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Abstract

Robot musicians have the potential to revo-
lutionise the way humans perceive and create
music. Recent breakthroughs in this field have
tended to focus more on the digital generation
of music. Instead, we address how a musician’s
physical embodiment can be translated to a
robotic arm. Robots endowed with human-like
musical capability open the possibility for wider
applications such as human-robot bands, musi-
cal education and musical art. Prior work in
this area tends to rely on pre-programmed ac-
tuation which is limited to simple motion and
sound. In this paper, we propose a robotic sys-
tem capable of imitating a human musician,
with a focus on percussion instruments. Our
system consists of a method for recording the
human demonstration, a compact continuous
representation of the demonstrated motion and
a motion reproduction method which consid-
ers the dynamic constraints of the robot. We
present results of our system and show that it
is capable of closely reproducing the motion of
the human percussionist.

1 Introduction

Robotic musicianship is an emerging field where robots
manifest music in much the same way humans have
throughout history. Robotic musicians have a wide po-
tential of applications, including collaborating with mu-
sicians during live performances (human-robot bands),
musical education and musical art. However, recent
breakthroughs in this area have been oriented towards
digital generation of music [Briot, 2021], such as through
generative artificial intelligence (AI) [Shahriar, 2022], in-
stead of through physical actuation. This leaves much
to be desired, especially when highly capable robots are
becoming increasingly widely available.

In this paper, we propose a robotic system capable
of imitating human musicians, with a focus on percus-

Figure 1: UR3 Robot arm imitating a human percus-
sionist playing a caxixi (percussion instrument).

sion instruments. Prior work typically focuses on ei-
ther machine musicianship (machines with musical skills
such as listening, performance and composition) or musi-
cal mechatronics (physical devices that generate sound).
For example, existing robot musicians typically use pre-
programmed actuation and thus are limited to simple
motion and sounds. Our work aims to bridge machine
musicianship and musical mechatronics by manifesting
highly capable cobots with human-level musical skills.

Endowing robots with skills through human demon-
stration is a well-studied field in robotics [Ravichandar
et al., 2020]. However, most methods tend to be sensi-
tive to imperfect demonstrations as a result of noisy per-
ception. Furthermore, our problem setting is challeng-
ing because there is no direct mapping between the hu-
man motion and the robot, known as the correspondence
problem [Nehaniv et al., 2002]. This is further com-



pounded by the fact that the robot may have kinematic
constraints, such as fewer degrees of freedom (DoF), and
dynamic constraints, such as velocity and acceleration
limits. By leveraging recent work in this area we aim to
design a system which facilitates overcoming these chal-
lenges.

Our system is inspired by a hybrid reinforcement
learning (RL) and learning from demonstration (LfD)
framework [Nematollahi et al., 2022] which performs on-
line refinements to the demonstrated motion via feed-
back from physical interactions with the environment.
In the context of this work, sound discrepancy between
the human and the robot could be used as feedback.
While a refinement process is not implemented in this
paper, we propose a system for enabling such a process
and reserve addressing this scenario in future work.

In [Nematollahi et al., 2022], authors utilise a Gaus-
sian Mixture Model (GMM) for a compact representa-
tion of the human trajectory. However, we show that
such a representation is unsuitable for reproducing the
complex motions of the human percussionist. Instead,
we propose to use a Gaussian Process (GP) with opti-
mised inducing points which has far better representa-
tional capabilities.

In this paper, we describe the proposed system, in-
cluding our method for recording the motion of a human
percussionist, a suitable trajectory representation for use
within an RL refinement framework and a motion repro-
duction method which respects the dynamic constraints
of the robot. To the best of our knowledge, this work
is the first attempt at programming a robotic musician
directly from human demonstration. We demonstrate
the efficacy of our method in producing a good baseline
motion reproduction of the human percussionist.

2 Related Work

In this section we cover related work in the relevant areas
of robots imitating humans and robotic musicians. First
we discuss trajectory representations and learning from
human demonstration. Then we turn our attention to
machine musicianship and musical mechatronics.

2.1 Trajectory Representation

Dynamical system-based control methods leverage sta-
tistical models as a compact and robust trajectory rep-
resentation. Several parameterised models have been
utilised in prior work, including GMMs [Li et al., 2021;
Nematollahi et al., 2022], GPs [Mukadam et al., 2016;
Bhardwaj et al., 2020] and dynamic movement primi-
tives (DMP) [Su et al., 2020]. While the latter two pro-
vide a more accurate representation, DMPs can be less
robust to perturbations [Ginesi et al., 2021]. GMMs tend
to be lightweight; however, have lower representational

power [Ratiu and Prichici, 2017]. GPs have better repre-
sentational power; however, at the cost of increased com-
putational complexity [Liu et al., 2020a]. This complex-
ity depends on the number of required inducing points
(representative points in the trajectory) to effectively fit
to the trajectory. In [Le Gentil and Vidal-Calleja, 2023],
authors demonstrated that GPs can achieve high perfor-
mance with a relatively small number of optimised in-
ducing points. GPs additionally have other useful appli-
cations in robotics such as imposing velocity constraints
and principled modelling of noise.

2.2 Learning from human demonstration

Learning from demonstration (LfD) is a popular ap-
proach for teaching robots skills through expert demon-
strations. Commonly, LfD methods use kinaesthetic
teaching or teleoperation to demonstrate the skill di-
rectly on the robot system [Rozo et al., 2013; Zhu et
al., 2018; Savarimuthu et al., 2018; Gao et al., 2019;
Liu et al., 2020b; Su et al., 2021]. While this avoids
correspondence issues [Rakita et al., 2017], by directly
mapping the demonstration trajectory to the robot tra-
jectory, it can be restrictive on the demonstrator, result-
ing in unnatural and impeded motion.

In the context of teaching a robot to imitate a human
percussionist, this can be severely limiting. Instead we
would like to enable musicians to play their instrument
naturally during the demonstration. However, as a con-
sequence several challenges arise, such as no direct map-
ping between the human and robot due to differences in
kinematics and dynamics.

The work in [Sukkar et al., 2023] partly addresses
this issue; however, only accounts for kinematic dis-
crepancies. Recent work proposed a hybrid RL and
LfD approach which performs online refinements to the
modelled human trajectory through physical interactions
with the environment [Nematollahi et al., 2022]. Such
a method is promising for addressing this problem and
correcting for discrepencies, for example due to sensor
noise and model error, between the human and repro-
duced demonstration.

2.3 Machine Musicianship and Musical
Mechatronics

Research at the intersection of music and robotics gen-
erally focuses on either machine musicianship or musi-
cal mechatronics. Machine musicianship emphasizes the
development of robotics focusing on music perception,
composition, performance, and theory [Savery et al.,
2021]. Musical mechatronics, instead addresses the con-
struction of physical devices that generate sound through
mechanical means [Kapur, 2005]. Machine musician-
ship and musical mechatronics are not necessarily bi-
nary, however research groups have tended to focus on
one area.



Figure 2: Caxixi percussion instrument. Sounded by
shaking the instrument.

In machine musicianship recent work has led to ad-
vancements such as a rapping robot, able to interact in
real-time [Savery et al., 2020]. A number of notable mu-
sical mechatronics efforts have addressed wind instru-
ments [Dannenberg et al., 2005; Solis et al., 2010], and
string instruments [Singer et al., 2004; Kusuda, 2008].
The majority of developments in robotic percussion-

ists have used solenoid actuation [Maes et al., 2011;
Kapur et al., 2011; Singer et al., 2004]. More recently
brushless direct current (BLDC) motors have been used,
and shown to allow for higher levels of musical expres-
siveness through an increased range of volumes and tim-
brel variation [Yang et al., 2020]. Despite progress in this
area, the above applications have been limited to simplis-
tic pre-programmed motions. We aim to enable highly
capable robotic musicians by learning directly from hu-
man demonstrations.

3 Problem Setup

In this section we describe the problem setup including
a formal statement of the human percussionist imita-
tion problem we are addressing. We additionally pro-
vide necessary background knowledge on GPs in order
to describe our trajectory representation approach.

3.1 Problem Statement

We wish to utilise a robotic manipulator for mimicking
a human playing a percussion instrument. The particu-
lar percussion instrument used in this paper is called a
caxixi and is pictured in Fig. 2; however, our approach
is percussion instrument agnostic. A caxixi is an indi-
rectly struck idiophone consisting of a basket and a hard
bottom with seeds inside. It is sounded by shaking the
instrument and depending on the angle can produce a
variety of sounds.

Given a captured human demonstration, the goal of
the method is to play it back with the robot. Thus the

demonstration trajectory needs to be recorded in a way
that facilitates this playback. Furthermore, due to local-
isation errors and differences in dynamics and kinematic
structure between the robot arm and the human arm, a
direct trajectory mapping is not possible. Thus, there is
a need to refine this trajectory such that the sound of
the caxixi being played by the robot matches that being
played by the percussionist.

In this paper, we do not address this refinement step.
However, we aim to facilitate such a process through
an appropriate parameterised trajectory representation,
similar to the approach in [Nematollahi et al., 2022].
Such a representation could be used in conjunction with
a reinforcement learning (RL) algorithm which indirectly
transforms the trajectory by perturbing the parame-
ters, which tends to be a significantly smaller search
space than the searching over the entire trajectory space.
Thus, a trajectory representation with minimal param-
eters is desirable. Given a loss function, such as sound
similarity [Slaney et al., 2008], the RL algorithm could
in turn learn to fine-tune the robot’s motion.

Furthermore, the robot arm has joint velocity and ac-
celeration limits. Thus we must ensure that the trajec-
tory being reproduced respects these limits. To facilitate
such a process we aim to design a system consisting of: a
method for capturing the sound and motion of a percus-
sionist, a suitable parameterised trajectory representa-
tion, and a motion reproduction method which respects
the dynamic constraints of the robot whilst remaining as
close to the demonstration.

3.2 Gaussian Process preliminaries

Gaussian Process regression is a non-parametric, proba-
bilistic interpolation method [Rasmussen and Williams,
2006]. This subsection briefly provides background
knowledge about GP regression using a simple 1D ex-
ample. Let us consider a signal h as a function of time
t. By modelling h(t) with a GP as

h ∼ GP(0, k(t, t′)), (1)

the covariance kernel function k(t, t′) represents the co-
variance between two instances of the signal

cov(h(t), h(t′)) = k(t, t′).

The definition of a GP states that any finite set of in-
stances of the signal corresponds to a multivariate Gaus-
sian distribution. Therefore, given N noisy measure-
ments of the signal

yi = h(ti) + η, with η ∼ N (0, σy) and i = 1, · · · , N,

it is possible to express the noisy instances as well as a
novel query point h∗(t) as a multivariate Gaussian dis-
tribution[

y
h∗(t)

]
∼ N

([
0
0

]
,

[
Ktt + σ2

yI (kt(t))
⊤

kt(t) k(t, t)

])
, (2)



with y = [y1, · · · , yN ]⊤ the vector of noisy observations,
kt(t) = [k(t0, t), · · · , k(tN , t)] the covariance vector be-
tween any time t and the timestamps of the observations,
and Ktt = [(kt(t0))

⊤, · · · , (kt(t0))
⊤] the covariance ma-

trix of the observations. The inference of h∗(t) using GP
regression corresponds to the conditioning of (2) with
respect to the observations. Accordingly the mean and
variance of h∗(t) are derived as

h∗(t) = kt(t)[Ktt + σ2
yI]

−1y

var(h∗(t)) = k(t, t)− kt(t)[Ktt + σ2
yI]

−1(kt(t))
⊤.

(3)

These last equations allow for the inference of the signal
h at any timestamp t in a data-driven manner without
relying on any explicit model of the signal.

4 Robotic Percussionist System

Here we describe our system for imitating a human per-
cussionist. First we describe our method for record-
ing the human demonstration. Then we describe our
compact and smooth trajectory representation method.
Lastly, we describe our motion reproduction method
which considers the dynamic contraints of the robot.

4.1 Recording Human Percussionist

For capturing the demonstrated percussion piece we
track the trajectories of both the percussionist’s back
palm and instrument. We do so using a VICON system
and by placing markers on the percussionist’s arm, as
shown in Fig. 3. Trajectories of the hand and instru-
ment are tracked relative to the shoulder which maps to
the base frame of the robot arm. The VICON collects
6-DoF poses at a frequency of 300Hz and we consider
demonstrations of around 20 s in duration. We denote
the position and orientation measurements from the VI-
CON system at time ti with p̃i and r̃i (i = 1, · · · , Q),
respectively.

4.2 Trajectory Model

In this work, we propose to use GPs to represent the mo-
tion of the human percussionist as a continuous 6-DoF
trajectory due to their greater representational capacity
over other similar methods. Similar to [Le Gentil and
Vidal-Calleja, 2023], our method uses a sparse set of op-
timised inducing values to perform GP regression instead
of using the raw pose measurements. This results in a
lower dimensional representation of the trajectory which
is crucial in reducing the search space for a refinement
RL algorithm whose actions would perturb these induc-
ing points.

In this work, the inducing points correspond to pairs
of arbitrarily-set timestamps and optimised values. For-
mally, let us model the trajectory with 6 independent

(a) VICON marker setup

(b) TF frames in Rviz

Figure 3: VICON marker setup for recording human
demonstration and corresponding rigid body frames
shown in Rviz.

GPs

p• ∼ GP(0, k(t, t′))

r• ∼ GP(0, k(t, t′)),

where p(t) = [px, py, pz]
⊤ is the instrument position, and

r(t) = [rx, ry, rz]
⊤ the orientation using the rotation vec-

tor formalism. By defining a set of inducing points at
fixed timestamps ti with ti−ti−1 = ∆t1, the position and
orientation of the instrument through time are defined
following (3)

p∗•(t) = kt(t)[Ktt + σ2
yI]

−1γp•

r∗•(t) = kt(t)[Ktt + σ2
yI]

−1γr• ,

1∆t = 0.1 s in our experiments.



with γp•
and γr• the vectors of position and orientation

inducing values. In order to accurately represent the VI-
CON measurements of the instrument’s trajectory with
our GP models, the inducing values are optimised with
non-linear optimisations:

{γ∗
px
,γ∗

py
,γ∗

pz
} = argmin

{γpx
,γpy

,γpz
}

(
Q∑
i=1

∥p∗
i (ti)− p̃i∥2

)

{γ∗
rx ,γ

∗
ry ,γ

∗
rz} = argmin

{γrx
,γry

,γrz
}

(
Q∑
i=1

∥r∗i (ti)− r̃i∥2
)
.

Note that to ensure the continuity of the rotation rep-
resentation (avoiding the 2π wrapping) we initialise the
inducing values similarly to [Le Gentil and Vidal-Calleja,
2023].
The computational complexity of GP regression is cu-

bic, O(N3), in the number of inducing points due to the
matrix inversion present in (3). While the sparsity of
the inducing points helps reduce this computation, more
importantly the times of the inducing points can remain
fixed during the fine-tuning procedure. Thus this inver-
sion would only need to be performed once for the entire
learning phase.

4.3 Motion Reproduction

Given a fitted GP model to the human demonstration,
we can reproduce a trajectory at any arbitrary time us-
ing (3). Although the GP produces inherently smooth
trajectories, it is still possible that intermediate way-
points can violate the joint velocity limits of the robot.

Thus, we first compute the corresponding joint space
trajectory of the robot using an inverse kinematics
solver. This joint space trajectory is then passed through
a moving average filter with an experimentally chosen
averaging window. As a final processing step, any re-
maining waypoints that violate the robot’s velocity con-
straints are removed from the trajectory.

5 Experiments

In this section we validate our proposed trajectory
model. First, we describe the proposed experimental
setup. Then, we present and discuss results demonstrat-
ing the suitability of our GP-based approach compared
to a GMM-based model.

5.1 Hardware and Software Setup

The proposed hardware setup for reproducing motion,
shown in Fig. 4, is composed of: a Universal Robots
UR3 robot arm, caxixi mounted on UR3 end-effector
and microphone (although not used at this stage). For
producing collision-free trajectories we utilise PyBullet
with OpenAI Gym and IKFast plugin [Cambel, 2023].
For sending trajectories to the robot we use the Univer-
sal Robots ROS driver [UniversalRobots, 2023].

(a) Simulated UR3 robot in PyBullet

(b) UR3, caxixi and Microphone

Figure 4: Experimental setup

5.2 Results

To evaluate our approach we recorded three percus-
sion demonstrations of approximately 20 second dura-
tion each. We used 200 inducing points for our GP
model. For comparison we fit a GMM with the same
number of Gaussian components. The root-mean-square
error for each model’s predicted position and orientation
is shown in Table 1. The GP greatly outperforms the
GMM with consistently low error.

We show the fit of our proposed GP model compared
to the GMM on an example recorded demonstration tra-
jectory in Fig. 5. As can be seen, the GP is able to follow
the measured trajectory very closely whilst the GMM
struggles and over-regularises the trajectory. However,
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Figure 5: GMM versus GP model fit to a portion of an example demonstrated motion (measured) with same number
of parameters.

Table 1: Quantitative comparison of GP and GMM trajectory reproduction. Values are RMSE between the raw
measurements from the demonstration and values queried from the models at the same timestamps.

Recording GP Position (m) GMM Position (m) GP Orientation (rad) GMM Orientation (rad)

1 0.006 0.0384 0.056 0.340
2 0.006 0.083 0.053 0.793
3 0.007 0.034 0.0522 0.304

it should be noted that this does not necessarily trans-
late to accurate sound reproduction, which is ultimately
what we desire. Furthermore, the smoothing of the GP,
whilst effectively filters out noise, does result in devia-
tion from some parts of the trajectory.

Using a ∆T = 0.1 s, we are able to accurately repre-
sent the trajectory with only approximately 3.5% of the
number of raw poses which is a large reduction in the
search space for the refinement process. In contrast, the
GMM, utilising the same number of parameters, results
in poor motion reproduction.

With our GP implementation, the inference of 6000
6-DoF poses with 200 inducing points takes only ap-
proximately 80ms. This is negligible with respect to
the trajectory duration which were in the order of 20 s.

6 Conclusion and Future Work

In this paper we proposed a robotic system capable of
closely imitating the motion of a human percussionist.
In our experimental results we showed that our pro-
posed trajectory representation model was effective in
reproducing the motion with a relatively low number of
parameters. This is crucial for future work where we
aim to implement a refinement process, via physical in-
teraction, which not only corrects for the percussionist’s
motion but also the sound produced by the instrument.

We additionally aim to take a more principled ap-
proach to dynamic constraint satisfaction in the motion
reproduction. A possible approach is to apply linear op-

erators [Särkkä, 2011] to the kernel function of the GP
and optimise for the given limits in joint velocity space.
Lastly, we believe our method could be applied to a wider
range of percussion instruments and potentially other
musical instruments.
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