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Abstract—Electroencephalogram (EEG) based brain-computer interfaces (BCI) has been considered 
one of the prevailing non-invasive method to collect human biomedical signals through attaching 
electrodes to the scalp. However, it is difficult to detect and use these signals for controlling the online 
BCI robot in a real environment due to the environmental noise. In this study, a novel state recognition 
model is proposed to determine and improve the EEG signal states. First, a Long Short-Term Memory 
Convolutional Neural Network (LSTM-CNN) is designed to extract the EEG features along the time 
sequence. During this process, errors which are caused by mind randomness or external environmental 
factors may be generated. Thus, an actor-critic based decision-making model is proposed to correct these 
errors. The model consists of two networks that can be used to predict the final signal state based on both 
current signal state probability and past signal state probabilities. Then, a hybrid BCI real-time control 
system application is proposed to control a BCI robot. The Unicorn Hybrid Black EEG device is used to 
acquire brain signals. The data transmission system is constructed in OpenViBE to transfer data. The 
EEG classification system is built to classify BCI commands. In the experiment, EEG data from three 
subjects was collected, to train and test the performance and reliability of the proposed control system. 
The system records the robot's spending time, moving distance, and the number of objects pushing down. 
Experimental results are given to show the feasibility of the real-time control system. Compared with 
similar BCI studies, the proposed hybrid BCI real-time control system can accurately classify seven BCI 
commands in a more reliable and precise manner. Overall, offline testing accuracy can achieve 85.22%. 
When we apply the proposed system to control a BCI robot in a real environment, the best controlling time 
is 187.4 seconds, and the best running distance is 6.8 meters. This shows that the proposed hybrid BCI 
real-time control system demonstrated a higher reliability, which can be used in practical BCI control 
applications. 

Index Terms— Brain Computer Interface, Electroencephalogram, EEG robot

1. INTRODUCTION

The number of people with disabilities in the world exceeds two billion. Among these disabled, 75 

million people are physically disabled [1] due to stroke, car accident, work accident, etc. With the need 

of enhancing quality of life and promoting mobility for disability, along with advancement in 

neuroscientific technologies, the development of auto-controlled wheelchair based on brain-computer 

interface (BCI) has attracted growing attention. Brain control is an ideal control method because it helps 

control machines anywhere and anytime by imagining mental activities. As a result, the BCI has become 

an important technology to help the disabled. One of the main non-implanted BCIs is 

electroencephalogram (EEG), the electrical activity of the brain (i.e. brain signals) can be collected from 

the wearable EEG device [2]. Compared to an implantable BCI, EEG wearable device is ethical  and less 

invasive.  In recent years, there have been remarkable developments of the EEG-based BCI applications, 

such as brain-controlled wheelchairs, brain-controlled arms, and EEG based auxiliary machines. With 

the advancement in artificial intelligence and EEG classification and analyzing methods, it is possible to 

develop EEG based applications which can help disabled people complete simple daily tasks.

In recent years, there has been a surge of interest in the developing offline EEG classification methods. 

For examples, [3] tested the public data set BCI4-2a to build an offline classification model. They used 

Joint Approximate Diagonalization (JAD) to extend the traditional Common Spatial Pattern (CSP) into 

a multi-class CSP. This method can reduce uncertainties caused by artifacts. To avoid EEG information 

loss they also proposed a self-regulated supervised Gaussian fuzzy adaptive system as the classifier. The 
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learning rate can also be automatically adjusted by a coefficient. [4] used offline methods to train a Long 

Short Term Memory Network (LSTM), Convolutional Neural Network (CNN), and Recurrent Neural 

Network (RNN) and tested the model on the public dataset BCI competition4-2b. In addition, they also 

collected their own data and increased the amount of training data using the augmentation method. When 

they controlled the robotic arm in real-time, they set a threshold for the classifier which determined the 

final command based on the action probability. Although they can achieve real time classification, their 

device transfer rate is not very high and they have a delay of 1.4-2.55 seconds, so their method cannot 

achieve efficient real-time control.

Moreover, there has been substantial progress in the development of EEG-based online classification 

systems to construct BCI real-time control applications. For instances, [5] and [6] proposed real-time 

control methods to classify two types of EEG signals. They employed OpenViBE software to process 

and transfer data in real time. [5] used Fast Fourier Transform (FFT) to calculate the frequency spectrum 

of EEG signals and used the energy changes of Mu and Beta segments as classification features where 

Mu and Beta are motor-related frequency bands. [6] created diverse ensemble classifiers using the sub-

band common spatial pattern. They first divided the signal into multiple sub-signals using filters and 

performed the traditional CSP feature extraction method on each sub-signal. Then, they used a fuzzy 

fusion technique, which addressed individual differences in EEG in a noisy environment. Particle Swarm 

Optimization (PSO) was also employed to optimize fuzzy integrals. Finally, Linear Discriminant 

Analysis (LDA) was used as the classifier to classify the fuzzified features. In addition, [7] and [8] 

developed EEG-based real-time control applications. [7] used four channels and employed a combined 

CNN and LSTM as the classifier to classify two tasks, namely motor imagery of making a fist and motor 

imagery of opening a fist. The acquisition time for each experiment was 3 seconds. They used the hard 

processor system, which includes efficient data processing hardware and memory. The transfer rate is 

high, so their method can limit the delay time to within ten milliseconds. Thus, their system can achieve 

an efficient real-time classification application. [8] constructed a signal processing model and a CSP 

feature extraction model in OpenViBE software. Then, the spatially transformed signal energy was 

calculated, and the average value of the signal was input into LDA for classification. They also used a 

Virtual Reality Peripheral Network (VRPN), which can efficiently transmit data and does not require 

extra support from other software. Compared to [5] and [6], the data transmission technique developed 

by [7] and [8] are more efficient.

While the developed methods discussed above focusing on EEG binary classification, there have been 

also a growing number of research focusing process multi-class tasks in real time. For examples, [9] and 

[10] implemented three classes of motor imagery-based control methods. [9] used Filter Bank Common 

Spatial Pattern (FBCSP) as the feature extraction method, Mutual Information Based Best Individual 

Feature (MIBIF) as the feature selection method, and SVM as the classifier to control the lower-limb 

exoskeleton. They achieved real-time control by performing classification every 0.5 seconds, and the 

data size for each classification was 2 seconds. Because motor imagery requires a certain amount of 

imagining time, this sliding window-based segmentation method is more suitable for analyzing EEG 

signals. Similarly, [10] used a moving window to fetch different data segments for processing. They 

proposed a two-stage training system to train classification models. They first used offline data to build 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4402771

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



a model and then used the model to apply offline classification and online classification tests, 

respectively. Then, they used CSP as the feature extraction method and extended the model to a multi-

class model, using the One VS One (OVO) strategy. Finally, LDA was used to classify the extracted 

features. [11] identified four types of EEG signals in real time. They computed three time-domain 

parameters of three channels as features, and used a neural network as a classifier. However, the data 

recorded for each trial was 20 seconds, and the data segment of 10 to 20 seconds was taken as training 

data. It takes a long time to perform the EEG task in this way, so this method gives low control efficiency.

The past few years has also produced a significant body of research in other real-time control 

applications, such as the use of BCI system on improving motor imagination ability or concentration 

ability. [12] proposed an EEG-based real-time control model to control an inverted pendulum. They used 

CSP to extract fifteen channels of features and used LDA as the classifier. Then they fed the recognition 

output into the fuzzy system to obtain the final control command. This trained model was applied, to 

improve the subject's responsiveness. [13] applied the spatial filters on detecting six channels of Event-

Related Desynchronization (ERD) features and employed Support Vector Machine (SVM) as a classifier. 

They also used Electromyogram (EMG) to control the stop command. Feedback on the magnitude of 

control was given each time that the subject performed the task. Then, they used the feedback as the 

reward to train the control model again. As training times increased, the recognition error rate of EEG 

signals gradually decreased. By the end of the experiment, subjects could accurately control wheelchair 

movement in real time. In addition, [14] detected the correlated error potentials, and this feature could 

be used as feedback to correct the output of imaginary movements. Similarly, [15] developed a CSP 

spatial filter and then used the CSP filtered features as feedback to improve the subject's imagination. 

These models can all update model parameters based on actual feedback and improve their performance.

However, despite these research efforts, there is a dearth of studies that aim to achieve a high-

performance BCI control system. While existing literature and studies developed mechanism to control 

the robot using EEG signals, what seems to be lacking is accurate and seamless classification and 

execution of multiple EEG commands. The proposed control systems in many existing studies can only 

recognize less than four BCI commands. In addition, most methods can be only used for offline control. 

Thus, their systems cannot be applied in any real environment. In addition, when people are performing 

brain tasks, there are energy changes, but these changes are weak and difficult to detect. Performing brain 

tasks is a process that cannot be finished immediately. During this process, the brain states keep changing, 

and the changes generate gradually. For example, when the subject is performing motor imagery tasks, 

the brain signals change from a rest state to a motor imagery state, and the energy in related frequency 

bands decreases gradually. The control methods proposed in most papers are direct control, which means 

the result of each recognition is directly used as the final control command. However, in practical 

applications, the user may be affected by the external environment. Thus, they may generate a control 

command unconsciously, and this command is not the desired result for the user. Therefore, by using 

this control approach, the output commands do not follow user's expectations. As a result, detecting the 

signal state and predicting the current robotic action is a difficult task.

In view of this, a hybrid BCI real time control system estimation technique is proposed in this study 

to deal with the problems discussed above. The contributions of this study lie in two aspects: 
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 The hybrid BCI real-time control system developed in this study helps process multiple BCI 

commands in real time, promoting higher robotic precise and more reliable control in real-time. To 

implement the hybrid BCI real-time control system, this study develops two components. Firstly, 

an EEG-based dynamic classification system is proposed to tackle EEG multi-classification tasks. 

Secondly, a data transmission system is proposed to achieve data communication. By applying the 

proposed control system, the BCI robot can be controlled by seven BCI commands in real time. The 

performance of the proposed control method is closer to manual control.

 The actor-critic based decision-making model proposed in this study can learn the user's control 

habits. The model not only considers the current signal state but also the previous signal states. By 

continuing to learn the changes in the user's brain states and the corresponding labels, the model 

can update the parameters and correct the final control command. By using the proposed method, 

unexpected actions caused by a human’s unconscious brain activities can be avoided. It can also 

reduce the error caused by external influences. Compared to traditional classifiers, the proposed 

method can better predict reasonable robotic actions.

2. METHODOLOGY

2.1Block diagram of system
The proposed hybrid BCI real-time control system is presented in this section. We use a data 

transmission system and an EEG dynamic classification system to construct a hybrid BCI real-time 

control system, which is used to control a BCI robot car in this study. The block diagram of the system 

is shown in Figure 1. The EEG acquisition device is connected to the computer by a USB Bluetooth 

adapter. The data transmission system obtains the EEG signal from the Unicorn EEG device by 

connecting to the computer’s I/O port. After processing the online signals, the data was sent to the EEG-

based dynamic classification system to classify the commands. After that, the output commands are sent 

to the BCI robot through WebSocket. Finally, the commands are executed by the BCI robot.

Fig. 1.  Block diagram of hybrid BCI real time control system
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2.2Data transmission system
A data transmission system is proposed to obtain the EEG signals from hardware and send the 

processed data to other software or external devices. The structure of the data transmission system is 

shown in Figure 2. It connects the EEG device according to the device port and connection name and 

obtains the data via the Lab Streaming Layer (LSL). Then, the online data is saved in the acquisition 

server. If other software or devices want to access the data, they have to send a request to this server. 

Then, the online data is processed and sent by the data processing and reception model.

Fig. 2.  Structure of data transmission system

OpenViBE is free, open-source software for real-time neurosciences. It can be used to acquire, filter, 

process, classify and visualize brain signals in real time. The package includes a designer tool to create 

and run custom applications, along with several pre-configured and demo programs which are ready for 

use. Some function boxes are designed. The EEG data processing and reception model is shown in Figure 

3. The acquisition client box is used to receive the EEG data. A channel selector box is used to select 

effective channels. Bandpass and band stop boxes are used to filter the EEG signal. The GDF file writer 

box is used to save the EEG signals in GDF format.

Fig. 3.  EEG data processing and reception model in OpenViBE
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The Lua stimulator box is used to guide subjects to take corresponding actions. There are 11 

stimulation labels, including 1) left-hand motor imagery, 2) right-hand motor imagery, 3) eyeball move 

to left, 4) eyeball move to right, 5) eyeball move down, 6) bite teeth, 7) experiment start, 8) experiment 

end, 9) break, 10) prepare to perform the task, and 11) start a trial. The number and time of the task 

prompt labels are pre-set. All the prompt labels are randomly presented. The subjects perform the 

corresponding tasks according to the prompts.

In this system, the lab streaming layer and OpenViBE’s acquisition server are connected to ensure the 

acquisition of high-quality signals in the signal detection scene. The lab streaming layer is a system for 

the unified collection of measurement time series in research experiments. It handles the networking, 

time-synchronization and real-time access, as well as, optionally the centralized collection, viewing, and 

disk recording of the data. After the signal is processed in the OpenViBE designer, the data is exported 

by the LSL data export box.

The EEG device transmits the collected EEG data to the laptop through the Bluetooth adapter. First, 

it matches the device port and device name in the laptop and creates a lab streaming layer. The EEG data 

is sent to the OpenViBE software through the lab streaming layer. OpenViBE receives data through an 

acquisition server. After that, the data processing and reception model is established in the OpenViBE 

designer, including the data visualization module and the MATLAB connection module. The 

visualization module can directly plot the EEG signal in real time. The MATLAB connection module is 

used to send the processed data to the MATLAB software. The EEG based dynamic classification system 

is established in MATLAB to analyze and classify EEG signals.

2.3EEG based dynamic classification system
The EEG-based dynamic classification system is the main part of the hybrid BCI control system, which 

is shown in Figure 4. The EEG data is received from the data transmission system. The proposed 

classification system is used to classify the BCI commands, which are further used to control the BCI 

robot. The system proposed in this paper can recognize seven different commands. The system includes 

five models, which are the pre-processing model, denoising model, EEG state recognition model, motor 

imagery classification model, and eyeball movement classification model. When the EEG signal arrives, 

it is pre-processed and denoised by the pre-processing model and the denoising model. Then, the 

processed signal is input into the EEG state recognition model to calculate the probabilities of motor 

imagery, eyeball movement, EMG and rest state signals. The actor-critic based decision-making model 

is developed to integrate all the probabilities of the commands and determine the signal state. Eventually, 

the motor imagery classification model and the eyeball movement classification model are further used 

to analyze the signal to obtain the final command, which is used to control the BCI robot.  
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Fig. 4.  Structure of EEG-based dynamic classification system

2.3.1. Pre-processing and denoising model

In the pre-processing model, the raw EEG data is filtered by a 1 to 40 Hz bandpass filter because the 

main features of EEG exist in this frequency band. This can also remove high-frequency noise, such as 

50 Hz or 60 Hz linear noise. The second step is to re-reference which extracts the raw EEG data minus 

the mean value of all the channels. The function of this step is to correct the reference electrode to close 

to zero. Finally, bad signal segments are removed. Since the equipment may be affected by noise, the 

signal energy fluctuates significantly. We define such data as low-quality data, and we remove these data 

by setting the energy threshold. The output of this model is the pre-processed EEG signal.

The pre-processed signal is input into the denoising model for noise removal. The EEG signals can be 

easily affected by unexpected noises such as eye blinking, heartbeat, etc. These noisy signals may 

generate higher energy than the original EEG signal. This artifact may affect the performance of EEG 

signal classification. Thus, we construct an automagical denoising method to remove the noise from pre-

processed EEG signals. The details can be found in [16].

2.3.2 EEG state recognition model

2.3.2.1 Overview of model

The denoised signal is input into the EEG state recognition model, which can identify four signal 

states, namely i) rest state, ii) EMG state, iii) motor imagery state, and iv) eyeball movement state. The 

block diagram of this model is shown in Figure 5. A hybrid long short-term memory convolutional neural 

network is introduced to extract the time domain features of EEG signals and classify the signals along 

the time sequence. Suppose the output of the EEG state recognition model is the probability of each type 

of signal. Then, these probabilities are further used to determine the robotic actions.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4402771

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Fig. 5.  Block diagram of EEG state recognition model

2.3.2.2 Structure of network

The network structure and network parameters are shown in Figure 6 and Table I. Firstly, the signal 

is input into the network, and the input signal is converted into an image through the folding sequence 

layer. Through three sets of convolution and pooling operations, temporal features are extracted from the 

signal, and the features are compressed. After that, the acquired feature maps are rearranged into time 

sequences through the sequence unfolding layer. The output of this layer can be regarded as the features 

extracted from the EEG signals of each time period and then rearranged according to the time sequence. 

Finally, the extracted feature compressed signal is input into the LSTM layer to calculate the signal state 

probabilities.

Fig. 6.  Hybrid long short-term memory convolutional network (LSTM-CNN) structure used in EEG state recognition 
model

TABLE I. Long short term memory convolutional network parameters

Layer Filter size Stride Filter number
A1 [3,10] [1,1] 32
A2 [2,5] [2,5] -
B1 [2,5] [1,1] 64
B2 [2,4] [2,4] -
C1 [2,3] [1,1] 128
C2 [2,3] [2,3] -
D1 - - 100
D2 - - 0.3 dropped
E1 - - 4
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2.3.3 Actor-critic based decision making model

2.3.3.1 Overview of model

The block diagram of the decision-making model is shown in Figure 7. The purpose of this model is 

to predict the states based on the previous recognition probabilities. The recognition probabilities are 

input into two models. The first is to make a decision based on the maximum probability. The second is 

to use an actor network to predict the desired action. The critic network is used to evaluate whether the 

output from the actor network is good or not, responding to the EEG recognition probabilities. Thus, the 

critic network can be used to evaluate the outputs from the two models. Finally, the action with the higher 

score is used as the final action.

Fig. 7.  Block diagram of the decision making model

2.3.3.2 Structure of actor and critic networks

The structure of the actor network is shown in Figure 8. The input is the probabilities of the current 

signal state and past signal states. The output is the predicting action. There are three hidden layers in 

this network. After each fully connected layer, the ReLU layer is used as the activation function.

Fig. 8.  Structure of actor network

The structure of the critic network is shown in Figure 9. It has two inputs. The first input is the 

probabilities of combining the current signal state and past signal states. The number of states depends 

on the data transmission rate. The second input is the predicting action. The relation features among the 

probabilities are learned by the fully connected layer. Then the extracted features are combined with the 

predicted action. Two additional fully connected layers are used to extract the further features among the 

probabilities and the action. Finally, it will output an evaluation score.
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Fig. 9.  Structure of critic network

2.3.3.3 Training actor and critic networks

The structure of the two networks does not need to be very complicated. The key is to design the loss 

functions. The training process is shown in Figure 10. For the critic network, our purpose is to judge 

whether the output of the actor is good. Thus, we use mean square error as the loss function. We input 

signal state probabilities and correct actions into the critic network to calculate the score and then 

calculate the mean square error between the score and 1. After that, we input signal state probabilities 

and random actions into the critic network to calculate the score and then calculate the mean square error 

between the score and 0. 

Fig. 10.  The process of training the actor network and critic network

For the actor network, our goal is to predict the current action based on the previous and current signal 

states. Thus, there are two conditions when training the actor network. First, the predicted action should 

be close to the ideal action, so we use cross entropy as the first loss term. Second, the output actions 

continue to be input into the critic network to obtain a score. For the actor network, it hopes that the 

predicting action is a good action. Thus, the score should be close to 1. We calculate the mean square 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4402771

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



error between the output of the critic network and 1. These two loss terms are added together as the loss 

function of the actor network.

𝐿𝐴 = ―
1

𝑁𝑚

𝑁𝑚

𝑛=1

(𝐴(𝑃𝑠𝑛) 𝑙𝑜𝑔 (𝑌𝑠𝑛) + (1 ― 𝐴(𝑃𝑠𝑛))𝑙𝑜𝑔 (1 ― 𝑌𝑠𝑛)) +
1

𝑁𝑚

𝑁𝑚

𝑛=1
(1 ― 𝐶(𝑃𝑠𝑛,𝐴(𝑃𝑠𝑛)))2 (1)

𝐿𝐶 =
1

𝑁𝑚

𝑁𝑚

𝑛=1
(1 ― 𝐶(𝑃𝑠𝑛,𝑎𝑔))2 +

1
𝑁𝑚

𝑁𝑚

𝑛=1
(0 ― 𝐶(𝑃𝑠𝑛,𝑎𝑏))2 (2)

where 𝑁𝑚 is batch size; 𝑃𝑠 is the EEG signal state probability vector; 𝑌𝑠 is the EEG signal action label; 

𝑎𝑔 is correct predicted action; 𝑎𝑏 is incorrect predicted action. The network is then trained using the 

ADAM updating method. After training, the critic network has the ability to recognize good actions and 

bad actions. The actor network has the ability to predict actions.

2.3.4 EEG task classification model

2.3.4.1 Overview of model

There are two classification models used to classify specific tasks. The first model is used to classify 

motor imagery tasks. The second model is used to classify eyeball movement tasks. The block diagram 

of the classification model is presented in Figure 11. The processed data is first filtered using multiple 

sets of bandpass filters. For the motor imagery task, we need to stack all of the frequency filtered sub-

signals to obtain the combined frequency filtered signals which are used as the target subject EEG data 

𝑆𝑐. For the eyeball movement task, the frequency filtered sub-signals are used as the target subject EEG 

data 𝑆𝑐.  Then, the auto-selected regularized common spatial pattern algorithm is applied to the target 

EEG data and other subjects’ EEG data to obtain the Spatial transformed data 𝑍𝑐. After that, if the task 

is motor imagery, mutual information based best individual feature selection is applied to select the 

effective spatial features. Otherwise, if the task is eyeball movement, variance difference based best 

individual feature selection is applied, and the obtained spatial vectors should be stacked along the 

channel dimension. Eventually, the final spatial features are input into a convolutional neural network to 

classify. 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4402771

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Fig. 11.  Block diagram of EEG task classification model

2.3.4.2 Auto-selected regularized common spatial pattern

We first calculate 𝑅𝑐 that is the co-variance of 𝑆𝑐 and 𝑅𝑐 that is the co-variance of 𝑆𝑐:

𝑅𝑐 =

𝑁𝑒

𝑛=1

𝑆𝑐𝑛𝑆𝑐𝑛
𝑇

𝑡𝑟𝑎𝑐𝑒(𝑆𝑐𝑛𝑆𝑐𝑛
𝑇)

(3)

𝑅𝑐 =

𝑁𝑒

𝑛=1

𝑆𝑐𝑛𝑆𝑐𝑛
𝑇

𝑡𝑟𝑎𝑐𝑒(𝑆𝑐𝑛𝑆𝑐𝑛
𝑇
)

(4)

where trace() is the sum of elements on the diagonal of the matrix; 𝑁𝑒 is the number of class of 𝑆𝑐; 

𝑁𝑒 is the number of class of 𝑆𝑐. Then we can obtain 𝐽𝑐 which is the regularized covariance matrix and 𝛴

(𝛽𝑐,𝛾𝑐) which is the mixed covariance matrix, by using the regularization parameters 𝛽𝑐 and 𝛾𝑐. We have.

𝐽𝑐(𝛽𝑐) =
(1 ― 𝛽𝑐) ∙ 𝑅𝑐 + 𝛽𝑐 ∙ 𝑅𝑐

(1 ― 𝛽𝑐) ∙ 𝑁𝑡 + 𝛽𝑐 ∙ 𝑁𝑡
(5)

𝛴𝑐(𝛽𝑐,𝛾𝑐) = (1 ― 𝛾𝑐) ∙ 𝐽𝑐(𝛽𝑐) +
𝛾𝑐

𝑁𝑐
𝑡𝑟𝑎𝑐𝑒[𝐽𝑐(𝛽𝑐)] ∙ 𝐼 (6)

where 𝑁𝑐 is the total channel numbers; 𝛽𝑐 controls the variance of the estimated covariance; 𝛾𝑐 is the 

second regularized parameter, which can reduce large eigenvalues and increase small eigenvalues. Then, 

decompose mixed covariance matrix and obtain eigenvalue 𝜆𝑐 and eigenvector 𝑈𝑐. Sort eigenvalue 𝑈𝑐 in 

descending order and obtain the whiting matrix 𝑃𝑤.

𝑈𝑐𝜆𝑐𝑈𝑐
𝑇 = 𝛴𝑐 = 𝛴𝑐1 + 𝛴𝑐2 (7)

𝑃𝑤 = 𝜆𝑐
―1𝑈𝑐

𝑇 (8)

where 𝛴𝑐1 is the mixed covariance matrix of the first-class data; 𝛴𝑐2 is the mixed covariance matrix of 

the second-class data. Apply 𝑃𝑤 to the two classes’ mixed matrix to obtain the whiten matrix of the first-

class data 𝑆𝑤1 and the whiten matrix of the second-class data 𝑆𝑤2. After that, continue to decompose one 
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of the class matrixes 𝑆𝑤1 to obtain the eigenvalues 𝜆𝐵 and eigenvectors 𝑈𝑏.

𝑆𝑤1 = 𝑃𝑤𝛴𝑐1𝑃𝑤
𝑇 (9)

𝑆𝑤2 = 𝑃𝑤𝛴𝑐2𝑃𝑤
𝑇 (10)

𝑈𝑏𝜆𝐵𝑈𝑏
𝑇 = 𝑆𝑤1 (11)

Eventually, we can obtain the spatial filter 𝑊𝑐.

𝑊𝑐 = 𝑈𝑏
𝑇𝑃𝑤 (12)

After that, we use the feature matrix and mutual information based regularization parameter selection 

method [2] to select the regularization parameters and recalculate the final spatial filter. We apply the 

spatial filter corresponding to these two parameters to the pre-processed signal and obtain the spatial 

filtered data 𝑍𝑐.
𝑍𝑐 = 𝑊𝑐 ∗ 𝑆𝑐 (13)

We apply the filter to the pre-processed signal to obtain the variance feature matrix of the first class 

𝑋𝑐1 and the variance feature matrix of the second class 𝑋𝑐2.

𝑋𝑐1 = 𝑣𝑎𝑟(𝑊𝑐 ∗ 𝑆𝑐1) (14)

𝑋𝑐2 = 𝑣𝑎𝑟(𝑊𝑐 ∗ 𝑆𝑐2) (15)

where 𝑣𝑎𝑟() is the function of calculating variance. Then we can obtain the variance difference 𝐷𝑣. If 

the variance based best individual feature selection method is used, the channel data from the spatial 

filtered data 𝑍𝑐 with the largest variance difference is used as the final classification spatial feature. The 

corresponding labels are defined for the two types of variance features. The feature vector is 𝑋𝑐, and the 

label vector is 𝑌𝑐. Their information entropy 𝐻𝐼(𝑋𝑐) and 𝐻𝐼(𝑌𝑐) can be calculated. Then, use their joint 

probability density function to calculate their mutual information 𝑀𝐼(𝑋𝑐,𝑌𝑐).

𝐻𝐼(𝑋𝑐) = ―
𝑥∈𝑋𝑐

𝑃(𝑥)𝑙𝑜𝑔2 𝑃(𝑥) (16)

𝐻𝐼(𝑌𝑐) = ―
𝑦∈𝑌𝑐

𝑃(𝑦)𝑙𝑜𝑔2 𝑃(𝑦) (17)

𝑀𝐼(𝑋𝑐,𝑌𝑐) =
2 ∑

𝑦∈𝑌𝑐
∑

𝑥∈𝑋𝑐
𝑃(𝑥,𝑦)𝑙𝑜𝑔 ( 𝑃(𝑥,𝑦)

𝑃(𝑥)𝑃(𝑦) )

𝐻𝐼(𝑋𝑐) + 𝐻𝐼(𝑌𝑐)
(18)

where 𝑝(𝑥) is the probability of 𝑥; 𝑝(𝑦) is the probability of 𝑦; 𝑝(𝑥,𝑦) is the joint probability of 𝑥 and 

𝑦. If the mutual information based best individual feature selection method is used, the channel data from 

the spatial filtered data 𝑍𝑐 with the largest mutual information is used as the final classification spatial 

feature.

2.3.4.3 Structure of classifier

Finally, a convolutional neural network (CNN) is introduced to classify the EEG features. The 

structure and parameters are shown in Figure 12 and Table II.
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Fig. 12.  Convolutional neural network structure used as classifier

TABLE II. Long short term memory convolutional network parameters

Layer Filter size Stride Filter number
A1 Convolution [1,10] [1,1] 32
A1 Max Pooling [1,4] [1,4] -
B1 Convolution [1,8] [1,1] 32
B1 Max Pooling [1,3] [1,3] -
B2 Convolution [1,1] [1,1] 64
B3 Convolution [1,1] [1,3] 64
C1 Convolution [1,5] [1,1] 64
C1 Max Pooling [1,2] [1,2] -
C2 Convolution [1,1] [1,1] 128
C3 Convolution [1,1] [1,2] 128
D1 Convolution [1,3] [1,1] 128
D1 Max Pooling [1,2] [1,2] -
D2 Convolution [1,1] [1,1] 256
D3 Convolution [1,1] [1,2] 256
E1 Convolution [1,2] [1,1] 256
E1 Max Pooling [1,2] [1,2] -
E2 Convolution [1,1] [1,1] 512
E3 Convolution [1,1] [1,2] 512
F1 Convolution [1,2] [1,1] 1024

G1 Average Pooling [1,3] [1,3] -

3. EXPERIMENTS AND RESULTS

3.1Introduction to hardware

3.1.1 EEG acquisition device

The Unicorn Hybrid Black is a consumer-grade bio-signal amplifier kit (shown in Figure 13). The 

device can obtain EEG recordings via Bluetooth. It is a dry device (which does not need bio-gel) that 

contains 8 DC-coupled analog input channels with 24 Bit resolution. The sample rate is 250 Hz. The 

EEG electrodes of this device have the advantage of fast and easy preparation with high-quality EEG 

signals [17].
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Fig. 13.  Unicorn Hybrid Black EEG acquisition device

3.1.2 BCI robot

The robot used in the experiment is shown in Figure 14. The body and the arm of the robot are made 

of acrylic sheets. There are eight engines where four engines are used to drive the four wheels, and 

another four engines are used to extend the arm, retract the arm, control the direction, and control the 

grasp or release action. The CUP of the robot is Raspberry Pi 4, which is a single-board computer, and 

its operating system is Linux. The expanding board is PCA9685, which is a PWM/Servo driver that is 

used to control the eight engines. Inside this robot, a non-blocking I/O model is built to process the 

received commands and control the driver. The robot can communicate with other devices or software 

through WebSocket.

Fig. 14.  Raspberry Pi 4 robot

3.2Experiment preparation

3.2.1 Data collection

We collected the EEG data using the Unicorn Hybrid Black EEG acquisition device. This experiment 

has been approved by University of Technology Sydney (UTS). The ethics approval number is ETH22-

7056. 
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Fig. 15.  Timing scheme of the paradigm for one trial

Fig. 16.  Timing scheme of the paradigm for one experiment

Subjects performed corresponding tasks according to the screen prompts. The timing scheme of the 

paradigms is shown in Figures 15 and 16. The first 15 seconds was the beginning of the experiment, and 

the screen prompts 'experiment start'. After that, there was a one-second cue time before the start of a 

new trial. When the trial started, the screen prompted the subject to prepare for the brain tasks. The 

subject had 2 seconds to prepare. Then, the screen showed the specific task. The subject had 4 seconds 

to perform the task. Finally, the subject had 2 seconds break time. The experiment contains two motor 

imagery tasks, three eyeball movement tasks, and one EMG task, namely imaginary left-hand movement, 

imaginary right-hand movement, eyeball move to left, eyeball move to right, and eyeball move to down, 

and bite teeth. One trial of the experiment contains 9 seconds of data collection. Each experiment consists 

of 50 trials for each motor imagery task and 30 trials for EMG or eyeball movement task. There are 220 

trials of data for one experiment. Each subject had to complete four experiments. Thus, there were a total 

of 880 trials of data for each subject.

Because the motor imagery task is abstract and difficult to complete, we let the subjects imagine 

several movements to stimulate the subject’s imagination ability. We placed two cups on the table. At 

the beginning of the experiment, the subjects placed their hands on their legs naturally. When the screen 

prompted left or right imaginary movements, the subjects first imagined lifting the hand, then held the 

cup, and finally placed the cup on the leg.

3.2.2 Online data segmentation strategy

Performing brain tasks is a process, and it took a certain amount of time. During the execution of these 

brain tasks, the state of the brain transits from one state to another. The recognition model can calculate 

the probabilities for each second. The decision-making model can predict the final action based on the 

current and past few state probabilities. EEG signals at successive times are correlated. Therefore, when 

we trained these two models, we could not only take the data of the time when the subjects were 

performing the task. We should also take the data every second and used the continuous probabilities to 

train the model.

We define a window of size 1,000. where each entry contains the data records for a period of 4 seconds. 

We set up the window at the beginning of the filtered signal. The window slides every second along the 

time sequence of the collected EEG signal. Every second, the window can extract an 8 ×1,000 data 

records. During data collection, when a task prompted appears on the screen, the subject began to perform 

the task for 4 seconds. Thus, every time when a motor event occurred, the 4 seconds after the event 
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marker was the effective time of the task. The data during this 4 second period is the relevant data. 

As the window moved along the time sequence, the window overlapped seven times with the effective 

data in each trial. The maximum length of time for the overlap is 4 seconds. If the window overlaps with 

the relevant data for 3 seconds or more, this window data is used as one epoch of task state data. 

Otherwise, if the window overlaps with the relevant data for less than 3 seconds, this window data is 

used as one epoch of the rest state data. Thus, in each trial, we can extract three task state training data 

records and four rest state training data records. In addition, if the window does not overlap with the 

relevant data, this window’s data is pure rest data. Thus, for each subject, there are 2,640 trials of task 

state data (880 data × 3 windows) when using this epoch extraction strategy. For each subject there are 

3,520 trials of rest state data (880 data × 4 windows) from this strategy.

3.2.3 Commands design

 As shown in Table III,  a number of control commands are assigned in the experiment and each 

command  correspond with a specific action. Because of the long reaction time of motor imagery, such 

signals are not suitable for commands, such as go forward and stop, that require a fast response. In the 

experiments, the arm-related control commands do not require a fast response. Thus, the left-hand 

imagery movement is used to control the arm to switch direction. The right-hand imagery movement is 

used to control the arm to move forward. During the control process, the most important command is 

stop because this command needs to be used at any time to terminate the action which is being executed. 

The reaction time of the stop command has to be very short, and the machine should have the ability to 

recognize this command at any time. From the results of the model construction above, the EMG signal 

can give feedback immediately and accurately. Therefore, the EMG signal generated by biting of the 

teeth is used as the stop command. Eyeball movement classification is easier than motor imagery. Thus, 

the leftward and rightward eyeball movement is used to control the robot to turn left and to turn right. 

Downward eye movement is used to control the machine’s forward movement.

TABLE III. Control commands corresponding to actions

Action Commands

Biting teeth Stop

Left hand motor imagery Switch direction of arm

Right hand motor imagery Arm move forward

Leftward eyeball movement Turn left

Rightward eyeball movement Turn right

Downward eyeball 
movement Go forward
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3.3Experiment Setup

3.3.1 Experiment A: EEG state recognition and decision-making model performance 
evaluation

 The EEG state recognition model and decision-making model are used to determine the signal state 

in the proposed EEG-based dynamic classification system. These two models aim to calculate the 

probabilities of four EEG signals and predict the final action based on the state probability changes at 

different times. Thus, these two models require continuous data. The four EEG signals are i) rest state 

EEG signal, ii) motor imagery EEG signal, iii) eyeball movement EEG signal, and iv) EMG signal. 

 By using the online epoch extraction strategy, we have 400 trials of motor imagery data, 360 trials of 

eyeball movement data, 120 trials of biting teeth data, and 880 trials of rest state data. Each trial of task 

data contains seven segmented data. We used the segmented data to train and to test the model. When 

we test the model, we input the seven segmented data into the model together. The model will output 

seven probability vectors. For each vector, the output with the greatest probability is used as the 

recognized label. So, the model generates seven recognized labels. If one or more recognition outputs 

are the correct label and the other outputs are the rest state label, then the output of this trial is judged to 

be the correct output. Otherwise, if the output has two or more different labels or the output category is 

inconsistent with the target category, then the output of this trial is judged to be misclassified.

 After training the recognition model, we can use the model to calculate the probabilities of four EEG 

signals. Then, we input the current state probability vector and three most recent state probability vectors 

into the actor-critic based decision-making model, to predict the final action. We also used traditional 

methods to predict the action and then compared the recognition performance. The result is shown in 

Table IV.

TABLE IV. Evaluation of the performance of EEG state recognition model and decision-making model

Support Vector 
Machine (SVM)

Traditional 
Convolutional 

Neural Network 
(CNN)

EEG state 
recognition 

model

EEG state 
recognition 

model + Actor-
critic based 

decision making 
model

Accuracy (%) 87.22 92.05 94.49 96.59

kappa 0.8059 0.8787 0.9159 0.9479Subject A
Se 0.0250 0.0261 0.0268 0.0272

Accuracy (%) 83.58 91.14 92.61 94.26

kappa 0.7507 0.8646 0.8872 0.9125Subject B
Se 0.0240 0.0259 0.0262 0.0267

Accuracy (%) 84.38 90.74 92.22 94.03
Subject C kappa 0.7628 0.8585 0.8807 0.9087
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Se 0.0242 0.0257 0.0261 0.0266

Accuracy (%) 85.06 91.31 93.11 94.96

kappa 0.7731 0.8673 0.8946 0.9230Mean
Se 0.0244 0.0259 0.0264 0.0268

From the results, these four signals are easy to distinguish because the time and spatial domain features 

of these three signals are distinct. They can all achieve an accuracy of over 80%. The models with the 

best performance are the EEG state recognition model and combining the recognition model and 

decision-making model. The decision-making model can help the model avoid errors because this model 

considers, not only the current signal state probability, but also the past signal state probabilities. Thus, 

the performance of using the decision-making model is better than using only the recognition model. 

Finally, we use the best model for further real-time control experiments.

3.3.2 Experiment B: Offline robotic performance evaluation

 We used online segmented data to train and build the hybrid BCI real-time control system. There are 

the six control commands and one rest command that were explained in the command design section. 

Similar to the data collection steps, command prompts are randomly generated on the screen. According 

to the instructions that they are given, subjects had to perform corresponding actions of the commands 

within 4 seconds. There is a 2-second preparation time before the prompt occurs. Each command appears 

randomly 50 times giving a total of 300 actions. After that, the data of the previous 4 seconds are taken 

every second and input into the hybrid EEG real-time control system. The system outputs a classification 

result. The data length is 1,815 seconds, including 15 seconds of system initializing time. During the 4 

seconds of action execution, if one or more command outputs are the real label command, and the other 

outputs are the rest state label, then the command is judged to be the correct output. If the output has two 

or more different commands or the output category is inconsistent with the target category for these four 

seconds, then the command is judged to be misclassified. This is how the control accuracy of the EEG 

real-time control system is evaluated. Table V shows the real-time classification accuracy for each 

command.

TABLE V. Offline testing performance of real time control system

Correct 
/total 

number

Backward
/stop Turn left Turn right Go 

forward

Arm 
direction 

switch

Arm move 
forward Sum

Subject A 50/50 46/50 47/50 49/50 43/50 42/50 277/300

Subject B 50/50 44/50 45/50 48/50 36/50 34/50 257/300

Subject C 50/50 43/50 39/50 41/50 29/50 31/50 233/300
Mean 

correct 
number

50/50 44.33/50 43.67/50 46/50 36/50 35.67/50 255.67/300

Mean 
accuracy 100% 88.67% 87.33% 92.00% 72.00% 71.33% 85.22%

 From the results, for offline testing, the recognition accuracy of the stop command can reach 100%. 
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The classifications of turning left, turning right, and going forward commands are more accurate than 

arm-related commands that are controlled by motor imagery. Motor imagery depends on the imagination 

abilities of different subjects. Subjects with better imagination ability may be more likely to perform 

motor imagery. The overall recognition accuracy can reach more than 85%. Therefore, the classification 

accuracy of this system is good enough and can be used for further real-time control experiments.

3.3.3 Experiment C: Online robotic performance evaluation

The actual environment used to test the robot is shown in Figure 17. Firstly, we set a starting point and 

a destination point. Then, we placed obstacles between the two points and place a target object at the 

destination. The subjects needed to control the robot car from the starting point while avoiding obstacles 

and reach the destination. During the process, there were some target objects on the road. The subjects 

need to control the robot arm to push down these target objects.

Fig. 17.  The actual environment used to test the robot

 In this process, we recorded the spending time i.e. the time that the robot car takes to reach the 

destination from the starting point. At the same time, we also recorded the driving path and the moving 

distance of the car. Before the experiment, we used the remote controller to control the car to do the 

above tasks and record the time, route, and driving distance. These were used as a reference to evaluate 

the reliability of EEG real-time control systems. By using a remote controller, we used the keyboard to 

manually control the robot to execute one command every three seconds. If the moving time and distance 

of using the EEG control system are close to or less than that of using the controller, the proposed control 

system is stable and reliable.

TABLE VI. Online testing performance of real time control system

Experiment 
number Spending time (s) Running distance 

(m)
Target object (5) 

push down
1 183.7 6.175 3
2 191.4 7.410 5
3 187.2 6.814 4Subject A

Mean 187.4 6.800 4
1 196.2 6.669 4
2 206.7 6.894 4
3 201.3 6.916 5Subject B

Mean 201.4 6.826 4.3
Subject C 1 257.3 8.398 4
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2 249.6 8.151 3
3 228.5 7.657 4

Mean 245.1 8.069 3.7
Reference 
(remote 

controller)
171.2 5.928 5

Table VI shows the travelling time, the moving distance, and the number of targets pushed down by 

the robot car. From the results, the distance and travelling time spent in the proposed control system can 

be close to that of using the remote controller. In other words, the performance and stability of the system 

are considered good. However, the robot car cannot push down all the targets. The action of controlling 

the arm requires a combination of lots of different commands. Thus, it is more difficult to finish this 

action in a short time. This is also related to the subject's operational skills. 

4. DISCUSSION

4.1The benefits of combining EEG recognition and actor-critic based decision-
making model

LSTM-CNN is a hybrid network that combines CNN and LSTM. CNN can extract the time domain 

features of the signal and compress the features. EEG signals have multiple channels, so they can be seen 

as high-dimensional signals. Compared to other classifiers, LSTM-CNN is more suitable for extracting 

features along the time sequence of the high-dimensional data. 

The signal is input to the recognition model every second, and the length of each input signal is fixed. 

When the user performed a brain task, especially the motor imagery task, the task could not be completed 

instantaneously. The process of executing the task takes a certain amount of time. Thus, we assume that 

the output of our recognition model is accurate, and the probability of the output represents the degree to 

which the subject completed the task.

For example, a motor imagery task takes 4 seconds to complete. We input the 4 seconds signal into 

the recognition model every second. Then, we can obtain four probabilities of the signal states. In the 

beginning, if the user does nothing, then the probability of the rest is 100%, and the probability of the 

motor imagery is 0. When the user performs the action for 2 seconds, the 2 seconds rest state signal and 

the 2 seconds motor imagery signal will be input into the recognition model. Then, the probability of 

motor imagery should be about 50%, and the rest state probability should also be around 50%. When the 

user performs the motor imagery action for 4 seconds, the whole task interval signal is completely input 

into the model. In this case, the probability of motor imagery should be 100%, and the rest state 

probability should also be 0. Therefore, when the user is performing a task, the output probability of the 

task state should increase from 0 to 100% and then return to 0 when the task is completed. The output 

rest state probability should decrease from 100% to 0 and then increase back to 100%. This is the ideal 

probability-changing process. However, we cannot ensure that the trained recognition model is perfect. 

So, in the practical application, the output cannot reach the ideal state mentioned above. Therefore, we 

cannot output the desired probability every time. This means there are some errors if we only consider 

the current probability output from the recognition model. Thus, the purpose of the proposed decision-

making model is to learn the probability-changing process. It will extract the relation among the 
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probabilities at different times.

We use two networks to predict the action. Firstly, the tasks are performed gradually, and the signal 

input into the model at each time overlaps with the signal at the previous time. In other words, they have 

shared information. Thus, the current signal state is related to the past signal states. As a result, the input 

of the first network is the state probability vector which contains both the current state probability and 

the past state probabilities. The purpose of this network is to learn the relation among these signal state 

probabilities. Based on the relation, the correct current ideal action can be predicted. 

However, the action probability is a discrete variable, so we do not know whether the predicted 

probability is good or not. Thus, we create another network that evaluates whether the action predicted 

by the actor network is close to the ideal action. Its input is the current and previous state probabilities 

and current predicting action. The output is the evaluation score of this action, that is, 0 means bad, and 

1 means good. In the beginning, we first trained the critic network so that the network has a certain ability 

to judge whether the action is good or not. Then, we trained both networks at the same time so that they 

reached an equilibrium state. Finally, the actor had the ability to output an ideal action based on the 

previous few signal state probabilities, and the critic has the ability to judge whether the actor's output is 

good. 

In order to prove the feasibility of the proposed model, we drew the state changes of EEG signals 

according to the task execution by the subjects. Figure 18 shows the task category that the subject should 

perform, where the abscissa represents the time, and the ordinate represents the signal state. When the 

subject was performing tasks, the recognition window was moving, and the window overlapped with the 

valid data segment three times. The ideal outputs of these three windows of data are the executed actions 

when the subject performs tasks according to the instructions, and the type of these three actions should 

be the same because they are continuous actions. 

Fig. 18.  The desired task label

Figure 19 shows the predicted actions using only the EEG recognition model. It can be seen that the 

EEG state recognition model can accurately identify the target signal state within the effective task 

execution time because the characteristics of the signal state can be easily classified by the proposed 

EEG state recognition model. However, it can be seen that the output of this model does not fully conform 

to the expected action, and the action sometimes has a delay. In addition, due to external influences, 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4402771

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



when the subject is resting the subject may also generate some unexpected brain activities. Figure 20 

shows the predicted actions using the actor-critic based decision-making model. When we apply this 

model on the experiment, we can see that most of the delay problems have been resolved, and the 

randomly generated actions due to external noise have also been corrected.

Fig. 19.  The predicted actions using EEG recognition model

Fig. 20.  The predicted actions using actor-critic based decision making model

The output obtained from the recognition model only considers the signal state of the current time. 

Therefore, for this case, the target task can be recognized only when the action features contained in the 

signal are sufficiently distinct. However, due to external factors, it is difficult to extract significant 

features from the EEG signal, so the recognition accuracy of the target task is very low. At the beginning, 

the action just starts to be executed, and the features of the signal state is not distinct enough, so it is 

difficult to be recognized. This may lead to a delay. When we use the decision-making model, it considers 

the changes in both the previous signal states and the current signal state. The model can predict the 

subject’s intentions based on this change. Therefore, the model can give the correct output before the 

action is actually executed, and avoid the occurrence of vacation delay. In addition, EEG users cannot 

concentrate for long periods and may sometimes take unconscious actions. If the recognition model is 
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used alone, it can only determine the action at the current time and execute the current action. However, 

this action is sometimes not the user’s expected action. The decision-making model can determine 

whether the current action is randomly generated, by evaluating the signal status at the previous time. 

Thus, it can determine whether the action is unconsciously generated by the user, so as to correct the 

signal output. As a result, this model can make the control system more stable and reliable. 

4.2Evaluate the performance of hybrid BCI real time controlled robot
The movement time reflects the reaction performance of the EEG system. During the control process, 

the robot car should constantly change direction and cooperate with the forward and stop commands to 

reach the destination. During the process, it needs to move by continuously changing the direction of the 

arm and controlling the robotic arm. If the time is short, it means that the EEG system can more accurately 

distinguish different motor imagery actions and eyeball movement actions. If it takes only a short time, 

it means the EEG system has been able to respond quickly to commands.

The moving distance reflects the stability of the EEG system. If the moving distance of the robot car 

is very long, it means that the robot often makes mistakes during the control process. This means that the 

system is not stable. In contrast, if the car can use the shortest distance to reach the destination, it means 

the robot can accurately follow the classified commands to find the best way to reach the destination. 

Thus, it also proves the stability of the control system. In Figures 21, 22 and 23, the trajectory of the car 

for three different subjects was shown.

Fig. 21.  The robotic moving route of subject A
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Fig. 22.  The robotic moving route of subject B

Fig. 23.  The robotic moving route of subject C

When the ideal motion trajectories controlled by the remote controller is compared with the actual 

motion trajectories controlled by the proposed control system, we can be seen that both the ideal and 

actual trajectories are able to avoid obstacles and reach the destination. Although there was some 

deviation using the control system, the deviation was not large. It is noteworthy to mention that the 

subjects may feel tired after a period of concentration on handling the EEG real-time control systems and 

the robot car, and this his could also affect the results. Overall, this BCI real-time control system is 

accurate, stable, and reliable. It has the potential to be adopted in practical BCI control applications.

5. CONCLUSIONS

In this paper, an EEG state recognition model was proposed, which can be used to determine EEG 

signal states. In this model, a LSTM-CNN structure was introduced to extract both spatial features and 

time sequence features. An actor-critic-based decision-making model was proposed to predict the desired 

action, based on the signal state probabilities. The brain signals collected from three subjects were used 

to train and test the proposed models. Experimental results were given to compare the two proposed 

models. Compared to the traditional recognition method, the combined EEG state recognition model and 

the actor-critic-based decision-making model achieved the best performance. In this study, the best 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4402771

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



accuracy is 94.96%, and the kappa value is 0.9230. 

In addition, we proposed a hybrid BCI-based real-time control system which is used to control a BCI 

robot car. This system includes two sub-systems, namely i) the data transmission system and ii) EEG 

dynamic classification system. In the data transmission system, a data acquisition server from the EEG 

device to other software is built, and a data processing and reception model is included, to achieve online 

EEG processing and analysis. In the EEG dynamic classification system, six signal analysis models were 

constructed to classify BCI commands. In the experiment, we trained an accurate and reliable system 

that can be used to control the BCI robot in a real environment. In the experimental results, the offline 

testing accuracy can achieve 85.22%. The best online controlling time was 187.4 seconds, and the best 

running distance was 6.8 meters. These results are close to the performance of the remote control. 

In future, BCI-related medical devices can be developed, based on the proposed system, to help 

disabled people, such as EEG-based wheelchairs and BCI-based robotic arms. Such a system can be used 

for motor rehabilitation training. Also, the proposed approach could be extended to other industries and 

applied to different working environments, for example, applying the EEG- or BCI-based robotic 

applications on a construction or engineering environment, to support construction activities and material 

handling on-site. 
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