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A B S T R A C T   

Long-term river discharge records are essential for water resource management, especially in semi-arid regions. 
However, the short instrumental records in Iran and the limited availability of local paleoclimate proxies to 
extend these records hinder our understanding of the full range of hydrologic variability. To help overcome these 
constraints, we have used annually-resolved tree-ring width chronologies from a network of sites spanning the 
eastern Mediterranean to the Tibetan Plateau to develop the first multi-centennial (~500 years) river discharge 
reconstruction for the Dez River basin, a catchment that supports substantial water extraction in southwestern 
Iran. A Hierarchical Bayesian Regression (HBR) model accompanied by parsimonious predictor selection was 
used to derive the most robust model output. The selection method retained 26 precipitation-sensitive tree-ring 
width chronologies, mainly from regions with similar hydroclimate features to the Dez River basin. The resulting 
reconstruction of the most downstream gauging station accounts for 62% of the variance in river discharge 
observations, closely matching known historical events and other regional reconstructions. Notably, the un
derlying recurrence pattern of extreme flow conditions suggests floods were more frequent than low flow ex
tremes (i.e., droughts) during much of the 18th and early 19th centuries. In contrast, during the early 17th 
century, droughts were more frequent. Worryingly, the frequency of both floods and droughts has increased 
simultaneously since the beginning of the twentieth century. Our reconstruction could be used to assess current 
water allocation strategies under conditions similar to past extended dry periods. When combined with future 
projections, they can help provide more robust assessment scenarios for water management.   

1. Introduction 

The combined effects of increased climate variability and greater 
demand for water resources have highlighted the importance of sus
tainable management for many of the world’s river basins (Loucks, 
2017). Access to quality-controlled hydrologic data, specifically river 
discharge records, is critical for achieving sustainable management 
(Stewart, 2015). However, the limited availability and short length of 
instrumental river discharge observations make it hard to assess long- 

term variability, directly affecting secure and sustainable water supply 
management. The development history of the Colorado River and the 
over-allocation of water resources based on an abnormally wet period 
(1906–1919) is a widely known example of this kind of problem (Galelli 
et al., 2021; Meko et al., 2022; Woodhouse and Lukas, 2006a). Data 
paucity remains a challenge for many parts of the world, especially arid 
and semi-arid regions like Iran. Additionally, these regions face chal
lenges due to substantial hydroclimatic variability, exacerbated by 
recent and predicted future anthropogenic climate change (Hobeichi 
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et al., 2022; Masih et al., 2009; Vaghefi et al., 2019). 
Precipitation in Iran is highly variable in both space and time due to 

seasonal cycles, the country’s large size and topographic complexity 
(Raziei et al., 2012). In recent decades, Iran has faced increased inter
annual variability, with severe drought and flood events dramatically 
impacting local communities. In 2019 a number of extreme flood events 
across Iran caused a human disaster and substantial loss of assets and 
infrastructure. This unprecedented flooding immediately followed a 
devastating multi-year drought (Alborzi et al., 2022). However, records 
of climate and river discharge only began with hydropower develop
ment in the mid-1950s. This hampers our understanding of recent 
extreme events, and whether they are unusual in the context of longer- 
term climate variability. 

Despite considerable uncertainty in climate projections, climate 
change has been identified as contributing to the magnitude and rapid 
transition between extreme events in Iran (Abbaspour et al., 2009; 
Rahimi et al., 2019). There is general agreement amongst climate 
models for increasing temperatures over Iran, but the effect of climate 
change on future rainfall is highly uncertain, especially over the Zagros 
Mountains. The lack of long-term and continuous data to appropriately 
evaluate and contextualise projected future trends in climate models has 
been recognized as one of the underlying reasons for this uncertainty 
(Rahimi et al., 2019). 

In areas with short hydrologic records, like Iran, stochastic time se
ries methods are commonly used to incorporate climate uncertainty in 
the water resources design or management plans (Mehrotra and Sharma, 
2006). However, stochastic models may not capture river discharge 
variability on decadal or longer timescales, which are important for 
future planning. Paleoclimate data, specifically annually resolved tree- 
ring chronologies, can provide additional information on the range of 
natural variability over multi-decadal time frames (Meko and Wood
house, 2011). Annual tree-ring widths (i.e., tree growth) and river 
discharge share common climatic controlling factors such as winter 
snowpack, precipitation, and summer temperature (Meko et al., 1995; 
Woodhouse and Lukas, 2006b). Thus tree-ring-derived records can be 
valuable proxies (i.e., predictors) for extending river discharge records 
back in time. 

To help understand hydrologic variability in southwestern Iran, we 
present the first multi-centennial tree-ring reconstruction for the Dez 
River basin using an Hierarchical Bayesian Regression (HBR) model. 
HBR models have been increasingly used for river discharge re
constructions (Devineni et al., 2013; Higgins et al., 2022; Rao et al., 
2020; Rao et al., 2018). The HBR framework shares common informa
tion across river discharge gauges within a basin, reducing uncertainty 
in the reconstruction by shrinking the number of model parameters. This 
means HBR models are especially beneficial for river discharge re
constructions in areas with only short instrumental records which are 
poorly suited to conventional linear regression techniques (Cook et al., 
2010; Harley et al., 2017; Meko and Woodhouse, 2011).We then 
investigate the patterns of low/high flow extremes and how their fre
quency of occurrence has varied over time and explore whether the 
recent spate of extreme events is unusual compared to the previous five 
centuries. Finally, we compare our reconstruction with documented 
historical flood/dry events and other hydroclimate reconstructions 
within the region and nearby countries to help validate our 
reconstruction. 

2. Study area and data 

2.1. Study area 

The geographic extent of the Dez basin stretches from 48◦10′ to 
50◦21′ eastern longitude and from 31◦34′ to 34◦7′ northern latitude in 
the southwestern part of Iran. The Dez River is the main tributary of the 
Karoon River, and joining together, they form the Great Karoon River 
(also known as the Karun and Karoun). Importantly, the Karoon River is 

a major source of water for agricultural and economic activity, with the 
largest withdrawal of any Iranian river system (Ashraf et al., 2019). The 
Dez River itself consists of two main tributaries, Sezar and Bakhtiyari. 
This river system originates from the Zagros Mountains and flows to
wards the Persian Gulf. A sub-basin area of about 16,200 km2 with an 
average annual flow of around 7,600 million cubic meters (M m3) 
contributes water into the Dez reservoir (3,300 M m3; shown in Fig. 1b). 
The Dez Dam enables about 125,000 ha of irrigated agriculture in 
Khuzestan and provides 520 megawatts of hydropower (Felfelani et al., 
2013). The dam has also been proposed as the primary alternative 
source of drinking water for more than 4.7 million people in the central 
and southern parts of Khuzestan province (Majedi et al., 2020). 

The average elevation of the basin is 1,970 m but ranges from as low 
as 330 m to 4,150 m at the highest point (Oshtoran Kuh; Fig. 1a). The 
Köppen-Geiger system has classified a range of climates in the region, 
from arid with hot and dry summers in the downstream areas to 
temperate with dry and cold summers in the upstream regions (Beck 
et al., 2018). The basin receives an average annual precipitation of 
around 500 mm, while its average potential evapotranspiration is about 
1,400 mm per year. Almost all precipitation falls during the wet season 
extending from November to May, with parts of it as snow during Jan- 
Mar over the upper regions of the river basin (Meidani and Araghine
jad, 2014; Saghafian and Davtalab, 2007). Westerly disturbances, mid- 
latitude cyclones that originate in the Mediterranean region and move 
eastward, control the intra-annual variability (Winstanley, 1973, Syed 
et al., 2010, Arsalani et al., 2021), while large-scale climate drivers such 
as the El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscil
lation (PDO) influence precipitation and river discharge variations on 
longer timescales (Meidani and Araghinejad, 2014). Fig. 1c shows the 
climatological basin-average monthly temperature and year-to-year 
variability in monthly basin-average precipitation. 

2.2. River discharge and climate data 

Daily river discharge data have been recorded at four hydrometric 
stations in the Dez River basin since 1955. Compared to other river 
basins in Iran, the Dez River has a relatively complete record of flow 
data, and the river had not been significantly impacted by upstream 
activities until recently (~2008). Daily river discharge data for three 
upstream gauges, namely Sepid Dasht Sezar (G21-285) at Sezar tribu
tary, Tang Panj Bakhtiyari (G21-293) at Bakhtiyari tributary, and Tale 
Zang (G21-295) on Dez River were directly sourced from Iran’s Water 
Resources Management Company (IWRMC) database for this study. A 
few daily values were missing in some years for G21-293 and G21-295, 
which accounted for<5% of the length of the January-June wet season 
(i.e., the target season for reconstruction). Therefore, their omission 
from the annual series was assumed not to have any noticeable impact. 
Also, the continued period of missing data at G21-293 during 
2008–2009 was outside the time period selected for building the 
reconstruction model. Table 1 summarizes the characteristics of gauges 
used in this study. 

The variability in monthly flows for the gauging stations is shown in 
Fig. 2 with a map of the river system in the top-left panel. River 
discharge from January-June accounts for more than 70% of the annual 
flow, and almost 50% of river discharge occurs during March-May 
(Fig. 2). River discharge follows the monthly variation seen in precipi
tation records but with a lag of more than one month. Flows in February 
and March are mostly direct run-off, while snowmelt accounts for most 
of the river discharge in April and May (Meidani and Araghinejad, 
2014). We used Pearson correlation and a two-sided hypothesis test to 
evaluate the relationship between ground station observations of 
monthly climate (precipitation and temperature) and averaged Jan-Jun 
river discharge (Fig. 3a) and identified the main climate seasons relevant 
to river discharge in the Dez basin. To evaluate the spatial pattern of this 
relationship across a wider area that stretches from the eastern Medi
terranean to the Tibetan Plateau, we used the CRU TSv4.06 dataset 
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(Harris et al., 2022). The CRU TS dataset is derived by the interpolation 
of monthly climate observations with an improvement in the interpo
lation method for the newer versions (Harris et al., 2020), and its ac
curacy has been suggested to be acceptable for countries located in the 
area mentioned above including Iran (Saemian et al., 2021) and 
Pakistan (Abbas et al., 2022). 

2.3. Tree ring data 

Few annually resolved local tree-ring chronologies have been 
developed from broadleaf or conifer climate-sensitive species in the 
central and southern Zagros Mountains, and only two of them go back to 
mid-1500 (Arsalani et al., 2021; Arsalani et al., 2018; Azizi et al., 2013). 
Remote tree-ring sites from the wider region, including Turkey, 
Pakistan, and other neighbouring countries can also be used for river 
discharge reconstruction as similar climate drivers affect these countries 
(Cullen and Demenocal, 2000; Martin-Benito et al., 2016; Rao et al., 
2018; Winstanley, 1973). Many long and well-replicated tree-ring 
chronologies exist from neighbouring countries providing a good source 
of information for river discharge reconstruction in Iran. 

For this study, we identified available tree-ring records from coun
tries neighbouring Iran, mostly within the scale of regional weather 
systems, defined as within a 2,500 km distance (Boers et al., 2019) from 
the basin boundary. An initial pool of approximately 380 annual-ring 
width series from Turkey, Georgia, Jordan, Lebanon, and parts of 
Greece to the west and Pakistan, Tajikistan, parts of India and a small 
part of Kyrgyzstan to the east were downloaded from the International 
Tree Ring Data Bank (ITRDB)(https://www.ncei.noaa.gov/products/pal 
eoclimatology/tree-ring). The raw annual ring-width records were then 
standardized using the Regional Curve Standardization (RCS) (Briffa 
et al., 1992) and the signal-free method (Melvin and Briffa, 2008) to 

remove growth trends thought to be unrelated to climate and to preserve 
decadal and longer (i.e., medium to low-frequency) climate variation. 
The chronologies obtained from this process were then used as pool of 
potential predictors for our river discharge reconstruction model. 

3. Methods 

3.1. Predictor selection 

From the initial pool of available tree-ring width chronologies, only 
those that extended up to and beyond 2001 were chosen for analysis. 
The end date of river discharge reconstruction (2001) was selected as a 
trade-off between a declining pool of chronologies and maximising the 
length of the overlapping instrumental period for calibration and veri
fication. We also included the one-year lagged tree chronologies (i.e., t 
+ 1) for river discharge predictors, as this year’s climate condition may 
affect tree growth in the following year (Rao et al., 2018). Since river 
discharge data were positively skewed at all three gauges, discharge was 
log-transformed to ensure that they were normally distributed (verified 
using a Kolmogorov-Smirnov test). Chronologies that correlated signif
icantly with log-transformed discharge (Pearson correlation, p < 0.05 
two-tailed t-test) were retained as the final predictors. Correlations of 
the chronologies were calculated both for the current year and the 
previous year (i.e., lag 0 and lag 1). To prevent unequal chronology 
representation in the predictor pool, only the highest correlated chro
nology was retained at either lag 0 or lag 1. Principal component anal
ysis was used to reduce the dimensionality of the data and hence the 
number of free parameters to be estimated (Cook et al., 1994). Thus, the 
principal component (PC) scores were used directly as model predictors 
rather than the tree-ring width chronologies. Only PCs with eigenvalues 
greater than one were used as final river discharge predictors following 

Table 1 
Summary data of the selected flow gauges on the Dez River.  

Gauge name Longitude (◦E) Latitude (◦N) River/Tributary Basin Area (km2) Average annual flow (M m3) Data period 

Sepid Dasht Sezar  48.88  33.22 Sezar 7,180 1,325 1956–2013 
Tang Panj Bakhtiyari  48.77  32.93 Bakhtiyari 6,437 4,307 1956–2013 
Tale Zang  48.77  32.82 Dez 16,200 7,610 1956–2013  

Fig. 1. (a) Topography of the Dez River basin and the locations of the river discharge gauges used in this study (red circles). (b) The position of the basin in the 
context of Iran and the wider West Asia region is shown on the right, with the orange triangles indicating the Zagros Mountain Range. (c) Boxplots showing monthly 
basin-average precipitation (mm, left axis) for the period of 1956–2013, with climatological basin-average monthly temperature (oC, right axis) for the same period 
plotted in blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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the Kaiser–Guttman cutoff criteria as an estimate of common shared 
signal (versus noise) between the tree ring predictors (Guttman, 1954). 

To ensure that the selected predictor locations share relatively 
similar hydroclimate features with the Dez River basin, we calculated 
the Knoben-Woods-Free distance (KWF; Knoben et al., 2018) between 
tree ring locations and the center of the river basin (Nguyen et al., 2020). 
The KWF is the Euclidean distance in the hydroclimate space charac
terized by aridity, moisture seasonality, and snow fraction indices at 
0.5◦ × 0.5◦ resolution. Knoben et al. (2018) sourced climatic data from 
CRU and river discharge data from Global Runoff Data Centre data ar
chives to calculate these indices. The KWF between the center of the Dez 
basin and each grid point in the analysis region (10◦N-20◦E and 50◦N- 
80◦E) ranged from 0 to 1.95. 

3.2. Reconstruction model 

Devineni et al. (2013) demonstrated that sharing common informa
tion across river discharge gauges through a Hierarchical Bayesian 
Regression (HBR) framework reduces the uncertainty in river discharge 
reconstruction. Such a model was used in this study, and it can be 
described as follows: 

yi,t|αiβi = αi + βi × Xt + εi,t  

εi,t ∼ MVN(0,Σe)

βi ∼ MVN
(
μβ,Σβ

)

With non-informative priors modelled as: 

αi ∼ N
(
0, 104)

μβ ∼ MVN
(
0, 104I

)

Σβ ∼ Inv − Wishartν0 (Λ0)

Σe ∼ Inv − Wishartν1 (Λ1)

Where yi,t is the averaged Jan-Jun river discharge recorded at gauge i 
in year t. X is the matrix of PCs of selected tree ring chronologies. βi is the 
vector of regression coefficients for the predictor PCs, αi is the regression 
intercept, and εi,t is the error term for gauge i in year t. As the river 
discharge data is highly skewed, we used the log-transformed data for 
modelling. Following Devineni et al. (2013), the back-transformed 
reconstruction data, i.e., inverse logarithm of HBR model estimates, 
were used for evaluating modelling skill. As all flow series are correlated 
with each other (Figure S1), a common multivariate normal distribution 
(MVN) was used to model the regression coefficients. Drawing the 
covariance structure of regression coefficients (βi) from this MVN allows 
the pooling of common information across river discharge gauges 
(Devineni et al., 2013). It also decreases the uncertainty by reducing the 
number of model parameters. The hierarchical structure of the regres
sion model is constructed by describing the MVN parameters using the 
hyperparameters of μβ and Σβ (Gelman and Hill, 2006). We assumed that 
the regression error terms could also be correlated across flow gauges by 
drawing them from a multivariate normal distribution with the covari
ance matrix of Σe. 

The priors of Σβ and Σe covariance matrices were taken to be inverse 
Wishart distributions with scale matrices of Λ0 and Λ1, respectively 
(Devineni et al., 2013). The scale matrices were defined as identity 
matrices with ν0 and ν1 degrees of freedom set to be one more than the 
number of predictors and one more than the number of gauges, 

Fig. 2. The location of three river discharge gauges (top-left panel) in the Dez River basin and boxplots showing the associated monthly and annual discharge (m3/s) 
over the instrumental period. The red outline in the Boxplots highlights the seasonal window (i.e. January through to June) selected for flow reconstruction. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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respectively (Devineni et al., 2013). Following Rao et al. (2018), we 
estimated the parameters of the joint posterior distribution by employ
ing a Gibbs sampler, a Markov Chain Monte Carlo (MCMC) method, 
through simulating three chains. A detailed description of the model was 
provided by Rao et al. (2018) and Devineni et al. (2013). 

We used a nested approach in which shorter predictors were 
sequentially dropped from the predictor pool when going back in time 
(Meko, 1997). The initial model was based on all the tree-ring predictors 
and a new regression model was built for each nest using the PCs scores 
of only the remaining tree-ring chronologies after the shorter series were 
dropped. No further nest was formed if there were fewer than two sig
nificant predictors. We then scaled the variance of reconstruction ob
tained from each nest to that of the instrumental data over the 
calibration period and appended the reconstruction of longer nests to 
the start year of the younger ones to develop the final reconstruction 
(Rao et al., 2018). The weighted ensemble method developed by (Cook 
et al., 2010) was also used to produce a series of river discharge re
constructions. The ensemble method explicitly incorporates the covari
ance between river discharge and the tree-ring series. This was done by 
multiplying the tree ring predictors by a power of their correlations with 
the river discharge data during the calibration period before principal 
component analysis to create each weighted ensemble (i.e. wTr = Tr×
rw, where wTr and Tr are the weighted and unweighted tree-ring series). 
The weights (w) ranged from 0 to 2 (0.0, 0.1, 0.25, 0.5, 0.67, 1.0, 1.5, 
2.0), with higher values giving increasing weight to those predictors 
most highly correlated with river discharge. Thus, PC scores of the 
weighted ensemble with higher weights (i.e., more than 0.5) are pri
marily influenced by tree-ring chronologies with stronger correlations 
rather than chronologies with weaker correlations. Note that only tree 
rings with significant correlations at the 5% level, i.e., r = ±0.29 in our 
case) are included. This method of perturbing predictors to generate the 
ensemble reconstruction acknowledges that the presence of noise in the 
data makes it difficult to determine an optimal correlation weight that 
should be applied to tree-ring predictors when incorporated into the 
reconstruction model (Cook et al., 2010). 

3.3. Model verification 

The relatively short overlapping period (1956–2001; 46 years) be
tween tree ring predictors and river discharge data made it hard to 
implement the conventional split-sample cross-validation method used 
in tree-ring reconstructions. Thus, we used the moving-block cross- 
validation approach described by Nguyen et al. (2020) to verify our 
regression model. This method enables the model to capture any regime 
shifts (Briffa, 1998) by withholding a contiguous block of data for 
verification and results in a set of scores useful for providing a robust 
estimate of the reconstruction skill (Nguyen et al., 2020). The size of the 
block was the median of the largest significant autocorrelation lag of any 
chronology in the predictor pool (i.e., 8 years). This meant ~ 17% of 
data was withheld for verification, and the remainder was used for 
calibration. This approach resulted in 39 iterations for each weighted 
PCA and for each nest. In each iteration, the regression model was 
calibrated on 36 years between 1956 and 2001 and validated on the 
omitted remaining contiguous block of 8 years. Considering the eight 
different correlation weights described in section 3.2 meant a total of 
312 (39×8) runs were undertaken to derive the final reconstruction and 
its verification statistics. Following Rao et al. (2020), we used the me
dian of all 312 runs, including both reconstructions and their relevant 
calibration-verification statistics, as the final reconstruction. 

The calibration period coefficient of multiple determination (CRSQ 
or R2), the verification period reduction of error (VRE), and the verifi
cation period coefficient of efficiency (VCE) defined by (Cook et al., 
1999) were used to assess the performance of our reconstructions. VRE 
evaluates the reconstruction relative to the calibration mean and ranges 
from − ∞ to 1, where values greater than 0 indicate the superiority of the 
reconstructions over the calibration mean. VCE is equivalent to the 

Nash-Sutcliffe Coefficient of Efficiency in hydrology (Nguyen et al., 
2020), and it is more rigorous than VRE as it measures the performance 
of reconstructions relative to the verification mean, always resulting in a 
smaller value compared to VRE unless the calibration and verification 
means are identical. Thus, VCE and VRE greater than 0 indicates some 
useful skill in reconstruction (Cook et al., 2010). The two verification 
values are calculated as follows: 

VRE = 1 −

[∑
(y − ŷi)

2

∑
(yi − yc)

2

]

VCE = 1 −

[∑
(yi − ŷi)

2

∑
(yi − yv)

2

]

Where yi and ŷi are observed and back-transformed reconstructed 
river discharge, yc is the mean of the actual data in the calibration 
period, while yv is the mean of the data in the verification period. 

3.4. Extreme event analysis 

Extreme low flow events were classified as values below the lower 
5th percentile of the reconstruction mean (Higgins et al., 2022; Hoang 
et al., 2016). Similarly, extreme high flows were above the 95th 
percentile. As the intervals between consecutive extreme low flow or 
consecutive extreme high flow are not normally distributed (Mudelsee 
et al., 2004), a non-parametric Gaussian kernel function was used to 
estimate the changes in the occurrence rates of extreme events. We 
followed the Sheather and Jones (1991) method to select the bandwidth 
of the Gaussian kernel function and obtained a 90% confidence band of 
the occurrence rates using 2,000 bootstrap simulations. 

Besides extreme low and high flow events, multi-year dry or wet 
episodes as well as the frequency of swings from wet to dry and vice- 
versa, are all important for water resources management, especially in 
semi-arid regions. Consequently, we identified the number of multi-year 
dry and wet events in the reconstruction period. A period of three or 
more years for which all reconstructed flows were smaller than the mean 
of reconstructions minus half of its standard deviation (σ; sigma) and at 
least two years of that was one sigma below the mean were recognized as 
multi-year dry events (Ben-Zvi, 1987). The opposite defined multi-year 
wet events. For each 30-year moving window, we calculated the tran
sition probability from dry to wet event by dividing the number of dry 
years (i.e., years with the reconstructed flow below the mean by more 
than 0.5 sigma (Ho et al., 2017)), which were followed by wet years, by 
the total number of the dry years within that window. Also, the transi
tion probability from a year with flow higher than the reconstruction 
mean by more than 0.5 sigma was considered as the probability of 
swinging from a wet event to a dry one. 

4. Results 

4.1. Selected tree ring predictors 

The predictor selection process retained 26 tree-ring width chro
nologies for the reconstruction (Table S1). Almost all the final tree-ring 
width predictors are from locations identified as climatically similar to 
the Dez basin with a KWF<0.75 (i.e., more climatically similar than the 
mean KWF calculated for all grids). Fig. 3b shows the locations of the 
selected tree-ring width predictors plotted on the KWF map. 

We also evaluated the relationship between monthly precipitation 
and temperature and Jan-Jun river discharge at Tale Zang station. As 
shown in Fig. 3a Jan-Jun river discharge positively correlates with the 
previous December (p < 0.05) and the current year January through 
April (p < 0.01 for February, March, and April) basin precipitation. The 
seasonal window of December through April accounts for more than 
75% of the basin’s annual precipitation, and it is highly correlated (r =
0.84, p < 0.001) with the river discharge series at all three gauges. Very 
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low rainfall in the summer months (Fig. 1c) means that these months 
generally have no significant relationship with river discharge. While 
temperature is not significantly correlated with river discharge in any 
single month, average Jan-Jun temperature is negatively correlated (p 
< 0.01, r = -0.38) with Jan-Jun river discharge at Tale Zang station. To 
assess the spatial footprint of the climate-to-discharge relationship, we 
computed Pearson correlation fields between Dec-Apr precipitation 
(Fig. 3c) and Jan-Jun temperature (Fig. 3d) with Jan-Jun river 
discharge. We found that Jan-Jun river discharge at Tale Zang is posi
tively correlated (p < 0.1) with Dec-Apr precipitation over a broad re
gion stretching from the Levant to the Karakoram. Applying correlation 
analyses to other precipitation products, such as datasets from the 
Global Precipitation Climatology Centre and the fifth generation of at
mospheric reanalysis, produced consistent results (Figure S2). Negative 
correlations (p < 0.1) with Jan-Jun temperature were also found with 
higher latitude areas from Anatolia to the eastern Caspian Sea. The 
correlation between the selected chronologies and Jan-Jun river 
discharge is consistent with the broad pattern of previously described 
temperature-river discharge and precipitation-river discharge 
correlations. 

4.2. River discharge reconstructions 

The final averaged Jan-Jun river discharge reconstruction for the Dez 
River basin from the selected tree ring chronologies spans 1510–2013, 

with instrumental data appended after 2001 (Fig. 4). The tree-ring width 
chronologies used in this study explained 50–62% of the variance in 
river discharge observations at each gauge during the calibration period 
(1956–2001). Table 2 shows the median skill scores used to evaluate the 
reconstruction validity for the best-replicated nest (1793–2001) and the 
whole reconstruction interval (1510–2001). 

The reconstructions provide meaningful information for the entire 
1510–2001 period; the median of VRE and VCE for the best-replicated 
nest ranges from 0.25 to 0.47, and the VCE values stayed positive for 
each flow gauge moving back in time until 1510. The median skill scores 
for each reconstruction nest from 1510 to 2001, for each of the three 
river discharge gauges, and the number of tree-ring width chronologies 
contributing to each reconstruction nest are presented in Table S2. The 
result for Sepid Dahst Sezar is the weakest of the three gauges as it has 
the lowest mean Jan-Jun river discharge, and it may be influenced by 
local conditions more than by broad climate signals captured by the 
selected chronologies (Nguyen et al., 2020; Strange et al., 2019). 

Fig. 4a shows the median of all 312 ensemble members for the most 
recent, best-replicated nest for the Dez River discharge at the most 
downstream gauge (Tale Zang, gauge G21-295) compared with the 
measurements over the instrumental period. As can be seen from Fig. 4a, 
the median of the reconstructions matches the instrumental flow, 
capturing both interannual variability and most of the extreme flow 
events. While some of the peak flows from 1969 to 1976 are under
estimated based on the median of reconstructions, they are located 

Fig. 3. (a) Pearson correlations between averaged Jan-Jun river discharge (1956–2001) at Tale Zang and month-by-month basin precipitation (blue) and tem
perature (red; *, p < 0.05) for months between prior year (t-1) July and current year (t) September. (b) The KWF distance between the center of the Dez basin and 
other locations within the geographical region of 10◦N-20◦E and 50◦N-80◦E. The black triangles show the locations of 26 tree-ring width chronologies with a 
significant correlation (p < 0.05) to all river discharge gauges used in regression modeling. (c) Spatial Pearson correlation fields (p < 0.1) comparing the averaged 
Jan-Jun river discharge and total Dec-Apr CRU precipitation fields during the period of 1956–2001. Infill shading in triangles show the mean Pearson correlation 
between averaged Jan-Jun river discharge at all gauges and each tree-ring width predictor. (d) Same as for figure (c) but with averaged Jan-Jun CRU temperature 
fields. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

S. Sharifazari et al.                                                                                                                                                                                                                             



Journal of Hydrology 624 (2023) 129895

7

within the range of the 90% confidence interval shown in Fig. 4. The 
mean of Jan-Jun river discharge at G21-295 during the instrumental 
period (1956–2013) is slightly lower than the mean over the 1510–2013 
reconstruction interval by ~ 2%. However, the period 1598–1655 
(equivalent length to the instrumental period) represents the lowest pre- 
instrumental river discharge and is significantly lower than the recon
struction mean by 22% (two-sided t-test p < 0.01). Thus, making de
cisions based on the instrumental flow average alone to manage the 
growing demands for water within the basin may be risky and result in 
overallocation in the future. The results for other gauges are similar to 
G21-295 (Figures S3 and S4). 

We used a 30-year sliding window to assess changes in the variance 
and the transition probability from wet to dry and dry to wet events in 
the reconstruction period. The largest variance occurred in the late 20th 
century, and the early 17th century had the lowest variance, a part of a 
consistent period of low variability occurring from ~ 1750 to ~ 1900. As 
shown in Fig. 5a, the variance of reconstructed flow for the instrumental 
period (1956–2001) is unprecedented over the whole reconstruction 
interval and is significantly greater than the mean reconstruction vari
ance for the period after 1700 (Levene’s test, p < 0.01). The recon
structed flow of this period accounts for more than 50% of the variance 
in river discharge observations in almost all three gauges. The transition 
probability plot in Fig. 5b shows two periods with frequent swings be
tween dry and wet events (1550–1690 and 1625–1785), followed by a 
long period of almost no transition events until 1925. After this stable 
period, the probability of rapid shifts between dry and wet events 

increased again. The transition probability from dry to wet events 
increased to a maximum after 1930, and from wet to dry events reached 
its highest after 1950. 

We identified multi-year wet/dry events over the reconstruction in
terval based on the definition given in section 3.4. These events are 
shown in Fig. 6. The longest multi-year drought event occurred in the 
early 17th century (1621–1630, 10 years), and the longest multi-year 
high flow period happened in the instrumental period (1992–1998, 7 
years). While the second-longest wet event occurred in the early 18th 
century (1717–1722, 6 years), the second longest-dry (1959–1967, 9 
years) event occurred during the instrumental period and is comparable 
with its corresponding longest duration event in terms of magnitude. 
The results in Figs. 5 and 6 demonstrate that the instrumental period has 
the highest variability over the entire reconstruction interval. 

4.3. Recurrence intervals of extremes 

A bandwidth of 35 years was selected for the nonparametric 
Gaussian kernel to analyse the occurrence rate of low and high-flow 
extreme events. We adopted a value slightly smaller than the esti
mated value (38 years) by the Sheather and Jones (1991) method as a 
slight under smoothing allows for easier identification of significant 
variation (Mudelsee et al., 2003). Fig. 7 shows the occurrence rate 
curves of the Dez River’s low and high flow extremes at G21-295 with a 
90% confidence band. Low-flow extreme events were identified as the 
years for which their corresponding river discharge values were below 

Fig. 4. (a) Instrumental (black) versus reconstructed (blue) average Jan-Jun river discharge in m3/s for Dez River G21-295 over the instrumental period 1956–2013 
with the 90% confidence interval for reconstruction shown in light sky blue. (b) Reconstructed averaged Jan-Jun discharge at G21-295 and its associated 90% 
confidence interval. Reconstruction values greater than the reconstruction mean are shown in vertical blue lines, and values less than the reconstruction mean are 
shown in orange. The solid red line shows the 20-year low-pass filtered reconstruction. The box in panel (b) shows the timing of the period included in panel (a). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Reconstruction skill of the HBR model for the three Dez basin gauges. Values are given for the initial nest (1793–2001) and the whole reconstruction interval 
(1510–2001) (see Section 3.3 for parameter explanations).    

Initial nest (1793–2001) Median values (1510–2001) 

Gauge name Gauge number R2 R2
adj VRE VCE R2 R2

adj VRE VCE 

Sepid Dasht Sezar G21-285  0.50  0.45  0.41  0.25  0.44  0.39  0.37  0.16 
Tang Panj Bakhtiyari G21-293  0.60  0.57  0.47  0.30  0.55  0.51  0.46  0.24 
Tale Zang G21-295  0.62  0.58  0.47  0.35  0.56  0.52  0.45  0.26  
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the 5th percentile of reconstructions, shown in vertical orange lines in 
Fig. 7 (with the opposite case for high-flow extreme events illustrated in 
blue). Two distinguishable peaks for each low and high flow are evident 
from their corresponding curves, which are significant based on their 
bootstrap confidence intervals. The occurrence rate peaked at around 
1620 for low flow extremes and at around 1755 for high flow extremes 
reaching frequencies higher than 10 years. However, secondary peaks in 
both high and low flow extremes occurred during the instrumental 
period at around 2000. Changing the end date of reconstruction from 
2001 to 2013 and appending the observations to the reconstructions 
makes the second peak of low flow extremes even more distinguishable 
(see dashed lines in Fig. 7), indicating a trend towards drier conditions 
(Mousavi et al., 2019; Norouzi, 2020). 

5. Discussion 

In addition to the modelling skill metrics, we assessed our recon
struction against documented extreme events such as famines and floods 
and to other regional climate reconstructions to verify its reliability 

(Fig. 8). Our reconstruction corresponds to documentary data of Iran’s 
great famines of 1870–1872 (Arsalani et al., 2021; Okazaki, 1986; Seyf, 
2010) and 1917–1919 (Foroozan et al., 2020; Majd, 2013), with 
reconstructed Jan-Jun flows at least half a standard deviation below the 
reconstruction mean in these years for all gauging stations. Extraordi
nary winter rains and snowfalls throughout Iran were reported for 
1909–1911 (Melville, 1984), with our reconstruction also showing very 
high Jan-Jun flow for these years. The effect of the Laki eruption 
(1783–1784) on the region (Gao et al., 2008; Mikhail, 2016) is also 
evident in our reconstruction, where the reconstructed value for 1784 
was more than one sigma below normal and it was followed by a 4-year 
contiguous period of dry events (1786–1789). The considerable amount 
of aerosols injected into the atmosphere by the Laki eruption weakened 
the westerly disturbances in the year of eruption and subsequent years, 
leading to reduced precipitation in areas from the Middle East to 
Western Himalayas (Mikhail, 2016; Misra et al., 2021). Additionally, our 
reconstruction is well-correlated (Pearson correlation, p < 0.05 two- 
tailed t-test) with the local Standardized Precipitation Index (SPI) 
reconstruction (Arsalani et al., 2021) for southwestern Iran, and it is 

Fig. 5. (a) The variance of the reconstruction is based on a 30-year sliding window (blue) and consecutive non-overlapping 30-year windows (red). Dashed blue and 
black lines are the variance of Jan-Jun flow at Tale Zang over the 1700–2001 and 1956–2001 periods, respectively. (b) Changes in the transition probability from dry 
to wet (dark cyan) and wet to dry (dark orange) years are based on the 30-year running period. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 6. Reconstructed averaged Jan-Jun discharge for Dez River at Tale Zang (G21-295) with the mean of reconstructions shown in the dashed black line. The orange 
bounds represent the multi-year dry periods, while the blue ones generally represent wet periods. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 

S. Sharifazari et al.                                                                                                                                                                                                                             



Journal of Hydrology 624 (2023) 129895

9

consistent with river discharge reconstructions for Pakistan (p < 0.1) 
(Rao et al., 2018). Also, significant positive correlations (p < 0.05) were 
found between the 20-year low-pass filter of our reconstruction and the 
corresponding filters of regional precipitation reconstructions for 
Turkey (Touchan et al., 2003) and Jordan (Touchan et al., 1999) 
(Fig. 8). All reconstructions are entirely independent except for Rao 
et al. (2018), in which five chronologies used in our modelling were 

previously used in their reconstruction, incorporating 25% of their 
predictors. 

The spatial coverage of tree ring predictors used in our reconstruc
tion model stretches from the eastern Mediterranean to the Tibetan 
Plateau. Westerly disturbances are the primary synoptic system during 
the wet season in this area (Cannon et al., 2015; Mehterian et al., 2017), 
and they account for the greatest amount of annual precipitation over 

Fig. 7. Extreme high flow and low flow event years and the time-varying frequency of the occurrence (i.e., the return time or average time interval between extreme 
events) of these events between 1510 and 2001 for Dez River at G21-295, with dashed lines showing the adjusted frequency curve if instrumental data is appended to 
the reconstruction after 2001. A kernel occurrence rate estimator (Mudelsee et al., 2003, Silva et al., 2012) was used with a bandwidth of 35 years (solid lines). The 
shaded areas (blue and orange) represent the 90% confidence intervals based on 2,000 bootstrap simulations. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Comparison of the reconstructed January-June averaged discharge for Dez River at G21-295 (a) with reconstructed October–March SPI in southern Iran (b; 
Arsalani et al., 2021), reconstructed mean May through September (MJJAS) discharge in the upper Indus Basin (c; Rao et al., 2018), reconstructed May–June 
precipitation in southwestern Turkey (d; Touchan et al., 2003), and reconstructed October–May precipitation in southern Jordan (e; Touchan et al., 1999). The 
vertical orange and light blue lines indicate the historical droughts/famines (1870–1872 and 1917–1919) and floods (1909–1911) experienced throughout Iran, 
including the study area. The solid red lines indicate the 20-year low-pass filtered reconstruction, and the horizontal dashed grey lines show the mean of hydro
climate reconstructions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Iran (Alijani and Harman, 1985). Thus, selecting tree ring chronologies 
from eastern and western parts of this area provides information about 
climate signals common to the whole area, which is helpful for river 
discharge reconstruction in southwestern Iran. Therefore, our recon
struction supports the suggestion of Arsalani et al. (2021) for using their 
developed chronologies from southwestern Iran for hydroclimate 
reconstruction in surrounding countries. 

We observe a high frequency of low flow extremes from the late 16th 
to the early 18th centuries, broadly corresponding to the Little Ice Age 
(LIA; Grove (2019)). Drier than average conditions in the Middle East 
and Eastern Mediterranean during the LIA are supported by paleo
limnological evidence (Roberts et al., 2012) and coral records (Felis 
et al., 2018) and included the Eastern Mediterranean great drought of 
1591–1596 CE (White, 2013). A decreasing trend in the reconstructed 
Jan-Jun river discharge can be observed beginning from the 1670s, 
leading to a severe megadrought drought in the early 18th century 
(1700–1704). Gustafson and Speer (2022) argue that the environmental 
crisis mostly resulted from droughts that started in the late 17th century 
and contributed to the collapse of the Safavids empire. Regional SPI 
reconstruction from local tree-ring chronologies by Arsalani et al. 
(2021) also showed high frequencies of extreme dry events, expressed 
by SPI < -2, and long dry phases during the 16th, 17th, and 18th 
centuries. 

While these dry conditions seemed to continue until the mid-19th 
century in the Middle East (Felis et al., 2018) and southwestern Iran 
(Arsalani et al., 2021), we find that high-flow events were more frequent 
during the 1730s to 1860s in our reconstructions compared to the pre
ceding two centuries. Many severely cold winters and flooding events 
have been reported in historical records for our study area and its nearby 
provinces during this period (Melville, 1984). In agreement with our 
findings, the 18th century was also identified as the wettest period over 
the last 500 years in a tree-ring reconstruction for northern Iran’s pre
cipitation (Foroozan et al., 2020). 

Unlike the late 16th to mid-19th periods, the twentieth century was a 
period of high frequencies of both low-flow and high-flow extremes 
(Fig. 7). Since the mid-twentieth century, both multi-year low flow ex
tremes and multi-year high flow extremes occurred frequently, and 
there are frequent swings between dry and wet events. This finding is 
consistent with the local SPI reconstruction (Arsalani et al., 2021), in 
which the 20th century was the period with the highest frequency of 
both extreme dry and wet events. It also supports the recently recog
nized shift in the operation of the Earth system from the mid-20th that 
led to the variability exceeding its natural range (Ripple et al., 2019; 
Turney and Fogwill, 2021) and the detected increase in severe hydro
climatic events since then for South America (Morales et al., 2020). 
Changes in extremes and increasing trends in drought severity and flood 
magnitude from the 1970s have been detected in Iran from precipitation 
observations and river discharge records across the country (Modarres 
et al., 2016). The observed climate data also shows that the transition 
from one extreme to another has been accompanied by the intensifica
tion in the magnitude of extremes in recent years (Dezfuli, 2020). For 
example, the last two decades mostly consisted of extended drought 
episodes (Ghamghami and Irannejad, 2019), but many major floods, 
initiated by intermittent heavy rainfalls, have occurred in Iran since the 
beginning of the century (Madani, 2014; Vaghefi et al., 2019), making 
the water year wetter than normal and contributing to the greatest 
portion of inflow to reservoirs. 

The increasing variability and transitions between droughts and 
floods lead to more uncertainty, which has important implications for 
water resources management. As an example, during prolonged drought 
in the region, decisions made during the early months of the subsequent 
water year may be biased towards conservation policies affecting flood- 
control activities if that year turns out to become extremely wet. For the 
multi-purpose Dez reservoir, it is argued that inadequate flood controls 
by reservoir operators during the 2019 flood, affected by the preceding 
drought conditions that prioritized storing water for the agricultural 

sector, contributed to the severe damage to the downstream areas (Zarei 
et al., 2021). Although this recent variability has been captured in the 
instrumental record, putting it in a centuries-long context shows that 
recent dry episodes and discharge reduction (Mousavi et al., 2019; 
Norouzi, 2020) could plausibly last as long as those experienced in the 
early 17th. Thus, the reconstruction provides valuable insights into the 
possible variability of water availability and may help to develop 
effective allocation strategies for agricultural water supply in the semi- 
arid downstream area of Dez dam. A better understanding of the range of 
natural variability of water availability in arid regions where the agri
cultural sector faces growing conflict between water supply and demand 
under climate change (Peng et al., 2023) contributes to provide certainty 
on future infrastructure needs and planning and more effective water 
resources management. 

Although our river discharge reconstruction, in conjunction with 
other local and regional hydroclimate reconstructions, demonstrates 
increased variability for the instrumental period, uncertainty remains 
regarding the extent of hydroclimate variability experienced in the re
gion during previous centuries. The presence of local chronologies in the 
area underscores the potential for developing a network of tree-ring sites 
that may involve multiple species and various chronologies, such as tree- 
ring isotope series. Such a network would enhance the ability to capture 
the complete spectrum of local-scale climate variability, reducing the 
likelihood of under- or over-estimation of extreme events. The collection 
of sites along an elevational gradient would help reveal possible changes 
in climatic signals with elevation as noted in the neighbouring Hima
layan mountain range (Esper et al., 2007). The results of such a study 
could then be incorporated into investigating the impact of altitude 
differentiation in the Dez river basin on river discharge variability (Chen 
et al., 2023). Thus, given its verification against local proxies, our re
constructions could be incorporated into water system models to test the 
reliability of allocation policies under a wider range of dry and wet 
conditions experienced in the past. Finally, it could even be combined 
with observations and future projections to broaden the assessment 
scenarios for water management plans (Quinn et al., 2020). 

6. Conclusions 

While long-term river discharge records are essential for water re
sources management, the maximum length of flow series in Iran rarely 
exceeds 50 years. Here, we provided the first multi-centennial (~500 
years) river discharge reconstructions for southwestern Iran, for the Dez 
River basin, using annually resolved tree ring chronologies from 
neighbouring countries. The reconstruction skill, together with its 
comparison against local SPI reconstructions, regional hydroclimate and 
river discharge reconstructions, and documented famines/floods 
showed that it contains valuable information about river discharge 
variability over the last five centuries in southwestern Iran. Using the 
most parsimonious predictor selection method and the HBR model, we 
isolated climate signals in common between river discharge gauges and 
tree site locations to produce a reliable reconstruction. While our 
reconstruction is specific to the Dez River, our analysis indicates that the 
findings are relevant for a much broader region than Southwest Iran. 
However, there is potential to further improve the reconstruction by 
including the few local chronologies not currently available through 
ITRDB and through the development of new local chronologies. 

The reconstruction shows that the region has experienced longer 
megadroughts in the past than have occurred during the instrumental 
period. However, while low flow extremes were found to be more 
frequent from the early 16th to early-18th compared to the instrumental 
period, and high flow extremes peaked at around the mid-18th century, 
we find that the period since the mid-twentieth century has the overall 
highest frequency of extreme events (dry and wet extremes occurring in 
the same period), with increased variance and rapid transitions between 
hydroclimate extremes. Together, these lines of evidence suggest that 
increasing variability and decreasing reliability in the flow over the last 
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70 years are anomalous when compared to the last 500 years. The reason 
behind this change in annual flow characteristics is not entirely under
stood, but the rapid transition from one extreme to another has been 
identified as a potential impact of climate change. These findings have 
important implications for water resources management which should 
consider both conservation and flood-controlling policies in decision- 
making. 
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