to work for electrocardiogram (ECG) data, both approaches were attempted as 

a comparison to determine whether both methods were viable for EMG data. 

The differences between Fourier transforms and wavelet transforms is that a wavelet is localised 

in both time and frequency while a Fourier transform is localised entirely within frequency. In 

general, the Fourier transform can be considered a unique case for wavelet transforms where 

the resulting signal is represented as the sum of sinusoids while in a generic wavelet transform 

the resulting signal has no such guarantee.  
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A) Continuous Wavelet Transform 

The wavelet transform was performed using tools provided by the Wavelet Toolbox (Version 5.6 

for MATLAB R2021a). The transformation makes use of a filter bank which is simply a collection 

of bandpass filters of equal magnitude but different peak frequencies. The number of filters 

contained within the filter bank will be determined by how many voices per octave the user 

desires. An octave is simply a measurement of frequency which increments by one for every 

doubling of frequency, and as such a higher “voices per octave” setting will result in the 

frequency analysis to be separated into smaller intervals. Each filter is known as a wavelet and 

is used for the CWT calculation through convolution.  

For the experiment the wavelet shape used was the Morse wavelet with a time bandwidth of 

60. Both these values were the default and left unchanged due to their success in ECG 

classification. The voices per octave were set to 12 for similar reasons, although later tests 

showed no loss of quality when this value was reduced to 8. The produced CWT filter bank is 

displayed below, which shows the filters that will be convolved with the EMG time-domain signal 

to produce the resulting spectrogram.  

 

Figure 5.1. Continuous Wavelet Transform filter bank used to produce 2D images representing the EMG data in the 

time-frequency domain 

B) Fast Fourier Transform 

The Fourier transform is the mathematical transformation that allows a time-domain signal to 

be represented in the frequency domain to identify all the varying-frequency components. 

When the Fourier transform is applied to a full-length signal the frequency analysis is produced, 

but no information about the temporal distribution of each frequency component is generated. 

Simply put, if a signal has a high-frequency component near the end of a signal, as may be 
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present in EMG motion data, then the corresponding Fourier transform would display the high-

frequency component but would be unable to determine when in occurred during the signal 

sample. To combat this, the Fourier transform can be applied to discrete windows of the signal 

to localise the frequency components.  

The fast Fourier transform (FFT) is an efficient application of the Fourier transform for discrete 

signals and is used for the audio feature extractor provided by the Audio Toolbox (Version 3.0 

for MATLAB R2021a). The feature extractor can output several sound-based spectrograms such 

as the Bark spectrum or the mel spectrum to be used for audio classification. However due to 

EMG signals not being audio-based signals it is more appropriate to use a simple linear 

spectrogram to best represent the spectral output. A Hann window function was used with a 

window length of 25 milliseconds that would shift by 10 milliseconds across the time axis to 

complete a convolution multiplication with the entire EMG signal. The frequency range of 0-500 

Hz is displayed in 257 frequency bands, although this is compressed to 224 pixels during image 

production. The data was down-sampled to 1 kHz which sets the Nyquist frequency to 500 Hz, 

allowing the frequency range to display all necessary information of the initial signal.  

For audio recognition only 50 frequency bands are generated for a Bark scale spectrogram which 

produces high fidelity. This implies a reduction of frequency bands could be imposed with little 

negative impact on the EMG classifier accuracy, although it will not be attempted at this time. A 

reduction in voices per octave for CWT or down-sampling for FFT could achieve this if future 

experiments struggle to generate frequency analysis fast enough for real-time robotic control. 

A comparison of the produced CWT spectrogram and the FFT spectrogram can be seen in Figure 

5.2. The FFT spectrogram displays frequency information between 0 Hz and 500 Hz linearly along 

the y-axis, while the CWT spectrogram displays frequency information between 0 Hz and 1.5 kHz 

logarithmically, as there are more low-frequency filters than high frequency filters.  
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Figure 5.2. Produced spectrogram of the ‘Hand Close’ motion using fast Fourier transform (left) and continuous 

wavelet transform (right). The four EMG channel signals are presented stacked vertically, with the x-axis 

representing time and the y-axis representing frequency distribution. 

5.2.2. Feature Reduction via Reinforcement Learning 

Once all EMG data has been processed and converted into spectrogram image data it can be 

used as the input to a convolutional neural network used as a classifier. Instead of selecting 

specific features from the data such as the mean absolute value or root mean square, the CNN 

is able to produce deep features that a human may not be able to recognize as significance.  

5.2.2.1. CNN architecture & Feature Extraction 

The CNN architecture was copied from the speech command recognition example provided by 

MathWorks (Mathworks 2022d) which is constructed using an image input layer followed by 

three convolutional blocks. A convolutional block contains a 2D convolution layer, a batch 

normalisation layer, a rectified linear unit (ReLU) activation function layer, and a max pooling 

layer. Each layer contains padding to produce an output retaining the same dimensions as the 
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input, except for the max pooling layer which reduced both dimensions by a factor of two. The 

number of filters per block, and thus the number of feature maps produced per convolution 

block, were equal to 12, 24, and 48, respectively. Two more convolutional blocks follow these 

layers, however both have 48 filters each and no max pooling layer follows the ReLU layers. 

Finally a maxpool layer is used to find the maximum value for every row of the remaining feature 

maps. These values are passed through a 20% chance dropout layer and are then classified using 

a weighted output layer with the softmax activation function. Initial testing produced extremely 

high classification rates which, when combined with a lack of confidence in expertise, led to no 

alterations of the CNN architecture hyperparameters. The GoogleNet architecture was also 

adapted and tested for the purposes of classification, however due to the much more complex 

network structure the training sessions required much longer to complete. The final verification 

accuracy was also slightly lower than the speech-based network and as such the GoogleNet 

architecture was not pursued further.  

Training options also remained relatively unchanged from the audio example, with the only 

noticeable change being a reduction in the minibatch size from 128 to 64 due to memory issues. 

The adaptive moment estimation (adam) algorithm is used with an initial learning rate of 3x10-4 

that drops by a factor of 10 after 80% of training has concluded to help achieve more precise 

gradient descent. The training data used is a subset of the datastore discussed in Table 5.2, 

however supination and pronation data is combined into an “unknown” category to encompass 

any previously unseen gestures that may not be identifiable through the current EMG sensor 

configuration.  

Once the general network is shown to be a reliable classifier for the spectrogram data it can be 

used to extract the features that it uses to classify the gestures. As each filter for each 

convolutional block can be considered as producing a 2D feature map, initially these filter maps 

were planned to act as the features. Unfortunately no reliable method could be found for 

representing an entire feature map by a single scalar value. If the maps were to be used in their 

entirety with each pixel activation being accounted for there would be a total of over 1 million 

features if taken from the max pool layers and over 3.6 million if taken from the convolution 

layers. Even if each filter is averaged to find the average feature map of one block, the number 

of features would remain in the hundreds of thousands. As all of these approaches would be 

infeasible for observations into an RL agent, an alternative feature extraction method is 

required.  
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An additional fully connected layer is added to the output of the dropout layer and is labelled as 

the ‘feature vector’ layer. The layer contains 100 neurons that, when activated, will produce 

scalar values that are shaped through the previous layer features. The activation values can be 

extracted for every image input, allowing a single image sample to produce a single vector 

containing the number of desired features. To create the feature vector database each existing 

spectrogram image corresponding to a valid gesture must be fed through the CNN that was 

proven to be a reliable classifier. However since the neural network architecture has been 

changed the system must be retrained and validated to confirm functionality has not been 

supressed to the point of unreliable classification. Once the feature vector database has been 

established it will be used as the input to a reinforcement learning agent environment. 

In the current experiment only 100 features were produced, compared to the 288 features 

implemented by Song et al. (2018). Alternative tests were performed with a higher feature count 

of 180, however this led to a complete deterioration of training and a classification accuracy 

equivalent to random guessing. These tests were performed using the FFT spectrogram images 

and were not compared to the CWT images as it was deemed unnecessary. Tests proceeded 

forward using only 100 features to confirm the proof-of-concept that was being attempted in 

feature reduction. Future tests can be performed with higher features if the input data is 

detailed enough to require higher features. The position of the feature vector layer was also 

experimented with to try and improve the quality and relevance of the features being extracted. 

The fully connected layer was placed both before and after the dropout layer to try and find the 

most robust feature set possible. A dropout layer is generally used to improve the reliability of 

the classification, allowing the network to experience states which may be subject to errors or 

small discrepancies in the input data. Intuitively it was believed that the feature vector should 

occur before the dropout layer as it would be less subject to randomisation and have more 

complete information. When this structure was tested, training results showed a complete 

inability to learn from the input images, while training performed reliably when the feature 

vector layer was positioned after the dropout layer. Additionally, the effects of including a ReLU 

function with the feature vector layer were examined to determine its inclusion necessary.  

Once the DQN network structure was fortified the final feature vectors were collected by passing 

every valid CWT and FFT spectrogram through the trained network to activate the neurons 

within the feature vector layer. These activation values were extracted and saved as individual 

feature vectors, along with the correct gesture label appended at the bottom of each column 

vector.  
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Each of the vectors produced by the CWT and FFT spectrograms were stored within their 

appropriate feature matrix. With a total of 9904 valid gestures each matrix has the dimensions 

of 101x9904. Most tests utilized the CWT feature matrix as it was created before the FFT 

features were extracted. Once the FFT features were also created the CWT was still the primary 

feature source as it had shown a higher accuracy during the CNN classification and was therefore 

believed to be slightly more reliable.   

The feature vector layer within the CNN did have a ReLU activation function at its output, 

however the features extracted occur before the function is employed and as such many 

features have negative values. Finally, the feature values were mean-normalised to guarantee 

each feature vector had a feature mean of 0 and a standard deviation of 1.  

 
𝐹′ =

𝐹 − 𝜇𝐹
𝜎𝐹

  
(5.1) 

By standardising the observation data the effects of gradient descent become much smoother 

and will likely converge faster to the optimal solution (Narasimhan 2021). Unity normalisation 

was also attempted in previous versions (all features were compressed between the values of 0 

and 1), however using this data was eventually phased out due to mean normalisation being 

referenced more frequently within machine learning literature.  

 

5.2.2.2. RL Agent Reward Shaping for Feature Reduction 

Classification is generally better suited for machine learning in the form of supervised learning, 

while reinforcement learning is more adept at environment exploration or problems that could 

in theory be solved through trial and error. As such, the use of RL to simply classify human 

gestures is unnecessarily complex; the goal of using reinforcement learning for this experiment 

is to optimize the supervised learning that occurs within the previously established CNN. The 

extracted feature vectors that contain every feature value are used as the input to the RL 

network to try and learn to predict gestures based off as few features as possible.  

A single feature vector 𝐹 = [𝑓1 𝑓2…𝑓𝑛] is chosen at random to be used every episode, while a 

growing subset 𝐹̅ is used to represent only the features that have been observed so far within 

the episode. A masked feature vector 𝑥 ∈ ℝ𝑛  contains the feature values that have been 

observed so far within the episode in the correct index position, with zeros everywhere else. To 

distinguish between an unobserved feature and a feature with the value of 0, a second mask 
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vector 𝑚 ∈ ℝ𝑛 is used to identify whether a feature has been observed (represented by value 

1) or not (represented by value 0) at any given point in time.  

 
𝑥𝑖 = {

𝑓𝑖                 𝑓𝑖 ∈ 𝐹̅
0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

(5.2) 

 

 
𝑚𝑖 = {

1              𝑓𝑖 ∈ 𝐹̅ 
0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(5.3) 

 

 

Figure 5.3. Illustration of feature observation sequence. Each individual feature within the masked feature vector has 

the chance to be observed through action af. A classification is performed at the end of the sequence through action 

ac. Each action is based on the current masked feature vector state. Image sourced by (Janisch, Pevný, and Lisý 2019)  

A combination of 𝑥 and 𝑚 act as the observations to the RL agent to determine the action that 

will be taken. A single action is output with a discrete value within the action range 𝐴 = {1: 𝑛 +

𝑔} where n is the total number of features, and 𝑔 is the total number of possible classifications. 

The action space can be subdivided into two subsets: 𝐴𝑓  which represents the action of 

observing a new feature, and 𝐴𝑐 which represents the action of classifying the feature vector as 

a specific gesture based off the currently observed features. At each time step the agent will be 

able to choose either to observe an individual feature from the currently loaded sample F, or it 

will choose to predict the motion based on its current observations. The feature fi will be added 

to 𝐹̅ if the corresponding action 𝑎𝑖 ∈ 𝐴𝑓 is the selected action. The gesture gi will be compared 

to the true gesture label 𝑦 ∈ ℕ and the episode will be terminated if the corresponding action 

𝑎𝑖 ∈ 𝐴𝑐 is the selected action.  

As the agent observes more features its observations become richer in information to base its 

prediction on, and will be able to predict the correct gesture more frequently. To find the 

minimal the number of features required to appropriately classify, observing a new feature will 

have a cost in the form of a negative reward value. A negative cost is also applied to incorrect 

classification to discourage the action of misclassifying the input gesture from the correct 

gesture label y. A baseline reward function is displayed below: 
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𝑟𝑡 = {

0                      𝑎 = 𝑦 | 𝑎 ∈ 𝐴𝑐
−1                   𝑎 ≠ 𝑦 | 𝑎 ∈ 𝐴𝑐
−0.001                         𝑎 ∈ 𝐴𝑓

 

(5.4) 

The reward function is designed to be completely negative which will push the agent to end the 

simulation as fast as possible to avoid accumulating the negative reward. The cost of observing 

a feature should be less than the cost of incorrect classification to guarantee observing and 

correct classification has a higher average return than immediate random classification. The only 

exception to this is if a previously observed feature is reobserved, effectively not gaining any 

new information about the environment and current state; if the action taken corresponds to a 

feature already contained within the observed subset 𝐹̅  then the system must respond 

differently. These actions are to be considered illegal and were removed from the potential 

action space in the original paper. However the original paper was written using python 3.6 and 

this option does not seem to be available for the MATLAB 2021a Reinforcement Learning 

Toolbox, so the illegal actions must be accounted for through other methods. There are three 

potential approaches to restricting or discouraging the reobservation of a feature: 

• Increase the reward cost of an observation if that feature has already been observed. 

This approach should allow the system to converge to a non-repeating solution as it 

discovers the higher rewards available for unique observations.  

• Redirect the illegal action to a legal action with an increased cost. This approach has the 

added benefit of continued state space exploration even from illegal actions, but will 

slow down learning the benefits of unique observations and runs the risk of relying on 

the action redirect to find new observations.  

• Illegal actions receive a large one-time penalty cost and cause a simulation termination. 

Ending each simulation early will drastically reduce training time but will also slow down 

state space exploration, as each training episode will not collect experience on as many 

state-action pairs.  

Smaller test experiments were performed utilizing each of these approaches for a relatively 

small number of episodes before implementing the first and third option for the final 

experiment. The results of these experiments are discussed in 5.3.3.1. The reward value is 

calculated each time step and transferred to the agent along the ‘reward’ line, while the early 

termination condition is transferred along the ‘isdone’ function shown in Figure 5.4.  
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Figure 5.4. Simulink model for the final EMG classification experiments via reinforcement learning 

Various attempts at alternate reward functions were attempted to try and better shape the 

agent behaviour. Replacing the neutral +0 reward with a +1 or +10 reward for correct 

classification should not drastically change the training, as a single positive reward at a terminal 

condition should not open any exploitation loops and should simply increase tolerance to 

accrued negative reward along the path to the terminal state. The tolerance threshold can be 

calculated by finding the average reward return for classification along with the cost of feature 

observation. For the classification task involving five gestures the probability of randomly 

correctly classifying a gesture is equal to 20%, making the chance of incorrect gesture 

classification equal to 80%. With no learning and using the values of p=0.2 the expected reward 

can be calculated as: 

 𝑟𝑎𝑣𝑔 = 𝑟𝑡𝑟𝑢𝑒 ∗ 𝑝 + 𝑟𝑓𝑎𝑙𝑠𝑒 ∗ (1 − 𝑝) (5.5) 

Using the values supplied in (5.4) equate to an average reward of 𝑟𝑎𝑣𝑔 = −0.8. Calculating the 

average reward if the cost of observing features is included requires knowledge of how the 

additional information would impact the classification rate. The new classification rate can be 

labelled 𝑝𝑛 while the cost of feature observation can be labelled as 𝑐. For the system with 100 

potential features and a cost of -0.001 per feature, the maximum cost of feature observation is 

calculated at 𝑐𝑚𝑎𝑥 = −0.1. To determine whether feature observation is mathematically viable, 

the new classification rate 𝑝𝑛 must result in the new expected reward to be greater than the 

expected reward from complete random guessing: 

 𝑟𝑡𝑟𝑢𝑒 ∗ 𝑝𝑛 + 𝑟𝑓𝑎𝑙𝑠𝑒 ∗ (1 − 𝑝𝑛) + 𝑐𝑚𝑎𝑥 > 𝑟𝑎𝑣𝑔 

0 ∗ 𝑝𝑛 − 1 ∗ (1 − 𝑝𝑛) − 0.1 > −0.8 

𝑝𝑛 > 0.3 

(5.6) 

 



5.2. Methodology  194 
 

 
 

This inequality proves that as long as observing all features increases classification accuracy from 

20% to greater than 30% then the expected reward will increase and the RL agent should, in 

theory, converge to the solution of observing all features rather than relying on random 

guessing. These results bolster confidence in the current reward function being appropriately 

balanced for the task at hand. From the results of the CNN classifier it is believed that the 

classification probability will be much larger than 30% accurate and as such the baseline reward 

function was retained throughout the remaining experimental trials. For the example 

mentioned earlier, by adding a positive reward to correct classification, the minimum probability 

of classification will decrease (a reward of +10 for correct classification will lead to 𝑝𝑛 > 0.2091 

in (5.6)). Although this would simply mean that the system should learn to observe features even 

for a worse functioning classifier, this is antithetical to the goals of the project, and as such these 

actions are not taken.  

Note that these equations/inequalities do not account for any changes made in reference to the 

system reobserving features, and instead assumes each feature can only be observed once and 

for the same price. Any alterations from this behaviour will result in the predicted models above 

becoming inaccurate.  

 

5.2.2.3. RL Agent Architecture 

Due to the nature of the feature selection task being performed, each action is distinct from the 

adjacent actions in action space and can each be represented by a discrete value within a finite 

set. This structure is best suited to use a Deep Q-Network (DQN), as Q-learning methods are 

more sample efficient, yet less stable and more prone to learning divergence (Szepesvári 2010). 

The DQN network acts as a function approximator for the Q-values of every state-action pair 

that the agent experiences, with the Q-values produced at the output of the network. The 

observations from the masked feature vectors act as the input layer to the network, with a total 

of 2𝑛 neurons to represent each feature value and its corresponding ‘read/unread’ state. The 

number of neurons per hidden layer was set to the mean of number of actions and number of 

observations. For the experiment with 100 features aiming to classify 5 unique gestures:  

• The input layer required 200 neurons to incorporate every feature value and index 

• Each hidden layer required 100 neurons 

• The output layer required 105 neurons to incorporate every Q-value 
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Figure 5.5. Deep Q-Network Architecture for the feature reduction classifier. The Q-values for each action is 

produced at the output of the network, including both feature observation actions (af) and classification actions (ac). 

The highest Q-value will determine which action the network performs once trained and acting on-policy 

A mathematical function was added to the output of the Q-values to restrict their values. As the 

reward function is composed entirely of negative components it can be guaranteed that the 

reward will never exceed zero. As such, the Q-values were clipped to prevent predictions greater 

than zero. Without this clipping the target Q-network would produce unrealistic expectations 

and would drastically reduce training performance. The mathematical function was composed 

of three layers including a scale by -1, a ReLU, and a second scale by -1. As the ReLU function 

can be written as 𝑓(𝑥) = max(0, 𝑥), combining the scale layers results in the function 𝑓(𝑥) =

−max(0,−𝑥) = min (0, 𝑥), which effectively cuts out all positive values from occurring and 

reducing them to zero: the true maximum of the system.  

The architecture was predominantly aimed to replicate the original paper, which used 3 hidden 

layers. Alternative structures were attempted initially, as 3 hidden layers seemed unwarranted 

for what was believed to be a simple task and excessive neurons can lead to overfitting. Primary 

tests acted with 1 or 2 hidden layers with all other parameters kept the same. No successful 

results were generated during these tests and as such the structure shifted to match the paper 

that had already been proven to function as desired. The observations used also initially did not 

utilize the mask vector 𝑚 as it was believed to be redundant data, with index position being 

inherently contained within the 𝑥  vector. The chance of a feature being exactly zero was 

assumed highly unlikely and worries of the negative impacts of increasing the observation space 

led to the decision to not include the second mask vector. However after multiple failed 

experiments through hyperparameter tuning it was decided best to simply replicate the existing 
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paper as best as possible to reduce potential fault variables. Mathematically since 𝑚 is perfectly 

correlated to 𝑥, although the observation space does increase the number of achievable states 

remains the same; i.e. it is impossible to reach the state where feature fi is observed, but the 

mask status mi be set to 0. It is therefore theorised that exploration during training will not be 

negatively impacted by the inclusion, only through the extra computational power required to 

pass additional values is the system negatively impacted. With this, the inclusion of the 

secondary mask vector 𝑚 was justified.  

The only conscious difference between the agent proposed by Janisch, Pevný, and Lisý (2019) 

and the final implemented agent was the use of a leaky ReLU activation function in place of a 

regular ReLU activation function on each of the hidden layers, which allows for negative values 

to be propagated through the network without being completely zeroed out. This difference 

was kept as it is believed that there are no downsides to using a leaky ReLU layer as long as the 

leaky factor is kept close to zero, while also reducing the chances of the network suffering from 

the vanishing gradient problem. As a network with more layers is more susceptible to the 

vanishing gradient problem, the leaky ReLU layers were implemented with a leaky factor of 0.1. 

Several control experiments were performed to try and identify any meaningful differences in 

outcome between the two activation functions, but no results presented anything immediately 

identifiable.  

 

5.2.2.4. Hyperparameter tuning 

The hyperparameters of a reinforcement learning agent are simply the variables that are 

adjusted outside of the training period to best suit the goals of each particular optimisation 

problem. Determining appropriate hyperparameter values will be context-dependent and 

proportional to the system as a whole. Although there are advanced approaches to 

hyperparameter optimisation such as genetic algorithms (Kiran and Ozyildirim 2022), there is no 

definitive method for selecting the optimal hyperparameters and inevitably relies on the 

designer’s experience. There have been attempts at using reinforcement learning to tune the 

hyperparameters of reinforcement learning (Neary 2018) but this is well outside of the scope of 

the project at hand. Majority of the hyperparameters remained unchanged throughout the 

testing period as many were considered to be unimportant to the system and tuning every 

hyperparameter would severely limit progression. Several hyperparameters, such as the 

optimisation algorithm and accompanying momentum, were left either as the MATLAB default 

or as the value provided by the guiding papers. MATLAB default values are generally well-suited 
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for many problems and, when mixed with a lack of confidence in understanding these topics, 

retaining default values is a reasonable approach. The default optimiser algorithm in MATLAB is 

the adam optimiser, however the root mean square propagation (rmsprop) algorithm was 

specified in the guiding paper. Early testing stages used adam before this discrepancy was 

noticed, but once changed there were no apparent differences. The details of the optimisation 

algorithm were deemed unnecessary for project progression and were simply copied directly 

from the source paper.  

For the hyperparameters that are better understood and believed to need customisation 

between reinforcement learning projects, small comparison experiments were completed to 

measure the effects each parameter had on the training results of the system and the overall 

classification accuracy of the final agent. Due to the large number of hyperparameters and the 

computational and time-intensive nature of reinforcement learning, these small experiments 

were shortened to prevent project delay. Although this does reduce the significance and 

reliability of the experiments the primary goal was to identify any effects these hyperparameters 

had, rather than the elaborate detail of the effects.  

 

A. Learning rate 

Throughout each experimental iteration several hyperparameters were changed to better suit 

the current reward function, architecture, and training options. One of the most important 

hyperparameters in reinforcement learning is the learning rate. A larger learning rate will 

transition towards an optimal solution faster but runs the risk of never finding the exact optimal 

solution. In extreme cases this may also lead to instability in the training and will prevent 

convergence altogether. Smaller learning rates can avoid these risks, however convergence time 

increases and the risk of falling into a local minima. For feature selection and classification, the 

local minima of incorrect classification would equate to observing no features and guessing 

gesture classification randomly. This is due to the fact that discovering the correct features 

leading to correct classification is a very particular state space path that the agent may not 

discover often during exploration. A common learning rate used in similar problems is within 

the magnitude of 10-3, which was the default value used for experiments. Some experiments 

were performed using values of the magnitude 10-2 but no meaningful information was 

produced due to changes in the reward function also being made at the same time. Results did 

show the increase in learning rate seemed to cause the training to result in a non-optimal 
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solution more frequently, which matches the theoretical results expected. Majority of the 

experiments performed were working under the assumption that majority of errors were effects 

of the environment setup and as such the learning rate was conventionally left constant with a 

value of 0.001. 

As the learning rate determines a percentage of collected reward that will update the network 

policy it is also important to mention the reward discount factor. The discount factor reduces 

the values of rewards in the future, however in the case of a purely negative reward the discount 

factor actually reduces the cost of later actions. As each observation should be equal in cost 

across an episode the discount factor is set to unity. Tests were performed with a lower discount 

factor of 0.99 and 0.95 to observe whether this would encourage more exploration or agent 

longevity, but no changes to the action outputs seemed to be produced from this 

hyperparameter alone. This may be due to the relatively short lifespan of the agent, with at 

maximum 100 future steps but with early termination step count being predicted less than 10 

steps. Values this low are not enough for the changes to policy parameters to make any clear 

difference.  

B. Target network updating 

A second important set of hyperparameters are linked to the target DQN network and determine 

how fast this network updates. Details of how the DQN network updates towards an optimal 

solution are discussed in 2.4.1.1. The hyperparameters for target smoothing and target update 

frequency can have a large impact on what solutions the primary network converges towards. 

Initially, before Q-clipping was implemented through the network, target Q-values were 

increasing exponentially for the beginning of the training session before eventually reducing to 

more reasonable (but still higher than expected) expectation levels. This behaviour was 

mentioned by both Song and Janisch in their respective papers as an “initial value explosion” 

and was the justification behind Q-clipping. These target hyperparameters were investigated 

with the intention to improve the target network to be more in line with the theoretical cut-off 

value; reducing the target smooth factor from 0.001 to 0.0005 and reducing the update 

frequency to only copy the primary network every 5 episodes were implemented under the 

assumption this would decrease the initial exponential growth. The changes showed no 

noticeable improvement in either the learning convergence or the predicted Q0 values which 

continued to exponentially grow. These test experiments were only performed on training 

sessions which lasted 5000 episodes which is likely not enough time for the Q0 value to self-

correct. This implies the training times were too short to experience any meaningful differences 
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from the target network hyperparameter changes. By observing the training progress presented 

in Figure 5.6 it can be seen that self-correction does not begin until approximately episode 23000 

and settle until approximately episode 28000. These tests take several days to complete training 

and as a consequence the comparison experiments were not performed. Instead the 

implementation of Q-clipping was favoured.  

 

Figure 5.6. Example of Q0 initial value explosion during training (left) and the point of convergence (right) when 

zoomed in from the blue window shown. Training plot utilised a smoothing factor of 0.001 and an update frequency 

of 1 

Once Q-clipping was implemented it was believed that the target network hyperparameters 

would be much less impactful on the training results due to the fact that any predicted values 

greater than 0 would be replaced with the 0 value and all previous experiments showed 

exclusively positive predictions. Therefore it is likely that the Q0 value will remain a constant 0 

throughout the entire training course and updating said network will have effectively no change.  

C. Exploration parameters 

As a form of Q-learning DQN is an off-policy learning algorithm and will rely on random non-

optimal actions being taken to explore the state space. An epsilon-greedy exploration model 

with epsilon decay was used to encourage state space exploration more in the early stages of 

training and reliable reward collection in the later stages of training. The ϵ hyperparameter 

represents the probability the agent will perform a random exploratory action. Beginning at a 

value of 1, the agent is guaranteed to explore, but as the episode count E increases the value 

will decay according to the equation (5.7): 

 𝜖 = max(0.1, (1 − 𝜖𝑑𝑒𝑐𝑎𝑦)
𝐸
) (5.7) 
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A minimum exploration value of 0.1 is set to retain exploration 10% of the time even at the end 

of the training session, as a perfectly greedy agent will learn no new information and training 

becomes unnecessary. From here it can be seen that the decay parameter must be chosen to 

allow for exploration for a desired section of training. As it was agreed that exploration should 

only reach the minimum exploration value after approximately 50% of training, ϵdecay was set 

appropriately depending on the maximum number of training episodes.  

For the long training sessions of 100 000 episodes and minimum exploration value of 1% rather 

than 10%, the decay factor was set to 6x10-5 which resulted in exploration occurring only 1% of 

the time after episode 76 750. Another useful statistic to examine is that the exploration 

becomes less likely than greedy behaviour (ϵ < 0.5) after only 11 552 episodes; only 12% of the 

training is predominantly exploration. For the shorter training sessions of 5000 episodes the 

decay factor was increased to follow a similar proportional exploration rate. A decay factor of 

1x10-3 will result in 50% exploration after episode 692 and 1% exploration after episode 4602. 

Although the lower threshold comes later in the training (around 90% through) due to the 

exponential decay there is very little difference between 75% and 90%. An exploration factor ϵ 

of 0.0235 will remain at episode 3750 which is accurate enough for the purposes of comparison, 

especially since the 75% threshold was arbitrarily chosen. There is no guarantee either of these 

decay rates are well suited for the proposed classification problem and whether the agent 

explores enough must be judged based off the training results. For the shorter training sessions 

alternate decay rates were tested in 5x10-3 and 5x10-4, where the former resulted in very fast 

convergence to a suboptimal solution and the latter got worse initially before settling on a poor 

performance. This shows a faster decay rate will negatively impact the training while a slower 

decay rate may still be beneficial and simply require longer training.  
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D. Experience buffer 

For every action taken by the agent, a tuple is produced containing the state the system was in, 

the action taken, the reward collected, and the state the system ended in: (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡, 𝑠𝑡+1). This 

tuple is considered the ‘experience’ the system collects and uses to calculate the loss between 

the default network and the target network. The experience buffer stores every generated 

experience and selects entries in batches (known as minibatches) to help average out the 

learned behaviours to avoid large swings in reward that may cause training to diverge and 

become unstable. A larger minibatch size will help smooth out the learning and assist in 

convergence, however will increase the computational costs and will likely increase training time 

by a significant amount. The size of the experience buffer can also have a large impact on the 

training success, as only a finite number of experiences can be saved. Depending on the 

environment and how frequently experiences are accrued the experience buffer must change 

size to retain a reasonable number of full episode experiences. In the case of this feature 

observation environment each episode contains a maximum of 101 time steps, meaning each 

episode will produce at most 101 experiences. For a training session of 100 000 episodes this 

will produce over 10 million experiences, and an experience buffer with only 10 000 entries 

would not be able to remember behaviours it experiences early in training. This is often referred 

to as “catastrophic forgetting” and can be seen within training progress by a sharp decline in 

performance due to overfitting of new data. In contrast, an experience buffer too large would 

require massive amounts of memory which may be infeasible to implement as well as reducing 

the chances of learning from later sourced experiences if the minibatch size is too small. As such, 

the experience buffer size and the minibatch size are two important hyperparameters that must 

be considered during experimentation.  

The experience buffer was traditionally set to include approximately the most recent 10% of 

experiences generated for long training sessions (1 000 000 experiences) and 20% for short 

training sessions (100 000 experiences). These values were again chosen arbitrarily as no reliable 

sources could be found on buffer size design. As no overfitting seemed to occur during any 

experiments it is likely that this experience-buffer ratio is large enough to avoid catastrophic 

forgetting, while also not being too large for the training hardware. The minibatch size varied 

across many tests, varying from 32 up to 256. No discernible differences were noted other than 

an increase in training time, and as such the final minibatch size of 128 was settled upon for 

both long and short training sessions. This value was selected as each episode is able to produce 

101 experiences and averaging across an entire episode should in theory guarantee the 
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experiences being batched together do not have heavy correlation to one another which will 

improve training stability; 128 was chosen as the minibatch size was traditionally a power of 

two. 

Results

All experiments were performed on the UTS high performance computing (HPC) cluster using 

either the Mars or Mercury nodes. The Mars node consists of 26 CPU cores and a NVIDIA Quadro 

RTX 6000 Passive GPU; the Mercury node consists of 26 CPU cores and a NVIDIA Quadro RTX 

5000 GPU. Training utilizes the GPU and both nodes contain enough memory to become a 

nonfactor. Parallel computing settings are enabled through MATLAB to utilize 10 workers (10 

cores) to increase training speed. 

5.3.1. Long Short Term Memory Alternative Approach

Using a convolutional neural network is only one approach to classification and for time-series 

data a recurrent neural network (RNN) may be the better choice. A long short-term memory 

(LSTM) network is a form of RNN that allows sequence data to act as input to the system. From 

this fact, the EMG signal data can be imported directly into the RNN and bypasses the need to 

convert the signal into a time-frequency spectrogram image. The LSTM approach was used to 

classify the exact EMG data being utilised in the rest of the chapter before it was split into 

individual motions (Mathworks 2022a). As assurance that the data can still reliably classify 

gestures after the motions were individually split, an LSTM network was constructed following 

the MathWorks example to input the newly split time-series data and classify the appropriate 

gestures. This network utilised all the motion files that were used to generate the spectrogram 

images (see Table 5.2), meaning any gestures that lasted longer than 10000 ticks or any 

supination or pronation files were excluded. The architecture and hyperparameters of the 

network were initially preserved from the provided example but training produced poor 

performance, predicting the “wrist flexion” gesture for every signal. This behaviour would be 

expected if the input data had no correlation to classification and wrist flexion was the most 

common gesture, however it is merely the second most common gesture and other experiments 

have shown an ability to correctly classify gestures from the EMG signals. As there are 

approximately equal gesture occurrences between the first and second most common gestures 

(430 vs 411) it is possible that a random bias in the early stages of training caused the network 

to begin favouring wrist flexion over all other predictions. This prediction behaviour would be 
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representative of the agent being stuck in a local minima solution and not properly exploring 

alternative predictive methods.  

 

Figure 5.7. Confusion matrix of long short-term memory neural network used for predicting hand gestures from EMG 

signals. Results show wrist flexion being predicted as the gesture for every EMG signal passed to the system 

Attempts were then made to change the hyperparameters and architecture to try and adjust to 

the differences in input data. The original system has 720 potential input files with lengths in the 

hundreds of thousands, while this new system has over 9000 files with lengths of only 10000. 

Systematic experiments were performed on the number of hidden units in the LSTM layer 

(related to signal length), minibatch size (number of training files), and learning rate (accuracy 

stability).  

The number of hidden units in the LSTM layer was originally set to 80 for the signals that 

contained 28 gestures per signal. Current understanding of the LSTM structure is that the 

number of hidden units determine how much can be ‘remembered’ about the signal and its 

features. As the signal length was less than the original it was assumed that a lower value would 

be beneficial to avoid potential overfitting, and that increasing this value would not benefit the 

system in any way. Tests were performed using values of 80, 40, and 10, with no meaningful 

changes to the training session or the resulting accuracy. Each result showed predominant 

favouring for the “wrist flexion” gesture in approximately 85% of cases with approximately 14% 

predicting “rest” and 1% scattered within the remaining gestures. Decreasing the number of 

hidden units did result in more predictions for rest overall (shifting percentages to around 75-

25% split), but the strong favourability of wrist flexion remained. Signal lengths of 10000 would 
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likely have enough information embedded within them to justify sharing the original structure 

of 80 hidden units. With the intuition that decreasing the amount of signal retained in memory 

would not improve classification, combined with the understanding that this variable was the 

least understood among the remaining variables in question, this value was kept at 80 for the 

remainder of the tests.  

 

Figure 5.8. Comparison of testing accuracy for a variation in LSTM hidden units (40 on left versus 80 on right) 

The minibatch size of the original example was only 32 which must be increased to better 

correspond to the number of training files being used in the tests. As the training set was only 

576 files with the remaining being used for validation, only 18 iterations were required to 

exhaust the dataset and complete one epoch. To aim for a similar ratio for the new training 

dataset of size 7923 the minibatch size must be increased to 440. As values equal to powers of 

two are preferred the minibatch size was tested with values of 128 and 256. A minibatch size of 

512 was attempted but exceeded the maximum memory available to the hardware and 

prohibited training. This led to an attempted 400 minibatch which did run properly but still never 

learned any substantial classification techniques. As no variation caused improvement the 

minibatch size was set to 128 for the computational speed improvements that come from 

smaller minibatches.  

The learning rate of the system is often described as the most important hyperparameter as it 

dictates how much the network will incorporate from any individual result. Although this test 

used a piecewise learning rate which drops by a factor of 10 near the end of training, the initial 

learning rate is discussed in this paragraph with no variation in the dropped value. With the 

default value of 0.001 the most likely reason for poor performance is a small learning rate, being 

unable to learn from new experiences. As there is no noticeable change in training accuracy at 
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epoch 40/60 when the learning rate drops it is extremely unlikely that a smaller learning rate 

would improve performance. Tests were performed for both values 0.01 and 0.1 which did affect 

the spread of gesture predictions, but instead both caused a complete 100% “wrist flexion” 

prediction rate, producing the opposite behaviours as desired. As a follow-up the learning rate 

was reduced, although results were expectedly poor. Learning rate was ruled out as the cause 

for improper prediction behaviour.  

Alternative tests were performed on the training dataset to confirm the current network was 

capable of learning. The training set was reduced to contain exclusively the hand close gesture 

to force the network to learn to only predict the appropriate gesture. This did result in the 

network predicting hand close for 100% accuracy, which means the network is capable of 

learning and may simply be struggling to distinguish between gestures based exclusively off the 

single EMG files. This does not answer how the original Mathworks example was able to 

effectively learn the gestures, nor does it answer how to fix the current network state. As the 

entire LSTM experiment was exclusively performed to improve faith in the training data it was 

deemed no additional time could be justified in improving the LSTM network and the subproject 

was not pursued. Although the tests did not validate the motion-separated EMG signals as 

intended, they do provide useful negative results stating that the EMG data is not guaranteed 

to be classifiable in its current state and any future experiments that utilize the same data may 

run into similar problems. Although disappointing, it is an important consideration to have for 

the later tests involving reinforcement learning in 5.3.3. 

 

5.3.2. CNN Classification 

With the intention to use the CNN to produce the features, the CNN classification rate must be 

as accurate as possible to maximise the correlation between the produced features and the 

correct classification. For similar reasons, it is important to review the accuracy of the CNN 

without the feature layer as this will allow the examination of the feature extraction process 

effects on accuracy. Results using the 8-channel data were produced at the earliest stages of 

development which showed very high accuracy results, but was discarded for the preferred data 

structure of 4-channel data. All training discussion hereon will be referring to 4-channel data for 

classifying the five hand gestures of “Hand Open, Hand Close, Rest, Wrist Flexion, & Wrist 

Extension” along with a sixth “Unknown” category. Both CWT and FFT spectrograms were used 

separately to train their own networks and compare potential accuracies.  
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For no feature vector layer within the CNN architecture the CWT training set was able to achieve 

a validation accuracy of 96.08% within 25 epochs while the FFT training set was only able to 

achieve an 88.11% accuracy in the same time period. This 8% difference in accuracy is not 

negligible and must be considered before further implementation is continued. This difference 

is exacerbated when the feature vector layer is added to the architecture: CWT accuracy drops 

down to 94.10% while the FFT accuracy drops to 75.28%. The FFT accuracy with feature 

extraction miscategorises 1 in 4 gestures and should be considered bordering on invalid; an 

accuracy lower than 75% would be too low to reliably use in any real-world applications. The 

test of changing the relative position of the dropout layer to after the feature vector showed an 

even further drop in accuracy for the FFT network, down to 68.3%. This result simply confirmed 

the position of the feature vector within the layer structure and as such the feature vector is 

retained after the dropout layer. This test was not repeated for the CWT network as it was not 

expected to provide any important revelations.  

 

 

Figure 5.9. Training progress of CNN for both CWT (top) and FFT (bottom) spectrogram images with no feature 

vector layer 
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The training progress in Figure 5.9 shows both datatypes learn quite rapidly with both training 

and validation accuracy reaching over 90% for CWT and 80% for FFT in only 10 epochs. The only 

significant comparison that can be made is that FFT has higher variation in the training results 

when compared to the tight smoothed training graph produced by CWT. To extract any 

meaningful interpretation between the input data it is better to observe the predictive 

behaviour on the testing data. The total 9904 data samples are subdivided into three categories: 

training, validation, and testing data. Training data makes up 70% of the total samples (9900 

images) and is the data used to produce the plots above. Validation data is 15% of the total 

samples (2122 images) and is used during the training session at the end of every epoch to 

validate the training accuracy on a separate dataset. Once training is completed the final testing 

dataset is used to confirm accuracy on previously unseen data. Testing data makes up 15% of 

the total samples (2122 images) and can have the predictions of this data presented visually as 

a confusion matrix to provide insight into each category and its predictive patterns. Results for 

the CNN structure without the feature vector layer is provided in Figure 5.10 while the CNN 

structure with the feature vector layer is provided in Figure 5.11. 

 

Figure 5.10. Comparison of test data classification accuracy between CWT spectrograms (left) and FFT spectrograms 

(right) when no feature vector layer is included within the CNN structure 
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Figure 5.11. Comparison of test data classification accuracy between CWT spectrograms (left) and FFT spectrograms 

(right) when an additional fully connected layer of 100 neurons is included within the CNN structure for feature 

vector extraction 

The confusion matrices show that CWT and FFT predictions are relatively equal in all categories 

excluding the correct labelling of unknown data. For the non-feature structure, where CWT only 

miscategorised 1 unknown data sample, FFT miscategorised 148 of the 636 samples. 129 out of 

these 148 were predicted to be either the hand open gesture or simply a resting motion; adding 

the feature vector layer intensifies these issues. This outcome implies that the FFT images that 

are used for the unknown category are similar enough to these two gestures that it is causing a 

large number of false positives. As a reminder, the unknown category contains a combination of 

the supination and pronation gestures which were originally discarded due to the EMG sensor 

placement not being configured to record the appropriate muscles. This would naturally result 

in these gestures resembling resting, as the appropriate muscles were not recorded. Hand 

opening may also be similar to resting as the final position of the hand would likely be the same 

in both cases. These confusion matrices highlight a potential failure in the training data which 

explains the drastic drop in accuracy as a by-product of a poorly constructed “unknown” 

category. By discounting the unknown category both CWT and FFT will have similar accuracy 

within the testing data. This opens up future experiments to continue using FFT spectrograms 

rather than considering them as an inferior data set, as long as the unknown data is explicitly 

considered.  
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5.3.3. Reinforcement Learning 

5.3.3.1. Early stage testing results 

Although the final RL agent and environment are detailed in the earlier sections of this chapter 

there were several previous iterations that varied in some notable form that all had results 

generated and analysed. Not all results are presented here, however some results have been 

included to present a larger picture of the design process.  

Originally the observations for the agent did not include the index vector m and only the 

observation vector x was input. The neural network that acted as the Q-value function 

approximator had a simpler architecture with only one hidden layer and no Q-value clipping, 

which allowed initial Q0 value explosions. Throughout all the hyperparameter tuning no system 

was ever able to converge to a reasonable behaviour, although each training session was rarely 

longer than 5000 episodes which is likely not enough time for proper state space exploration for 

a system with so many observations. Some experiments lasted 100 000 episodes and similarly 

poor results were produced and as such it is believed that runtime is not the only factor in the 

lack of convergence to a reasonable solution. Several iterations did converge to a clearly non-

optimal solution; the most common behaviour that the system would converge to is the 

constant repeating of the same action corresponding to observing one specific feature over and 

over. This led to the necessity of punishing repeat observation behaviour through the reward 

function.  

When the cost of reobserving a feature was set to twice the cost of a regular observation the 

system still learned to continue repeating the same observation, despite the clearly superior 

approach of observing different features every step existing and being possible. This result 

shows that the agent never found this solution through random exploration, so to discourage 

repeat observations even further the cost of reobserving was increased dramatically from -0.002 

to values ranging from -0.5 to -5 over several tests. The goal of these tests was to cause the Q-

values to decrease more severely and produce a larger loss function during training that would 

cause faster learning and discourage the illegal behaviour more severely. All tests along these 

lines returned similar training patterns with the final agent favouring the constant repeating 

observation patterns. Some agents observed several features before repeating observations, 

but all did eventually repeat their actions for the remainder of the episode. The agent with a 

smaller relative cost of -0.2 was shown to observe more unique features before collapsing into 

repeat observations when compared to the agent with the higher cost of -5. Both post-training 

agent action behaviours are displayed below: 
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Figure 5.12. Comparison of two failed agent action outputs with different reobservation costs (-0.002 vs -5, 

respectively) displaying a repeating observation behaviour. Agent #1 observed several different observations until 

eventually observing one feature exclusively. Agent #2 only ever observed one feature. 

A side-experiment was performed by providing a positive reward for unique observations, which 

should in theory encourage the agent take new actions every time step. This addition to the 

reward function does break the guaranteed negativity of the Q-value and as such the Q-clipping 

is no longer mathematically valid, but may still help in training if the positive reward path is not 

discovered during training. This positive-observation system was trained both with and without 

Q-clipping and neither result learned to observe all the features available. To test whether the 

lack of convergence was due to the excessive number of possible observation combinations the 

number of features was drastically reduced from 100 to 24, including only the features with 

positive value, and then only 10 of those features to reduce even further. Even with the reduced 

state space the agent favoured repeated actions for both clipped and unclipped Q-values, 

although the training progress did show a steady increasing reward per episode which is a trend 

not seen in the larger state space tests. This suggests that the system is capable of learning but 

a 5000 mini-training session is not enough time for full convergence. The accumulation of 

reward in this scenario comes from simple observations and does not provide any insight of the 

actual value of any of the features, not does it display an ability to correctly predict a gesture 

from this information. From this experiment it is suggested that the primary limiting factor for 

the agent learning to observe every feature is simply due to the number of observations and the 

number of potential states that can be transitions to at any time step. Longer training sessions 

are one approach to compensate for the large observation space but training times for 100000 

episodes were recorded to take over 1 week to complete which is unreasonable for the purposes 

of this chapter.  

Any attempts to shorten training time, such as implementing an early termination from any 

illegal action such as reobservation, simply force the agent to collapse to the solution of 

immediate termination which prevents the agent from exploring and learning any meaningful 
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portion of the observation space. Only a single experiment redirecting illegal actions to legal 

observations was performed as the results showed similar behaviours of repeated actions. Since 

they were being redirected to observe an appropriate feature it was clear that this design would 

not learn this behaviour to be undesirable within a reasonable timeframe. Continued 

experiments in the future may find value in continuing this approach.  

 

5.3.3.2. Final attempt results 

The final structure relied upon an increased cost for features that had been observed previously, 

along with no early termination condition for illegal actions. Using the CWT feature vectors the 

training was performed to determine which feature combination would cost the least while also 

increasing the probability of correct classification. Every illegal action taken was penalised more 

severely than an incorrect classification to discourage these actions as much as possible. From 

the baseline reward function presented in (5.4) the cost of a repeated observation was set to -

10 while the cost of a unique observation was set to -0.01.  

 

𝑟𝑡 =

{
 
 

 
 0                      𝑎 = 𝑦 | 𝑎 ∈ 𝐴𝑐
−1                   𝑎 ≠ 𝑦 | 𝑎 ∈ 𝐴𝑐
−0.01              𝑎 ∉  𝐹̅ | 𝑎 ∈ 𝐴𝑓

−10                 𝑎 ∈ 𝐹 ̅| 𝑎 ∈ 𝐴𝑓

 

(5.8) 

The cost of new observations was increased to -0.01 for this attempt, however this was a mistake 

and from the inequality (5.6) it can be calculated that for this cost to be viable the probability of 

correct classification would have to increase to 1.2, violating probability laws. It is believed that 

this issue can be ignored for the time being for several reasons. The maximum observation cost 

assumes that the best way to improve prediction chances is to observe every feature, yet this is 

antithetical to the actual goal of the project of observing as few features as possible. If the agent 

were to discover a subset of features that increased classification chances then no probability 

laws would be violated and the reward function would still converge to this solution over the 

random guessing solution. A secondary reason can be seen in the agent action output in Figure 

5.14, which shows unique observations being selected for the first 8 time steps of the simulation, 

then repeating the same action until termination. These results will be discussed in more detail 

later, however this behaviour suggests the agent was indeed learning to observe new features 

but was simply unable to complete the learning pattern within the training parameters. For this 

reason, the additional cost of the new features is unlikely to have caused any noticeable effect 

on behaviour. 
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Due to the required training time (184 hours) and resources required to repeat the test, it has 

been elected to accept the potential mistake in the reward function and fix the issue in any 

future works.  

 

Figure 5.13. Training progress of final agent attempt of feature selection via reinforcement learning. Running 

average calculated with a window of 10 episodes 

 

Figure 5.14. Action output of final agent attempt of feature selection via reinforcement learning 
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5.3.4. Real-time EMG classification 

The final stage of the EMG classification project was planned to allow a user to wear four EMG 

sensors to collect the appropriate channels, pass these time-series signals through a buffer to 

construct a uniform-size spectrogram, and utilize a CNN to classify the spectrogram image to the 

appropriate gesture. The reinforcement learning component was intended to help optimize the 

CNN architecture or act as an alternative classifier to compare accuracies. The real-time 

classification code created was based on the real-time audio classification code provided in the 

Mathworks speech recognition example  (Mathworks 2022d), but with the method of 

spectrogram conversion being replaced with the appropriate transform.  

Another difference is the number of channels of data that are required for the classification 

network. The audio network only required a single channel that was imported from the 

microphone and as such only produced one spectrogram. The EMG classification data requires 

four channels and must produce four spectrograms all displayed on the same graph. The 

combination of spectrogram data is not difficult but the production of multiple spectrograms 

will increase computation requirements and will potentially slow down real-time classification. 

Tests were performed on both CWT and FFT networks to determine how fast the spectrogram 

results could be generated and displayed graphically with only a single channel of audio data. 

Using the continuous wavelet transform showed a very slow update time, with each loop 

requiring on average 0.269 seconds for a single channel. The fast Fourier transform showed a 

much faster average update time of 0.054 seconds, much better suited for real-time 

classification. These times would naturally be increased for additional channels, as calculating 

and plotting the same data twice increased the CWT time to 0.84 seconds and the FFT time to 

0.1016 seconds. A two-channel CWT calculation requiring almost 1 second suggests that this 

transform method, or at the very least this implementation, would not be feasible for a four-

channel input real-time classifier. The FFT method seems to scale linearly and has the potential 

for real-time applications, but may cause some problems if the calculation times hinder the EMG 

data collection. All tests were performed on an HP Elitebook 840 G5 with an Intel core i7-8650U 

CPU and 16GB of memory.  

The collection of EMG signals is performed using DELSYS Trigno wireless EMG sensors which can 

be imported directly into MATLAB with a sample frequency of 2 kHz. Performance has been 

tested and confirmed working, however as the sensors are restricted to the UTS laboratory most 

tests were performed using substitute data for proof-of-concept development. Due to the 

results generated in all previous stages of this chapter project being problematic, along with lab 
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access being restricted due to COVID, the application of EMG data to the real-time classifier was 

never completed as it was not considered a high priority. Each component of EMG collection 

into MATLAB, time-series conversion to spectrogram images, and real-time image classification 

works individually, and any future work should be able to combine these techniques to create a 

real-time EMG classifier that functions as effectively as the original CNN classifier. 

Discussion

5.4.1. Comparison of CWT and FFT for rehabilitation purposes

When deciding upon which signal transform method to implement for any practical purposes 

involving robotics there are two dominant factors that must be considered: accuracy and 

response time. The results for the CNN classification showed continuous wavelet transform 

spectrograms generated a higher accuracy than the fast Fourier transform spectrograms when 

the system was required to also categorise unknown gestures that were similar to existing 

categories. This suggests that CWT is able to produce a more nuanced data representation that 

is able to be detected by the CNN. The direct trade-off of this comes in the form of the increased 

calculation time. This response time increase discussed in 5.3.4 would be extremely detrimental 

in a robotic device, especially one coupled to a human that relies on the device to move as they 

expect in a predictable manner. Any delays between user intention and robot activation run the 

risk of inhibiting motion or harming the user, or violating the guaranteed passivity of the coupled 

system (Lee and Hogan 2016b). These factors lead to an unfavourable view of CWT applications, 

yet other papers have discussed the use of CWT for image processing and specific feature 

detection and suggest fast CWT algorithms are more widely available than what many believe 

(Antoine 1998). Open source algorithms for fast CWT are available with accuracies that match 

CWT with drastically improved speeds (Arts and van den Broek 2022). This approach has 

potential to improve real-time classification and would make a valuable expansion to the project 

as a whole. This is not employed at this stage due to the lack of robotic device to appropriately 

implement within, and standard CWT and FFT functioning acceptable for the simulation stages 

of the project. 

On the opposing end, FFT results showed fast response time but lower accuracy. For the two 

networks that did not require feature extraction the difference in accuracy was 8% which in 

practice would lead to the robotic system miscategorising an action and providing incorrect 

assistance for almost 1 in 10 more gestures. As a rehabilitation device would be expected to 
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handle hundreds of inputs throughout daily living this 8% would be extremely noticeable and 

have potential negative impacts on the user. These problems would be even worse for the 

feature extraction CNN, and as such some improvement to the FFT networks must be performed 

before they become feasible for robotic implementation. With the realisation that the primary 

cause of inaccuracy comes from the unknown category (as seen in Figure 5.10) it is possible to 

remove these results to determine the accuracy of a 5-category FFT classifier. Removing the true 

class unknown files does remove the samples that cause majority of the problems, however 

there is no way of knowing which prediction class the other samples would be distributed 

towards. These samples are simply considered incorrect predictions, which does bias the 

following results in favour of CWT by assuming every gesture would not be incorrectly placed, 

however the importance of this information is minimal and does provide a close enough 

approximation for insights of FFT accuracy.  

Table 5.3 – Test Data Accuracy Dependence on “Unknown” Category 

Transform With Unknown Without Unknown 

CWT 0.9614 0.9461 

FFT 0.8836 0.9334 

 

By removing the unknown files it is revealed that FFT accuracy is on par with CWT. Combined 

with the improved response time FFT seems to be the favoured method. With each spectrogram 

being produced in approximately 0.05 seconds, using FFT for control purposes is feasible. CWT 

as it was implemented caused too much delay in signal sampling and classification to be useful 

for any real-time applications, however further research into fast CWT algorithms may be able 

to match FFT speed as well as improve accuracy. Without this additional research FFT is the 

recommended transformation algorithm to use for rehabilitation robotic purposes.  

 

5.4.2.Potential explanation of non-convergence 

At the end of all the experiments and training sessions no agent had been able to achieve the 

desired behaviour of observing the bare minimum number of features to correctly classify the 

gesture that generated said features. The ideal training progress was expected to begin with 

observing a large number of features and slowly reduce the number of observations taken to 

reduce the negative cost while not negatively impacting the probability of correct classification. 

This pattern was never recorded as the current setup allowed repeated observations which 
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caused the number of possible transitions between states to never decrease and led to a very 

difficult environment to explore. With 100 observations the number of potential non-terminal 

states to exist in at any given time is 2100, or 1.27x1030, which is a lot of space to explore. To 

determine whether an action should be repeated requires the agent to observe the entire state 

vector and not just an individual value, as these other components may change the scenario.  

For a simple analogy, a system observing two-dimensional coordinates [x y] may learn that when 

in the state [5 0] it is beneficial take the action “move forward”. However the agent must take 

into consideration both the x and y values and cannot determine behaviour based exclusively 

off the x value; existing in the state [5 5] and performing the action “move forward” may cause 

a collision and result in negative reward. For the observation equivalent of this limitation, if after 

agent has observed the first feature and exists in the state [1 0 0] if it attempts to observe feature 

1 again it will be negatively rewarded. However if the agent has observed the first and second 

observations and is in state [1 1 0] then the previous learned experience is no longer applicable, 

the appropriate neural network weights to discourage repeat actions would not have been 

updated, and the agent must explore every possible action from every possible state to achieve 

a complete understanding of the environment. Learning the relatively simple rule of “do not 

repeat observations” is surprisingly difficult through reinforcement learning. The inability to 

prevent repeat observations leads to the problem that every possible state has a potential 100 

states to transition towards which means that for any given episode there is a total of 100100 

possible pathways through state space (as opposed to 100 factorial if the action space prevented 

repeated actions). These two numbers are both astronomical (1x10200 versus 9.33x10157) and 

although the difference between these two numbers is extremely large the smaller value would 

still be infeasible to appropriately explore in any reasonable amount of time. It would also be 

unwise to stop exploration partially through a poor path that accumulates large amounts of 

negative reward as there is no way of knowing if a large reward would be experienced at the 

end to promote specific behaviours.  

The original paper by Janisch, Pevný, and Lisý (2019) performs tests on several databases with 

feature vectors up to 784 features in length (although most are below 54, three tests are 400+) 

and achieved better results, so it is confirmed possible to perform feature selection via RL. If the 

action space reduction is not believed to be the main cause of failure the other differences 

mentioned are what are labelled as “extensions” to the training method. It is described that 

before training occurs a smaller training session takes place focusing on states that have very 

few observations taken (states distributed towards the initial state). These generated states are 
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used to pre-train the Q-values that correspond to classification actions, which due to their 

terminal nature do not depend on any following states and will not need further updating. This 

technique seems to depend on the main algorithm having a high classification accuracy to begin 

with. It is not clear whether this is true for this project, although it should logically follow that 

an accuracy approximately equal to the CNN with feature extraction ought to be possible. 

Another procedure employed that may improve training efficiency is the utilisation of a high-

performance classifier (HPC) that is able to act as a supervisory body that can predict with high 

accuracy (but not necessarily 100%) the appropriate label for the current data sample for a 

relatively high cost. This can be implemented into the reinforcement learning agent fairly easily 

by adding an additional action that passes the entire data sample to an external classifier rather 

than iteratively taking individual features from the sample and passing them to the RL classifier. 

By setting the cost of this action to equal the cost of observing all remaining features the system 

can benefit from the external classifier setting a default classification rate and biasing the 

learning parameters to favour the correct labels earlier in the training process. It is explicitly 

mentioned that HPC improves performance for samples that require many features for 

classification, which necessitates the sample will have large numbers of features overall. The 

construction of a non-neural network classifier such as a support vector machine can be 

completed without much difficulty, but was not done so due to time constraints. The final 

extensions applied to the base DQN network include the double DQN structure, duelling 

architecture, and the Retrace algorithm. Double DQN simply utilises a target network that 

updates at a different rate than the primary network and reduces overestimation of action 

values (van Hasselt, Guez, and Silver 2015). Double DQN is already employed in the project and 

therefore no adjustments can be made in this particular case. Duelling architecture merely 

separates the Q-functions into a value function and an advantage function to help stabilise the 

resulting values over various states which accelerates and stabilises training. Retrace allows 

network parameters to update using episode-long experience batches rather than random 

scattered experiences. Neither duelling architecture nor Retrace are truly understood and due 

to time constraints research was not expanded into these topics. Instead the implementation of 

these domain-independent improvements are left for future works.  

The experiments that reduced the observation space also failed to achieve predicted action 

outputs, although once the observation space was cut to only 10 maximum observations it was 

possible to see unique feature observations being favoured over repeated actions. Only 

observing the training progress displayed in Figure 5.15 would not suggest a well-trained agent 
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as the running average reward has decreased significantly throughout training. This drop is 

caused by an additional component in the reward function that punishes the agent if the 

simulation reaches the maximum time steps without performing a classification action and 

instead performs an observation action at every step. This component adds a very large negative 

reward of -100 to the accumulated reward which pulls the average reward of each episode down 

while the agent explores the non-terminal states. Based on the action output seen in Figure 5.16 

further exploration is needed to avoid the repeated observations in the final 5 steps as well as 

discover the classification gestures before the final step allow the avoidance of the drastic 

penalty. What this test does show is that even for a small observation space with only 10 

measurements, a training session of 10 000 episodes is not enough to discover optimality. These 

results put into perspective the monumental task of 100 observations truly is, how a standard 

DQN network is ill-prepared for this task, and explains the necessity for the additional 

techniques mentioned above to improve training efficiency.  

 

Figure 5.15. Reduced feature agent training progress showing a deterioration of reward despite reasonable action 

output 
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Figure 5.16. Reduced feature agent action output showing a non-repeating action behaviour 

From this test it can be seen that no attempts at classification are being made as the agent 

favours repeated observations and without a reducing action space the classification cannot be 

guaranteed. As such, the default classification rate is simply equal to the inverse of the number 

of categories (in this case 20%). No improvement in gesture prediction accuracy seemed to occur 

from the additional feature observations. The method for achieving the 10-feature vector was 

simply including the last 10 positive features from the original feature vector as the new feature 

vector. By ignoring a large proportion of the originally generated features the system is 

potentially missing out on information that is paramount for accurate predictions. Because of 

this, along with the agent’s hesitancy to actually predict a label, it is impossible to know whether 

there is enough information encoded within the remaining features to reliably predict the 

gestures, and the lack of improvement in predictive accuracy cannot be attributed to a failure 

to learn by the agent and may simply be a product of poor initial feature vectors. This concern, 

when cascaded with the original lack of confidence in the feature extraction method, severely 

restricts any validating results that are achieved and makes any conclusions difficult to attribute 

to any specific cause. The original concern with the feature extraction method is that a fully 

connected neuron layer at the end of a CNN does not have any inherent meaning or relation to 

physical measurements. Without these guarantees it is difficult to intuitively claim the produced 

features should be able to classify a physical gesture. The desired feature extraction method of 

condensing each filter map (also known as a feature layer) into a scalar value to save would have 

retained a semblance to physical meaning as each filter map would have derived from the EMG 

spectrogram image. As this method was not easily implemented the fully connected layer was 

selected, with the confirmed knowledge that the combination of activation values, when run 
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through an activation function and appropriate node weighting connections, was guaranteed to 

be able to result in a classification of at least 75% accuracy. It was this certainty that persuaded 

the continuance of this approach, however it is possible that due to the nonlinear nature of the 

relationship between features and classification (which includes a ReLU activation, a dropout 

layer, and a softmax activation) that it is not possible for an RL agent to extract any meaningful 

combination of features that result in classification. This is not believed to be the case, as it 

seems that Song et al. (2018) also followed a similar technique, which quotes “the size of the 

CNN network output vector is 288x1, then as the feature vector input to the DQN network”. 

Therefore, although it is not guaranteed to be the correct feature extraction method it is 

believed that the generated feature vectors are a viable method and as such the failure to learn 

classification behaviour is unlikely to be caused exclusively by faulty input data.  

The final explanation of non-convergence is simply an incorrectly tuned hyperparameter set that 

results in poor training progress. Due to the Q-clipping for the guaranteed negative Q-values the 

target network will likely remain at 0 and as such any hyperparameters related to the target 

network are unlikely to have much effect on overall training. No experiments gave any insight 

as to whether the learning rate should be adjusted or in which way it should be adjusted. Each 

reinforcement learning problem is unique and basing a learning rate off existing papers is not a 

reliable tuning method. In spite of that, all Mathworks DQN examples use a learning rate of 

0.001 to generate successful results with a similar hyperparameter combination, and the 

experiments performed using higher learning rates simply showed a proclivity to fast 

convergence to a suboptimal solution. Tests with lower learning rates, or learning rates that 

dropped during training did not show any improvements to feature selection behaviour.  

The experience buffer size should be dependent on the environment and the maximum training 

time, as it must contain a proportion of the total training at any given point during training. With 

100 observations each episode can generate a maximum of 101 experiences to store in the 

buffer. Naturally, the buffer should contain learned experiences from early in the training 

session to understand the environment, as well as the later stages where behaviours are being 

discovered and patterns emerge. An experience buffer of 100 000 will be able to hold 1000 

episodes of experience, which if training lasts for 100 000 episodes, is only 1% of training. This 

would likely lead to catastrophic forgetting, where any patterns learned early in training would 

be forgotten and the agent begins overfitting to a behaviour it has learned but not guaranteed. 

Guidelines were set to try and keep the experience buffer large enough to contain approximately 

10% of all training. This number was chosen arbitrarily and may be adjustable based on the agent 
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exploration factor (where agents with higher exploration will have more variation in later stages 

of training and would likely benefit from a longer memory) and hardware memory limitations. 

The minibatch size will also need to scale appropriately to avoid sample biases. If the minibatch 

size is too small relative to the amount of generated experience then each training step runs the 

risk of selecting experiences from only one time frame of the simulation. A simulation with 1000 

steps would need a minibatch size large enough that the sample is likely to contain experience 

from every point in the run. This is especially important if the environment allows early 

termination (such as this one) which would bias the experiences into favouring early simulation 

times.  

The only direct statement that can be distilled from these experiments is that the maximum 

number of features has a negative impact on system learnability and a basic implementation of 

reinforcement learning is not well suited for high dimensionality. More advanced techniques 

such as the use of a secondary high-performance classifier or Retrace seem to be a necessity in 

reliably exploring the environment. Other applications of RL have shown the ability to learn 

much more complex tasks in more expansive environments, such as the OpenAI system trained 

to play the complex computer game DotA 2 using millions of frames as the observations (OpenAI 

et al. 2019). This paper mentions one of the challenges being only able to access partially 

observed states and requiring inferences based on this incomplete data. Should their techniques 

for solving this problem be implemented into the EMG feature reduction and classifier problem, 

then large amounts of features would become obsolete and predictions could be made with 

fewer EMG readings. The paper also mentions high dimensionality in observations spaces as 

being a challenge to overcome and a requirement for efficient computations arising from this. 

One explained example of training efficiency was the increase of batch size to increased learning 

speed, which does require more optimiser GPUs. They discuss the use of a second agent that is 

trained separately to compare the primary agent performance, however this second agent 

seems to be designed to account for a changing environment and neural network architecture 

which is not applicable to this project. Although not the exact same, this implementation is 

similar to the use of the HPC, and having access to a secondary prediction actor seems to be 

beneficial to training efficiency.  
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Conclusion

For traditional classifiers, the input to the system requires the designer to manually select a 

number of features to best highlight the differences between samples while reducing the 

amount of necessary data that is fed to the system. The selection of these features requires 

expertise and knowledge of the system that may not be readily available for many systems; for 

a reinforcement learning agent the selection of important observations is one of the most 

fundamental stages of development. To try and avoid this step, an RL agent was designed to 

accept a multitude of observations that were generated by a separate classifier with the 

intention of iteratively observing individual features to learn which features were most 

important for the purposes of signal classification. 

This implementation was performed with the goal of classifying hand gestures based off 

collected electromyography signals from the forearm. Feature extraction from EMG signals is an 

important and potentially difficult task due to the variation in humans causing some features to 

be highly dominant in some cases and non-existent in others. By using a convolutional neural 

network to generate an excessive number of features automatically, the likelihood of no 

features being comparable between humans decreases as the number of features increases. A

publicly available EMG dataset was manipulated to construct a new dataset of individual EMG 

signal files that corresponded to one of five hand gestures. Each of these files were then used 

to develop a feature vector that contained 100 features for every EMG signal through the use of 

a CNN. The customised CNN was able to classify spectrogram images that were produced from 

the EMG signals with an accuracy of approximately 93% when no features were extracted with 

a slight drop when features were extracted from an additional hidden layer in the neural 

network. The CNN alone proved that the produced feature vector could be converted into a 

classification probability vector using nonlinear functions, so classification via reinforcement 

learning should be mathematically possible at the very least. It was also discovered that the time 

to calculate a spectrogram using the fast Fourier transform was much shorter than the 

continuous wavelet transform and was therefore more suited for the real-time classification that 

would be required for a rehabilitation robot. 

By following a guiding paper as close as possible, the RL agent and environment was constructed 

and tested throughout a myriad of permutations. No results showed a true convergence in the 

training results and many iterations showed similar behaviours of repeatedly observing the 

same feature throughout one episode regardless of the negative reward accrued from this 

action. Observing agent output did reveal a slow learned behaviour of selecting alternate 
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features, however this behaviour was limited to the beginning of the simulation which suggests 

the agent was indeed optimising behaviour in the correct direction but due to the massive 

observation space was unable to completely explore the options and discover the preferred 

trajectory. This suggests that the agent could improve simply with additional training, however 

the current agent was trained for 100 000 episodes which took almost 8 full days of training 

using the UTS high powered computing cluster and only learned to observe 8 unique features 

out of the 100 total. As such it would be much more advantageous to optimise the training 

method and network structure, as the current structure produced many difficulties during 

development. Some recommendations of improvements are already available, such as the 

addition of a high-performance classifier to help guide the agent to correct labels and reduce 

the number of complex samples the RL agent encounters.  

Since the primary goal of this chapter was to replicate the results of another paper, the novel 

contribution of the chapter is less pronounced than the other chapters. The feature extraction 

method used in this experiment is novel, however with the negative results and an unsure 

conviction lead to hesitation in recommending similar future approaches. Using reinforcement 

learning to prune future AI classifiers is a fairly broad claim that is likely to have been attempted 

within other fields. For rehabilitation purposes this may be an unprecedented idea, as it was not 

found during the literature review. In the end, there was very little greater contribution to the 

overall knowledge base, but key factors were discovered for the purposes of this project, such 

as the need for classification systems outside of reinforcement learning if the intended goal of 

the system was real-time classification that could be embedded into a wearable orthosis.  

Overall the work completed in this chapter provided deep insight into the development of 

reinforcement learning agents, specifically discrete action space systems such as Deep Q-

Networks. The limitations of RL became clear and suggested other forms of machine learning 

for tasks such as classification. The explanation for why the system was unable to learn to classify 

data is not a simple or direct answer, with many components of the system design believed to 

play a part in the suboptimal results. Network architecture and hyperparameters were 

essentially chosen based on existing papers and examples, with small alterations to find 

improved functionality. If the initial selection was invalid then all follow-up tests were unlikely 

to succeed. The input data had no obvious physical or mathematical foundation due to the black-

box nature of neural networks which makes validation difficult to perform. Finally due to the 

observation space being so large even it becomes difficult to determine if the lack of 

convergence is derived from a poorly designed system or simply due to the probabilistic nature 
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of reinforcement learning. These three topics combined make it very challenging to identify any 

singular point of failure in the experiments. Further research can be performed with almost 

guaranteed improvements, however this chapter was originally supposed to be a small 

component of the overall project and any additional information gained from this will not greatly 

support the overarching goals. For this reason, this chapter must conclude by providing insight 

into the limitations of reinforcement learning, without offering any novel solutions on how to 

minimise these limitations.  
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Conclusion

Summary

6.1.1. Individual Experimental Work

In this thesis a new control configuration selection method was proposed to identify which 

input-output pairing required the least amount of modification to become a passive system. By 

using the concept of input feedforward passivity this ‘distance to passivity’ could be numerically 

evaluated, with the minimal value calculated through the use of convex optimisation and linear 

matrix inequalities. These same techniques were implemented to guarantee system passivity 

through the addition of a diagonal feedforward system with a specific structure that naturally 

rises from using the controller canonical representation of the original system. This form 

guarantees the feedforward system is diagonal and contains strictly proper transfer functions. 

As differences between theoretical models and real-world systems can lead to disastrous 

consequences, minimising the deviations that must be made during simulations effectively 

improves the reliability of the generated results, and allows smaller system changes to the 

physical system once information from the simulation is amalgamated and practical 

implementation begins. 

It was originally believed this newly developed method of passivation could be applied to any 

MIMO system as long as the number of inputs and number of outputs were equal. However 

during testing it was discovered that the proposed method for guaranteeing passivity was not 

applicable to all systems, and the optimisation solver could not generate feasible solutions to all 

systems during testing. This led to the expansion of the project which aimed to discover the 

required system characteristics that were necessary to utilise the optimisation passivation 

technique. After review and testing, it was discovered that the technique could guarantee 

passivity to systems that met specific criteria that can be roughly described by the diagonal 

dominance of the system matrix structure. The technique was shown to always succeed when 

the relative degree of the transfer functions in the diagonal elements of the matrix were greater 

than or equal to 1, AND the relative degree of the off-diagonal transfer functions were greater 

than the relative degree of the diagonal elements. Due to how the calculations of the matrix in 

question are performed, the matrix is guaranteed to be symmetric, and comparison of diagonal 

and off-diagonal elements can be performed across either rows or columns. These restrictions 

to which systems could be used with the proposed optimisation method were presented as a 



6.1. Summary  226 
 

 
 

lemma in the results of Chapter 3. By forcing the system into a passive state, the design of the 

controller becomes less restrictive, and a wider variety of physical options available to perform. 

As a real-world example, where a previous control system would require hard-coded limitations 

on assistive forces and velocities which may act as a boundary for performance, a passive-

guaranteed system would not require such bounds and could reach closer to an individual’s 

physical limitations as they are inherently included within the coupled system (although 

additional safety precautions would likely be included regardless).  

With the guaranteed stability of the coupled system, system redundancies that existed to 

prevent specific scenarios can be removed, as those scenarios are no longer mathematically 

achievable. This may come in the form of a simpler controller algorithm or in the form of less 

hardware built into the robotic device. Other than economic benefits, user comfort will also 

become a higher priority if safety is guaranteed through software. Some redundancies that 

restrict which physical motions are possible under the guise of safety could also be removed, 

allowing a wider range of physical assistance and generally higher rehabilitation performance by 

offering a more customised training session.  

For the reinforcement learning section of the project, it was recorded that controller tuning 

could be performed through reinforcement learning when aiming to control a 1 degree-of-

freedom robotic model resembling an ankle rehabilitation device. Although not innovative work, 

adaptive PID controllers and adaptive admittance controllers were both successfully created and 

trained to track a variety of reference signals in several different environments. The novelty of 

the experiments resided in the comparison and analysis of various controllers to determine 

which scenarios required which controller, and whether the more advanced adaptive controllers 

were always the most effective choice. Essentially, chapter 4 focused on weighing the positives 

and negatives of AI-based controller design and identifying whether it is justifiable for a simple 

ankle rehabilitation robot.  

Experimental results showed that classical PID controllers with constant gain parameters 

performed better than the RL-based adaptive controllers when the operating conditions 

remained identical throughout the tuning process and simulation; alternative forms of adaptive 

control were not tested for comparison. When operating conditions did not remain constant, 

which was simulated though a sudden drop in input torque signal to represent motor failure, 

the adaptive PID controller outperformed the classical PID controller by a wide margin. While 

the constant controller failed to converge once the motor had failed, the adaptive controller 

retained its tracking performance. Using adaptive controllers can therefore be seen as a form of 
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fault-tolerant control as it is able to reject internal system failures. External disturbance rejection 

was not tested for PID control. These results showed the benefits to RL-based tuning as the 

trained agent was able to counteract an environmental change it had never experienced during 

training. This general principle of adapting to unseen environments is paramount for a general-

use rehabilitation device, especially if operation in a non-controlled environment is expected 

and physical obstacles are likely to impede a predicted motion path.  

One notable shortcoming in these tests was the extremely simple operating environment 

simulating motion through free space and never experiencing any external resistances as would 

be expected during proper gait or activities of daily living. As such, the effects of RL-based 

adaptive control were expanded into admittance and impedance controllers, with a simulated 

environment containing physical obstacles. These obstacles were overly simple as well, but were 

able to show the effects of admittance controllers and their ability to reduce the forces that 

would be experienced by a human user and avoid physically harmful motions. While the RL-

based adaptive admittance controller did outperform the constant admittance controller, a 

basic switching regime to alternate admittance parameters based on current position seemed 

to be favourable with respect to response time in changing environments. All controllers still 

experienced overshoot in the reference tracking, which may cause physical distress to the 

participant, however this is likely due to the non-adaptive PID controller being used in these 

tests, so both controllers being adapted simultaneously may result in better operations. As this 

is very simple implementation for reinforcement learning, it is still a viable option for adaptive 

admittance control. This work is also contained in Chapter 4. 

The final set of experimental work aimed to identify the limitations of reinforcement learning 

by creating an electromyography hand gesture classifier and compare its efficacy to the well-

established forms of classification such as convolutional neural networks. The work originated 

with the goal of optimising other classifiers by automatically generating signal features and 

iteratively eliminating the least important features relative to correct classification. Once 

completed, only the features that provided the highest improvement to classification accuracy 

were deemed necessary and would remain in the classification network. By simplifying the 

classifier network, the classification speed would increase and reduce any delays between 

muscle activation and robotic assistance. This experiment essentially aimed to prune a neural 

network to be more efficient in real-time classification tasks that would be expected within 

rehabilitation. Final results of the experiments failed to successfully eliminate all redundant 

features and correctly classify the EMG data. The limitations of reinforcement learning became 
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apparent for problems with extremely large state spaces, as the agent was unable to properly 

explore enough to find an optimal solution. Additional tests were performed on the viability of 

data manipulation techniques; Fast Fourier Transform and Continuous Wavelet Transform were 

compared through CNN classifier accuracy and real-time spectrogram generation. CWT was 

shown to produce spectrograms that could be classified more accurately than the FFT 

spectrograms, however the generation of said spectrograms was drastically slower and 

restricted the feasibility of CWT as a real-time classification technique. Overall, reinforcement 

learning was shown to be ill-equipped for classification purposes when alternate methods 

function extremely effectively with much easier implementation. Further details are provided in 

Chapter 5.  

As a brief summary of the major contributions of this work, this thesis has produced: 

1) An algorithm for guaranteeing a system is passive through the use of input feedforward 

passivity and optimisation solvers 

2) A mathematical lemma dictating the conditions of a system that must be met to utilise 

the aforementioned passivation algorithm 

3) A reinforcement learning agent for a 1 degree-of-freedom ankle rehabilitation robot 

with statistical analysis to reiterate which scenarios benefit most from RL-based 

adaptive control 

4) Analysis of convolutional neural network comparisons for EMG-signal classification and 

the conclusion that these well-established technologies are better suited than 

reinforcement learning for standard classification tasks 

 

6.1.2. Experimental Works Combined 

Each chapter of experimental work was quite remote in its exploration, with little crossover 

between the information being examined. Despite this, the overall project aimed to utilise all 

collated knowledge to be simultaneously implemented into a rehabilitation robot and unite the 

experimental works together. For the stages of rehabilitation robot development the following 

stages must be performed: 

1) Determine which physical actions the rehabilitation robot should assist in performing. 

This initial decision will dictate how the EMG data is collected; placing electrodes on the 

appropriate muscle activation points will affect both EMG classification and the system’s 

ability to be passivated.  
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2) Guarantee passivity to guarantee system stability even under uncertain environments 

or systems with many interacting subsystems (loop interactions for MIMO systems). 

Guaranteeing passivity of the system guarantees a passive controller is all that is 

necessary for stability and avoids additional redundancies designed for disturbance 

rejection or fault-tolerance.  

3) Use some form of machine learning to transform EMG data into a predicted joint motion 

signal to be used as a reference signal. This reference signal will guide the robotic device 

on how it will assist with motion, so real-time conversion is required with minimal delay 

between user intention and robotic motion to increase safety and user comfort. 

4) Use reinforcement learning to utilise adaptive controllers capable of adjusting robot 

behaviour to be environment-dependent. Controller design must occur after the plant 

modelling stage. An adaptive PID controller will dictate the system’s reference tracking 

abilities in free space, allowing characteristics such as response time to be set to human-

safe levels. An adaptive admittance controller will dictate the system’s response to 

external forces such as the human force component or environmental stiffness changes.  

 

An additional chapter was originally intended to perform reinforcement learning techniques to 

validate the control configuration selection method proposed in chapter 3. This chapter would 

have tied the concepts of reinforcement learning and passivity together by displaying its ability 

to guarantee passivity in a similar way to the optimisation techniques. The use of neural 

networks (and other AI such as genetic algorithms and fuzzy logic) for input output pairings has 

been attempted to determine optimal pairings. By measuring interactions between signals, a 

neural network will be able to discover the best pairing to reduce crosstalk and achieve 

decentralised control. The purpose of creating an algorithm that could use optimisation 

toolboxes to achieve the same goals was to try and avoid the long training times associated with 

artificial intelligence techniques, instead using semi-definite programming to return a solution 

much faster. Unfortunately this experimental work was unable to be completed due to a 

combination of factors. The predominant reason can be summarised as time constraints caused 

by the unexpected results in chapter 3 requiring further analysis, and several project pivots due 

to the COVID-19 pandemic restricting laboratory access to the PaddleBot device.  
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Future Works & Project Continuation

With each chapter focusing on individual topics and majority of the experimental work being 

performed through simulations, there is still a lot of progress to be made in the pursuit of 

improving a real-world rehabilitation robot’s measurable performance. With the number of 

unique engineering fields embedded within rehabilitation robotics, the abilities and 

effectiveness of these devices is constantly improving and adapting. Changing materials, battery 

life, and sensory abilities will all need to be considered within the control system to account for 

the physical changes these developments cause. From this, it should be understood that future 

works for the control system must always adapt to new hardware technologies.

Some specific follow-up experiments are discussed below. 

6.2.1. CCS via RL

Using optimisation techniques to calculate the input-output pairings is extremely beneficial for 

its guarantee of passivity and mathematical certainty. However as the optimisation solver 

requires the problem to take the form of a convex optimisation problem it is restricted on which 

systems can be operated upon. Additionally, a mathematical model of the system must be 

available for the application to begin, which may be difficult for some advanced robotic devices 

or systems estimated through function approximators. To work around these issues it is 

recommended to conduct further research into utilising reinforcement learning for input-output 

pairing selection. Originally planned for the project, a reinforcement learning agent that is 

capable of observing system loop interactions and minimising characteristics that may lead to 

instability (such as non-passivity) has the potential to provide similar results to the proposed 

optimisation CCS method without the need for a detailed model. The lack of required model

would allow further application of passivity-based CCS methods, with the immediate trade-off 

of requiring long training sessions for each system. An RL agent may be trained to identify loop 

interactions for any system and its potential configurations, but many unique samples would be 

required for the training sessions, and some mathematical approach to numerically represent 

the necessary conditions. As such, it is likely that using the developed optimisation method may 

assist in developing an RL agent, and the RL agent may be able to validate the results of the 

optimisation method and expand on the applicable cases and real-world examples.

Before beginning the development, it is important to note that reinforcement learning is best 

suited for determining sequential actions within an unknown environment, as seen by the 
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results in Chapter 5. For the purposes of CCS and producing only a single pairing 

recommendation, RL may not be the most appropriate form of machine learning to implement. 

The use of neural networks, genetic algorithms, and fuzzy logic have been employed for solving 

the input-output pairing problem (Khaki-Sedigh and Moaveni 2009: 10). This can act as a good 

starting point for further development and comparisons of techniques. Performing these tasks 

would also help unite all experimental work done within this thesis under the banner of 

reinforcement learning based rehabilitation improvements.  

6.2.2. Apply passivity method to robot 

All experimental work for the optimisation technique was performed on externally sourced 

transfer functions that were not related to the rehabilitation robotics the technique was 

intended for. Utilising 3D robotic models such as the PaddleBot in place of the transfer function 

matrix will remove a layer of abstractness from the results produced so far.  

Once simulations using robotic models are possible the next stage will be to deploy the 

recommended control systems into functioning MIMO robotic systems such that the real-world 

effects of the passivity can be measured through physical measurements such as velocity and 

steady state error. By collecting this data it will become much easier to justify the claims of 

“improved performance” that the project aimed to achieve.  

6.2.3. Improve modelled environment for adaptive tests 

The reinforcement learning experimental work showed the benefits of adaptive controllers in 

changing environments. These environments were extremely simple and not true 

representations of a real-world environment. For the adaptive PID experiments there was no 

external environment interactions and the changing environment occurred within the robotic 

actuators (which is the environment from the perspective of the controller and RL agent). To 

better simulate real-world conditions the environmental models must be updated. This step is 

especially important for the adaptive admittance controller, as the interaction forces are 

dictated by the environment and will directly affect tracking performance. Current changing 

environments were sudden changes in human stiffness that would be unlikely for actual human 

response to stimuli. Further research into the stiffness of the human body under different 

external conditions will allow a more accurate representation of how the human and robot will 

interact in practice.  
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Comparisons between the adaptive RL-based controller and more state-of-the-art controllers 

may assist in further development. As it currently stands, the adaptive RL controllers were 

compared to their non-adaptive counterparts (adaptive PID vs classical PID, and adaptive 

admittance vs classical admittance), so the conclusion that the adaptive controller is the best 

suited controller for robotic purposes does not consider alternative controllers such as model 

predictive control, which is often used for its ability to function with unmodelled dynamics and 

disturbances. A large portion of newer control techniques are closer to machine learning in 

nature, relying on data-collection for model prediction. Comparing reinforcement learning to 

other machine learning forms is a valid future experiment that must be constantly revisited as 

new techniques are developed within the field.  

Another approach to improving and validating adaptive performance is to collect real motion 

data to use as the input reference signal for the system. Current setup uses generated signals in 

the form of sine waves, which may be too smooth for actual gait motions, and step functions, 

which is not a natural motion within daily activities. Unlikely to affect the results at a large scale, 

this small improvement to the system will help close the gap between simulation and real-world 

deployment and potentially reveal unexpected safety issues that may otherwise go overlooked.  

6.2.4. Dual-agent controller tuning 

Current RL-based adaptive control experiments focused on either the PID controller or the 

admittance controller individually, and did not try to tune the controllers simultaneously. 

Experiments were performed with an actor-critic network aiming to tune both a PD controller 

and an admittance controller simultaneously, however no positive results were ever produced 

and the agent never learned any interesting or viable reference tracking behaviours. It is possible 

that changes to the training hyperparameters or reward function could have improved the 

results, however several different versions were attempted with little success, so alternate 

approaches may be necessary. With the increase to the number of actions each step, the state-

action space becomes much larger and more difficult to comprehensively explore. To produce 

the best results each controller should be designed with the other in mind – a difficult task if 

both controllers are adaptive and changing in accordance to the environment. It has been 

reported that multi-agent reinforcement learning is more efficient at determining 

environmental dynamics when the agents work cooperatively and share knowledge. Research 

into such topics as federated reinforcement learning may help develop a new approach to tune 

both controller simultaneously and produce better results than the current adaptive admittance 
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controller tests, which relied on a constant PD controller that caused overshoot in cases that 

would have preferably been avoided.  

Experiments involving multi-agent reinforcement learning could be compared to the existing 

work, as well as additional artificial intelligence techniques for adaptive control. Only comparing 

the experimental work to basic PID controllers does not effectively highlight the values that RL-

based adaptive control brings to operation. Alternative controllers such as linear quadratic 

Gaussian control or fuzzy control should be tested and compared to both single- and multi-agent 

reinforcement learning techniques to show the advantages and disadvantages of some of the 

more modern control techniques.  

6.2.5. Multi-agent EMG classification & extensions 

For similar reasons discussed above, multi-agent reinforcement learning may be able to alleviate 

several of the problems that were present within the RL-based EMG classification experiment. 

Additional agents will allow state space exploration to be performed more efficiently at the cost 

of computing power. Although the conclusion of the experiment was that reinforcement 

learning was ill-suited for classification tasks, if the experiment were to be continued then the 

additional techniques employed by Janisch, Pevný, and Lisý (2019) are recommended 

extensions. Pre-training Q-values that do not depend on future states can effectively be set 

before training using supervised learning techniques to reduce the state space requiring first-

hand experiences. Including a high-performance classifier (typically non-neural network based) 

as one possible action will also improve training speed, sample efficiency, and bias the training 

towards the high-performance classifier results.  

As the long-term plan for integrating the EMG classification and previous experimental work 

together was to use the classifications as the reference signals within the reference tracking 

control loop, the EMG-to-motion decoder must be adjusted to output numerical data rather 

than categorical data. This act will require a narrower classification, as the number of categories 

will invariably be less than the number of angular displacement brackets necessary for the 

specified precision of rehabilitation. This will be difficult as the muscle activations to swing a 

limb 20° will be similar to the activation to swing the same limb 50°. Changes may occur 

depending on specific thresholds crossed or simply due to duration of muscle activation, so 

feature extraction from the EMG signals will be an important point of analysis. The test to 

automate feature extraction and use RL to iteratively eliminate all but the most fundamental 

features may become crucial to achieve this step of the project, so the aforementioned 

extensions to RL classification may become necessary.  
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