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Abstract

UNIVERSITY OF TECHNOLOGY SYDNEY

Faculty of Engineering and Information Technology

Robotics Institute

Doctor of Philosophy

by Shuai Zhang

Colonoscopy is considered the most effective method for detecting and removing precan-

cerous polyps in the human colon. This procedure uses an endoscope to examine the

internal surface of the entire colon. However, during a standard colonoscopy, it can be

challenging for the endoscopist to ensure that the entire colon internal surface is inspected

from the colon screening video, which can result in missed polyps and adenomas in unin-

spected regions. If a 3D map of the colon internal surface with detailed textures can be

reconstructed during the colonoscopy procedure, the following two main potential benefits

can be achieved: i) uninspected regions can be shown on this map and the endoscopist

can navigate the endoscope to these missing regions to ensure more colon surfaces are

inspected; ii) the detailed textures on the reconstructed map can help the endoscopist to

inspect abnormalities offline.

In this dissertation, we present three works for reconstructing 3D colon maps from colono-

scopic videos. Meanwhile, we introduce a colonoscopy simulator developed in Unity that

can simulate the procedures of colonoscopy, different levels of colonic surface deformation,

and generate synthetic colonoscopy datasets in different scenarios for the development and

validation of colon reconstruction algorithms. Furthermore, to foster research in this field,

the colonoscopy simulator and source code are made publicly available 1..

1https://drive.google.com/drive/folders/1cypaTsHpi7TRVKI5cYvzk1UfpmdcOEts?usp=sharing

http://www.uts.edu.au
http://www.eng.uts.edu.au
http://cas.uts.edu.au/
mailto:Shuai.Zhang@student.uts.edu.au
https://drive.google.com/drive/folders/1cypaTsHpi7TRVKI5cYvzk1UfpmdcOEts?usp=sharing
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The first work presents a framework for 3D reconstruction of the colonic surface using

stereo colonoscopic images. The input comprises a sequence of stereo colonoscopic im-

ages and a corresponding colon mesh model, which is segmented from pre-operative CT

scans. The final output is the reconstructed and texturized 3D colon maps. The primary

contribution of this work is fourfold: (1) Developing a visual odometry for endoscopic

camera pose initialization; (2) Using the pre-operative CT-segmented colon model as a

global colon map reference to increase the stability and accuracy of the endoscopic camera

pose estimation; (3) Developing a joint photometric and geometric constrained scan-to-

model registration algorithm for matching 3D scans (point cloud with RGB information

and reconstructed from stereo images) to the pre-operative CT-segmented colon model,

which can address the inconsistency of the texture matching problem; (4) Developing a

barycentric-based texture rendering module for mapping textures from colonoscopic im-

ages to the reconstructed colonic surface. Simulation experimental results demonstrate

the feasibility and good performance of the proposed 3D colonic surface reconstruction

method in terms of accuracy and robustness.

In a clinical setting, the majority of colonoscopes used for colonoscopy procedures are

equipped with a monocular camera. Meanwhile, the 3D reconstruction of colonic surface

faces the problem of colon deformation. To improve the practicability of the first pro-

posed framework, in the second work, we present a framework that can recover the 3D

shape of deformable colon structures with textures from monocular colonoscopic images

and a corresponding pre-operative CT-segmented colon mesh model. The novelty of the

second work is threefold: (1) Using deep learning techniques to estimate dense depth for

monocular colonoscopic images; (2) Developing a non-rigid registration method to address

the problem of colon deformation; and (3) Developing the entire framework for the 3D re-

construction of deformable colonic surfaces with high accuracy. Validation by simulation

and in-vivo experiments is conducted, and the results demonstrate the practicality of the

non-rigid 3D colon reconstruction framework.

The third work is significantly differs from the previous two works, which require pair-wise

photometric correspondences and dense geometric correspondences, posing a great chal-

lenge for low-textured colonoscopic images. In the third work, we formulate the textured

colon reconstruction problem as a bundle adjustment (BA) problem where all the camera
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poses and the intensities of mesh model vertices are jointly optimized by maximizing the

photometric consistency between the pre-operative CT-segmented colon mesh model and

multiple views of colonoscopic images. Then, the optimized camera poses are used to

render the colon map with textures from colonoscopic images. The novelty of this work is

threefold: (1) Formulating simultaneous camera pose estimation as a direct BA problem,

where the pre-operative model intensities and all camera poses are jointly optimized, which

differs from traditional BA; (2) Directly using intensity information avoids the feature ex-

traction and matching between 2D images in traditional BA, making the proposed method

applicable to images lacking salient features, such as colonoscopic images; (3) We prove

that when solving the proposed BA problem using the Gauss-Newton (GN) algorithm,

the pose estimation result in each iteration of GN is independent of the model intensities

in the previous iteration step, thus we propose the camera-only BA algorithm which is

equivalent to the proposed direct BA algorithm but with less computational cost. The

practicality and accuracy of the proposed direct camera-only BA method are validated

using simulation, phantom, and in-vivo datasets.

Overall, the three frameworks proposed in this thesis represent a notable advancement in

the field of 3D colonic surface reconstruction, using colonoscopic images and a pre-operative

CT-segmented colon mesh model. These frameworks undergo validation through rigorous

testing with simulation, phantom, and in-vivo datasets, demonstrating their feasibility, ac-

curacy, and practicality. The clinical applications of these frameworks have the potential

to enhance the accuracy and efficiency of colonic surface 3D reconstruction, thereby ben-

efiting diagnosis, treatment planning, and surgical navigation in colonoscopy procedures.



Acknowledgements

First, I would like to express my deep appreciation to my supervisors, Dr. Liang Zhao

and Prof. Shoudong Huang. Their mentorship has been incredibly valuable to me, not

only because of their expert guidance in my research, but also because of their personal

support. They have taught me so much, not just in terms of the technical knowledge

related to my research, but also in fostering an unwavering passion for academia. Without

their patience, vast knowledge, and continuous encouragement, I would not have been able

to complete my Ph.D. I feel fortunate to have had the opportunity to work with them, and

I hope that we can continue to collaborate in the future. Working alongside them has been

an incredibly positive and rewarding experience. I am also grateful to my co-supervisor

A/Prof. Hao Qi for giving me the opportunity to work on the colonoscopic project and

leading me into the robotics research field.

Besides my supervisors, I would like to thank Dr. Hua Wang, Qi Luo and Kai Pan. It is a

pleasure to work closely with them in achieving good publications. I am looking forward

to future collaborations.

I would like to thank Dr. Raphael Guenot-Falque, A/Prof. Teresa Vidal Calleja, Dr. Alen

Alempijevic, A/Prof. JaimeValls Miro, Prof. Sarath Kodagoda. Thanks a lot for their

valuable suggestions on my research.

Many thanks to all my colleagues and friends at the Robotics Institute in University of

Technology Sydney. My special thanks go to Yanhao Zhang, Jingwei Song, Yongbo Chen

for the numerous support and encouragement, especial at the early stage of my Ph.D.

study. I thank my friends Zhehua Mao, Jiaheng Zhao, Kai Pan, Tiancheng Li, Mengya

Xu, Shengduo Chen and many other colleagues. Additionally, many thanks to Miao Zhang,

Taoping Liu, Huan Yu, Yu He and all my other friends in Sydney. I really enjoy the time

with you in Sydney.

Lastly, I want to express my gratitude to my family, particularly to my wife, AXuan Bi. She

has been with me every step of the way during my PhD journey, and her constant support

and motivation have been instrumental in keeping me motivated and moving forward. I

also would like to thank my son, who joined us when I was writing my dissertation, for

giving me unlimited happiness and pleasure. To my parents, I am forever grateful for your

caring, patient and support, I am happy to make you proud of your son today.

v



Contents

Declaration of Authorship i

Abstract ii

Acknowledgements v

List of Figures ix

List of Tables xii

Nomenclature xv

1 Introduction 1

1.1 Missed Abnormalities in Colonoscopy . . . . . . . . . . . . . . . . . . . . . 2

1.2 3D Reconstruction for Colonoscopy . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Challenges of Textured 3D Colon Reconstruction . . . . . . . . . . . . . . . 4

1.4 Brief Outline of the Developed Colonoscopy Simulator and Proposed Tex-
tured Colon Reconstruction Methods . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 Colonoscopy Simulator Development . . . . . . . . . . . . . . . . . . 6

1.4.2 A Template-based 3D Reconstruction of Colon Structures and Tex-
tures from Stereo Colonoscopic Images . . . . . . . . . . . . . . . . . 6

1.4.3 3D Reconstruction of Deformable Colon Structures based on Preop-
erative Model and Deep Neural Network . . . . . . . . . . . . . . . . 7

1.4.4 Direct Camera-Only Bundle Adjustment for 3D Textured Colon Sur-
face Reconstruction Based on Pre-operative Model . . . . . . . . . . 8

1.5 Thesis and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Overview of Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Background and Related Works 12

2.1 3D Rigid Body Transformations . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Rotation Matrix and the Special Orthogonal Rotation Group SO(3) 12

2.1.2 The Lie Algebra so(3) Corresponding to the Special Orthogonal Ro-
tation Group SO(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

vi



Contents vii

2.1.3 The Small Disturbance Model of Lie Algebra Derivation . . . . . . . 14

2.1.4 The Geometry of Camera Perspective Projection . . . . . . . . . . . 15

2.2 3D Non-rigid Body Transformations . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Embedded Deformation Graph . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 Regularized Kelvinlet Functions . . . . . . . . . . . . . . . . . . . . 18

2.2.4 Thin Plate Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Colonoscopy Reconstruction Datasets . . . . . . . . . . . . . . . . . . . . . 19

2.4 Reconstruction of Colonic Surface Maps . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Shape from Shading . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.2 Structure from Motion . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.3 Combination of Shape from Shading and Structure from Motion . . 23

2.4.4 Approaches with Restrictive Assumptions . . . . . . . . . . . . . . . 23

2.4.5 Deep Learning-based Depth Prediction . . . . . . . . . . . . . . . . . 24

2.4.6 Stereo Shape Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.7 Visual SLAM Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.8 Combination of Deep Neural Network and Visual SLAM Algorithms 26

2.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Colonoscopy Simulator Development 29

3.1 Colon Segmentation and Mesh Optimization . . . . . . . . . . . . . . . . . . 32

3.2 Mesh Texture and Colon Surface Material Generation . . . . . . . . . . . . 33

3.3 3D visualization and Interaction with Unity . . . . . . . . . . . . . . . . . . 36

3.4 Virtual Camera Design and Configuration . . . . . . . . . . . . . . . . . . . 37

3.5 Colon Deformation Simulation and Post Processing Effects . . . . . . . . . 38

3.6 Obtanning Synthetic Datasets from the Simulator . . . . . . . . . . . . . . 39

3.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 A Model-based 3D Reconstruction of Colon Structures and Textures
from Stereo Colonoscopic Images 46

4.1 Overview of the Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Technical Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1 3D Scan Reconstruction from Stereo Images . . . . . . . . . . . . . . 48

4.2.2 Sparse Key Correspondences and Camera Pose Initialization . . . . 50

4.2.3 Scan to Colon Model Registration . . . . . . . . . . . . . . . . . . . 53

4.2.4 Optimization Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.5 Texture Mapping using Barycentric Coordinates . . . . . . . . . . . 57

4.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.1 Evaluation of RGB-D and Stereo SLAM Systems on Colonoscopic
Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.2 Colon 3D reconstruction on Simulator-planned Camera Flight Paths 65

4.3.3 Colon 3D Reconstruction on Manually Flown Paths . . . . . . . . . 69

4.3.4 Colon 3D reconstruction on fully inspected colon . . . . . . . . . . . 70

4.3.5 In-Vivo Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



Contents viii

4.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 3D Reconstruction of Deformable Colon Structures based on Preopera-
tive Model and Deep Neural Network 78

5.1 Framework Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Technical Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.1 Generating Ground Truth Dataset . . . . . . . . . . . . . . . . . . . 80

5.2.2 Dense 3D Scan Reconstruction using DNN . . . . . . . . . . . . . . 80

5.2.3 Sparse Key Correspondences and VO Based Camera Pose Initialization 84

5.2.4 Non-rigid Registration using ED graph . . . . . . . . . . . . . . . . . 85

5.2.5 Optimization Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.1 Validation using Simulation Datasets . . . . . . . . . . . . . . . . . . 89

5.3.2 Comparison Between Our approach and RNNSLAM on Simulation
Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3.3 Validation using In-vivo Datasets and Compared to RNNSLAM . . 91

5.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Direct Camera-Only Bundle Adjustment for 3D Textured Colon Surface
Reconstruction Based on Pre-operative Model 95

6.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.1.1 Problem statement and Mathematical Formulation . . . . . . . . . . 96

6.1.2 Determining Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2 Camera-Only BA Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2.1 Solving BA using Iterative GN Method . . . . . . . . . . . . . . . . 99

6.2.2 BA Sparsity and Schur Trick . . . . . . . . . . . . . . . . . . . . . . 100

6.2.3 Pose Only Optimization without Intensity . . . . . . . . . . . . . . . 102

6.2.4 Pre-computaion of Gridded Intensity and Gradient Field . . . . . . . 103

6.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3.1 Proposed Theorem Validation . . . . . . . . . . . . . . . . . . . . . . 104

6.3.2 Simulation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3.3 Phantom Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3.4 In-vivo Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.4 Chaper Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7 Conclusion and Future Work 112

7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Appendices 116

Bibliography 116



List of Figures

1.1 Colonoscopy Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 3D Reconstruction for Colonoscopy from Colonoscopic Images. . . . . . . . 3

3.1 The Snapshot of the Developed Colonoscopy Simulator. . . . . . . . . . . . 30

3.2 Schematic Diagram of the Developed Colonoscopy Simulator Framework. . 31

3.3 Errors Deletion from the CT-segmented Colon Mesh. . . . . . . . . . . . . . 32

3.4 Colon Mesh Errors Fixing and Further Polishment. . . . . . . . . . . . . . . 33

3.5 Colon Mesh Down-sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Cutting the Mesh Into Several Parts for Better Performance in Unity. . . . 34

3.7 UV Mesh Creation for the Colon Mesh Model. . . . . . . . . . . . . . . . . 34

3.8 Baked Ambient Occlusion Into Vertex Colors. . . . . . . . . . . . . . . . . . 35

3.9 Colon Model Shader and Material. . . . . . . . . . . . . . . . . . . . . . . . 35

3.10 Vessels Texture Map Creation . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.11 The Snapshot of the Developed Colonoscopy Simulator Working in Stereo
Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.12 A Default Camera Flying Path . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.13 Visual Comparison between Simulated and Real Colonoscopic Images . . . 40

3.14 Launch the Simulator and Control the Virtual Camera . . . . . . . . . . . . 40

3.15 Examples of Colonoscopic Images Obtained from the Simulator . . . . . . . 43

4.1 The Framework of Reconstructing and Texturing 3D Colon Structures From
Stereo Colonoscopic Videos. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 3D Scan Reconstruction from Disparity Map Through SGM. . . . . . . . . 48

4.3 Examples of reconstructed scans and ground truth. . . . . . . . . . . . . . . 49

4.4 VO: Sparse Key Correspondences and Camera Pose Initialization. . . . . . 50

4.5 2D SIFT Matches Between Consecutive Colonoscopic Images. . . . . . . . . 51

4.6 2D SIFT Matches Between Consecutive Real Colonoscopic Images. . . . . . 52

4.7 Barycentric Coordinates Based Texture Mapping. . . . . . . . . . . . . . . . 58

4.8 Texturized Rectum Colon using Two Different Texture Rendering Approaches. 59

4.9 Trajectories Estimated From SLAM Systems on Case 8 With Normal Cam-
era Motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.10 Maps Estimated From SLAM Systems on Case 8 with Normal Camera Motion. 61

4.11 Comparison of the Ground Truth Trajectory and Estimated Trajectories on
Case 0 with Very Slow Camera Motion. . . . . . . . . . . . . . . . . . . . . 63

4.12 Reconstructed Maps on Case 0 with Very Slow Camera Motion. . . . . . . . 64

ix



List of Figures x

4.13 Estimated Trajectory and Reconstructed Map on Case 0 with Very Slow
Camera Motion using the Proposed Framework. . . . . . . . . . . . . . . . . 65

4.14 Flying Trajectory and Reconstructed 3D Map on The Simulator-planned
Cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.15 3D Reconstruction Errors on the Simulator-planned Datasets Case 1. . . . . 67

4.16 3D Reconstruction Results on the Simulator-planned Case 1 to Case 6. . . . 67

4.17 Examples of Texture Region Comparison. . . . . . . . . . . . . . . . . . . . 68

4.18 Deficient Coverage Displaying on Case 1. . . . . . . . . . . . . . . . . . . . 68

4.19 3D Reconstruction Results on Manually Flown Case 7, 8 and 9. . . . . . . . 69

4.20 Deficient Coverage Displaying on Case 7, Case 8 and Case 9. . . . . . . . . 70

4.21 Designed Camera Flight Trajectories to Fully Inspect the Colon. . . . . . . 72

4.22 3D Reconstruction Results on the Fully Inspected Colon. . . . . . . . . . . 73

4.23 Mean Reconstruction Errors of Case 7 to Case 15. . . . . . . . . . . . . . . 74

4.24 Colon Segment Models Used in the In-vivo Experiments. . . . . . . . . . . . 74

4.25 3D Reconstruction of a Real Colon Chunk. . . . . . . . . . . . . . . . . . . 74

5.1 The Framework of Reconstructing Deformable 3D Colon Surface with De-
tailed Textures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Overview of Network Architecture of DenseDepth. . . . . . . . . . . . . . . 81

5.3 Domain Translation Transforms Simulated Images Into Real-like Represen-
tations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 Simulated and Real Colonoscopic Images with Predicted Depths. . . . . . . 83

5.5 Mean Absolute Errors Comparison with RNN-DP. . . . . . . . . . . . . . . 83

5.6 Reconstructed Scan Comparison With RNN-DP. . . . . . . . . . . . . . . . 84

5.7 Pipeline for Initializing Scan and Extracting Sparse Key Correspondences. . 85

5.8 Reconstructed Colon Maps using Our approach On Simulation Datasets. . . 90

5.9 Reconstructed Colon Maps using RNNSLAM on Smulation Datasets. . . . . 92

5.10 The Reconstruction of Colon Chunks using Our Approach and RNNSLAM. 93

6.1 Overview of the Proposed Approach. . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Visibility Determining Methods using Barycentric Ray-triangle Intersection
Technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.3 Direct BA with Random Colors of Vertices for Validation of Pose Estimation
Independent of the Intensities of Vertices. . . . . . . . . . . . . . . . . . . . 105

6.4 Reconstructed Colon Maps on the Three Simulated Datasets using the Pro-
posed Method, RNNSLAM, DSO and COLMAP. . . . . . . . . . . . . . . . 106

6.5 The Comparison of Ground Truth and Estimated Trajectories on Simulated
Datasets using the Proposed Method, DSO and COLMAP. . . . . . . . . . 107

6.6 Reconstructed Colon Maps on the Phantom Datasets using the Proposed
Method, RNNSLAM, DSO and COLMAP, respectively. . . . . . . . . . . . 108

6.7 Reconstructed Colon Maps on the In-vivo Datasets using DSO and COLMAP,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.8 Reconstructed Colon Maps on the First In-vivo Dataset using the Proposed
Method and RNNSLAM, respectively. . . . . . . . . . . . . . . . . . . . . . 110



List of Figures xi

6.9 Reconstructed Colon Maps on the Second In-vivo Dataset using the Pro-
posed Method and RNNSLAM, respectively. . . . . . . . . . . . . . . . . . . 110



List of Tables

2.1 Comparison of Colonoscopy Reconstruction Datasets . . . . . . . . . . . . . 20

4.1 A Brief Summary of Data for Evaluating the Proposed Framework . . . . . 60

6.1 Pose Evaluation Errors (mm) on the Simulated Colonoscopic Sequences. . . 107

xii



Acronyms & Abbreviations

CT Computed Tomography

MRI Magnetic Resonance Imaging

SLAM Simultaneous Localisation and Mapping

SfS Shape from Shading

SfM Shape from Motion

BA Bundle Adjustment

SGM Semi-Global Matching

RANSAC Random Sample Consensus

P3P Perspective-Three-Point

ED Embedded Deformation

GN Gauss-Newton

CNN Convolutional Neural Network

DNN Deep Neural Network

GAN General Adversarial Network

SSIM Structural Similarity

ICP Iterative Closest Point

GPU Graphics Processing Unit

xiii



Acronyms & Abbreviations xiv

SIFT Scale-invariant Feature Transform

VO Visual Odometry

UI User Interface

FSM Finite State Machine

FOV Field of View



Nomenclature

General Notations

R
n The n-dimensional Euclidean space

SO(3) The special orthogonal group

so(3) The Lie algebra corresponding correponding to SO(3)

⇡(·) The camera projection function

EG The geometric term to solve scan to model rigid registration

EF The photometric term to solve scan to model rigid registration

In 2 R
n⇥n The identity matrix

k · k Euclidean norm of a vector

gj 2 R
3 The position of ED node j

Aj 2 R
3⇥3 The affine matrix of ED node j

tj 2 R
3 The translation of ED node j

P 2 R
3 The position of a 3D Point

�(·) The deformation function of ED graph

wj(v) The weight quantifying the influence of node j to a point v

N(j) The set of all neighboring nodes to ED node j

Erot The rotation term to solve ED graph

Ereg The regularisation term to solve ED graph

Econ The constraint term to solve ED graph

Egeo The geometric term to solve scan to model nonrigid registration

Epho The photometric term to solve scan to model nonrigid registration

Er The rigid rotation term measured by the variations of the rigid ro-

tation R

xv



Nomenclature xvi

Et The rigid translation term measured by the variations of the rigid

translation T

vi The 3D position of vertex i from a polygonal mesh

evi The estimated new position of a vertex

n(·) 3D normal vector of a point.



Chapter 1

Introduction

Colorectal cancer is the second most commonly occurring cancer in women and the third

most commonly occurring cancer in men all over the world. Colonoscopy is considered

as the gold-standard method to detect changes and remove precancerous polyps in the

large intestine (colon). During a standard colonoscopy procedure (Fig .1.1), a long, thin

and flexible tube called colonoscope is inserted into the rectum, and a tiny video camera

at the tip of the tube allows the endoscopist to view the inside of the entire colon and

capture images inside. If suspected colorectal cancer lesions such as polyps are found, a

snare device can be placed around a polyp for removal.

However, colonoscopy is not perfect, the flexures and colonic folds where polyps and ade-

nomas hidden are not fully visualized during a standard forward-viewing colonoscopy. A

good solution is to reconstruct the colonoscopic 2D images into a dense 3D textured colon

map with displaying of unvisualized regions. Meanwhile, the reconstructed map can help

the endoscopist to navigate the endoscope to cover the unseen surface and textures on

the reconstructed map can further help the endoscopist to identify polyps and adenomas.

Thus, the research in this thesis focuses on reconstructing a 3D map of the colon internal

surface with detailed textures using colonoscopic videos of colonoscopy procedures.

1
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Figure 1.1: An Example of the Colonoscope and Illustration of Standard
Colonoscopy. The left figure shows one Olympus colonoscope and the right figure
shows the procedue of a standard optical colonoscopy [1]. During the procedure, the
flexible colonoscope is inserted through the patient’s rectum, and it is then carefully
advanced through the entire length of the colon. The colonoscope is equipped with a
camera at its tip, which allows the healthcare provider to view the colon’s lining on a
monitor in real-time.

1.1 Missed Abnormalities in Colonoscopy

Recent studies report that around 20% of the abnormalities (polyps, abnormal lesions and

cancer) are missed [2, 3] and approximately 60% of colorectal cancer cases detected after

optical colonoscopy are closely associated with missed polyps and lesions [4]. There are

two main reasons for missed abnormalities: i) the areas where abnormalities reside are

never detected by the colonoscopy; ii) these areas are inspected but the abnormalities are

not recognized.

The human colon has long and narrow tubular structure with many colon folds and a lot of

turns, which makes it difficult to observe the back side of colon folds during a colonoscopy

screening. Thus, non-visualization results from the lack of getting around a curvature of

the endoscope to the full circumference of parts of the colon [5] and the occlusion from

the structural complexity of colon [6]. Non-recognition is due to the difficulty to detect

abnormalities from video alone.

Although virtual colonoscopy is a non-invasive, radiographic method of visualizing the

colon by flying through the segmented colon model, it has difficulty in detecting 5mm or
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less size lesions and flat lesions and meanwhile the patient will be exposed to a certain

dose of radiation [7]. Furthermore, sometimes the standard optical colonoscopy will be

ultimately needed to detect very small and flat colon lesions and remove polyps or any

abnormalities identified from virtual colonoscopy.

1.2 3D Reconstruction for Colonoscopy

The conventional practice of colonoscopy involves the deployment of colonoscopes equipped

with monocular miniature fish-eye cameras to capture images of colonic surfaces. However,

due to the absence of direct depth information, endoscopists must rely on indirect cues,

such as shading and motion parallax, to extrapolate the 3D configuration of the colon

under examination. This approach demands significant training to become proficient and

may contribute to clinician fatigue, reduced efficiency, and diminished accuracy. As a

consequence, scholars have pursued the development of various 3D imaging technologies

capable of recovering colon structures to enhance sensitivity, lesion resection, training, and

automated lesion detection.

Figure 1.2: 3D Reconstruction for Colonoscopy. The left shows colonoscopic
images, the middle shows reconstructed the 3D colon map and the right shows the
uninspected regions (in green color) on the colon map.

Normally, to reconstruct a 3D colon map from a sequence of 2D colonoscopic images, the

sparse or dense 3D scans (point clouds with RGB information) should be obtained, and the

relative frame poses would be optimized from initial values and used to register the scans

to form a relatively large 3D scan in an incrementally or globally way. To achieve this goal,
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we have developed novel frameworks to reconstruct the 3D colon map from colonoscopic

images and show unsurveyed regions on the reconstructed map. Fig 1.2 illustrates the

research problem and our research aims.

1.3 Challenges of Textured 3D Colon Reconstruction

Reconstructing 3D dense colon maps from a sequence of colonic images has to deal with

the following technical challenges:

• Special geometric structure. The human colon has long and narrow tubular structure

with many colon folds and a lot of turns, which make it impossible to have large loop

closures and difficult to observe the back side of colon folds during a colonoscopy

screening. This is the main reason for deficient coverage in a normal colonoscopy;

• Camera motion estimation. During a standard colonoscopy, the tiny camera attached

to the end of a colonsocope moves fast with significant view changes, which results

in less overlaps between consecutive frames. Furthermore, the tubular environment

of colon makes it impossible to have large loop closures, and this causes large drift

in the camera motion estimation. How to improve the accuracy and robustness of

camera motion estimation becomes critical;

• Reconstruction with detailed textures. Texture information on the reconstructed

colon map is critical for the endoscopist to recognize polyps and adenomas. Accurate

texture matching requires high accurate camera pose estimation, high accurate depth

estimation and high accurate scan registration which is very difficult to achieve using

information from images only;

• Depth estimation. Depth information is critical to reconstruct the 3D colon map,

however it is difficult to attach a depth sensor to an endoscope. In addition, too

close the distance between the colonoscope and the colon surface, complexities in

tissue textures and less inter-frames overlapping, all make it difficult to predict the

depth information using traditional computer vision techniques;
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• Colon deformation. Practically the colon is deformable and does not hold a constant

shape over long time periods. The deformation is caused by both physiological

motion (peristaltic motion) and physical contact between the flexible colonoscope

and the tissues. The shape of the shaft (body) of the colonoscope will deform the

topological shape of the human colon and the bending of the colonoscope tip (distal

end) will cause local deformation of its surrounding colonic surface. All kinds of

deformations make the camera motion estimation and colon shape reconstruction

challenging;

• Colonoscopy datasets with ground truth. The colonoscopic images with ground truth

of depths and camera poses are critical to develop and validate the effectiveness of

colon reconstruction algorithms. However, this is impractical to obtain in standard

colonoscopy procedures.

1.4 Brief Outline of the Developed Colonoscopy Simulator

and Proposed Textured Colon Reconstruction Methods

With all the aforementioned challenges in mind, in this dissertation we developed one

colonoscopy simulator and proposed three frameworks for 3D textured colon map recon-

struction from endoscopic videos based on a pre-operative model.

Due to the limited overlaps between consecutive frames and the nonexistence of large loop

closures during a normal screening colonoscopy, the state-of-the-art simultaneous localiza-

tion and mapping (SLAM) algorithms cannot be directly applied to the 3D reconstruction

of colon. Thus, in our proposed three frameworks, the colon mesh model segmented

from computed tomography (CT) scans is used together with the colonoscopic images to

achieve the colon 3D reconstruction with high accuracy. The pre-operative colon mesh

model is mainly used to reduce the camera pose estimation drift and improve the colon

map reconstruction accuracy with the consistency of textures matching. We applied the

state-of-the-art SLAM-based algorithms to reconstruct colon map without using a pre-

operative model, the reconstructed map suffers from large drift and the textures on it are

mismatched between consecutive scans, as seen in Section 4.3 of Chapter 4. One case of
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the advantage is that our proposed three frameworks have the potential to provide similar

functions of a CT without exposing the patient to radiation. This is advantageous because

virtual colonoscopy, a non-invasive radiographic method for visualizing the colon, has dif-

ficulty detecting small lesions and flat lesions and exposes the patient to radiation. With

the proposed methods, the reconstructed colon map can display not only the structures of

the patient’s colon, such as polyps, but also texture information such as lesion regions.

1.4.1 Colonoscopy Simulator Development

To develop algorithms for recovering the 3D structures of the human colon in colonoscopy

procedures or to train depth prediction networks for depth estimation of colonoscopic

images, both synthetic and real clinical data are crucial. However, due to reasons of patient

privacy, human and animal rights, guarantee of operation safety and conflicts of interest.

There are hardly any public dataset with complete or segmental colonoscopic images with

or without corresponding ground truth depth and camera poses. Therefore, we developed a

realistic simulator to simulate colonoscopy procedures and generate complete colonoscopic

images with ground truth dense depths and camera poses.

1.4.2 A Template-based 3D Reconstruction of Colon Structures and

Textures from Stereo Colonoscopic Images

In this work, we aim to develop a pre-operative colon CT model based SLAM framework

fusing stereo colonoscopic RGB images to recover a complete 3D map of the colon with

detailed textures. Firstly, the corresponding depth of a monocular RGB frame is estimated

from stereo matching on the pair of stereo images. Secondly, Scale-invariant Feature

Transform (SIFT) features are used for matching between consecutive frames and then

are lifted into 3D space for establishing sparse key correspondences between scans and

the pre-operative colon model. Thirdly, Iterative-closest Points (ICP) algorithm is used

for matching scans and the colon model for building dense correspondences. Fourth,

based on the two sets of correspondences, the proposed joint photometric and geometric

optimization pipeline of the framework is used to optimize the camera poses to address

the inconsistency of texture matching problem. Last, using the estimated camera poses,
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the point correspondences between the reconstructed scans and the colon mesh model

are extracted and used to map textures from the corresponding monocular image to the

registered areas on the colon model.

The proposed framework mainly includes 3D scan reconstruction from stereo images, an

visual odometry (VO)-based camera pose initialization module, a joint geometric and pho-

tometric registration scheme for matching textured scans to the segmented colon model,

and a barycentric-based texture rendering module for mapping textures from colonoscopic

images onto the reconstructed colonic surface. The developed realistic simulator is used to

simulate the procedures of colonoscopy and to provide experimental datasets in different

scenarios. Experimental results demonstrate the good performance of the proposed 3D

colonic surface reconstruction method in terms of accuracy and robustness.

1.4.3 3D Reconstruction of Deformable Colon Structures based on Pre-

operative Model and Deep Neural Network

Due to the deformation of the colon in standard forward-viewing colonoscopies and most

existing colonoscopes still use single-lens cameras, the proposed framework in Section

1.4.2 works poorly for the 3D reconstruction of deformable colon surfaces and is prone to

severe drift. To improve the potential clinical value of the proposed first framework, the

synthetic datasets generated using the developed colonoscopy simulator are utilized to train

a supervised deep neural network for dense depth estimation of monocular colonoscopic

images. Also, a generative adversarial network is used to transform the real colonoscopic

images into their synthetic-like representations for more accurate depth estimation. Then,

an embedded deformation-based non-rigid registration algorithm is proposed to transform

and deform the 3D scans to the CT-segmented colon mesh model.

The proposed framework includes dense depth estimation from monocular colonoscopic

images using a deep neural network (DNN), visual odometry (VO) based camera motion

estimation and an embedded deformation (ED) graph based non-rigid registration algo-

rithm for deforming 3D scans to the segmented colon model. The function of simulating

different levels of colon deformation is developed and integrated into the realistic simu-

lator. Simulation results demonstrate the good performance of the proposed 3D colonic
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deformable surface reconstruction method in terms of accuracy and robustness. In-vivo

experiments are also conducted and the results show the practicality of the proposed frame-

work for providing useful shape and texture information in colonoscopy applications.

1.4.4 Direct Camera-Only Bundle Adjustment for 3D Textured Colon

Surface Reconstruction Based on Pre-operative Model

In both the previous proposed two frameworks, the data association operation (SIFT

feature extraction and matching, sparse and dense correspondences establishment) is very

computational and sometimes work poorly for some colonoscopic images with less texture.

The third work relies on maximizing the photometric consistency between the pre-operative

colon model and multiple views of monocular colonoscopic images to optimize the camera

motion parameters and the intensity of the pre-operative model vertices. Although the

intensity of the pre-operative model vertices and all the colonoscopic frame poses are

optimized together in the mathematical BA formulation of this problem, we prove that the

optimization using the iterative Gauss-Newton (GN) method has the merit of optimizing

camera pose only without optimizing the intensity of model vertices, which helps reduce

the computational cost of the proposed algorithm. Thus, the direct camera-only BA

algorithm is proposed and used to the scenario of 3D textured colon reconstruction from

low-texture 2D colonoscopic images.

Specifically, we first estimate all the camera poses using the proposed camera-only BA

algorithm. Then, we can obtain the intensities of mesh vertices by a closed-form formula.

The optimal RGB colors of vertices can also be calculated by the closed-form formula

using different channel of color images separately and used for texture rendering of the

pre-operative colon model. The textured regions on the colon model are actually the

visible maps viewed by all the frames. Meanwhile, we propose a method to automatically

and accurately determine the 3D vertices’ visibility from meshes under camera views.

Furthermore, we pre-compute gridded intensity and gradient field for all the images to

improve the efficiency and accuracy of the proposed camera-only BA algorithm. Validation

using simulation, phantom and in-vivo datasets is performed to demonstrate the accuracy

and feasibility of the proposed algorithm.
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1.5 Thesis and contributions

The main contribution of this thesis is the three proposed frameworks for colon 3D recon-

struction:

• Developing a template-based framework for 3D reconstruction of colon structures

and textures from stereo colonoscopic RGB images, which mainly addresses the first

three challenges listed above.

• Developing a framework for 3D reconstruction of deformable colonic surfaces from

monocular colonoscopic images, which mainly addresses the 4th and 5th challenges

listed above.

• Developing a direct camera-only BA framework for textured 3D colonic surface re-

construction, which optimizes all the frame poses simultaneously without requiring

data association and image depth information.

Besides the above methodological contributions, I have also accomplished the following

engineering contributions:

• A realistic colonoscopy simulator based on the colon model segmented from pre-

operative CT scans and the virtual reality platform Unity is used to provide colonoscopy

datasets with ground truth of depths and camera poses, which addresses the 6th

challenge listed above.

• A barycentric based texture rendering technique is used to map textures from colono-

scopic images to the reconstructed colonic surface.

• The generated synthetic datasets are utilized to train a supervised deep neural net-

work (DNN) for dense depth estimation of monocular colonoscopic images. Also

a generative adversarial network (GAN) is used to transform the real colonoscopic

images into their synthetic-like representations for depth estimation.

• An ED based non-rigid registration algorithm is proposed to transform and deform

the 3D scans to the segmented colon mesh model, where the model is mainly used as
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a global reference to increase the robustness and accuracy of the registration. In the

non-rigid registration process, we use 2D SIFT-based algorithm to provide a set of

pair-wise registering key points which can greatly overcome the texture misalignment

caused by the deformation and smoothness of the colonic surface.

• Automatically determining visibility when the camera views are changing using

barycentric ray-triangle intersection technique, as many scene points quickly go out

of view, or become occluded.

1.6 Overview of Chapters

The rest of this dissertation is organized in the following chapters: Chapter 2 reviews

mathematical backgrounds and related works for colon map reconstruction. Chapter 3

gives a brief overview of the process of developing the colonoscopy simulator. Chapter 4

describes the technical details and experimental results of our first framework. Chapter 5

describes the technical details and experimental results of our second framework. Chapter

6 describes the technical details and experimental results of our third framework. Chapter

7 concludes this thesis and outline our future work.

1.7 List of Publications

The first framework presented in Chapter 4 was published in IEEE Transaction on Med-

ical Robotics and Bionics. The improved framework shown in Chapter 4 was published

in 2021 IEEE Conference on Robotics and Automation. The third framework presented

in Chapter 6 is in prepration for submission to IEEE Robotics and Automation Letters

(RA-L). Inspired by the colon reconstruction frameworks, we developed SLAM algorithms

for precise and real-time intra-operative evaluation of the proximal tibial resection plane

in conventional total knee replacement surgery. This work was published in 2022 Inter-

national Conference on Medical Image Computing and Computer-assisted Intervention.

We are in the process of preparing an improved version of this paper for submission to

International Journal of Robotics Research (IJRR).
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The list of all papers is as follows1:

1. Zhang, S., Zhao, L., Huang, S., Ye, M., Hao, Q. (2020). A Template-Based 3D

Reconstruction of Colon Structures and Textures From Stereo Colonoscopic Images,

IEEE Transactions on Medical Robotics and Bionics (TMRB), 3(1), pp. 85–95.

2. Zhang, S., Zhao, L., Huang, S., Ma, R., Hu, B., Hao, Q. (2021). Reconstruc-

tion of Deformable Colon Structures based on Preoperative Model and Deep Neural

Network, in proceedings of 2021 IEEE International Conference on Robotics and

Automation (ICRA). Springer, pp. 1875–1881.

3. Zhang, S., Zhao, L., Huang, S., Wang, H., Luo, Q., Hao, Q. (2022). SLAM-TKA:

Real-time intra-operative measurement of tibial resection plane in conventional total

knee arthroplasty, in proceedings of 25th International Conference on Medical Image

Computing and Computer-assisted Intervention (MICCAI). Springer, pp. 126–135.

4. Pan, K., Zhang, S*., Zhao, L., Huang, S., Zhang, Y., Wang, H., Luo, Q. (2023).

3D Reconstruction of tibia and fibula using one general model and two X-ray images,

in proceedings of 2023 IEEE International Conference on Robotics and Automation

(ICRA). Springer, pp. 4732–4738.

5. Zhang, S., Zhao, L., Huang, S., Hao, Q. (2023). Direct Camera-Only Bundle Ad-

justment for 3D Textured Colon Surface Reconstruction Based on Pre-operative

Model, in preparation (to be submitted to IEEE Robotics and Automation Letters

(RA-L)).

6. Zhang, S., Zhao, L., Huang, S., Wang, H., Luo, Q., Hao, Q. (2023). SLAM-TKA:

Simultaneous localising X-ray device and mapping contours of tibia and pins in con-

ventional Total Knee Arthroplasty, in preparation (to be submitted to International

Journal of Robotics Research (IJRR).

1It is noted that although the 3rd, 4th and 6th publications are for different SLAM problems, some

techniques, e.g., the optimization method, are related to our thesis. ∗ The first two authors have equal

contributions.



Chapter 2

Background and Related Works

This chapter presents the technical background and literature review related to the dis-

sertation’s focus on colon reconstructions. In Section 2.1, we provide an introduction to

the technical aspects of rigid body motion in 3D space, which includes the geometry of

perspective projection, the rotation matrix, translation vector, the relationship between

Lie group and Lie algebra, the derivation model of Lie algebra, and the camera perspec-

tive projection of pin-hole model. Additionally, Section 2.2 describes some commonly used

3D non-rigid body transformation methods and mainly introduces the ED graph which is

used to deal with the colonic surface deformation challenge in our work. In Section 2.4,

we review relevant literature on colon reconstructions.

2.1 3D Rigid Body Transformations

2.1.1 Rotation Matrix and the Special Orthogonal Rotation Group SO(3)

In our proposed 3D colon reconstruction frameworks, one main goal is to estimate the

optimal pose of each 3D colonoscopic scan w.r.t. the coordinate space of a pre-opertive

colon model. Here, the pose [R, t] is composed of a rotation matrix R and a translation

vector t 2 R
3, and they are used to describe the change of orientation and position of

the 3D scan in the local frame space w.r.t. the coordinate frame of the pre-opertive colon

12
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model, respectively. Where the rotation matrix R is a member of the special orthogonal

rotation group SO(3):

SO(3) = {R 2 R
3⇥3|RRT = I3⇥3, det(R) = 1} (2.1)

Then, the estimated optimal frame pose is used to transform the reconstructed 3D scan

to the coordinate frame of the pre-operative colon model as following:

P = RTPC �RT t (2.2)

where PC = [xC , yC , zC ]T represents one 3D point of the 3D scan in its local camera space

and P represents the transformed point into the pre-operaitve colon model space.

2.1.2 The Lie Algebra so(3) Corresponding to the Special Orthogonal

Rotation Group SO(3)

Typically, the task of estimating frame poses is expressed mathematically as a non-linear

square problem. Various optimization techniques, such as the GN algorithm and the Lev-

enberg–Marquardt algorithm [8], are commonly utilized to determine the optimal frame

poses by iteratively reducing the errors associated with the non-linear least squares prob-

lem. During each iteration, the optimization solver linearizes the problem at the current

frame pose state to calculate the step change required to update the frame poses. How-

ever, directly adding the step change to the current frame poses is not feasible due to the

additional constraints on the rotation matrices used as optimization variables. Specifically,

rotation matrices must be orthogonal and possess a determinant of 1, which means that

adding two rotation matrices no longer falls within the rotation group SO(3), and deriva-

tives cannot be expressed in the form of a special orthogonal rotation group. However, by

transforming the problem from the special orthogonal group SO(3) to its Lie algebra so(3),

it can convert the pose estimation problem into an unconstrained optimization problem.
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In practice, each special orthogonal rotation matrix R corresponds to a unique vector

� = [�(1),�(2),�(3)]T defined on R
3:

R = exp(�^) (2.3)

where the operator ^ is a skew-symmetric symbol that turns the vector � into a unique

anti-symmetric matrix as:

�^ =

2
6664

0 ��(3) �(2)

�(3) 0 ��(1)

��(2) �(1) 0

3
7775 (2.4)

Thus, the general definition of Lie algebra so(3) is as following:

so(3) = {� 2 R
3,�^ 2 R

3⇥3} (2.5)

Meanwhile, the camera pose [R, t] can be represented by a six dimensional vector:

⇠ = [�, t] (2.6)

To convert the vector ⇠ = [�, t] into a camera pose, the camera rotation matrix is an

exponential map of �^ by using (2.3) and the translation t is still the same.

2.1.3 The Small Disturbance Model of Lie Algebra Derivation

In our work, the small left disturbance model of Lie algebra derivation is used to compute

the derivation of a rotation matrix in the pose estimation problem, thus to turn the SO(3)

property constrained optimization problem into an unconstrained optimization problem.

Suppose P is a 3D point in the world space and we use the rotation matrix R to rotate it

and obtain the rotated point RP. To calculate the derivative of the rotated point RP by

the rotation matrix R, we multiply a small turbulance ∆R on the left of RP and define

its Lie algebra as '(R). Then, taking the limit of the multiplication result relative to the
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small disturbance '(R) to compute the derivative as:

@RP

@'(R)
= lim

ϕ(R)!0

exp('(R)^)exp(�^)P� exp(�^)P

'(R)

⇡ lim
ϕ(R)!0

(1 + '(R)^)exp(�^)P� exp(�^)P

'(R)

= lim
ϕ(R)!0

'(R)^RP

'(R)
= lim

ϕ(R)!0

�(RP)^'(R)

'(R)
= �(RP)^

(2.7)

2.1.4 The Geometry of Camera Perspective Projection

The pinhole camera model is used to describe the process of perspectively projecting a

3D scene point to a 2D image pixel plane. Suppose p = [u, v]T is the ground truth

coordinates of one observed 2D feature point p̄, its corresponding 3D point from the scene

is P 2 R
3, and the camera pose is [R, t]. Then, the geometry of perspective observation

model p = ⇡(P, ⇠) of the feature point can be written as:

p̄ = p+ w

[pT , 1]T =
1

zC
KPC

PC = [xC , yC , zC ]
T = RP+ t

(2.8)

where w is the zero-mean Gaussian noise with covariance matrix Σp, and

K =

2
6664

fx 0 cx

0 fy cy

0 0 1

3
7775 (2.9)

is the camera intrinsic matrix, R and t represent the rotation matrix and translation vector

of the camera pose w.r.t. the world coordinate system, respectively.

Thus, the derivative of observation point p̄ w.r.t. the camera pose is calculated as:

@p̄

@�ξ
=

@p

@PC

@PC

@ [�φ, �t]
T
=

2
4

fy
zC

0 �fx
xC

z2
C

0 fx
zC

�fy
yC
z2
C

3
5 ⇥

(�RP)^, I3
⇤

(2.10)
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2.2 3D Non-rigid Body Transformations

3D non-rigid body transformations refer to the deformation or change in shape of a 3D

object or scene without changing its topology. In medical image registration, non-rigid

body transformations are used to align images or 3D scans of the same patient acquired at

different times or with different imaging modalities such as pre-operative models segmented

from CT or MRI scans. In this section, we especially introduce the technical details of

ED graph method which is used in our second proposed colon reconstruction work for

dealing with the colonic surface deformation challenge. Similar to ED graph, some other

commonly used non-rigid transformation methods including embedded deformation (ED)

graph [9], finite element method [10], regularized kelvinlet functions [11], and thin plate

splines [12] are briefly reviewed.

2.2.1 Embedded Deformation Graph

Our work for recovering 3D colonic surface deformation is based on ED graph, which is

usually used for modeling the deformation of surfaces. ED graph represents a surface as

a graph, which consists of ED nodes corresponding to sampled vertices or points on the

surface, and edges denote connections between these nodes. Thus, the nodes connected

by edges define a deformation skeleton. By manipulating the positions of the ED nodes,

it can non-rigidly deform the original surface to another realistic and smooth surface.

Specically, each ED node is associated with a position gj 2 R
3, an affine matrix Aj 2 R

3⇥3

and a translation vector tj 2 R
3. Given the parameter value for all the ED nodes, for each

vertex v in the 3D surface space, it will be influenced by a set of neighbouring ED nodes

in the ED graph, and the deformed position ev of the vertex v is given by (2.11):

ev = �(v) =

mX

j=1

wj(v)[Aj(v � gj) + gj + tj ] (2.11)

where m denotes the number of neighboring ED nodes, wj(v) is the weight for vertex v

and defined as:

wj(vi) = (1�
���v � gj

��� /dmax) (2.12)
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where dmax is the Euclidean distance of the vertex to the m+ 1 nearest ED nodes. Thus,

the deformed vertex positions are a function of the ED deformation parameters.

Usually, we have the original and deformed vertex positions, and the ED affine transfor-

mations are unknown. Then, these vertices are used as the positional constraints for an

optimization problem to estimate the deformation parameters:

Econ =

qX

l=1

kevl � vlk
2
2 (2.13)

where vl is the l-th original vertex and evl is deformed by the ED graph accroding to (2.11).

The deformation parameters are estimated by minimizing the following energy function:

min
A1,t1...Ak,tk

wrotErot + wregEreg + wconEcon (2.14)

where k is the number of ED nodes. The energy function has three components: rota-

tion term, regularization term and the constraints term. The first and second terms are

functions only defined over the ED graph, and the third term is enforced by the positional

constraints.

The rotation term is for making the affine matrices close to rotations. Erot sums all the

rotation error:

Erot =
MX

j=1

Rot(Aj) (2.15)

Rot(Aj) = (c1 · c2)
2 + (c1 · c3)

2 + (c2 · c3)
2+

(c1 · c1 � 1)2 + (c2 · c3 � 1)2 + (c3 · c1 � 1)2
(2.16)

where c1, c2 and c3 are the column vectors of each affine matrix Aj , M is the number of

ED nodes.

The regularization term is used to ensure a smooth deformation and prevent divergence

of the neighbouring nodes:

Ereg =
MX

j=1

X

m2N(j)

↵jm kAj(gm � gj) + gj + tj � (gm + tm)k22 (2.17)
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where ↵jm is the weight computed by the Euclidean distance of the two ED nodes and it

is set to 1 referring to [9]. N(j) is the set of all neighboring nodes to node j.

2.2.2 Finite Element Method

Finite element method (FEM) is a numerical method that can be used for non-rigid trans-

formation of 3D objects with non-linear material properties. In FEM-based non-rigid

transformation, a 3D object is discretized into small elements, and each element is rep-

resented by a set of nodes. These nodes can be moved in response to external forces or

constraints, causing the element to deform. The deformation of each element is computed

using a set of equations that describe the behavior of the material.

FEM has been used in the registration of brain MRI images [13, 14], lung CT images

[15], and many other medical image registration applications. The advantages of FEM

include its ability to model complex deformation behaviors and its compatibility with a

wide range of image modalities. However, FEM is computationally expensive and requires

high computational resources [16].

2.2.3 Regularized Kelvinlet Functions

Regularized Kelvinlet functions (RKF) [11] are a type of non-rigid method used for simu-

lating the deformation of objects by displacing point sources within them. The technique

is based on the concept of Kelvinlet functions, which are mathematical functions used to

describe the deformation caused by a point force acting on an elastic material. In RKF,

a regularization term is added to the Kelvinlet functions to ensure the smoothness of the

deformation. To compute the deformation field using RKF, a set of control points is first

selected on the object. For each control point, a Kelvinlet function is computed based on

its position and a set of user-defined parameters that determine the deformation behavior.

Finally, the Kelvinlet functions are combined to produce the overall deformation field.

RKF have been used in medical image registration applications, such as the registration of

brain MRI images and liver CT images [11]. The advantages of regularized RKF include

its computational efficiency and its ability to handle large deformations. However, it may
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not accurately capture complex deformation behaviors. Overall, RKF is a useful and

widely-used technique for 3D non-rigid transformation that offers a good balance between

computational efficiency and deformation quality.

2.2.4 Thin Plate Splines

Thin plate splines (TPS) is a widely used technique for 3D non-rigid deformation that

is commonly used in medical imaging [14, 17], computer vision and computer graphics

[18]. TPS can produce highly accurate and realistic results when combined with other

techniques, such as FEM and ED graph. The fundamental idea behind TPS is to define a

set of control points on the object to compute a series of deformation functions, which are

then applied to the object to transform it from its original shape to its deformed form.

The deformation functions are derived from a thin plate energy function, which determines

the amount of bending energy needed to deform the object. Initially, the control points are

moved to their deformed positions using an initial deformation method, such as FEM or

ED graph. Subsequently, the thin plate energy function is minimized subject to constraints

that ensure the deformation functions are smooth and have the desired behavior at the

control points. Once the deformation functions are computed, they can be applied to

any point on the object to calculate its deformed position. This allows the object to be

smoothly deformed in a way that precisely reflects the motion of its underlying structures.

While TPS can handle complex deformations, it can be computationally expensive and

require a large number of control points.

2.3 Colonoscopy Reconstruction Datasets

Complete colonoscopic video datasets with ground truth camera poses and image depth are

crucial for developing and validating algorithms such as pose estimation, depth estimation,

and 3D reconstruction methods. A summary of existing and the proposed colonoscopic

3D datasets referenced in relevant papers is reported in Table 2.1
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Table 2.1: Comparison of Colonoscopy Reconstruction Datasets

Papers R/V/P Public Depth Poses # Frames 3D Models

Armin et al. [19] V ⇥ ⇥ X 30k ⇥
Rau et al. [20] V X X X 18k ⇥
Bae et al. [21] R ⇥ ⇥ ⇥ >34k ⇥
Freedman et al. [22] V ⇥ X ⇥ 187k ⇥
Fulton et al. [23] P X ⇥ X 24k ⇥
Ozyoruk et al. [24] V/R partial X X >30k X

Ma et al. [25] R partial ⇥ ⇥ 1.2m ⇥
Bobrow et al. [26] P X X X 10k X

Proposed V ? X X X infinite X

R (Real), V (Virtually simulated), P (Physical phantom)
? The colonoscopy simulator and source code have been made publicly available.

Different works have used a variety of datasets and acquisition methods, but only a few

published them. Mitchell et al. collected colonoscopic images inside a colon phantom

model using an endoscope camera and estimated camera poses using an electromagnetic

tracker attached to the endoscope [23]. However, the textureless colon phantom model

is essentially a uniformly thick circular tube with repetitive colon folds, which is overly

idealized and not suitable for feature-based SLAM or training depth estimation networks.

Later on, Talor et al. used a clonoscope and silicone colon models to generate a colonoscopy

dataset with “ground truth” depth and camera poses [26]. A robotic arm was used to

rigidly mount the colonoscope and measure the camera trajectory. Then, a GAN was

used to predict depth for the captured optical video sequences, and GAN-estimated depth

frames were compared with rendered predicted views of a 3D colon model along the mea-

sured camera trajectory for minimizing an geometric contours-based loss (Contours were

extracted using Canny edge extraction and binarized). Thus, the camera trajectory and

depth frames can be optimized together. However, the “ground truth” poses and depth

still suffer from errors. Furthermore, the scope range and types of camera motion were

limited, leading to most videos being captured from forward views along the centerline of

colon models. Additionally, it is important to note that in this approach, the phantom

models must remain static during video acquisition, and colon deformations are neither

considered nor simulated.

Most recently, the game engine Unity has been used to render synthetic images from 3D
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anatomical models, such as CT-segmented 3D colon models [20, 24, 27]. Rendered data

offers several advantages, primarily because of the availability of error-free, pixel-level

ground truth labels like depth and surface normals from rendering primitives. Ozyoruk

et al. introduced both ex-vivo and synthetically generated dataset for the stomach, small

intestine, and colon [24]. Each video sequence in this dataset is paired with a ground truth

camera trajectory and 3D surface model, and pixelwise depth ground truth was generated

for synthetically generated endoscopic frames. Rau et al. generated synthetic data based

on a CT-segmented human colon mesh model, and rendered endoscopic simulation images

and corresponding depth maps using Unity. However, the color and texture of synthetic

images are much different from those of actual colonoscopic images, and one important

characteristic of colon deformation is not simulated.

In contrast, we developed a realistic colonoscopy simulator and it provides a dynamic and

controlled environment for data generation. More importantly, we have made the simulator

and source code publicly available. The simulator not only simulates colon deformations

but also offers a user-friendly human-machine interface and reliable control capabilities.

Users can use the simulator to rapidly generate substantial volumes of data with different

textures, lighting conditions and levels of deformations.

2.4 Reconstruction of Colonic Surface Maps

Advancements in computer vision and image processing have led to the development of

various techniques for reconstructing the colonic surface. Some of these methods aim to

create a 2D visibility map of the internal colonic surface, while others focus on generating

a portion of the 3D colonic surface.

Colorectal cancer mortality can be reduced by half through colonoscopy screening with a

conventional 2D colonoscope. However, this procedure has limited protective value due

to missed lesions. To enhance the sensitivity of colonoscopy to precancerous lesions, 3D

imaging techniques can be utilized to highlight their distinctive morphology. Although 3D

imaging has demonstrated benefits in laparoscopic procedures, further research is necessary
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to evaluate its efficacy in flexible endoscopy applications. In general, the methods utilized

or developed can be categorized as follows.

2.4.1 Shape from Shading

The Shape from Shading (SfS) method [28] is a technique used for estimating the 3D

structure of a scene from changes in illumination with respect to depth and surface ori-

entation. SfS has been employed in various applications, including the reconstruction of

colon structures from the brightness of the colon surface. However, one limitation of SfS

is that it may incorrectly represent the colon lumen as a relatively far surface, rather than

a tubular structure [29].

The reason behind this limitation lies in the assumptions and constraints of the SfS method.

It assumes that the surface of the object being reconstructed is Lambertian, meaning it has

a uniform diffuse reflectance and does not exhibit specular reflections. However, the colon

lumen, which is the inner space of the colon, does not have a uniform diffuse reflectance

as it contains air or gas and does not scatter light in the same way as a solid surface. As

a result, the SfS method may not accurately estimate the depth and surface orientation

of the colon lumen, leading to an incorrect representation of the tubular structure.

2.4.2 Structure from Motion

Structure from Motion (SfM) is a technique used to reconstruct the 3D structure of a scene

or object from a series of 2D images. It relies on estimating camera poses and 3D points

from the images, which are then used to reconstruct the 3D structure.

One limitation of SfM is that it typically requires slow camera motion to accurately esti-

mate camera poses. This is because SfM algorithms rely on finding corresponding features

in multiple images to triangulate and estimate the 3D points. Fast camera motion can

result in motion blur and loss of feature correspondence, leading to inaccurate camera pose

estimation and 3D reconstruction.
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To reconstruct colonic surface maps from colonoscopic images, the requirement of slow

camera motion can be a challenge. The colonoscope is typically advanced through the

colon lumen by pushing and pulling motions, which can result in fast camera motion. This

can make it difficult to obtain accurate camera poses and reconstruct the 3D structure of

the colonic surface using traditional SfM algorithms.

Researchers have attempted to address this limitation by developing modified SfM algo-

rithms that are specifically tailored for colonoscopic images. For example, Koppel et al.

used sequential frames from colonoscopic videos to reconstruct a portion of the 3D colonic

surface with textures, but it required slow camera motion and manual feature tracking

[30]. Similarly, Chen et al. proposed a modified SfM approach that accounted for the

fast camera motion in colonoscopic images by incorporating prior knowledge of the colon

shape and camera motion constraints [31]. Despite these efforts, accurately reconstructing

the 3D structure of the colonic surface with textures from colonoscopic images remains

challenging due to the fast camera motion involved.

2.4.3 Combination of Shape from Shading and Structure from Motion

By combining SfM and SfS, Kaufman et al. were able to leverage the strengths of both

techniques to reconstruct a relatively large colonic surface from several consecutive colono-

scopic images . SfS provided local shape and shading cues, which helped to estimate the

surface shape of individual frames. SfM, on the other hand, estimated the camera poses,

which provided the necessary information for integrating the partially flattened surfaces

from multiple frames into a larger surface map.

2.4.4 Approaches with Restrictive Assumptions

There are other advanced approaches with restrictive assumptions. Zhou et al. [32]

adopted an optical flow-based method to reconstruct small colon segments with assump-

tions that the neighboring folds in an image are not occluded and that the colon fold

contours are circular in nature. However, partial occlusion of folds is very common and
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the transverse, ascending and descending segments of the colon have no well circular char-

acteristic. Hong et al. [33] took the advantage of the tubular nature of the colon to

estimate colon folds and only reconstructed a colon segment from a single colonoscopic

image. Armin et al. [34] fitted a cylinder model to the colon structure generated by 3D

pseudo stereo vision and unrolled the fitted model to a 2D band image. Then the esti-

mated camera poses were used as initial values to register these 2D band images together

to build a large 2D visibility map, but the generated 2D map was less intuitive than a 3D

dense reconstruction. Although remarkable progress has been made in this field, all of the

research has focused on 3D or 2D surface reconstruction of very small parts of colon.

2.4.5 Deep Learning-based Depth Prediction

Deep learning networks have been explored for depth prediction in endoscopy. These can

be divided into fully supervised depth prediction networks and self-supervised approaches.

Since it is difficult to obtain the dense ground truth depth maps for the real endoscopic

images, fully supervised networks are usually trained on synthetic dense depth maps gen-

erated from patient-specific CT data.

Mahmood et al [35] used simulated pairs of color images and dense depth maps from CT

data to train a depth prediction network. To predict depth for the real endoscopic images,

they used a GAN to transform real images to have the simulated-like appearance and then

feed them to the trained depth estimation network. But their structure (i.e. real depth)

information is not fully used, which can lead to decreased performance up to incorrect

depth estimates. Liu et al. [36] trained a self-supervised network for depth prediction in

sinus endoscopy, their work use monocular videos as training data and use sparse depth

map estimated from structure from motion to supervise the training process. Rau et

al. [20] have applied a variant of pix2pix called extended pix2pix to colonoscopy depth

reconstruction. They first used phantom and virtual colonoscopy data to create paired

depth and colon images, then included real colonoscopic images for the GAN loss to allows

the network to partially train on real colon images while not needing the corresponding

ground truth. Mathew et al. [37] took advantage of the texture information of optical

colonoscopy (OC) and geometrical information of virtual colonoscopy (VC) to trained
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a CycleGAN for lossy unpaired image-to-image translation between the two modalities.

Bae et al. [21] used sparse reconstruction obtained via SfM to develop a multi-view stereo

reconstruction method that can produce a small segment of the colon from a short sequence

of endoscopic images.

2.4.6 Stereo Shape Recovery

Stereo shape recovery is a process that involves using a pair of stereo images to recover

the 3D shape of objects in a scene. Technically, the technique of estimating depth using

a stereo camera involves triangulation and stereo matching. Triangulation requires ac-

curate calibration and rectification to constrain the problem to a 2D plane, also known

as the epipolar plane. Stereo matching, or disparity estimation, entails identifying the

corresponding pixels in the different views that relate to the same 3D point in the scene.

By computing the relative disparity, a depth map can be generated, which in turn can

be utilized to reconstruct the 3D geometry of the scene. Recently, real-time 3D stereo

shape recovery can be achieved by implementing traditional stereo vision algorithm on

GPU [38].

Currently, studies have proved that stereoscopic imaging technology is widespread used

and has the potential to improve sensitivity, lesion resection, training and automated lesion

detection [39] for laparoscopic procedures. In addition, stereoscopic hardware is continu-

ing to evolve to generate higher quality surgical vision [40, 41]. Although most existing

endoscopic procedures especially a standard colonoscopy still use single-lens cameras, more

research is needed to assess how stereoscopic imaging will improve applications of flexible

endoscopy.

2.4.7 Visual SLAM Algorithms

Currently, according to the density of reconstructed maps, camera based visual SLAM

algorithms can be classified into sparse [42, 43], semi-dense [44–47] and dense reconstruc-

tion [48–50]. These SLAM systems are template-free, adopt loop closure to reduce drift

errors and able to process slow motion. Although promising results can be achieved, these
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algorithms are seldom directly applied in colon reconstruction scenarios mainly due to

few or lost of overlaps and no loop closures. The small field view of the colonoscope,

the tubular structure of the colon, difficulty to observe the back side of colon folds and

especially when camera with motion of orientations only will cause few or lost of overlaps

in the colonoscopy procedures and this will cause inaccurate or even failed camera pose

estimations. Meanwhile, there is no loop closures in a normal colonoscopy procedure since

the colonoscope is withdrawn from the cecum (the proximal end of colon) to the rectum

(the proximal start of colon) and this will cause a large drift error for the camera pose

estimation and scene reconstruction. All these will lead to misalignment in textures on

the reconstructed colon map.

2.4.8 Combination of Deep Neural Network and Visual SLAM Algo-

rithms

Recently, SLAM systems that incorporate depth predictions estimated by deep learn-

ing techniques have been applied to monocular colonoscopy sequences to reconstruct 3D

colonic surfaces [25]. Depending on whether a SLAM system optimizes the photometric

error maximizing the photometric consistency or not, it can be classified as a direct or

in-direct method.

Chen et al. [51] trained a adversarial depth estimation neural network in a supervised

approach where supervision from synthetic dataset of a phantom, then input monocular

images paired with depth estimation to the ElasticFusion [48] to stitch depth images

to reconstruct a dense surfel point cloud. However, the metric accuracy of estimated

camera poses and reconstruction is not given. Also, it is not suitable to directly apply

ElasticFusion on endoscopy since it requires slow camera motion and a as rigid as possible

environment. Ma et al. [25, 52] used sparse depth estimated from the COLMAP [53]

software as a ground truth proxy to train a recurrent neural network for depth and the

camera pose estimation, then the bundle adjusted direct sparse odometry (DSO) [44] is

used to jointly optimize the predicted poses and sparse point inverse depth by minimizing

the intensity difference over a window of recent frames. After that, a fusion pipeline is

used to reconstruct colon meshes for detecting missing regions. However, like most SLAM
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systems, their work requires slow camera motion and cannot handle the deformation of

the colon surface, which makes the camera pose estimation suffering from large drift and

further causes textures misalignment on the fused colon meshes. The main advantage

of direct methods is that they do not require the feature extraction from the images,

but they are susceptible to drastic illumination changes in the colonoscopy environment.

Meanwhile, in-direct methods which optimize the reprojection error using tracked features

highly depend on the successful extraction and tracking of sufficient distinct features from

images, but the low-texture colonoscopic images have less salient features.

Our third proposed work has some relations to the research works on photometric BA for

3D mesh refinement which requires frequent remeshing (contributing to a high runtime)

and a sufficiently good initialization [54], vision-based SLAM in which the inappropri-

ate reference frame selection can result in accuracy degradation[55] and transesophageal

echocardiography images registration in the 3D image domain [56]. [54] jointly refined

the mesh shape and camera poses using the reprojection error between images of a mesh

model and the observed images, which requires frequent remeshing (contributing to a high

runtime) and a sufficiently good initialization. [55] jointly refined the camera and struc-

ture parameters by minimizing intensity difference between one reference frame and a few

frames that are temporally close to the reference frame, and the inappropriate reference

frame selection can result in accuracy degradation. [56] used photometric BA to minimize

the intensity difference between multiple views of 3D heart ultrasound images and a 3D

panaramic image such that the estimated camera poses are used to align the local 3D

frames to enlarge the image FOV, which is directly minimized in the 3D image domain.

2.5 Chapter Summary

In this chapter, we provide the brief mathematical background and literature review of

the colon reconstruction problem. In the optimization process of non-linear problems for-

mulated in Chapters 5 and 6, the use of Lie algebra allows for the derivation of a rotation

matrix to be computed efficiently, which in turn can transform the SO(3) property con-

strained optimization problem into an unconstrained optimization problem. The literature
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review summarizes previous techniques and works for reconstructing 2D or 3D colon maps,

discussing the limitations and challenges of the previous methods.



Chapter 3

Colonoscopy Simulator

Development

Obtaining colonoscopic images with accurate ground truth of depths and camera poses

poses significant challenges in standard colonoscopy procedures. These challenges arise

from various factors, including the invasiveness of the procedure, patient safety and com-

fort considerations, constraints in clinical workflow and time, ethical and legal consider-

ations, and technical limitations in capturing precise data in real-time during the proce-

dure. As a result, alternative methods, such as generating synthetic data from a realistic

colonoscopy simulator, have emerged as viable options for developing and validating colon

reconstruction algorithms when ground truth data from standard colonoscopy procedures

is not available.

In addition to addressing the aforementioned challenges, the development of a virtual

colonoscopy simulator offers compelling advantages. The simulator provides a controlled

and accurate environment for generating benchmark data, which can be used to rigor-

ously evaluate the accuracy and performance of computer vision algorithms employed in

virtual colonoscopy, such as polyp detection and navigation assistance. Moreover, virtual

colonoscopy simulators offer a non-invasive and safe environment for training and assess-

ment of medical professionals. Within the simulator, practitioners can engage in practice

sessions that involve various colonoscopy techniques, navigating the virtual colon without

29



Chapter 3. Colonoscopy Simulator Development 30

the need for real patients or invasive procedures. Furthermore, the simulator can provide

real-time feedback on performance, facilitating the opportunity for practitioners to learn

from mistakes, refine their skills, and enhance their proficiency in a controlled and low-risk

environment.

These advantages contribute to the advancement of virtual colonoscopy techniques, aug-

ment the training and education of medical professionals, and ultimately result in im-

proved patient care in the field of colonoscopy. As such, the development and utilization

of virtual colonoscopy simulators hold significant promise in addressing the challenges as-

sociated with obtaining ground truth data in standard colonoscopy procedures, and offer

valuable opportunities for advancing the field of colonoscopy through enhanced training

and evaluation of computer vision algorithms.

In this chapter, we give a brief overview of the process of creating the realistic colonoscopy

simulator. Fig. 3.1 shows a snapshot of the developed simulator.

Figure 3.1: The Snapshot of the Developed Colonoscopy Simulator: on the
top left panel of the UI, we can select the “Save Images”, “Manual Control” and “Depth
& Pos” buttons, then start the simulator by clicking the “START” menu, and move and
rotate the virtual camera using the keyboard. The middle left “Status” panel will
display the camera poses in real-time. The right panels on the UI mainly support the
parameters settings of the virtual camera and colon environment. Once the “Manual
Control” is selected, the control instruction panel will appear, providing the following
options: To rotate the camera, use the W, S, A, D keys on the connected keyboard. To
move the camera vertically, use the Up and Down arrow keys on the keyboard.



Chapter 3. Colonoscopy Simulator Development 31

holes closure sculpt and polish

monocular mode

UV mesh

bake ambient 

occlusion

mesh split

vessels texture

colon shader 

and material 

CT slices

segmented colon

errors polygons

Colon segmentation and mesh optimization Mesh texture generation

stereo mode

3D visualization and 

interaction with Unity

down samplingerror deletion

Figure 3.2: Schematic Diagram of the Developed Colonoscopy Simulator
Framework. The length of CT-segmented colon is about 1.5 meters and its bounding
box size is 36cm⇥ 26cm⇥ 14.9cm. The framework primarily comprises four key
components: 3D colon mesh model segmentation and optimization, the creation of a 2D
image texture that envelops the segmented colon model, the implementation of a virtual
visualization and interaction system, and the design of the virtual camera along with
post-processing effects.

Fig. 3.2 shows the schematic diagram of the developed colonoscopy simulator framework.

The framework mainly consists of 3D colon mesh model segmentation and optimization,

creation of a 2D image texture that wraps around the segmented colon model, implemen-

tation of the virtual visualization and interaction system, virtual camera design and post

processing effects.

First, a colon mesh model is segmented from a set of human colon CT scans. Then, to

render the colon model as realistic as possible, a 2D texture image with blood vessels,

perlin noise and mucous is created by Photoshop and used to wrap around the segmented

colon model. The blood vessels textures are extracted from the real colon images which

are download from Google Images directly.

After that, the colon mesh model and the 2D texture image are loaded into the game

engine Unity [57], and a wide-angle monocular virtual camera with two light sources is

used to provide volume-based rendering of endoscopic views. The properties of the colon

shader and material can be adjusted, such as the hue, saturation, colour, reflectiveness

and wetness.

By using buttons on a keyboard, we can manually rotate and shift the camera inside the

3D colon model and capture images together with pixel-wise ground truth depths and
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camera poses. To prevent the camera from moving through the colonic surface, a mesh

collider which roughly defines the shape of the colon mesh is built for the purposes of

physical collisions.

3.1 Colon Segmentation and Mesh Optimization

The triangular 3D colon surface mesh is segmented from a set of 2D colon CT scans

by using the free, open source software 3D Slicer [58]. Since the original CT-segmented

colon model (in “.STL” format) has some errors in some parts that must be fixed, we

import the CT-segmented colon mesh model into ZBrush software [59] and export it as

“.OBJ” format, then the exported colon mesh model will be sculpted and polished using

the software Softimage [60] and ZBrush. For example, as shown in Fig 3.3, some colon

haustral folds on one contraction ring or on consecutive contraction rings are frequently

segmented as one fold, the software Softimage is used to delete these polygon errors.

(a) Mesh errors (b) Mesh errors deletion

Figure 3.3: Errors Deletion from the CT-segmented Colon Mesh. (a) shows
some mesh errors of the CT-segmented colon .STL file; (b) shows the deletion of colon
mesh errors.

After that, as shown in Fig 3.4, all holes of the colon mesh that are created by deleting

these error polygons are closed and fixed by using the software ZBrush, and the sculpting

and polish brushes of the ZBrush software are used to make the inside colonic surface

of the segmented colon mesh as smooth as a real colon. Furthermore, to reduce the

computational cost of the simulator in Unity, we downsample the colon mesh to make it

has lower triangles (see Fig 3.5) and cut the downsampled mesh into several parts (see

Fig. 3.6), thus to optimize the graphics performance of the developed simulator in Unity.
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(a) Mesh errors fixing (b) Mesh polishment

Figure 3.4: Colon Mesh Errors Fixing and Further Polishment. (a) shows the
mesh errors fixing; (b) shows the polished colon mesh.

Figure 3.5: Colon Mesh Down-sampling. Reduce the complexity of the colon
mesh model to reduce the computational cost of the simulator in Unity.

3.2 Mesh Texture and Colon Surface Material Generation

In this step, to texture the colon mesh and make the simulator as realistic as possible, the

UV-mapping tool Unfold3D is used to create the UV (“U” and “V” denote the axes of the

2D texture image) map for the colon mesh and this UV map (see Fig 3.7) will be used in

the Unity platform for applying the vessels texture over the mesh.

After that, as shown in Fig. 3.8, the created UV map is imported into the software Soft-

image [60] to bake ambient occlusion into the mesh vertex colors that can help mix some
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Figure 3.6: Cutting the Mesh Into Several Parts for Better Performance in
Unity. Then mesh is cut into multiple parts for using in the simulator and also the split
meshes are optimized again (the normals of the mesh vertices are adjusted to make the
cut seams invisible in the simulator) to have better performance.

Figure 3.7: UV Mesh Creation for the Colon Mesh Model. “U” and “V”
denote the axes of the 2D texture image.
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deep shadow and realistic look to the shader and material of the colon.

Figure 3.8: Baked Ambient Occlusion Into Vertex Colors. This process
enhances the shader and material of the colon, creating a more realistic appearance with
deeper shadows.

For the material of the colon surface, as shown in Fig. 3.9, the custom shader is created

by mixing 2 layers of vessel textures with 2 different scales and adding some colors and

other settings to make the colon surface have a realistic look.

Figure 3.9: Colon Model Shader and Material. In Unity, we create a custom
shader by blending two layers of vessel textures with distinct scales and introducing
various colors and additional settings. This approach is employed to achieve a realistic
appearance on the colon surface.



Chapter 3. Colonoscopy Simulator Development 36

Finally, to texturize the UV mesh, seamless and tillable textures of the blood vessels,

perlin noise and mucous are created using the software Photoshop [61] and added into the

2D texture image (see Fig. 3.10).

Figure 3.10: Vessels Texture Map Creation. Seamless and tillable texture of the
vessels are created using Photoshop to creat customized and randomized brushes and
mix some different layers together.

3.3 3D visualization and Interaction with Unity

The visualization and interaction system is built with Unity. The visualization part can

create 3D virtual visualization environment of the colon model and provide volume-based

rendering of endoscopic views during the virtual camera’s flight through the colon model.

To prevent the camera from moving through the colonic surface, the mesh collider is used

to build a collider based on the colon mesh. For the interaction part, it allows the player

to interact with GameObjects (cameras, model, special effects, etc.) and output simulated

colonoscopic images together with ground truth of camera poses and image depths.
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The main functions of the developed simulator are created with visual scripting (node-

based) and the main game objects that contains the most important FSMs (function

nodes) are as follows:

• actionManager: this is the host of most important events

– start path maker: creating a path for the virtual camera;

– start cam mover: calling the cam mover to start moving the camera;

– stop cam mover: calling the cam mover to stop moving the virtual camera;

– load UI: updating all UI elements when we reset or load the settings;

– start manual control: calling the manual control to start controlling the virtual

camera manually.

• dataSaver: handling all data capture and saving processes;

• 3dCamPiv: containing monocular cameras, stereo cameras and also light sources;

• settingManager: containing all settings that users set, load or default simulator

settings;

• statusUpdater: when “START” button is pressed, this FSM will update the status

inside the simulator UI;

• camMover: when “START” button is pressed, this FSM will handle the camera

movement through the generated path;

• manualControl: when “START” button is pressed, if the working mode is set to

manual, this FSM will handle the manual camera movement;

• pathMaker: this FSM handles the processing of creating the camera path.

3.4 Virtual Camera Design and Configuration

The developed simulator can be set into monocular virtual camera mode and stereo virtual

camera mode. With the UI of the simulator, users can adjust specific parameters of the
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virtual camera, such as the camera FOV, which can be set within [50°, 150°], and the

corresponding range of focal length, which can be set within [1mm, 8mm]. Additionally,

the baseline of stereo camera can be set within [0.5mm, 4.5mm]. Fig. 3.11 shows the

simulator when it is working in stereo mode.

Figure 3.11: The Snapshot of the Developed Colonoscopy Simulator
Working in Stereo Mode. It supports users to adjust the field of view of the stereo
camera and the baseline between the left and right cameras.

To simplify the camera parameters setting and fly the camera inside the colon mesh model

in Unity, one default camera flying path is created by duplicating some empty GameOb-

jects inside the colon mesh model (see Fig. 3.12). These empty GameObjects serve as the

camera curve path points in Unity. Thus, to create some different paths, we just need to

move these points a little to other positions. For a random path, these points will be move

randomly by adding some random noises.

3.5 Colon Deformation Simulation and Post Processing Ef-

fects

To simulate the topological deformation of the colon, the centerline of the colon mesh

model is extracted and represented by a set of points. Each point is associated with an

orthogonal cross section [62]. By moving the points of the centerline and mapping the
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Figure 3.12: A Default Camera Flying Path. A default camera flying path
created by duplicating some empty GameObjects inside the colon mesh model.

cross sections, the overall shape of the colon will be deformed. To simulate the local

deformation of colon, the Vertex Manipulation model (a mesh deformer in Unity) is used

and we adjust colon mesh vertex positions with different levels of force to simulate local

deformations caused by muscle contractions or external forces.

To make the colon model in the simulator more close to the real colon inside environ-

ment and provide different scenarios of datasets, we add more properties to the colon

shader. Then, users can change the parameters of hue, saturation, color, reflectiveness,

wetness, vessel size, and vessel opacity. Fig. 3.13 shows a visual comparison between

real colonoscopic images with clearly structure and the simulated images generated by the

developed simulator. The motion blur and image distortion effects are currently not taken

into consideration in the developed simulator.

3.6 Obtanning Synthetic Datasets from the Simulator

To use the developed simulator to collect synthetic colonoscopy datasets, we can follow

the steps below:
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Figure 3.13: Visual Comparison between Simulated and Real Colonoscopic
Images. The first and third rows show real images generated from a colonoscopy, the
second and the last row shows simulated images generated from the simulator.

(1) Uisng the UI panel located in the top left corner of the simulator, the user can select

the “Save images”, “Depth & Pos” menus to save captured images with corresponding

ground truth of depth and poses (see Fig. 3.14);

Figure 3.14: Launch the Simulator and Control the Virtual Camera. Press
the “START” menu to launch the simulator. The move speed of the virtual camera can
be adjusted to various values. To rotate the camera, use the W, S, A, D keys on the
connected keyboard; to move the camera, use the Up and Down arrow keys on the
keyboard.

(2) If the user wants to manually control the virtual camera inside the colon, just select the

“Manual Control”, and the control instruction panel will appear and show the following

information: Rotate the camera using the keys W,S,A,D on the connected keyboard; Move

the camera using the Up and Down arrows on the keyboard. When these keys are pressed,

the user can update the rotation and position of the virtual camera accordingly.
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(3) In the top right panel named “Save/Load/Reset”, the user can select the local directory

on our computer to save and reload the settings of the configuration parameters;

(4) The “Capture” panel located in the top right corner allows the user to configure the

capture settings for recording datasets. This panel include options to set the capture

framerate, which determines the number of frames per second that are captured during

the simulation. The user may be able to adjust this value based on their preferences or

requirements.

Additionally, the “Capture” panel also include an option to set the directory or folder in

the user’s computer where the captured datasets will be saved. This allows the user to

specify the location on their computer’s file system where the captured data will be stored

for later use or analysis.

The ability to set the capture framerate and directory in the colonoscopy simulator provides

the user with flexibility and control over the simulation recording process, allowing them

to customize the settings according to their needs and preferences.

(5) The “Material” panel located in the right of the simulator allows the user to adjust

several parameters to change the appearance of the colon inside the environment. These

parameters include:

• Hue: Hue refers to the color tone of the colon. By adjusting the hue parameter, you

can change the overall color of the colon, ranging from warmer tones like red and

orange to cooler tones like blue and green;

• Saturation: Saturation determines the intensity or purity of the color in the colon.

Increasing the saturation parameter will result in more vibrant and vivid colors,

while decreasing it will make the colors more muted and dull;

• Wetness: Wetness parameter controls the level of moisture or shininess on the surface

of the colon. Higher wetness values will make the colon appear more glossy and

reflective, while lower values will make it look drier and less reflective;

• Vessel size: Vessel size parameter determines the size of blood vessels or veins visible

on the surface of the colon. Increasing the vessel size will make the vessels appear
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larger and more prominent, while decreasing it will make them smaller and less

noticeable;

• Opacity: Opacity parameter controls the transparency or opacity of the colon ma-

terial. Higher opacity values will make the colon material more opaque and less

transparent, while lower values will make it more translucent.

By adjusting these parameters in the “Material” panel, the user can customize the ap-

pearance of the colon in the simulator to suit desired visual aesthetics requirements.

(6) For the panel named “Light” located in the right of the simulator, it provides options

for configuring the properties of the light source attache to the virtual colonsocope. These

properties include:

• Light Intensity: This setting allows the user to adjust the brightness or intensity of

the light source. Increasing the intensity will make the light brighter, while decreas-

ing it will make it dimmer;

• Valid Light Distance: This parameter determines the maximum distance up to which

the light will be effective. The user can adjust this setting to control how far the

light reaches in the scene. Increasing the valid light distance will make the light

cover a larger area, while decreasing it will limit the range of the light;

• Light Angle: This setting controls the angle of the light cone emitted by the light

source. The user can adjust this parameter to change the spread of the light. A

wider angle will result in a larger coverage area, while a narrower angle will create a

more focused or spotlight effect;

Light Shadow: This option allows the user to enable or disable shadows cast by

the light source. Enabling shadows will create realistic lighting effects in the scene,

with objects casting shadows based on the position and intensity of the light source.

Disabling shadows will result in a flat or unrealistic lighting appearance;

These settings in the “Light” panel provide the user with control over various properties

of the light source, allowing the user to fine-tune the lighting in your scene to achieve the

desired visual effect.



Chapter 3. Colonoscopy Simulator Development 43

(7) Using the “Dynamic” panel located in the right of the simulator, the user can set the

colon deformation with different frequencies and scales;

(8) In the right panel named “Camera”, the user can set the “field of view”, “Focal length”,

and “Stereo or Mono” working modes. If the camera is set to “Stereo”, the lenses distance

can be set;

(9) Some notes: all the positions are defined in the world space, and the camera start

position (first frame) is the center (0,0,0) of the world space. There is no lens distortion

of the virtual cameras and all the captured images are without distortions.

Figure 3.15: Examples of Colonoscopic Images Obtained from the Simulator.
The virtual camera was repositioned to various anatomical regions of the colon in order
to capture images from different perspectives and distances.

Fig. 3.15 show some examples of colonoscopic images obtained from the simulator. The

parameters for configuring the simulator to generate the exampled colonoscopic images

are as following:

• Capture: shots resolution - 320⇥ 240

• Material: hue - 0, saturation - 48, wetness - 100, vessel size - 84, vessel opacity - 41;
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• Light: Light Angle - 150�, Light Intensity - 39, Valid Light Distance - 82 mm, Light

Shadow - False

• Dynamic - False

• Camera: FOV - 74�, focal length - 4.969783 mm,

3.7 Chapter Summary

In this chapter, we introduce the brief development processing of the colonoscopy sim-

ulator. It can simulate the colonscopy procedures and provide experimental datasets in

different scenarios. The main advantages of the simulator include: (1) the dataset with

pose ground truth can be used to develop and test colonoscope camera estimation al-

gorithms; (2) the dataset with dense depth ground truth can be used to train and test

monocular colonoscopic image depth estimation networks; (3) the simulator can simulate

different levels of colon deformation and help to develop colon reconstruction in deformable

scenarios; (4) it can give researchers the freedom for generating customized datasets.

However, For this version of the developed simulator, there are certain texture and color

differences between the simulated colonoscopic images and real images. This is primarily

caused by the use of limited real images to generate the 2D texture map. In the near

future, we plan to enhance the simulator by incorporating more real colonoscopic images

to refine its color and texture. Meanwhile, we will also incorporate deformations caused

by inflation/deflation. The new version of the developed colonoscopy simulator will be

leased once we have completed its development and testing.

To encourage research in the field, we have made the developed colonoscopy simulator

and datasets used in this thesis publicly available. The list of softwares used for the

development of colonoscopy simulator includes:

• Unity (version 2018.2.7F1, 64-bit), which is used for programming and creating the

main body and all functions of the application. The plugins used in Unity contains:

– Playmaker, which is used for node-base programming and creating almost all

functions of the simulator;
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– TextMesh Pro, which is used to have a nice and sharp texts;

– Post Processing Stack, which is used for adding some visual effects such as

Vignette, Bloom and Grain;

– StandaloneFileBrowser, which is used for creating file open/save browser win-

dow;

– AmplifyShaderEditor, which is used for creating the shader of the colonic urface;

– Easy Save 3, which is used for adding save and load functions to the simulator.

• Softimage, which is used for editing the 3D model of the colon, modifying mesh

normals, splitting mesh, baking ambient occlusion to mesh vertex colors, optimizing

mesh triangles, and exporting meshes to “.obj” and “.fbx” formats.

• Zbrush, which is used for editing 3D model of the colon, sculpting over the mesh

and also converting formats between “.stl” and “.obj” formats.

• Unfold 3D, which is used for creating the UV map of the 3D colon mesh.

• Photoshop, which is used for creating the vessels of the texture map.



Chapter 4

A Model-based 3D Reconstruction

of Colon Structures and Textures

from Stereo Colonoscopic Images

In this chapter, we introduce our first framework for reconstructing a 3D map of the

internal surface of the colon using stereo colonoscopy, which is the main contribution of

this chapter. The input of our framework is a sequence of stereo colonoscopic images and

a corresponding colon mesh model segmented from pre-operative CT scans, and the final

output of the framework is the reconstructed and texturized 3D colon maps. Specifically,

this work will focus on resolving the following problems assuming no much deformation

happens:

1. How to robustly estimate the motion of the camera inside a human colon during

colonoscopy;

2. How to precisely reconstruct a complete 3D virtual colon map from stereo colono-

scopic images;

3. How to map the texture from colonoscopic images to the reconstructed map.

The proposed framework is validated on datasets of different scenarios from the developed

colonoscopy simulator and the accuracy of the reconstruction and texture rendering is

46
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within [�0.04, 0.04] rad for Euler angles, and [�0.5, 0.5] mm for translation. The rest

of this chapter is organized as follows: Section 4.1 describes the proposed framework.

Section 4.2 presents the technical details of the proposed framework. Section 4.3 provides

validation and experimental results. Section 4.4 summarizes this chapter.

4.1 Overview of the Framework

Fig. 4.1 illustrates the proposed framework for reconstructing and texturing a 3D colon

map from stereo colonoscopic images, which includes 3D scan reconstruction from stereo

images, VO based camera initialization, geometric and photometric scan to colon model

registration and barycentric-based texture rendering.

Disparity map

Stereo 

images

Initial 

pose

2D SIFT matches between 

consecutive frames

3D key points between 

consecutive scans 

3D key points

Scan to colon 

model registration

Optimized pose from the previous scan

3D sparse key correspondences

between scan and colon model

Photometric and

Geometric constraint

Barycentric 

coordinates based 

texture rendering

Colon map with displaying 

missing regions

Point 

correspondences

VO  based camera

pose initialization 

Lifting 2D features

into 3D scans

2D 

features

Figure 4.1: The Framework of Reconstructing and Texturing 3D Colon
Structures From Stereo Colonoscopic Videos

The developed colonoscopy simulator works in a way similar to a real colonoscopy, it

starts to take images during the withdraw processing of the colonoscope, which means the

reconstruction processing starts from the distal end of the human colon. Therefore, the

3D colon map is initially reconstructed by the geometric-only ICP registration between

the first estimated scan and the colon model. Then, each time when a new frame is

incorporated, the relative pose between the current scan and the previous scan is estimated

by the VO module. As a result, this relative pose combined with the optimized pose

between the previous scan and the colon model estimated in the last step is used as the

initial guess of the relative pose between the current scan and the colon model.
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This initial guess sets the current scan to a good initial position for registration between

itself and the colon model. After that, the developed geometric and photometric based

scan registration is applied between the current scan and the colon model. Hence, the

pose of current scan is optimized and dense point correspondences between the scan and

the vertices of the colon model are established from the proposed registration processing.

Based on the established point correspondences, texture coordinates between 2D color

images and the colon model are extracted using the barycentric-based mapping algorithm.

Section 4.2 will explain all the modules in details.

4.2 Technical Details

The proposed framework includes 3D scan (point cloud with RGB information) reconstruc-

tion from stereo images, a visual odometry (VO) based camera pose initialization module,

a 3D registration scheme for matching texture scans to the segmented colon model, and

a barycentric-based texture rendering module for mapping textures from colonoscopic im-

ages to the reconstructed colonic surface.

Figure 4.2: 3D Scan Reconstruction from Disparity Map Through SGM. The
left shows Red-Cyan composite view of the rectified stereo pair image; the middle shows
the disparity map; the right shows reconstructed 3D scan.

4.2.1 3D Scan Reconstruction from Stereo Images

The SGM algorithm [63] is used as the scan reconstruction method. As shown in Fig. 4.2,

first, create the stereo anaglyph of the rectified stereo pair images. Second, compute the
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disparity map from the pair of rectified stereo images using SGM algorithm. Then, the 3D

coordinates of the pixel points in the camera coordinate frame are computed to reconstruct

a 3D scan and each 3D scan has one to one correspondence to a corresponding 2D image.

Fig. 4.3 shows an example of ground truth scans and corresponding reconstructed 3D

scans, respectively.

Figure 4.3: Examples of reconstructed scans and ground truth. The first and
third rows show ground truth scans, the second and last rows show corresponding scans
reconstructed from stereo images.
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4.2.2 Sparse Key Correspondences and Camera Pose Initialization

In the VO based camera motion initialization module, as shown in the following Fig. 4.4,

first, two disparity maps are computed from the current and the previous pairs of stereo

images and the corresponding two 3D scans can be computed from the disparity maps.

Then, SIFT features are extracted and matched between the consecutive left images. For

an accurate motion estimation, the RANSAC algorithm is used to remove outliers from the

set of 2D SIFT feature correspondences. After that, these 2D SIFT features are migrated

into 3D scans by tracing the pixel indices of these 2D SIFT points in their corresponding

3D scans, and a set of 3D key point correspondences (anchor points) between the two

scans are acquired.

Figure 4.4: VO: Sparse Key Correspondences and Camera Pose
Initialization.

In our experiments, we extract and match SIFT features from the simulated datasets Case

1 to Case 15 (refer to Table 4.1), respectively. The average number of successfully matched

SIFT features for consecutive images with resolution 640⇥ 480 is 129. After applying the

RANSAC algorithm on the SIFT matches, the mean rate of outliers is 9.7%. Fig. 4.5

shows some examples of extracted SIFT features from simulated colonoscopy images.

We also calculate the rate of SIFT match outliers on real in-vivo colonoscopic images, the

average number of successfully matched SIFT features between consecutive images with

resolution 270⇥ 216 is 116. After applying the RANSAC algorithm on the SIFT matches,
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Figure 4.5: 2D SIFT Matches Between Consecutive Simulated Colonoscopic
Images: the first column and the third column show SIFT feature matches with many
outliers; the second and the fourth column show the corresponding SIFT feature
matches after using RANSAC algorithm.

the mean rate of outliers is 8.2%. Fig. 4.6 shows some examples of extracted SIFT features

from real colonoscopy images.

It should be noted that only clearly visible consecutive frames with specific overlaps have

been tested. This is because fast camera motion can lead to motion blur and the loss

of feature correspondence, which can result in inaccurate camera pose estimation and

3D reconstruction. If the camera speed is increased, the proposed colon reconstruction

framework can still function effectively only when frames remain clearly visible and there

are certain overlaps between consecutive frames.

Since the 3D-to-2D method is more accurate than 3D-to-3D methods [64] and the RANSAC

algorithm can help to remove outliers. After acquiring 2D SIFT feature point correspon-

dences and corresponding 3D anchor point correspondences from the SIFT approach. The

P3P algorithm in conjunction with the RANSAC algorithm are applied [65] on 3D-to-2D

point correspondences to estimate the camera motion robustly. Meanwhile, the RANSAC

algorithm is used in conjunction with existing solutions to make the final solution for
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Figure 4.6: 2D SIFT Matches Between Consecutive Real Colonoscopic
Images: the first column and the third column show SIFT feature matches with many
outliers; the second and the fourth column show the corresponding SIFT feature
matches after using RANSAC algorithm.

the camera pose more robust to outliers. In details, we recover the camera motion iter-

atively using the P3P algorithm and eliminate spurious point correspondences using the

M-estimator sample consensus (MSAC) [66] algorithm which is a variant of RANSAC al-

gorithm. In each iteration, a subset of four points correspondences are randomly selected

and get up to 4 solutions for the pose using three pairs of points, then choose the best

solution using the 4th point pair. After that, computing the reprojection errors in pixels

for all the points using the estimated pose and finding outliers from the set of all points

fit with a predefined threshold of reprojection error. If the fraction of inliers over the

total number points in the set exceeds a predefined threshold, the model parameters are

re-estimated using only the identified inliers, and the process is terminated. Otherwise,

repeating the above steps for a prescribed maximum number of iterations. Finally, this

relative pose between the current scan and the previous scan is then combined with the

optimized pose of the previous scan and used as the initial pose of the current scan in the

scan-to-model registration processing described in Section 4.2.3.
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The proposed approach involves determining the relative pose between a current scan and a

previous scan in the scan-to-model registration process. This is achieved by first estimating

the pose using all available point correspondences between the two scans, followed by

computing the reprojection errors in pixels for all points using the estimated pose. Outliers

are identified using a predefined threshold of reprojection error, and if the fraction of inliers

exceeds a predefined threshold, the model parameters are re-estimated using only the

identified inliers, and the process is terminated. Otherwise, the aforementioned steps are

repeated for a prescribed maximum number of iterations. Finally, the relative pose between

the current and previous scans is combined with the optimized pose of the previous scan

to obtain the initial pose of the current scan for the scan-to-model registration process, as

described in Section 4.2.3.

4.2.3 Scan to Colon Model Registration

One can build the 3D colon map by incrementally registering all the scans together, but

the errors of poses estimation accumulate during scan to scan registration. Also, only the

geometric constraint applied on the registration causes inconsistency of texture matching in

the overlapping region of two scans. To address these problems, we formulate an objective

function by combining the geometric constraint and the photometric feature constraint:

E(T ) = (1� �)EG(T ) + �EF (T ), (4.1)

where EG(T ) is the geometric term of the objective function and the EF (T ) is the pho-

tometric feature term provided by the pair-wise 3D sparse anchor points generated from

2D SIFT features described in Section 4.2.2, � 2 [0, 1] is the weight that balances the

two terms. Here “photometric” is used to express that these constraints are from the

texture information instead of the geometric structure. Our goal is to find the optimal

transformation T that best aligns the reconstructed scan to the colon model.

The geometric term EG(T ) sums all the squared distances between each source point si =

[six, siy, siz, 1]
T in a scan and the tangent plane at its closest point di = [dix, diy, diz, 1]

T

in the colon model:
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EG(T ) =
X

i

((T · si � di) • ni)
2 (4.2)

where ni = [nix, niy, niz, 0]
T is the unit normal vector at di, and “•” denotes the dot

product.

Similarly, the photometric term EF (T ) sums all the point-to-point distances between the

3D anchor point sfj = [sfjx, s
f
jy, s

f
jz, 1]

T in a scan and its corresponding 3D anchor point

df
j = [dfjx, d

f
jy, d

f
jz, 1]

T in the colon mesh, provided in Section 4.2.2:

EF (T ) =
X

j

(T · sfj � df
j ) • (T · sfj � df

j ). (4.3)

4.2.4 Optimization Details

We minimize the objective function E(T ) of the non-linear least-squares problem by linear

approximation to the rotation matrix [67]. At the kth iteration, T can be expressed as

following:

T = ∆T · T k (4.4)

where T k is the global transformation estimated in the last iteration and ∆T is the incre-

mental 3D rigid-body transformation which is composed of a rotation matrix R(↵,�, �)

and a translation matrix t(tx, ty, tz):

∆T = t(tx, ty, tz) ·R(↵,�, �) (4.5)

where

t(tx, ty, tz) =

2
6666664

1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1

3
7777775

(4.6)
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and

R(↵,�, �) = Rz(�) ·Ry(�) ·Rx(↵)

=

2
6666664

cos � cos� � sin � cos↵+ cos � sin� sin↵ sin � sin↵+ cos � sin� cos↵ 0

sin � cos� cos � cos↵+ sin � sin� sin↵ � cos � sin↵+ sin � sin� cos↵ 0

� sin� cos� sin↵ cos� cos↵ 0

0 0 0 1

3
7777775

(4.7)

Rx(↵), Ry(�), Rz(�) are rotations of the angles ↵, � and � around the x-axis, y-axis and

z-axis, respectively. When the incremental rotations of each iteration are small, it can be

approximated as following:

R(↵,�, �) ⇡

2
6666664

1 ↵� � � ↵� + � 0

� ↵�� + 1 �� � ↵ 0

�� ↵ 1 0

0 0 0 1

3
7777775
⇡

2
6666664

1 �� � 0

� 1 �↵ 0

�� ↵ 1 0

0 0 0 1

3
7777775

(4.8)

Then, T is approximated by:

T ⇡

2
6666664

1 �� � tx

� 1 �↵ ty

�� ↵ 1 tz

0 0 0 1

3
7777775
· T k (4.9)

Each (T · si � di) • ni in (4.2) can be written as a linear expression of the six parameters

↵, �, �, tx, ty and tz:

(T · si � di) • ni = [si ⇥ ni, n
T
i ] · [↵,�, �, tx, ty, tz]

T � [di � si] • ni (4.10)

where si = T k ·si. Given N1 pairs of point correspondences in term EG(T ), we can arrange

all (T · si � di) • ni , 1  i  N1, into a matrix expression:

A1x� b1 (4.11)
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where A1 is a N1 by 6 matrix, b1 is a N1 by 1 vector and x = [↵,�, �, tx, ty, tz]
T is a 6 by

1 vector:

A1 =

2
6666666664

s1 ⇥ n1, n
T
1

...

si ⇥ ni, n
T
i

...

sN1
⇥ nN1

, nTN1

3
7777777775

, b1 =

2
6666666664

[d1 � s1] • n1

...

[di � si] • ni

...

[dN1
� sN1

] • nN1

3
7777777775

(4.12)

Similarly, each (T · sfj � dfj ) in (4.3) can also be written as a linear expression group of x:

T · sfj � dfj =

2
6664

[sfjz · � � sfjy · � + tx]� [dfjx � sfjx]

[sfjx · � � sfjz · ↵+ ty]� [dfjy � sfjy]

[sfjy · ↵� sfjx · � + tz]� [dfjz � sfjz]

3
7775 (4.13)

where sfj = T k · sfj . Given N2 pairs of anchor point correspondences in term EF (T ), we

can arrange all T · sfj � dfj , 1  j  N2, into a matrix expression:

A2x� b2 (4.14)

where A2 is a N2 ⇥ 3 by 6 matrix and b2 is N2 ⇥ 3 by 1 vector:

A2 =
h
AT

21 ... AT
2j ... AT

2N2

iT
, b2 =

h
bT21 ... bT2j ... bT2N2

iT
(4.15)

with A2j =

2
6664

0 sfjz �sfjy 1 0 0

�sfjz 0 sfjx 0 1 0

sfjy �sfjx 0 0 0 1

3
7775 and b2j =

2
6664

dfjx � sfjx

dfjy � sfjy

dfjz � sfjz

3
7775.

Therefore, we can obtain the optimal x by solving for:

min
x

(1� �)|A1x� b1|
2 + �|A2x� b2|

2, (4.16)

which is a linear least-squares problem, and can be solved by setting the derivative of the

objective function with respect to the x to zero. Then, the solution is:

xopt = ((1� �) ·AT
1 ·A1 + � ·AT

2 ·A2)
�1 · ((1� �) ·AT

1 · b1 + � ·AT
2 · b2) (4.17)
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Since the obtained solution is an approximation, we will apply it to (4.5) to map the

estimated transformation into SE(3). In each iteration, we solve the linear system in

(4.16), and update T by applying the incremental transformation ∆T to T k using (4.4).

In the next iteration, we rep-linearize T around T k+1 and repeat.

In (4.17), We use the parameter � to balance the geometric and the photometric term. If

the value of � is too large, the optimization objective will be more close to the point-to-

point objective in the proposed registration algorithm and the optimal solution will mainly

depend on the relatively small number of the 3D anchor correspondences provided by the

2D SIFT approach which represent texture features, but the optimal solution may not be

reliable when some anchor correspondences are not correct or less accurate. However, if

the value of � is too small, the optimization objective will become close to the geometric

term and the feature based regulation term becomes less effect on the optimal solution,

and this causes inconsistency of texture matching in the overlapping region of two scans.

In this work, we set � to 0.5.

Once the optimization processing is finished, the optimal pose is estimated and point

correspondences between the scan and vertices of the colon model are established for

texture rendering described in Section 4.2.5.

4.2.5 Texture Mapping using Barycentric Coordinates

One can assign RGB color data from points in each scan to the corresponding vertices in

the colon mesh, then color each pixel of a triangle face by interpolating between the colors

of the three vertices in the colon mesh model. However, the texture in triangle faces will

be blurry since the vertices in the colon mesh are much sparser than the point cloud in

the scans and one vertex in the colon mesh may correspond to multiple points in a scan.

Thus, in this work, we use a barycentric based texture rendering technique to map textures

from colonoscopic images to the reconstructed colonic surface. As we can see from Fig. 4.7,

for three vertices A, B, C of one triangular 4ABC face in the colon mesh, we can extract

their matched points in the 3D reconstructed scan by referring to the established point

correspondences between the scan and the vertices of colon mesh. Furthermore, as each
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3D point in a scan corresponds to a 2D pixel in a 2D image when reconstructs the scan,

we can extract a triangular texture region 4abc (where a, b, and c are the 2D location of

three vertices of the triangle) in 2D images corresponding to each triangle 4ABC face in

the colon mesh.

After that, we use barycentric mapping technique [68] to map pixel color from the 2D

texture region4abc to the 3D triangle4ABC face. For an arbitrary 3D point P(xP, yP, zP)

inside the triangle 4ABC, there is a unique sequence of three numbers, �1 � 0,�2 �

0,�3 � 0 to represent it: 8
>>>>>><
>>>>>>:

xP = �1xA + �2xB + �3xC

yP = �1yA + �2yB + �3yC

zP = �1zA + �2zB + �3zC

1 = �1 + �2 + �3

(4.18)

where �1, �2, �3 indicate the barycentric coordinates of the point p with respect to the

triangle. Once we have the barycentric coordinates, the texture coordinates of P can

be determined by interpolating the texture values at the vertices using the barycentric

coordinates as weights: 8
<
:
up = �1ua + �2ub + �3uc

vp = �1va + �2vb + �3vc
(4.19)

Overall, it takes the following steps to texturize the reconstructed colonic surface from

multiple colonoscopic 2D images:

P(𝑥P, 𝑦P, 𝑧P)p(𝑢p, 𝑣p)
A(𝑥A, 𝑦A, 𝑧A)

(0,0)

C(𝑥C, 𝑦C, 𝑧C)
B(𝑥B, 𝑦B, 𝑧B)

a(𝑢a, 𝑣a)
b(𝑢b, 𝑣b)

c(𝑢c, 𝑣c)𝑣

𝑢

Triangular texture regions Triangular faces in the colon mesh

Figure 4.7: Barycentric Coordinates Based Texture Mapping.
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• Establishing triangular texture region in 2D texture images for each triangle face in

the colon model;

• Using a set of barycentric coordinates to interpolate arbitrary points inside each

triangle face in the colon model;

• Calculating each interpolated point’s texture coordinates in its corresponding trian-

gular texture region based on its barycentric weights;

• Mapping textures from the triangular texture region to the triangle in the colon

model.

Fig. 4.8 shows the texture quality comparison between the proposed approach and patch

coloring approach. We can find that the texture quality from the proposed texture ren-

dering method is more clear and accurate.

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

(a) Barycentric-based texture rendering (b) Patch rendering

Figure 4.8: Texturized Rectum Colon using Two Different Texture
Rendering Approaches. (a) shows barycentric coordinates based texture rendering;
(b) shows texture rendering from patch rendering.
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4.3 Experiments and Results

In the experiments, we begin with showing the limitations of the state-of-art SLAM al-

gorithms Kintinuous [49], ElasticFusion [48], KinectFusion [69], ORB-SLAM2 [42] and

StereoDSO [47] to colonoscopic datasets captured in scenarios simulating the real normal

colonoscopy screening as well as in scenarios where the camera is operated with very slow

camera motion. Then, we validate the robustness and accuracy of the proposed framework

using 15 different datasets collected in different scenarios using the developed colonoscopy

simulator. Finally, an in-vivo video sequence is used to demonstrate the practicality of the

proposed framework. Note that the experiments with state-of-the-art RGB-D SLAM algo-

rithms are not trying to make comparisons, but to show the limitations of these methods

when applied to colonoscopic images.

Table 4.1: A Brief Summary of Data for Evaluating the Proposed Framework

Case Frames Path Case Frames Path Case Frames Path

0 6000 manual 1 259 auto 2 260 auto

3 260 auto 4 260 auto 5 260 auto

6 260 auto 7 845 manual 8 362 manual

9 279 manual 10 192 fully 11 618 fully

12 859 fully 13 679 fully 14 339 fully

15 150 fully

The resolution of all collected colonoscopic images is 640 ⇥ 480, the baseline of stereo
camera is set to 4.5mm and the camera field of view is set to 74° with correspond-
ing focal length 4.969mm. “auto” represents that datasets were auto captured on the
simulator-planned camera flight paths; “manual” represents that datasets were man-
ually captured by three people with different clinical skills; “fully” represents that
datasets were captured on the designed camera flight paths that aim to fully recover
the internal surface of the colon.

The summary of experimental datasets captured using our developed simulator is shown

in Table 4.1. For the colonoscopy simulator, the virtual camera can work in two modes,

one is automatic flying mode and the other is manually controlling mode. In the automatic

mode, we can set the camera’s total flight time to fly through the whole colon and set

the number of captured images per second, in the experiments, the framerate is set to 4.

In the manually controlling mode, we rotate and move the camera using a keyboard and

capture images in different camera poses. Therefore, the actual frame rate of the video is

not specified in this mode.
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4.3.1 Evaluation of RGB-D and Stereo SLAM Systems on Colonoscopic

Images

We run all the SLAM algorithms in offline mode. For RGB-D SLAM algorithms Kintin-

uous, ElasticFusion and KinectFusion, the images from the left camera together with the

corresponding ground truth depth are used. The paired stereo color image sequences are

input into ORB-SLAM2 and StereoDSO to reconstruct maps.
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(a) ElasticFusion (b) StereoDSO (c) ORB-SLAM2

Figure 4.9: Trajectories and Maps Estimated From SLAM Systems on Case
8 with Normal Camera Motion: (a) The trajectory estimated from ElasticFusion
suffers from large errors; (b) StereoDSO only obtains the trajectory of the last part of
the colon; (c) ORB-SLAM2 only obtains the trajectory of the last part of the colon.

(a) StereoDSO (b) ORB-SLAM2

Figure 4.10: Maps Estimated From SLAM Systems on Case 8 With Normal
Camera Motion: (a) StereoDSO obtains sparse point clouds; (b) ORB-SLAM2
obtains a small segment map corresponds to its trajectory.

The datasets captured from a normal colonoscopy scenario (Cases 7 to 9) are first used

and all the SLAM algorithms fail. Fig. 4.9 illustrates the failures using Case 8. Since
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the major working principle of KinectFusion relies heavily on feature matching step using

ICP, it fails when the camera moves fast during the normal colonoscopy procedures. For

the voxel-based Kintinuous and surfel-based ElasticFusion, fast camera motion violates

the assumption behind projective data association and hinders tracking performance, so

their estimated trajectories suffer from very large errors which create many outlier points

and no map is generated. StereoDSO extracts candidate points from the first frame in

initialization and fails to track them in the following key frames. It keeps resetting until

the last segment of the colon, and thus only generates a very short trajectory with sparse

point clouds (see Fig. 4.10 (a)). This also happens to ORB-SLAM2, it only obtains a small

segment of sparse map (see Fig. 4.10 (b)). Therefore, the experiment results show that

these SLAM systems are not suitable for map reconstruction using images from normal

colonoscopy procedures.

By constrast, as shown in Fig. 4.19, our proposed method can estimate camera poses

with high accuracy and reconstruct clear colon maps on Case 7, Case 8 and Case 9. Our

proposed method can deal with large inter frame motions and small overlaps during normal

colonoscopy, while the state-of-the-art stereo or RGB-D SLAM methods cannot. This is

mainly because of the use of preoperative CT model and optimization with both geometric

and photometric constraints. If there is no overlap between two frames, the optimization

will be degenerated to a pure geometric registration problem. But this is not suggested

since the accuracy (especially the texture accuracy) will decrease a lot because of the lack

of photometric constraints.

Then, we collect a large complete set of colonoscopic image sequences with very unrealisti-

cally slow camera motions (Case 0). It contains 6k pairs of stereo color and depth images.

Fig. 4.11 shows comparison of the ground truth trajectory and estimated trajectories from

the different SLAM algorithms, and the reconstructed maps are shown in Fig. 4.12. It

shows that Kintinuous performs poorly because the trajectory is long and has a lot of

turns as well as the camera is forward facing. ElasticFusion recovers the main topological

structures but the estimated trajectory is very wrong. KinectFusion is very easy to lose

tracking and only able to reconstruct a small segment of the colon map. The initialization

of StereDSO is slow and unstable if there are only little rotations without relatively large

translations. The estimated trajectory of StereoDSO has large drift and the obtained



Chapter 4. A Model-based 3D Reconstruction of Colon Structures and Textures from
Stereo Colonoscopic Images 63

1

2

3

4

1

2

4 3

(a) Kintinuous (b) ElasticFusion

(c) StereoDSO (d) ORB-SLAM2

Figure 4.11: Comparison of the Ground Truth Trajectory and Estimated
Trajectories on Case 0 with Very Slow Camera Motion: (a) Kintinuous suffers
from large errors; (b) ElasticFusion recovers the main topological structures, the turns
numbered 1, 2, 3 and 4 in estimated trajectory correspond to the turns numbered 1, 2, 3
and 4 in the ground truth trajectory, respectively; (c) The initialization of StereoDSO is
unstable and it recovers a complete trajectory with large drift; (d) The initialization of
ORB-SLAM2 is more stable than StereoDSO and it obtains a relatively good trajectory
with drift.
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(a) The ground truth (b) ElasticFusion

(c) StereoDSO (d) ORB-SLAM2

Figure 4.12: Reconstructed Maps on Case 0 with Very Slow Camera Motion:
(a) The ground truth map; (b) ElasticFusion recovers the main topological structure of
the colon; (c) StereoDSO recovers a complete semi-dense map with large drift; (d)
ORB-SLAM2 obtains sparse map.
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map is unacceptable. ORB-SLAM2 can obtain a reasonable trajectory with drift but it

only built a sparse map. The evaluation results show that these stereo or RGB-D SLAM

algorithms are not directly suitable for 3D reconstruction in colonoscopy even with the

unrealistic very slow camera motion.

Fig. 4.13 shows the estimated trajectory and reconstructed map using the proposed frame-

work on Case 0 with very slow camera motion. Our estimated trajectory is very close to the

ground truth trajectory, which proves the high accurate pose estimation of the proposed

algorithm. Also, the reconstructed colon map using our method is accurate and shows

clear textures, and we can find a lot of missing detected regions on the reconstructed map.

(a) Trajectories (b) Our reconstructed map

Figure 4.13: Estimated Trajectory and Reconstructed Map on Case 0 with
Very Slow Camera Motion using the Proposed Framework. The left figure
shows that our method can achieve very accurate pose estimation. The right figure
shows that our reconstructed map is close to the ground truth.

4.3.2 Colon 3D reconstruction on Simulator-planned Camera Flight Paths

In this and the following two subsections, we evaluate our algorithm using datasets col-

lected in different scenarios. Six planned camera flight paths are generated by the simulator
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to automatically guide the camera through the entire colon lumen and we record Case 1

to 6 of the experimental datasets.

Fig. 4.14 (a) shows the trajectory of camera flight path in Case 1 and Fig. 4.14 (b) shows

the corresponding reconstructed complete colon map with detailed textures.

(a) Camera path on Case 1 (b) Reconstructed map on Case 1

Figure 4.14: Flying Trajectory and Reconstructed 3D Map on the
Simulator-planned Cases: (a) shows the trajectory of camera flight path in Case 1
and (b) shows the reconstructed complete colon map with detailed textures.

Fig. 4.15 (a) and Fig. 4.15 (b) illustrate the registration errors (on datasets Case 1)

between scans from stereo images and colon model using the proposed joint optimization

algorithm. The Euler angle errors along X, Y and Z axis are within [�0.04, 0.04] rad and

the translation errors along X, Y, Z are within [�0.5, 0.5] mm, respectively.

Fig. 4.16 (a) and Fig. 4.16 (b) show the Euler and translation error distributions on

datasets Case 1 to Case 6, respectively, which validates the robustness and accuracy of

the proposed method. For each scan to colon model registration, the algorithm takes 50

iterations on average to converge.
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(a) Euler angle error on Case 1 (b) Translation error on Case 1

Figure 4.15: 3D Reconstruction Errors on The Simulator-planned Datasets
Case 1. r, p and y represent roll, pitch and yaw angles along axis X, Y and Z axis
respectively.
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Figure 4.16: 3D Reconstruction Results on The Simulator-planned Case 1 to
Case 6.

Fig. 4.17 shows the comparison between several textured regions which are reconstructed

by the proposed method and the actually seen regions, their textures are slightly different

as the field of view of a scan is smaller than the corresponding pair of stereo images.

The reconstructed colon map is compared to the CT-segmented colon model and the

uninspected regions are shown in Fig. 4.18 in green color. The endoscopist in a local

hospital identify that there are around 25 � 40% of the colon internal surface are missed

in the colonoscopy procedure on Case 1, especially the opposite sides of the colon wall,

since the camera always keep forward moving during its flight.



Chapter 4. A Model-based 3D Reconstruction of Colon Structures and Textures from
Stereo Colonoscopic Images 68

Figure 4.17: Examples of Texture Region Comparison. The first row shows the
ground truth texture regions and the second row shows the corresponding reconstructed
texture regions.

Figure 4.18: Examples of Texture Region Comparison. 25� 40% of the colon
internal surface are missed in the colonoscopy procedures.
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4.3.3 Colon 3D Reconstruction on Manually Flown Paths

To simulate the real colonoscopy procedures by clinicians with different skills, datasets of

Case 7, 8 and 9 are manually collected by three people with different level of clinical skills

after training.

Fig. 4.19 shows the estimated camera trajectories and reconstructed colon maps of Case

7, 8 and 9, respectively. The camera in Case 7 is flown through the entire colon lumen

and the images are taken from the forward, side and opposite view of the colon. For the

camera in Case 8, it took images from the forward views and some side views of the colon.

Very similar to the real colonoscopy procedures, the camera in Case 7 and Case 8 are

operated with sudden changes of rotation and translation. By contrast, the trajectory of

the camera in Case 9 is smooth and the least number of images are taken.

Figure 4.19: 3D Reconstruction Results on Manually Flown Case 7, 8 and 9.
The first row shows the camera flight paths, the second row shows the corresponding
reconstructed colon maps.
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For the reconstructed and texturized colon maps. We can find that the reconstructed map

from Case 7 is more complete than Case 8 and Case 9 because a large amount of colon

internal surface is covered. Although the map from Case 8 is slightly more complete than

Case 9, there are still many areas that are uninspected, especially the opposite sides of

colon folds. After that, the uninspected regions on Case 7, 8 and 9 are shown in Fig. 4.20.

(a) Case 7 (b) Case 8 Case 9

Figure 4.20: Deficient Coverage Displaying on Case 7, Case 8 and Case 9.

The registration error distributions on Case 7, 8 and 9 are shown in Fig. 4.23. The errors

in Case 9 are relative small compared to Case 7 and 8 because its camera motion is smooth

and there are certain overlapped areas between each pair of consecutive frames. Overall,

all the Euler angle errors and translation errors are relatively small.

4.3.4 Colon 3D reconstruction on fully inspected colon

The last evaluation is conducted on datasets of Case 10 to 15 which are manually collected

and aimed to validate the ability of the proposed 3D reconstruction framework to fully

recover the internal colon surface.

As shown in Fig. 4.21, six segments of camera flight paths (from Case 10 to Case 15) are

designed to fully inspect the internal surface of anatomical segments (Rectum, Sigmoid,

Descending, Transverse, Ascending and Cecum) of the human colon, respectively.
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To inspect as much area as possible of the internal surface of the colon and simulate the

real colonoscopy procedures, the camera is manually flown to inspect from the forward,

side and opposite views of the colon segments with challenging conditions including large

changes of viewing angles and close distance to the colon surface. Fig. 4.22 shows very

complete colon maps with detailed textures. Fig. 4.23 shows the mean registration errors

of X, Y, Z axis, which demonstrates the capability and high accuracy of 3D reconstruction

with fully recovery of internal colon surface.

4.3.5 In-Vivo Experiments

We also show some preliminary results using two in-vivo datasets to demonstrate the

practicality of the proposed framework. The synthetic colonoscopy images with ground

truth of depths are used to train a supervised convolutional neural network for monocular

depth estimation, then the trained network is used to predict depth for the real colonoscopy

images. The predicted depth images are dense and we can reconstruct 3D scan for each

real monocular colonoscopy image. The impementation details of the depth estimation

neural network can be found in Chapter 5.

Fig. 4.24 and Fig. 4.25 show the used colon chunk models and corresponding reconstructed

map of the colon chunks with structures and textures. However, the quality of the recon-

structed map is not as good as that in the simulation experiments. The degradation is

mainly caused by errors of predicted depth images and the deformation of the real colon.

In our next work of Chapter 5, we will show the improved framework to better handle

in-vivo data.

4.4 Chapter Summary

This chapter presents our first framework for 3D reconstruction of colon structures and

detailed textures from stereo colonoscopic images. A colon model segmented from CT is

used together with the colonoscopic images to achieve high quality reconstruction results.

The developed realistic colonoscopy simulator is used for providing experimental datasets

under different scenarios. Indeed, the proposed framework is validated using 15 different
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Figure 4.21: Designed Camera Flight Trajectories to Fully Inspect the
Colon.



Chapter 4. A Model-based 3D Reconstruction of Colon Structures and Textures from
Stereo Colonoscopic Images 73

Figure 4.22: 3D Reconstruction Results on the Fully Inspected Colon.
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(a) Euler angle error statistic (b) Translation error statistic

Figure 4.23: Mean Reconstruction Errors of Case 7 to Case 15.

(a) front view (b) side view

Figure 4.24: Colon Segment Models Used in the In-vivo Experiments.

(a) front view (b) side view

Figure 4.25: 3D Reconstruction of A Real Colon Chunk: (a) and (b) show the
reconstructed colon chunk from the front view and the side view, respectively.
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datasets generated from the simulator. Experimental results have demonstrated the high

accuracy and robustness of the proposed framework. Also, an in-vivo dataset is used to

show the potential clinical applications in colonoscopy procedures.

The proposed framework helps to overcome the limitations of other SLAM methods in the

context of colonoscopy, primarily by addressing three key aspects:

• Dense and textured 3D mapping: Unlike feature-based SLAM algorithms and semi-

dense methods that reconstruct sparse or semi-dense point clouds, the proposed

framework generates a dense and textured 3D colon map. This is advantageous as

it provides a more detailed and visually informative representation of the colon’s

interior. Dense maps can be particularly valuable in medical applications where fine

details may be clinically significant.

• Loop closure handling: In a normal colonoscopy procedure, there are no large loop

closures, which can lead to significant drift errors in camera pose estimation and scene

reconstruction over time. Many SLAM algorithms rely on accurate feature tracking

and large loop closures to mitigate this drift. However, the proposed method takes a

different approach. It avoids the need for large loop closures by using a pre-operative

colon CT-segmented model as a global map for its SLAM framework. This strategy

improves the stability and reduces the drift of successive frame reconstructions. By

leveraging the prior knowledge from the CT model, it compensates for the lack of

loop closures in colonoscopy procedures.

• Fusing photometric and geometric Information: Other SLAM algorithms often rely

on either photometric constraints or geometric terms to estimate camera poses, which

can make it challenging to ensure both geometric accuracy and texture consistency

in the reconstructed maps. In contrast, the proposed method combines photometric

and geometric optimization pipelines within its SLAM framework. By doing so, it

accurately estimates camera poses while simultaneously addressing issues related to

texture matching inconsistencies. This fusion of information likely results in more

robust and visually consistent reconstructions.
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While the current work has yielded promising results, it is essential to acknowledge certain

limitations. First, our proposed framework relies on stereo images due to the necessity of

depth information derived from a stereo matching method. To apply our framework to

3D reconstruction using monocular colonoscopic images, one way is to predict the depth

in monocular images using deep learning based method (as in the in-vivo experimental

result). For example, the developed colonoscopy simulator can generate complete datasets

of colonoscopic images with ground truth of camera poses and depths, then the dataset

can be used to train a supervised network for monocular depth estimation.

Second, due to the texture difference between simulated images and real in-vivo images, an

image to image translation network for domain adaptation [70] can be used to transform

the real colonoscopy images into their synthetic-like representations for depth estimation.

However, if we use monocular images for depth estimation, the achievable reconstruction

accuracy is expected to be reduced.

Third, the non-rigid characteristic of the real colon will cause some degradations such as

inaccuracy in estimating image depth and recovering camera motion. Especially, colon

deformation can impact camera pose estimation from the following aspects:

• Loss of visual features: Deformation of the colon can cause the loss of distinctive

visual features that are used for pose estimation. These features might include land-

marks, blood vessels, or anatomical structures that the camera relies on to determine

its position and orientation.

• Distorted geometry: Deformation can introduce non-linear distortions in the colon’s

shape and geometry. This can make it challenging to accurately estimate camera

poses, as the geometry that the camera ”sees” may not match the expected geometric

model used for pose estimation.

• Tracking errors: Camera pose estimation often relies on tracking specific points or

features in consecutive frames. Deformation can lead to the erroneous tracking of

features or result in the loss of tracking altogether, making it difficult to compute

accurate camera poses.
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• Drift and inaccuracies: Deformation-induced tracking errors and distorted geometry

can lead to pose estimation drift over time. This means that as the camera moves

through the deformed colon, its estimated position and orientation may become

progressively less accurate.

In the next chapter, firstly, we will develop and train deep neural networks for the depth

estimation of monocular colonoscopic images. Secondly, we will improve the proposed

framework with the capability of overcoming colon deformation using a general model and

non-rigid SfM-based approaches. Our goal is to develop robust reconstruction algorithms

for clinical colonoscopic images, and we believe that effective handling of colon deformation

will be an important step towards achieving this goal.



Chapter 5

3D Reconstruction of Deformable

Colon Structures based on

Preoperative Model and Deep

Neural Network

In this chapter, we provide a more robust framework for 3D reconstruction of deformable

colonic surfaces with high accuracy. The input of the framework is a sequence of monocular

colonoscopic images and a corresponding colon mesh model segmented from pre-operative

CT or MRI scans. The output is a reconstructed and texturized 3D colon map. The

proposed framework includes dense depth estimation from monocular colonoscopic images

using a DNN, VO based camera motion estimation and an ED graph based non-rigid reg-

istration algorithm for deforming 3D scans to the segmented colon model. The developed

realistic colonoscopy simulator is used to generate simulation datasets with different levels

of deformation. Simulation results demonstrate the good performance of the proposed 3D

deformable colonic surface reconstruction method in terms of accuracy and robustness. In-

vivo experiments are also conducted and the results show the practicality of the proposed

framework for providing useful shape and texture information in colonoscopy applications.

78
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Compared with our first framework introduced in Chapter 4, the main contributions of

this chapter are as follow.

• A novel framework that can reconstruct 3D deformable colon structures and textures

from monocular colonoscopic videos;

• A ED graph-based non-rigid registration algorithm. Which is used to non-rigidly

register (transform and deform) the 3D scans to the segmented colon model;

• ADNN neural network for depth estimation of monocular colonoscopic images. Com-

pared with the first framework in Chapter 4, the proposed framework is able to

reconstruct colon map from monocular colonoscopic videos;

• A GAN is used to transform the real colonoscopic images into their synthetic-like

representations for depth estimation.

5.1 Framework Overview
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Figure 5.1: The Framework of Reconstructing Deformable 3D Colon Surface
with Detailed Textures.

Fig. 5.1 shows the proposed framework for reconstructing and texturing the deformable

colon surface. It mainly includes the following modules: 1) Dense 3D scan reconstruction

using DNN: reconstructing 3D scan using predicted depths from the depth estimation
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DNN; 2) VO based camera pose initialization: estimating the initial pose of the scan

relative to the CT segmented colon model; 3) Non-rigid registration and texture rendering:

using an ED graph to represent the scan deformation and optimizing the ED parameters

under observed constraints, then using the optimized ED parameters to deform the scan to

the colon model and mapping the textures from the colonoscopy images to the registered

regions on the colon mesh model.

5.2 Technical Details

5.2.1 Generating Ground Truth Dataset

The availability of colonoscopyic images with ground truth of image depths and camera

poses is critical to develop and evaluate colon reconstruction methods. The colonoscopy

simulator described in Chapter 3 is used to generate simulated datasets with different

levels of deformation for traning depth estimation neural nertworks and validating the

proposed colon reconstruction framework.

5.2.2 Dense 3D Scan Reconstruction using DNN

Accurate depth estimation from colonoscopic images is a fundamental task in colon struc-

ture reconstruction. In our project of reconstructing 3D colon map, we prefer to directly

use or develop upon existing front end algorithms to predict image depths. Thus, in our

work of estimating the depth of colonoscopy images, we use the same encoder-decoder net-

work architecture as DenseDepth [71] which is a high quality monocular depth estimation

network using a simple encoder-decoder architecture via transfer learning.

Fig. 5.2 shows an overview of architecture of the DenseDepth network. It mainly contains

two parts which are encoder and decoder. The encoder is used to learn deep features from

the input images and the decoder is used to build the mapping between the extracted deep

features and ground truth depths. For the encoder which consists of multi-convolutional

layers and multi-pooling layers, the top layers that are related to the original ImageNet

classification task is removed and the left network is used as the encoder network. For
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Figure 5.2: Overview of Network Architecture of DenseDepth [71].

the decoder, it starts with a convolutional layer with the same number of output channels

as the output of our truncated encoder, then add four up-sampling blocks, each block

composed of a bilinear up-sampling followed by two convolutional layers.

The loss function of the network is defined as the weighted sum of three terms as following:

L(y, ŷ) = �Ldepth(y, ŷ) + Lgrad(y, ŷ) + LSSIM (y, ŷ) (5.1)

The first loss term represents the depth difference of each pixel in the depth image y and

ŷ:

Ldepth(y, ŷ) =
1

n

nX

p

|yp � ŷp| (5.2)

The second term represents the differences in the x and y components for the depth image

gradients of y and ŷ:

Lgrad(y, ŷ) =
1

n

nX

p

|gx(yp, ŷp)|+ |gy(yp, ŷp)| (5.3)

The third term uses the SSIM metric [72] which is a commonly-used metric for image

reconstruction tasks. However, to make the network compatible with different input data

size, we replace the structural similarity loss function with the multi-scale structural sim-

ilarity loss. Whose structure is smoother and depth gradient is smaller, a smoothness loss

function is added for the in-vivo depth prediction network.

The synthetic colonoscopy dataset is used to train the deep network for monocular colonoscopy

depth estimation. We manually move and rotate the camera inside the colon model and
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capture 10 colonoscopy videos, each containing about 1K frames with ground truth of

depths and camera poses. Then, the datasets are used to train, validate and test the

depth estimation network.

Furthermore, there is texture difference between simulated images and real images, to

make the depth prediction model trained with simulation data perform well on in-vivo

colonoscopic images [37], a GAN is used to transform the real colonoscopy images into

their synthetic-like representations for depth estimation [70]. Therefore, 1K frames of real

colonoscopy images are used together with synthetic frames to train the image domain

transformation network.

Figure 5.3: Domain Translation Transforms Simulated Images into Real-like
Representations. The first and second rows show real images and the simulated
images, the third rows show the real-like representations for simulated images.

Fig. 5.3 shows some examples of real in-vivo colonoscopic images and simulated images

with their corresponding real-like representations.

Fig. 5.4 shows some examples of simulated and real in-vivo colonoscopic images and the

corresponding estimated depth images.

To evaluate the accuracy of the trained depth estimation network, we compare the simu-

lation depth estimation accuracy between a recurrent neural network for depth and pose



Chapter 5. 3D Reconstruction of Deformable Colon Structures based on Preoperative
Model and Deep Neural Network 83

Figure 5.4: Simulated and Real Colonoscopic Images with Predicted Depths.
The first and second rows show simulated images and the corresponding estimated
depth images, the third and the fourth rows show real in-vivo colonoscopic images and
the corresponding estimated depth images.

estimation (RNN-DP) in [25, 52] and our network on 10K frames, the mean absolute

errors of ours and RNN-DP’s are 0.45 mm and 5.70 mm, and the corresponding root mean

square errors are 1.28mm and 7.16mm, respectively. Fig. 5.5 shows the mean absolute

errors comparison from four group of data, the each odd column represent our’s mean

depth error from 250 images and the even column represent corresponding RNN-DP’s.
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Figure 5.5: Mean Absolute Errors Comparison with RNN-DP. Each odd
column represents our’s mean depth error from 250 images and the even column
represents corresponding RNN-DP’s.
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Finally, the estimated dense depth images together with corresponding colonoscopy images

are used to reconstruct 3D scans. Fig. 5.6 shows examples of reconstructed scan on one

frame and it shows that RNN-DP’s depth prediction scale is larger in the fore-end than

the rear end and also its depth accuracy become worse in rear end.

(a) (b) (c)

Figure 5.6: Reconstructed Scan Comparison With RNN-DP: (a) Ground truth
scan; (b) Scan using our depth; (c) Scan using RNN-DP’s depth.

5.2.3 Sparse Key Correspondences and VO Based Camera Pose Initial-

ization

The VO module is similar to the one in Section 4.2.2, which is used to initialize the global

poses of 3D scans relative to the colon model and provide sparse key correspondences to

enhance the accuracy of the non-rigid registration between scans and the colon mesh model.

The main differences are 3D scans reconstruction using the trained depth estimation DNN

and 3D scan non-rigid registration.

To make this chapter complete and easy to follow, we will briefly illustrate the main steps

of sparse key correspondences extraction and camera initialization. Fig. 5.7 shows the

steps to initialize one scan and extract the set of sparse key correspondences between the

scan and the colon model.

First, SIFT and RANSAC algorithms are used to extract spatially scattered SIFT features

between the current RGB frame and the previous RGB frame. Secondly, we trace the pixel

indices of these 2D SIFT features in the current and the previous 3D scans, thus a set
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Figure 5.7: Pipeline for Initializing Scan and Extracting Sparse Key
Correspondences.

of sparse 3D point correspondences between the two scans are obtained. If the previous

scan was well registered to the colon model using the proposed non-rigid registration

algorithm, then dense geometrical 3D point correspondences between the previous scan

and the vertices of the colon mesh model can be extracted using the nearest neighbor

search method. Based on the set of sparse correspondences between the current scan and

the previous scan and the set of dense correspondences between the previous scan and the

colon model, we can infer the sparse key correspondences between the current scan and

the colon model.

After that, the P3P algorithm conjunction with RANSAC algorithm are applied to the

sparse key correspondences to calculate the global pose of the current scan relative to the

colon model. Finally, this computed global pose provides a good initial input for later

deformation parameter estimation. The extracted sparse key correspondence will also be

used as photometric constraint to enhance the accuracy of the non-rigid registration in

Section 5.2.4.

5.2.4 Non-rigid Registration using ED graph

Because of the deformation nature, the region of the colon from the same field view of

the camera does not hold constant shape over long time period, which causes difficulty

to accurately estimate the camera motion and reconstruct smooth 3D colon map with

aligned texture. Furthermore, there will be topological difference between the colon model

segmented from CT scans and the actual colon during the colonoscopy.
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Our non-rigid registration module assumes that the colon model segmented from CT scans

is one moment shape of the dynamic colon and uses this shape as a template of the colon.

Borrowing the basic idea of ED [9], we uniformly sample scattered ED nodes from a scan

and build a deformation graph to facilitate space deformation of the scan.

Different from the classical ED nodes, a rigid pose is added to ED nodes of the deformation

graph since we alternately take two steps to transform and deform the scan to the colon

model. Specifically, the first step is to locally deform the scan using the non-rigid param-

eters of the ED nodes to register it onto the surface of the colon model. The second step

is to use the rigid pose to rotate and translate the scan to ensure its topological structure

is aligned with the colon model.

Thus, each ED node is associated with a position gj 2 R
3, an affine matrix Aj 2 R

3⇥3,

a translation vector tj 2 R
3 together with the rigid rotation matrix R 2 SO(3) and rigid

translation vector t 2 R
3. Each vertex v in the scan has a set of neighbouring ED nodes

in the deformation graph and the deformed position of the vertex ev is calculated as:

ev = �(v) = R

mX

j=1

wj(v)[Aj(v � gj) + gj + tj ] + t (5.4)

where m representing the number of neighboring ED nodes is set to 6.

The proposed non-rigid registration problem is to obtain the optimal ED parameters of

the deformation graph by minimizing the energy function:

min
R,T,A1,t1...Ak,tk

wrotErot + wregEreg + wgeoEgeo + wphoEpho + wrEr + wtEt (5.5)

where k is the number of ED nodes. The energy function has six components: rotation

term, regularization term, geometric term, photometric term, global rigid rotation term

and rigid translation term. In all our experiments, we use the weights as wrot = 1,

wreg = 100, wpho = 1000, wpho = 1, wr = 1000, wt = 1000. Referring to Section 2.2.1,

the first and second terms are functions only defined over the ED graph. Meanwhile, the

other four terms are constrained by data observations and defined as following:
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The geometric term is the sum of point-to-point Euclidean distance on a set of closest

point correspondences between the scan and the vertices of the colon mesh model:

Egeo =
X

g

k�(vg)� vk2 (5.6)

where vg is one source point in a scan and v is its corresponding closest point in the colon

model, �(vg) is the result of applying (5.4) to vg.

The photometric term is used to enhance the alignment of texture in the overlapping

regions from the registration of consecutive scans to the colon model. This term is the error

on the sum of Euclidean distance between the set of pair-wise sparse key correspondences

provided in Section 5.2.3 in the following form:

Epho =
X

p

k�(vp)� vk2 (5.7)

where vp and v are one pair of photometric correspondences between a scan and the colon

model, �(vp) is the result of applying (5.4) to vp.

The rigid rotation and translation terms are measured by the variations of the rigid rotation

R and translation t:

Er = kr� rk2 Et =
��t� t

��2 (5.8)

where Er measures the Euler angles difference, and r and r are the Euler angles of the

rigid rotation R to be estimated and the initial rigid rotation R obtained from VO in

Section 5.2.3, respectively. Similarly, Et measures the Euclidean distance between the

rigid translation t and the initial rigid translation t obtained in Section 5.2.3.

5.2.5 Optimization Details

We minimise the energy function in (5.5) using the iterative GN algorithm. Here, we

rewrite the energy function as F (X) = f(X)TΣ�1f(X), the vector f(X) is defined by

stacking the six constraint functions, the vector X is defined by stacking the embedded

deformation parameters of all the ED nodes together with the rigid transformation, and

Σ
�1 = diag(wrot, ..., wreg, ..., wgeo, ..., wpho, ..., wr, ..., wt) with corresponding dimensions.
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The GN algorithm first linearizes f in the neighborhood of X with Taylor expansion:

f(X+ �) ⇡ f(X) + J� (5.9)

where J is the Jacobian of f(X), in which the Jacobian part of the geometric and photo-

metric terms w.r.t. the rigid camera pose R and t can be calculated by referring to (2.10).

Thus, in each iteration k, an incremental step �k is computed to minimize the linearized

least squares problem (f(Xk) + J�)TΣ�1(f(Xk) + J�) by solving the following equation:

J(Xk)
T
Σ
�1J(Xk)�k = �J(Xk)

T
Σ
�1f(Xk) (5.10)

Before the next iteration, the updated Xk+1 will be used to deform and transform the

original scan to generate a temporary optimized scan. We apply the nearest neighbor

search algorithm to the temporary optimized scan and the colon mesh model to establish

new dense correspondences for the geometric constraint term in (4.2). The sparse key

correspondences for the photometric constraint kept fixed during the whole optimization.

The process repeats until the GN algorithm is converged. The detailed optimization

procedure is listed in Algorithm 1.

5.3 Experiments and Results

The proposed reconstruction framework is validated by simulations and in-vivo experi-

ments. In the simulations, the robustness and accuracy of deformable colon reconstruc-

tion is first assessed via one dataset captured in the scenario simulating the real normal

colonoscopy screening where the camera moves fast with significant view changes. Then,

the framework is validated using other three simulated datasets captured in scenarios where

the camera is operated with slow camera motion and different levels of deformations. Af-

terwards, in-vivo experiments with two colonoscopy videos are performed. Currently, the

proposed algorithm is able to reconstruct a colon in chunks when the colon structure is

clearly visible. In the in-vivo experiments, there are some deformation caused by peristaltic

motion.
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Algorithm 1: Optimization of the ED deformation

Input: Model, scan, photometric set (vp,v)
Output: ED parameters, geometric set (vg,v)
Initialization: extract ED nodes, Aj = I3, tj = 0, R = R, t = t
k := 1, ✏1 = ✏3 = 10�12, ✏2 = 0, kmax = 50, stop := false
while (not stop) and (k < kmax) do

Step 1: Extract dense geometric correspondences (vg,v) between scan and model
for each vertex vg in scan do

�(vg)  Applying (2.11) to vg

v  Nearest neighbor find in model for �(vg)

end
Step 2: One iteration of GN iteration
Solve J(Xk)

T
Σ
�1J(Xk)�k = �J(Xk)

T
Σ
�1f(Xk)

If ||�k||  ✏3 then stop:=true else Xk+1 = Xk + �k
k := k + 1
stop :=
||f(Xk)

T
Σ
�1f(Xk)||  ✏1 _ ||f(Xk)

T
Σ
�1f(Xk)� f(Xk�1)

T
Σ
�1f(Xk�1||  ✏2

end
Deforming scan by applying Xk to the original scan
for each vertex v in scan do

�(v)  Applying (2.11) to v
end

5.3.1 Validation using Simulation Datasets

The first dataset numbered 1 contains 272 frames and there is no deformation force applied

to the mesh deformer. The other three datasets numbered 2, 3, 4 contain around 800 frames

and small, medium and large levels of force are applied to the mesh deformer respectively to

make the colon model has different levels of deformation. Fig. 5.8 shows the reconstructed

colon maps using our approach on all the 4 groups of simulation datasets. The result from

dataset 1 shows that in a normal colonoscopy procedure the camera moves fast and there is

less overlaps between consecutive frames, and our framework can still robustly reconstruct

3D colon structures. In the simulations, around 25-40 % of the colon internal surface are

missed in the colonoscopy procedures, especially the opposite sides of the colon wall.
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(a) Ours using dataset 1 (b) Ours using dataset 2

(c) Ours using dataset 3 (d) Ours using dataset 4

Figure 5.8: Reconstructed Colon Maps using Our approach On Simulation
Datasets: The first row shows the 3D reconstruction of colon using our approach on
dataset 1 and 2, respectively. The second row shows the 3D reconstruction of colon using
our approach on dataset 3 and 4, respectively. There is nearly no drift of our approach
since the colon template is used and 3D scans can be well registered to the template.
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5.3.2 Comparison Between Our approach and RNNSLAM on Simula-

tion Datasets

We compare the proposed approach with the colon reconstruction method RNNSLAM in

[25, 52] and the maps reconstructed using RNNSLAM are shown in Fig. 5.9.

The result from dataset 1 shows that in a normal colonoscopy procedure the camera

moves fast and there is less overlaps between consecutive frames, and our framework can

still robustly reconstruct 3D colon structures. While RNNSLAM cannot work because

it requires DSO to refine the camera pose and DSO fails when camera moves relatively

fast. For dataset 2, 3 and 4, although RNNSLAM can obtain results with slow camera

motion, the results show that the approach in RNNSLAM is prone to large drift especially

when the colon datasets have deformation, while our approach has much less drift. Also,

textures from our framework are clearer and missing regions are shown more clearly in the

maps, this is mainly because our approach handles deformation while RNNSLAM does

not consider that.

5.3.3 Validation using In-vivo Datasets and Compared to RNNSLAM

We use the same in-vivo videos as used in RNNSLAM in our in-vivo experiments. All

the consecutive frames in the same video have certain overlaps and frames which cannot

be clearly visible are removed. The first video contains 96 informative frames and the

second video contains 129 informative frames with the resolution of 320 ⇥ 240. Fig. 5.10

shows the reconstructed 3D maps of colon chunks using our approach and RNNSLAM.

Although there is no ground truth of colon maps, it can be seen that the reconstructed

colon chunks from our method can recover clearer colon structures including colon folds

and topological shape, while the reconstructed 3D colon meshes by RNNSLAM are flat

and lose most of the geometrical structures. Meanwhile, the textures on our reconstructed

map looks clearer compared to RNNSLAM.
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(a) RNNSLAM using dataset 2 (b) RNNSLAM using dataset 3

(c) RNNSLAM using dataset 4 (d) RNNSLAM using dataset 4

Figure 5.9: Reconstructed Colon Maps using RNNSLAM on Smulation
Datasets: The first row shows the results using the method in RNNSLAM on dataset 2
and 3, respectively. No reconstructed colon map generated from dataset 1 by
RNNSLAM when the camera moves fast. The left figure in second shows the
reconstructed colon maps on datasets 4 by RNNSLAM. The right figure in the seond
row shows the ground truth (in blue) and the reconstructed 3D colon from dataset 4
using RNNSLAM which shows the large drift.
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(a) Ours using video 1 (b) RNNSLAM using video 1

(c) Ours using video 2 (d) RNNSLAM using video 2

Figure 5.10: The Reconstruction of Colon Chunks using Our Approach and
RNNSLAM: (a) and (b) show the reconstructed maps on the first in-vivo dataset
using our approach and RNNSLAM, respectively; (c) and (d) show the reconstructed
maps on the second in-vivo dataset using our approach and RNNSLAM.

5.4 Chapter Summary

This chapter presents a robust framework that recovers 3D shape of deformable colon

structures with textures from monocular colonoscopic videos. The proposed reconstruction

framework uses a segmented colon CT model as the template to help deform and register

3D scans into a large 3D colon map while keeping the alignment of textures. The joint

geometric and SIFT based photometric constraints are used to formulate a nonlinear least

squares problem based on ED graph. The reconstructed map is obtained after solving the

optimization problem. Validation by simulation and in-vivo experiments is conducted and

the results demonstrate the practicality of the non-rigid 3D reconstruction framework.
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Compared to the first framework, this framework uses deep learning techniques to estimate

3D scans and reconstruct 3D colon maps from monocular colonoscopic videos, and can deal

with the colon deformation problem by using the proposed non-rigid registration method.

However, both the first and second framework have the following shortcomings that need

further improved. First, the robustness and accuracy of the two frameworks highly rely

on accurate SIFT feature-based sparse key correspondences extraction and camera ini-

tialization. However, the extraction of SIFT is cost computational and work poorly on

some colonoscopic images with less texture. Second, the ICP algorithm is used to estab-

lish dense correspondences between 3D scans and the pre-operative colon model, this is

also time-consuming and computationally costly. Third, the VO module for frame pose

estimation works in an incrementally way, which is slow and suffers from drift. To solve

the mentioned disadvantages, in the next chapter, a batch optimization-based framework

is used to optimize all the frame poses together without extracting any sparse or dense

correspondences.



Chapter 6

Direct Camera-Only Bundle

Adjustment for 3D Textured

Colon Surface Reconstruction

Based on Pre-operative Model

In this chapter, we provide the third framework for 3D reconstruction of colon maps from

monocular colonoscopic images. Different from the first and second frameworks that rely

on VO module to estimate the camera poses w.r.t. the pre-operative colon mesh model,

the colon 3D reconstruction problem in this chapter is formulated as a BA problem, which

estimates all the frame poses simultaneously by maximizing the intensity consistency be-

tween the colon model vertices and multiple views of monocular colonoscopic images. The

key novelty is that the proposed algorithm can avoid the extraction of sparse photometric

and dense geometric 3D correspondences, which is significantly different from the state-

of-the-arts where pair-wise correspondences are required which pose a great challenge for

low-textured colonoscopic images.

Although the intensities of the pre-operative model vertices and all the colonoscopic camera

poses are optimized together in the bundle adjusted formulation of this problem, the pro-

posed method with GN iterations has the merit of optimizing camera poses only without
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optimizing the intensities of the model vertices, which significantly reduce the computa-

tional cost of the proposed algorithm. Building on this finding, we propose the camera-only

BA to solve the camera poses only and show that the algorithm generates exactly the same

camera poses in each iteration as the GN method. The optimal intensity of each vertex

can be easily recovered using a closed-form formula after the optimal camera poses are

obtained. Simulation results demonstrate the good performance of the proposed 3D colon

surface reconstruction method in terms of accuracy and robustness. Phantom and in-vivo

experimental results show the practicality of the proposed frameworks for providing useful

shape and texture information in colonoscopy applications.

6.1 Methodology

6.1.1 Problem statement and Mathematical Formulation

In our proposed framework for solving the problem of textured colon surface reconstruc-

tion, the input is a pre-operative CT-segmented 3D colon mesh model M which consists

of 3D vertices {vj}, j 2 {1, ..., Nv} and triangles Ff , f 2 {1, ..., NF }, and a sequence of

observed 2D colonosopic images {Ii}, i 2 {1, ...,KI}, and the output is a textured 3D

colonic surface map. Given an initial estimation of the camera poses and intensity values

of model vertices, the direct BA jointly optimizes the camera poses {⇠i}
KI

i=1, ⇠i 2 R
6⇥1

as described in (2.6), and intensity values of model vertices {M(vj)}
Nv

j=1, M(vj) 2 R
1,

by minimizing the photometric reprojection errors between the mesh model M and the

observed images {Ii}
KI

i=1. Fig. 6.1 gives an overview the proposed approach.

Suppose the state to be estimated is defined as:

X = {{⇠i}
KI

i=1, {M(vj)}}
Nv

j=1}
T (6.1)

where the variable ⇠i is the camera pose for the i-th image and M(vj) represents the

intensity for the j-th vertex of the mesh model. Then, the photometric error between
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Figure 6.1: Overview of the Proposed Approach. The intensity differences
between the mesh vertices and their re-projections onto the observed images are
minimized to estimate the camera poses.

vertices vj and its reprojection onto the i-th frame is defined as:

eij(⇠i,M(vj)) = Ii(pij)�M(vj)),

pij = ⇡(vj , ⇠i)
(6.2)

where Ii(pij) represents the intensity observation of vertices vj projected onto the i-th

image Ii, ⇡(·) is the camera projection function in as shown in (2.8).

Overall, the proposed BA problem can be mathematically formulated as a nonlinear opti-

misation problem minimising:

min
X

KIX

i=1

NVX

j=1

⇢(pij) keij(⇠i,M(vj))k
2 (6.3)

where ⇢(pij) is equal to 0 or 1, if pij is outside or inside the pixel plane of Ii.

It is noted that data association (feature extract and matching, nearest neighbour searching

and loop closure detections) is not required in the proposed formulation described in (6.3).

By contrast, data association is required and necessary in classical BA which refers to

jointly optimize camera motion parameters (intrinsic and extrinsic parameters) and scene
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structures (3D landmarks) to ensure the 3D landmark projections match the detected 2D

features.

6.1.2 Determining Visibility

Visibility of vertices on the model needs to be considered in the proposed direct BA

problem. As the camera view changes, some viewed 3D vertices will move out of the camera

FOV and some new 3D vertices will become viewed, more importantly some vertices (in

the camera FOV) will be occluded from the mesh structures. To automatically determine

the 3D vertices visibility information is a challenging task.

Typically, the methods are either developed to determine the visible points in a point

cloud or from a surface mesh. For the visibility estimation in point clouds (without re-

constructing a surface mesh), the hidden point removal [73] method is a simple and fast

method, it extracts the points that reside on the convex hull of a transformed point cloud,

which amounts to determine the visible points. However, its accuracy strongly relies on

the tuning of its sphere radius (a global parameter). For the method in [74], it estimates

the visibility of each point by considering its screen-space neighborhood from a given view

points, but this method relies on the parameter tuning of the estimated visibilities.

Ray-casting methods using barycentric-based ray-triangle intersection algorithm are com-

monly used for polygon mesh texture rendering and visibility determination. In detail, a

ray shooting from the camera origin, goes through from every pixel center and into the

scene space. If one casting ray hit more than one triangle, the ray-triangle intersected

depth will be compared and the nearest intersected triangle will be selected as visible

and be used for color rendering of the pixel. However, this ray-casting method cannot be

used directly for the visibility determining of mesh vertices because it will introduce some

occluded vertices and treat them as visible. As shown in Fig. 6.2 (a), if the back-tracing

ray intersects with one triangle from the nearest distance, then the three vertices on the

triangle are considered visible. In fact, two vertices of this triangle are occluded by the

mesh structure. Meanwhile, ray-casting method is very time-consuming as each pixels are

needs to tested against every single triangle in the mesh.
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In contrast, as shown in Fig. 6.2 (b), our proposed method casts rays starting from each

3D vertex (within the camera FOV) and ending at the camera origin, if one casting ray

does not intersect with any triangles, then this vertex is visible, otherwise, it is occluded

and invisible. Our method is also much more efficient than classical ray-casting methods,

since only the vertices within the camera FOV are tested.

(a) (b)

Figure 6.2: Visibility Determining Methods using Barycentric Ray-triangle
Intersection Technique: (a) Occluded vertices are treated as visible using the classical
ray-casting method; (b) our proposed method for visible vertices detection from a mesh.

6.2 Camera-Only BA Solution

6.2.1 Solving BA using Iterative GN Method

The iterative GN algorithm is used to minimise the objective function (6.3). We rewrite

the objective function as:

F (X) = f(X)TΣ�1f(X) (6.4)

where the vector f(X) = [..., eij , ...]
T is defined by stacking all the valid (⇢(pij) = 1) error

term functions and
P

is the covariance matrix which is assigned to an identity matrix.

In each iteration, the GN solver first linearizes f in the neighborhood of current X with

Taylor expansion:

f(X+∆X) ⇡ f(X) + J(X)∆X (6.5)
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where J(X) is the Jacobian matrix of f(X) w.r.t. state vector X and the Jacobian matrix

corresponding to the error term has the following form:

Jij(X) =


01⇥6, .., .01⇥6,

@eij
@⇠i

,01⇥6, ...,01⇥6, 0, ..., 0,
@eij

@M(vj)
, 0, ..., 0

�
, (6.6)

where
@eij(⇠i,M(vj))

@⇠i
=

@Ii
@pij

@pij

@⇠i
,

@eij(⇠i,M(vj))

@M(vj)
= �1,

(6.7)

@eij /@⇠ij is the partial derivative of the error term w.r.t. the camera pose and can be

calculated using (2.10), which has a dimension of 1 ⇥ 6. @eij /@M(vj) is the partial

derivative of the error term w.r.t. the vertex intensity, which has dimension of 1 ⇥ 1.

@Ii /@pij is the image intensity gradient on pixel pij .

Then, the step change ∆X can be obtained by solving the following linear equation:

(J(X)TJ(X))∆X = �J(X)T f(X) (6.8)

We define the coefficients JTJ on the left as the approximation of the second-order Hessian

matrix H and the coefficient on the right as g, then the (6.8) becomes:

H∆X = g (6.9)

If ∆X is small enough that less than a threshold or the maximal iteration is reached, stop

the algorithm. Otherwise update X = X+∆X and repeat the iterative processing.

6.2.2 BA Sparsity and Schur Trick

To solve the linear equation in (6.8), we need to compute the inverse of matrix H, however,

due to the high dimensions of the matrix H 2 R
(NI⇥6+NV )⇥(NI⇥6+NV ), such an inversion

operation is computationally cost.
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An important property of BA is the sparsity pattern of the Gaussin Hessian matrix H

given by the Jacobian matrix J [75, 76]. As we can find that, in (6.6), Ji,j only has non-zero

blocks in column i and j, this indicates that the error term ei,j is only relared to for ⇠i and

M(vj), and independent of other frame poses and intensities of vertices. Correspondly,

Ji,j will add four non-zero blocks into the overall Hessian matrix H at the positions [i, i],

[i, j], [j, i] and [j, j]. Thus H can be formulated as the folllowing form:

H =

KIX

i=1

NvX

j=1

JT
i,jJi,j (6.10)

The Schur elimination [77] is used to make use of the sparsity of matrix H to speed up the

solution process. Specifically, if we categorize the state X into image poses Xc = {⇠i}
KI

i=1

and intensity valuesXM = {M(vj)}
Nv

j=1 of mesh vertices vetice intensity, then the Jacobian

matrix can be divided into two parts:

J = [F,E]

Jij(X) =


01⇥6, ...,01⇥6,

@eij
@⇠i

,01⇥6, ...,01⇥6

| {z }
Fij

, 0, ...0,
@eij

@M(vj)
, 0, ..., 0

| {z }
Eij

�
(6.11)

where F = @f(X) /@Xc which is the partial deriavative of the entire cost function f(X)

w.r.t. all frame poses and E = @f(X) /@XM which is the partial deriavative of the entire

cost function f(X) w.r.t. all intensities of mesh vertices.

Then, So the Gaussian Hessian matrix can be formulated as the following form:

H = JTJ =

2
4F

TF F TE

ETF ETE

3
5 (6.12)

The linear equation in (6.9) can be rewritten as:

2
4F

TF F TE

ETF ETE

3
5
2
4∆Xc

∆XM

3
5 =

2
4�F T f(X))

�ET f(X))

3
5 (6.13)
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where F TF is a block-diagonal matrix and the dimension of each diagonal block is the same

as the dimension of the camera poses. And ETE is also a block-diagonal matrix and each

diagonal block is just a scalar. To compute the inverse of a block-diagonal matrix, we just

need to invert the non-zero diagonal blocks separately. Thus, it takes less computational

cost to compute the inverse of a block-diagonal matrix compared to a general matrix.

Schur elimination is applied to (6.9) as following:

2
4I �F TE(ETE)�1

0 I

3
5
2
4F

TF F TE

ETF ETE

3
5
2
4∆Xc

∆XM

3
5 =

2
4I �F TE(ETE)�1

0 I

3
5
2
4�F T f(X)

�ET f(X)

3
5

(6.14)

By rearranging (6.14), we can obtain:

(F TF � F TE(ETE)�1ETF )∆Xc = �F T f(X) + F TE(ETE)�1f(X)

(ETF )∆Xc + (ETE)XM = �ET f(X)
(6.15)

After the schur elimination, the first equation in (6.15) becomes independent of ∆XM .

It is easily to solve ∆Xc first and substitute the solved ∆Xc into the second equation in

(6.15) to solve ∆XM .

6.2.3 Pose Only Optimization without Intensity

By analyzing the special structure of the matrix E, we can derive that in each iteration of

the GN optimization, the estimation of all frame poses is independent of the intensity of

mesh vertices. Even if the intensities of mesh vertices are set to random values before each

iteration, the estimated intensities after the iteration never change. Thus, we can propose

an algorithm to optimize the frame poses only, and the intensities of mesh vertices can be

obtained by a closed-form formula after the optimal frame poses are estimated.

Let Z = [..., Ii(pij), ...]
T represent the measurement vector which contains all the intensities

of vertices observed in (6.3) and XZ
M = [...,M(vj), ...]

T containing all the corresponding

intensities of vertices in the state XM w.r.t. the measurement vector Z. Then, the

entire cost error function vector f(X) in (6.5) is formulated as Z �XZ
M , and the squares
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optimization problem in (6.3) is to seek X which minimizes:

��Z�XZ
M

��2 (6.16)

For the matrix E which is the Jacobian of f(X) w.r.t. XM , in each row, there is only one

non-zero element whose value is equal to �1, and its row index and column index represent

the index of observation term and the index of observed vertex in XM , respectively. Thus,

the Jacobian matrix E is a constant matrix and XZ
M = EXM .

Now we prove that solving the update of frame poses in (6.15) is independent of the

intensities XM of vertices. Back substitute f(X) = Z � XZ
M and XZ

M = EXM into the

first row of (6.15), we have:

(F TF � F TE(ETE)�1ETF )∆Xc = �F TZ+ F TE(ETE)�1ETZ (6.17)

where the update of frame poses Xc is independent of intensities XM of vertices.

After the optimal camera poses X̂c are obtained, the proposed direct BA problem in (6.4)

becomes a linear least squares problem and the optimal intensities X̂M of vertices can be

easily recovered using a closed-form formula:

(F TF )X̂M = �F TZ (6.18)

The optimal RGB values of vertices can also be calculated by the closed-form formula

using different channels of color images in (6.18) separately and used for texture rendering

the pre-operative colon model, and the textured regions on the colon model are actually

the visible maps viewed by all the frames.

6.2.4 Pre-computaion of Gridded Intensity and Gradient Field

Besides using the sparsity of H to perform Schur elimination for improving the compu-

tation efficiency of the algorithm. To further improve the efficiency and accuracy of the

proposed algorithm, first, we pre-compute the gridded gradient field of intensity for all the
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images , then in (6.7), the intensity gradient of any pixel in one frame can be obtained

directly. Second, we also pre-compute the gridded intensity field for all the images since

the pixels projected from mesh vertices commonly are not integers, then the intensity value

of the projected pixels can be interpolated directly with high accuracy.

6.3 Experiments and Results

In this section, the proven theorem of independence of poses and intensities in Section 6.2

will be demonstrated. Then, the proposed direct camera-only BA framework for 3D tex-

tured colon reconstruction is validated using synthetic data collected from our developed

colonoscopy simulator, phantom dataset from high-fidelity silicone colon models [26], and

in-vivo datasets [52]. Since the human colon has a long tubular shape and the point light

is moving with the colonoscope camera, the overall intensity in the closer part of the im-

age is brighter than the farther part, which violates the lighting consistency assumption.

Thus, in the proposed method, we truncate the valid depth range when projecting 3D

mesh vertices onto 2D local frames (the far part of model vertices in camera FOV will not

project on the local frames, only the near part model vertices in FOV works).

6.3.1 Proposed Theorem Validation

To visually validate the theorem that pose estimation is independent of the intensities

of vertices, we use the three channels of RGB colors instead of pixel intensities as the

observation in the proposed direct BA algorithm. Before each GN iteration, the RGB

colors of vertices are set to random values. After each iteration, the optimized frame poses

are used to calculate the RGB colors by the closed-form (6.18) separately and used for

texture rendering the pre-operative colon mesh model.

As shown in Fig. 6.3, the colon map has mixed RGB colors before each iteration, and it is

not possible to recognize any clear textures. After each iteration, the optimal RGB colors

can be calculated directly, resulting in high-quality textures. Furthermore, the textures on

the colon map become clearer with each iteration, which demonstrates the independence

of the poses, intensities, or RGB colors of the model vertices.
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Figure 6.3: Direct BA with Random Colors of Vertices for Validation of
Pose Estimation Independent of the Intensities of Vertices.

6.3.2 Simulation Experiments

The simulated dataset consists of three sequences (rectum colon segment, sigmoid colon

segment and cecum colon segment) of 2D colonoscopic images and a pre-operative CT-

segmented colon mesh model. The reconstruction results of the proposed method are com-

pared to those of RNNSLAM [25, 52], DSO [44] and COLMAP [53] (DSO and COLMAP

do not use a pre-operative model). For the proposed camera-only BA, the poses estimated

by DSO are used to initialize the camera poses in state X. After the optimization, the

RGB information for observed model vertices can be easily calculated by the one step

closed-form solution (6.18) using the optimized camera poses.

Fig. 6.4 shows the comparison of map reconstructions on three simulated colonoscopy

sequences. Compared to the proposed method, RNNSLAM can also recover the overall

topological shapes of colon structures, but the reconstructed maps are not complete as

those from the proposed method. For example, the rear part of RNNSLAM’s sigmoid colon

map exhibits a structural collapse. This also happens to the outer edges of RNNSLAM’s

cucum colon map. The structural collapse or missing problem is mainly caused by the
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inaccuracy of depth and pose estimation. For the colon maps reconstructed by COLMAP

and DSO, they are sparse and semi-dense 3D points, and it is not easy to recognize the main

topological structures of the colon segments from the reconstructed maps. Meanwhile,

the map points reconstructed from DSO suffer from large noise due to the large errors in

estimating inverse depth of points. In contrast, the maps reconstructed using the proposed

method show high quality structures and textures.

Figure 6.4: Reconstructed Colon Maps on the Three Simulated Datasets
using the Proposed Method, RNNSLAM, DSO and COLMAP.

Fig. 6.5 shows a comparison of ground truth and the estimated trajectories on simulated

datasets using the proposed method, DSO and COLMAP. Note that RNNSLAM takes

the output poses from DSO as its input poses. The trajectory estimated by the proposed

method is closest to the ground truth. The pose evaluation errors for the three methods,
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as compared with the ground truth, are shown in Table 6.1. This table shows that our

method achieves the best result on all the metrics.

Figure 6.5: The Comparison of Ground Truth and Estimated Trajectories on
Simulated Datasets using the Proposed Method, DSO and COLMAP.

Table 6.1: Pose Evaluation Errors (mm) on the Simulated Colonoscopic Sequences.

Dataset Rectum Sigmoid Cecum

Metrics rmse mean median std rmse mean median std rmse mean median std

Proposed 0.117 0.104 0.089 0.054 0.094 0.084 0.074 0.042 0.155 0.105 0.081 0.115
DSO 0.761 0.694 0.652 0.315 0.119 0.103 0.092 0.059 2.054 1.793 1.832 1.009

COLMAP 0.686 0.423 0.230 0.545 0.411 0.308 0.254 0.274 9.190 8.227 8.237 4.120

6.3.3 Phantom Experiments

The phantom datasets [26] used consists of three sequences (cecum, descending and tran-

scending colon segments) of colonoscopy images with corresponding surface mesh models.

The coarse camera poses (with pose errors mainly caused by colon model dynamics, hand-

eye calibration) provided by the electromagnetic sensors are used as the initial values for

the proposed method. After optimization, the vertices observed by all the frames are

textured using the proposed closed-form solution (6.18).

Fig. 6.6 shows a comparison of maps reconstructed by the proposed direct camera-only

BA, RNNSLAM, DSO and COLMAP, respectively. From the results we can find that

our approach can reconstruct colon maps with clear structures and consistent textures.

The consistency of textures, calculated using the one step of closed-form, proves the high

accuracy of the estimated camera poses. In the maps reconstructed by RNNSLAM, there

are still instances of missing or collapsed regions. Moreover, the overall quality of the
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Figure 6.6: Reconstructed Colon Maps on the Phantom Datasets using the
Proposed Method, RNNSLAM, DSO and COLMAP, respectively.
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RNNSLAM maps reconstructed from phantom datasets is inferior to those from simulation

datasets. This discrepancy arises from errors present in the ”ground truth” depth dataset

used to train RNNSLAM’s depth estimation network.

6.3.4 In-vivo Experiments

The in-vivo dataset with two real colonoscopy videos [25, 52] are used to validate the

practicality of the proposed method. The first video contains 53 frames, and the second

contains 115 frames, all of which are clearly visible and undistorted. The poses estimated

by DSO are used to initialize the poses in our proposed method. The proposed method is

compared to the colon reconstruction method RNNSLAM, as well as DSO and COLMAP.

Figure 6.7: Reconstructed Colon Maps on the In-vivo Datasets using DSO
and COLMAP, respectively.

The reconstructed 3D colon maps using DSO and COLMAP are shown in Fig. 6.7. The

results show that the maps reconstructed from DSO and COLMAP are semi-dense points

with large noise and very sparse points, respectively. DSO even fails when there is less

overlap between consecutive frames.
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Figure 6.8: Reconstructed Colon Maps on the First In-vivo Dataset using the
Proposed Method and RNNSLAM, respectively.

Figure 6.9: Reconstructed Colon Maps on the Second In-vivo Dataset using
the Proposed Method and RNNSLAM, respectively.
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Fig. 6.8 and Fig. 6.9 show the reconstructed 3D colon maps on the first and second in-vivo

datasets using our approach and RNNSLAM, respectively. Both the front and side views

of the reconstructed colon maps are shown. It can be seen that both the two methods

can recover the main topological shape of the colon segments. However, the reconstructed

colon maps from our method show clearer colon structures and textures.

6.4 Chaper Summary

This chapter presents a direct camera-only BA framework for 3D colon reconstruction,

which optimizes all the frame poses simultaneously without requiring data assocation and

image depth information. We prove that when solving the formulated direct BA problem

using GN iterations, the pose estimation is completely independent of the intensities of

vertices, which is more efficient than its traditonal BA formulation. Validations using

simulation, phantom and in-vivo datasets have demonstrated the accuracy and feasibility

of the proposed algorithm.

However, when there are relatively large intensity variations (lighting inconsistency) across

multiple frames, it can result in pose accuracy degradation or failure. Thus, in the near

future, we aim to further improve the proposed method by improving the lighting con-

sistency of colonoscopy videos [78]. In addition, this proposed method currently works

offline as our current focus is more on accuracy than efficiency. Specifically, the algorithm

runs with each Gauss-Newton iteration typically taking around 5 minutes, and it requires

approximately 30 iterations to converge. The most time-consuming step is the visibility

determination procedure. Additionally, the number of mesh vertices or the density of the

pre-operative mesh can significantly impact the computational cost of the algorithm. Thus,

our future work will also focus on the efficient implementation of the proposed method,

such as the time-consuming visibility determining procedure can be parallel implemented

on GPU to achieve the fast implementation.



Chapter 7

Conclusion and Future Work

7.1 Summary of Contributions

In this thesis, we study colon 3D reconstruction techniques, provide three frameworks for

reconstructing 3D textured colon maps by fusing a pre-operative 3D colon mesh model

and a sequence of colonoscopic images, and develop a realistic colonoscopy simulator which

can simulate the colonoscopy screening procedures inside the human colon and output

colonoscopic images with ground truth poses and depths.

In summary, the contributions of this thesis are:

• Our first framework can reconstruct 3D colon maps with detailed textures from

stereo colonoscopic images. It can robustly estimate the poses of 3D scans (recon-

structed from paired stereo colonoscopic images using SGM algorithm) w.r.t. the

pre-operative model and map textures from colonoscopic images to the registered re-

gions on the pre-operative colon model. The experimental results show the feasibility

and high accuracy of the proposed algorithm;

• In the second work, we improve the first work mainly in two apsects. First, we

train a depth estimation network for monocular colonoscopic images. Second, we

deal with the colon deformation challenge by proposing an ED-based non-rigid reg-

istration algorithm. The non-rigid registration algorithm can nonrigidly register 3D

112
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colon scans to the pre-operative colon model, thus reducing the scale and structrure

differences between scans, camera pose drift, and improving the texture consistency

on the reconstructed colon map;

• In the third work, we formulate the camera pose estimation problem as a BA prob-

lem. The intensity difference between the model vertices and their projection onto

all the colonoscopic images are minimized to jointly optimize the camera poses and

intensities of the model vertices. The proposed framework has advantages over the

previous two frameworks in that it can avoid the exhaustive extraction and tracking

of features, does not use image depth information, and is more applicable to the

colon 3D reconstruction from low-textured colonoscopic images;

• In the formulated BA problem of third framework, we prove that camera pose es-

timation is independent of the intensities of model vertices in each iteration of the

GN optimization. Thus, we propose the direct camera-only BA algorithm that only

optimizes camera poses, which helps reduce the computational cost of the optimiza-

tion. Then, the estimated camera poses are used to calculate the optimal intensities

of mesh vertices using a closed-form;

• The developed colonoscopy simulator is used to provide different scenarios of colonoscopy

datasets to validate 3D colon reconstruction algorithms. Simulation and phantom

experiments are performed to demonstrate the good performance of the proposed

frameworks, and in-vivo experiments are conducted to validate the potential clinical

value of the proposed frameworks. To promote the research of colon reconstructions,

the developed colonoscopy simulator together with source code have been made pub-

licly available.

7.2 Future Work

There are some future directions that are natural extensions of this work. For the sake of

clarity, we itemize them as follows:
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• Our proposed frameworks require pre-oeprative CT-segmented colon mesh models

(corresponding to colonoscopic videos) as the global map for colon reconstructions.

Since the colonoscope moves very fast during the normal inspection procedures, pre-

operative colon models are mainly used to reduce pose estimation drift and improve

map reconstruction accuracy with the consistency of textures matching. However,

usually a CT colonoscopy is not always performed before normal colonoscopy proce-

dures, and therefore, no corresponding CT model can be provided. In the future, we

will investigate colon reconstruction using one general model for different patients

in cases when the pre-operative datasets are not available;

• The third proposed framework aims to avoid feature extraction and matching by us-

ing the intensity consistency assumption, and some good results have been achieved.

However, when there are relatively large intensity variations (i.e., lighting inconsis-

tency) across multiple frames, it can result in degraded pose accuracy or failure.

Thus, in the near future, we aim to further improve the proposed method by en-

hancing the lighting consistency of colonoscopy videos [78]. Moreover, the proposed

method currently works offline as our current focus is more on accuracy than effi-

ciency. Our future work will also focus on the efficient implementation of the pro-

posed method. For instance, the time-consuming visibility determining procedure

can be implemented in parallel on a GPU to achieve faster implementation;

• The developed colonoscopy simulator is crucial for developing and validating de-

formable colon reconstruction algorithms. However, in the current iteration of our

simulator, we have observed notable disparities in texture and color when compar-

ing the simulated colonoscopic images to actual images. This discrepancy primarily

arises due to the utilization of a limited set of authentic images for generating the 2D

texture map. In the near future, we are committed to enhancing the simulator by

integrating a more extensive collection of genuine colonoscopic images to refine its

color and texture representation. Simultaneously, we will incorporate deformations

resulting from inflation and deflation to further enhance its fidelity to real-world

scenarios. Upon the successful completion of the development and rigorous test-

ing phases, we will proceed to offer the new version of the developed colonoscopy

simulator for lease.
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• Reconstructing 3D colon maps from colonoscopic videos is a very challenging task.

In addition to the challenges listed in Section 1.3, there are many other challenges

need to be addressed, such as the blurring of images. The main factors that cause

image blurring include insufficient air inflation, colonoscopic lens fogging, or the lens

being stained with fecal matter or opaque water in the lumen. In our study, only

clear and visible colonoscopic images are used to reconstruct 3D colon maps. With

the aim of reconstructing colon maps in real-time during the colonoscopy procedure,

it will be worthwhile to investigate how to automatically detect blurry images or

even remove blur from the blurry images.
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