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Abstract

Consensus views in finance must be continuously challenged and re-evaluated. This

thesis uses new techniques and modern perspectives to challenge commonly held

beliefs, both new and old, in financial markets. Across three chapters, this thesis

addresses the presence of asynchronicity in financial markets, the purported death

of the Standard and Poor’s (S&P) index effect, and the presence of biases and

overfitting in machine learning models used in asset pricing.

Chapter 2 addresses the presence of asynchronicity in financial markets and

challenges the long-standing beta anomaly. Financial time series are seldom

perfectly synchronized, leading to misestimation in empirical models. This chapter

establishes dynamic time warping (DTW) as a measure of dynamic asynchronicity

and applies DTW to improve asset pricing and price discovery models. Using

DTW to correct for dynamic asynchronicity when estimating a stock’s beta

recovers a positive relation between market risk and return, thus helping resolve

the beta anomaly. Applying DTW at intraday frequencies uncovers important

price leadership dynamics in global markets that are overlooked by conventional

measures of price discovery.

Chapter 3 questions the purported death of the S&P index effect. Recent research

on the S&P index effect, a phenomenon where stocks added to or deleted from the

S&P 500 index experience abnormal price responses, argues that it has disappeared.

This chapter finds that the S&P index effect has not disappeared. Stocks added

into the S&P 500 from outside the broader S&P 1500 universe still experience

positive abnormal price responses. However, stocks that move between the S&P

500, S&P 400, and S&P 600 no longer exhibit abnormal price responses to index

change announcements. The results connect stock price reactions to announcements

of changes to the three main S&P U.S. domestic equity indexes with the impact of

relative passive ownership and informed trading on the informational content of

these events. The findings alleviate concerns about potential price distortions in

xii



equity markets arising from index rebalance events alongside the growth in passive

investing.

Chapter 4 critically examines the application of machine learning in asset pricing

and highlights the potential biases and overfitting arising from common modeling

choices. The chapter explores the performance of machine learning models trained

on size-specific groups of stocks. Contrary to expectations, grouping stocks

by market capitalization improves the performance of machine learning return

predictions compared with models trained on the full cross-section of stocks.

The superior performance of size-specific models is attributable to a lack of

regularization of the target stock returns in the standard machine learning return

prediction framework. The findings underscore the importance of data selection

and prediction target design when training machine learning models for return

prediction and serve as a cautionary reminder that machine learning requires

careful guidance to reduce biases and overfitting.

In summary, this thesis challenges several commonly held views in empirical finance.

The findings underscore the necessity for inventive approaches and reassessing long-

standing and newly emerging beliefs. The findings demonstrate the potential of

broader datasets and alternative techniques, such as DTW and neural networks, in

generating novel insights and more accurate models in empirical finance.
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Chapter 1

Introduction

Academics and practitioners utilize commonly accepted views, paradigms, and “rules

of thumb” in their everyday work. These consensus views often exist in response to

the inherent challenge in modeling real-world financial markets. Empirical models

are often not sophisticated enough to fully capture the complex behavior of financial

markets, often leading to empirical anomalies: contradictions between real-world

behavior and the behavior predicted by financial models. In financial markets, a

dogmatic approach to many of the existing puzzles and anomalies has generally been

adopted. Longstanding results, while not standing up to empirical evidence, persist

to this day due to their acceptance as “easy to understand” and “easy to explain.”

A canonical example is the capital asset pricing model (CAPM), independently

proposed in the 1960s by several researchers. Despite the continuous challenges and

criticism of the CAPM, it remains commonplace in finance curricula and empirical

practice.

The blending of natural and social sciences is at the heart of this adherence to

commonly accepted paradigms. The study of financial economics aims to develop

and apply mathematical models to the real-world of financial markets. On one hand,

financial economics is a social science studying the behavior of financial markets,

which are themselves derivatives of human behavior and design. As humans change,

the assets and markets they create and interact with also evolve. On the other

hand, humans like to impose longstanding “laws” and “theories” to model real-world

behavior. Nevertheless, the mathematical tools available are often not sophisticated

enough to fully model ever-changing human behavior. This complexity leads to the

core challenge of financial economics. Humans want to perfectly model real-world

observations, yet perfectly modeling financial markets is impossible. This conflict

ultimately leads to longstanding, and often dogmatic, adherence to commonly held

1



views, whereas in reality, the evolving nature of financial markets requires constant

challenging and re-evaluation of such perspectives.

This thesis examines biases and puzzles in empirical finance that arise from both

traditional and modern modeling approaches. Chapters 2–4 of this thesis each

explore a different topic in empirical finance research where commonly held beliefs

are prevalent. Chapter 2 resolves the CAPM beta anomaly by fully accounting for

time-series asynchronicity using dynamic time warping (DTW). Chapter 3 challenges

the notion that the Standard and Poor’s (S&P) index effect has disappeared, finding

that the S&P index effect is still present for subsets of index change announcements.

Finally, Chapter 4 questions the current discipline when applying machine learning

in asset pricing by demonstrating how empirical anomalies can arise from seemingly

innocuous arbitrary modeling decisions.

1.1 Asynchronicity between financial time series

Asynchronicity is at the core of time-series models in financial econometrics. As

markets have become faster, a prevailing view is that asynchronicity has become

less problematic in empirical modeling, but this is far from accurate Although

asynchronicity at lower frequencies (such as daily observations) has undoubtedly

reduced, as long as latency between trading venues exists, latency will exist between

common assets. The persistent nature and varying manifestations of asynchronicity

continue to plague time-series models and have undue influence on model inference.

Therefore, it is necessary to continue to explore methods for measuring and

correcting for asynchronicity in financial models.

Chapter 2 proposes using DTW to measure asynchronicity between financial time

series. DTW has a distinct advantage over prevailing methods: it estimates the

lead-lag between time series for every observation in the estimation window. This

key advantage allows DTW to be used in novel ways to correct for asynchronicity

when comparing financial time series and to explore new ways of studying existing

problems. I first use a simulation framework to demonstrate that DTW is effective

at capturing stylized lead–lag structures between two time series. I subsequently use

DTW to align stock returns with market returns, and then measure a stock’s beta to

the market on these DTW-aligned time series. By fully incorporating the dynamic

asynchronicity between stock returns and market returns, the DTW-estimated betas

helps resolve the longstanding beta anomaly. I also use DTW to study intraday

price leadership patterns between global futures contracts. Using DTW, I uncover

rich intraday lead–lag dynamics between U.S. and U.K. equity index futures that

are centered around significant market operation events in the underlying equity

2



markets. Existing price discovery models miss such dynamics, as they are unable to

provide sufficient granularity in the estimation window to uncover such patterns.

Chapter 2 also demonstrates how applying new techniques can challenge long-

held consensus views around empirical results. Asynchronicity effects in trading

drive the manifestation of stock betas, resulting in the beta anomaly in historical

data. Although previous approaches for incorporating this asynchronicity into the

measurement of beta improve the base result, they do not fully account for the

dynamic nature of asynchronicity. By fully accounting for the dynamic lead–lag

effects, a more accurate beta estimate can be obtained. Ultimately, DTW is shown

to be a suitable method for measuring and correcting for dynamic asynchronicity

between financial time series.

1.2 Is the S&P index effect dead?

One of the core features of financial markets is their self-learning nature. As

academics and practitioners collectively learn and disseminate research around

financial markets, participants incorporate this information into their behavior

when operating in these markets. Academic literature can reveal an empirical

observation in historical data, but there is no guarantee that this observation will

manifest in the future realizations of the data. The commonly known S&P index

effect is a key example of this phenomenon. Initial research (Harris and Gurel,

1986; Shleifer, 1986; Jain, 1987; Dhillon and Johnson, 1991; Lynch and Mendenhall,

1997; Chen, Noronha and Singal, 2004) showed that stocks experience abnormal

returns when added to or deleted from the S&P 500 index and that this pattern

could be exploited for profit. New results (Kamal, Lawrence, McCabe and Prakash,

2012; Kim, Li and Perry, 2017; Bender, Nagori and Tank, 2019; Bennett, Stulz and

Wang, 2020), using an updated sample of index announcements, find that the S&P

index effect has disappeared. Stocks no longer experience statistically significant

abnormal returns when added to or deleted from the S&P 500 index. However,

this claim of the death of the S&P index effect has coincided with the enormous

growth in passive investing and the amount of assets passively following the S&P

500 index. With such a significant growth in assets that mechanically track the

S&P 500 index, the economic prior suggests that the S&P index effect should still

exist, creating a puzzling observation of the death of the index effect.

Chapter 3 examines the S&P index effect by collecting a complete sample of S&P

500, S&P 400, and S&P 600 index change announcements and tracking the internal

movements that occur between these indexes. By jointly considering the abnormal

return responses of stocks to index change announcements for the three S&P indexes,
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I show that the S&P index effect is not dead. Rather, it is the migrations between

S&P indexes that no longer experience significant abnormal price responses when

index changes are announced. Stocks that are added from outside the broader

S&P 1500 universe to one of the three S&P indexes still experience significant

abnormal return responses when such a change is announced. By measuring the

changing distribution in passive ownership between large capitalization and small

capitalization stocks, I show that the S&P index effect is alive and well.

Chapter 3 further demonstrates that different approaches to studying the same

problem can yield different conclusions. By replicating original studies with newer

data, the original results on the existence of the S&P index effect can be discarded if

the market context of the new results is not acknowledged. However, by considering

how changes in market structure (such as the growth of passive investing) could

impact index changes, richer insights on the S&P index effect can be obtained,

complementing, and extending earlier results.

1.3 Biases and overfitting in cross-sectional

machine learning models

The application of machine learning models across numerous disciplines has seen

significant success in recent years. Seminal papers applying machine learning to

asset pricing demonstrate the strength and superiority of machine learning models

when using large sets of cross-sectional asset pricing characteristics to predict future

excess returns across various asset classes. However, with such rapid growth in the

literature, and the applied approach of trial-and-error for estimating these models,

a rigorous understanding of how these models operate in the asset pricing domain

has been understudied.

Chapter 4 critically examines the current application of machine learning models

in the asset pricing literature. By imposing an economic prior on the relationship

between market capitalization and future excess returns, economically significant

improvements over existing approaches are obtained. By training group-specific

machine learning models to predict stock returns, these model predictions

outperform those trained on the entire cross-section of stocks. This result is

counter-intuitive to the commonly held belief that “the more data, the better”

for machine learning models in return prediction. I show how this performance

improvement should not be fully attributed to the imposed economic prior around

group-specific asset pricing characteristics. Instead, the gain arises predominantly

from a lack of regularization in the standard machine learning model design for
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predicting stock returns. This lack of regularization induces overfitting toward

predicting returns for small stocks in cross-sectional machine learning models.

By recognizing and correcting for this lack of regularization, similar performance

gains as group-specific machine learning models can be achieved without the added

computational complexity of training separate models.

Chapter 4 also demonstrates that even for more modern techniques, commonly held

views and practices around these techniques should be challenged and continuously

evaluated. It is detrimental to adhere to widely set empirical methods, particularly

in machine learning, without questioning the economic rationale backing each

decision inherent to the method. The high dimensionality of modeling decisions in

machine learning means that a cautious and guided approach to investigating and

comparing results from the use of machine learning in asset pricing is fundamental

to its ongoing success.

1.4 Thesis outline

This thesis consists of three distinct studies in empirical finance:

i. A new measure of asynchronicity in financial time series and two empirical

applications for beta estimation and price discovery (Chapter 2)

ii. The changing nature of the S&P index effect (Chapter 3)

iii. Biases and overfitting when training machine learning models for empirical

asset pricing (Chapter 4)

In Chapter 5, the findings are summarized, and future research directions are

presented.
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Chapter 2

To lead or to lag? Measuring

asynchronicity in financial time

series using dynamic time warping

2.1 Introduction

Asynchronicity in financial time series poses a significant challenge in the study of

financial markets. Lo and MacKinlay (1990) demonstrate that market frictions can

impede information transmission, leading to lead–lag patterns between observable

asset time-series data. Frictions owing to infrequent trading (Cohen, Hawawini,

Maier, Schwartz and Whitcomb, 1983), information flowing from large stocks to

smaller stocks (DeMiguel, Nogales and Uppal, 2014), and even the physical distance

between trading venues (Laughlin, Aguirre and Grundfest, 2014) can all contribute

to asynchronicity between observed time-series data. This asynchronicity between

time series can cause errors in inference in financial models. For example, it can

result in price discovery models missing important dynamics within the estimation

window and the misestimation of asset covariance owing to asynchronicity in the

underlying time series. Empirical models commonly assume that observations of

multiple time series occur contemporaneously or with a fixed time lag. However,

the dynamic nature of asynchronicity poses a significant challenge that extant

econometric frameworks struggle to account for. In this chapter, I use DTW to

measure and correct for dynamic asynchronicity between financial time series in

asset pricing and price discovery models.

DTW is an alignment algorithm, first utilized in speech recognition (Sakoe and

Chiba, 1978; Keogh and Pazzani, 2002), that measures the similarity between two
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time series that may vary in speed. The strength of DTW is the ability to flexibly

capture leading and lagging patterns between two or more time series. This feature

of DTW is well-suited to measuring asynchronicity between financial time series

and accounting for the time-varying nature of the asynchronicity. The use of DTW

does not require structural assumptions of the expected behavior of the lead–lag.

Instead, the algorithm itself freely uncovers any dynamic lead–lag structures that

are present between the two time series. As the origins of DTW in signal processing

were due to signal distortion which arose due to measurement differences and media

in which the signals travel, there is a question around the validity of using DTW

in financial markets settings. Ultimately, lead–lag in financial markets can arise

from many sources, such as differences in information processing or latency between

trading venues. Such differences are analogous to the signal processing and suggest

that lead–lag in financial markets are likely suited to be captured by DTW.

First, I validate DTW’s ability to recover lead–lag structures across several simulated

time-series scenarios. The noise, volatility, and lead–lag structures between time

series are explicitly controlled in four simulated scenarios. Across these simulated

lead–lag scenarios, DTW successfully recovers the induced lead–lag patterns with an

average mean absolute error (MAE) of 5.9%. The success of DTW in recovering the

lead–lag pattern is primarily a function of the noise contaminating the time series,

and the estimation error is stable for varying levels of the fundamental volatility

of the simulated time series. The stability of estimation error in DTW at different

fundamental volatility levels is an important result, as it suggests that DTW can be

used for inherently volatile assets. To assess the practical relevance of DTW, two

empirical applications in asset pricing and price discovery are investigated.

Real-world asynchronicity in financial time series occurs across different frequencies,

from macro to the micro. I explore two empirical applications to demonstrate DTW’s

relevance for financial time series, one at the daily frequency and one at the intraday

frequency. The first application uses DTW to measure a stock’s beta to the market.

Under the CAPM, a stock’s beta is estimated using contemporaneous stock and

market returns. The CAPM predicts a positive relation between a stock’s beta

and expected returns. Several studies (Reinganum, 1981; Lakonishok and Shapiro,

1986; Fama and French, 1992) present empirical evidence that there is, in fact,

a negative relation between risk and return, contradicting the predictions of the

CAPM and giving rise to the beta anomaly. The literature has typically approached

this empirical anomaly in two ways. The first approach focuses on the misestimation

of beta arising from the estimation method (Dimson, 1979; Scholes and Williams,

1977). The second approach focuses on anomaly-based explanations such as betting

against beta (BAB) (Frazzini and Pedersen, 2014), the low-volatility effect (Blitz and
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van Vliet, 2007; Blitz, van Vliet and Baltussen, 2019), lottery premia effects (Bali,

Brown, Murray and Tang, 2017), and idiosyncratic volatility (Liu, Stambaugh and

Yuan, 2018).

Using DTW, I extend the work of Dimson (1979) and Scholes and Williams (1977)

and incorporate a dynamic asynchronicity adjustment in the estimation of beta,

without imposing any strict assumptions on the lead–lag structure. The Dimson

(1979) and Scholes and Williams (1977) beta estimates use leading and lagging

market return variables as additional independent variables in the regression model

used to estimate beta. However, both methods assume that the asynchronicity

between the market and stock returns is static within the set of defined leading

and lagging variables. The dynamics of the lead–lag, however, need not necessarily

be fixed and can vary across time. DTW can more accurately align stock returns

and market returns, allowing for a more flexible incorporation of non-synchronous

trading effects into the estimation of beta.

By using DTW to account for the dynamic asynchronicity between stock and market

returns, I recover a positive relation between the DTW-adjusted beta and expected

returns. A stock’s beta can be more accurately estimated using DTW, helping

resolve the beta anomaly. Small stocks primarily drive the misestimation of beta.

Smaller, less liquid stocks take longer to incorporate market-wide information, hence

lagging the market. This influence of smaller stocks manifests with the largest

difference between CAPM betas and DTW-adjusted betas occurring for smaller

stocks. Despite the positive relation between DTW beta and expected returns,

I cannot claim full resolution of the beta anomaly. From 2000, across all beta

estimates, high beta stocks underperform low beta stocks, suggesting that other

factors, in addition to non-synchronous trading, contribute to the beta anomaly.

This result brings into question recent literature on the BAB phenomenon Frazzini

and Pedersen (2014). The results I find are more aligned with the work of Novy-

Marx and Velikov (2022), who call into question some of the exceedingly strong

performance of the BAB factor.

The second empirical application uses DTW to study intraday dynamics in price

leadership between two instruments. Established measures of price discovery, such

as Hasbrouck’s (1995) information share (IS) and Gonzalo and Granger’s (1995)

component share (CS), typically provide a summary statistic of price leadership

between two instruments across an estimation window. These methods do not

provide insight into the dynamics of the price discovery process within the estimation

window. Ozturk, van der Wel and van Dijk (2017) propose a novel approach using

flexible Fourier transformations to measure the intraday dynamics in IS by allowing
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for time-varying volatility of the efficient price innovations and idiosyncratic noise.

By applying DTW, an estimate of the lead–lag at each time-step in the estimation

window is obtained, allowing a clearer insight into the intraday temporal dynamics

between time series. Specifically, I explore intraday price discovery dynamics across

global index futures.

The application of DTW uncovers a rich temporal behavior of the intraday

lead–lag between global futures contracts, anchored around significant market

operation events, such as the opening and closing of the underlying equity markets.

Specifically, I measure the intraday lead–lag between the U.S. E-mini S&P 500

futures (E-mini) and U.K. FTSE 100 futures (FTSE 100), respectively traded on

the Chicago Mercantile Exchange (CME) and the Intercontinental Exchange (ICE).

These contracts represent two of the largest and most liquid equity markets, where

I use the New York Stock Exchange (NYSE) and London Stock Exchange (LSE)

trading hours as representative of.. The results show that the lead–lag structure

between the two index futures has evolved. I document a compression in the

average daily lead–lag toward zero from 2001 to 2010. As markets have become

increasingly automated, the lead–lag between the two contracts is more likely to be

restricted by the speed of information transmission. However, even in the modern

highly electronic and liquid markets as in 2020, there is still a rich, dynamic

intraday behavior between these futures contracts, highlighting the importance of

developing price discovery measures that can quantify these dynamics.

Through these two empirical applications, I show that asynchronicity is highly

dynamic and can affect inference in asset pricing, risk, and price discovery models.

Using DTW to account for dynamic asynchronicity, new insights into empirical

problems can be generated, and existing empirical challenges can be resolved. The

use of DTW provides a pathway to the further study of existing and new issues where

the asynchronicity inherent in financial time series obfuscates model estimation

and inference. One such problem is in the emerging literature around the recent

increase in co-movement in markets (e.g., from high-frequency trading (Malceniece,

Malcenieks and Putniņš, 2019)). It is currently difficult to attribute this increase in

co-movement to a genuine change in the systematic risk in markets. An alternative

explanation proposes that the increase in co-movement is owing to a better alignment

of returns in assets within markets that arises owing to the increased liquidity and

trading activity afforded to stocks when added to an index (Barberis, Shleifer and

Wurgler, 2005). Li, Yin and Zhao (2020) explore the effects of program trading

on the co-movement of stocks and document evidence that stocks preferred by

algorithmic traders exhibit excessive co-movement above what would be expected by

fundamental drivers of return. This empirical problem is an example where a richer
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insight into the nature of the effect of program trading on co-movement could be

obtained by using DTW to account for the dynamic asynchronicity that is present

in returns.

Finance literature on asynchronicity in time series has evolved as the speed of

information transmission has increased. Earlier studies (Scholes and Williams, 1977;

Dimson, 1979; Kawaller, Koch and Koch, 1987) typically use lagged variables in a

regression framework to account for the intertemporal relation between financial

time series. As trading in markets has become predominantly automated and the

speed of trading has increased, regression frameworks to estimate lead–lag are

often inadequate as the lead–lag relation has reduced from minutes to seconds to

milliseconds. In the past 20 years, new techniques have emerged for measuring

high-frequency lead–lag. Hayashi and Yoshida (2005) develop a covariance

estimator for non-synchronous diffusion processes that accounts for temporal

dynamics between time series. Dobrev and Schaumburg (2016) present a model-free

method for estimating the lead–lag relation using a timing offset between trading

activity to estimate which market is driving the lead–lag. The primary difference

is that point-in-time estimates of the lead–lag relation can be obtained at every

observation within the estimation window using the DTW approach proposed in

this chapter. Point-in-time estimates allow for an examination of the time-varying

dynamics in the lead–lag relation across the estimation window, which is often not

possible with the covariance estimator of Hayashi and Yoshida (2005).

This work also contributes to the literature on synchronizing returns across markets

with respect to different market closing times. The difference in market closing times

must be accounted for when modeling assets that are traded in different markets.

Otherwise, estimates that are derived from time series of these assets can produce

misestimation of models. A significant body of literature proposes various methods

that aim to synchronize returns across different markets using various statistical

models (Burns, Engle and Mezrich, 1998; Martens and Poon, 2001; Audrino and

Bühlmann, 2004; Scherer, 2013). DTW is a direct complement to these approaches

and could also be applied to synchronize stock returns across different markets.

Ito and Sakemoto (2020) and Franses and Wiemann (2020) are perhaps the most

closely related studies to this chapter, using DTW to study lead–lag relations in

foreign exchange markets and business cycles, respectively. Ito and Sakemoto (2020)

propose using DTW to measure high-frequency foreign exchange lead–lag patterns.

Like this chapter which explores the dynamics of intraday price discovery, they

document a change in the lead–lag patterns between currency pairs in response to

important market announcements. I expand on their work by further exploring the
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sensitivity of the optimal series alignment based on DTW to noise and volatility.

I also provide further empirical applications on the use of DTW for studying

asynchronicity in financial time series.

The rest of this chapter is structured as follows. Section 2.2 uses a simulation

study to evaluate the use of DTW for measuring lead–lag patterns. Section 2.3

presents the results of applying DTW to account for asynchronicity when measuring

a stock’s beta. Section 2.4 presents results from using DTW to measure intraday

price leadership dynamics between E-mini and FTSE 100 futures contracts. Section

2.5 then concludes the chapter.

2.2 Validating dynamic time warping

2.2.1 Simulation design

I use simulation to study and validate the effectiveness of the proposed DTWmethod

for measuring lead–lag between financial time series. When applying DTW, the time

series must share some commonality, as the DTW algorithm will find a relation where

there is none. Thus, to validate DTW I create artificial lead–lag patterns between

time series and then use DTW to recover these simulated patterns. I follow Putniņš

(2013) and use a time-series model where two stocks share a common fundamental

value. The fundamental value is assumed to follow a random walk:

mt = mt−1 + ut, ut ∼ N (0, σu), (2.1)

where mt is the natural logarithm of the fundamental value at time t and ut is a

noise component. I define a time series pi that tracks the fundamental value with a

state-dependent time-shift of δi,t periods and noise si,t as:

pi,t = mt−δi,t + si,t, si,t ∼ N (0, σsi). (2.2)

To test the efficacy of the DTW algorithm at capturing time-varying asynchronicity,

three lead–lag scenarios representative of typical lead–lag behavior in financial

markets are used: constant, gradual, oscillating, and, for robustness, a randomly

switching lead–lag. The constant lead–lag scenario represents a pair of signals with

a constant structural lag between them, for example, from trading on multiple

venues where one venue dominates the price discovery process. The gradual

lead–lag scenario represents a pair of signals where the lag between the two stocks

decreases over the course of the trading day. This may occur from overnight

information imbalances, that shrink as information is incorporated into the price
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across the trading day. The oscillating lead–lag scenario represents a pair of signals

where, over the trading day, the lag alternates between positive and negative.

Such a situation may arise from the opening of other international markets and

the impounding of new information across markets. The randomly switching

lead–lag scenario represents a pair of signals where there is no predetermined

dynamic asynchronicity. Thus, the lead–lag relation between the signals may switch

randomly over the trading day. This scenario tests the robustness of the DTW

algorithm in capturing any dynamic asynchronicity pattern.

To create these four scenarios, p1 is set as the reference time series (i.e., δ1,t is

fixed at a constant value) and p2 as the secondary time series. The state-dependent

time-shift of p2, δ2,t, is varied whilst δ1,t is fixed to induce the desired lead–lag

dynamics between the two time series. With δ1,t, δ2,t ∈ N:

p1,t = mt−δ1,t + s1,t, (2.3)

p2,t = mt−δ2,t + s2,t. (2.4)

A constant lead–lag is induced by fixing δ2,t to a constant value across the simulation.

This produces a true lag of δ2,t − δ1,t. A gradual lead–lag is induced by setting δ2,0

to some initial value and then creating a sequence of evenly spaced lags δ2,t =⌊
δ2,0 − δ2(N−t)

N

⌉
for t = 1, . . . , N where N is the cardinality of {p2,t}. An oscillating

lead–lag takes the functional form δ2,t = ⌊A sin(2πxt)⌉ where A ∈ N is a scaling

factor, and xt is taken from an evenly spaced grid of values, x = {x0, x1, . . . , xt} ={
0, 1

N
, . . . , 1

}
. This induces a sinusoidal wave of period 2π and amplitude of one.

A scaling factor, A, is used to control the peak-to-trough range of p2. A randomly

switching lead–lag is induced by randomly sampling from N (0, 1) and if the sampled

value is greater than 3.7, a new value of δ2,t is drawn from N(20).

2.2.2 Dynamic time warping

There are several variants of DTW which have been proposed. These variants aim to

address several shortcomings with the base DTW algorithm, such as the pathological

alignment problem. In this problem, the DTW algorithm aligns a single point

from one time-series to a large sub-sequence of points from the other time-series.

Constrained DTW is a common approach to mitigating the pathological alignment

problem, whereby the warping path is restricted by applying a windowing function

(e.g., Sakoe and Chiba, 1978). Other variants, such as the derivative DTW (Keogh

and Pazzani, 2002), weighted DTW (Jeong, Jeong and Omitaomu, 2011), and shape

DTW (Zhang, Tang and Duan, 2015) all present innovations on the base DTW

algorithm which aim to improve the alignment quality. There is no strong consensus

12



in the literature on which DTW algorithm is optimal, and varied performance is

observed across different benchmarking tasks(Lahreche and Boucheham, 2021).

I use the generalized version of derivative DTW combined with a Sakoe-Chiba

constraint throughout. The selection of this method acknowledges that a key

limitation of DTW is that the algorithm can map time-series points together which

occur very far away in time. In financial settings, such mappings are likely noise

and thus a constrained DTW approach helps to alleviate this problem. I present

a DTW algorithm where the two time series can take differing lengths, N and

M , such that p1,t = (p1,1, p1,2, . . . p1,N) and p2,t = (p2,1, p2,2, . . . , p2,M). An N ×M

cost matrix C ∈ RN×M is computed, where each element in row n and column

m corresponds to the distance between the elements (p1,n, p2,m). Typical distance

measures used include the Euclidean distance and Manhattan distance, I use the

Euclidean distance throughout the rest of this chapter.

The objective of the DTW algorithm is to find the optimal alignment between p1

and p2, where optimality is the alignment that has the minimum total cost. A

warping path Z = (z1, z2, ..., zK) with zk = (nk,mk) is defined as the set of matrix

elements that define a mapping between p1 and p2, where the following conditions

are satisfied:

� Boundary condition: z1 = (1, 1) and zK = (N,M)

� Monotonicity condition: n1 ≤ n2 ≤ . . . ≤ nK and m1 ≤ m2 ≤ . . . ≤ mK

� Step-size condition: zl+1 − zl ∈ {(1, 1), (1, 0), (0, 1)}

I note that these conditions are specific to the selected DTW algorithm, and can

be relaxed or altered. For example, the step-size condition need not always be one

unit, and could instead be extended. The path that has the minimum total cost

from all possible warping paths is denoted as the optimal warping path. Dynamic

programming methods are used to calculate an accumulated cost matrix, D. Each

entry in the accumulated cost matrix is defined as the local cost measure in the

current C matrix cell, c(xn, ym), plus the minimum of the accumulated cost measure

in adjacent cells from D:

D(n,m) = min(D(n− 1,m− 1), D(n− 1,m), D(n,m− 1)) + c(xn, ym). (2.5)
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The optimal warping path Z∗ is calculated by stepping in reverse index order through

the accumulated cost matrix D, following the algorithm:

wk−1 =


(1, m− 1) if n = 1,

(n− 1, 1) if m = 1,

argmin(D(n− 1,m− 1), D(n− 1,m), D(n,m− 1)) otherwise.

Given the empirical settings I intend to test, I impose and test a set of global

constraints. The classic Sakoe-Chiba (1978) band that runs along the main

diagonal and has a fixed width W ∈ N is used. This is a global constraint,

that implies that an element p1,n can only be aligned to some value p2,m where

m ∈
[
m−W
n−W

(N −W ), m−W
n−W

(N +W )
]
∩ [1 : m]. The boundary condition is also

loosened, allowing z1 ∈ (1, 1) : (1 + ψ, 1 + ψ) and zk ∈ (n− ψ, m− ψ) : (n, m)

where ψ ∈ N. The boundary condition is loosened so that the start and end points

of the time series are not required to align perfectly at the start and end of the

trading day, as is often the case for high-frequency financial time-series data.

The optimal warping path Z∗ is used as a measure of the asynchronicity between

p1 and p2 at each time-step t. The optimal warping path will have at minimum a

length of max(N,M), this can result in there being more lags in the optimal warping

path than time-steps. This occurs due to index duplication where the lag does not

change. To map from warp-time back to clock-time, all index pairs zk = (nk,mk)

are taken and for each duplicated value of mk I take the first occurrence of mk and

map this to time-step k. The asynchronicity at each time-step is then measured as:

δk = nk −mk. (2.6)

A measure of performance is crucial in assessing the effectiveness of DTW in

recovering the true lag in the simulated time series. As we seek to measure the

difference of the measured lag versus the true lag we impose into the time series,

for the true lag, δi, and the lag recovered by DTW, δ̂i, I define:

MAE =

1
N

∑N
i=1

∣∣∣δi − δ̂i

∣∣∣
1
N

∑N
i=1 |δi|

if
1

N

N∑
i=1

|δi| ̸= 0. (2.7)

An alternative approach could be to use an information criterion approach, as what

is performed when selecting the order of a vector autoregression model, to measure

how well the DTW estimated lags compare to the true lags. However, such an
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Figure 2.1: DTW-estimated lead–lag in four simulated scenarios
This figure presents the lead–lag estimated using DTW in four scenarios over a single
simulation. In each scenario, an artificial lead–lag structure is induced between two
simulated time series that share a common fundamental value. DTW is applied to the two
time series to estimate the artificial lead–lag. The solid gray line is the lead–lag estimated
using DTW. The dashed red line is the induced lead–lag.

approach is likely not appropriate in the proposed setting, given that I seek to allow

the DTW algorithm to flexibly select the optimal mappings without imposing any

structural assumptions.

2.2.3 Simulation results

Figure 2.1 demonstrates an example of the induced lead–lag structures (dashed red

lines) between two simulated time series and the lead–lag recovered from the DTW

algorithm (solid gray lines). In each of the four scenarios, the DTW algorithm

successfully recovers the simulated lead–lag pattern.

Table 2.1 presents several metrics from the four baseline simulations. Across all

four cases, I find consistent results. In the baseline scenarios, a lag of negative ten

ticks (i.e., the difference in speed between p1 and p2 is ten ticks) is applied and

DTW recovers the induced lag with a MAE between 5.83% and 6.50%. The error

in DTW’s ability to recover the lag is a combination of bias in the underlying DTW

algorithm and noise in the two time series. The bias inherent in the DTW algorithm
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Table 2.1: Baseline DTW estimation results for four lead–lag scenarios
This table presents the results when measuring lead–lag using DTW in four scenarios
over a single simulation. Following Eq. (2.1) and Eq. (2.2) defined in Section 2.2.1, two
time series (p1 and p2) that share a common fundamental value (ut) are simulated. Both
time series track the common fundamental value with some time-delay (δi,t) and noise
(si,t). The parameters used in the simulation are N = 10, 000, ut = 1, s1,t = s2,t = 0.5,
and W = 60. Each simulation aims to produce a true lag of ten (i.e., p2 lags p1 by ten
units on average across the simulation). In the constant lead–lag scenario δ1,t = 5 and
δ 2,t = 15. In the gradual lead–lag scenario δ1,t = 5 and the initial δ 2,0 = 30, δ 2,t is then
reduced as t increases. In the oscillating scenario the lead–lag takes the functional form
of δ 2,t = 10 sin(2πxt) where xt = {1, 2, ..., 1000}, and δ1,t = 5. In the switching lead–lag
scenario the initial values are fixed at δ1,t = 5 and δ 2,0 = 15, and then δ 2,t is randomly
switched between 0 and 20.

Lead–lag Scenario

Constant Gradual Oscillating Switching

Average of true lag -10.00 -10.04 -10.00 -9.16
Average of DTW lag -10.13 -9.97 -10.07 -9.21

DTW distance 0.84 0.85 0.84 0.86
MAE (absolute) 0.58 0.58 0.59 0.60

MAE (proportional to true lag (%)) 5.86 5.83 5.86 6.50
STD. of true lag - DTW lag 0.94 0.89 0.95 0.95

Pearson correlation between true lag and DTW lag1 - 0.98 0.99 0.80

is a function of how the algorithm stitches the two time series together. DTW, like

many algorithms, is prone to biases. The DTW algorithm tries to minimize the

total cumulative distance between the two time series, however, this can result in

localized stitching errors due to selection choices that the algorithm must make. I

find a directional bias by switching which time series is the primary time series in

the DTW algorithm. This bias is corrected in subsequent analyses by running a

two-step DTW. To correct for this bias, the primary time series given to the DTW

algorithm is alternated, and then the difference of the final results divided by two

is used as the DTW lead–lag estimate. Table 2.13 in Appendix 2.5 examines the

characteristics of this bias, and shows that after adjusting for the bias, the DTW

algorithm successfully recovers the induced true lead–lag with minimal error.

In addition to standalone simulations, a bootstrapping study of the simulation

parameters is used to measure the sensitivity of the DTW algorithm in recovering

the induced lead–lag patterns. The MAE is measured over 1,000 pairs of simulated

time series under different parameter combinations. In Figure 2.2 the time-delay

(δ2,t) and noise (σs2) of the second time series is varied, measuring the accuracy of

DTW when the absolute level of the lag and the ratio of noise between the two

time series changes. The performance of DTW under these conditions is relevant

1Pearson’s correlation is undefined for the constant simulation as there is no change in the true
lag across the simulation.
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to applications where the volatility of the assets being studied is different. δ2,t is

varied between zero and ten, and σs2 is varied between zero and two in each of

the four scenarios. In these simulations, the time-delay of the first price-series is

fixed (δ1,t = 5), thus when δ2,t = 5, the induced lag is zero. When the induced

lag is zero, MAE is highest, a result of the directional bias in the DTW algorithm,

that produces a larger MAE when the true lag is close to zero. This effect is also

present in the gradual lag and switching lag scenarios. In the gradual lag scenario,

this increase in MAE occurs when δ2,t = 6 due to how the gradual lag structure

is induced. In the oscillating scenario, the results are primarily a function of σs2 ,

as the MAE is relatively constant for different levels of δ2,t. The biased MAE does

not manifest in the oscillating scenario due to the symmetric nature of the DTW

bias, The oscillating lag scenario is constructed to have an area under of the curve

of zero (i.e., the lag structure is symmetric), that cancels out the bias and results

in an approximately linear relation between MAE and σs2 . Overall, I conclude that

error in the DTW algorithm is predominantly a function of the relative noise in the

time series. As the level of noise in one time series increases relative to another time

series, the error will also increase. It is important to consider this when applying

DTW, but it does not preclude the use of DTW when studying lead–lag in highly

volatile financial time series.
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Figure 2.2: Effect of varying time-delay and noise on the accuracy of the DTW
lead–lag estimation
This figure presents the MAE between the artificially induced lead–lag and the DTW-
estimated lead–lag when varying the noise (σs2) and time-delay (δ2,t) of the second time
series in four scenarios described in Section 2.2.1. The MAE is the difference between the
DTW-estimated lag and artificially induced lag at each tick of the simulation, proportional
to the average of the induced lead–lag across the simulation. I use a grid of ten values
for σs2 and δ2,t. σs2 is varied between zero and two at increments of 0.2. δ2,t is varied
between zero and ten at increments of one unit. For each possible pair of parameters,
1,000 simulations are run with input parameters of N = 10, 000, σu = 1, δ1,t = 5, σs1 = 1,
W = 60, and ψ = 60. Each panel corresponds to one lead–lag scenario and the average
MAE across the 1,000 simulations.

Having established that the relative level of noise between the two time series is

a driver of error in the DTW algorithm, I explore the effect of three additional

parameterizations on the accuracy of the DTW algorithm. Figure 2.3 presents

three different parameter pair combinations for the gradually decreasing lag scenario.

Panel A presents the MAE when varying the noise in the two time series, σs1 and

σs2 . The MAE is linearly increasing in both σs1 and σs2 . This result is expected, σs1

and σs2 control the level of noise in the underlying time series, and as more noise

is induced, the DTW algorithm makes more errors when stitching the two time
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series together. As I aim to apply DTW to measure lead–lag at high-frequency, the

algorithm must be stable for long time series. To test this, MAE is measured for

varying levels of the time-series length (N) and the volatility of the fundamental

value (σu). In panel B the MAE is reducing as log(N) increases and constant in

σu. σu is common to both time series and thus the only variability that is induced

is in the noise of the two time series relative to the fundamental value, not in the

fundamental value itself. In panel C, we observe a non-linear relation between σs2

and σu. At lower levels of σs2 , the MAE is higher. This result is likely owing to

the low signal-to-noise ratio between the fundamental value and the observed time

series. Ultimately, if the fundamental value is highly volatile, the DTW algorithm

will have a higher error level. The DTW algorithm is more successful at recovering

the lead–lag when the two time series have a similar level of noise. The behavior

of DTW under different noise levels has implications for the usage of DTW in price

discovery applications, suggesting that the DTW algorithm would perform better

when the volatility levels in the two time series are similar.
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Figure 2.3: Effect of varying simulation parameters on the accuracy of the
DTW lead–lag estimation
This figure presents the MAE generated from varying three different parameter pairs
when generating the time series, and then estimating the lead–lag using DTW. In panel
A: σs1and σs2 are varied between zero and two, using 0.2 increments. In panel B: N is set
as the natural logarithm of 240, 3,600, 7,200, 14,400, and 21,600 and σu is varied between
zero and two. using 0.2 increments. In panel C: σu and σs2 are varied between zero and
two, using increments of 0.2. The panels show the bootstrapped average MAE between
the artificially induced lead–lag and the DTW recovered lead–lag. For each parameter
combination, 1,000 simulations are run. In panel A: σu = 1, δ1,t = 5, δ2,t = 10, W = 60,
ψ = 6, and N = 10, 000. In panel B: δ1,t = 5, δ2,t = 10, σs1 = 0.1, σs2 = 0.1, W = 60, and
ψ = 60. In panel C: δ1,t = 5, δ2,t = 10, σs1 = 0.1, W = 60, ψ = 60, and N = 10, 000.

2.3 A better beta

The CAPM predicts that stocks with high betas to the market will outperform

stocks with low betas (Black, Jensen and Scholes, 1972; Fama and MacBeth,
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1973). However, several empirical studies (Reinganum, 1981; Lakonishok and

Shapiro, 1986; Fama and French, 1992) provide evidence that stocks with low betas

outperform stocks with high betas. This result is commonly referred to as the

“beta anomaly” or “low beta” effect. As one of the key empirical challenges to the

CAPM, extensive literature attempts to explain the existence of the beta anomaly.

There are typically two approaches to explanation. The first stream posits that

standard methods misestimate beta under the CAPM, and they present alternative

estimation techniques, such as the approaches of Dimson (1979) and Scholes and

Williams (1977). The second stream focuses on anomaly-based explanations and

pose that controlling for other cross-sectional stock characteristics resolves the beta

anomaly. Liu et al. (2018) propose a resolution by controlling for idiosyncratic

volatility while Bali et al. (2017) argue that investor demand for lottery-like

stocks is a main driver of the beta anomaly. Although these approaches control

for and render the beta anomaly insignificant under a Fama-Macbeth regression

framework, they do not fully recover the expected relation that the CAPM predicts,

that stocks with high beta outperform stocks with low beta. I contribute to the

literature by providing an alternative method to estimate beta. Using DTW, the

dynamic asynchronicity between stock returns and market returns can be flexibility

incorporated into the measurement of beta. This approach recovers a weak positive

relation between stock betas and future returns, that is robust to controlling for

well-established asset pricing factors, including idiosyncratic volatility and the price

lottery effect.

When using DTW to estimate beta, an important consideration is whether there

exists asynchronicity between stock returns and market returns. If there is little

to no asynchronicity, the application of DTW will predominantly capture noise

and result in worse estimates of beta. Figure 2.4 depicts the proportion of

non-contemporaneous correlation between the market return and all U.S. stocks in

the Center for Research in Security Prices (CRSP) sample, using one-day forward

and one-day lagged stock returns, relative to the correlation using one-day forward,

contemporaneous, and one-day lagged stock returns. This figure proxies the degree

of asynchronicity in U.S. equity markets. The dynamic nature of asynchronicity

is apparent in Figure 2.4, with significant time variation in the proportion of

non-contemporaneous correlation. The time-varying nature of asynchronicity is

present across all capitalization levels of stocks. Empirical models have traditionally

addressed this non-contemporaneous correlation by leading or lagging market return

variables in a regression framework. This approach imposes a pre-specified and

fixed structure around the nature of the asynchronicity, and thus the models do not
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account for dynamics in the asynchronicity. Using DTW to estimate beta removes

this limiting assumption.
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Figure 2.4: Non-contemporaneous correlation in the CRSP sample
This figure presents the ratio of the one-day forward correlation and one-day
lagged correlation between CRSP stock returns and market returns to the
sum of the one-day forward correlation, contemporaneous correlation and
one-day lagged correlation. At the end of each month between June 1931 and
December 2019, the Pearson correlation is calculated between stock returns and
market returns, as Corr(rm,t, ri,t+s) with s = (−1, 0,+1) using the previous
five years of daily data. The non-contemporaneous correlation proportion is
calculated:

|Corr(rm,t, ri,t−1)|+ |Corr(rm,t, ri,t+1)|
|Corr(rm,t, ri,t−1)|+ |Corr(rm,t, ri,t)|+ |Corr(rm,t, ri,t+1)|

,

where rm,t is the market return for day t and ri,t+s is the return of stock i at day
t + s. The universe is split into three size buckets, SML/MID/LGE, based on 30%/70%
market capitalization cutoffs of stocks traded on the NYSE. This figure presents the
cross-sectional median non-contemporaneous correlation proportion within the three size
buckets at the end of each month.

In addition to studying non-contemporaneous correlations, DTW can directly

measure the daily lead–lag between stock returns and market returns. Table 2.2

presents the estimated daily lead–lag between stock returns and market returns

for the standard U.S. CRSP sample. The results are intuitive, particularly for

small stocks. Small stocks have evolved from lagging the market by an average of

0.81 days between 1950 and 1970 to exhibiting almost no lag between 1990 and

21



Table 2.2: DTW-estimated lead–lag between CRSP stocks and the market
This table presents the time-series average DTW-estimated lead–lag between daily U.S.
stock returns and market returns. The sample consists of U.S. common ordinary share
stocks traded on the NYSE, NASDAQ, and AMEX, starting in January 1950, and ending
in December 2019. The sample is split into SML/MID/LGE stocks based on 30%/70%
market capitalization cutoffs of stocks traded on the NYSE. The sample is also split
into three time buckets, 1950–1970, 1970–1990, and 1990–2019. This table presents the
average and standard deviation of the daily cross-sectional median lead–lag within each
time bucket and size bucket.

SML MID LGE

1950–1970 0.81 ± 2.07 -0.04 ± 1.35 -0.75 ± 0.95
1970–1990 0.58 ± 1.84 0.09 ± 1.31 -0.60 ± 1.09
1990–2019 0.07 ± 1.51 -0.17 ± 1.37 -0.51 ± 0.99

2019, alongside a reduction in the dispersion of lead–lag across small stocks. A key

finding is that the lead of large stocks over the market has not changed significantly

over the sample period. This persistent leading of large stocks suggests that the

asynchronicity that the DTW method accounts for is not typically present in large

stocks.

One possible explanation for the beta anomaly is that small, illiquid stocks are slower

to incorporate market-wide information. Using contemporaneous market returns to

estimate beta thus results in a downward biased beta. Several methods have been

developed to address this non-synchronous trading effect. For instance, Dimson

(1979) and Scholes and Williams (1977) combine contemporaneous market returns

with pre-specified forward and lagged market returns when estimating beta. In

contrast, I use DTW to align the stock return series with the market return series,

thereby accounting for dynamic asynchronicity. The DTW-aligned returns series is

then used as an input to estimate beta in a regression framework.

2.3.1 Data and method

Daily and monthly stock data are obtained from CRSP. I take all U.S. stocks traded

on all exchanges that are classified as ordinary common shares (SHRCD 10 or 11)

with a stock price (PRC) greater than $5, and adjust returns for delisting bias

as per Shumway (1997) and Shumway and Warther (1999). Daily and monthly

market returns, high-minus-low (HML), small-minus-big (SMB), robust-minus-weak

(RMW), conservative-minus-aggressive (CMA), and up-minus-down (UMD) factor

returns, and risk-free (one-month Treasury Bill) rates are from Kenneth French’s

data library. Daily FMAX factor returns are from Turan Bali’s website (Bali et al.,

2017). Balance sheet information used to calculate the book-to-market ratio is
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sourced from Compustat. The sample covers the months t from July 1927 through

November 2019 and month t+1 returns from August 1927 through December 2019.

Using DTW, the best alignment of stock returns and market returns is systematically

selected. This alignment is used to remove the effect of asynchronicity on the

ex-post estimation of beta. I calculate several stock characteristics as part of the

DTW-estimation process: raw DTW beta (βDTWR), bootstrapped DTW beta

(β̂DTW ), DTW beta (βDTW ), and the bootstrapped DTW t-statistic (βDTWT ).

βDTWR is estimated directly from the aligned market returns and stock returns.

A bootstrapping approach is applied to the estimation to address the inherent

bias in the DTW method, as described in Section 2.2.3. The stock returns series

is randomly permuted, DTW is used to align the permuted stock returns and

market returns, and then β̂DTW is re-estimated. This process produces a de-biased

DTW beta which is defined as the difference between the βDTWR and β̂DTW . In

addition to the DTW estimates of beta, I also calculate the bootstrapped t-statistic

associated with estimating β̂DTW . The full calculation details can be found in

Appendix 2.5.

Alongside various measures of beta, several control variables are defined. MAX

is the largest return over the prior month. MIN is the smallest return over the

prior month. SIZE is the natural logarithm of the market capitalization. ILLIQ is

Amihud’s illiquidity measure. BM is the book-to-market ratio. MOM is the return

from months t− 11 to t− 1. REV is the prior month’s return (short-term reversal).

IVOL is the idiosyncratic volatility from a 12-month regression of daily returns.

TSKEW is the total skewness, ISKEW is the idiosyncratic skewness, and SSKEW

is the systematic skewness calculated from daily returns over the past 12 months.
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2.3.2 Results and discussion

Table 2.3: Summary statistics
This table presents summary statistics for DTW-adjusted beta measures and a set of
control variables. For each month between July 1927 and November 2019, I calculate
the cross-sectional average (Mean), standard deviation (SD), skewness (Skew), kurtosis
(Kurt), number of observations (Nobs), minimum (Min), maximum (Max), median (q0.5)
and 5th (q0.05), 25th (q0.25), 75th (q0.75), 95th (q0.95) percentiles. The table presents
the time-series average of these cross-sectional statistics. βDTW is the DTW-adjusted
beta after adjusting for bias in the DTW estimator using bootstrapping. βDTWT is the
t-statistic associated with the bootstrapping used to calculate βDTW . βDTWR is the raw
DTW-adjusted beta. β is the beta estimated from a regression of daily excess stock returns
on excess market returns using 12 months of daily returns. βDIM is the beta estimated
using the Dimson regression adjustment using 12 months of daily returns. βSW is the
beta estimated using the Scholes-Williams regression adjustment using 12 months of daily
returns. MAX is the largest return over the prior month. MIN is the smallest return over
the prior month. SIZE is the natural logarithm of the market capitalization. ILLIQ is
Amihud’s illiquidity measure. BM is the book-to-market ratio. MOM is the return from
months t − 11 to t − 1. REV is the prior month’s return (short-term reversal). IVOL
is the idiosyncratic volatility from a 12-month regression of daily returns. TSKEW is
the total skewness, ISKEW is the idiosyncratic skewness, and SSKEW is the systematic
skewness calculated from daily returns over the past 12 months. Full variable definitions
are provided in Appendix 2.5.

Mean SD Skew Kurt Nobs Min Max q0.5 q0.05 q0.25 q0.75 q0.95

βDTW 0.39 0.39 0.39 8.82 2276 -1.76 2.68 0.35 -0.16 0.14 0.60 1.06
βDTWT 22.33 4.12 -0.02 0.42 2276 7.78 36.55 22.24 15.83 19.48 25.12 29.17
βDTWR 1.08 0.57 1.13 5.48 2276 -0.51 4.85 0.99 0.34 0.68 1.40 2.13
β 0.92 0.57 0.52 0.76 2276 -0.86 3.27 0.86 0.12 0.50 1.28 1.95

βDIM 1.07 0.76 0.45 3.42 2273 -2.63 5.35 1.01 0.01 0.57 1.51 2.38
βSW 0.86 0.52 0.49 2.70 2276 -1.19 3.51 0.82 0.11 0.50 1.18 1.78
MAX 0.03 0.02 2.74 32.74 2024 0.00 0.23 0.03 0.01 0.02 0.04 0.06
MIN -0.03 0.01 -1.43 5.35 2024 -0.13 0.00 -0.03 -0.05 -0.03 -0.02 -0.01
SIZE 11.37 1.61 0.45 0.04 2420 7.26 17.37 11.21 8.98 10.20 12.40 14.24
ILLIQ 1.47 3.92 10.18 243.52 1845 0.00 71.70 0.52 0.04 0.17 1.45 5.63
BM 0.78 0.61 5.24 101.83 1736 0.03 12.06 0.67 0.17 0.40 1.01 1.71
MOM 0.19 0.47 3.69 47.92 2251 -0.70 7.20 0.11 -0.31 -0.07 0.33 0.92
REV 1.70 11.03 2.28 38.36 2409 -41.53 135.30 0.70 -12.83 -4.31 6.36 19.08
IVOL 0.33 0.22 3.97 66.76 2412 0.02 3.49 0.29 0.12 0.20 0.41 0.70

TSKEW 0.46 1.10 2.22 24.02 2276 -6.55 10.97 0.34 -0.75 0.00 0.77 2.04
ISKEW 0.53 1.15 1.97 21.67 2276 -6.78 11.02 0.42 -0.81 0.05 0.87 2.22
SSKEW -3.57 16.43 0.33 14.58 2276 -99.84 108.77 -3.15 -29.97 -12.22 5.32 0.39

Table 2.3 presents the time-series average of the cross-sectional summary statistics of

the DTW beta factors, the standard CAPM beta estimate (β), Dimson beta (βDIM ),

Scholes-Williams beta (βSW ), and a set of control factors. The full details on factor

construction can be found in Appendix 2.5. βDTWR has a mean larger than the three

standard beta measures, suggesting a downward beta bias that is corrected when

accounting for dynamic asynchronicity in the estimation of beta. However, there is a

bias in the DTW algorithm, that can result in spurious estimates of beta. Although

βDTWR may provide a fair representation of beta, there is a strong relation with
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Table 2.4: Historical correlations of asynchronicity-adjusted betas with the
CAPM beta
This table presents the average Spearman rank correlation of βDTW , βDIM , βSW with β
across different sample windows. β is the CAPM beta estimated from a regression of
daily excess stock returns on excess market returns. βDIM is the beta estimated using
the Dimson regression adjustment. βSW is the beta estimated using the Scholes-Williams
regression adjustment. βDTW is the beta estimated using DTW to align stock and market
returns. A rolling regression is estimated at the end of each month using the last 12
months of daily returns data.

All Large Small Micro

βDIM βSW βDTW βDIM βSW βDTW βDIM βSW βDTW βDIM βSW βDTW

July 1927–December 2019 0.66 0.87 0.53 0.69 0.89 0.66 0.66 0.87 0.63 0.60 0.82 0.50
July 1927–December 1999 0.66 0.87 0.54 0.68 0.89 0.65 0.67 0.88 0.64 0.60 0.82 0.52

July 1927–June 1963 0.68 0.88 0.59 0.73 0.90 0.68 0.68 0.88 0.62 0.60 0.83 0.52
July 1963–December 1999 0.64 0.86 0.49 0.64 0.88 0.62 0.67 0.88 0.65 0.60 0.81 0.52

January 2000–December 2019 0.65 0.87 0.51 0.70 0.90 0.69 0.62 0.84 0.61 0.62 0.85 0.45

idiosyncratic volatility, and increases in the level of beta, as measured by βDTWR,

coincide with increases in idiosyncratic volatility. Nonetheless, βDTWR has practical

applications from a risk management perspective, as it offers an innovative way to

adjust for sluggishness in incorporating market-wide information into stock prices.

Importantly, this finding supports Liu et al. (2018), who also examine the relation

between beta and idiosyncratic volatility. Owing to the link between βDTWR and

idiosyncratic volatility, bootstrapping is used to correct for bias in the estimation of

DTW beta, as described in Eq. (2.14).

Table 2.4 presents the average Spearman rank correlation between stock level

estimates of β and βSw, βDIM , and βDTW . Using NYSE market capitalization

breakpoints, the sample is divided into micro (bottom 20%), small (middle 30%),

and large (top 50%). The correlation of βSw, βDIM , and βDTW with β is estimated

across different time windows. Across all time horizons and size categories, the

correlation with the β is relatively stable for the three asynchronicity-adjusted beta

measures. The primary differences are the lower average correlations for micro

stocks for each measure and βDTW having a lower correlation with β than βDIM

and βSW . This finding is most pronounced for micro stocks, suggesting that βDTW

is most different to β for micro stocks. This difference supports the notion that

βDTW has the most impact on beta estimation for micro stocks that lag the market

and where the downward beta bias is larger for these stocks.

Table 2.5 shows the time-series average of the monthly median characteristic values

for each decile portfolio produced by sorting from low to high βDTW . A “U-shaped”

pattern is observed across several characteristics, where portfolios one and ten have

high values, and portfolios two to nine have relatively lower values. This pattern is

particularly prominent for ILLIQ, both portfolio one and portfolio ten are comprised
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Table 2.5: Portfolio characteristics of stocks sorted by DTW beta
Each month from July 1927 to November 2019, decile portfolios are formed by sorting
stocks based on DTW-adjusted beta (βDTW ) over the previous month. This table
presents the time-series average of the monthly median of characteristics within each
decile portfolio.

Decile βDTW βDTWR β βDIM βSW BM MAX MIN IVOL ILLIQ ISKEW MOM PRC REV SIZE SKEW TSKEW

Low βDTW -0.16 0.46 0.61 0.65 0.58 0.69 0.03 -0.03 0.31 0.60 0.50 0.10 13.41 0.96 10.81 -3.88 0.45
2 0.03 0.55 0.57 0.66 0.55 0.73 0.02 -0.02 0.24 0.38 0.38 0.10 18.68 0.74 11.28 -2.71 0.33
3 0.14 0.65 0.61 0.73 0.60 0.73 0.02 -0.02 0.24 0.35 0.36 0.11 20.84 0.74 11.45 -2.61 0.30
4 0.23 0.76 0.68 0.81 0.66 0.71 0.02 -0.02 0.24 0.38 0.36 0.12 21.99 0.73 11.52 -2.70 0.30
5 0.31 0.87 0.76 0.91 0.73 0.69 0.02 -0.02 0.25 0.42 0.37 0.12 22.56 0.76 11.53 -2.82 0.30
6 0.39 0.99 0.85 1.01 0.81 0.68 0.03 -0.02 0.26 0.50 0.39 0.12 22.50 0.77 11.50 -3.04 0.31
7 0.49 1.13 0.94 1.12 0.89 0.66 0.03 -0.02 0.28 0.55 0.40 0.12 21.66 0.71 11.44 -3.20 0.32
8 0.60 1.30 1.06 1.24 0.99 0.64 0.03 -0.03 0.30 0.66 0.43 0.12 20.38 0.78 11.33 -3.50 0.34
9 0.76 1.55 1.20 1.40 1.12 0.62 0.03 -0.03 0.33 0.96 0.46 0.12 18.04 0.73 11.14 -3.68 0.37
High βDTW 1.06 2.05 1.45 1.70 1.34 0.58 0.04 -0.04 0.41 1.43 0.54 0.11 13.70 0.73 10.78 -4.31 0.46

of illiquid stocks. In other words, some small and illiquid stocks have their true beta

underestimated using the standard beta measure, and under the DTW beta, the beta

estimates are substantially higher. This result supports the initial hypothesis that

some small, illiquid stocks may have a downward biased beta owing to sluggishness

in incorporating market-wide information into their price. This result also suggests

that βDTW does not just estimate higher βDTW for all small, illiquid stocks with low

values of β, but only for those stocks where the beta should be genuinely higher.

βDTW still finds some small, illiquid stocks are genuine low-beta stocks.

Table 2.6 presents the equal-weighted (EW) and value-weighted (VW) excess returns

associated with decile portfolios using univariate decile sorts of β, βSW , βDIM and

βDTW . A statistically insignificant positive excess return is associated with the top-

minus-bottom portfolio for βDTW , whereas the three other metrics have statistically

insignificant negative excess returns. Although βDTW recovers portfolio returns that

are increasing from low to high, the pattern is not monotonic. I find that portfolio

nine has a higher average excess return than the High portfolio for βDTW . Although

βDTW is a significant improvement over the other beta measures at recovering the

CAPM predicted risk-return relation, the result is still not fully in line with the

predictions of the CAPM.

I extend the study of the βDTW factors from the univariate portfolio setting to

the multivariate setting using Fama and MacBeth (1973) regressions. Table 2.7

presents the average coefficients from running monthly Fama and MacBeth (1973)

regressions. For each measure of beta: βDTW , β, βDIM , and βSW , four regressions

are run. β in regression (ii) exhibits a statistically insignificant negative coefficient,

the manifestation of the beta anomaly. βDIM and βSW in regressions (iii) and

(iv) exhibit statistically insignificant coefficients. βDTW in regression (i) exhibits a

statistically insignificant positive coefficient of 0.19, reversing the negative coefficient

in the β case. Each regression is then repeated when introducing a series of control

26



Table 2.6: Excess returns of portfolios sorted by different beta measures
Each month from July 1927 to November 2019, four sets of decile portfolios are formed by
sorting stocks based on CAPM beta (β), Scholes-Williams adjusted beta (βSW ), Dimson
adjusted beta (βDIM ) and DTW-adjusted beta (βDTW ), each calculated using rolling
regressions of daily returns over the previous 12 months. This table reports the equal-
weighted and value-weighted average monthly excess returns. The average monthly excess
returns associated with the top-minus-bottom portfolio are reported in the final two rows.
Returns are in percentages. Newey-West (1987) adjusted t-statistics using six lags are
reported in parentheses for the top-minus-bottom portfolio.

Equal-weighted Value-weighted

Decile β βSW βDIM βDTW β βSW βDIM βDTW

Bottom 0.78 0.70 0.70 0.61 0.66 0.53 0.57 0.45
2 0.84 0.84 0.75 0.74 0.63 0.61 0.60 0.56
3 0.85 0.82 0.80 0.78 0.65 0.63 0.61 0.58
4 0.89 0.87 0.85 0.83 0.66 0.63 0.67 0.72
5 0.85 0.88 0.88 0.86 0.66 0.69 0.74 0.70
6 0.90 0.90 0.90 0.88 0.72 0.77 0.77 0.73
7 0.89 0.88 0.92 0.87 0.78 0.66 0.79 0.74
8 0.80 0.85 0.92 0.87 0.70 0.76 0.75 0.69
9 0.75 0.79 0.86 0.94 0.67 0.69 0.68 0.78
Top 0.59 0.61 0.59 0.77 0.57 0.63 0.52 0.64

Top − Bottom
-0.19 -0.08 -0.11 0.16 -0.09 0.10 -0.05 0.19
(-0.89) (-0.56) (-0.37) (1.05) (-0.40) (-0.22) (-0.42) (1.10)

variables. By introducing the set of control factors, the coefficients on β, βDIM , and

βSW are now all positive but statistically insignificant. This result is in line with

Liu et al. (2018), who document that the beta anomaly arises from idiosyncratic

volatility and after controlling for idiosyncratic volatility, positive loadings on beta

can be obtained. The specification of βDTW finds a statistically significant average

slope coefficient, at the 1% confidence level when controlling for several other well-

known asset pricing factors. The set of control factors does not explain the excess

returns associated with the βDTW factor, the interaction with these control factors

strengthens βDTW .
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Table 2.7: Firm-level cross-sectional regressions
This table presents the average coefficient estimates from monthly Fama and MacBeth
(1973) cross-sectional regressions. Each month from July 1927 to December 2019, excess
stock returns are regressed on lagged predictors including DTW-adjusted beta (βDTW ),
CAPM beta (β), Dimson adjusted beta (βDIM ), Scholes-Williams adjusted beta (βSW )
and several control variables, defined in Appendix 2.5. Each row in the table reports the
time-series average of the cross-sectional regression slope coefficients and their associated
Newey-West (1987) t-statistics, adjusted using six lags in parentheses. The R-squared
value for each regression is reported in the far right column. ***, **, and * indicate
statistical significance at 1%, 5%, and 10% levels, respectively. Statistical significance is
only indicated on beta variables.

βDTW β βDIM βSW MAX MIN IVOL ILLIQ ISKEW MOM STREV SIZE SSKEW TSKEW R2

(i)
0.19

1.65%
(1.27)

(ii)
-0.09

4.05%
(-0.81)

(ii)
0.03

3.11%
(0.39)

(iv)
-0.02

3.97%
(-0.15)

(v)
-3.91 8.57 -1.24 0.05 0.00 1.05 -0.04 -0.14 0.00 -0.05

9.01%
(-0.95) (2.15) (-3.26) (1.54) (0.00) (6.73) (-9.18) (-5.48) (-0.26) (-0.71)

(vi)
0.31 -5.37 9.44 -1.14 0.05 -0.02 1.12 -0.04 -0.14 0.00 -0.02

9.40%
(3.01)*** (-1.80) (3.40) (-3.55) (2.51) (-0.72) (7.21) (-9.57) (-5.46) (0.09) (-0.03)

(vii)
0.15 -5.46 10.88 -1.09 0.07 -0.04 1.05 -0.04 -0.14 0.00 0.00

10.27%
(1.33) (-1.34) (2.67) (-3.52) (1.82) (-0.39) (7.55) (-9.78) (-5.44) (0.07) (-0.31)

(viii)
0.12 -4.74 9.46 -1.19 0.05 -0.02 1.09 -0.04 -0.13 0.00 -0.02

9.85%
(1.61) (-1.81) (3.13) (-3.50) (2.18) (-0.60) (7.83) (-9.48) (-5.60) (-0.07) (-0.14)

(ix)
0.21 -5.75 10.21 -1.09 0.06 -0.03 1.07 -0.04 -0.13 0.00 -0.01

10.14%
(1.60) (-1.37) (2.45) (-3.14) (1.59) (-0.39) (8.33) (-9.03) (-5.57) (-0.45) (-0.34)

Having established that the βDTW measure recovers positive excess top-minus-

bottom returns, Table 2.8 presents the factor loadings and risk-adjusted alphas from

regressing the returns of the top-minus-bottom portfolios for the four measures of

beta on various risk models. In particular, top-minus-bottom portfolio returns for

βDTW , β, βDIM , and βSW are regressed on five different risk models: Fama–French

three-factor model (FF3, Fama and French (1993)), Fama–French–Carhart

four-factor model (FFC4, Carhart (1997)), Fama–French five-factor model (FF5,

Fama and French (2015)), Fama–French six-factor model (FF6, Fama and French

(2018)), and FFC4 with the FMAX factor (FFC4+FMAX, Bali, Cakici and

Whitelaw (2011)). As the number of regressors in each risk model are increased

the alphas associated with all four beta measures become less negative, and

the statistical significance weakens. For βDTW under the FFC4+FMAX models,

statistically significant and positive alphas are obtained, whereas for the other three

betas the FMAX factor renders their alphas statistically insignificant.
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Table 2.8: Factor loadings and risk-adjusted alphas for top-minus-bottom beta
portfolios
This table presents the factor loadings and risk-adjusted alphas from regressing top-minus-
bottom portfolio returns of different beta measures against various asset pricing models.
The time series of portfolio returns for beta (β), Dimson beta (βDIM ), Scholes-Williams
beta (βSW ) and DTW beta (βDTW ) are regressed on the FF3, FFC4, FF5, FF6, and
FFC4+FMAX asset pricing models. Each row in the table reports the regression slope
coefficients and their associated Newey-West (1987) t-statistics, adjusted using six lags in
parentheses. The R-squared value for each regression is reported in the far right column.

Factor model Beta α Mkt-RF SMB HML UMD CMA RMW FMAX N R2

FF3 β -0.97 1.12 0.44 -0.13 1109 0.68
(-6.12) (21.65) (2.38) (-1.27)

βSW -0.83 0.94 0.49 0.03 1109 0.67
(-5.85) (18.56) (4.18) (0.28)

βDIM -0.94 1.11 0.57 0.02 1109 0.72
(-6.22) (21.18) (4.30) (0.19)

βDTW -0.39 0.61 0.37 0.23 1109 0.60
(-3.18) (12.24) (3.53) (2.19)

FFC4 β -0.81 1.09 0.43 -0.21 -0.17 1109 0.69
(-5.04) (23.11) (2.38) (-1.93) (-2.33)

βSW -0.61 0.89 0.48 -0.08 -0.23 1109 0.69
(-4.03) (21.31) (4.21) (-0.81) (-3.21)

βDIM -0.71 1.06 0.56 -0.09 -0.24 1109 0.74
(-4.79) (23.31) (4.30) (-0.85) (-3.51)

βDTW -0.16 0.56 0.36 0.11 -0.24 1109 0.63
(-1.25) (14.24) (3.46) (1.28) (-4.44)

FF5 β -0.45 0.93 0.42 -0.22 -0.75 -0.77 678 0.76
(-2.37) (13.16) (5.18) (-1.90) (-4.23) (-5.67)

βSW -0.36 0.73 0.44 -0.09 -0.69 -0.66 678 0.73
(-2.52) (11.32) (6.38) (-0.85) (-4.39) (-4.94)

βDIM -0.38 0.91 0.45 -0.19 -0.73 -0.79 678 0.77
(-2.2) (13.09) (6.10) (-1.66) (-4.45) (-6.07)

βDTW 0.10 0.35 0.24 -0.07 -0.40 -0.59 678 0.58
(0.86) (7.52) (4.09) (-0.86) (-3.21) (-4.97)

FF6 β -0.33 0.90 0.43 -0.31 -0.17 -0.7 -0.72 678 0.76
(-1.73) (13.54) (5.62) (-2.97) (-2.76) (-4.35) (-6.36)

βSW -0.20 0.69 0.46 -0.21 -0.23 -0.62 -0.61 678 0.75
(-1.34) (12.06) (7.18) (-2.66) (-3.36) (-4.99) (-5.36)

βDIM -0.24 0.88 0.47 -0.29 -0.20 -0.66 -0.75 678 0.78
(-1.36) (13.65) (6.74) (-3.15) (-3.03) (-4.77) (-6.86)

βDTW 0.22 0.33 0.25 -0.15 -0.16 -0.35 -0.55 678 0.60
(1.81) (8.02) (4.73) (-2.40) (-2.62) (-3.28) (-4.94)

FFC4+FMAX β -0.09 0.65 0.12 -0.21 -0.21 0.81 678 0.84
(-0.58) (11.28) (1.64) (-3.24) (-4.50) (12.67)

βSW 0.00 0.48 0.19 -0.14 -0.27 0.69 678 0.83
(0.02) (10.28) (3.31) (-2.34) (-6.96) (14.16)

βDIM -0.01 0.63 0.17 -0.19 -0.24 0.80 678 0.85
(-0.06) (11.75) (2.61) (-2.85) (-6.21) (14.84)

βDTW 0.31 0.19 0.12 -0.08 -0.19 0.45 678 0.65
(2.76) (5.66) (2.19) (-1.57) (-4.78) (7.88)

To further examine the characteristics of the beta measures, I perform dependent

portfolio decile sorts between a set of control variables (ILLIQ, SIZE, IVOL, MOM,

MAX, and BM) and the four beta measures. Table 2.9 presents the results of
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these dependent portfolio sorts. Again, the FFC4+FMAX alphas for βDTW under

different control variables are statistically significant and positive for all controls

except MOM.

Table 2.10 presents portfolio returns, FFC4 alphas, and FFC4+FMAX alphas across

different size buckets and time-windows. Within each size bucket, top-minus-bottom

portfolio returns for the four measures of beta are calculated. The FFC4 and

FFC4+FMAX alphas of these portfolio returns are calculated and averaged across

the different time windows. The main result is that in the January 1, 2000, to

December 31, 2019 period, the positive relation for βDTW inverts. In fact, for all

beta measures across all size buckets, the portfolio returns and alphas are more

negative in the January 2000 to December 2019 period compared with the July 1927

to December 1999 period. One potential explanation here is the adaptive nature of

markets. As market participants learned about the beta anomaly, there could have

been more market flows into low beta stocks resulting in their outperformance. In

this case, correcting for asynchronicity cannot resolve the beta anomaly as it is not

a result of asynchronicity between stock returns and market returns.
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Table 2.9: Bivariate dependent sorts of beta measures
This table presents the results of bivariate dependent portfolio sorts between measures of
beta and stock returns after controlling for selected control characteristics. Each month,
all stocks are sorted into 100 portfolios, first based on the control variable and then on the
selected beta measure. I present the time-series means of value-weighted excess returns of
the average control variable decile portfolio within each beta decile portfolio. I also present
the mean return differences of the top-minus-bottom portfolios and CAPM, FF3, FFC4,
FF5, FF6, and FFC4+FMAX alphas for the top-minus-bottom portfolios. Newey-West
(1987) t-statistics, adjusted using six lags, are reported in parentheses. ***, **, and *
indicate statistical significance at 1%, 5%, and 10% levels, respectively.

Control Beta Low 2 3 4 5 6 7 8 9 High H-L CAPM α FF3 α FFC4 α FF5 α FF6 α FFC4+FMAX α

ILLIQ β 0.72 0.85 0.86 0.84 0.84 0.88 0.92 0.75 0.74 0.60 -0.12 -0.82 -0.85 -0.68 -0.24 -0.16 0.13
(-5.05)*** (-6.00)*** (-4.74)*** (-1.59) (-0.99) (1.14)

βSW 0.67 0.80 0.87 0.86 0.93 0.87 0.80 0.87 0.76 0.58 -0.08 -0.76 -0.79 -0.57 -0.16 -0.03 0.24
(-4.91)*** (-5.76)*** (-4.01)*** (-1.11) (-0.21) (2.14)**

βDIM 0.66 0.77 0.82 0.86 0.88 0.83 0.90 0.89 0.81 0.58 -0.09 -0.66 -0.69 -0.45 -0.20 -0.05 0.19
(-4.58)*** (-5.17)*** (-3.28)*** (-1.51) (-0.39) (1.67)*

βDTW 0.62 0.73 0.78 0.84 0.85 0.84 0.87 0.84 0.88 0.72 0.10 -0.31 -0.37 -0.15 0.13 0.20 0.31
(-2.68)*** (-3.19)*** (-1.28) (1.24) (1.73)* (2.67)***

SIZE β 0.73 0.81 0.85 0.90 0.89 0.92 0.88 0.86 0.75 0.58 -0.15 -0.90 -0.93 -0.76 -0.38 -0.25 0.00
(-5.52)*** (-6.34)*** (-5.09)*** (-2.40)** (-1.58) (0.03)

βSW 0.62 0.83 0.86 0.87 0.94 0.92 0.89 0.87 0.76 0.60 -0.02 -0.76 -0.81 -0.58 -0.21 -0.06 0.18
(-4.99)*** (-5.88)*** (-4.22)*** (-1.39) (-0.39) (1.55)

βDIM 0.65 0.76 0.83 0.85 0.91 0.93 0.90 0.89 0.84 0.59 -0.06 -0.69 -0.73 -0.51 -0.21 -0.06 0.16
(-4.92)*** (-5.53)*** (-3.64)*** (-1.65)* (-0.42) (1.41)

βDTW 0.60 0.75 0.82 0.82 0.87 0.88 0.93 0.86 0.87 0.74 0.15 -0.30 -0.36 -0.16 0.12 0.21 0.30
(-2.55)** (-3.11)*** (-1.34) (1.10) (1.81)* (2.75)***

IVOL β 0.88 0.82 0.84 0.80 0.85 0.83 0.82 0.77 0.78 0.70 -0.18 -0.82 -0.83 -0.71 -0.40 -0.32 -0.14
(-6.02)*** (-6.14)*** (-5.18)*** (-2.42)** (-1.95)* (-0.95)

βSW 0.80 0.78 0.82 0.88 0.83 0.83 0.81 0.80 0.74 0.80 0.00 -0.65 -0.67 -0.53 -0.27 -0.18 0.00
(-5.06)*** (-5.31)*** (-4.18)*** (-1.84)* (-1.20) (0.04)

βDIM 0.76 0.79 0.79 0.81 0.83 0.84 0.86 0.84 0.81 0.77 0.01 -0.55 -0.58 -0.42 -0.29 -0.17 -0.02
(-4.64)*** (-4.96)*** (-3.28)*** (-2.40)** (-1.38) (-0.14)

βDTW 0.71 0.73 0.75 0.80 0.81 0.85 0.85 0.82 0.89 0.88 0.18 -0.19 -0.24 -0.08 0.07 0.15 0.22
(-1.92)* (-2.48)** (-0.82) (0.73) (1.40) (2.02)**

MOM β 0.84 0.88 0.91 0.86 0.90 0.91 0.84 0.80 0.75 0.51 -0.33 -0.93 -0.92 -0.91 -0.59 -0.52 -0.37
(-6.49)*** (-6.68)*** (-6.54)*** (-3.54)*** (-3.09)*** (-2.37)**

βSW 0.75 0.87 0.86 0.87 0.87 0.89 0.89 0.85 0.75 0.58 -0.17 -0.80 -0.82 -0.76 -0.47 -0.38 -0.25
(-6.01)*** (-6.60)*** (-6.18)*** (-3.23)*** (-2.65)*** (-1.85)*

βDIM 0.74 0.80 0.85 0.86 0.85 0.90 0.89 0.89 0.82 0.58 -0.16 -0.69 -0.71 -0.69 -0.44 -0.36 -0.24
(-5.51)*** (-6.12)*** (-5.14)*** (-3.61)*** (-2.89)*** (-2.10)**

βDTW 0.69 0.78 0.78 0.82 0.84 0.84 0.86 0.92 0.93 0.74 0.05 -0.28 -0.33 -0.37 -0.07 -0.07 0.00
(-2.77)*** (-3.34)*** (-3.61)*** (-0.78) (-0.69) (0.02)

MAX β 0.75 0.76 0.80 0.78 0.84 0.85 0.86 0.85 0.85 0.85 0.11 -0.39 -0.36 -0.26 -0.14 -0.05 0.07
(-2.86)*** (-2.82)*** (-1.93)* (-0.84) (-0.31) (0.48)

βSW 0.69 0.78 0.76 0.83 0.77 0.80 0.88 0.85 0.90 0.93 0.24 -0.29 -0.30 -0.14 0.01 0.11 0.22
(-2.24)** (-2.46)** (-1.17) (0.04) (0.76) (1.65)*

βDIM 0.72 0.67 0.83 0.75 0.84 0.82 0.85 0.87 0.90 0.92 0.20 -0.24 -0.26 -0.09 -0.12 0.02 0.10
(-2.12)** (-2.40)** (-0.81) (-0.94) (0.13) (0.91)

βDTW 0.65 0.69 0.71 0.78 0.78 0.86 0.86 0.90 0.95 1.00 0.36 0.05 0.00 0.16 0.20 0.28 0.30
(0.55) (0.02) (1.60) (1.99)** (2.54)** (2.69)***

BM β 0.71 0.72 0.75 0.76 0.75 0.76 0.77 0.74 0.71 0.66 -0.05 -0.65 -0.62 -0.46 -0.28 -0.18 0.05
(-3.67)*** (-3.64)*** (-2.77)*** (-1.66)* (-1.06) (0.35)

βSW 0.63 0.71 0.73 0.80 0.76 0.72 0.82 0.74 0.70 0.70 0.07 -0.52 -0.48 -0.30 -0.13 -0.02 0.21
(-3.04)*** (-3.04)*** (-1.96)** (-0.88) (-0.11) (1.62)

βDIM 0.58 0.66 0.73 0.77 0.86 0.79 0.80 0.81 0.78 0.55 -0.03 -0.52 -0.51 -0.31 -0.24 -0.10 0.09
(-3.37)*** (-3.74)*** (-2.26)*** (-1.77)* (-0.72) (0.79)

βDTW 0.51 0.64 0.75 0.77 0.78 0.79 0.78 0.81 0.85 0.64 0.14 -0.11 -0.11 0.01 0.08 0.16 0.26
(-0.90) (-0.96) (0.09) (0.71) (1.38) (2.25)**

Better estimates of beta can be obtained by accounting for dynamic asynchronicity

between stock returns and market returns. I do not assume that the predictions of

the CAPM are correct or that beta as a factor should generate consistently positive

statistically significant excess returns. Instead, the DTW approach allows for a

better estimate of beta where stock returns and market returns are better adjusted

for than the common approaches of Dimson (1979) and Scholes and Williams (1977).

There are numerous other considerations for CAPM betas in general, for example,

the arbitrage of the beta anomaly with the advent of smart beta products and

31



investment managers actively exploiting the beta anomaly. This activity clouds the

picture for the expected results for beta and whether it is a risk premium. However,

using DTW to account for asynchronicity allows for the disentanglement of effects

associated with beta. For example, there have been several recent studies that

examine the impact of beta and risk, such as the increase of a stocks beta to an

index when the stock is added to the index (Barberis et al., 2005), exchange traded

funds (ETF) increasing co-movement and betas (Da and Shive, 2018), and that

increased algorithmic trading increases market co-movement and betas (Malceniece

et al., 2019; Park and Wang, 2020). DTW potentially allows one to disentangle

whether increases in co-movement are owing to a genuine change in systematic risk

or a better alignment of stock returns between the benchmark and constituents,

resulting in a more accurate measure of a stock’s beta.

Table 2.10: Historical performance of beta measure across size groups
This table presents the results of univariate portfolio sorts on different measures of beta
split into different market capitalization and time samples. The sample is split into three
size categories using NYSE breakpoints: bottom 20% (micro), next 30% (small) and top
50% (large). Within each size sample, univariate decile portfolio sorts using different
measures of beta are performed. Panel A reports the average return of the difference
between the high and low portfolios across different time windows. Panel B reports the
FFC4 alphas. Panel C reports the FFC4+MAX alphas. Newey-West (1987) t-statistics,
adjusted using six lags, are reported in parentheses. Results for the July 1927–June 1963
period are not reported in Panel C as the FMAX factor is not available.

Panel A: Portfolio returns

All Large Small Micro

β βDIM βSW βDTW β βDIM βSW βDTW β βDIM βSW βDTW β βDIM βSW βDTW

July 1927–December 2019 -0.19 -0.11 -0.08 0.16 -0.01 -0.02 0.06 0.09 -0.10 -0.01 -0.03 0.06 -0.37 -0.14 -0.07 0.37
(-0.90) (-0.56) (-0.37) (1.05) (-0.03) (-0.11) (0.25) (0.55) (-0.40) (-0.04) (-0.12) (0.34) (-1.79) (-0.78) (-0.29) (2.07)

July 1927–June 1963 0.03 0.16 0.20 0.33 0.04 0.16 0.22 0.23 0.05 0.24 0.02 0.15 -0.19 -0.04 0.20 0.79
(0.10) (0.51) (0.52) (1.14) (0.11) (0.43) (0.53) (0.70) (0.12) (0.75) (0.05) (0.54) (-0.54) (-0.13) (0.49) (2.09)

July 1927–December 1999 -0.18 -0.05 -0.05 0.26 0.31 0.19 0.26 0.18 -0.01 0.03 0.19 0.14 -0.42 0.00 -0.09 0.32
(-0.60) (-0.19) (-0.18) (1.74) (0.93) (0.67) (0.80) (1.04) (-0.04) (0.11) (0.58) (0.89) (-1.40) (-0.02) (-0.30) (2.03)

June 1963–December 1999 -0.18 -0.06 -0.05 0.25 0.32 0.18 0.27 0.18 -0.02 0.01 0.19 0.16 -0.44 -0.03 -0.11 0.29
(-0.58) (-0.24) (-0.18) (1.69) (0.93 (0.65) (0.82) (1.06) (-0.06) (0.05) (0.57) (0.97) (-1.47) (-0.14) (-0.36) (1.87)

January 2000–December 2019 -0.61 -0.69 -0.65 -0.32 -0.69 -0.74 -0.59 -0.30 -0.50 -0.53 -0.52 -0.28 -0.63 -0.56 -0.49 -0.28
(-1.16) (-1.42) (-1.20) (-0.80) (-1.16) (-1.36) (-1.01) (-0.75) (-0.83) (-0.92) (-0.86) (-0.56) (-1.29) (-1.30) (-0.99) (-0.79)

Panel B: FFC4 alphas

All Large Small Micro

β βDIM βSW βDTW β βDIM βSW βDTW β βDIM βSW βDTW β βDIM βSW βDTW

July 1927–December 2019 -0.81 -0.61 -0.71 -0.16 -0.65 -0.55 -0.57 -0.30 -0.71 -0.49 -0.63 -0.20 -0.95 -0.50 -0.63 0.15
(-5.04) (-4.03) (-4.79) (-1.25) (-3.72) (-3.24) (-3.39) (-2.18) (-3.83) (-2.92) (-3.69) (-1.27) (-4.99) (-2.94) (-3.93) (0.94)

July 1927–June 1963 -0.90 -0.65 -0.73 -0.16 -0.94 -0.66 -0.74 -0.31 -0.92 -0.54 -0.97 -0.27 -1.04 -0.63 -0.57 0.48
(-3.67) (-2.44) (-3.64) (-0.89) (-4.05) (-2.62) (-3.24) (-1.69) (-3.44) (-2.09) (-4.14) (-1.23) (-2.43) (-1.65) (-1.91) (1.41)

July 1927–December 1999 -0.49 -0.27 -0.35 0.15 0.02 -0.06 -0.01 -0.06 -0.33 -0.18 -0.13 0.08 -0.76 -0.21 -0.41 0.21
(-2.07) (-1.60) (-1.67) (1.13) (0.09) (-0.30) (-0.04) (-0.38) (-1.28 (-0.92) (-0.56) (0.47) (-3.49 (-1.20) (-1.97) (1.40)

June 1963–December 1999 -0.49 -0.28 -0.35 0.14 0.02 -0.07 0.00 -0.05 -0.34 -0.20 -0.13 0.09 -0.78 -0.24 -0.43 0.17
(-2.06) (-1.68) (-1.68) (1.04) (0.09) (-0.33) (-0.01) (-0.36) (-1.31) (-1.04) (-0.59) (0.56) (-3.60) (-1.43) (-2.09) (1.17)

January 2000–December 2019 -1.23 -1.18 -1.25 -0.52 -1.23 -1.22 -1.15 -0.57 -1.02 -0.98 -1.00 -0.47 -1.30 -1.04 -1.15 -0.43
(-3.64) (-4.30) (-4.03) (-1.99) (-4.03) (-4.10) (-3.93) (-2.04) (-2.64) (-3.04) (-2.86) (-1.32) (-4.11) (-3.70) (-4.07) (-1.79)

Panel C: FFC4+FMAX alphas

All Large Small Micro

β βDIM βSW βDTW β βDIM βSW βDTW β βDIM βSW βDTW β βDIM βSW βDTW

July 1927–December 2019 -0.09 0.00 -0.01 0.31 0.54 0.39 0.54 0.31 0.28 0.28 0.40 0.31 -0.48 -0.09 -0.20 0.30
(-0.58) (0.02) (-0.06) (2.76) (3.54) (2.69) (3.88) (2.48) (1.73) (1.87) (2.59) (1.86) (-2.99) (-0.69) (-1.37) (2.42)

July 1927–June 1963 0.08 0.13 0.16 0.34 0.73 0.46 0.64 0.17 0.35 0.30 0.48 0.26 -0.32 0.10 -0.01 0.36
(0.46) (0.94) (0.96) (2.57) (4.26) (2.58) (3.80) (1.23) (1.87) (1.71) (2.79) (1.63) (-1.74) (0.60) (-0.07) (2.46)

July 1927–December 1999 0.08 0.12 0.15 0.33 0.73 0.45 0.64 0.17 0.34 0.28 0.47 0.27 -0.34 0.06 -0.04 0.32
(0.45) (0.83) (0.93) (2.46) (4.23) (2.52) (3.80) (1.24) (1.77) (1.55) (2.66) (1.71) (-1.85) (0.38) (-0.20) (2.22)

June 1963–December 1999 -0.55 -0.52 -0.52 0.08 -0.09 -0.15 0.05 0.24 0.10 -0.04 0.06 0.25 -0.91 -0.65 -0.71 0.00
(-1.82) (-2.27) (-1.95) (0.40) (-0.37) (-0.64) (0.21) (1.15) (0.30) (-0.16) (0.21) (0.80) (-2.86) (-2.27) (-2.68) (0.01)
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2.4 Global markets price discovery

In perfectly integrated markets securities that share commonality would exhibit

no lead–lag in response to information flows. Markets would instantaneously

incorporate the relevant component of new information into the price of all relevant

securities. Lo and MacKinlay (1990) demonstrate that various market frictions

slow the transmission of information across markets and can induce dynamic

asynchronicity in markets. An example of this is a security that is listed on

multiple exchanges. Suppose the exchanges on which the security is listed are all

concurrently open and a relevant piece of information is released. In that case,

there will be an impounding of this information into the price occurring across

all exchanges. The variation in the speed at which this happens across different

exchanges is what standard price discovery models attempt to measure. Thus,

price discovery models explicitly deal with asynchronicity in how information is

impounded into markets. However, common price discovery models typically do

not account for changes in asynchronicity within the estimation window, that can

lead to errors in inference when using these models. To deal with this dynamic

asynchronicity problem, DTW can measure the intraday lead–lag between two

assets at each time-step within the estimation window.

The link between the U.S. and U.K. equity markets is well studied, with several

efforts identifying bi-directional information transmission. Eun and Shim (1989)

explore the transmission of information across global stock markets using a vector

autoregression framework, demonstrating the dominant influence of the U.S. stock

market on other global markets, as well as bi-directional information transmission

between the U.K. and the U.S. There is an extensive literature that explores volatility

spillover effects that occur between different markets. Antonakakis, Floros and

Kizys (2016) explore dynamic volatility spillovers between the U.K. and U.S. futures

markets and identify that the relation is bi-directional and that volatility in U.K.

futures are net receivers of shocks to futures volumes. However, the literature on the

U.K. and U.S. futures lead–lag relation is relatively sparse. Instead, the literature

focuses on the lead–lag relation between index futures and the underlying equity

market indices within separate markets. The degree of the time-varying dynamic

nature of the lead–lag between the U.K. and U.S. futures can be explicitly quantified

by applying DTW.

2.4.1 Data and method

I use intraday quotes of the E-mini and FTSE 100 index futures to study the bi-

directional transmission of information to quantify any lead–lag structures that exist.
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The E-mini futures are one of the most frequently traded and liquid instruments

globally and are expected to be the dominant instrument from a price discovery

perspective. The E-mini futures and FTSE 100 futures, although not perfectly

correlated, share a high degree of similarity as they derive their fundamental value

from two of the largest developed equity markets that both respond to global

macroeconomic information flows.

The continuous futures chains are sourced from Refinitiv for the E-mini (RIC: ESc1)

and the FTSE 100 index futures (RIC: FFIc1). For each day between November 13,

2001, and June 30, 2020, the mid-quote is calculated using the one-second bid and

ask quotes. The E-mini volume share, the ratio of the E-mini traded volume to the

combined E-mini and FTSE 100 traded volume, is calculated using the total volume

traded in each one-second interval. Observations where the bid exceeds the ask are

replaced with the previous valid quote. In each one-second interval the log return

is calculated using the mid-quote, and observations are removed where the absolute

one-second log return is greater than 25%. The daily start and end times for each

time series are set as the time at which the first and last trade in either the E-mini

contract or the FTSE 100 contract occurs. DTW is applied to each daily time series

of E-mini and FTSE 100 one-second log returns, using a DTW window of 60 seconds

across all periods. Two iterations of the DTW algorithm are run to correct for the

bias in the DTW algorithm. In the first iteration, the first time series provided to

the DTW algorithm is the E-mini contract, and the FTSE 100 contract is set as the

first time series in the second iteration. For each day in the sample, during each

one-second interval two estimates of the lead–lag are obtained. The simple average

of these two estimates is used as the DTW lead–lag estimate, such that a positive

value corresponds to the E-mini contract leading and a negative value indicates the

FTSE 100 contract leads.

Data from Refinitiv is synchronized using UTC, acknowledging that there is an

inherent time delay between Refinitiv receiving information from the various

exchanges and recording the data, however, this is deemed to have minimal impact

at the one-second timescale used. There are several changes in the trading hours of

the FTSE 100 futures within the sample period. Before June 2, 2008, the FTSE

100 contract traded between 8 am–5:30 pm London time. Between June 2, 2008,

and October 4, 2010, the FTSE 100 contract traded between 8am–9pm London

time. After October 4, 2010, the FTSE 100 contract traded between 1 am–9 pm

London time. On November 17, 2014, ICE transitioned the FTSE 100 futures

contracts from the London International Financial Futures and Options Exchange

(LIFFE); at this point, the FTSE 100 contract traded between 7 am–9 pm London

time. On October 1, 2015, ICE transitioned the FTSE 100 futures trading hours
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to 1 am–9 pm London time. As the estimates of lead–lag are obtained for each day

in the sample independently, these changing trading hours have minimal impact on

the estimation procedure and only manifests when observing the pointwise lead–lag

estimates.

2.4.2 Results and discussion
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Figure 2.5: Hasbrouck information share and correlation between E-mini S&P
500 futures and FTSE 100 futures
This figure presents the Hasbrouck IS and Pearson correlation coefficients between the
E-mini futures and FTSE 100 futures. Panel A presents the annual average of the daily
average of the upper and lower bounds of the Hasbrouck IS. One-second mid-quote log
returns are used to estimate the standard IS model each day between January 1, 2002,
and May 29, 2020, between 7:00 am–5:30 pm UTC. Panel B presents the annual average
of the daily correlation coefficient between the E-mini futures and FTSE 100 futures at
varying frequencies of mid-quote log returns.

The standard Hasbrouck (1995) IS model is used to establish a baseline for what

a standard price discovery model provides. Figure 2.5 presents the average of the

upper and lower bounds estimated using the Hasbrouck IS method applied to one-

second log-returns of the E-mini and FTSE 100 contracts. Before 2010, the E-mini

contract was where most of the price discovery occurred, however, post-2010, the

share of price discovery converges to approximately equal between both instruments.

This convergence coincides with an increase in the correlation between the two

instruments. The extension of the trading hours in the FTSE 100 contract that
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occurred in 2009 and 2010 and a general increase in global co-movement in assets

(Rua and Nunes, 2009) likely contributed to this increasing correlation. The key

reason for presenting this result is to demonstrate the standard price discovery

models generally only provide summary estimates of the lead–lag, often at the daily

level. Although running models over finer estimation windows within a trading

day is possible, there is a limit to how fine the estimation windows can be made

before the model error becomes too large. One advantage of using DTW is that it

is agnostic to the estimation window and can produce an estimate of the lead–lag

for each observation within the estimation window.
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Figure 2.6: Annual DTW-estimated lead–lag between E-mini S&P 500 futures
and FTSE 100 futures
This figure presents the annual average of the daily median lead–lag between the E-mini
futures and FTSE 100 futures (Panel A) and the E-mini trading volume share (Panel B).
For each day between November 13, 2001, and May 29, 2020, inclusive, intraday lead–lag
values are estimated using DTW applied to one-second mid-quote log returns on the E-mini
and FTSE 100 futures. The E-mini volume share, presented in Panel B, is the proportion
of E-mini traded volume to the combined E-mini and FTSE 100 futures traded volume in
each one-second interval. Each line corresponds to a combined abbreviation Xy, where X
represents the underlying equity market and y represents the market operating phase. X
can take values of L (LSE) and N (NYSE). y can take values of pre-open (P), open (O),
and closed (C).

Figure 2.6 presents the annual average of the daily median lead–lag between the

E-mini and FTSE 100 contracts and the E-mini trading volume share. Based on the

operating phase of the two underlying equity markets, the trading day is divided into
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six distinct periods. Each of the six periods are denoted as Xy where X can take

the values L or N denoting LSE and NYSE, respectively, and y with values p, o, or c

indicating pre-open, open and closed, respectively. There are several intuitive results

from Figure 2.6. First, the compression of the lead–lag values toward zero over time.

In particular, in the LoNo period as the E-mini volume share increased from 2006,

the lead that the FTSE 100 contract had over the E-mini contract reduced close

to zero. This reduction toward zero is expected. With a higher level of trading

volume, the prices of the two contracts will react faster to new information, and

thus the lead–lag differences will be smaller. Second, the trend toward zero in the

LoNo period, despite the E-mini volume share remaining relatively constant. This

result is potentially a function of overall increases in the volume of contracts traded

and the overall increase in the speed of information transmission between London

and Chicago as the infrastructure used for transmitting information has improved.

Finally, in the LcNc period, the E-mini lead remains above zero, indicating that the

E-mini contract is leading in this period on average. The E-mini is the predominant

contract used to express underlying views on overnight macroeconomic news while

equity markets are closed owing to the relatively higher levels of liquidity. Although

the E-mini volume share tends to be close to 100% in this period, the overall volume

of contracts traded is relatively thin compared with the rest of the day.
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Table 2.11: Summary statistics of intraday lead–lag between E-mini S&P 500
futures and FTSE 100 futures
This table presents summary statistics for the DTW-estimated lead–lag between E-mini
futures and FTSE 100 futures. For each day from November 13, 2001, to June 30, 2020,
between 1:00 am–9:00 pm UTC, I present the daily average (Mean), standard deviation
(SD), skewness (Skew), kurtosis (Kurt), number of observations (Nobs), minimum (Min),
maximum (Max), median (q0.5) and 5th (q0.05), 25th (q0.25), 75th (q0.75), 95th (q0.95)
percentiles. This table presents the time-series average of these daily statistics. Panel A
presents summary statistics between November 13, 2001, and December 31, 2010. Panel B
presents summary statistics between January 4, 2011, and June 30, 2020. Panel C presents
summary statistics between November 13, 2001, and June 30, 2020. For each day in the
sample, one-second mid-quote log returns on the E-mini and FTSE 100 futures contracts
are used to measure the lead–lag using DTW. Each row corresponds to a combined
abbreviation Xy, where X represents the underlying equity market and y represents the
market operating phase. X can take values of L (LSE) and N (NYSE). y can take values
of pre-open (P), open (O), and closed (C). The right-most column presents the time-series
average of the average E-mini volume share, that is measured as the proportion of E-mini
futures volume to the combined E-mini and FTSE 100 futures volumes, calculated using
the traded volume over each one-second interval. Lead–lag values are in seconds.

Panel A: 2001–2010

Mean SD Skew Kurt q0.5 q0.05 q0.25 q0.75 q0.95 Volume share

LpNc -3.95 27.28 0.02 -0.84 -3.97 -5.55 -4.76 -3.12 -2.32 0.702
LoNc -3.15 26.48 0.09 -0.82 -4.18 -44.26 -24.22 17.93 40.06 0.296
LoNp -2.12 26.07 0.04 -0.77 -2.15 -43.21 -22.81 18.16 39.98 0.536
LoNo 0.67 20.68 -0.01 0.23 0.89 -34.15 -13.12 14.46 34.91 0.803
LcNo -0.23 23.06 -0.05 -0.29 0.49 -38.03 -17.17 16.46 36.70 0.998

Panel B: 2011–2020

Mean SD Skew Kurt q0.5 q0.05 q0.25 q0.75 q0.95 Volume share

LcNc 2.28 23.98 -0.09 0.01 1.19 -37.05 -9.45 16.24 39.57 0.960
LpNc -0.38 24.01 -0.01 -0.46 -0.32 -39.00 -17.66 16.81 37.89 0.727
LoNc -1.23 22.61 0.02 -0.26 -0.55 -38.80 -17.14 14.13 36.68 0.511
LoNp -1.46 23.00 0.02 -0.33 -0.87 -39.35 -17.90 14.36 36.90 0.666
LoNo 0.28 17.92 0.04 1.06 0.10 -30.29 -10.18 10.83 31.06 0.856
LcNo -0.30 19.48 -0.03 0.67 0.07 -34.00 -11.68 10.82 32.97 0.994

Panel C: 2001–2020

Mean SD Skew Kurt q0.5 q0.05 q0.25 q0.75 q0.95 Volume share

LcNc 2.28 23.98 -0.09 0.01 1.19 -37.05 -9.45 16.24 39.57 0.970
LpNc -2.16 24.13 -0.01 -0.47 -2.14 -22.34 -11.23 6.88 17.86 0.715
LoNc -2.19 24.54 0.05 -0.54 -2.36 -41.52 -20.67 16.02 38.37 0.405
LoNp -1.79 24.53 0.03 -0.55 -1.51 -41.28 -20.35 16.26 38.44 0.602
LoNo 0.47 19.30 0.01 0.64 0.49 -32.22 -11.65 12.65 32.98 0.830
LcNo -0.27 21.26 -0.04 0.19 0.28 -36.00 -14.41 13.62 34.82 0.995

Table 2.11 presents summary statistics on the lead–lag estimates, divided into the

periods of 2001–2010, 2011–2020, and 2001–2020. There are no entries in Panel

A for LcNc, as before 2009 FTSE 100 futures contract did not commence trading
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until the LSE had opened at 8 am London time. First, the periods of LcNc exhibit

a higher standard deviation, particularly when compared with the LoNo period.

The estimates of DTW show that when comparing the first and second half of the

sample, there has been a decrease in the standard deviation of the estimated lead–lag

and a reduction in the magnitude of the lead–lag. These results demonstrate the

dynamic nature of the lead–lag structures between the E-mini and FTSE 100 futures

contracts. As the E-mini contract has become more heavily traded, even when the

underlying NYSE is closed, it has become even more dominant in the price leadership

process over the FTSE 100 futures.

One challenging result of Table 2.11 is during the LcNo period the average lead–lag

suggests that the FTSE 100 contract is leading the E-mini contract, whereas the

median lead–lag suggests the inverse. Across this period, the lead–lag tends to be

around zero except when the LSE is closing. When the LSE closes, there is typically

a strong impulse response of the lead–lag in which the FTSE 100 contract takes over,

followed shortly by a reversion to zero in the lead–lag. This impulse like behavior

is why the mean lead–lag value suggests that FTSE 100 leads, whereas the median

value suggests the E-mini leads. So far, we have only observed aggregated lead–lag

statistics across different market operating phases of the LSE and NYSE. One of the

strengths of the DTW technique is that it provides an estimate of the lead–lag for

every observation in the estimation window. The intraday lead–lag dynamics can

be observed across more granular frequencies than standard price discovery models

using the DTW-provided pointwise estimates.

Figure 2.7 presents the cross-sectional average of the intraday lead–lag between the

E-mini and FTSE 100 contracts, measured at a one-second frequency, in two distinct

periods: 2014–2019 and 2020, using the months January through May in each year.

January through May are selected to focus on the 2020 COVID-19 market events.

We observe a marked shift in lead–lag behavior in 2020 owing to the COVID-19

pandemic, and the elevated levels of both market volatility and market activity. The

2014–2019 lead–lag (solid black line) shows several interesting features. The most

persistent characteristic is the impulse-like responses of the lead–lag to significant

intraday events, such as the opening or closing of the underlying equity markets and

changes in relative levels of liquidity that occur at periods, such as the US economic

announcements that occur at 1:30 pm UTC. These impulse-like responses are likely

a result of the sudden sharp shifts in the trading of the futures contracts as the

volumes in the underlying equity markets shift.
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Figure 2.7: Intraday lead–lag between E-mini S&P 500 futures and FTSE 100
futures - example A
This figure presents the cross-sectional average of the DTW-estimated intraday one-second
lead–lag between the E-mini futures and FTSE 100 futures (solid lines) and the cross-
sectional average of the one-second intraday E-mini volume share (dotted lines). The
black lines use the period of January 1, 2014, through May 31, 2019, using only the months
January through May in each year. The red lines refer to January 1, 2020, through May
29, 2020. The shaded periods refer to the time at which either the LSE or NYSE are open.
The left diagonal hatch is when the LSE is open. The right diagonal hatch is when the
NYSE is open. Gaussian kernel smoothing is used to increase the readability of the figure.

Table 2.12 presents a qualitative description of the intraday insights that the DTW

results allow, focusing on the 2014–2019 period.

40



Table 2.12: Description of intraday trading sessions on the NYSE and LSE

Time (UTC) LSE NYSE Label Description

1:00 am–7:00 am Closed Closed LcNc E-mini leads, however trading volumes in both
contracts are relatively thin and there are
higher levels of cross-sectional volatility in the
estimates.

7:00 am–8:00 am Pre-open Closed LpNc The pre-open phase of the LSE sees volumes
in the FTSE 100 contracts increase relative to
the E-minis, and this causes the FTSE 100 to
lead. Heading into the LSE open, the E-mini
contract takes over before the FTSE 100 takes
over just before LSE open.

8:00 am–12:00 pm Open Closed LoNc FTSE 100 leads across this entire period. The
lead tends to be stable.

12:00 pm–2:30 pm Open Pre-open LoNp FTSE 100 continues to lead; however a shift
occurs at 12 pm when the NYSE pre-open
begins and at 1:30 pm when US
macroeconomic news is announced. The
E-mini contract begins to take-over heading
into the NYSE open.

2:30 pm–4:30 pm Open Open LoNo E-mini leads, however as both markets are
open, the lead tends to be stable and close to
zero. Heading into the LSE close at 4:30 pm,
the E-mini contract starts to take a stronger
lead, before the FTSE 100 takes over.

4:30 pm–9:00 pm Closed Open LcNo Immediately after the LSE close, there is an
impulse response where the FTSE 100
contract takes a strong lead that reverts back
to zero over a 15-minute period. This is likely
owing to an impounding of information from
the market close, resulting in increased
trading volumes and greater asynchronicity in
the two instruments. For the rest of the
period, the E-mini tends to lead however the
overall lead–lag is approximately zero with
variable noise around the estimate.

Table 2.12 focuses on the 2014–2019 period (using January through May months).

I contrast this result against the 2020 lead–lag (solid red line) in Figure 2.7. During

2020, the E-mini contract tends to be more dominant when the NYSE is closed,

compared with the 2014–2019 period. In particular, the E-mini volume share is

elevated between 7 am–2:30 pm UTC. Across the 8 am–2:30 pm period, the difference

in the E-mini volume share in the 2020 and 2014–2019 periods compress, which is

reflected in the lead–lag estimates as well. The overall differential between the

2014–2019 and 2020 lead–lag is smaller during the 8 am–2:30 pm window. After

2:30 pm, the behavior of the lead–lag is quite similar in the two samples.
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Figure 2.8: Intraday lead–lag between E-mini S&P 500 futures and FTSE 100
futures - example B
This figure presents the cross-sectional average of the DTW-estimated intraday one-second
lead–lag between the E-mini futures and FTSE 100 futures (solid lines) and the cross-
sectional average of the one-second intraday E-mini volume share (dotted lines). The
black lines refer to the period from January 1, 2002, through December 31, 2009. The
red lines refer to the period of January 1, 2014, through December 31, 2019. The shaded
periods refer to the time at which the LSE or NYSE are open. The left diagonal hatch
is when the LSE is open. The right diagonal hatch is when the NYSE is open. Gaussian
kernel smoothing is used to increase the readability of the figure.

Figure 2.8 depicts the 2002–2009 period contrasted against the 2014–2019 period.

Similar to Figure 2.7, there are several distinct periods of lead–lag behavior. In

the 2002–2009 period, the futures contracts were typically only traded between

6 am–5:30 pm UTC. Between the two time periods, the overall dynamics of the

lead–lag is similar, however, the magnitude of the lead–lag varies. In the 8 am–2:30

pm UTC phase during the 2002–2009 period, the lead–lag starts to move closer to

zero after 12pm UTC (when the NYSE pre-open phase begins), and there are changes

in the lead–lag around the 1:30pm UTC US macroeconomic news announcements.

Overall, the lead–lag in the 2002–2009 period tends to be larger than that of the

2014–2019 period. This result is expected, however the intraday variation in these

differentials is not constant and is worth further investigation. In particular, in

the 8 am–2:30 pm period, the difference in the lead–lag between 2002–2009 and

2014–2019 is substantially larger than in the 2:30 pm–4:30 pm UTC period. This

difference is likely a function of both equities markets being fully open for trading,
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and thus information is being processed faster in both contracts. Overall, these

examples demonstrate one of the key advantages of the DTW method. Complex

intraday price leadership dynamics can be observed by applying DTW to granular

windows across trading days. This technique gives a richer insight into how prices

are formed in two key futures contracts, affirming the importance of the market

operating phases of the equity markets underlying the futures contracts.

2.5 Conclusion

The presence of dynamic asynchronicity is an important consideration when

modeling financial time series. Asynchronicity can occur across all measured

frequencies of time series in financial settings, from quarterly lead–lag of

macroeconomic information and asset returns to millisecond lead–lag between

equity futures traded in Chicago and ETFs traded in New York. I establish DTW

as a method that can quantify asynchronicity between financial time series and

adjust for the time-varying nature of asynchronicity in empirical models.

Using bootstrapped simulations, I validate the use of DTW for measuring

asynchronicity in financial time series. DTW proves to be robust at capturing

different forms of induced lead–lag between financial time series, and I uncover

insights into the influence of fundamental volatility and noise on DTW’s ability

to recover lead–lag structures. I explore two empirical settings at different time

frequencies to demonstrate DTW’s usefulness. First, I use DTW to provide a

better measure of beta that accounts for dynamic asynchronicity between stock

returns and market returns, helping resolve the beta anomaly. The DTW approach

to beta estimation successfully recovers a positive relation between high beta

stocks and excess returns. Second, using DTW, I measure the intraday dynamics

in lead–lag effects between U.S. E-mini futures and U.K. FTSE 100 futures and

uncover the time-varying behavior in the price leadership as the operating phase of

the underlying U.S. and U.K. equity markets change.

Through these empirical studies, I demonstrate situations where DTW generates

new and interesting insights into traditional financial economics problems. DTW

has scope for application to other important problems where dynamic asynchronicity

in financial time series can drive errors in inference in traditional empirical models.
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Appendix 2.1. Variable definitions

Beta estimation

� CAPM beta (β): I follow Fama and MacBeth (1973) and measure beta using

the below regression model:

ri,t − rf,t = αi + βi(rm,t − rf,t) + ϵi,t, (2.8)

where ri,t is the return of stock i during period t, rf,t is the risk-free rate during

period t, rm,t is the return of the market portfolio, and ϵi,t is the residual

of stock i. The regression model specified in Eq. (2.8) is estimated using a

rolling window approach. At the end of each month, the model is re-estimated

using the most recent 12 months of daily returns data. The regression is only

estimated if there are at least 200 daily returns observations in the most recent

12 months, and this condition applies to all measures of beta using daily data,

described below.

� Dimson beta (βDIM): I follow Dimson (1979) and estimate a beta that adjusts

for infrequent trading events. I add five days of lagged market returns and five

days of forward market returns into the regression for beta as follows:

ri,t − rf,t = αi + β
(k)
i

(
5∑

k=−5

rm,t−k − rf,t−k

)
+ ϵi,t. (2.9)

The Dimson beta estimator is then the sum of the estimated beta coefficients

from Eq. (2.9):

βDIMi
=

5∑
k=−5

β
(k)
i . (2.10)

� Scholes-Williams beta (βSW ): I follow Scholes and Williams (1977) to calculate

an adjusted beta. I use three regressions to obtain three measures of betas.

The first regression uses contemporaneous market returns, as in Eq. (2.8).

The second regression uses the one-day lagged market excess return as the

explanatory variable (Eq. (2.11)), and the third regression uses the one-day

forward market excess return as the explanatory variable (Eq. (2.12)).

ri,t − rf,t = αi + β−
i (rm,t−1 − rf,t−1) + ϵ−i,t, (2.11)

ri,t − rf,t = αi + β+
i (rm,t+1 − rf,t+1) + ϵ+i,t. (2.12)
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The Scholes-Williams beta estimator is given by:

βSWi
=
β−
i + βi + β+

i

1 + 2ρ
, (2.13)

where ρ is the first order autocorrelation of the market excess return over the

estimation window.

� DTW beta and DTW t-statistic (βDTW and βDTWT ): I measure βDTW for each

stock i during month t as follows:

1. Start with daily stock excess returns and daily market excess returns over

the months t− 11 through t, inclusive,

(a) (Bootstrapping step only): Randomly permute the daily stock excess

returns.

2. Calculate the compounded cumulative returns series for both the stock

and the market over the estimation period,

3. Normalize each time series by subtracting the mean and dividing by the

standard deviation over the estimation period,

4. Run DTW using a window of 20 days to obtain the optimal alignment

path between the normalized cumulative stock returns series and

normalized cumulative market returns series,

5. Use the optimal alignment path from Step 4 to align the original daily

stock excess returns and daily market excess returns from Step 1. The

compounded cumulative returns series is not used in the estimation of

beta, they are only used to obtain the optimal alignment path and then

discarded,

6. Use these optimally aligned returns series to estimate beta as in Eq. (2.8).

For each stock i in month t, I run a bootstrapping simulation using the above

procedure. There is an additional Step 1(a) that is run for each bootstrapping

simulation. I run k = 100 simulations where in each simulation I measure the

βDTWRi,k
from permuting the stock excess returns series:

βDTWi = βDTWRi −
1

100

100∑
k=1

βDTWRi,k
, (2.14)
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βDTWTi =
1

100

∑100
k=1 βDTWRI,k√∑100

k=1(βDTWRI,k
−AV G(βDTWRi,k

))2

100

. (2.15)

This bootstrapping can also be represented in standard beta notation as:

βi = ρi,m
σi
σm

,

β∗
i = ρ∗i,m

σi
σm

,

β∗
i =

1

M

K∑
k=1

ρ∗i,m
σi
σm

,

where βi being the standard beta, and β∗
i being the beta obtained from permuting

the stock excess returns (βDTWRi
). It follows that,

βi − β̄∗
i =

(
ρi,m − ρ̄∗i,m

) σi
σm

,

and theoretically, ρ̄∗i,m should be zero.

Control variables

� Book-to-market (BM): I follow Fama and French (1992) and calculate the

book-to-market ratio in month t using the firm’s market value of equity as

at the end of December in the previous year and the book value of common

equity plus balance-sheet deferred taxes minus preferred stock for the firm’s

latest fiscal year ending in the prior calendar year.

� Idiosyncratic volatility (IVOL): I estimate idiosyncratic volatility using the

FF3 model:

ri,t − rf,t = αi + βMKT,i(rm,t − rf,t) + βSMB,i(SMBt) + βHML,i(HMLt) + ϵi,t,

(2.16)

where SMBt is the return to the small-minus-big size factor portfolio, HMLt

is the return to the high-minus-low value factor portfolio, and ϵi,t is the

idiosyncratic return of stock i on day t. The idiosyncratic volatility of stock

i in month t is defined as the standard deviation of the daily residuals using

return data from the 12-month period from months t−11 through t, inclusive.

� Illiquidity (ILLIQ): I follow Amihud (2002) and measure illiquidity for each

stock in month t as the ratio of the absolute monthly stock return to its dollar

trading volume:

ILLIQi,t =
|ri,t|

V OLDi,t

, (2.17)
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where V OLDi,t is the dollar trading volume of stock i on day t. Data from the

12-month period from months t− 11 through t, inclusive, is used to calculate

ILLIQi,t.

� Maximum return (MAX): I follow Bali et al. (2011) and measure MAX as the

maximum daily return within a month.

� Minimum return (MIN): I follow Bali et al. (2011) and measure MIN as the

minimum daily return within a month.

� Momentum (MOM): I follow Jegadeesh and Titman (1993) and measure

momentum for each stock in month t at the cumulative return on the stock

over the previous 11 months starting two months ago.

� Short-term reversal (REV): I follow Jegadeesh (1990) and Lehmann (1990)

and measure short-term reversal for each stock as the return on the stock over

the previous month t− 1.

� Size (SIZE): I follow existing literature and measure firm size as the natural

logarithm of the market value of equity (price times shares outstanding in

millions of dollars) at the end of month t− 1 for each stock.

� Systematic and idiosyncratic skewness (SSKEW & ISKEW): I follow Harvey

and Siddique (2000) and decompose skewness into idiosyncratic and systematic

components by running the following regression for each stock:

ri,t − rf,t = αi + βi(rm,t − rf,t) + γi(rm,t − rf,t)
2 + ϵi,t. (2.18)

From this regression, ISKEW of stock i in month t is defined as the skewness

of daily residuals ϵi,t from the prior 12 months. SSKEW of stock i in month t

is the estimated slope coefficient γi,t.

� Total skewness (TSKEW): I follow Bali et al. (2011) and compute the total

skewness of stock i for month t over the previous year t:

TSKEWi,t =
1

Dt

Dt∑
d=1

(
ri,d − µi

σi

)
, (2.19)

where Dt is the number of trading days in year t, ri,d is the return on stock i

on day d, µi is the mean of returns of stock i in year t, and σi is the standard

deviation of returns of stock i in year t.
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Appendix 2.2. Additional results

Table 2.13: Adjusting for bias in the DTW algorithm
This table presents the results for a constant lead–lag simulation, in which the order of
the two time series is alternated in the calculation of the lead–lag using DTW. I simulate
two assets that share a common fundamental value, using the parameters, N = 10, 000,
ut = 1, s1,t = s2,t = 0.5, and W = 60. A set of constant lead–lags are induced between the
two time series in the range of −5 to +5 in increments of one unit. The second column
contains the DTW lead–lag in which the order of the time series in the DTW algorithm
is time series one first and time series two second. The third column contains the DTW
lead–lag in which the order of the time series is time series two first, and time series one
second. The fourth column presents the difference between column two and column three
divided by two.

True lead–lag p1/p2 DTW lead–lag p2/p1 DTW lead–lag Bias-adjusted lead–lag
5 4.903 -5.095 4.999
4 3.903 -4.095 3.999
3 2.904 -3.095 2.999
2 1.905 -2.096 2.000
1 0.903 -1.094 0.999
0 -0.094 -0.097 0.002
-1 -1.095 0.904 -0.999
-2 -2.097 1.906 -2.001
-3 -3.097 2.906 -3.001
-4 -4.096 3.905 -4.000
-5 -5.096 4.904 -5.000
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Table 2.14: Misestimation of betas
This table presents the difference in beta estimations between the standard beta measure
and Dimson, Scholes-Williams and DTW beta estimations. Each month the stock universe
is divided into small, mid large stocks based on 30% lower and 70% upper cutoff values
using the market capitalization of stocks on the NYSE. The value-weighted percentage
differences between three beta estimation methods and the standard beta within each
portfolio are calculated. I first create a Full Premia factor, that takes the difference in
return between the BottomTop+TopTop portfolios and the TopBottom+BottomBottom
portfolios. I then create a return set for the small universe taking the difference between the
BottomTop and the TopTop portfolios. This process is repeated for large stocks and DTW
beta, standard beta, Dimson beta and Scholes-Williams beta. The monthly difference in
returns between the DTW factors and the other beta factors is then computed. Each row
in the table reports the time-series average of the difference in return between the created
risk factors and their associated Newey-West (1987) t-statistics, adjusting using six lags in
parentheses. The R-squared value for each regression is reported in the far right column.
***, **, and * indicate statistical significance at 1%, 5%, and 10% levels, respectively.
Values are in percent deviation from the standard beta value.

1927–1975 βDIM βSW βDTW

Small 0.329 -0.078 0.739
(7.61)*** (2.87)*** (9.25)***

Mid 0.245 -0.109 0.324
(2.71)*** (1.45) (2.88)***

Large 0.050 -0.196 -0.116
(4.32)*** (-6.90)*** (-0.29)

1975–2019
Small 1.042 0.252 1.569

(3.78)*** (8.37)*** (6.98)***
Mid 0.340 0.061 0.175

(7.46)*** (5.50)*** (4.04)***
Large -0.046 -0.130 -0.218

(-0.14) (-0.69) (-6.01)***
1927–2019

Small 0.536 0.126 0.952
(4.88)*** (7.78)*** (8.95)***

Mid 0.264 0.000 0.278
(4.37)*** (1.93)* (3.89)***

Large 0.004 -0.174 -0.155
(2.26)*** (-3.58)*** (-3.13)***
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Chapter 3

The index effect is not dead, it has

mutated

3.1 Introduction

When a company is added to the S&P 500 index, professional investors and

mainstream media alike interpret this as a positive event for the company’s

stock price. Academic research has thoroughly established the existence of this

phenomenon, the so-called “S&P index effect.” Emerging research suggests that

the S&P index effect is dead, despite the significant growth of passive investing

since the discovery of the effect. Now, when a stock is added to the S&P 500, the

stock’s price experiences no significant change. In this chapter, I find that this

claim of the death of the S&P index effect is overstated. Stocks still experience

significant abnormal price responses when added to the broader S&P 1500 stock

universe. Whereas internal transfers of companies between the S&P 400, S&P 500,

and S&P 600 no longer produce abnormal price responses. The evolving structure

of passive ownership in mid- and small-capitalization companies and the presence

of informed traders in the options market who seek to profit from the S&P index

effect have driven this migration in the importance of different index related events.

The degree of influence that index providers, such as S&P Dow Jones Indices and

MSCI Inc., have on financial markets is underappreciated. Before the open of the

U.S. equity markets on December 21, 2020, Tesla, Inc. (TSLA) was added to the

S&P 500.2 Between November 16, 2020, and December 18, 2020, TSLA’s share

price increased 70.3%. This addition of TSLA marked the largest-ever change to the

S&P 500 index, requiring passive investment strategies to purchase approximately

2https://www.spglobal.com/en/research-insights/articles/tesla-added-to-the-sp-500.
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US$220 billion of TSLA shares, equivalent to around one-third of TSLA’s total

market capitalization at the time. Index providers have the power to change their

policies, such as index inclusion criteria, which can have wide-ranging impacts on

financial markets. For example, in 2017, S&P announced that companies who utilize

multiple share class structures would not be eligible for inclusion in specific indices,

directly affecting how companies approach corporate governance decisions.3 With

the ongoing growth of passive investing, the relative importance of index change

events will continue to grow, creating opportunities for potential market disruption

from the decisions of a select few index providers. It is thus vital to understand the

implications of how index providers, such as S&P, announce and implement changes

to their indexes.

Passive investment managers typically rebalance their portfolios when the index

they follow changes. However, they must decide whether to rebalance immediately

upon the announcement of a future change or to wait until the change becomes

effective. Both decisions involve costs to the manager. Immediately rebalancing

the portfolio will increase the tracking error to the index and carries the potential

risk of underperformance relative to the index’s return. Whereas waiting for

the change to become effective can result in purchasing shares at a higher price

due to other market participants anticipating increased demand, which reduces

the passive portfolio’s total return. The existence of an index effect can play a

significant role in this decision. When stocks are added to or deleted from an

index, a predictable price response can influence how passive investment managers

rebalance their portfolios. Conversely, arbitrageurs can also use this information in

trading strategies by anticipating and profiting from the expected increased supply

or demand of shares from passive strategies. Although the index effect in the S&P

500 has been well-documented in the literature (Harris and Gurel, 1986; Shleifer,

1986; Jain, 1987; Dhillon and Johnson, 1991; Lynch and Mendenhall, 1997; Chen

et al., 2004), recent studies (Kamal et al., 2012; Kim et al., 2017; Bender et al.,

2019; Bennett et al., 2020) suggest a significant decline in the S&P 500 index effect.

In a market environment where passive assets under management (AUM) have

increased from less than 4% in 2005 to 14% in March 2020 (Anadu, Kruttli, McCabe

and Osambela, 2020), a concurrent decline in the S&P index effect challenges the

existing explanations for the existence of the effect. One of the original hypotheses

for the index effect, proposed by Shleifer (1986), is that demand curves for stocks are

downward sloping. This hypothesis, coupled with the mechanical buying and selling

that passive funds require, could explain the index effect. However, as the amount

3https://press.spglobal.com/2017-07-31-S-P-Dow-Jones-Indices-Announces-Decision-on-
Multi-Class-Shares-and-Voting-Rules.
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of assets in passive funds that mechanically buy and sell stocks has increased, why

have the abnormal price responses that this trading activity is purported to create

seemingly decreased? This is the primary question that I address in this chapter.

First, I explore whether and how the index effect in the three headline S&P U.S.

domestic equity indexes (the S&P 500, S&P 400, and S&P 600) has changed in recent

years. Following this, the cross-sectional variation of the index effect is explained

using measures of relative passive ownership and informed trading activity in listed

options markets.

I focus on S&P’s three U.S. domestic equity indexes owing to their coverage

of a range of market capitalization groups and relatively opaque index change

procedures. Whereas other index providers such as MSCI Inc. and FTSE Russell

employ prescriptive inclusion criteria and use predetermined rebalance calendars,

S&P utilizes an index committee with total discretion over final decisions of index

membership. This discretionary element of S&P index changes makes them harder

to predict. This prediction difficulty thus produces a more heterogeneous event

sample in which arbitrage trading ahead of announcements is likely more indicative

of informed trading activity, rather than hedging or risk management activity

ahead of well-known index events, such as the annual FTSE Russell U.S. index

reconstitution.

I collect a comprehensive sample of equity index additions and deletions for the

S&P 500 (large capitalization), S&P 400 (mid capitalization), and S&P 600 (small

capitalization) from 1996 to 2019, which collectively form the S&P 1500 universe.

Index addition events can originate from outside the S&P 1500 or one of the other

indexes, whereas deletion events are destined for outside the S&P 1500 or one of the

other indexes. For instance, if a stock is promoted from the S&P 400 to the S&P

500, this is labeled as an addition by transfer. Using an event study approach, I

establish that the index effect has indeed declined for the S&P 500 when measuring

the effect over the full sample of additions and deletions. Before 2008, a stock added

to the S&P 500 experienced an average abnormal return of 4.17% on the first trading

day after the announcement day (AD). However, after 2008, this effect declined to

1.33%. This change in price response is driven predominantly by a declining price

response for internal transfers from lower capitalization indexes to higher indexes.

There is a marked difference when splitting the sample into stocks added to the

S&P 500 from outside the S&P 1500 universe and those added to the S&P 500 that

were already in the S&P 400 or S&P 600. From 2008 onward, stocks already in

the S&P 400 or S&P 600 and subsequently added to the S&P 500 experienced an

average abnormal AD return close to zero. In contrast, stocks added to the S&P 500

from outside the S&P 1500 universe experienced an average abnormal AD return
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of 4.09%, like the pre-2008 result. Thus, the S&P index effect is still present for

additions from outside the S&P 1500.

To explore the drivers of this result, I construct measures of relative passive

ownership and options-based informed trading variables to explain the

cross-sectional abnormal AD return variation. Relative passive ownership measures

the average difference in passive ownership between the largest 500 U.S. CRSP

companies and the next largest 400 companies at the end of each year, capturing

the changing passive ownership structure across different company capitalizations.

Measures of informed trading activity ahead of index announcements are derived

from options-based abnormal call-put implied volatility (IV) spreads and abnormal

volume shares of call options. The results show a significant loading on the relative

passive ownership variable, particularly for index transfers from lower capitalization

indexes to higher ones. A structural shift in the relative passive ownership between

different stock capitalizations has occurred. The passive ownership of the top 500

companies was relatively higher than that of the following 400 companies before

2009, which has been inverted since 2009. This inversion is associated with the

observed decline in the index effect for transfers between the S&P indexes.

This research contributes to the extensive literature on abnormal price responses

to changes in equity indexes. Stocks earning positive (negative) abnormal returns

when added (deleted) to (from) the S&P 500 is one of the most widely accepted

empirical results in both academia and mainstream media. Chen et al. (2004)

document statistically significant abnormal AD returns from 1962 to 2000. Since

the initial studies on the S&P 500 and Dow Jones indexes, the index effect has

been documented across global indexes and across different market capitalizations.

A non-exhaustive list includes the U.K. FTSE 100 (Mase, 2007; Fernandes and

Mergulhão, 2016), the U.S. NASDAQ 100 (Yu, Webb and Tandon, 2014; Biktimirov

and Xu, 2019), the U.S. S&P 400 (Marciniak, 2010; Becker-Blease and Paul, 2010),

the U.S. S&P 600 (Docking and Dowen, 2006; Gowri Shankar and Miller, 2006),

the U.S. Russell indexes (Cai and Houge, 2008), MSCI World (Chakrabarti, Huang,

Jayaraman and Lee, 2005), China’s CSI 300 (Chu, Goodell, Li and Zhang, 2021),

Toronto’s TSE 300 (Masse, Hanrahan, Kushner and Martinello, 2000), and the

Korean KOSPI 200 (Yun and Kim, 2010).

Following the literature documenting the S&P 500 index effect in the mid-1980s

(Harris and Gurel, 1986; Shleifer, 1986; Jain, 1987) and 1990s (Dhillon and Johnson,

1991; Lynch and Mendenhall, 1997), a growing body of literature has focused on the

reduction and disappearance of the index effect. Kamal et al. (2012) document a

significant reduction in abnormal return for index additions in the period after the
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implementation of the Regulation Fair Disclosure (October 2000), decimalization

(January 2001), and the Sarbanes-Oxley Act (October 2002). Bennett et al. (2020)

find, in the period 2008 to 2017, insignificant index addition returns across an 11-day

window around the AD. Vijh and Wang (2022) document a trend where, during

2016 to 2019, stocks promoted from the S&P 400 to the S&P 500 have an average

announcement abnormal return of -2.31% over three days, whereas stocks demoted

from the S&P 500 to the S&P 400 produce a positive abnormal return of +1.21%.

They propose that this result is driven by an increase in the active institutional

ownership of S&P 400 stocks in recent years. My contribution to this literature

finds that in recent years, the relevance of the S&P 500 index to the “S&P index

effect” has declined. Instead, it is the origination of an index addition that now

matters more, thereby increasing the relative importance of the S&P 400 and S&P

600 indexes.

This chapter also relates to emerging literature that uses the informational

efficiency of the options market to study the abnormal behavior of the underlying

equities. Augustin and Subrahmanyam (2020) and Chen, Koutsantony, Truong

and Veeraraghavan (2013) both use options-based trading variables as proxies

for informed trading ahead of corporate events (M&A activity) and S&P index

additions. I extend this approach by utilizing IV variables that capture different

properties of the IV surface. Hollstein and Simen (2021) find significantly positive

responses of delta-hedged call option positions to S&P 500 addition and deletion

announcements, where they focus on the impact of index announcements on

the pricing of volatility in the options market. My results show the presence of

abnormal options activity ahead of important corporate events (index changes) and

provide further opportunity for research into the types of options-based trading

strategies index arbitrageurs could be utilizing.

I also contribute to the ongoing discussion about the impact of passive ownership

on price formation and the incorporation of news into asset prices. Sushko and

Turner (2018) suggest that passive investing could distort securities prices and create

interdependence among securities that share common passive benchmarks. Ben-

David, Franzoni and Moussawi (2018) find that passive ownership increases non-

fundamental volatility, whereas Glosten, Nallareddy and Zou (2021) show that ETF

activity improves short-run informational efficiency. However, there is no consensus

on the overall impact of ETFs on market efficiency. Similarly, Sammon (2022)

uses index announcements to demonstrate that price informativeness decreases as

passive ownership increases. I contribute to this debate by examining how changes

in passive ownership across market capitalizations change previously established

empirical results, particularly the S&P index effect. My findings emphasize the
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importance of re-evaluating accepted empirical results in the presence of changing

market structures and market participant behavior.

In addition to the impact that increased passive ownership has on the behavior

of participants in financial markets, there is an ongoing debate on the regulatory

and corporate governance implications of indexation. Rauterberg and Verstein

(2013) argue that human discretion is an essential component in index creation

and maintenance, even for the most mechanically created indexes, and this human

element creates the potential for manipulation and malpractice. Coates (2018)

examines the influence of index providers and fund managers on the concentration

of company ownership, showing how this ultimately leads to the majority control of

U.S. public companies landing in the hands of about 12 people. Given this human

element of indexing, companies may adjust their operating behavior to meet the

policy requirements of index providers for index inclusion. The increasing number

of assets tracking an index increases the desirability of being included. Thus, index

provider inclusion and rebalance policies can influence corporate governance and

operating behavior. My results show how market phenomena, such as the index

inclusion effect, can be shaped by the policy choices of index providers, which directly

impacts public companies’ market performance.

The results in this chapter have implications for passive investment managers.

Petajisto (2011) finds an index premium of 21–28 basis points per year for the

S&P 500. These are implicit costs to index investors, and minimizing these costs

while maintaining the index’s objectives may increase the fund’s market share by

delivering higher absolute returns. Knowing the extent of the index effect’s presence

in the S&P indexes and how it varies across different index events can help index

fund managers adjust their rebalance process. Fund managers may incur a small

tracking error cost by holding potential addition candidates that are not currently

in the broader S&P 1500 universe, as the increased tracking error cost can be offset

by reducing the impact of the index effect on the portfolio’s total returns.

Moreover, these results have implications for the rebalance policies of index

providers. There is considerable variation in index rebalance policies across

different providers, such as S&P, FTSE Russell, and MSCI. Some providers use a

mechanical rebalance process, announcing index changes well in advance following

a predefined schedule with transparent criteria. Others announce changes on no

predefined schedule and use more opaque inclusion criteria. My results suggest that

index providers should focus on announcing the first inclusion of a stock into their

broader coverage universe, as this event is likely to be the most disruptive to the

stock and have the most impact on the ownership structure of a company’s stock.
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Finally, these results present potential opportunities for event traders. Significant

price responses for additions and deletions in the S&P indexes still exist. One could

form a portfolio of possible index additions based on stocks outside the S&P 1500

and benefit from the abnormal price responses.

The rest of this chapter is structured as follows. Section 3.2 details the index

event sample’s construction and the event study method. Section 3.3 presents the

abnormal AD returns for S&P index changes. Section 3.4 presents results from a

regression framework using passive ownership and options variables to explain the

index effect. Section 3.5 then concludes the chapter.

3.2 Index changes sample construction

3.2.1 Data

S&P index announcements between January 1, 1996, and December 31, 2019, are

obtained from the ProQuest U.S. NewsStream database. Every event related to the

S&P 500, S&P 400, or S&P 600 indexes is retained.4 Following Chen et al. (2004),

the index change sample is filtered to remove stocks that will not have a sufficiently

long post-event returns series and where the index change is unlikely to generate

trading activity among current holders. For each event, I record the AD, effective

date (ED), reported ticker, reported company name, and type of index change.

Six potential events are associated with a recorded index change, with two being

redundant in this study. A pure addition is an addition from outside the S&P 1500

universe to one of the three S&P indexes. A pure deletion is a complete removal of

a stock from the broader S&P 1500 universe. Two events are recorded when a stock

is transferred from a lower capitalization index to a higher capitalization index: one

for the deletion from the current index and one for the addition to the new index.

Similarly, an event is recorded for the deletion from the higher index and an addition

to the lower index when a stock is demoted from a higher capitalization index to

a lower capitalization index. For index promotions, the addition event is retained,

and for index demotions, the deletion event is retained. This choice ensures that

the expected price response (positive for additions, negative for deletions) for these

events remains consistent with the addition and deletion event categories. Figure

3.1 presents the distinction between pure events and transfer events as well as the

relative market capitalization ordering of the three S&P indexes.5

4Each of these indexes is mutually exclusive. The S&P 100 is not included, as it is a subset of
the S&P 500.

5The relative market capitalization ordering between the three indexes is not exact, as there
can exist reasons for an eligible stock to not be included based on its market capitalization rank.

56



Figure 3.1: S&P index change nomenclature
This figure illustrates the hypothetical index changes that can occur across the three S&P
U.S. domestic equity indexes ordered by stock rank market capitalization. Pure addition
and deletion events result in a stock moving into or out of the broader S&P 1500 universe.
Transfer events result in movement between the three indexes. The cutoff ranks of 1, 500,
and 900 are for demonstration purposes only and can vary.

Listed U.S. options data are sourced from the OptionMetrics IvyDB U.S. database

(OM) and stock data from the CRSP and Compustat databases. OptionMetrics

uses their own security identifier (SECID) as the primary identifier for a company.

The CUSIP identifier is used to map from the OM SECID to the CRSP PERMNO.

Index announcement events are mapped to the CRSP PERMNO using the ticker

and security name from the S&P index announcement. As S&P only provides a

ticker and company name in their index announcements, each mapping to CRSP

PERMNO is manually verified to ensure that the correct company ticker from

the S&P index announcement is matched to the appropriate OM and the CRSP

identifiers.

The abnormal return response of stocks to index changes is studied in two samples.

The first sample, denoted as the Base Sample, is used to measure the abnormal AD

returns across the different indexes. The second sample, denoted as the Regression

Sample, is used to explain the cross-sectional variation in abnormal returns. To be

included in the Regression Sample, a stock must have sufficient data coverage for

the regression, including options data. A four-pass filter is applied to filter events for

inclusion in either sample. The first pass removes events where there is no matching

PERMNO in the CRSP dataset 120 days before and 30 days after the event day.

The second pass eliminates events that are unlikely to generate any trading activity,

such as those arising from corporate actions including mergers and acquisitions,

company spin-offs, and company share class changes. These first two filters are used

to construct the Base Sample. The third pass removes events where there are more

than 30 days of missing options data during the model calibration window, which

typically occurs between 150 and 30 days before the event. This filter is used to

remove events in which a sensible estimate of expected options behavior cannot be

obtained. In the fourth and final pass, events with missing data during the regression
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Table 3.1: S&P index announcement sample
This table presents the frequency of index additions and deletions across the three S&P
U.S. domestic equity indexes. The sample runs from January 1, 1996, through December
31, 2019. The Raw Sample is the total count of all events. The Base Sample is obtained
after removing events without sufficient data in the pre- and post-event periods and events
which would not require significant trading activity. The Regression Sample is all events
that have sufficient market and options trading data during the event window. Pure events
refer to additions to or deletions from the broader S&P 1500 universe. Transfer events
refer to promotions (for additions) or demotions (for deletions) between the three indexes.

Raw Sample Base Sample Regression Sample

Additions Deletions Additions Deletions Additions Deletions

S&P 500
Pure 313 507 172 55 118 26

Transfer 344 150 293 122 196 82

S&P 400
Pure 566 573 422 104 208 29

Transfer 395 188 365 166 195 82

S&P 600 Pure 1393 1218 1273 343 394 25

window (typically from five days prior to the event day to one day after the event)

are removed.

Table 3.1 shows the event count in the three samples. The Raw Sample is the count

of all unfiltered index events. In total I collect 3,011 addition events and 2,636

deletion events, which constitute the Raw Sample. The Base Sample contains 2,525

additions and 790 deletion events. Finally, the Regression Sample contains 1,111

additions and 244 deletion events. Throughout the rest of this chapter, I focus on

the Base Sample when analyzing aggregated abnormal return statistics.

3.2.2 Options-based informed trading variables

Empirical studies provide evidence that options trading activity reflects the variation

in investor expectations about the future behavior of the underlying stock (Pan and

Poteshman, 2006; Conrad, Dittmar and Ghysels, 2013; An, Ang, Bali and Cakici,

2014; Fu, Arisoy, Shackleton and Umutlu, 2016). When abnormal levels of IV

variables are measured ahead of an event related to the underlying stock, it suggests

that there could be informed traders using the knowledge of the event ahead of the

official market announcement. These informed traders could be trying to generate

higher profits by trading in the options market instead of the underlying equity

market. Such trading ahead of announcements can be based on an informational

advantage, such as an index prediction model, or potentially an insider trading on

privileged information (e.g., SEC (2020)). The use of options variables to measure

potential informed trading ahead of index change announcements aligns with these

previous studies.
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For each stock-day, I aggregate traded information from in-the-money (ITM), out-

of-the-money (OTM), and at-the-money (ATM) option call-put pairs. Aggregate

stock-day measures are constructed from each option with an open interest greater

than zero, a best offer greater than zero, a bid-ask spread ratio less than 50%,

an option price greater than $0.25, and a stock price greater than $5. All valid

options are used to calculate an EW average of the IV.6 The primary variable, the

call-put IV (CPIV) spread from Fu et al. (2016), is the IV spread between ATM call

and ATM put options, given their prevalence in both long bullish and long bearish

strategies. In addition to IV variables, call-put traded volume is aggregated using

all valid options (Chen et al., 2013).

3.2.3 Passive ownership

To measure the aggregate passive ownership, I follow Doshi, Elkamhi and Simutin

(2015) and obtain fund holdings from the Thomson Reuters Financial Mutual Fund

Holdings (s12) database, linking this with the CRSP database using the WRDS

MFLINKS database. From the s12 database, the latest available holdings for each

passive ETF are obtained from January 1, 1996, to December 31, 2018. The s12

database is merged with the CRSP Survivor-Bias-Free Mutual Fund database using

MFLINKS. ETFs that have s12 investment objective codes of 1, 5, 6, or 7 are

retained. These ETFs are filtered for CRSP share code (SHRCD) 73 (exchange-

traded products), and domestic U.S. equity ETFs are obtained using the CRSP

objective code and exchange-traded flag.

The lagged one-month market capitalization for all stocks in the U.S. CRSP universe

is calculated using the CRSP shares outstanding (SHROUT) and PRC fields and

used to construct an annual measure of the change in passive ETF ownership. This

market capitalization is merged with the ETF holdings using the CRSP PERMNO

and DATE fields. For each year-month pair, the sample is cross-sectionally ranked

based on market capitalization (rank one denoting the largest stock in the universe).

For each year, the average passive ETF ownership for each stock rank is calculated

by averaging across the rank for each month in the given year. Finally, the passive

ownership spread between the top 500 companies and next 400 companies is given

by:

PASSOWNt = OWNRt,1−500 −OWNRt,501−900, (3.1)

6The results are not sensitive to using an open interest weighted average.
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Estimation window Pre-event window Post-event window

Figure 3.2: Index announcement event study timeline
This figure summarizes the time periods used in the event study approach. τ0 is the start
of the estimation window, τ1 is the end of the estimation window, τ2 is the start of the
pre-event window, τ3 is the end of the pre-event window, τ4 is the event day, τ5 is the
ED of the event, and τ6 is the end of the post-event window. The estimation window
occurs prior to the event and is used to calibrate market-based models. The pre-event
window occurs after the estimation window and ends the day before the event. Variables
of interest during the pre-event window are used to explain the abnormal return variation
on the event day (τ4) and in the post-event (τ4 to τ6) period.

where OWNRt,1−500 is the average passive ETF ownership in year t for stocks ranked

between 1 and 500, and OWNRt,501−900 is the average passive ETF ownership in

year t for stocks ranked between 501 and 900.

3.2.4 Event construction and abnormal values

The primary variable of interest is the AD abnormal stock return response to S&P

index changes. An event study method is used to measure abnormal values. Figure

3.2 depicts the different periods used in the event study. The first trading day

after the announcement is the event day (τ4). Expected value models needed to

measure abnormal values are estimated using the period from 150 days (τ0) to 31

days (τ1) before the AD. In this study, two market models are used. The first is a

CAPM-based market model to measure abnormal stock returns:

ri,t = αs
i + βs

i rm,t + ϵi,t, (3.2)

where ri,t is the stock i return on day t, rm,t is the market return on day t, t =

τ0, . . . , τ1, and E(ϵi,t) = 0. The main set of results presented is based on τ0 = −150,

τ1 = −31, and pairs of (τ2, τ3) = {(−10,−1) , (0, 0) , (1, 10) , (−10, 10)}. The AD

is denoted by the pair: (τ2, τ3) = (0, 0). The market return corresponding to the

relevant index for each event is used (i.e., rm,t for an S&P 400 index event is the S&P

400 index return). Using the estimates of α̂i
s and β̂i

s
from Eq. (3.2), the abnormal

stock return is calculated as:

ARi,t = ri,t − (α̂s
i + β̂s

i rm,t), (3.3)
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where t = τ2, . . . , τ3 and τ2 ≥ τ1. A second market model is used to measure the

abnormal level of IV and volume-based variables. Using the same estimation window

as the previous model, the model is specified as:

Vi,t = αv
i + βv

i,mVm,t + ϵi,t, (3.4)

where Vi,t is the variable of interest for stock i on day t, Vm,t is the VW market

average of the variable of interest on day t, and t = τ0, . . . , τ1. The abnormal value

of Vi,t is calculated as:

AVi,t = Vi,t − (α̂v
i + β̂v

i,mVm,t), (3.5)

where t = τ2, . . . , τ3 and τ2 ≥ τ1.

3.2.5 Volume ratios

To accurately measure abnormal volume ratios, the market’s overall volume needs

to be accounted for. A single stock’s trading volume could be elevated simply

because a large amount of trading volume in the general market spills over into the

single stock. The overall market volume level is accounted for using an incremental

turnover ratio. First, the stock-level volume share is calculated as the ratio of the

daily traded volume to the current shares outstanding. Next, capitalization-weighted

market volume share is calculated by considering all valid stocks in the CRSP or OM

sample. The turnover ratio is calculated as the ratio of the stock volume share to the

capitalization-weighted market volume share. Finally, the abnormal volume share

is calculated by subtracting the average of the volume share during the calibration

window from the volume share during the event window.

3.3 Abnormal stock responses to index changes

3.3.1 Aggregate additions and deletions

Abnormal returns to index additions and deletions are calculated in an event study

framework using the first valid trading day after the announcement of the relevant

change (as S&P announces index changes after market close). Figure 3.3 presents

each index’s yearly average abnormal returns for additions (Panel A) and deletions

(Panel B). Regarding the index additions in Panel A, there are two noteworthy

patterns. First, abnormal returns for the additions to the S&P 400 and S&P 500

indexes turned marginally negative in 2018 and 2019. Second, abnormal returns
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associated with additions to the S&P 600 index have increased in recent years,

reaching over 8% on average in 2019. The findings for the S&P 500 and S&P 400

are consistent with recent literature highlighting the disappearance of the index

effect in this these indexes (Kamal et al., 2012; Kim et al., 2017; Bender et al.,

2019), with some studies even reporting a negative effect.

When an index addition occurs, there is typically a one-for-one deletion from the

index. Deletions generally initiate index changes, but index deletions tend to be

driven by activity that does not require trading from the shareholders. For example,

a company being acquired or a bankruptcy filing that results in the suspension of the

stock from the exchange it is listed on. As such, the sample size for index deletions

is typically smaller than that for additions, which can lead to biases in subsequent

analyses. Panel B in Figure 3.3 shows an increase in the abnormal returns toward

zero for index deletions; although not an exact symmetric result to the trend in the

additions, it is similar. We observe a similar trend in the S&P 600 deletions as in

Panel A, where the abnormal returns associated with the S&P 600 deletions have

been getting more negative in 2017–2019. Again, these results give credence to the

death of the S&P index effect, as deletions from the S&P 400 and S&P 500 no longer

result in negative abnormal returns. However, this result can be juxtaposed to the

S&P 600, where we observe a strengthening index effect.
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Figure 3.3: Annual average announcement day abnormal returns
This figure displays the annual cross-sectional average of the abnormal AD returns
for addition and deletion announcements of S&P indexes from January 1, 1996, to
December 31, 2019. The Base Sample is split into the S&P 400, S&P 500, and S&P
600 announcements. The annual average abnormal returns are plotted for the AD, and a
standard error bar is included to represent the variability of the abnormal returns across
the sample.

These full sample results highlight the reduced abnormal AD returns associated

with additions and deletions to the S&P 500 do not show the complete picture.

I extend the analysis by considering internal transfers between S&P indexes.

Any movement of companies between indexes is also reported when an index

announcement is made. For example, suppose a stock was already in the S&P

600 and the announcement stated that the stock was being added to the S&P

400. In that case, the announcement also records a corresponding deletion event

for the S&P 600 and often explicitly states the company as an “existing company

in the S&P 400/500/600 index.” Using this information, I construct a full

sample of index promotions (stocks moving from a lower capitalization index to

a higher capitalization index) and index demotions (stocks moving from a higher
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capitalization index to a lower capitalization index). For additions, I only use index

promotions, and for deletions, I use only index demotions. An addition to an index

can arise from a demotion (e.g., a stock demoted from the S&P 500 to the S&P

400 has been deleted from S&P 500 and added to the S&P 400), and a deletion

can arise from a promotion: I use the convention of additions being indicative of

a positive event and deletions being indicative of a negative event. This choice

prevents the duplication of events across the different indexes and ensures that each

event can only enter the complete sample once.

3.3.2 Transfers between indexes

Figure 3.4 presents the results of separating the index additions into upward transfers

(Panel A) and pure additions (Panel B). These two sub-samples of additions exhibit

very different abnormal returns. First, pure additions in Panel B have maintained

a stable average AD abnormal return of 4.70% across the three indexes from 2001,

and we do not observe any significant decreases in recent years. On the other hand,

upward transfers in Panel A show a significant change. Before 2011, the two indexes

had a relatively low average abnormal return of 2.20%. From 2011, the abnormal

return averaged -0.14%, and in 2018 and 2019, it turned negative. These differing

effects can only be observed by splitting the additions sample. Although these results

are reasonably clear, the relative number of events that occur in the transfer and

pure addition sub-samples can influence the economic relevance of these results. If

most of the index changes classified as additions are now upward transfers, then a

statistically significant positive abnormal return for pure additions would have little

relevance in the future.
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Figure 3.4: Average announcement day abnormal returns for index additions
This figure displays the yearly cross-sectional average of the abnormal AD return for S&P
index addition announcements from January 1, 1996, to December 31, 201. Panel A
presents the results for upward transfers (e.g., a stock in the S&P 600 is promoted to
the S&P 400). Panel B presents the results for pure additions. The Base Sample is split
into the S&P 400, S&P 500, and S&P 600 announcements. The annual average abnormal
returns are plotted for the AD, and a standard error bar is included to represent the
variability of the abnormal returns across the sample.

Figure 3.5 presents the annual frequency of index change events. In Panel A, the

additions are split into two categories: pure additions or stocks added from outside

the S&P 1500 universe and transfers (index promotions). Trends among the three

indexes are identified by partitioning the sample by index. One clear trend is the

decreasing proportion of pure additions for the S&P 400 and S&P 500 indexes.

Before 2009, the average frequency of pure additions was approximately 50%; after

2009, it declined to approximately 25%. This change suggests that the S&P index

committee has opted to promote more stocks through the S&P 600 and S&P 400

indexes and finally into the S&P 500 rather than directly adding companies to the

flagship S&P 500 index. Further, the proportion of pure additions to the S&P

400 has only slightly declined, with a larger proportion of additions coming from
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index demotions from the S&P 500 in recent years. Panel B presents the deletions,

separated into full deletions and demotion transfers. The declining proportion of

full deletions in the S&P 500 and S&P 400 and the increasing proportion of index

transfers are clear trends. These trends again indicate that the S&P index committee

prefers to sequentially demote stocks through each index instead of immediately

removing them from the S&P 400 or S&P 500. Overall, there is a clear changing

frequency of different index events that influences each event’s economic relevance in

the sample. The ongoing presence of pure additions in the latter half of the sample

means that these events are still relevant, and the results in Figure 3.4 are worth

further investigation.
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Figure 3.5: Proportional frequency of S&P index change events
This figure presents the annual proportion of S&P index change events for the Base Sample
from January 1, 1996, to December 31, 2019. Panel A presents the results for index
additions, where stocks are categorized into new additions to the S&P universe (pure) and
stocks that are transferred between indexes (transfer). Panel B presents the results for
index deletions. In both Panel A and Panel B, for each year, the first column corresponds
to the S&P 400 and the second column to the S&P 500. Results for the S&P 600 are not
presented, as all events are pure additions/deletions.

Table 3.2 presents the AD average abnormal returns for index additions and deletions

of the three U.S. S&P indexes. Three categories are used to partition the sample:

pure, transfer, and a combined full sample. Two sub-samples of time are used to

partition the sample: January 1, 1996, through December 31, 2008 (1996–2008)

and January 1, 2009, through December 31, 2019 (2009–2019). The results show
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that although the magnitude of the abnormal return response has decreased for

pure additions, it remains statistically significant. However, abnormal returns in

the 2009–2019 sample are statistically insignificant for index transfers. There is no

statistically significant change in sub-periods for additions to the S&P 600, where

the average abnormal return increases from 5.04% to 5.71%. In addition, I find

that the Vijh and Wang’s (2022) result of strongly positive returns associated with

additions to the S&P 500 from outside the S&P 1500 holds for the S&P 400 and S&P

600, with both exhibiting statistically significant positive abnormal returns for pure

additions. These results generally hold for deletion events. The primary difference

from the additions results is that the pure deletions for the S&P 500 in the 2009–2019

sub-sample are no longer statistically significant but are marginally positive. Given

the relatively small sample size available for deletion events, drawing conclusions is

difficult. In sum, I conclude that the index effect is alive and statistically significant

for pure additions, whereas for index transfers, there are no longer any statistically

significant abnormal return responses. Thus, what matters now is inclusion into the

broader S&P 1500 universe. However, once a stock has been included into one of

the S&P 400 or S&P 600, promotion into the S&P 500 is not as important as it once

was.
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Table 3.2: Announcement day abnormal returns
This table presents the average abnormal AD return of S&P index addition and deletion
events. The sample runs from January 1, 1996, through December 31, 2019, and uses the
Base Sample. Stocks are classified as those that enter or leave the S&P 1500 universe
(pure) or stocks that internally move between indexes (transfer). The sample is divided
into two sub-periods: January 1, 1996, through December 31, 2008, and January 1, 2009,
through December 31, 2019. Abnormal returns are reported in percentages. t-statistics
are reported in parentheses. t-statistics reported for the difference in average abnormal
returns ((3) − (2)) assume unequal sample variance. ***, **, and * indicate statistical
significance at 1%, 5%, and 10% levels, respectively, and only for differences in values.

Additions Deletions

S&P 500 S&P 400 S&P 600 S&P 500 S&P 400 S&P 600

Pure

1996–2019 (1)
5.27 4.83 5.29 -6.70 -5.90 -7.20

(15.76) (23.88) (41.21) (-3.01) (-5.34) (-11.64)

1996–2008 (2)
6.04 5.06 5.04 -8.40 -6.09 -7.94

(12.35) (19.19) (27.79) (-4.31) (-4.53) (-9.03)

2009–2019 (3)
3.98 4.20 5.72 0.91 -5.36 -5.90

(13.40) (19.18) (35.84) (0.11) (-2.85) (-8.33)

(3)− (2)
-2.06*** -0.74** 0.68*** 9.30 0.73 2.05*
(-3.43) (-2.13) (2.82) (1.07) (0.32) (1.81)

Transfer

1996–2019 (1)
2.22 1.00 -1.13 0.01
(9.69) (5.31) (-3.51) (0.02)

1996–2008 (2)
3.69 1.82 -3.74 -1.07

(12.98) (5.77) (-6.84) (-1.93)

2009–2019 (3)
-0.27 0.26 0.05 0.44
(-1.14) (1.27) (0.14) (1.03)

(3)− (2)
-3.97*** -1.57*** 3.79*** 1.52**
(-10.33) (-4.17) (5.95) (2.16)

Combined

1996–2019 (1)
3.35 3.05 5.29 -2.86 -2.27 -7.20

(16.59) (19.71) (41.21) (-3.83) (-4.48) (-11.64)

1996–2008 (2)
4.58 3.90 5.04 -6.26 -4.17 -7.94

(17.45) (18.09) (27.79) (-5.65) (-4.73) (-9.03)

2009–2019 (3)
1.25 1.73 5.71 0.14 -0.64 -5.90
(5.22) (9.26) (35.84) (0.15) (-1.20) (-8.33)

(3)− (2)
-3.33*** -2.18*** 0.68*** 6.40*** 3.53*** 2.05*
(-9.37) (-7.63) (2.82) (4.47) (3.43) (1.81)

Table 3.2 solely focuses on the AD abnormal returns. Table 3.3 presents cumulative

abnormal returns for different event windows. The S&P 500 exhibits substantially

different behavior from the other two indexes when looking at different accumulation

windows. In the window of 10 days before and 10 days after the announcement (τ =

[−10, 10]), the cumulative abnormal return of pure S&P 500 additions significantly

drops and is borderline statistically significant in the 2009–2019 period. This result

for the S&P 500 contrasts with the S&P 400 and S&P 600, which is either at a

similar level or higher in the 2009–2019 period than in the 1996–2008 period for

the τ = [−10, 10] window. The returns in the 10 days following the AD drive this

result for the S&P 500, where roughly one-third of the AD abnormal return reverts.
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Arbitrageur shareholders selling down positions to profit from the previous price

increases, resulting in a price reversion owing to an excess supply of stock in the

market, could drive this behavior.

Table 3.3: Cumulative abnormal returns for different event windows
This table presents the average cumulative abnormal returns across different event windows
for S&P index addition and deletion events. The sample runs from January 1, 1996,
through December 31, 2019, and uses the Base Sample. Stocks are classified as those
that enter or leave the S&P 1500 universe (pure) or stocks that internally move between
indexes (transfer). The sample is divided into two sub-periods: January 1, 1996 through
December 31, 2008, and January 1, 2009, through December 31, 2019. Abnormal returns
are reported in percentages. t-statistics are reported in parentheses.

Panel A: Additions

Index S&P 400 S&P 500 S&P 600

Window [−10,−1] [0, 0] [1, 10] [−10, 10] [−10,−1] [0, 0] [1, 10] [−10, 10] [−10,−1] [0, 0] [1, 10] [−10, 10]

Pure

1996–2008 -1.38 5.06 -0.29 3.39 1.36 6.04 0.82 8.22 -0.56 5.04 -1.73 2.75
(-2.56) (19.19) (-0.50) (4.90) (1.29) (12.35) (0.94) (5.67) (-1.58) (27.79) (-4.42) (5.62)

2009–2019 -0.69 4.20 -0.19 3.32 -0.20 3.98 -1.35 2.43 -0.20 5.72 -1.48 4.04
(-1.07) (19.18) (-0.36) (4.80) (-0.35) (13.40) (-1.91) (2.51) (-0.59) (35.84) (-4.37) (8.62)

Transfer

1996–2008 -0.33 1.82 -2.02 -0.53 0.57 3.69 -2.07 2.20
(-0.48) (5.77) (-2.46) (-0.51) (0.88) (12.98) (-3.32) (2.54)

2009–2019 -0.61 0.26 -1.92 -2.27 -0.62 -0.27 -1.87 -2.77
(-1.59) (1.27) (-5.02) (-3.92) (-1.30) (-1.14) (-4.02) (-3.83)

Panel B: Deletions

Index S&P 400 S&P 500 S&P 600

Window [−10,−1] [0, 0] [1, 10] [−10, 10] [−10,−1] [0, 0] [1, 10] [−10, 10] [−10,−1] [0, 0] [1, 10] [−10, 10]

Pure

1996–2008 -9.66 -6.09 3.39 -12.36 -19.41 -8.40 10.97 -16.83 -18.72 -7.94 11.37 -15.30
(-3.23) (-4.53) (1.31) (-3.81) (-4.10) (-4.31) (1.98) (-3.09) (-8.69) (-9.03) (4.71) (-5.41)

2009–2019 -11.79 -5.36 6.39 -10.76 -3.37 0.91 2.06 -0.41 -7.66 -5.90 6.59 -6.97
(-2.51) (-2.85) (0.77) (-1.53) (-0.67) (0.11) (0.31) (-0.05) (-3.66) (-8.33) (2.56) (-2.34)

Transfer

1996–2008 -0.69 -1.07 0.92 -0.84 -1.44 -3.74 -0.00 -5.19
(-0.69) (-1.93) (1.12) (-0.58) (-0.86) (-6.84) (-0.00) (-2.94)

2009–2019 0.52 0.44 3.00 3.96 0.30 0.05 1.19 1.54
(0.55) (1.03) (2.94) (2.88) (0.43) (0.14) (1.50) (1.26)

Figures 3.6 and 3.7 depict the average cumulative abnormal return across several

sub-periods and samples from 30 days before (t = −30) and 30 days after (t =

+30) the index announcement. Figure 3.6 uses the cumulative abnormal return

when considering pure and transfer index events. Panel A of this figure focuses

on additions and highlights a clear decrease in the abnormal returns at t = 0

(AD) for the S&P 400 and S&P 500. However, we also observe a significant

reversion in abnormal returns after the event day in both samples. The relative

underperformance of a stock after its inclusion in the index could explain this

result. The stock may have experienced significant positive returns in the window

preceding index inclusion. However, upon inclusion into the index, its behavior

shifts to be more in line with the rest of the index. Consequently, this results in

an underperformance of the stock relative to its calibration window beta. Da and

Shive (2018) have documented this effect in detail.
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Figure 3.6: Cumulative abnormal return of S&P index additions and deletions
This figure presents the cumulative average abnormal return associated with S&P index
additions (Panel A) and deletions (Panel B). The sample is split into January 1, 1996, to
December 31, 2008 (upper half) and January 1, 2009, to December 31, 2019 (lower half).

The results presented in Figure 3.7 provide further insights into the behavior of

the S&P 500 in response to index changes. For the S&P 500, the index addition

and deletion events are separated into pure and transfer events. For additions,

we find a striking difference between the pure and transfer events, particularly

in the 1996–2008 period. In the 2009–2019 period, we find that index transfers

have virtually no abnormal price response at t = 0 (AD); in fact, they trend

down in the period after the announcement. Furthermore, for pure additions in

the same 2009–2019 period, the abnormal price response almost entirely disappears

after 30 days, which is in contrast with the 1996–2008 period, where it remains

significant. Panel B shows a significant change in behavior for pure deletions. In

1996–2008, significant AD negative responses are followed by a reversion. However,

in 2009–2019, the cumulative return consistently decreases in the lead-up to the

announcement and revert post-announcement. This reversionary behavior could

indicate that the market is better able to anticipate S&P index deletions ahead

of the official announcements. The reversion could also be evidence that market-

capitalization-weighted benchmarks are momentum-like in nature, with the index

selling out of losing stock positions (deletions), which appear to revert once the

index has sold them. Arnott, Brightman, Kalesnik and Wu (2022) argue similarly.
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However, whether these stocks would have still reverted if an index change was not

announced is an open question.
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Figure 3.7: Cumulative abnormal return for S&P 500 index additions and
deletions conditioned on S&P 400 transfers
This figure presents the cumulative average abnormal return associated with S&P 500
index additions (Panel A) and deletions (Panel B). The sample is split into January 1,
1996, to December 31, 2007, and January 1, 2008, to December 31, 2019. The sample
is also split into stocks that are transferred between S&P indexes (transfer) and stocks
that are either deleted from the S&P 1500 universe or added from outside the S&P 1500
universe (pure).

Although the results clearly show that the S&P index effect is alive for pure addition

events, we cannot draw causality from this. We cannot determine if the change in

the internal transfer behavior from S&P affected the average abnormal returns. It is

plausible that investors have recognized this price response change and adjusted their

own behavior accordingly. However, I conclude that “the S&P index effect is dead”

claim is inaccurate and overstated. There are still statistically, and economically

significant abnormal returns associated with pure additions from outside the S&P

1500 across all three S&P indexes. Rather, I show that “S&P index transfers are

now less informationally relevant.”
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3.3.3 Information dynamics

S&P index changes are ultimately informational events that market participants

must process. The degree to which index announcements are perceived as

informationally relevant influences how market participants process these events.

The informational content of S&P index events can be measured using the concept

of entropy from information theory. Entropy is a measure of the average information

contained in the outcomes of a random variable. To calculate entropy for index

changes, AD abnormal returns are encoded in a binary fashion. Positive abnormal

returns are encoded as one and negative abnormal returns as zero. The entropy

formula can then be applied across different samples:

H(X) = −
n∑

i=1

P (xi) logb(P (xi)), (3.6)

where n is the number of outcomes (index announcements), b is the base of the

logarithm used, xi are the possible outcomes (positive or negative abnormal returns),

and P (xi) is the probability of each outcome. P (xi) is calculated using the chosen

sample of events. As binary encoding is used, b = 2 is the base, and the maximum

possible entropy value is H(X) = log2(2) = 1. The closer H(X) is to one, the

less information is contained in the sample of events. H(X) = log2(2) = 1 can

be interpreted as sampling from a distribution of abnormal returns having a 50%

probability of a positive value and 50% probability of a negative value. Thus, no

new information is gained from each draw from this distribution.

Table 3.4 presents the entropy of the AD abnormal returns partitioned across several

categories. For pure additions across all indexes, the entropy has decreased between

the two sub-periods. In particular, for the S&P 600, the entropy decreases from 0.502

to 0.222, indicating that the abnormal returns of S&P 600 pure additions contain

more information in the 2009–2019 period than in the 1996–2008 period. These

findings are consistent with Table 3.2, which reports an increase in abnormal returns

for this category between the two sub-periods. The entropy of transfers across all

three indexes has increased close to one in the 2009–2019 period, suggesting that

these events now contain very little information. This result aligns with the previous

finding of statistically insignificant abnormal returns for transfer events.
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Table 3.4: Information entropy of announcement day abnormal returns
This table presents the Shannon entropy of the AD abnormal returns of S&P index
addition and deletion events. Every AD abnormal return is encoded as positive or negative.
Within each sub-sample, the distribution of encoded AD abnormal returns is used to
calculate the Shannon entropy, which is reported in this table. The maximum Shannon
entropy value here is log2(2) = 1. The closer to zero the entropy is, the more information
content is present in the sample. The Base Sample runs from January 1, 1996, through
December 31, 2019. Stocks are classified as those that enter or leave the S&P 1500 universe
(pure) or stocks that internally move between indexes (transfer). The sample is divided
into two sub-periods: January 1, 1996, through December 31, 2008, and January 1, 2009,
through December 31, 2019.

Additions Deletions

Sample All S&P 500 S&P 400 S&P 600 All S&P 500 S&P 400 S&P 600

1996–2008
All 0.506 0.409 0.566 0.502 0.769 0.495 0.808 0.820
Pure 0.441 0.227 0.334 0.502 0.771 0.503 0.737 0.820

Transfer 0.685 0.496 0.827 0.762 0.485 0.896

2009–2019
All 0.635 0.943 0.798 0.222 0.924 1.000 0.978 0.577
Pure 0.241 0.341 0.260 0.222 0.667 0.881 0.877 0.577

Transfer 0.982 0.997 0.942 0.997 1.000 0.990

For deletions that result in the removal of stocks from the S&P 1500 universe, the

entropy of S&P 400 and S&P 500 deletions has increased, indicating less information

content in these events. However, the entropy of deletions of S&P 600 has increased,

suggesting more information content in these events. Overall, Table 3.4 supports

the finding that index transfers have become less informationally relevant in recent

years. At the same time, stocks added to or deleted from the S&P 1500 universe

are still informationally important events for market participants.

3.4 Horse-racing drivers of index changes

Having established that there has indeed been a mutation in the S&P index

effect, a regression framework is used to explain the cross-sectional variation in the

abnormal return responses. Proxies for informed trading in the days preceding the

announcement of index changes are derived from options-based trading variables. A

measure of relative passive ownership between large and mid-capitalization stocks

is used as a proxy for the shifting relevance of the S&P 400 over the S&P 500 index.

3.4.1 Informed trading of options

The literature on options trading variables before corporate events has extensively

covered the use of these variables in event studies.7 The consensus in the literature

is that informed options trading before scheduled and unscheduled corporate events

7See Augustin and Subrahmanyam (2020) for a detailed review.
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is pervasive. This is due to the ease of obtaining leveraged positions in the options

markets and lower limits to expressing short views when compared to the listed

equity markets. In addition, expressing a view on outcomes over different time

horizons and event probabilities is an attractive feature of options markets. It

is, therefore, not surprising that informed trading in the options market occurs

before corporate events that can impact a company’s share price. The nature of

this informed trading is of particular interest. In some cases, it is illegal, with

insiders trading on private inside information and using the options markets to

mask their behavior. The U.S. Securities and Exchange Commission (SEC) charged

two individuals (one being an S&P employee) on September 21, 2020, with insider

trading ( SEC, 2020, release no. 2020-217), alleging that the named individuals

“repeatedly purchased call or put options of publicly traded companies hours before

public announcements that those companies would be added to or removed from a

popular stock market index.” This case was well publicized, but this is likely not the

only informed trading taking place before the announcement of index events.

Abnormal options activity before index announcements is not limited to insider

trading. Although insider trading is one source for such activity, the S&P 500 index

effect is a well-known phenomenon where significant trading profits can be generated

by accurately predicting index changes. Moreover, while subjectivity is involved in

determining the index changes, there are still predictable characteristics associated

with them. For instance, candidates for index inclusion must meet specific liquidity

and capitalization requirements. Therefore, it is possible to compile a list of potential

index candidates that meet current index inclusion criteria but are not yet in the

index and then rank them by market capitalization. Informed traders who can

predict these index changes may use the options market to express their position.

3.4.2 Passive ETF ownership

The amount of assets invested in passive vehicles such as index-tracking mutual

funds and ETFs has substantially grown from 1996 to 2019. Compounded capital

appreciation of assets invested in the stock market and a significant reallocation from

active toward passive investment strategies have driven this growth. The increased

prevalence of passive investment activity has led to a new stream of literature

focusing on the impact of passive investing on stock markets. Although this is

a relatively new area of research, there is mixed evidence on the implications of the

growth in passive assets on financial markets. Additionally, the operation of passive

investment strategies has received less attention in academic literature.
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A typical passive investment strategy involves a pool of assets attached to a

benchmark index provided by a separate vendor such as S&P, FTSE Russell, or

MSCI. The passive investment vehicle pays a licensing fee to the vendor to market

a passive strategy benchmarked to their index. Then, the manager of the passive

strategy seeks to minimize the fund’s tracking error to the official benchmark

maintained by the vendor. As the start-of-day weights associated with the

benchmark are disseminated daily, only a limited number of activities can cause the

passive vehicle’s performance to deviate from the benchmark’s performance. One is

associated with the provider’s mechanism for adding and removing companies from

their benchmark. Each provider typically has their own method for implementing

index changes, but a common theme is that the changes are announced (the AD)

ahead of the date the change will be made (the ED).

The periods around index changes are of heightened importance due to the required

increase in trading for passive vehicles around these periods. These vehicles

are required to mechanically rebalance to maintain a low tracking error to their

benchmark, which often occurs in a very limited period. Historically, this type of

behavior canonically drives part of the index effect. If there is a known date in

the future when uninformed passive assets will be required to purchase a stock,

arbitrage traders could buy the stock ahead of this date and then demand a higher

price for providing the stock on the given future date.

Although the absolute level of passive assets has increased, what is more important

to the index effect is the relative level of passive ownership across different market

capitalizations of stocks. Figure 3.8 presents the normalized passive ETF ownership

for stock rank market capitalizations, plotting each year on a separate line. Over

time, a clear trend is observed. Before 2005, large- and mega-capitalization stocks

had relatively higher levels of passive ETF ownership than smaller capitalization

stocks. After 2005, this trend inverted, with stocks in the 900–1500 market

capitalization rank having relatively higher levels of passive ETF ownership. I

construct an annual measure of the relative change in passive ETF ownership levels

between the S&P 500 and S&P 400 by considering the difference in the average

passive ETF ownership by stock ranks 1–500 and stock ranks 501–900.
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Figure 3.8: Annual trends in the passive ETF ownership of U.S. stocks sorted
by market capitalization
This figure presents the annual normalized passive ETF ownership for the top 1500 stocks
in the CRSP universe sorted by market capitalization. Each month, in each year, all
stocks in the CRSP universe are ranked by market capitalization (one corresponding to
the largest market capitalization). For each year and each stock, I take the average passive
ETF ownership across each month. Each year, the passive ETF ownership is normalized
by the annual mean and standard deviation of passive ETF ownership. The red line
represents the cross-sectional average for each stock rank market capitalization across the
years represented in each panel. A rolling 50 stock rank average in each year is reported
for smoothing purposes.
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3.4.3 Regressions

Cross-sectional variation in AD abnormal returns is explained using a general panel

regression model:

ARi,0 = α+
∑
k=1

βkAVi,t[−20,−1] + βpPASSOWNt−1 + βAPURE ADDi,t (3.7)

+βDPURE DELETEi,t +
∑
j=1

βjCONTROLi,t + ϵi,t,

where ARi,0 is the abnormal return for stock i on the event day (t = 0), AVi,t[−20,−1]

is the average of the abnormal value of the variables of interest in the pre-event

period (t = −20 to t = −1), PASSOWNt−1 is the difference in the average passive

ownership between U.S. stocks sorted by market capitalization in the 1–500 and

501–900 groups as at the end of December of the year before the event, PURE ADDi,t

is a dummy variable equal to one if the stock was added from outside the S&P 1500

universe and zero if the stock was transferred upward from one of the other S&P

indexes, PURE DELETEi,t is a dummy variable equal to one if the stock was deleted

from the S&P 1500 universe or zero if the stock was transferred downward to one

of the other S&P indexes, and CONTROLi,t is a set of control variables.

The independent variables of interest (denoted by AVi,t in Eq. (3.7)) are the

abnormal CPIV spread, abnormal call options volume share (CVOLSHR),

abnormal stock trading volume share (ABSVOLSHARE), and change in passive

ownership trends (PASSOWNt). The control variables used are book-to-market

(BtM), idiosyncratic stock volatility (STD), log market capitalization (SIZE),

stock price 20 days prior to the event (PRC), stock volume share (VOLSHARE),

the number of analysts covering the stock (NUMANAL), and short interest ratio

(SHORTINT). The full variable definitions are presented in Appendix 3.5.

Table 3.5 presents the summary statistics for the independent variables used in the

Regression Sample of additions and deletions for the three indexes. For each index,

I present results for the full sample and the pure/transfer sub-samples. As I have

established, an aggregation using the full sample misses an important distinction

between internal index changes (index promotions and demotions) and external

additions and deletions (pure). By splitting the full sample into the two sub-samples,

we find consistently different sample statistics across all three indexes. For example,

in Panel B for the S&P 400, the average abnormal return on the AD is 3.08%.

However, for the pure sub-sample, the average abnormal return is 5.09%; for the

transfer sub-sample, it is 0.94%. This is a stark difference and can lead to very
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different conclusions around the economic significance of the AD abnormal returns.

Similarly, in Panel A for the S&P 500, the call option volume share for the deletion

samples varies considerably.

Table 3.5: Summary statistics of the regression sample
This table presents the summary statistics for the S&P index additions and deletions
Regression Sample. The Regression Sample runs from January 1, 1996, to December 31,
2019. µ is the sample mean, and σ is the sample standard deviation. Panel A presents
results for the S&P 500. Panel B presents results for the S&P 400. Panel C presents results
for the S&P 600. For the S&P 600, statistics are reported only for the Pure Sample, as
transfer events are not relevant to the S&P 600 in this study. Full variable definitions are
presented in Appendix 3.5.

Panel A: S&P 500

Additions Deletions

Full Sample Pure Transfer Full Sample Pure Transfer

µ σ µ σ µ σ µ σ µ σ µ σ

AR0 (%) 3.23 4.30 5.24 4.31 2.02 3.82 -0.90 10.52 -3.34 20.84 -0.12 3.10
AR[0,10] (%) 2.09 9.49 6.02 9.45 -0.28 8.71 2.73 23.81 7.52 46.49 1.21 8.49
ABVOLSHARE (%) 0.01 0.41 -0.03 0.43 0.03 0.39 0.38 0.96 0.95 1.71 0.20 0.41
CPIV -0.08 4.09 0.16 4.53 -0.22 3.81 0.24 11.34 0.24 23.08 0.24 2.35
CVOLSHR (%) 0.21 1.50 0.22 2.25 0.20 0.75 0.26 1.05 0.67 1.50 0.14 0.83
PASSOWN (%) -0.36 0.68 -0.45 0.70 -0.31 0.66 -0.96 0.62 -0.35 0.60 -1.15 0.49
BtM 0.34 0.31 0.42 0.38 0.29 0.26 0.91 0.67 1.19 0.73 0.82 0.63
NUMANAL 11.06 9.46 13.06 9.71 9.86 9.12 9.63 8.72 6.77 7.12 10.54 9.02
PRC 70.85 57.87 60.41 55.82 77.14 58.31 19.94 17.56 10.31 12.67 22.99 17.84
SI (%) 2.91 4.54 1.94 3.03 3.50 5.17 9.40 9.09 5.94 7.01 10.50 9.43
SIZE 8.95 0.63 9.22 0.79 8.78 0.44 8.03 0.82 7.89 1.44 8.07 0.50
STD (%) 2.58 1.77 2.61 2.08 2.57 1.56 4.39 5.69 9.68 9.42 2.72 1.87
VOLSHARE (%) 1.42 1.24 1.54 1.39 1.35 1.14 2.38 1.74 2.34 2.21 2.39 1.58

Panel B: S&P 400

Additions Deletions

Full Sample Pure Transfer Full Sample Pure Transfer

µ σ µ σ µ σ µ σ µ σ µ σ

AR0 (%) 3.08 4.62 5.09 4.01 0.94 4.26 -0.68 6.81 -5.47 9.25 1.02 4.73
AR[0,10] (%) 1.52 10.71 4.59 10.52 -1.76 9.94 3.45 15.39 4.96 23.07 2.92 11.69
ABVOLSHARE (%) 0.00 0.40 0.00 0.43 0.01 0.38 0.22 0.54 0.32 0.73 0.18 0.45
CPIV -0.27 3.56 -0.34 4.08 -0.19 2.90 1.21 7.34 0.96 10.65 1.29 5.83
CVOLSHR (%) 0.16 1.04 0.14 1.01 0.18 1.06 0.09 0.91 -0.09 0.97 0.15 0.89
PASSOWN (%) -0.38 0.72 -0.27 0.69 -0.49 0.73 -0.91 0.67 -0.36 0.60 -1.11 0.59
BtM 0.33 0.25 0.32 0.26 0.34 0.23 0.95 0.81 1.02 0.89 0.93 0.79
NUMANAL 6.70 6.51 8.04 6.92 5.28 5.72 8.20 7.83 7.52 7.36 8.44 8.02
PRC 52.32 38.71 43.34 24.89 61.89 47.60 15.11 14.59 12.40 22.52 16.07 10.50
SI (%) 11.98 18.10 11.16 16.42 12.86 19.74 27.63 37.37 25.07 37.50 28.54 37.52
SIZE 7.69 0.55 7.65 0.67 7.72 0.39 7.09 0.63 7.06 0.92 7.11 0.50
STD (%) 2.71 1.65 2.97 1.73 2.43 1.51 4.11 3.29 6.83 4.62 3.15 1.93
VOLSHARE (%) 1.56 0.95 1.63 1.02 1.48 0.87 2.32 1.40 2.55 1.81 2.23 1.22
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Panel C: S&P 600

Additions Deletions

Pure Pure

µ σ µ σ

AR0 (%) 5.46 4.68 -2.19 8.49
AR[0,10] (%) 3.44 11.65 7.43 27.93
ABVOLSHARE (%) -0.04 0.49 0.31 0.97
CPIV 0.02 5.30 4.75 13.18
CVOLSHR (%) -0.01 0.94 -0.15 0.49
PASSOWN (%) -0.32 0.70 -0.49 0.69
BtM 0.35 0.30 1.20 1.69
NUMANAL 4.86 4.82 5.72 6.47
PRC 26.70 12.30 21.63 36.02
SI (%) 30.86 45.74 58.73 73.03
SIZE 6.47 0.58 6.27 1.03
STD (%) 3.16 1.68 7.82 5.77
VOLSHARE (%) 1.84 1.16 2.12 1.46

Table 3.6 shows the Pearson correlation coefficients between the regression variables

and the AD abnormal returns within the additions (upper right) and deletions (lower

left). The largest correlated variables for the additions are the price 20 days prior to

the index announcement (PRC) and the idiosyncratic volatility (STD). The largest

correlated variables for the deletions are the call option volume share (CVOLSHR)

and PRC.

Table 3.6: Correlation in the regression sample
This table presents the Pearson correlation coefficients between variables in the regression
variable set. The Regression Sample used runs from January 1, 1996, to December 31,
2019. The upper right triangular values correspond to the correlations for additions. The
lower left triangular values correspond to the correlations for deletions. Full variable
definitions are presented in Appendix 3.5.

Additions

AR0 (%) SIZE BtM PRC NUMANAL VOLSHARE STD SHORTINT ABSVOLSHARE CPIV CVOLSHR

D
el
et
io
n
s

AR0 (%) -19.4 4.5 -23.8 -4.7 4.5 23 2.0 -6.1 0.4 -6.4
SIZE 7.5 -8.0 46.2 38.1 -10.2 -19.3 -32.2 0.1 4.7 0.8
BtM 8.8 -17.9 -15.6 4.5 -14.3 -16.5 -0.7 0.0 -3.0 4.0
PRC 15.1 32.1 -25 16.2 4.6 -10.2 -0.9 2.7 1.6 3.7

NUMANAL 5.2 28.6 12.8 -9.4 2.4 -8.5 -7.9 -2.2 2.8 0.0
VOLSHARE 13.8 1.3 15.5 -19 14.6 32.3 28.7 -7.3 5.8 -5.9

STD 5.9 -10.1 13.7 -25.3 0.7 15.3 -1.8 23.6 -3.8 4.9
SHORTINT 7.0 -40.3 10.3 -5.7 -14.7 22.6 16.9 5.0 -0.9 7.6

ABSVOLSHARE 5.0 13.5 1.9 -12.4 3.6 -10.6 44.0 6.1 -4.7 50.4
CPIV 5.3 6.2 -8.4 0.8 -1.1 8.2 16.9 -5.5 -14.1 -1.8

CVOLSHR 15.5 0.1 0.2 -3.1 0.8 -10.4 16.7 19.5 64.8 -9.1

Table 3.7 presents the results of applying Eq. (3.7) across a series of different index

change panel datasets. The Full Sample regressions use a panel of addition and

deletion events, with type fixed effects on the addition and deletion categories.
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The Full Sample regression is run on the three independent index panels, and

an additional regression (denoted as All) using events from all three indexes is

included. A statistically significant loading on PURE ADD for S&P 500 and S&P

400 additions establishes the relation between the index effect and membership in

a lower index. Stocks that are added to the S&P 500 or S&P 400 from outside

the S&P 1500 universe experience on average higher AD abnormal returns of 3.55%

and 3.38%, respectively, when compared with stocks that are promoted from a

lower capitalization index. A similar pattern occurs for PURE DELETE events.

Stocks completely deleted from the S&P 1500 experience significantly more negative

AD abnormal returns than stocks demoted to lower capitalization indexes. One

explanation for this result is investor attention. Historically, the S&P 500 received

the most attention in mainstream media, but more recently, the S&P 400 and S&P

600 have gained more attention. Now, an increase in investor attention toward a

stock drives an abnormal price response when the stock is first added to the broader

S&P 1500 universe.

Table 3.7: Options implied volatility measures, passive ownership, and S&P
1500 index additions and deletions announcement day abnormal returns
This table presents the coefficient estimates from cross-sectional regressions of the S&P
500, S&P 400, and S&P 600 index additions and deletions AD abnormal stock returns on
a set of IV, passive ownership, and risk-based independent variables. Regressions follow
Eq. (3.7). Abnormal value market models are calibrated in the window between t = −150
and t = −31. Index additions/deletions type fixed effects are used, and standard errors
are clustered by firm. The sample runs from January 1, 1996, to December 31, 2019.
t-statistics are reported in parentheses. ***, **, and * indicate statistical significance at
1%, 5%, and 10% levels, respectively.

Full Sample Additions Deletions
S&P 500 S&P 400 S&P 600 All S&P 500 S&P 400 S&P 600 All S&P 500 S&P 400 All

CPIV -0.021 0.001 -0.087∗ -0.048 -0.108∗∗ 0.116 -0.032 -0.020 0.021 0.057 -0.078
(-0.16) (0.01) (-1.69) (-0.85) (-2.01) (1.61) (-0.64) (-0.56) (0.10) (0.54) (-0.71)

CVOLSHR -0.547∗ -0.077 0.017 -0.138 -0.390∗∗∗ -0.554∗∗∗ -0.247 -0.403∗∗∗ -0.618 1.575∗ 1.703
(-1.88) (-0.27) (0.07) (-0.89) (-3.02) (-2.61) (-0.93) (-3.86) (-0.41) (1.74) (1.49)

ABSVOLSHARE 0.575 -0.302 -1.955∗∗∗ -0.900 -0.721 -0.451 -1.053∗∗ -0.671∗ 2.102 1.252 -1.426
(0.23) (-0.50) (-3.56) (-0.86) (-0.94) (-0.78) (-2.00) (-1.95) (0.56) (0.93) (-0.67)

PASSOWN 0.340 1.260∗∗∗ -0.746∗∗ 0.261 1.832∗∗∗ 0.933∗∗∗ -0.640∗ 0.628∗∗∗ -4.184∗ 1.177 -2.645∗∗

(0.50) (3.51) (-2.00) (0.95) (4.63) (3.22) (-1.78) (3.28) (-1.77) (0.94) (-2.48)
PURE DELETE -11.022∗∗∗ -7.936∗∗∗ -7.405∗∗∗ -8.225∗∗ -4.959∗∗∗ -5.635∗∗∗

(-4.48) (-4.30) (-6.00) (-2.45) (-2.81) (-3.69)
PURE ADD 3.130∗∗∗ 3.801∗∗∗ 3.479∗∗∗ 3.548∗∗∗ 3.376∗∗∗ 3.436∗∗∗

(5.30) (8.21) (11.42) (6.82) (7.41) (11.74)
SHORTINT -0.042 -0.007 -0.003 -0.002 -0.043 0.009 0.001 -0.000 -0.113 -0.003 -0.015

(-0.78) (-0.70) (-0.59) (-0.41) (-1.02) (0.73) (0.23) (-0.06) (-0.89) (-0.18) (-0.94)
STD 0.976∗∗∗ 0.048 0.417∗∗ 0.597∗∗ 0.464∗∗ 0.666∗∗∗ 0.597∗∗∗ 0.582∗∗∗ 1.053∗∗∗ -0.672∗∗ 0.721∗

(3.10) (0.28) (2.42) (2.56) (2.56) (3.52) (3.06) (5.29) (2.90) (-2.29) (1.84)
BtM 1.138 1.197∗∗ 1.275∗∗∗ 1.280∗∗ -0.050 0.040 1.833∗ 0.872∗ 0.852 2.043∗∗ 1.122∗

(0.88) (2.40) (2.59) (2.48) (-0.08) (0.06) (1.93) (1.87) (0.59) (2.50) (1.79)
SIZE -0.335 1.126∗∗ -0.292 0.176 -0.320 0.694 -0.135 0.232 -2.281 2.270∗ -1.088

(-0.36) (2.32) (-0.53) (1.03) (-0.71) (1.46) (-0.24) (1.45) (-0.76) (1.79) (-1.15)
PRC -0.001 -0.006 0.028 -0.004 0.002 -0.014∗∗ -0.022 -0.007∗∗ 0.103 0.010 0.109∗∗∗

(-0.09) (-0.93) (1.10) (-1.00) (0.49) (-2.01) (-1.16) (-2.31) (1.36) (0.24) (3.57)
VOLSHARE 0.141 0.657∗∗ -0.577∗∗ -0.001 -0.002 0.238 -0.702∗∗∗ -0.176 0.655 0.613 0.480

(0.54) (2.33) (-2.19) (-0.00) (-0.01) (0.82) (-2.66) (-1.27) (1.25) (1.34) (1.23)
NUMANAL 0.018 -0.031 -0.111∗∗ -0.021 0.016 -0.011 -0.094∗∗ -0.010 0.026 -0.036 -0.027

(0.73) (-1.01) (-2.13) (-1.06) (0.68) (-0.37) (-2.02) (-0.58) (0.34) (-0.44) (-0.45)
Intercept 1.401 -7.936∗∗ 5.658 -1.609 4.132 -5.035 5.852∗ -1.016 6.566 -15.274∗ 0.033

(0.20) (-2.18) (1.64) (-1.02) (1.08) (-1.35) (1.66) (-0.79) (0.33) (-1.93) (0.01)
N 422 514 419 1355 314 403 394 1111 108 111 244
Adj. R2 0.270 0.252 0.090 0.178 0.331 0.329 0.082 0.230 0.366 0.360 0.235
Type FE Yes Yes Yes Yes No No No No No No No
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Figure 3.8 shows how in recent years, the relative passive ownership of mid- and

small-capitalization companies is higher than that of large- and mega-capitalization

companies, despite the S&P 500 having substantially more passive assets tracking

it than the S&P 400 or S&P 600. This shift may be attributable to the larger

number of large-capitalization active mutual funds compared with mid- and small-

capitalization managers, which comprise a relatively larger proportion of the large-

and mega-capitalization share registries. A statistically significant positive loading

on the PASSOWN variable is found for S&P 500 and S&P 400 additions. This

variable is measured as a time-series variable from the previous year for each index

event and has a constant value for events occurring in the same year. It measures the

relative importance of the trend of PASSOWN on abnormal returns. For increases

in PASSOWN, S&P 500 and S&P 400 additions experience larger AD abnormal

returns. This relation captures the fact that abnormal returns, in general, were

higher in the earlier periods of the sample, which also correspond to higher values

of PASSOWN. As PASSOWN has become more negative (i.e., the relative passive

ownership of S&P 400 to S&P 500 companies has increased), the AD abnormal

returns have also decreased. The S&P 400 effect is roughly half the effect for the

S&P 500, reflecting the relative imbalance between pure additions and transfers for

the S&P 400 compared with the S&P 500.

The regression results presented in Table 3.7 show several statistically significant

loadings on CPIV and CVOLSHR. Significant positive loadings on CPIV for

additions to the S&P 500 indicate how changes in the underlying IV surfaces

influence AD abnormal returns. Abnormal values of CPIV suggest that investors

expect an increase in the stock price and demand more ATM call options, which

drives an increase in the price of ATM call options. For additions, I find statistically

significant negative loadings on abnormal CVOLSHR. There is generally a smaller

AD abnormal return for higher levels of abnormal CVOLSHR. Given the increased

abnormal CVOLSHR ahead of the event, this result suggests that abnormal options

trading leading up to the index announcement event results in weaker observed

index effects.

Table 3.7 also presents the results for index deletions. In the All Sample, I include

S&P 600 deletions, noting that after accounting for available data, the sample for

S&P 600 deletions only consists of 18 events. The All Sample has a statistically

significant negative loading on PASSOWN. The sign of this loading is consistent

with the result for the index additions, suggesting that the changing structure of

passive ownership has also reduced the negative abnormal return responses when

stocks are deleted from the S&P indexes.
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Table 3.8: Options implied volatility measures, passive ownership, and S&P
1500 index additions announcement day abnormal returns
This table presents the coefficient estimates from cross-sectional regressions of the S&P
500, S&P 400, and S&P 600 index additions and deletions AD abnormal stock returns
on a set of IV, passive ownership, and risk-based independent variables. Regressions
follow Eq. (3.8). Abnormal value market models are calibrated using the window between
t = −150 and t = −31. Standard errors are clustered by firm. The sample runs from
January 1, 1996, to December 31, 2019. t-statistics are reported in parentheses. ***, **,
and * indicate statistical significance at 1%, 5%, and 10% levels, respectively.

S&P 500 S&P 400
Pure Transfer Pure Transfer

CPIV -0.040 -0.133∗∗ 0.146∗∗ 0.048
(-0.39) (-2.19) (2.09) (0.32)

CVOLSHR -0.354 -0.679∗ -0.517∗∗ -0.467
(-1.58) (-1.67) (-2.52) (-1.27)

ABSVOLSHARE -0.442 -0.761 -0.233 -0.501
(-0.28) (-0.90) (-0.39) (-0.40)

PASSOWN 1.196∗∗ 2.319∗∗∗ -0.029 1.591∗∗∗

(2.08) (4.01) (-0.07) (4.12)
SHORTINT -0.225∗∗ 0.010 -0.033∗∗ 0.047∗∗∗

(-2.11) (0.19) (-2.20) (2.89)
STD 0.932∗∗∗ 0.126 0.702∗∗∗ 0.590

(3.66) (0.50) (3.58) (1.54)
BtM -0.075 0.165 -0.400 0.187

(-0.07) (0.19) (-0.43) (0.20)
SIZE -0.453 -0.762 -0.215 2.356∗

(-0.80) (-1.04) (-0.57) (1.97)
PRC 0.013∗ -0.001 0.013 -0.027∗∗∗

(1.83) (-0.14) (1.25) (-3.68)
VOLSHARE -0.266 -0.037 0.068 0.562

(-0.71) (-0.17) (0.19) (1.33)
NUMANAL 0.064 -0.015 -0.036 -0.008

(1.53) (-0.49) (-1.00) (-0.17)
Intercept 6.875 9.378 4.860 -17.574∗

(1.36) (1.53) (1.58) (-1.81)
N 118 196 208 195
Adj. R2 0.302 0.270 0.164 0.250

Table 3.8 splits the addition sample into pure additions and transfer additions and

runs the following regression on these sub-samples:

ARi,0 = α+
∑
k=1

βkAVi,t[−20,−1]+βpPASSOWNt−1+
∑
j=1

βjCONTROLi,t+ϵi,t. (3.8)
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The most striking result is the difference in loadings between the pure and transfer

samples. In particular, the PASSOWN variable is significantly stronger for the

transfer samples of the S&P 500 and S&P 400. This result can be interpreted as

follows: the relative effect of the change in passive ownership between mid- and large-

capitalization stocks results in lower abnormal returns for index transfers than for

pure additions. This result is supportive of the view that the increasing importance

and attractiveness of the S&P 400 and S&P 600 indexes have meant that market

participants are agnostic to which S&P index a stock is added into, as long it is

added into the broader S&P 1500 index universe and passive investors are required

to purchase the stock.

3.4.4 Economic explanations

The previous results establish that index transfer events are no longer informative

events that market participants respond to. In this section, I present several

potential economic mechanisms for the declining informativeness of index transfer

events.

When a stock is promoted from the S&P 400 to the S&P 500, passive asset managers

must either buy or sell it, depending on which index they track. The total value of

the assets that passively track each index determines the required net buying and

selling. For instance, suppose stock A has a weight of 10% in the S&P 400 and will

be promoted to the S&P 500, where its new weight will be 1%. If the S&P 500 has

$1000 of assets tracking it and the S&P 400 has $100 of assets tracking it, then the

net buying and selling required is zero. Typically, the weight of the stock in the index

becomes smaller when a stock is promoted from a lower capitalization index to a

higher capitalization index. In the 2000s and earlier, the S&P 400 and S&P 600 had

significantly lower levels of assets passively following them. Thus, being promoted to

the S&P 500 resulted in significant net buying demand, which increased the share

price. However, as the amount of passive assets tracking the S&P 400 and S&P

600 increased, the net buying demand resulting from an upward transfer (from the

S&P 400 to the S&P 500) has become smaller. This supply–demand mechanism

can reduce the buying–selling effect required around index rebalances across market

capitalizations.

Another important consideration is the management of portfolios by large passive

investment managers such as State Street, Vanguard, and BlackRock, also

colloquially known as the “Big Three.” These managers offer managed funds and

passive ETF products that track all three S&P indexes. Given their large scale of

management, it is likely that passive asset managers can internally cross significant
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amounts of stock between different funds when rebalancing their passive mandates.

As a result, these funds do not have to trade shares on the open market but can

trade with other internal funds, paying no brokerage fees to trade the required

shares. This crossing ability significantly reduces the on-market buying and selling

activity in index transfer events, which can result in smaller price responses.

It is also possible that index transfers have become less informative events for

companies because they are easier to predict than pure additions. Suppose a

company has already met certain internal (non-disclosed) S&P metrics required

for inclusion in the broader S&P 1500 universe. In that case, a stock’s market

capitalization and operating industry may become the primary determinants of

whether the stock will be promoted from a lower index to a higher one. This

greater predictability can make it easier for index arbitrageurs and passive index

fund managers to anticipate these index transfers more accurately prior to their

announcement. Thus, the index effect may have declined for transfer events, as

potential effects have already been priced-in ahead of the transfer announcement.

3.5 Conclusion

Including a stock in the S&P 500 is broadly accepted as a positive event for the

company. However, recent evidence suggests that inclusion into the S&P 500 no

longer positively affects a company’s stock price, leading to claims of the death

of the S&P index effect. This supposed death of the index effect has occurred

while the assets allocated to passive index tracking strategies reached an all-time

high. I investigate the S&P index effect across the different U.S. index market

capitalization classes by examining the origin and destination of index additions

and deletions. I conclude that the statement “the S&P index effect is dead” is too

strong. Instead, the S&P index effect has reduced for companies moving from a

lower capitalization index into a higher capitalization index and remains persistent

but statistically significant for additions from outside the current S&P 1500 index

universe.

To address the conflict of an increase in passively managed assets alongside a

supposed decline in the index effect, I use a regression framework to demonstrate

that the relative increase in the passive ownership of mid-capitalization companies

to large-capitalization companies helps explain why index transfers are now less

informative and experience no abnormal price response on the AD of index changes.

My results suggest that even with the growth in passive assets, the market is

effectively digesting index changes without significant distortions to the underlying

companies. The market efficiently distinguishes between index announcements that
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contain company-relevant information (such as an addition from outside the S&P

1500) and announcements that should not substantially impact the share price (such

as movement between S&P indexes). For passive asset managers, particularly of

S&P 400 and S&P 600 strategies, the results of this chapter show that there is still

a benefit to allocating tracking error budget to hold potential index inclusion stocks

that are not already in another S&P index.
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Appendix 3.1. Variable definitions

Options measures

� IV (implied volatility): I measure IV as the EW IV of all valid options for a

given call-put moneyness group. I take all options with best bid greater than

$0, mid-price greater than $0.25, open interest greater than zero, and a bid-ask

spread ratio less than 50%. I define option moneyness for calls and puts as:

Calls = IVC =


IVC,ATM =

∣∣∣log ( Pt

Kt

)∣∣∣ < 0.1,

IVC,ITM = log
(

Pt

Kt

)
> 0.1,

IVC,OTM = log
(

Pt

Kt

)
< −0.1.

(3.9)

Puts = IVP =


IVP,ATM =

∣∣∣log ( Pt

Kt

)∣∣∣ < 0.1,

IVP,ITM = log
(

Pt

Kt

)
< −0.1,

IVP,OTM = log
(

Pt

Kt

)
> 0.1.

(3.10)

ATM denotes at-the-money, ITM denotes in-the-money, OTM denotes out-

of-the-money, Pt is the closing price at time t, and Kt is the option strike

priced divided by 1,000 at time t.

� CPIV (call-put IV spread):

CPIV = IVC,ATM − IVP,ATM . (3.11)

� CVOLSHR (call volume share):

CV OLSHR =
CV OLi,t × 100

SHROUTi,t
, (3.12)

where CV OLi,t is the total valid traded call option volume for stock i at time

t and SHROUTi,t is the common equity shares outstanding for stock i at time

t. I multiply CV OLi,t by 100, as each option contract is for 100 shares in the

underlying stock.

Control measures

� BtM (book-to-market): I follow Fama and French (1992) and compute a firm’s

book-to-market ratio in month t using the market value of its equity at the

end of December in the previous year and the book value of common equity
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plus balance-sheet deferred taxes minus preferred stock for the firm’s latest

fiscal year ending in the prior calendar year.

� NUMANAL (number of analysts): I measure the number of analysts using

the Institutional Brokers’ Estimate System (I/B/E/S) dataset and take the

number of analysts having reported one-year-forward earnings per share (EPS)

forecasts for a stock at the end of December in the previous year.

� PASSOWN (relative passive ownership): This is the difference in percentage

passive ownership between CRSP stocks ranked on market capitalization in

the 1–500 group and the 501–900 group.

PASSOWNt = OWNR1−500,t −OWNR501−900,t. (3.13)

� PRC (price): This is the stock price taken from the CRSP dataset, measured

at t = −20 days prior to the event.

� SI (short interest): This is the ratio of short interest to shares outstanding

from Compustat. I take the prevailing ratio at the end of the previous month

before the event.

� SIZE (log market capitalization): I follow existing literature and measure firm

size as the natural logarithm of the market value of equity (price times shares

outstanding in millions of dollars) at the end of December in the previous year.

� STD (idiosyncratic volatility): I measure this as the standard deviation of the

residuals from Eq. (3.3) during the event window.

� VOLSHARE (average stock volume share):

V OL =
StockV olumei,t × 100

SHROUTi,t
. (3.14)

� ABSVOLSHARE (abnormal stock volume share): This is the abnormal value

of VOLSHARE, as measured using Eq. (3.5).
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Appendix 3.2. Incremental turnover and algorithmic

trading

Harris and Gurel (1986) proposed the price pressure hypothesis, suggesting that

large traders all trading in the same direction induce a temporary price effect. This

hypothesis has been proposed as one of the explanations for the S&P 500 index effect

(Chen et al., 2004). In this study, I analyze the average incremental turnover for

stock volume, call option volume, and put option volume for the samples of additions

and deletions on the first trading day after the AD. The variable is defined in Section

3.2.5, following Vijh and Wang’s (2022) approach.

Table 3.9 shows that in general, the incremental turnover is either not statistically

different or statistically lower than the previous sub-period. In the case of additions

to the S&P 600 index, there is one exception, where there is a statistically significant

73% increase in the incremental stock turnover. This finding provides some evidence

that the sub-period increase in abnormal returns for additions to the S&P 600 index

could be explained by the price pressure hypothesis. However, overall, we do not

find a consistent change in the incremental stock turnover levels to conclude that

the price pressure hypothesis explains the results.

When examining the incremental turnover of options activity, a general trend of

decreasing options turnover on the AD of both additions and deletions, particularly

for the S&P 500, is observed. Several reasons could explain the elevated options

activity on the day of these events. The stock and options markets are inextricably

linked, so elevated activity in one market will have a follow-on effect in the other.

On the AD, as the market responds and the stock goes either up or down and given

that we have observed typically elevated abnormal returns, it is feasible that a larger

proportion of options are traded because options holders seek to crystallize profits

from the abnormal move in price and de-risk their holdings.

Given the increase of algorithmic trading in recent years, and the continued move to

fully electronic markets, one may have expected these index events to have become

more volatile and unstable. Similarly, one potential avenue for exploiting these index

events is algorithmic traders participating in the increased trading activity that is

occurring.

Using the SEC MIDAS dataset, which consists of stock-day measures of various

algorithmic trading variables, I measure the incremental change in these algorithmic

trading variables across a period around the AD. Table 3.10 presents the average

incremental change in trade-to-order and cancels-to-trade ratios across various sub-

periods around the AD. I use a similar method as in Table 3.9, where I measure
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the value of the trade-to-order and cancels-to-trade ratios relative to the market

during the calibration window. Lower values of trade-to-order ratios are indicative

of higher algorithmic trading activity, whereas higher values of cancels-to-trade

ratios are indicative of higher algorithmic trading activity. The results almost

unanimously show that across every index and categorization, on the AD (τ4) and

in the period between the AD and ED (τ5), there is a substantial decrease in the

algorithmic trading proxies. This suggests that on these trading days, algorithmic

traders have either reduced participation in the market in these stocks relative to

their normal participation or they have not increased their participation alongside

the increased stock turnover that we observed in Table 3.9. The implication of

this is that algorithmic trading is likely not having a significant influence on the

abnormal returns which we have observed in the 2012–2019 events from the sample

and that the observations are more likely driven by the mix of active investors,

passive investors, and arbitrageurs who are trading in the physical stock on and

around the AD (Weller, 2018).

One interesting observation from Table 3.10 is that the algorithmic trading proxies

show reduced algorithmic trading behavior for index promotions and demotions as

well. Although this reduction is generally not as extreme as the reduction observed

for new additions and full deletions, it does suggest that a more likely explanation

for the results is that algorithmic traders do not increase their activity on these high

stock volume days. This result has an important implication: algorithmic traders

likely are not having a large influence on these highly informative days for index

events, and this is potentially a reason why these events have remained reasonably

orderly despite the increased electronic execution in markets.
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Table 3.9: Announcement day incremental turnover
This table presents the average incremental turnover on the AD of S&P index addition
and deletions. The Base Sample used runs from January 1, 1996, through December 31,
2019. Stocks are classified as those that enter or leave the S&P 1500 universe (pure)
or stocks that internally move between indexes (transfer). The sample is split into
two sub-periods: January 1, 1996, through December 31, 2008, and January 1, 2009,
through December 31, 2019. Abnormal returns are reported in percentages. t-statistics
are reported in parentheses. t-statistics reported for difference in average abnormal returns
assume unequal sample variance. ***, **, and * indicate statistical significance at 1%,
5%, and 10% levels, respectively, only for differences in values.

Panel A: Additions

Call Options Put Options Stock

Transfer Pure Transfer Pure Transfer Pure

S&P 400

1996–2008 (1)
1.96 4.92 1.66 11.01 1.55 3.58
(2.19) (7.96) (2.07) (1.28) (6.29) (9.87)

2009–2019 (2)
1.65 3.59 6.75 3.32 1.35 3.61
(4.64) (2.57) (1.83) (2.18) (6.16) (11.35)

(2) - (1)
-0.31 -1.33 5.10 -7.69 -0.20 0.03
(-0.34) (-0.90) (1.36) (-0.95) (-0.60) (0.07)

S&P 500

1996–2008 (1)
6.70 9.37 4.27 9.25 5.20 6.81
(3.78) (4.68) (3.54) (3.14) (7.79) (5.00)

2009–2019 (2)
1.85 3.76 1.55 2.86 2.32 4.15
(3.94) (6.57) (2.65) (4.70) (4.36) (8.71)

(2) - (1)
-4.85*** -5.61*** -2.72** -6.39** -2.88*** -2.66*
(-2.67) (-2.73) (-2.05) (-2.16) (-3.38) (-1.84)

S&P 600

1996–2008 (1)
2.93 1.48 3.49
(7.99) (4.23) (14.83)

2009–2019 (2)
5.83 5.58 4.22
(5.19) (3.59) (22.08)

(2) - (1)
2.90*** 4.10*** 0.73***
(2.63) (2.75) (4.49)
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Panel B: Deletions

Call Options Put Options Stock

Transfer Pure Transfer Pure Transfer Pure

S&P 400

1996–2008 (1)
0.40 0.47 0.70 2.23 1.26 3.71
(0.78) (0.81) (1.00) (1.22) (3.90) (3.87)

2009–2019 (2)
0.97 -0.20 0.40 0.61 0.99 1.39
(3.06) (-0.78) (1.01) (1.11) (6.18) (2.13)

(2) - (1)
0.57 -0.67 -0.30 -1.62 -0.27 -2.33**
(1.05) (-1.15) (-0.42) (-0.93) (-0.75) (-2.00)

S&P 500

1996–2008 (1)
2.03 0.51 3.55 1.43 1.92 6.34
(2.03) (1.43) (2.46) (2.35) (6.66) (3.75)

2009–2019 (2)
0.97 1.54 0.25 2.43 0.80 4.03
(1.92) (0.99) (1.27) (0.96) (7.08) (1.42)

(2) - (1)
-1.06 1.03 -3.29** 0.99 -1.12*** -2.31
(-1.01) (0.65) (-2.47) (0.38) (-3.61) (-0.70)

S&P 600

1996–2008 (1)
-0.32 1.12 6.62
(-3.26) (1.02) (6.54)

2009–2019 (2)
0.53 3.78 2.32
(1.70) (1.58) (8.57)

(2) - (1)
0.86 2.65 -4.30
(2.82) (1.11) (-4.11)
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Table 3.10: Incremental algorithmic trading around S&P index
announcements
This table presents the median incremental change in algorithmic trading measures
around the AD of S&P index additions and deletions. The Base Sample used runs
from January 3, 2012, through December 31, 2019. The SEC MIDAS dataset is used,
and I present the trade-to-order ratio and cancels-to-trade ratio. Lower values of
trade-to-order are typical of higher algorithmic trading behavior, whereas higher values of
cancels-to-trade are typical of higher algorithmic trading behavior. Stocks are classified
as those that enter or leave the S&P 1500 (new addition or full deletion) or stocks that
transfer between indexes (via promotion or demotion). I define three periods: pre-event
(event time t = −30 to t = −1), event day, and post-event (event time t = 1 to t = 30).
Incremental trading values are reported in percentage points. t-statistics are not reported,
as most are statistically significant at the 1% or lower level.

Panel A: Additions

Trade-to-order Cancels-to-trade

Event Range S&P 400 S&P 500 S&P 600 S&P 400 S&P 500 S&P 600

Transfer [τ2, τ3] -5.23 0.49 -5.41 -8.91
τ4 78.17 110.58 -45.74 -51.84

(τ4, τ5) 33.35 53.27 -29.51 -38.10
[τ5, τ6] 5.89 10.79 -15.54 -14.25

Pure [τ2, τ3] -3.80 0.13 -4.31 -3.67 -6.27 -6.92
τ4 108.59 152.89 153.03 -48.93 -56.31 -63.23

(τ4, τ5) 28.64 85.71 69.32 -31.64 -45.79 -43.48
[τ5, τ6] 1.60 7.17 8.32 -11.73 -8.99 -18.08

Panel B: Deletions

Trade-to-order Cancels-to-trade

S&P 400 S&P 500 S&P 600 S&P 400 S&P 500 S&P 600

Transfer [τ2, τ3] 5.48 6.94 -14.00 -11.67
τ4 37.42 42.29 -32.92 -30.25

(τ4, τ5) 13.38 26.24 -22.32 -23.11
[τ5, τ6] 8.59 10.59 -17.32 -10.74

Pure [τ2, τ3] -2.15 -23.36 7.48 -7.50 15.30 -20.18
τ4 34.05 70.91 63.24 -20.94 -29.53 -45.95

(τ4, τ5) 18.85 58.95 39.08 -25.92 -29.04 -33.21
[τ5, τ6] -5.00 10.15 17.14 -11.06 10.54 -24.50
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Chapter 4

Less is more? Biases and

overfitting in machine learning

return predictions

4.1 Introduction

Machine learning models have been successfully employed to cross-sectionally

predict stock returns using lagged stock characteristics as inputs. In this chapter I

show that training market capitalization group–specific machine learning models

produces superior stock-level return predictions and long–short portfolios. This

result challenges the generally held belief that more training data lead to superior

machine learning models for return prediction. Instead, machine learning models

trained on the full cross-section of raw stock excess returns overfits to small stocks.

This overfitting subsequently produces return predictions that produce inferior

VW long–short portfolios. Applying appropriate target regularization, such as

subtracting the cross-sectional median return within size groups, achieves similar

performance improvements as training group–specific models without the added

computational cost of training additional models. These results highlight the

importance of the careful, guided application of machine learning models in the

asset pricing setting.

Across a range of statistical models, I independently train three models on three

non-overlapping groups of stocks: large-, mid-, and small-capitalization. Using each

model, out-of-sample (OOS) return predictions are made and merged back into a full

panel. For long–short zero-cost portfolios formed from an ensemble of sorted machine

learning return predictions, I find an increase in the VW long–short portfolio Sharpe
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ratio from 1.25 (full-trained model) to 1.52 (group–specific model) and an average

increase in the cross-sectional information coefficient (IC) of 1.34% (from 6.08% to

7.42%). These increases are statistically significant and remain after controlling for

known asset pricing models, such as the FF5 model (Fama and French, 2015).

To explore whether the outperformance of group–specific models is specific to the

U.S. CRSP data setting used or is a more general feature of the application of

machine learning in asset pricing, I conduct simulations using a data generating

process (DGP) that models conditional relations between stock characteristics and

stock returns. A characteristic that does not directly predict future returns but

affects the level at which other characteristics predict returns is introduced into

the DGP. I examine the effect of changing the level of volatility within different

sub-samples of the DGP, which mirrors the higher volatility of small stocks compared

with larger stocks in the real world. These simulations help shed light on the

properties of the cross-sectional asset pricing characteristics that influence the degree

to which machine learning models can predict returns across the entire cross-section

of stocks. In the simulation setting, the group–specific approach to training machine

learning models also outperforms the models trained on all data. Thus, the observed

outperformance of group–specific models in the empirical setting is not only a feature

of the U.S. CRSP data but also a feature of the modeling decisions used to design

and estimate the machine learning models.

Finance literature has predominantly focused on the application of machine learning

models for stock return prediction and portfolio allocation decisions (Moritz and

Zimmermann, 2016; Heaton, Polson and Witte, 2017; Feng, He and Polson, 2018;

Feng, Polson and Xu, 2018; Rasekhschaffe and Jones, 2019; Kelly, Pruitt and Su,

2019; Freyberger, Neuhierl and Weber, 2020; Gu, Kelly and Xiu, 2020; Kozak, Nagel

and Santosh, 2020; Chen, Pelger and Zhu, 2023; Harvey and Liu, 2021; Leung, Lohre,

Mischlich, Shea and Stroh, 2021; Azevedo and Hoegner, 2023; Avramov, Cheng and

Metzker, 2022). Little theoretical or empirical work has explored the numerous

machine learning design choices that must be made and how these choices interact

with the asset pricing problem. Instead, the literature suffers from a dispersion and

lack of consistency in modeling choices. In addition to the hyperparameters selected

for model tuning, such as optimizer learning rates and regularization penalties,

modeling decisions also include how to regularize stock characteristics and returns,

which activation functions to use in neural network hidden layers, and even what

universe of stocks to train on. The lack of consistency in modeling choices across

the literature slows the advancement of machine learning in finance, as it obscures

comparative analysis and the interpretation of what drives differences in results. I

contribute to this stream of literature by exploring the impact of various modeling
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decisions on the subsequent stock return predictions and long–short portfolios, and

highlighting the significant dispersion in achievable portfolio results.

I run a series of machine learning experiments on a three-layer neural network;

in each experiment, a single change to a model design choice is made. Machine

learning design decisions are categorized into choices around the input features, the

neural network architectures, and the target variable. The results show that basic

design choices, such as batch normalization, can produce a significant variation

in the performance of machine learning return prediction models. I find that the

design of the target variable has the most significant impact on model performance.

Appropriate regularization of the target variable generally results in superior model

performance when using sorted return predictions to form long–short portfolios.

A lack of regularization of the target variable used—total excess return—drives the

outperformance of group–specific machine learning models. The distributions of

small-, micro-, and nano-stocks’ excess returns exhibit higher volatility, skewness,

and kurtosis, relative to large- and mega-stocks, which can bias the machine learning

training process, effectively overfitting to predict the returns of these smaller stocks

more accurately. Machine learning models aim to minimize prediction error under

some loss function. Owing to the larger magnitude and dispersion of excess returns

in smaller stocks, a machine learning model trained on a broader universe of stocks is

more likely to overfit to smaller stocks. The smallest training loss can be achieved by

more accurately predicting small stocks. However, this produces a predictive model

that does not generalize to larger stocks, resulting in poorer performance, especially

when forming VW portfolios. By separately training on three groups of stocks sorted

by market capitalization, machine learning models overfit less to certain inherent

biases, allowing to discover a stronger predictive model within each group–specific

sample. Alternatively, adjusting the target total return variable through approaches

such as subtracting the median excess return within size groups or rank normalizing

excess returns achieves comparable performance to training within sub-samples but

at a lower computational cost.

Numerous researchers have applied machine learning techniques for stock return

prediction across various markets, including both developed and emerging markets

(Choi et al., 2019; Tobek and Hronec, 2021; Chen et al., 2023; Azevedo et al., 2023;

Cakici et al., 2023; Hanauer and Kalsbach, 2023) and specific countries (Drobetz

and Otto, 2021; Leippold, Wang and Zhou, 2022; Rubesam, 2022; Lalwani and

Meshram, 2022; Liu, Tao, Tse and Wang, 2022). These studies generally find that

the results in the U.S. sample hold across other universes and regions, highlighting

the robustness and power of machine learning models for return prediction. However,
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despite these advances and strong results, relatively little work has explored the

impact of machine learning methodological choices on the stock return prediction

problem. By highlighting the dispersion of stock-level return prediction outcomes

and portfolio outcomes that arise under different model design decisions, the variety

of choices that must be made when implementing a machine learning model for

stock return prediction and the impact each decision can have on the results is

emphasized. My results suggest that asset pricing literature would likely benefit from

a benchmarking approach to the general return prediction problem. This allows for

a fairer and more consistent comparison of results across different research efforts.

Several recent studies explore different design aspects of machine learning models

in finance, including the choice of performance measures used in loss functions

(Dessain, 2022), the use of an online early stopping algorithm (Wong, Chan, Azizi

and Xu, 2022), the effect of changing target excess return variables (Li, Simon

and Turkington, 2022), and changing the prediction horizon (Blitz, Hanauer,

Hoogteijling and Howard, 2023). Blitz, Hoogteijling, Lohre and Messow (2023) take

a practitioner’s perspective and demonstrate how methodological design choices

impact the predictive outcomes of machine learning models. This study expands

the dimension of decisions explored and demonstrates the significant dispersion in

machine learning model performance.

My findings diverge from those of Chen et al. (2023), who find that their generative

adversarial network (GAN) can efficiently capture the structure of large stocks when

trained on a full cross-section of stocks. However, the model of Chen et al. (2023)

is more complex than the neural networks used in seminal papers such as Gu et al.

(2020) and may result in less overfitting. In addition, Chen et al. (2023) only

train on stocks with all available characteristics, leading to a more homogeneous

distribution that may represent the broader market. Training on stocks with all

available characteristics acts as a form of regularization, as smaller stocks tend to

have poorer coverage when computing various characteristics.

This chapter also contributes to the literature on group–specific modeling and

conditional relations between asset pricing characteristics. Piotroski (2000) and

Beneish, Lee and Tarpley (2001) demonstrate the advantages of using contextual

analysis to study stock returns and predict extreme events. Sorensen, Hua

and Qian (2005) argue that traditional asset pricing characteristics, such as the

price-to-earnings ratio, can have varying efficacy for predicting stock returns

depending on the risk context. Blitz and Hanauer (2020) show how small stock

exposure can act as a catalyst for other factors and increase returns associated

with investing in these portfolios. More recently, Cong, Feng, He and He (2022)
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and Cong, Feng, He and Li (2022) have explored how machine learning models

can uncover group–specific factor models that outperform when using tree-based

models to split the cross-section of stocks. Qian and Su (2016) also demonstrate

the power of group–specific modeling when using applying group fused Lasso to

panel data models. I show how using market capitalization to create group–specific

models can uncover interesting empirical results that challenge previously accepted

results. Whereas the asset pricing literature typically searches for a single

parsimonious model capable of explaining the cross-section of returns for all assets,

for practitioners interested in forming investable portfolios with the highest OOS

performance, a model that incorporates contextual analysis can be valuable. The

properties of machine learning algorithms can allow for a richer and more flexible

contextual asset pricing framework than standard econometric tools.

The results of this chapter have implications for academics and practitioners using

machine learning models in finance, beyond stock return prediction. First, it

highlights the biases and overfitting inherent in cross-sectional machine learning

return predictions, confirming results from other research that group–specific models

may deliver superior OOS performance owing to a lack of proper regularization.

Second, it demonstrates the significance of various design choices in machine

learning models and their impact on prediction outcomes, emphasizing the

importance of data selection and prediction target design. Third, it provides

valuable insights into the role of group–specific modeling and contextual analysis

in understanding the cross-sectional relation between asset pricing characteristics

and stock returns. Last, this study offers practical implications for academics and

practitioners by emphasizing the importance of understanding the problem context

and the impact of each step in the model design process, particularly when dealing

with non-homogeneous return distributions. These contributions underscore the

need for careful guidance when applying machine learning models in finance to

avoid pitfalls and biases.

The rest of this chapter is structured as follows. Section 4.2 explains the data

and method for estimating the machine learning models. Section 4.3 presents the

empirical results from training group–specific machine learning models. Section 4.4

forms hypotheses to explain the results from Section 4.3 and presents the results

from simulating different panels of factor data. Section 4.5 explores the impact of

three dimensions of machine learning model design choices on the performance of

long–short portfolios. Section 4.6 then concludes the chapter.
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4.2 Machine learning setup and data

In designing and estimating machine learning models, I follow the general empirical

setup of Gu et al. (2020). I use Chen and Zimmermann’s (2022) Open Source

Asset Pricing (OSAP) database for monthly stock-level characteristics, and I do

not include any macroeconomic covariates in the study. In addition, I focus on

group–specific machine learning models, where I separately train machine learning

models for different size-groups of stocks.

4.2.1 Prediction problem

The general return prediction problem involves identifying a functional form g (·)
of E (ri,t+1) that maps a set of m predictor variables for n stocks from Rn×m 7→ Rn

such that the maximum OOS predictive power relative to ri,t+1 is obtained. I use a

general additive prediction error model to describe this mapping between a stock’s

excess return and the set of predictor variables:

ri,t+1 = E (ri,t+1) + ϵi,t+1, (4.1)

where ri,t+1 is the excess return of stock i in month t + 1. I assume that the

conditional expectation of ri,t+1 is determined by some time-invariant function g (·)
that takes a set of m predictor variables as input at time t:

E (ri,t+1) = g (zi,t) , (4.2)

where zi,t is an m-dimensional vector of predictor variables, stocks are indexed by

i = 1, . . . , Nt and months by t = 1, ..., T. I aim to find a functional representation of

g (·) which maximizes OOS predictive power under some statistical model.

4.2.2 U.S. equities sample

U.S. equities data are from CRSP, and comprise all stocks listed on the NYSE,

NASDAQ, and AMEX exchanges from March 1957 to December 2021. Excess

returns are calculated as the one-month-forward stock returns over Treasury

bill rates. I use the March 2022 version of the OSAP database of Chen and

Zimmermann (2022) to source stock-level characteristics. This database replicates

a large sample of cross-sectional stock return predictors from the literature. From

this database, I use the 206 predictive factors and additionally specify Short-term

Reversal as the prior one-month return, Size as the natural logarithm of market

equity multiplied by price (ME × PRC) from CRSP, and Price as the CRSP
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PRC field. In addition to stock-level characteristics, 74 industry dummies based

on the two-digit truncated Standard Industrial Classification (SIC) codes are

included. The OSAP characteristics and SIC sector dummies are merged to

produce a full panel of stock-month characteristics, denoted as Z. Non-categorical

features are cross-sectionally rank normalized between −1 and +1, and the

monthly cross-sectional median rank is used to fill missing data. For each month

t in the sample, the vector of stock i’s characteristics, zi,t, is obtained from the

corresponding month in the full panel Z.

In addition to the full panel of data, three separate groups are formed by splitting

Z based on the Size variable. These panels are labeled as small, mid, and large,

respectively. In each month t, a stock is allocated to one of the three groups based

on its rank market capitalization at time t: bottom 30% (small), middle 40% (mid),

and top 30% (large).8 To maintain three reasonably balanced panels, I do not use

NYSE breakpoints or any other capitalization split. If the sample were split based

on raw market capitalization rather than rank, there would be substantially smaller

panels for large- and mid-capitalization stocks, and the desired results would be less

comparable.

4.2.3 Model frameworks

Several statistical models are trained to predict cross-sectional excess returns: linear

models, regularized linear models, tree-based models, deep neural networks, and

model ensembles. Specifically, I select an ordinary least squares (OLS) model, a

regularized elastic net (ENET), a random forest (RF), gradient boosted regression

trees (GBRT), and deep neural networks with 1–5 hidden layers (NN1-5). In

addition, two ensemble models are formed. The first ensemble is the average stock-

level prediction across all models (ENS). The second ensemble is the average stock-

level prediction across the five deep neural network models (ENSNN).

The standard machine learning approach (Gu et al., 2020) from the literature is used

to train the models, excluding OLS. The first OOS prediction is made for January

1987. The first 18 years of data (from March 1957 to December 1974) are used as

only training data, and the next 12 years of data (from January 1975 to November

1986) are used as validation data for hyperparameter tuning. Predictions in the

OOS test set are made from January 1987 to December 1987. A one-month gap is

used between the end of the validation set and the start of the test set. Models are

annually fit at the end of December, where hyperparameter tuning is performed, and

OOS predictions for the following 12 months are made using the best-performing

8I find similar results using NYSE cutoff points at 30%/40%/30%.
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model. After training the model and making OOS predictions, one year is added

to the training sample (i.e., an expanding window). The validation sample is rolled

forward by one year, including the most recent year of data and dropping the oldest

year of data (i.e., a rolling window). For the neural network models, owing to

the inherent randomness in the training algorithms, an ensemble approach is used,

where the same model is trained 10 times with a different random seed. The final

prediction used is the average of all 10 predictions. Section 4.3.3 explores the effect

of model averaging on neural network prediction results.

For the OLS model, as there are no hyperparameters to tune, the validation set is

included in the train set. The full set of hyperparameters used for each model can

be found in Appendix 4.6.

4.2.4 Cross-sectional evaluation

I follow existing literature and introduce alternative evaluation measures to evaluate

the OOS excess return predictions. The OOS pooled R2, where the denominator is

not demeaned, denoted as R2
OOS, is calculated as:

R2
OOS = 1−

∑
(i,t)∈OOS (ri,t+1 − r̂i,t+1)

2∑
(i,t)∈OOS r

2
i,t+1

, (4.3)

where OOS refers to the testing sample period in which the data never enter the

machine learning model for training or validation and r̂i,t+1 is the model prediction

at t of the t+1 excess return for stock i. I also calculate R2 where the denominator is

demeaned with the monthly cross-sectional average excess return, denoted as R2
CS:

R2
CS = 1−

∑
(i,t)∈OOS (ri,t+1 − r̂i,t+1)

2∑
(i,t)∈OOS (ri,t+1 − r̄i,t+1)

2 . (4.4)

In agreement with Wong et al. (2022), pooled OOS measures such as R2
OOS and R2

CS

place higher importance on periods with higher numbers of stocks and are sensitive

to outliers. In the context of forming long–short portfolios based on excess return

predictions, the choice of R2 as an evaluation metric does not fully align with the

desired portfolio outcomes. As an alternative measure, I use the IC introduced by

Ambachtsheer (1974) and further developed by Grinold (1989), which is the time-

series average of the cross-sectional Pearson’s correlation between excess returns and

predictions:
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IC = ρ (ri,t+1, r̂i,t+1) , (4.5)

where ρ is Pearson’s correlation. I note that the IC can be interpreted as the square

root of the regression R2, and thus out-of-sample we expect directionally similar

results.

To test for differences in OOS predictive accuracy between two models, the Diebold

and Mariano (1995) test for pairwise differences in prediction errors is applied. This

specification compares the annual cross-sectional average of error in the testing

sample predictions in each model rather than comparing the stock-level prediction

errors. Estimating this model involves defining the test statistic DM12 as:

DM12 =
d̄12

σ̂ (d12)
. (4.6)

d12 is defined as:

d12,t+1 =
1

n3,t+1

n3∑
i=1

((
ri,t+1 − r̂

(1)
i,t+1

)2
−
(
ri,t+1 − r̂

(2)
i,t+1

)2)
, (4.7)

where r̂
(m)
i,t+1 is the excess return prediction from model m ∈ (1, 2) for stock i at

time t + 1 and n3,t+1 is the number of stocks in year t + 1 (i.e., the testing sample

for the model trained until December of year t). d̄12 and σ̂(d12) are the mean and

Newey-West standard error of d12,t over the testing sample, respectively.

4.2.5 Portfolio evaluation

Standard portfolio statistics in the OOS period are calculated to evaluate portfolio

performance. In all cases, I used the top-minus-bottom portfolio, defined as the

difference in returns of decile portfolio ten and decile portfolio one, based on the

sorted predicted returns at time t. First, the annualized Sharpe ratio is defined as:

SR =
12× E [Pt]√
12× V ar [Pt]

, (4.8)

where Pt is the time series of monthly top-minus-bottom portfolio returns. Second,

two drawdown measures are calculated. The first is the maximum portfolio

drawdown, defined as:
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MaxDD = max
0≤t1≤t2≤T

(Yt1 − Yt2) , (4.9)

where Yt is the cumulative log return from portfolio inception to time t. The second

drawdown measure is the worst one-month portfolio drawdown: the largest negative

portfolio return experienced in any one month in the OOS period. Next, the average

monthly one-way portfolio turnover is calculated as:

Turnover =
1

T

T∑
t=1

(∑
j

∣∣∣∣∣wi,t+1 −
wi,t (1 + ri,t+1)

1 +
∑

j wj,trj,t+1

∣∣∣∣∣
)
, (4.10)

where wi,t is the weight of stock i in a given portfolio at time t. For the top-minus-

bottom portfolios, the maximum monthly one-way portfolio turnover is 200%, which

corresponds to a complete replacement of all stocks in both the top and bottom

portfolios.

Finally, one-way break-even transaction costs are calculated under two models: the

FF6 model (Fama and French, 2015) and the HXZ model of Hou, Xue and Zhang

(2015). Break-even transaction costs are defined as the average trading costs at

which the alpha under each of these models becomes zero, where alpha is estimated

using time-series regressions of the top-minus-bottom portfolio excess returns on the

factor returns of the FF6 and HXZ models.

4.3 Group–specific models

The primary approach used in the extant literature for training machine learning

models for cross-sectional stock return prediction uses the entire CRSP universe

or some other pre-defined universe, such as MSCI World. This section presents the

results from training group–specific machine learning models derived from the CRSP

universe. An identical approach for model training and hyperparameter tuning is

followed for the three size–specific groups. Predictions for the OOS period are

made by each model and are then concatenated into a full cross-section of return

predictions, resulting in a consistent set of predictions to the model trained on the

full CRSP universe and allowing for a fair comparison between models.
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Table 4.1: Sample statistics of monthly cross-sectional excess returns
This table presents the summary statistics of monthly cross-sectional excess returns for
the in-sample training period (from March 31, 1957, to December 31, 1986) and for the
OOS test period (from January 31, 1987, to December 31, 2021). The sample is split into
three market capitalization groups: the largest 30% of stocks (Top 30%), the smallest 30%
of stocks (Bottom 30%), and the middle 40% of stocks (Middle 40%). The table provides
the time-series average of each group’s excess returns and other relevant statistics.

Universe Sample NStocks Mean Std. Dev. Min. q0.01 q0.25 Median q0.75 q0.99 Max. Skew Kurtosis

All Test 7335 0.69 16.31 -90.48 -35.70 -5.81 -0.09 5.74 50.29 384.04 4.97 149.98
Train 3522 0.77 11.81 -64.73 -23.96 -5.49 -0.22 5.67 38.06 149.09 1.85 23.99

Bottom 30% Test 2358 0.83 22.04 -88.53 -43.39 -7.66 -0.61 6.16 72.45 371.50 4.80 92.57
Train 1111 1.03 15.30 -61.39 -28.05 -7.16 -0.71 6.74 50.87 143.44 1.83 16.68

Middle 40% Test 2628 0.56 14.10 -75.25 -32.99 -5.82 -0.13 5.82 43.67 159.45 1.73 33.52
Train 1308 0.69 10.83 -46.10 -22.43 -5.54 -0.20 5.79 33.32 85.44 1.12 9.21

Top 30% Test 2349 0.70 10.15 -56.91 -24.83 -4.48 0.42 5.50 29.67 85.48 0.66 11.20
Train 1103 0.59 7.74 -31.86 -16.99 -4.04 0.21 4.77 22.04 49.58 0.62 5.21

Table 4.1 shows the time-series averages of the target excess returns each month,

split into test (from January 1987 to December 2021) and train (from March 1957

to December 1986) sets and the three size groups. We observe many standard

empirical results around smaller stocks, such as higher volatility, average excess

returns, kurtosis, and skewness. These stylized facts of smaller stocks influence the

statistical properties of the full sample. The skewness and kurtosis of the universe

containing all stocks (denoted as All in Table 4.1) are higher than those of the

three other size–specific universes. This demonstrates the effect of small stocks on

the overall distribution of excess returns used to train the prediction models. The

distributional characteristics of the excess returns can produce unintended biases

when fitting machine learning models. For example, if the average return of some

group of stocks (in the training data) is 2% higher than that of all other groups,

under a mean squared error (MSE) loss function, a machine learning model will be

rewarded more by minimizing the prediction error for these stocks, resulting in an

inherent bias toward more accurately predicting the returns of stocks with a wider

range of historical returns. The training of group–specific models aim to predict a

more homogeneous distribution of excess returns, potentially reducing biases and

overfitting toward the size–specific groups. This training approach of group–specific

models act as a form of implicit target variable regularization.
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Figure 4.1: Excess return distributions across different size groups
This figure presents the box plots of monthly excess return distributions across different
stock universes. The All universe contains all stocks, whereas the Bottom 30% contains
the smallest 30% of stocks by market capitalization, the Middle 40% contains the middle
40% of stocks by market capitalization, and the Top 30% contains the largest 30% of
stocks by market capitalization. Each box plot represents the distribution of monthly
excess returns within each stock universe. The boxes represent the interquartile range
(IQR), with the lower and upper boundaries of the box representing the 25th and 75th
percentile of the distribution, respectively. The horizontal line within each box represents
the median excess return. The whiskers extend to the minimum and maximum values
within 1.5 times of the IQR. The solid black dot represents the mean excess return in each
stock universe.

Figure 4.1 presents a box plot of the excess return distribution across the size–specific

groups and the train–test data splits. The dispersion of the return distributions,

on average, decreases between the train and test sets. This change in dispersion

highlights a challenge when predicting excess returns using machine learning models.

The distributional properties of excess returns are non-stationary, and the use of

an expanding window approach incorporates all information into the prediction

objective. This non-stationarity can produce unexpected biases in machine learning

model predictions. For example, when predicting stock returns in December 2020,

the machine learning model is trained on all data between March 1957 and December

2010, where each observation is equally contributing to minimizing the loss function.

Thus, if the target return variable is not normalized (a common practice in the extant
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literature), the machine learning model may overfit toward predicting returns earlier

in the sample owing to the greater dispersion in excess returns. This produces a

strong in-sample fit but can result in poor OOS performance. One alternative to

this approach is to apply a weighting scheme to the training data, where more recent

observations are weighted more. Another approach is removing the cross-sectional

average monthly return (as a proxy for the market return) from each stock’s monthly

return.

4.3.1 Cross-sectional predictability

Table 4.2 shows the stock-level prediction comparison for the nine statistical

models and two ensembles when trained on the full cross-section of returns (Full)

versus the group–specific models (Size). The predictions from the Full and Size

models are compared with the average of each stock-level prediction in these

two models, denoted as the Ensemble model. Panel A presents the results from

applying pairwise Diebold-Mariano (DM) tests across these models.9 For the neural

network models, the group–specific models generally have positive and statistically

significant improvements in stock-level excess return predictions over the full

models. This effect increases when ensembling the Size and Full model predictions.

This improvement holds not only when calculating evaluation metrics in the whole

CRSP universe but also when calculating the metrics within each size–specific

universe. For example, suppose the predictive efficacy is evaluated in the large

stocks only universe (Top 30%). In that case, the model specifically trained on

large stocks outperforms the model trained on all stocks. The outperformance of

group–specific models is a striking result, counter-intuitive to the expected behavior

of machine learning models. Typically, the more data available and more examples

for the model to learn from, the higher the predictive efficacy of the model. These

results show that training machine learning models on size–specific groups produce

return predictions superior to those of models trained on the full cross-section of

stocks.

9Bonferroni corrections are not used, as I only compare pairwise models within each category
of trained model: for example, the predictive efficacy of the NN5 model is not compared with that
of the OLS model.
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Table 4.2: Comparison of out-of-sample return predictions using Diebold-
Mariano tests and information coefficient differences
This table compares OOS stock-level return predictions under different model training
approaches using pairwise DM test statistics (Panel A) and IC differences (Panel B).
I use three training regimes: training on the full cross-section (Full), training three
group–specific models (Size), and averaging predictions from the Full and Size models
(Ensemble). The sample is divided into two universes: All (combined sample) and Top
30%/Middle 40%/Bottom 30% (market capitalization splits). Positive values in Panel A
indicate that the training approach in Model 2 performs better than in Model 1. Bold
text indicates a statistically significant difference at the 5% level or lower.

Panel A: Diebold-Mariano test statistics

Universe Model 1 Model 2 OLS ENET RF GBRT NN1 NN2 NN3 NN4 NN5 ENS ENSNN

All Full Size -1.34 3.70 -1.58 -0.15 2.78 2.90 2.66 3.01 1.69 0.49 2.78
Full Ensemble -1.05 4.80 -0.34 2.52 4.67 5.03 4.42 4.85 3.43 2.71 4.40
Size Ensemble 1.44 -2.38 2.57 1.65 -0.12 -0.10 -0.40 -0.77 0.16 1.08 -0.81

Top 30% Full Size -1.23 3.03 -1.84 2.30 2.64 2.30 2.08 1.95 1.35 0.28 1.93
Full Ensemble -0.90 3.70 -0.95 4.88 4.35 4.24 3.41 2.53 1.49 2.33 3.07
Size Ensemble 1.34 -2.15 2.30 0.71 -0.51 -0.38 -0.53 -0.82 -0.92 0.90 -0.64

Middle 40% Full Size -1.18 2.92 -1.86 0.51 3.07 3.19 2.90 3.12 2.62 0.71 2.96
Full Ensemble -0.67 3.66 -0.85 3.35 4.52 4.97 4.21 4.15 3.19 2.16 4.23
Size Ensemble 1.34 -2.07 2.67 2.10 -0.96 -1.08 -1.07 -1.37 -1.52 0.79 -1.34

Bottom 30% Full Size -1.47 3.02 -0.47 -0.62 1.88 2.23 1.89 2.40 0.68 0.28 2.17
Full Ensemble -1.30 4.24 0.37 0.94 3.85 3.64 3.70 4.29 2.05 2.41 3.87
Size Ensemble 1.53 -1.62 1.24 1.28 0.60 -0.56 0.13 -0.32 1.16 1.11 -0.30

Panel B: Information coefficient differences

Universe Model 1 Model 2 OLS ENET RF GBRT NN1 NN2 NN3 NN4 NN5 ENS ENSNN

All Full Size 1.37 2.11 -0.07 0.12 1.85 1.94 1.96 2.07 1.60 1.58 1.96
Full Ensemble 0.94 1.50 0.56 0.66 1.57 1.64 1.58 1.63 1.39 1.36 1.52
Size Ensemble -0.43 -0.61 0.63 0.54 -0.28 -0.30 -0.37 -0.44 -0.21 -0.22 -0.44

Top 30% Full Size 1.81 3.12 -0.06 0.37 1.57 1.28 1.47 1.69 1.16 2.04 1.62
Full Ensemble 1.03 1.76 0.32 0.18 1.18 0.95 1.09 0.89 0.95 1.33 1.11
Size Ensemble -0.79 -1.36 0.38 -0.19 -0.39 -0.33 -0.38 -0.80 -0.21 -0.70 -0.50

Middle 40% Full Size 1.73 1.79 -0.56 1.20 1.91 1.77 2.04 2.10 2.34 2.06 2.03
Full Ensemble 1.15 1.49 0.24 0.92 1.43 1.18 1.45 1.32 1.56 1.54 1.40
Size Ensemble -0.58 -0.29 0.79 -0.28 -0.46 -0.56 -0.56 -0.75 -0.74 -0.51 -0.59

Bottom 30% Full Size 1.22 1.19 1.13 -0.44 1.63 2.00 1.90 2.10 1.37 1.20 1.91
Full Ensemble 0.89 1.03 1.65 0.58 1.51 1.50 1.63 1.70 1.17 1.19 1.54
Size Ensemble -0.33 -0.16 0.53 1.02 -0.11 -0.49 -0.27 -0.40 -0.20 0.00 -0.37

Panel B in Table 4.2 presents a similar comparison as Panel A but uses the IC

instead. The null hypothesis that the difference in time-series ICs between Model

1 and Model 2 is zero is tested using yearly time series of ICs for each model. The

same conclusion reached for the DM test statistics is reached using the IC. For

neural network architectures, training on size–specific groups produce higher ICs.

Table 4.2 also shows statistically significant improvements for the OLS model when

trained in size–specific groups. For the tree-based models, the results are mixed. The

regularized behavior already embedded into the architecture of tree-based models

that helps to prevent overfitting could explain this result. However, this tree-based

regularization appears to come at the cost of lower performance compared with the

neural network models.
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4.3.2 Portfolio performance

Long–short portfolios are formed by sorting stocks each month based on the excess

return predictions and used to evaluate the portfolio performance of the prediction

models. Decile portfolios are used, denoting portfolio ten as the long portfolio and

one as the short portfolio. Long–short portfolios are formed using predictions at the

end of month t, where $1 is invested into the long portfolio and $1 is invested into

the short portfolio. These portfolios are held for one month and earn the VW or

EW return.

Table 4.3 presents the average VW portfolio statistics. I report the annualized

portfolio return, annualized portfolio volatility, Sharpe ratio, maximum portfolio

drawdown, maximum one-month portfolio loss, one-way portfolio turnover, FF6

alpha and associated t-statistic, and FF6 and HXZ break-even transaction costs.

Each of these measures is reported for the nine predictive models and two ensembles,

as well as for the models trained on the full cross-section (Full), group–specific

models (Size), and an ensemble of the Full and Size models (Ensemble).
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Table 4.3: Out-of-sample performance of group–specific machine learning
portfolios
This table presents VW top-minus-bottom portfolio statistics for machine learning models
trained using three approaches: Full, Size, and Ensemble. The Full model follows the
standard approach using all available stocks, whereas the Size model trains three separate
models for large, mid, and small stocks and then concatenates the predictions to form
portfolios. The Ensemble model is the average of the return predictions from the Full
model and Size model. The table presents the performance statistics of these portfolios,
including the annualized mean, standard deviation, Sharpe ratios, maximum drawdown,
maximum one-month loss, average monthly one-way turnover, annualized FF6 alpha and
t-statistic, and break-even transaction costs under the FF6 and HXZ risk models. The
OOS period is from January 1987 to December 2021.

Metric Train Approach OLS ENET RF GBRT NN1 NN2 NN3 NN4 NN5 ENS ENSNN

Full 12.4 6.5 10.9 3.8 16.0 16.1 16.4 19.7 20.4 19.0 20.0
Portfolio return (ann. %) Size 15.7 28.2 9.6 19.4 27.5 30.7 27.1 29.6 23.5 30.1 31.8

Ensemble 17.2 20.6 15.3 19.4 23.4 27.2 27.6 29.1 27.8 26.3 28.8

Full 15.9 12.2 13.8 19.6 14.7 15.4 15.5 17.2 17.4 16.0 15.9
Volatility (ann. %) Size 23.0 16.0 15.2 17.7 19.9 19.7 20.6 19.5 19.5 19.5 20.8

Ensemble 20.8 16.1 16.0 17.7 17.2 19.4 19.4 18.8 17.7 18.3 19.0

Full 0.78 0.53 0.79 0.19 1.08 1.04 1.06 1.14 1.17 1.19 1.25
Sharpe ratio Size 0.68 1.77 0.63 1.1 1.38 1.55 1.32 1.52 1.21 1.54 1.52

Ensemble 0.83 1.28 0.95 1.09 1.36 1.41 1.42 1.55 1.57 1.44 1.52

Full 56.1 34.4 42.9 157.0 30.7 39.2 28.3 36.2 33.7 35.0 25.4
Max. drawdown (%) Size 82.0 28.7 67.7 30.5 56.4 41.3 33.8 42.0 56.4 28.4 47.2

Ensemble 95.6 35.8 70.1 29.1 28.1 36.5 29.5 41.0 32.5 42.3 34.2

Full 20.9 12.5 10.9 28.5 14.9 20.3 18.2 19.8 20.4 18.6 18.6
Max. 1M loss (%) Size 33.2 15.6 15.2 13.3 17.2 18.8 20.1 24.4 23.1 17.8 19.4

Ensemble 32.3 13.9 14.6 12.8 17.4 19.6 18.2 19.0 16.1 16.5 19.0

Full 124.8 118.4 117.3 156.8 144.2 146.7 147.8 149.6 150.2 150.9 149.9
Monthly one-way turnover (ann. %) Size 120.9 153.8 122.2 155.6 143.9 143.3 142.1 141.8 138.5 148.4 142.6

Ensemble 124.7 166.8 123.4 160.7 149.7 150.0 149.3 149.3 148.5 151.9 150.7

Full 10.9 5.2 10.9 4.1 15.3 13.4 15.4 18.7 18.0 17.2 18.8
FF6 α (ann. %) Size 13.6 27.8 7.3 18.0 25.9 29.1 24.1 27.0 21.5 28.2 29.8

Ensemble 14.2 19.4 13.4 19.7 22.1 25.0 24.5 26.7 24.3 23.9 26.1

Full 3.55 2.35 4.28 1.21 4.79 5.04 5.69 5.45 5.68 6.02 5.71
FF6 t-stat Size 2.83 7.71 2.51 4.92 5.89 6.54 6.22 7.28 5.17 6.97 6.68

Ensemble 2.99 6.38 4.57 5.41 6.85 6.73 6.67 6.72 7.05 6.59 6.77

Full 36.3 18.2 38.7 10.9 44.1 38.1 43.6 52.1 50.0 47.4 52.3
FF6 break-even cost (bps) Size 46.8 75.3 24.9 48.2 75.0 84.6 70.8 79.5 64.6 79.2 87.0

Ensemble 47.6 48.6 45.1 51.0 61.5 69.4 68.4 74.5 68.2 65.6 72.1

Full 32.4 17.9 39.0 7.9 38.1 34.6 42.0 48.2 48.5 45.1 47.5
HXZ break-even cost (bps) Size 44.5 73.7 23.2 43.0 70.1 78.6 67.1 78.2 59.2 75.8 82.6

Ensemble 48.8 47.1 45.1 46.3 56.6 64.3 66.7 72.3 66.9 61.2 70.3

Table 4.3 demonstrates consistently stronger portfolio characteristics when training

on group–specific models. For the ensemble of all models, the average annualized

portfolio return increases from 20.0% for the Full model to 31.8% for the Size model.

An increase in portfolio volatility accompanies this, but this increase in risk is

compensated for, as seen by the increase in Sharpe ratio from 1.25 to 1.52. Although

the increase in portfolio volatility could be attributable to a greater presence of

small stocks in the top and bottom portfolios, as the portfolios are VW, the overall

impact of small stocks is reduced. Portfolio turnover does not significantly change

but based on the increase in the FF6 break-even cost (increase from 32.3 to 54.1
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bps) and HXZ break-even cost (increase from 27.9 to 40.0 bps), the increase in

outperformance is not simply attributable to an increase in portfolio trading.10 The

analysis here is repeated within the three size universes. These results are reported in

Appendix 4.6, and in general, the average long–short portfolio returns increase when

using predictions from the model trained on the size–specific group (compared with

predictions from the model trained on the full universe of stocks); this translates to

higher Sharpe ratios and higher break-even transaction costs for the group–specific

models.

Table 4.4: Sharpe ratio differences between machine learning training
approaches
This table presents the OOS Sharpe ratio differences between the machine learning training
approach specified in the Model column and the Full training approach using the Ledoit
and Wolf (2008) Sharpe ratio test. Bold text indicates statistical significance at the 5%
level.

Universe Model OLS ENET RF GBRT NN1 NN2 NN3 NN4 NN5 ENS ENSNN

All Size -0.102 1.250 -0.116 0.886 0.315 0.536 0.301 0.424 0.019 0.385 0.281
Ensemble 0.054 0.769 0.174 0.914 0.304 0.371 0.401 0.404 0.401 0.245 0.271

Top 30% Size -0.026 0.806 0.022 0.536 0.259 0.509 0.420 0.476 0.234 0.398 0.381
Ensemble 0.052 0.646 0.207 0.667 0.196 0.349 0.325 0.259 0.322 0.292 0.260

Middle 40% Size -0.149 0.400 -0.453 0.302 0.088 0.004 0.119 0.095 -0.043 -0.141 0.116
Ensemble -0.029 0.692 -0.185 0.743 0.215 0.121 0.164 0.107 0.130 0.066 0.141

Bottom 30% Size -0.015 0.211 -0.920 0.178 0.032 -0.051 -0.151 -0.014 -0.162 0.100 -0.232
Ensemble 0.005 0.856 -0.329 0.247 0.090 0.105 -0.071 0.278 0.015 0.238 -0.095

Although the increases in portfolio returns and Sharpe ratios are large, the statistical

significance of the differences between these portfolio results cannot be gauged here.

In Table 4.4, results for the Ledoit and Wolf (2008) test for differences in Sharpe

ratios are reported. The Base model is set as the model trained on the full universe

of stocks and then compared with the Size and Ensemble models. On average, the

Sharpe ratio differences are positive and statistically significant when comparing

neural networks trained on the full universe of stocks and neural networks trained

in size–specific groups.

10In Table 4.13 in Appendix 4.6, the results also hold for EW portfolios.

109



Table 4.5: Factor loadings of machine learning portfolios
This table presents the results of regressing VW top-minus-bottom portfolio returns on
the FF6 return series. Panel A presents the results for models trained on all stocks. Panel
B presents the results for models trained in size–specific groups. The table reports the
t-statistics for the regression intercept, and bold text indicates statistical significance at
the 5% level.

Panel A: Full-trained model

Factor OLS ENET RF GBRT NN1 NN2 NN3 NN4 NN5 ENS ENSNN

Const.
0.009 0.004 0.007 0.004 0.010 0.011 0.01 0.014 0.016 0.013 0.013
(4.50) (2.06) (3.65) (1.39) (4.73) (4.89) (5.02) (5.70) (6.63) (5.53) (5.83)

Mkt-RF -0.215 0.034 0.036 0.193 -0.042 -0.074 -0.037 -0.097 -0.107 -0.047 -0.031
HML 0.175 0.215 0.350 -0.109 0.250 0.182 0.204 0.133 0.166 0.216 0.214
SMB -0.311 0.108 0.460 0.286 0.132 0.015 0.104 0.030 0.090 0.024 0.059
UMD 0.275 0.177 0.071 -0.224 0.305 0.250 0.350 0.495 0.414 0.207 0.348
RMW 0.585 0.252 0.171 -0.158 0.414 0.552 0.557 0.179 0.055 0.641 0.577
CMA -0.260 -0.246 0.142 -0.525 -0.068 -0.112 0.016 0.095 0.027 -0.346 0.023
R2 43.2% 7.4% 16.1% 21.0% 18.4% 20.5% 25.2% 24.% 15.6% 18.6% 25.6%

Panel B: Size-trained model

Factor OLS ENET RF GBRT NN1 NN2 NN3 NN4 NN5 ENS ENSNN

Const.
0.007 0.020 0.008 0.016 0.019 0.022 0.017 0.021 0.014 0.020 0.021
(3.27) (9.42) (3.57) (4.64) (7.82) (8.12) (8.10) (8.55) (6.52) (7.50) (9.21)

Mkt-RF -0.063 -0.093 -0.125 0.030 -0.130 -0.112 -0.069 -0.143 -0.055 -0.065 -0.107
HML 0.235 0.354 0.071 0.046 0.425 0.435 0.440 0.416 0.364 0.206 0.512
SMB -0.602 0.268 0.588 0.028 -0.212 -0.105 -0.168 -0.062 -0.030 0.077 -0.094
UMD 0.393 0.432 -0.308 -0.080 0.265 0.349 0.254 0.181 0.260 0.298 0.290
RMW 1.375 0.367 0.352 -0.025 0.651 0.627 0.930 0.785 0.937 0.920 0.917
CMA -0.132 0.238 0.343 0.287 0.397 0.302 0.472 0.406 0.427 0.473 0.438
R2 65.7% 33.0% 24.4% 0.8% 39.7% 35.6% 47.9% 40.1% 41.9% 35.2% 47.5%

By training on small stocks separately, larger predictions for these stocks can be

made, and when these predictions are combined with the larger stock predictions, the

portfolios may implicitly overweight small stocks. Table 4.5 shows the regression

coefficients and intercept (alpha) obtained when regressing top-minus-bottom

portfolio returns on the FF6 returns. The group–specific models do not have higher

exposures to the Small-Minus-Big (SMB) factor than the full-trained models,

suggesting that the size-trained models are not earning their increased return from

taking greater exposure to a size premium. The group–specific model alphas for

ENS and ENSNN have higher statistical significance and are larger in magnitude

than the full model alpha. Despite the FF6 asset pricing model generally explaining

more of the size-trained model returns (through the higher R2), the alphas are

larger in the size-trained models. The size-trained models obtain greater exposure

to the FF6 asset pricing models whilst incorporating additional covariates that are

not contained in the FF6 model.

The results found here present an anomaly. Common practice in machine learning

literature suggests that the more data available to train a machine learning model,

the higher the expected in-sample and OOS performance. I find the opposite.
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Machine learning models trained to predict excess returns within size-groups

outperform those trained to predict excess returns in the full cross-section. The

rest of this chapter explores this anomaly in the context of machine learning models

applied to the asset pricing setting.

4.3.3 Effect of model averaging

When training machine learning models (particularly neural networks), one

problem is the instability of outcomes and inability to replicate results when

training models. Instability emerges from the inherent randomness involved with

training machine learning models and particularly the randomness associated with

the chosen optimizer and its approach to minimizing the loss function. In previous

literature (Gu et al., 2020; Wong et al., 2022), the authors train the same neural

network model multiple times with a different random seed and then use the

average prediction across each model. The number of models is arbitrary but is

an important choice given the high time and computational costs associated with

training machine learning models. The outperformance of group–specific machine

learning models could be driven by the inherent randomness of the neural network

training process. Thus, to test the robustness of this result, I run a quasi-Monte

Carlo experiment.

Using the three-layer neural network architecture (NN3), the model is trained

ten times for each of the four data samples (full, small, middle, and large).

The uncertainty in performance associated with averaging across the different

predictions is measured using a quasi-Monte Carlo experiment. In particular, the

below procedure is followed:

1. Generate a random sequence of the 10 models by sampling without

replacement,

2. Step through the sequence generated in (1) and take the average of all

predictions at each step,

3. For each ensemble of predictions at each step, calculate the portfolio statistics,

4. Repeat steps (1)–(3) 100 times.

For example, suppose the random sequence generated in step (1) is (4, 5, 3, 10,

9, 2, 1, 8, 6, 7). I start with the fourth trained model and calculate the average

top-minus-bottom portfolio return and average IC; this is then the first model. I

then take both the fourth and fifth trained models, take the average prediction

across both models, and estimate the two statistics; this is the second model. This
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process is repeated until the final iteration that averages the predictions across all

10 models. This process simulates the effect of ensembling across all models, and

the effect that starting with a specific model has on the overall outcomes. Figure

4.2 presents the results of this process for the NN3 model.

Figure 4.2 presents several different results. In Panel B as the number of models in

the ensemble increases the average IC increases and the standard deviation of ICs

decreases. These improvements demonstrate a common model ensembling result

(Hansen and Salamon, 1990; Dietterich, 2000) and the effect of ensembling on

predictive accuracy. This effect holds across all samples. The group–specific models

always outperform the full sample models across the different number of models

in the ensemble. Importantly, for the sample containing All stocks, even when

accounting for the standard deviation in the ICs between the separate models, there

is no overlap between the group–specific and full-trained models. The superior

performance of the group–specific models is not a statistical fluke from how the

machine learning models were trained but is a persistent feature of the models.

Panel A shows that the ensembling result holds for the top-minus-bottom VW

portfolio returns. For small stocks, the impact of ensembling is greater than for

all the other categories. The average top-minus-bottom return increases from 40%

to 50% for the small stock predictions derived from the full-trained model and from

48% to over 60% for the small stock predictions derived from the model trained only

on small stocks. This difference is likely a function of the higher level of volatility

in smaller stocks. Thus, the increased predictive accuracy from ensembling across

multiple predictions translates to higher OOS returns.
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Figure 4.2: Effect of model averaging on neural networks
This figure presents the average annualized top-minus-bottom portfolio return (Panel A)
and average IC (Panel B) for the NN3 model when ensembling identically trained models
with different random seeds. The x-axis represents the number of models included in the
ensemble. The solid lines present the results when training the NN3 model once using
all stocks. The dashed lines present the results when training the NN3 model in three
separate group–specific models. Ten models are trained using an identical approach but
with different randomized seeds for each size group. A quasi-Monte Carlo approach is
used to measure the effect of ensembling on the uncertainty of performance statistics.
This approach is detailed in Section 4.3.3. This figure presents the average and standard
errors of top-minus-bottom returns and ICs of the portfolios formed from these ensemble
predictions.
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4.3.4 Feature importance

We have seen the improvement in stock-level return predictions and the subsequent

superior portfolio performances achieved when training group–specific machine

learning models. Now I explore what stock covariates may be driving this

improvement. To calculate feature importance, a standard partial dependence

approach is used based on the change in predictive R2 that occurs when setting all

values of a predictor to zero, while all other predictor values remain unchanged.

Feature importance is measured based on the change in R2 when the predictor

values are set to zero within the training sample. For each model, I calculate the

change in R2, normalize the value between zero and one, and take the average

feature importance value across time.

Figure 4.3 presents the difference in feature importance between the group–specific

models and the model trained on all data. In particular, I calculate the average

time-series difference in feature importance for each variable, and in Figure 4.3, I

report for each of the small (TSML), middle (TMID), and large (TLGE) models

the 15 largest increases and decreases in feature importance. There is a marked

change in the feature importance within group–specific models. One example is the

SmileSlope variable, an options-derived variable. This variable has higher coverage

for large stocks. Thus, when stocks that do not have coverage are removed from

the training sample, the predictive efficacy of this feature, relative to other features,

increases, and it increases in overall importance to the model.
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Figure 4.3: Feature importance when training in size categories
This figure presents the change in feature importance for group–specific neural network
models compared with the feature importance of the model trained on all stocks. Higher
importance indicates the features with the largest increase in average feature importance
when compared with the full model. Lower importance indicates the features with the
largest decrease in average feature importance. The results presented are the average
across the five neural network models and through the OOS period from January 1987 to
December 2021.
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4.3.5 Covariate interactions
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Figure 4.4: Size-conditional interaction between characteristics and model
predictions
This figure illustrates the sensitivity of the NN3 model’s excess return predictions to
interactions between Size and four other covariates: SmileSlope, VolumeTrend, LRreversal,
and Illiquidity. For each covariate, the value of Size is fixed, and the covariate value is
iterated between −1 and +1 while holding all other covariates at their median value of
zero. This figure then plots the average effect on return predictions over time on the
y-axis. The x-axis represents the value of the covariate, whereas the y-axis represents the
predicted excess return.

Having established that group–specific machine learning models use cross-sectional

characteristics differently, I now look at the effect of covariate interactions within

these models. I focus on the interactions with Size, given the choice to use this

characteristic to train group–specific models. Figure 4.4 shows, for the model trained

on the full dataset, the marginal effect of four features for five given levels of Size:

SmileSlope, VolumeTrend, LRreversal, and Illiquidity. There is a degree of change

for different values of the Size feature and the behavior of the primary feature.

However, these interactions generally have similar impacts on the model’s predictive

output.

Figure 4.5 paints a different picture. It presents the marginal effect of the same four

features taken from the independently trained models. We now see a significant
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divergence between the impact of different features on model predictions across Size.

In each of these selected examples, the impact of a feature on model predictions is the

opposite between the large and small trained models. For SmileSlope, the coverage

of this variable for stocks in the small sample is typically low; thus, the overall effect

on the model should be quite limited, which is what we see. Contrasting this to

Figure 4.4, the model has likely learned from the large stocks with coverage such that

this variable is predictive of returns, and this variable is assumed equally predictive

for small stocks. Similarly, for Illiquidity, the model trained only on large stocks

has a flat effect on the predictive model for large stocks, whereas the effect is much

more pronounced for small stocks.
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Figure 4.5: Marginal effect of covariates on excess return predictions across
different training samples
This figure presents the sensitivity of the NN3 model’s excess return predictions for four
covariates under different training approaches. For each model, all other covariates are
fixed at their median value of zero, and the model predictions are calculated for all values
between −1 and +1 for the chosen covariates. The x-axis represents the value of the
covariate, and the y-axis represents the predicted excess return. Different colors represent
different training samples used to fit the NN3 model.

The data the model has been trained on can significantly influence the relation

between an input feature and the model prediction. A machine learning model

simply minimizes a given loss function. If certain characteristics in the training data
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result in lower overall model losses, then this is what the machine learning model

will learn to use to predict returns. However, the subsequent use and application

of these predictions may not be fully aligned with the process used to obtain these

predictions. In the case of forming long–short portfolios, this can then result in

sub-optimal OOS performance.

4.4 Simulation study

The outperformance of group–specific machine learning models poses a challenge

to the commonly held belief that more training data lead to superior performance

of machine learning models. To assess whether this anomaly is primarily a feature

of the U.S. CRSP data setting or a generalized result for machine learning models,

I conduct a simulation study using group–specific dependencies between simulated

input features (stock characteristics) and outputs (stock returns) and vary the

levels of volatility and predictive efficacy within these groups. I follow the basic

DGP setup from Gu et al. (2020) with augmentations that simulate a conditional

dependence between covariates. Appendix 4.6 contains the full details of the

simulation approach.

4.4.1 Hypothesis formation

Table 4.1 shows the more pronounced volatility and kurtosis of excess returns of the

bottom 30% of stocks in the CRSP sample. The first hypothesis for why group–

specific machine learning models outperform is that a machine learning model may

overfit to specific groups of stocks (such as small- and micro-capitalization stocks)

owing to the inherent extreme characteristics of the return distribution of these

stocks. For example, a higher variance of excess returns combined with large absolute

magnitudes of returns potentially provides more opportunity to improve the overall

loss function used to train a machine learning model. This hypothesis posits that

the machine learning model does not generalize as strongly to other groups of stocks

(such as large- and mid-capitalization stocks), and this is then mitigated by training

group–specific models. The predictive efficacy and volatility can be varied between

groups within the training dataset to assess this hypothesis. If the model overfits to

a specific group in the training dataset, we expect to see a variance in the predictive

efficacy across the groups.

� Hypothesis 1: model overfits to a specific group of stocks.

The second hypothesis states that different groups of stocks have different return

drivers that are difficult for machine learning algorithms to capture, even when
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features that identify these groups (such as market capitalization) are in the input

feature set. I assume a prior belief that the asset pricing characteristics that

drive cross-sectional returns vary across size groups and can be introduced into

the machine learning model design by training group–specific models. Under this

hypothesis, group–specific models are more efficient at capturing this variation in

cross-sectional return drivers, compared to models trained on the full dataset, and

achieve superior OOS performance when using these predictions to form long–short

portfolios. The levels of factor predictability in the group–specific DGPs are varied

to study this hypothesis in the simulation.

� Hypothesis 2: stock groups have different drivers of returns that machine

learning algorithms struggle to efficiently capture.

4.4.2 Simulation design

To simulate the effect of conditional relations on machine learning models, I follow

the method proposed by Gu et al. (2020) and create a latent factor model of excess

returns for a given time period, denoted as t = 1, 2, . . . , T . I introduce a conditional

characteristic, denoted as c10i,t, which is not directly present in the latent factor model

but affects its generation through a conditional dependence on a factor that is in

the model. The excess returns for each stock i at time t+ 1 are modeled as:

ri,t+1 =

g∗lge
(
cilge,t

)
+ eilge,t+1 c10i,t ≥ 0.2

g∗sml (cisml,t) + eisml,t+1 c10i,t < 0.2
(4.11)

ei,t+1 =

βilge,tft+1 + ϵilge,t+1 c10i,t ≥ 0.2

βisml,tft+1 +
ϵSisml,t+1

ϵisml,t+1
c10i,t < 0.2

(4.12)

βi,t =
(
c1i,t, c

2
i,t, c

3
i,t, c

4
i,t, c

5
i,t, c

6
i,t

)
, (4.13)

where ct is an N × Kc matrix of characteristics, ft+1 is an f × 1 vector of factor

innovations, and ϵt+1 is an N × 1 vector of idiosyncratic errors. I choose ft+1 ∼
N (0, 0.052 × I3) and ϵi,t+1 ∼ t5 (0, 0.05

2). As previously described, I introduce a

conditional relation between a characteristic, denoted as c10i,t, and the values of ϵt+1.

In particular, for the bottom 20% of stocks as measured by the characteristic, I scale

ϵt+1 by ϵSt+1. I construct a panel of cross-sectional characteristics at each time step

using the following model:
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cji,t =
2

N + 1
Rank

(
c̄ji,t
)
− 1 (4.14)

c̄ji,t = ρj c̄
j
i,t−1 + ϵi,t, (4.15)

where ρ ∈ U [0.9, 1.0], ϵji,t ∈ N
(
0, 1− ρ2j

)
, and Rank (·) cross-sectionally rank

normalizes the simulated characteristics to be between [−1, 1]. This ranking is

identical to the one performed on the actual stock characteristics dataset from

OSAP. I explore several variations of g∗ (·) functions with the intent to simulate

various conditional relations. Further, I describe a OHE scenario. In this scenario,

for the chosen characteristic that introduces the size-dependence, I first transform

this into two Boolean columns. Next, I introduce two additional datasets that

are effectively for the multiplication of the original dataset by the two Boolean

columns. Across all scenarios, N = 100, T = 120, and Kc = 100 are fixed. The

tenth characteristic is used to represent a non-informational characteristic in which

some other model dependence is introduced. One hundred Monte Carlo samples are

used. In each sample, the 100× 120 row dataset is divided into three equal 100× 40

datasets representing the training, validation, and test sets. Table 4.10 in Appendix

4.1 details the exact parameter configurations used in each test.

4.4.3 Simulation results

Table 4.6 presents the simulation results when an imposed conditional dependence

between a selected characteristic and the prediction target is introduced into the

factor DGP. The selected characteristic is used to control the degree of return

predictability in two different groups. Scenarios are run with different predictability

levels in the bottom 20% of stocks, varying volatility levels, no predictability, and

non-linear characteristic interactions. In each scenario, three machine learning

models are trained: one on the full panel, one on the top 80% based on the sorted

selected characteristic, and one on the bottom 20%, simulating the effect of training

on group–specific models sorted by market capitalization in the earlier empirical

results.

Training independent group–specific models lead to superior results when a

characteristic has higher predictability or only predicts returns for one group in

the panel. For instance, when a characteristic only has statistical power for the

bottom 20%, we see a significant improvement in in-sample and OOS performance

when training the models separately (the IC increases from 1.44% to 3.03% for

the OOS combined panel). Similarly, when the predictive ability of characteristics
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for the top 80% of stocks is set to zero, the model trained only on the bottom

20% achieves a higher OOS IC than the model trained on the full cross-section.

The model trained on the full cross-section achieves an OOS IC of 4.00%, whereas

the model trained only on the bottom 20% reaches an IC of 8.73%. These results

are perhaps not surprising. If 80% of the training data has no predictability,

then these data effectively act as noise in the training process and will result in

a poorer in-sample model. These results show that if there exist group–specific

characteristics within the panel of training data, this can lead to inherent model

biases when not accounting for these group–specific features.

To summarize, Table 4.6 shows how machine learning models can be overfit to

specific groups of stocks when trained on a full cross-section with heterogeneous

characteristics. Models trained on different sub-groups may perform better if

different groups of stocks have different return drivers. The simulation study

does not provide a conclusive resolution for the outperformance of group–specific

models but confirms that the earlier empirical result on the CRSP data is not a

statistical fluke but a general characteristic of training machine learning models

for predicting returns. Although the improved economic performance we observed

for group–specific machine learning models is significant, it comes at the cost of

training three separate machine learning models. In the case of a neural network,

where the common practice is to train 10 neural networks with different random

seeds, the number of machine learning models required increases from 10 to 30.

This requirement is not ideal, and we would preferably achieve similar performance

improvements as group–specific machine learning models without the significant

increase in computational cost.
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Table 4.6: Machine learning model fits under simulated data generating processes
This table presents the average ICs for a series of machine learning models trained using two different approaches. The first approach (1) trains
the model using all data, whereas the second approach (2) trains two separate models using a non-predictive simulated characteristic to split the
sample into two using the 20th percentile cutoff and training a model on each sample separately. Each row corresponds to a different DGP, and for
each DGP, 100 Monte Carlo simulations are run. An ensemble over the three separately trained models is created for each machine learning model.
The table also reports the t-statistic for the null hypothesis: the mean of the distribution of ICs in (1) is less than that of ICs in (2). Bold text
indicates significance at the 5% level.

In-sample Out-of-sample

All Top 80% Bottom 20% All Top 80% Bottom 20%

IC (%) (1) (2) t-stat (1) (2) t-stat (1) (2) t-stat (1) (2) t-stat (1) (2) t-stat (1) (2) t-stat

Base 7.41 8.22 (-2.01) 7.33 8.05 (-1.61) 7.78 10.86 (-4.32) 0.96 0.59 (1.28) 0.82 0.64 (0.55) 1.53 0.16 (2.40)
Increase in bottom 20% IC 9.66 10.97 (-2.43) 8.21 7.92 (0.56) 14.32 21.56 (-6.51) 1.88 2.02 (-0.41) 1.28 0.58 (2.49) 3.67 5.51 (-2.36)

Increase in bottom 20% volatility 7.58 9.70 (-4.46) 7.17 8.98 (-3.60) 9.10 13.37 (-5.00) 0.55 0.52 (0.11) 0.44 0.90 (-1.61) 0.97 -0.35 (2.52)
Increase in bottom 20% IC and volatility 9.20 12.05 (-4.82) 7.71 8.21 (-0.95) 13.81 23.20 (-8.13) 1.54 1.78 (-0.78) 1.10 0.58 (1.79) 2.76 4.30 (-2.23)

Increase in bottom 20% IC and volatility OHE 15.41 15.04 (0.46) 10.31 11.00 (-1.02) 29.05 26.95 (1.360) 2.73 2.39 (1.12) 1.07 0.73 (1.16) 6.45 5.94 (0.74)
One predictor only applies for bottom 20% 10.25 15.35 (-7.08) 6.58 8.13 (-2.96) 18.95 32.01 (-8.90) 1.44 3.03 (-4.40) 0.27 0.51 (-0.79) 3.82 7.90 (-4.69)

Top 80% has no predictability (1) 10.66 14.86 (-6.51) 6.68 7.33 (-1.53) 19.87 32.03 (-8.91) 1.15 3.35 (-6.08) -0.35 0.38 (-2.52) 4.00 8.73 (-5.61)
Top 80% has no predictability (2) 11.15 15.78 (-7.37) 6.95 6.97 (-0.06) 20.84 34.93 (-10.62) 1.53 3.48 (-5.32) 0.22 -0.10 (1.22) 4.18 9.51 (-6.23)

Bottom 20% has exaggerated IC on same factors 57.93 86.44 (-33.62) 14.20 7.62 (11.81) 83.68 95.70 (-20.88) 16.96 50.35 (-41.81) 8.85 0.53 (20.46) 37.59 64.21 (-26.5)
Bottom 20% has exaggerated IC on different factors 90.64 90.34 (0.58) 14.48 10.19 (7.31) 96.26 97.40 (-8.88) 49.14 58.76 (-9.51) 0.36 0.69 (-1.24) 64.55 71.31 (-8.72)

Exaggerated IC on difference factors 87.00 94.35 (-53.40) 92.13 95.73 (-27.10) 62.34 95.48 (-100.99) 72.47 85.35 (-46.96) 83.21 90.66 (-25.01) 26.53 64.31 (-55.13)
Non-linear and factor interaction 6.57 7.91 (-3.09) 6.63 7.35 (-1.52) 6.27 11.49 (-7.04) 0.26 0.20 (0.25) 0.14 0.22 (-0.32) 0.77 0.16 (1.26)

Increase in bottom 20% IC via non-linear factor 7.98 19.33 (-14.57) 6.58 7.86 (-2.74) 10.84 15.32 (-5.62) 0.74 10.21 (-14.81) 0.48 0.45 (0.11) 2.10 2.09 (0.01)
Increase in bottom 20% IC via interacting factors 8.10 9.87 (-3.82) 6.77 7.48 (-1.46) 12.21 18.09 (-6.34) 1.20 1.26 (-0.23) 0.75 0.37 (1.30) 2.51 3.61 (-1.94)
Different predictors for top 80%/bottom 20% 13.26 18.43 (-7.48) 11.64 13.25 (-2.24) 18.69 33.33 (-11.51) 4.21 5.76 (-4.02) 4.49 4.40 (0.20) 4.34 9.04 (-6.29)

Differing predictive direction (1) 6.93 8.40 (-3.38) 6.94 7.70 (-2.08) 6.86 11.58 (-6.18) 0.64 0.35 (1.00) 0.81 0.43 (1.14) -0.08 0.20 (-0.57)
Differing predictive direction (2) 7.40 9.06 (-4.09) 7.20 6.92 (-1.62) 8,16 14.87 (-8.31) 0.40 0.92 (-1.85) 0.45 0.64 (-0.65) 0.22 1.76 (-2.31)
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4.5 Choices: features, architecture, and target

Ultimately, we are interested in the practical usage of machine learning models

for asset pricing and portfolio management purposes. The behavior of machine

learning models using simulated factor DGPs provides insights into the underlying

mechanics but is limited in practical relevance. Through the simulation exercise, I

found that neural network models can overfit groups of assets within the training

dataset. Using this insight, I now conduct empirical experiments to investigate how

machine learning design decisions affect model performance and which design choices

can reduce this group–specific overfitting. Specifically, I focus on three critical areas

of model design decisions: features, architecture, and target. I make stylized choices

within each category and analyze their impact on stock-level return predictions

and portfolio performance. I do not aim to cover every possible modeling decision

but rather to explore the common representative choices observed in literature and

additional cases related to the group–specific model results. I exclusively focus

on the NN3 model, given the higher propensity for overfitting of neural network

architectures have for overfitting compared with tree-based models.

4.5.1 Features

The input features are the data the model uses to learn the functional form g (·)
of E (ri,t+1) that maximizes predictive power. Numerous choices need to be made

during input feature design, which is often known as “feature engineering” in the

machine learning lexicon. I analyze two critical decisions, feature selection and

feature normalization, and examine how these choices affect the quality of excess

return predictions and long–short portfolios. The choice of which features to

provide a machine learning model is often underappreciated, particularly in asset

pricing. Given the high complexity associated with typical neural network models,

the inclusion (or exclusion) of specific features can impact the resulting predictions

in unexpected ways.

I first employ ex-post feature importance selection. I train machine learning models

following the earlier approach. I then calculate the top 10 most important features

across the full OOS period. Using these top features, I create two scenarios: “Drop

top,” where I drop the top 10 features from the input feature set and retrain each

model, and “Only top,” where I only use the top 10 features to train each model.

Note that this approach introduces a degree of look-ahead bias, as I use feature

importance from OOS periods during earlier periods of machine learning training.

This decision is akin to the standard approach to asset pricing, where a set of

features or asset pricing anomalies that were not yet discovered are used to train
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and evaluate models. The list of top characteristics for each model can be found in

Appendix 4.6.

The second choice involves creating a true OOS input feature set, where I use the

reported year of characteristic discovery from OSAP. If a characteristic was published

in the literature in 1997, this characteristic is only used for training after January

1998. The available set of characteristics annually increases as the training window

expands each year.

The final design choices explore the interaction between the continuous Size

characteristic and the other input features. In the earlier results, where we saw

the outperformance of group–specific models, the training dataset is split based

on the Size characteristic. However, it is natural to ask why the machine learning

model did not independently capture this effect. I create two new datasets to

test alternative approaches for capturing the interaction between Size and model

predictive power. In the first scenario, I use one-hot encoding (OHE) to create

three additional dummy columns for Size, indicating whether each stock is in the

Top 30%, Middle 40%, or Bottom 30% of Size. In the second scenario, I take

the Size dummies from the previous scenario and compute the inner product of

each dummy variable with the existing input variable set, thereby creating three

additional datasets of equal size as the base dataset but with non-zero values only

for rows corresponding to the given Size group. These three additional datasets are

concatenated with the original dataset and then used as the input feature set.

Table 4.7 shows the results of the feature choices applied to train the NN3 model

using all data and size-groups. The table reports the average IC, average annualized

top-minus-bottom return, average annualized portfolio volatility, average Sharpe

ratio (SR), largest one-month portfolio loss (DD1M), maximum portfolio drawdown

(MaxDD), average monthly one-way portfolio turnover (TO), FF6 alpha and

corresponding t-statistic, FF6 and HXZ break-even transaction costs, and three

test statistics: DM, IC, and Ledoit-Wolfe Sharpe ratio. The last three columns

compare each model against the baseline feature set trained on all CRSP data.

None of the feature permutation models consistently outperform the base input

feature set trained in size–specific groups. Although some models have higher break-

even transaction costs, they are often associated with lower ICs and average returns.

For instance, the model trained on all CRSP stocks using the top 10 features has the

highest FF6 break-even transaction cost and DM test statistic. However, its IC is

significantly lower than that of other models. This model also has more embedded

look-ahead bias, making it uncertain whether the model will continue to outperform.
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Overall, none of the feature design choices resolve the empirical observation, as we

still find that group–specific models outperform.

4.5.2 Architecture

A neural network’s architecture has effectively unlimited design possibilities, and

there is no fixed formula for optimal architecture design. Instead, the approach is

typically based on trial and error across various design choices. Guidance can be

drawn from machine learning research in other fields; however, applying it to return

prediction is not always straightforward. As Israel, Kelly and Moskowitz (2020)

show, using machine learning in finance is challenging due to the small data problem

and low signal-to-noise ratios. I examine several commonly made assumptions and

decisions when designing neural networks, such as batch normalization and dropout.

First, I investigate different loss functions used in the Adam optimizer, including the

Huber loss function and the mean absolute error (MAE) loss function. The choice

of loss function is critical, as it is what the model is ultimately trying to optimize.

The Huber loss function is specified as:

LH =

1
2
(ri,t+1 − r̂i,t+1)

2 for |ri,t+1 − r̂i,t+1| ≤ q0.999(
q0.999 × |ri,t+1 − r̂i,t+1| − 1

2
q0.999

)
otherwise,

(4.16)

where the δ parameter is set to the 99.9th quantile of excess returns and is designed

to regularize the neural network algorithm, reducing the impact of extreme small

stock outliers on the overall sample.
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Table 4.7: Neural network portfolio performance with different input feature choices
This table compares the OOS VW portfolio performance of the NN3 model with different input feature choices. The table reports portfolio
performance and three test statistics: DM, IC, and Ledoit Wolfe Sharpe ratio. The universe column indicates whether the model was trained once
on all stocks (All) or separately on large, mid, and small stocks (Size). The feature column specifies the approach used to determine the input
feature set used to train the NN3 model, including Base, Drop top, Only top, Survivorship bias, OHE size features, and OHE size interacted. In
Base, I use cross-sectional standardization over [−1,+1] to create the input feature set. In Drop top, I drop the top 10 features as determined by
the average feature importance across the Base model and retrain the models from scratch. In Only top, I keep only the top 10 important features
from the Base model and retrain the models. Survivorship bias only uses features that were known at each annual training date. OHE size features
include three binary columns for large/mid/small capitalization companies. In OHE size interacted, I take the inner product between the Base
feature set and three size dummies to produce three additional input feature sets that contain non-zero values only for each size category.

Universe Feature IC (%) Ret. (ann.) Vola. (ann.) SR (ann.) DD1M (%) MaxDD (%) TO (%) FF6 α FF6 t (α) FF6 break-even t-cost HXZ break-even t-cost DM t-stat IC t-stat LW t-stat

Size Survivorship bias 3.08 11.0 12.5 0.88 24.1 51.5 125 8.7 2.8 29.00 36.99 -1.89 -3.04 0.38
Size Base 5.53 15.0 17.4 0.87 15.6 44.8 134 12.3 4.16 38.12 35.60 1.70 2.11 0.73
All Drop top 3.72 10.8 13.2 0.81 16.3 45 135 9.5 4.11 29.36 34.55 0.46 -1.29 0.30
All Base 4.63 11.6 15.5 0.75 19.2 46.9 137 11.2 4.05 34.21 31.23 – – –
Size Drop top 3.95 12.6 16.9 0.75 17.4 62.4 124 12 3.41 40.23 35.91 1.30 -1.69 0.07
Size Only top 4.66 12.0 16.7 0.72 23.0 62.3 152 9.8 2.9 26.87 29.87 1.84 0.44 -0.21
All OHE size features 4.24 10.6 15.5 0.69 22.2 39.9 141 9.8 3.42 28.95 36.97 -0.14 0.41 -0.53
All OHE size interacted 4.05 9.9 14.9 0.66 16.1 63.3 144 9.3 3.33 26.83 31.29 -2.78 -2.04 -0.39
All Only top 3.39 12.8 20.1 0.64 17.7 30.1 151 9.3 3.24 25.59 25.66 2.42 -1.58 -0.64
All Survivorship bias 2.18 6.6 12.7 0.52 16.0 50.5 129 6.0 1.88 19.28 19.37 -2.45 -2.84 -1.12
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Neural networks are canonically known to create non-linearity and interaction

between features without having to explicitly model them. Neural network models

achieve this using activation functions that transform the outputs of the hidden

layers. I use the leaky rectified linear activation function (ReLU) and exponential

linear unit (ELU) instead of the standard ReLU between hidden layers. The

ReLU activation function can experience the dying ReLU problem (Lu, Shin, Su

and Karniakdakis, 2020), where the output of the ReLU layer is constant for all

inputs. Leaky ReLU and ELU activation functions, which have been suggested as

alternative options, avoid this issue. I also consider changes to the regularization

layers used. In the base model, only L1 regularization is used in the hidden layers,

and the L1 penalty is tuned as a hyperparameter. I investigate using only an L2

regularization layer, both L1 and L2 regularization layers, and no regularization

layers. Each option requires tuning additional hyperparameters to determine the

appropriate L1 and L2 penalties.

Instead of using a three-layer neural network architecture, I test alternative

structures: a wider neural network with four hidden layers, having (1054, 512, 258,

128) units, a deeper neural network with eight hidden layers, having (256, 128,

64, 32, 16, 8, 4, 2) units, and an expanding neural network with six hidden layers,

having (32, 64, 128, 256, 16, 8) units.

I finally test removing batch normalization, removing early stopping, and

introducing dropout to the hidden layers at a rate of 0.2. These architectural

decisions are often used to regularize the neural network and prevent overfitting.

Dropout is a widely used regularization technique for training neural networks,

where connections between hidden layers are randomly removed. This process

encourages the model to rely on a diverse range of node dependencies, helping to

reduce overfitting.
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Table 4.8: Neural network portfolio performance with different model architecture choices
This table presents the OOS VW portfolio performance for the NN3 model under different machine learning architecture choices. The universe
column indicates whether the model was trained once on all stocks (All) or separately on large, mid, and small stocks (Size). The feature column
specifies the approach to determine the architecture used to train the NN3 model. The loss function used in the ADAM optimizer is changed from
the MSE to Huber or MAE. The activation function used in the hidden layers is changed from the ReLU to leaky ReLU or ELU. The use of L1
and L2 regularization penalties in the hidden layers is changed from the Base L1 penalty only to no penalty, only L2 penalty, and both L1 and L2
penalties. The dimensions and number of hidden layers used are also changed, including a Deeper NN with eight hidden layers, a Wider NN with
four hidden layers, and an Expanding NN with six hidden layers. I also test cases where no batch normalization or early stopping is used and where
dropout is used in the hidden layers at a rate of 0.2.

Universe Feature IC (%) Ret. (ann.) Vola. (ann.) SR (ann.) DD1M (%) MaxDD (%) TO (%) FF6 α FF6 t (α) FF6 break-even t-cost HXZ break-even t-cost DM t-stat IC t-stat LW t-stat

Size No batch norm 6.08 28.6 16.2 1.76 19.3 28.4 132 26.4 7.4 83.00 83.28 3.10 3.67 4.55
Size No early stop 4.97 21.8 17.3 1.26 17.4 30.5 130 21.2 6.1 67.92 61.24 -1.18 1.31 2.31
Size Dropout 6.28 23.3 20.4 1.14 17.0 64.4 135 21.5 4.5 66.34 61.48 3.96 3.42 1.87
Size Leaky ReLU 5.32 17.5 16.4 1.07 21.8 50.7 135 16.2 4.97 50.07 47.26 1.21 1.50 1.54
Size ELU 5.64 18.0 17.3 1.04 22.9 33.6 137 14.6 5.16 44.44 48.09 1.69 2.15 1.45
Size L1 & L2 penalty 5.13 15.9 15.2 1.04 14.1 37.4 130 15.2 5.12 48.81 44.61 2.29 1.50 1.28
Size Huber loss 5.92 18.1 17.9 1.01 23.8 47.9 133 15.9 4.57 50.00 45.35 2.24 2.49 1.27
Size L2 penalty 5.01 15.8 16.3 0.97 22.4 55.1 135 13.9 3.98 43.06 38.41 1.06 0.80 1.06
All ELU 4.26 14.6 15.6 0.94 19.2 35.5 140 14.8 5.29 44.01 43.81 -0.87 -1.14 0.96
Size Base 5.53 15.0 17.4 0.87 15.6 44.8 134 12.3 4.16 38.12 35.60 1.70 2.11 0.73
Size Wider NN 3.33 12.5 14.7 0.86 15.0 43.8 111 14.2 4.32 53.02 47.41 -3.70 -2.33 0.58
All No early stop 3.56 13.7 16.5 0.83 18.5 29.1 141 12.1 4.36 35.82 33.89 -3.14 -2.42 0.39
All MAE Loss 4.99 17.2 21.0 0.82 28.2 57.2 123 16.3 4.1 55.16 50.89 -0.76 -0.8 0.25
Size Expanding NN 4.57 12.9 15.9 0.82 16.3 51.0 154 7.7 3.76 20.89 17.84 1.95 0.98 0.23
All No batch norm 4.59 9.4 12.1 0.78 10.9 12.3 119 8.4 4.08 29.64 23.64 1.81 -1.43 0.12
Size No L1 & L2 4.00 9.5 12.4 0.77 12.2 26.0 177 5.5 3.00 13.00 8.80 -1.39 -1.32 0.07
Size MAE loss 5.26 17.7 23.6 0.75 24.9 74.9 116 14.8 3.39 53.17 51.90 -0.80 -0.27 0.04
All Base 4.63 11.6 15.5 0.75 19.2 46.9 137 11.2 4.05 34.21 31.23 – – –
All L2 penalty 4.56 9.8 13.7 0.72 19.1 33.1 138 9.7 3.58 29.34 28.87 0.54 -0.54 -0.22
All Dropout 4.01 11.2 16.1 0.70 17.1 41.5 141 10 3.15 29.66 32.91 2.61 -1.43 -0.35
All Huber loss 4.26 9.8 14.4 0.68 19.2 42.8 140 8.7 3.18 25.77 25.48 -0.37 -1.56 -0.55
All L1 & L2 penalty 4.44 9.7 15.2 0.64 18.4 40.9 128 9.2 3.04 30.05 29.48 -0.61 -0.9 -0.68
All Deeper NN 3.63 10.9 17.3 0.63 21.3 62.1 129 10.9 3.16 35.00 35.98 -0.72 -2.19 -0.71
All Leaky ReLU 3.88 9.2 15.5 0.59 20.8 58.3 140 8.3 2.7 24.78 23.59 -0.70 -2.23 -0.92
All Expanding NN 3.53 9.0 15.3 0.59 20 49.9 161 5.5 2.51 14.19 6.20 -2.79 -3.74 -0.93
All No L1 and L2 3.58 6.7 12.0 0.56 21.9 46.6 143 6.6 2.88 19.13 18.44 -1.66 -2.11 -0.95
Size Deeper NN 2.96 6.7 12.3 0.54 11.5 43.0 113 5.6 2.46 20.73 20.72 0.54 -1.93 -1.07
All Wider NN 2.95 7.3 14.5 0.50 18.0 47.3 141 5.2 1.86 15.29 15.85 -4.73 -1.65 -1.48

128



Table 4.8 presents the results of the changes to the neural network architecture.

Notably, the model trained without batch normalization demonstrated a significant

increase in Sharpe ratio from 0.86 to 1.76 compared with the base group–specific

model. This improvement is consistent across various metrics, including IC,

top-minus-bottom returns, break-even transaction costs, and stock-level return

prediction tests. Using more complex neural network architectures does not

necessarily lead to better performance, particularly for the deeper neural network

architecture. This result is counter-intuitive to the commonly accepted practice

that deeper neural networks are superior. However, Gu et al. (2020) also find that

shallow neural networks outperform. The results of altering the neural network

architecture do not provide a convincing explanation for why group–specific

models outperform those trained on all samples. Instead, these results highlight

the potential for substantial improvements in machine learning predictions by

modifying common design choices, even those widely accepted, such as always

employing batch normalization. The strength of neural networks is the inherent

complexity they can flexibly model; however, this flexibility comes at the cost of

many design levers that can be pulled, and the finance literature has only begun to

scratch the surface of optimal neural network design in asset pricing.

4.5.3 Target

The final modeling choice I explore is the target variable design. Conventionally,

in empirical asset pricing, raw excess returns are used without adjustment. I

experiment with alternative approaches, such as classification, instead of regression.

In this analysis, I do not consider residual returns, as doing so would alter the

prediction problem by conditioning it on the factors used for residualization. For

instance, removing the component of excess returns explained by the FF3 model

changes the underlying prediction problem. I focus on design choices that preserve

the fundamental prediction problem as much as possible.

The first set of changes involves subtracting the median excess return. In the

“Median” case, the cross-sectional median excess return is subtracted from each

stock’s monthly excess return. In the “Median size group” case, the corresponding

cross-sectional median excess return within the three size groups is subtracted from

each stock’s monthly excess returns. The second set of changes involves rank

normalizing returns. In the “Rank” case, stocks are cross-sectionally ranked each

month and then scaled between [−1, 1]. In the “Rank in size” case, stocks are

cross-sectionally ranked within size groups each month and then scaled between

[−1, 1]. In the “Winsorize” case, cross-sectional excess returns are winsorized each

month at the 1% level.
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In addition to testing a regression problem, I explore classification. In particular, the

“Base classifier” scenario creates a binary classification problem: to classify whether

excess returns are positive or negative. Stocks are cross-sectionally sorted using

the classification probability. In the “Classifier median” case, excess returns are

classified as greater than or equal to the monthly median excess return (positive) or

less than the monthly median excess return (negative). Last, in the “Classifier

median size” case, excess returns are classified as greater than or equal to the

monthly median excess return within the corresponding size groups (positive) or

less than the monthly median excess return within size groups (negative).

Table 4.9 presents the results from the target variable changes. We observe

consistent improvements across most scenarios compared with the baseline cases.

Notably, in the “Median size group” scenario, the group–specific and full-trained

models achieve comparable results. This finding could help explain the empirical

observation where group–specific models outperform models trained on the full

cross-section. Removing the component of a stock’s return associated with the

size group from the prediction problem aligns the model’s goal with predicting

cross-sectional return distributions rather than predicting whether small stocks

will outperform large stocks. Regularizing the target variable by removing median

excess returns or rank normalizing leads to better fits of the machine learning

models. These results suggest that across the three design choices we have explored,

careful calibration of the target variable has the most significant impact on the

subsequent portfolio performance.

130



Table 4.9: Neural network portfolio performance with different target choices
This table presents the OOS VW portfolio performance for the NN3 model under different prediction target choices. The universe column indicates
whether the model was trained once on all stocks (All) or separately on large, mid, and small stocks (Size). The feature column specifies the
approach to determine the target used to train the NN3 model. The Base case uses the raw stock-level excess returns obtained from CRSP. In
each case, the excess stock returns are the starting point, and they are adjusted each month. The different target choices include the following:
Rank, where excess returns are cross-sectionally ranked and scale over [−1,+1]; Rank in Size, where excess returns are cross-sectionally ranked
within three separate size categories and then scaled over [−1,+1]; Median, where the corresponding monthly cross-sectional median excess return
is subtracted from the excess returns; Median size group, where the corresponding monthly cross-sectional median excess return within size groups
is subtracted from the excess returns; Winsorize, where excess returns are winsorized at the 1% level; Base classifier, where excess returns greater
than or equal to zero are labeled as 1, and excess returns less than zero are labeled as 0; Classifier Median, where excess returns greater than or
equal to the monthly cross-sectional median excess return are labeled as 1, and otherwise 0; and Classifier Median Size, where excess returns greater
than or equal to the monthly cross-sectional median excess returns within size groups are labeled as 1, and otherwise 0. The DM t-statistic is
undefined in cases where the regression target is altered, as the excess return predictions are not directly comparable with the Base model, which
makes predictions of raw excess return.

Universe Feature IC (%) Ret. (ann.) Vola. (ann.) SR (ann.) DD1M (%) MaxDD (%) TO (%) FF6 α FF6 t (α) FF6 break-even t-cost HXZ break-even t-cost IC t-stat LW t-stat

Size Median size group 5.72 23.3 15.8 1.48 13.1 23.7 138 20.9 6.71 63.20 61.96 2.52 3.37
All Median size group 6.05 24.1 18.7 1.29 20.7 35.1 137 22.3 6.29 67.78 64.50 3.04 2.56
Size Classifier median size 4.97 18.9 16.2 1.17 17.5 42.0 146 17.8 5.64 50.71 46.59 0.37 1.92
Size Median 5.85 19.3 16.6 1.17 14.0 38.2 136 17.3 5.34 52.90 53.23 2.73 2.06
Size Rank in size 6.29 19.3 16.6 1.16 24.2 39.6 144 18.6 6.59 53.85 47.36 1.31 1.95
All Classifier median size 5.60 21.2 19.0 1.12 19.5 40.0 145 19.4 5.39 55.71 53.02 -0.47 1.69
All Rank 6.32 24.5 22.0 1.11 30.4 49.3 128 23.5 5.39 76.56 72.58 1.11 1.87
Size Rank 6.31 18.9 17.3 1.09 18.4 49.3 141 17.3 4.80 50.84 48.77 1.38 1.73
Size Classifier median 5.65 16.1 15.0 1.07 18.6 33.6 142 15.2 4.89 44.39 42.68 -0.37 1.52
All Median 6.46 23.0 22.2 1.04 29.6 64.6 141 20.6 4.49 61.11 55.47 2.59 1.46
All Rank in size 6.43 20.7 20.7 1.00 22.2 43.9 139 19.3 4.96 57.97 57.64 1.31 1.4
Size Winsorize 5.65 17.3 17.7 0.98 13.3 37.7 136 14.6 4.56 44.71 46.57 1.77 1.19
All Base classifier 3.97 18.4 19.1 0.96 29.9 65.2 130 17.6 3.87 56.49 52.33 -2.78 0.95
Size Base 5.53 15.0 17.4 0.87 15.6 44.8 134 12.3 4.16 38.12 35.60 2.11 0.73
All Winsorize 4.67 11.1 13.6 0.82 10.7 29.9 139 9.9 3.97 29.75 27.11 -0.31 0.27
All Base 4.63 11.6 15.5 0.75 19.2 46.9 137 11.2 4.05 34.21 31.23 – –
Size Base classifier 3.45 13.9 19.1 0.73 21.4 64.9 124 12.9 3.22 43.35 39.53 -2.64 -0.15
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4.5.4 A partial resolution

Figure 4.6 depicts the top-minus-bottom returns and ICs of training on all stocks

versus training on size–specific groups with an adjusted target of returns above

the median return within size groups. I present this as a partial resolution to

the empirical anomaly I found of superior machine learning model performance

when training on smaller group–specific datasets. Implicit regularization obtained

through training on size–specific groups is achieved by explicitly regularizing

the target variable without incurring the computational cost of training three

independent models. It is non-trivial to delineate whether this improvement

comes from imparting the economic prior on group–specific models or simply

removing the market return from the target variable. In either case, I conclude that

performing some form of regularization on the target variable is prudent to achieve

superior predictive performance when training machine learning models for return

prediction.
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Figure 4.6: Effect of model averaging across neural networks with a regularized
target variable
This figure presents the average annualized top-minus-bottom portfolio return (Panel A)
and average IC (Panel B) for the NN3 model when ensembling identically trained models
with different random seeds. The figure presents the results when the cross-sectional
monthly excess return within size-groups is subtracted from the corresponding stocks’
monthly excess returns. The x-axis represents the number of models included in the
ensemble. The solid lines present the results when training the NN3 model once using
all stocks. The dashed lines present the results when training the NN3 model in three
separate group–specific models and concatenating the results. Ten models are trained
using an identical approach but with different randomized seeds for each size group. A
quasi-Monte Carlo approach is used to measure the effect of ensembling on the uncertainty
of performance statistics. This approach is detailed in Section 4.3.3. This figure presents
the average and standard errors of top-minus-bottom returns and ICs of the portfolios
formed from these ensemble predictions.
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4.6 Conclusion

Finance literature has only just begun to explore the application of machine learning

models for predicting cross-sectional stock returns. There is no standard modeling

framework for comparing results across different studies. The high dimensionality of

choices associated with machine learning modeling in asset pricing results in a high

level of complexity in attributing performance gains related to changes to machine

learning modeling approaches. This study contributes to the field by training group–

specific machine learning models and demonstrating superior predictive and portfolio

performance compared with a model trained on the full dataset. By investigating

various machine learning design choices, I reveal that a lack of regularization of

the target variable primarily drives the outperformance of group–specific machine

learning models. By implementing target variable regularization, the performance

gains associated with group–specific machine learning models can be achieved at

lower computational complexity.

I assess the impact of various design choices on prediction outcomes, including

feature selection, model architecture, and target variable regularization.

The findings indicate that regularizing the target variable—total excess

returns—significantly contributes to the observed outperformance of the

group–specific models. My results emphasize that the lack of consistency in

the literature regarding model design choices hinders the advancement of machine

learning in finance and obscures comparative analysis across studies. In this case,

should the improvement in model performance be attributed to the economic

rationale behind the group–specific modeling decision or to the regularization of

the target variable?

By shedding light on the impact of these design choices on stock portfolio formation,

machine learning models can more effectively be employed in financial settings. I

encourage future research to explore and standardize design choices to promote

more robust and reliable machine learning applications in finance. A standardized

approach will facilitate the development of a more unified body of knowledge and

enable more precise comparisons of results across studies, ultimately enhancing the

potential for machine learning to support financial decision-making and portfolio

management.
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Appendix 4.1. Data generating process for

simulations

Table 4.10: Simulation parameters
This table presents the simulation parameters used for each scenario presented in Table
4.6, and the method is described in Appendix 4.6.

Scenario g∗lge (·) g∗sml (·) ϵt+1 ϵSt+1 θlge θsml OHE

Base
(
c1i,t, c

2
i,t, c

3
i,t

)
θlge

(
c1i,t, c

2
i,t, c

3
i,t

)
θsml 0.05 0.05 (0.02, 0.02, 0.02) (0.02, 0.02, 0.02) N

Increase in bottom 20% IC
(
c1i,t, c

2
i,t, c

3
i,t

)
θlge

(
c1i,t, c

2
i,t, c

3
i,t

)
θsml 0.05 0.05 (0.02, 0.02, 0.02) (0.04, 0.04, 0.04) N

Increase in bottom 20% volatility
(
c1i,t, c

2
i,t, c

3
i,t

)
θlge

(
c1i,t, c

2
i,t, c

3
i,t

)
θsml 0.05 0.075 (0.02, 0.02, 0.02) (0.02, 0.02, 0.02) N

Increase in bottom 20% IC and volatility
(
c1i,t, c

2
i,t, c

3
i,t

)
θlge

(
c1i,t, c

2
i,t, c

3
i,t

)
θsml 0.05 0.075 (0.02, 0.02, 0.02) (0.04, 0.04, 0.04) N

Increase in bottom 20% IC and volatility OHE
(
c1i,t, c

2
i,t, c

3
i,t

)
θlge

(
c1i,t, c

2
i,t, c

3
i,t

)
θsml 0.05 0.075 (0.02, 0.02, 0.02) (0.04, 0.04, 0.04) Y

One predictor only applies for bottom 20%
(
c1i,t, c

2
i,t, c

3
i,t

)
θlge

(
c1i,t, c

2
i,t, c

3
i,t

)
θsml 0.05 0.075 (0.02, 0.02, 0) (0.02, 0.02, 0.30) N

Top 80% has no predictability (1)
(
c1i,t, c

2
i,t, c

3
i,t

)
θlge

(
c1i,t, c

2
i,t, c

3
i,t

)
θsml 0.05 0.075 (0, 0, 0) (0.02, 0.02, 0.30) N

Top 80% has no predictability (2)
(
c1i,t, c

2
i,t, c

3
i,t

)
θlge

(
c1i,t, c

2
i,t, c

3
i,t

)
θsml 0.05 0.075 (0.01, 0.01, 0) (0.02, 0.10, 0.30) N

Bottom 20% has exaggerated IC on same factors
(
c1i,t, c

2
i,t, c

3
i,t

)
θlge

(
c1i,t, c

2
i,t, c

3
i,t

)
θsml 0.05 0.05 (0.02, 0.02, 0.02) (2, 2, 2, 2) N

Bottom 20% has exaggerated IC on different factors
(
c1i,t, c

2
i,t, c

3
i,t, c

4
i,t

)
θlge

(
c1i,t, c

2
i,t, c

3
i,t, c

4
i,t

)
θsml 0.05 0.05 (0, 0, 0, 0.02) (2, 2, 2, 0) N

Exaggerated IC on difference factors
(
c1i,t, c

2
i,t, c

3
i,t, c

4
i,t, c

5
i,t, c

6
i,t

)
θlge

(
c1i,t, c

2
i,t, c

3
i,t, c

4
i,tc

4
i,t, c

5
i,t, c

6
i,t

)
θsml 0.05 0.05 (0, 0, 0, 2, 2, 2) (2, 2, 2, 0, 0, 0) N

Non-linear and factor interaction
((
c1i,t
)2
, c1i,t × c2i,t, c

3
i,t

)
θlge

((
c1i,t
)2
, c1i,t × c2i,t, c

3
i,t

)
θsml 0.05 0.05 (0.02, 0.02, 0.02) (0.02, 0.02, 0.02) N

Increase in bottom 20% IC via non-linear factor
((
c1i,t
)2
, c1i,t × c2i,t, c

3
i,t

)
θlge

((
c1i,t
)2
, c1i,t × c2i,t, c

3
i,t

)
θsml 0.05 0.05 (0.02, 0.02, 0.02) (0.02, 0.30, 0.02) N

Increase in bottom 20% IC via interacting factors
((
c1i,t
)2
, c1i,t × c2i,t, c

3
i,t

)
θlge

((
c1i,t
)2
, c1i,t × c2i,t, c

3
i,t

)
θsml 0.05 0.05 (0.02, 0.02, 0.02) (0.02, 0.02, 0.30) N

Different predictors for top 80%/bottom 20%
(
c1i,t, c

2
i,t, c

3
i,t

)
θlge

(
c1i,t, c

2
i,t, c

3
i,t

)
θsml 0.05 0.075 (0.02, 0.10, 0) (0.02, 0, 0.30) N

Differing predictive direction (1)
(
c1i,t, c

2
i,t, c

3
i,t

)
θlge

(
−c1i,t, c2i,t, c3i,t

)
θsml 0.05 0.05 (0.02, 0.02, 0.02) (−0.02, 0.02, 0.02) N

Differing predictive direction (2)
(
c1i,t, c

2
i,t, c

3
i,t

)
θlge

(
−c1i,t, c2i,t, c3i,t

)
θsml 0.05 0.05 (0.02, 0.02, 0.02) (−0.10, 0.02, 0.02) N
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Appendix 4.2. Machine learning models and

hyperparameters

For the baseline neural network models, a batch size of 10,000, 100 epochs, early

stopping with early stopping patience of 5 and an early stopping split of 0.25 are

used. I use the ReLU as the hidden layer activation function, with a linear activation

function in the output layer. I also use the Adam optimizer, where the learning rate

η is a hyperparameter, and an MSE loss function is used. Further, I use between

1–5 hidden layers, with the architecture for the five-hidden-layers network being

(32,16,8,4,2) units and that for the one hidden layer network being (32) units. I also

use batch normalization layers between two hidden layers.

Table 4.11: Machine learning model hyperparameters
This table shows the values used in the hyperparameter tuning of all models. The table lists
the hyperparameters used for regularized linear models, tree-based networks, and neural
networks. For the regularized linear models, α is constant and multiplies the penalty
terms. For the tree-based networks, depth controls the maximum allowable depth, NTrees
is the total number of trees used in the estimator, and Colsample is the number of columns
taken when splitting. For GBRT, Subsample is the percentage of rows used in each weak
learner, and η is the learning rate. For the neural network, L1 is a scalar on the penalty
in the loss function, and η is the learning rate used in the optimizer.

OLS ENET RF GBRT NN

Huber loss α ∈ [0.001, 0.01, 0.1, 1.0] Depth ∈ [3, 6] Depth ∈ [3, 6] L1 ∈ [0.0001, 0.001, 0.01]
L1 ratio = 0.5 NTrees = 300 NTrees = 250 η ∈ [0.001, 0.01]

Colsample ∈ [0.01, 0.1, 0.2, 1.0] Subsample ∈ [0.3, 0.5, 1.0]
η ∈ [0.01, 0.1]

Colsample ∈ [0.3, 0.5, 1.0]
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Appendix 4.3. Stock characteristics

Table 4.12: Top ten important features across the four machine learning
models
This table contains the top ten most important features for each NN3 model that was
trained on different data samples.

Rank All Large Mid Small

1 STreversal STreversal STreversal STreversal
2 Size TrendFactor High52 Size
3 High52 High52 IndRetBig High52
4 MomRev BM IdioVol3F IndRetBig
5 AccrualsBM IdioVol3F MaxRet Mom6m
6 IndRetBig IdioRisk AnnouncementReturn BM
7 RDcap AM BM MomSeason
8 CHForecastAccrual CF IdioRisk IdioVolAHT
9 BM AnnouncementReturn IndMom AM
10 RDS IndRetBig TrendFactor MaxRet
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Appendix 4.4. Additional results

This section presents several additional results for the group–specific machine

learning portfolios. Table 4.13 presents the results for EW top-minus-bottom

portfolios. The results are like the main VW results that were presented, but the

magnitude of improvements is smaller. This result is expected, as we observed

that the machine learning training process results in a bias toward minimizing

prediction errors when predicting the returns of small stocks. When portfolios are

EW, this implicitly increases the relative importance of small stocks in the top

and bottom portfolios. Thus, there is less room to improve the overall portfolio

performance, as the baseline machine learning model is already biased toward

smaller stocks and reducing this bias does not significantly improve the estimated

portfolio performance. Table 4.14, Table 4.15, and Table 4.16 emphasize this result

by focusing on the portfolio performance within the three size–specific universes.

The largest performance improvements are clearly found for the top 30% of stocks,

where the average annualized top-minus-bottom portfolio return increases from

11.9% to 19.7% and the Sharpe ratio increases from 0.88 to 1.25. For the bottom

30% of stocks, the top-minus-bottom portfolio return increases from 55.7% to

66.8%, but the Sharpe ratio decreases.
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Table 4.13: Out-of-sample performance of equal-weighted machine learning
portfolios under different training regimes
This table presents EW top-minus-bottom portfolio statistics for machine learning models
trained using three approaches: Full, Size, and Ensemble. The Full model follows the
standard approach using all available stocks, whereas the Size model trains three separate
models for large, mid, and small stocks and then concatenates the predictions to form
portfolios. The Ensemble model is the average of the return predictions from the Full
model and Size model. The table presents the performance statistics of these portfolios,
including the annualized mean, standard deviation, Sharpe ratios, maximum drawdown,
maximum one-month loss, average monthly one-way turnover, annualized FF6 alpha and
t-statistic, and break-even transaction costs under the FF6 and HXZ risk models. The
OOS period is from January 1987 to December 2021.

Metric Model OLS ENET RF GBRT NN1 NN2 NN3 NN4 NN5 ENS ENSNN

Full 24.0 21.2 21.5 27.2 42.5 41.6 41.6 42.8 42.1 45.7 44.5
Portfolio return (ann. %) Size 24.9 39.4 12.8 32.1 50.4 50.9 49.5 49.6 46.0 50.8 51.7

Ensemble 25.9 40.0 19.0 36.4 51.1 50.9 50.0 49.9 48.6 52.1 51.8

Full 18.1 11.3 13.3 19.4 14.2 13.8 14.2 13.7 14.6 15.1 14.4
Volatility (ann. %) Size 20.0 14.8 14.8 16.2 13.8 14.3 14.4 14.4 14.4 15.8 14.6

Ensemble 20.6 14.2 15.8 18.9 15.0 14.9 15.0 14.8 15.2 16.0 15.2

Full 1.32 1.87 1.61 1.4 2.99 3.02 2.92 3.12 2.88 3.03 3.09
Sharpe ratio Size 1.24 2.65 0.86 1.98 3.64 3.56 3.43 3.44 3.21 3.21 3.53

Ensemble 1.26 2.83 1.2 1.92 3.42 3.41 3.33 3.38 3.2 3.27 3.41

Full 87.5 19.2 18.1 48.6 9.8 10.3 10.8 10.0 13.0 23.3 8.8
Max. drawdown (%) Size 86.3 8.5 42.0 12.7 14.5 12.6 13.3 11.7 13.5 14.0 12.1

Ensemble 90.9 10.7 40.0 11.1 13.3 10.7 10.4 10.2 13.6 18.2 13.5

Full 26.4 15.8 11.4 15.5 7.4 10.3 10.3 7.4 13.0 16.4 8.4
Max. 1M loss (%) Size 31.9 7.1 9.2 12.7 6.5 9.2 6.7 8.0 6.3 8.3 6.2

Ensemble 28.7 10.7 9.0 6.4 7.6 10.7 8.2 6.0 7.5 9.9 8.0

Full 112.1 113.0 99.5 138.1 129.2 129.2 129.4 128.1 126.3 134.1 129.9
Monthly one-way turnover (ann. %) Size 115.9 138.8 104.9 131.9 126.6 125.9 125.6 125.3 121.9 128.2 125.7

Ensemble 115.2 146.7 99.9 135.5 130.2 129.3 128.8 127.8 125.6 133.6 130.4

Full 22.6 20.1 20.8 23.8 40.3 39.6 39.7 40.4 39.3 42.7 42.1
FF6 α (ann. %) Size 24.1 37.9 10.7 30.5 48.5 48.5 46.9 47.2 43.8 48.7 49.4

Ensemble 24.8 38.8 16.4 33.1 48.6 48.5 47.5 47.2 45.8 49.4 49.3

Full 5.46 7.43 7.94 5.56 12.2 12.35 11.9 12.35 11.32 12.15 12.2
FF6 t-stat Size 5.08 9.99 4.22 9.29 12.95 13.43 13.07 12.7 12.08 12.09 12.91

Ensemble 5.1 11.1 5.69 8.43 12.8 13.51 12.8 12.68 12.12 12.63 12.81

Full 84.0 74.3 87.1 71.7 130.0 127.7 127.8 131.5 129.7 132.6 134.9
FF6 break-even cost (bps) Size 86.8 113.7 42.6 96.4 159.7 160.7 155.8 156.8 149.7 158.1 163.6

Ensemble 89.7 110.2 68.3 101.9 155.5 156.2 153.6 153.9 151.8 154.0 157.5

Full 81.0 72.0 87.5 70.3 124.4 120.7 122.3 127.8 126.3 127.2 129.9
HXZ break-even cost (bps) Size 84.8 108.0 40.6 87.7 153.2 154.6 150.0 151.5 142.9 149.7 157.0

Ensemble 86.8 104.8 67.1 96.2 149.7 149.6 147.5 149.0 146.2 146.8 151.6
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Table 4.14: Out-of-sample performance of machine learning portfolios under
different training regimes in the top 30% of stocks
This table presents VW top-minus-bottom portfolio statistics for machine learning models
trained using three approaches: Full, Size, and Ensemble. Results are presented within
the large stock universe, i.e., the top 30% of stocks. The Full model follows the standard
approach using all available stocks, whereas the Size model trains three separate models
for large, mid, and small stocks and then concatenates the predictions to form portfolios.
The Ensemble model is the average of the return predictions from the Full model and
Size model. The table presents the performance statistics of these portfolios, including
the annualized mean, standard deviation, Sharpe ratios, maximum drawdown, maximum
one-month loss, average monthly one-way turnover, annualized FF6 alpha and t-statistic,
and break-even transaction costs under the FF6 and HXZ risk models. The OOS period
is from January 1987 to December 2021.

Metric Model OLS ENET RF GBRT NN1 NN2 NN3 NN4 NN5 ENS ENSNN

Full 9.4 5.3 8.5 3.2 10.6 11.9 10.5 11.2 11.0 11.6 11.9
Portfolio return (ann. %) Size 11.7 14.7 8.9 11.5 15.3 21.5 18.8 18.5 13.2 20.1 19.7

Ensemble 11.7 12.7 11.1 12.1 14.8 17.9 17.4 15.8 16.0 17.2 17.5

Full 13.0 12.2 12.5 15.5 12.4 13.1 13.5 14.2 14.9 13.1 13.6
Volatility (ann. %) Size 16.7 11.9 13.3 15.1 14.3 15.2 15.8 14.8 13.6 15.6 15.7

Ensemble 14.8 11.9 12.7 13.5 14.3 14.2 15.9 15.1 15.1 14.4 15.2

Full 0.73 0.43 0.68 0.21 0.85 0.91 0.78 0.79 0.74 0.88 0.88
Sharpe ratio Size 0.7 1.23 0.66 0.76 1.07 1.41 1.19 1.25 0.97 1.29 1.25

Ensemble 0.79 1.07 0.87 0.9 1.03 1.26 1.09 1.04 1.06 1.19 1.15

Full 44.5 45.2 27.1 103.6 44.1 32.3 25.9 49.1 43.6 35.7 35.3
Max. drawdown (%) Size 58.3 15.7 75.2 35.2 22.1 18.8 23.2 31.3 57.9 21.2 23.8

Ensemble 44.9 45.2 20.0 20.3 26.3 22.2 25.8 33.5 32.2 23.7 26.6

Full 16.4 12.8 13.7 19.2 11.3 12.5 16.2 16.3 13.9 18.4 15.9
Max. 1M loss (%) Size 14.5 11.4 19.8 23.5 15.7 15.2 23.0 20.0 14.2 21.2 20.9

Ensemble 16.7 9.5 16.6 9.8 15.3 13.5 16.5 14.6 10.1 16.2 13.6

Full 128.4 116.3 112.2 148.3 133.5 132.7 133.9 135.2 135.4 139.4 136.0
Monthly one-way turnover (ann. %) Size 124.4 119.2 124.0 142.1 136.1 137.9 136.2 134.1 129.9 137.6 136.1

Ensemble 127.9 151.4 119.8 149.0 138.1 137.2 138.1 137.4 134.9 142.0 139.2

Full 8.3 3.8 8.8 2.9 9.5 10.3 9.6 9.6 9.0 10.1 9.9
FF6 α (ann. %) Size 9.5 15.0 7.9 10.8 14.7 20.8 18.5 16.7 11.1 19.4 18.8

Ensemble 9.8 12.4 10.1 11.8 13.4 16.5 16.9 14.7 13.6 15.6 15.9

Full 3.56 1.69 3.69 1.05 3.73 4.13 4.07 3.73 3.25 4.55 4.01
FF6 t-stat Size 3.27 7.09 3.95 3.94 6.49 7.27 6.66 6.77 4.38 6.44 6.52

Ensemble 3.76 5.72 5.1 5.37 5.32 6.46 5.93 5.34 4.52 6.6 5.83

Full 26.9 13.8 32.6 8.1 29.7 32.3 30.0 29.7 27.6 30.2 30.3
FF6 break-even cost (bps) Size 31.7 52.4 26.5 31.8 44.9 62.9 56.5 51.9 35.7 58.7 57.5

Ensemble 31.8 34.2 35.3 33.0 40.4 50.1 50.9 44.5 42.1 45.7 47.7

Full 23.8 13.7 33.7 6.2 26.6 30.1 27.6 27.3 28.7 28.4 28.0
HXZ break-even cost (bps) Size 28.6 49.2 23.0 28.3 40.8 58.0 51.7 48.8 33.5 53.2 54.3

Ensemble 27.9 31.8 33.8 27.1 36.5 48.2 46.7 40.1 43.6 40.6 43.1
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Table 4.15: Out-of-sample performance of machine learning portfolios under
different training regimes in the middle 40% of stocks
This table presents VW top-minus-bottom portfolio statistics for machine learning models
trained using three approaches: Full, Size, and Ensemble. Results are presented within the
middle stock universe, i.e., the middle 40% of stocks. The Full model follows the standard
approach using all available stocks, whereas the Size model trains three separate models
for large, mid, and small stocks and then concatenates the predictions to form portfolios.
The Ensemble model is the average of the return predictions from the Full model and
Size model. The table presents the performance statistics of these portfolios, including
the annualized mean, standard deviation, Sharpe ratios, maximum drawdown, maximum
one-month loss, average monthly one-way turnover, annualized FF6 alpha and t-statistic,
and break-even transaction costs under the FF6 and HXZ risk models. The OOS period
is from January 1987 to December 2021.

Metric Model OLS ENET RF GBRT NN1 NN2 NN3 NN4 NN5 ENS ENSNN

Full 23.3 16.4 17.5 15.1 29.7 28.7 28.9 30.1 29.1 31.5 30.8
Portfolio return (ann. %) Size 24.0 31.2 13.8 23.5 37.2 37.6 37.4 37.5 35.8 36.7 39.1

Ensemble 25.8 30.8 18.0 23.1 37.4 36.3 36.9 36.2 34.9 37.8 38.5

Full 18.0 12.2 14.0 15.8 14.7 14.4 15.6 15.4 15.0 15.7 15.4
Volatility (ann. %) Size 20.9 17.5 18.0 18.7 17.8 18.8 18.7 18.4 18.8 19.6 18.7

Ensemble 20.3 15.2 17.3 13.5 16.9 17.1 18.0 17.4 16.8 18.3 18.0

Full 1.29 1.34 1.25 0.96 2.01 2.0 1.85 1.95 1.94 2.01 2.00
Sharpe ratio Size 1.15 1.78 0.77 1.25 2.09 2.0 2.0 2.04 1.91 1.87 2.09

Ensemble 1.27 2.04 1.04 1.71 2.22 2.13 2.05 2.07 2.07 2.07 2.13

Full 74.8 24.4 28.4 51.2 34.1 31.6 43.1 40.9 40.3 35.1 35.9
Max. drawdown (%) Size 80.4 48.5 58.9 62.8 35.1 31.5 42.0 29.6 38.3 36.8 31.6

Ensemble 78.1 28.9 45.9 35.6 32.9 30.7 41.6 36.7 36.7 36.9 32.2

Full 27.7 16.2 11.1 16.0 17.8 15.2 20.5 16.9 20.9 21.7 16.7
Max. 1M loss (%) Size 31.1 23.4 28.3 38.9 19.5 21.9 23.3 19.7 21.1 20.2 21.8

Ensemble 28.1 14.9 24.3 16.9 19.8 20.7 20.2 19.6 21.2 21.9 20.4

Full 119.2 116.3 104.9 144.3 131.0 131.6 131.6 131.1 131.1 135.9 132.5
Monthly one-way turnover (ann. %) Size 121.0 140.1 113.1 134.7 130.9 130.0 130.5 130.3 128.5 129.5 130.5

Ensemble 121.5 147.9 108.7 140.5 133.2 132.9 132.5 132.3 131.6 136.1 134.5

Full 21.2 15.5 17.6 12.3 27.7 26.6 26.6 27.5 26.5 28.6 28.2
FF6 α (ann. %) Size 22.7 30.6 12.2 22.5 35.4 35.5 35.3 35.7 33.7 34.9 37.0

Ensemble 24.0 30.0 17.2 21.3 35.4 34.4 34.7 34.6 32.7 35.9 36.1

Full 5.38 5.8 6.04 4.01 8.23 8.84 7.8 7.84 7.99 8.17 8.15
FF6 t-stat Size 4.74 6.93 3.17 5.54 7.83 8.05 7.61 8.14 7.49 7.46 8.13

Ensemble 5.18 8.18 4.86 7.51 8.53 8.53 8.1 7.87 8.09 8.01 8.24

Full 74.1 55.5 69.7 35.5 88.1 84.2 84.2 87.4 84.2 87.8 88.8
FF6 break-even cost (bps) Size 78.1 91.0 44.8 69.5 112.7 113.9 112.8 114.1 109.2 112.2 118.2

Ensemble 82.4 84.6 66.0 63.0 110.6 107.9 109.0 108.9 103.5 110.0 111.8

Full 69.4 53.5 64.9 34.8 85.2 79.9 81.8 85.0 83.8 84.1 87.1
HXZ break-even cost (bps) Size 75.9 88.1 49.5 66.8 111.1 111.2 111.1 112.5 108.5 108.5 116.9

Ensemble 79.0 82.3 65.9 61.3 107.9 105.1 106.4 106.6 103.1 105.4 109.0
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Table 4.16: Out-of-sample performance of machine learning portfolios under
different training regimes in bottom 30% of stocks
This table presents VW top-minus-bottom portfolio statistics for machine learning models
trained using three approaches: Full, Size, and Ensemble. Results are presented within
the smallest stock universe, i.e., the smallest 30% of stocks. The Full model follows the
standard approach using all available stocks, while the Size model trains three separate
models for large, mid, and small stocks and then concatenates the predictions to form
portfolios. The Ensemble model is the average of the return predictions from the Full
model and Size model. The table presents the performance statistics of these portfolios,
including the annualized mean, standard deviation, Sharpe ratios, maximum drawdown,
maximum one-month loss, average monthly one-way turnover, annualized FF6 alpha and
t-statistic, and break-even transaction costs under the FF6 and HXZ risk models. The
OOS period is from January 1987 to December 2021.

Metric Model OLS ENET RF GBRT NN1 NN2 NN3 NN4 NN5 ENS ENSNN

Full 33.6 29.4 27.1 38.8 54.0 51.0 52.2 52.1 53.7 57.9 55.7
Portfolio return (ann. %) Size 32.4 45.3 10.2 31.6 63.6 64.7 64.8 63.4 60.8 62.6 66.8

Ensemble 35.9 49.2 19.4 44.3 64.4 60.9 62.6 62.5 60.0 66.3 66.4

Full 21.6 14.6 16.3 26.6 15.9 15.2 15.1 16.2 17.2 18.3 15.8
Volatility (ann. %) Size 21.1 20.1 13.9 19.2 18.5 19.6 19.6 19.8 20.5 19.1 20.4

Ensemble 23.0 16.9 14.5 25.7 18.5 17.6 18.6 17.9 19.2 19.4 19.4

Full 1.56 2.02 1.66 1.46 3.4 3.35 3.45 3.22 3.12 3.16 3.52
Sharpe ratio Size 1.53 2.25 0.74 1.65 3.44 3.3 3.31 3.21 2.96 3.28 3.28

Ensemble 1.56 2.9 1.34 1.72 3.48 3.47 3.37 3.49 3.13 3.41 3.43

Full 115.1 19.8 16.5 48.4 16.8 17.4 10.3 13.5 17.0 35.0 14.7
Max. drawdown (%) Size 92.3 38.7 40.5 37.6 19.1 13.7 17.8 14.1 18.4 19.8 15.0

Ensemble 104.8 19.5 21.2 25.5 15.9 13.3 16.4 18.9 14.3 14.9 13.3

Full 38.0 12.0 16.5 15.9 15.1 14.0 10.3 11.6 17.0 26.7 14.7
Max. 1M loss (%) Size 36.0 16.0 16.6 15.4 12.4 9.6 9.7 10.7 12.9 9.1 12.0

Ensemble 37.3 10.3 12.4 14.4 11.9 9.1 13.9 17.2 12.7 12.7 10.8

Full 118.0 118.1 106.4 149.5 142.2 142.0 142.1 141.1 140.5 145.9 143.4
Monthly one-way turnover (ann. %) Size 129.4 163.3 123.3 146.2 139.5 139.4 139.3 139.4 139.3 143.7 139.9

Ensemble 125.9 161.4 121.0 151.7 142.8 141.8 142.1 141.3 140.4 147.5 144.1

Full 32.5 30.4 26.6 35.1 52.5 49.8 50.9 50.5 51.7 55.2 53.8
FF6 α (ann. %) Size 31.3 43.9 10.0 30.9 61.9 62.5 61.6 61.4 59.3 61.0 64.8

Ensemble 34.9 48.4 18.2 40.9 62.3 59.3 60.1 60.7 57.2 64.1 64.4

Full 6.93 8.42 7.85 5.78 13.09 13.62 13.77 12.92 11.49 11.47 13.57
FF6 t-stat Size 6.29 9.82 3.89 8.03 12.64 12.37 12.54 12.12 11.06 12.07 12.11

Ensemble 6.44 12.26 6.02 6.99 12.77 13.91 12.81 13.58 11.87 12.32 13.1

Full 114.6 107.4 104.3 97.9 153.9 146.0 149.3 149.0 153.3 157.7 156.3
FF6 break-even cost (bps) Size 100.9 112.1 33.9 88.0 184.8 186.9 184.4 183.5 177.5 176.9 193.0

Ensemble 115.5 125.0 62.5 112.3 181.7 174.1 176.3 179.0 169.7 181.2 186.1

Full 108.5 103.0 103.9 96.8 147.9 138.9 145.8 143.8 147.5 151.9 151.9
HXZ break-even cost (bps) Size 97.5 108.0 30.6 87.2 177.2 180.0 179.0 176.5 168.0 170.2 184.3

Ensemble 112.1 121.8 62.3 110.1 175.4 168.8 170.8 173.1 163.8 176.3 180.4
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Chapter 5

Conclusions & future research

Through this thesis, I have challenged commonly held beliefs in empirical finance,

presenting modern takes on traditional and more innovative models. Specifically, I

explored three distinct topics in empirical finance:

1. Asynchronicity in financial time series

2. The death of the S&P index effect

3. Biases and overfitting when training machine learning models for return

prediction

Although each chapter is distinct, a common thread of comparing traditional and

innovative models persists. I have emphasized the need for continuous innovation

in empirical finance research by comparing, contrasting, and challenging commonly

held beliefs.

5.1 Tradition and innovation

5.1.1 Asynchronicity in financial time series

Asynchronicity is a pervasive feature of financial time series, directly impacting

inference in empirical models that assume contemporaneous measurement of time-

series observations. This thesis has demonstrated the value of using DTW, a non-

parametric, unsupervised machine learning technique, to measure and correct for

asynchronicity between financial time series. This innovative approach has allowed

for new insights into market behaviors, such as the CAPM beta anomaly and the

analysis of intraday price leadership between liquid futures contracts. The DTW
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technique has scope for applications in other areas of financial economics where

asynchronicity drives misestimation and inference in modeling.

Future research on asynchronicity could further explore the potential of DTW in

applications such as disentangling systematic and idiosyncratic risk changes when

stocks are added to an index or measuring intraday betas to study diurnal patterns

in intraday stock returns. Moreover, a formal price discovery measure using DTW

can be developed.

5.1.2 The S&P index effect

By examining a full sample of S&P 500, S&P 400, and S&P 600 index changes, this

thesis has shown that the S&P index effect has not disappeared but rather migrated.

The index effect is still present for stocks added to the S&P U.S. indexes from

outside the combined universe of S&P 1500 stocks. This finding has implications for

passive investment managers, allowing them to adjust their portfolios in response to

changing market dynamics. In addition, this research has demonstrated the presence

of informed traders in the options market, who trade ahead of index announcements

and attempt to profit from such changes.

Future research could expand upon these results by applying the same analysis to

global indexes, such as the MSCI World, MSCI Small Cap, and MSCI Emerging

Markets indexes, to further understand the implications of index change procedures

on underlying stock return behavior. With the continued growth of passive

investing and the increasing importance of index vendors such as S&P and MSCI,

understanding the implications of index vendor policies on the functioning of

financial markets and ensuring that unintended consequences from such mechanical

behaviors are limited will be crucial.

5.1.3 Training machine learning models in finance

This thesis has explored the role of data and customization in training machine

learning models for stock return prediction, demonstrating that splitting the current

training approach into group–specific sub-samples can achieve superior returns

compared with training on the full sample. This finding counters the intuition that

"more data are better" when training machine learning models and highlights the

potential performance gains that can be achieved over the current approaches in

the literature. In particular, the current approach of predicting raw excess returns

can introduce various biases into the machine learning training process, producing

sub-optimal predictions for a large portion of the stock universe of interest. Superior
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machine learning model performance for predicting cross-sectional returns can be

achieved by applying simple regularization to raw excess returns.

Future research in this area can focus on the relationship between the choice of

training data and machine learning return predictions and on the interpretability

of machine learning models in finance. Interpretability is critical to the success and

longevity of machine learning models in finance, particularly for use by regulated

entities such as banks. Further, I trained three independent size-specific models in

this study and simply concatenated the predictions. Future research could explore

linking mechanisms between these models, such as using the previous month’s

performance of the machine learning model trained on large stocks as an input

feature to the small stock prediction model.

An important area of future research is exploring the optimal size of the data used to

predict stock returns in the formation of trading strategies. The simplest approach is

to simultaneously predict the entire cross-section using a single parsimonious model.

However, I have shown how in a machine learning framework, such an approach can

lead to sub-optimal outcomes. At the other end of the spectrum is individually fitting

models for each stock to predict returns, and then concatenating all the predictions

into a trading strategy. Such an approach is both computationally expensive and

cannot easily take advantage of the known cross-sectional factor structure in stock

returns. Thus, understanding what the ideal middle ground between these two

scenarios for training machine learning models to price the cross-section is is an

important future research area.

5.2 Implications and applications

This thesis contributes to the field of financial economics and asset pricing by

addressing the gaps in the understanding of asynchronicity in financial time series,

the evolving nature of the S&P index effect, and the application of machine learning

models in asset pricing. By challenging conventional beliefs and presenting novel

approaches, this research helps enhance the accuracy and effectiveness of financial

models. In this study, the development and application of innovative techniques,

such as DTW, has led to the discovery of new insights into market behaviors, and

accordingly to more informed decision-making processes for investors, analysts, and

policymakers.

The implications of this research extend beyond academia and to real-world

applications in the financial industry. The insights gained from analyzing

asynchronicity can lead to more accurate risk measurement and better portfolio
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risk management. The findings on the evolution and migration of the S&P index

effect offer valuable information to passive asset managers, enabling them to adjust

their portfolios in response to changing market dynamics. Additionally, exploring

machine learning models in finance provides a foundation for more sophisticated

and precise prediction models that can help guide investment decisions and

risk management. By acknowledging the limitations of traditional models and

embracing innovative approaches, this thesis ultimately helps develop more accurate

models of financial markets.

5.3 Future research

There are several areas where future research can further build upon the findings of

this thesis:

1. Developing more advanced methods for measuring asynchronicity that address

the limitations of DTW and exploring other potential applications of DTW.

2. Measuring the recent behavior of the index effect in other international indexes,

such as MSCI World, MSCI Small Cap, and MSCI Emerging Markets

3. Investigating the selection method of training data for machine learning models

in finance, focusing on understanding the relationship between the choice of

training data and subsequent machine learning return predictions.

4. Exploring how to create machine learning models that hedge poor performance

of traditional asset pricing models.
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