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H I G H L I G H T S  

• A novel holistic method for off-grid microgrid planning optimisation is introduced. 
• The potential of state-of-the-art metaheuristics in better nearing global optimality is shown. 
• A high penetration of EVs are integrated using specific demand response strategies. 
• The importance of energy resilience in isolated microgrid sizing is highlighted. 
• The potentially significant impact of characterising uncertainties in optimal microgrid planning is substantiated.  

A R T I C L E  I N F O   

Keywords: 
Microgrids 
Optimal sizing 
Metaheuristics 
Electric vehicles 
Renewable energy sources 
Resilience 

A B S T R A C T   

The resilient microgrid (MG) capacity planning and optimisation problem is widely recognised as a non- 
deterministic polynomial time-hard (NP-hard) problem. Accordingly, metaheuristics – top-level algorithms 
inspired by various natural and physical processes – can be utilised to determine the near optimality in designing 
MGs. However, a comprehensive review of the mainstream literature has shown that the performance of several 
metaheuristics has not yet been evaluated. In response, this paper first systematically benchmarks the efficiencies 
of previously unexplored metaheuristics in MG sizing applications against the well-established metaheuristic in 
the literature, namely the particle swarm optimisation (PSO) algorithm. To this end, the metaheuristics are 
separately integrated into a novel MG sizing method, which is aware of the optimal demand response capacity 
procured from electric vehicle (EV)-charging loads. Two grid-independent, 100%-renewable MGs are modelled, 
which enable the reliable and robust supply of electrical loads in areas far removed from the grid. Furthermore, 
an advanced EV-charging demand response program is integrated into the overall method, whilst quantifying 
various sources of time-series data uncertainty and considering specific resilience constraints. The simulation 
results yielded from three real-world isolated community case studies in Aotearoa-New Zealand confirm the 
effectiveness of the proposed stochastic, resilience-oriented, EV-charging demand response-addressable MG 
sizing method. Importantly, the comprehensive statistics-based performance evaluations indicate that new 
metaheuristics have the potential to outperform the PSO by up to ~6% in MG sizing applications. This indicates 
the potentially significant implications of using advanced metaheuristics for improving the economics – and, 
therefore, rolling out – capital-intensive grid-isolated 100%-renewable MGs.   

1. Introduction 

The optimal designing of microgrids (MGs) has the potential to play a 
significant role in the best use of limited resources, particularly in view 

of increased transportation sector electrification interventions, variable 
renewables integrations, and energy resilience considerations [1–4]. A 
holistic perspective when designing integrated sustainable energy sys-
tems is not only effective to reduce total discounted system costs, but 
also enables more robust MG designs. However, such designing 
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problems are associated with more mathematically complex formula-
tions – specifically, non-deterministic polynomial time-hard (NP-hard) 
problems – for which no polynomial time-addressable solution exists 
[4–9]. 

In this light, the importance of metaheuristic optimisation algo-
rithms for MG capacity planning is widely recognised [10]. More spe-
cifically, metaheuristics iteratively move the randomly initialised 
particles in the solution space with respect to a specifically defined 
metric for the fitness of re-positioned particles. Accordingly, they 
eliminate the need for approximating the solution space – using, for 
example, specifically developed decomposition methods – and, there-
fore, can be applied to NP-hard problems [11]. This enables meta-
heuristics to better determine the globally optimum solution to the 
problem under consideration [12]. 

1.1. Literature review: Knowledge gaps 

In the MG designing literature, a wide variety of metaheuristics, 
including both single and hybrid algorithms, have been effectively uti-
lised [10,13,14]. In view of the fact that metaheuristics are inherently 
approximate algorithms, they have been recognised to be associated 
with varied efficiencies when applied to different nonlinear, non-convex 
MG designing problem formulations. Accordingly, the performance of 
new metaheuristics needs to be continuously tested in MG designing 
applications in a systematic manner [15–17]. 

In this context, several studies have sought to conduct comparative 
analyses of metaheuristics. For instance, Fathi et al. [18] have recently 
explored the comparative efficiencies of the particle swarm optimisation 
(PSO), the differential evolution (DE), the grey wolf optimiser (GWO), 
and the water cycling algorithm (WCA) in stand-alone MG sizing ap-
plications. Bukar et al. [19] have also shown the superiority of the 
grasshopper optimisation algorithm (GOA) to the GWO, the dragonfly 
algorithm (DA), the cuckoo search algorithm (CSA), the salp swarm al-
gorithm (SSA), and the ant lion optimiser (ALO) in solving grid- 
independent MG designing problems. In another instance, Sukumar 
et al. [20] have demonstrated the outperformance of the GWO to the 
PSO, the artificial bee colony (ABC), the gravitational search algorithm 
(GSA), and the genetic algorithm (GA) for the optimal sizing of battery 
energy storage systems (BESSs) integrated into MGs. Diab et al. [14] 
have gone further and compared the efficiencies of the equilibrium 
optimiser (EO), the bat optimisation algorithm (BOA), and the 
blackhole-based optimisation (BBO) technique, identifying the EO as the 
most effective algorithm. Abo-Elyousr et al. [21] have, additionally, 
analysed the efficiency improvement of the PSO when hybridised with 
the ant colony optimisation (ACO), and have shown its outperformance 

to the single PSO and ACO in non-grid-connected MG sizing 
applications. 

As the above review of the studies focused on the comparative ana-
lyses of different metaheuristics in designing various MG configurations 
indicates, there exists a glaring inconsistency in the ranking of meta-
heuristics in MG capacity planning applications. Such inconsistencies 
can be explained by a combination of: (i) the absence of statistical tests 
(and hence statistical criteria) in the associated efficiency comparisons, 
and (ii) the lack of attention to the fact that the performance of meta-
heuristics could vary considerably in different MG sizing problem set-
tings, particularly in terms of system configuration and the underlying 
load and meteorological data. This indicates that a systematic, multi- 
case-oriented, summary statistics-based approach is needed to 
generate more robust generalisations of the effectiveness and utility of 
metaheuristics against each other. 

On the other hand, a major driver for deploying MGs is their ability 
to provide resilience benefits [22–26]. Accordingly, the grid-connected 
MG sizing literature has widely explored the relative importance of 
different resilience preferences on the MG sizing decision-making pro-
cesses. For instance, Marqusee et al. [27] have investigated the on-grid 
MG sizing problem in the presence of a specifically defined energy 
resilience constraint that probabilistically quantifies the amount of time 
it can sustain loads when the grid is out. Similarly, Masrur et al. [28] 
have adopted the concept of the probability of surviving outages and 
providing reliable power when the grid is down. In another notable 
instance, Anderson et al. [29] have defined outage survivability as the 
probability that a site can supply reliable power to critical loads for a 
specified outage duration. In a fundamentally different study, Wang 
et al. [30] have developed a resilience-driven approach for the optimal 
sizing and pre-positioning of mobile energy storage systems in decen-
tralised networked MGs, where the concept of resilience is defined based 
on both man-made events and natural disasters. 

Table 1 provides a synopsis of the salient previous work on the long- 
term strategic investment planning optimisation of renewable and sus-
tainable energy systems considering uncertainties and flexible load 
programmes. A more comprehensive version of the table is provided as 
Supplementary Material accompanying the paper (Additional File 1: 
Overview of the previous work on stochastic, DR-addressable MG 
sizing). 

A comprehensive review of previous work on the optimal MG sizing 
has identified that grid-connected MG sizing studies have increasingly 
factored in resilience constraints during the long-term strategic invest-
ment planning phases. However, the wider approaches in the main-
stream off-grid MG sizing literature generally lack coordinated 
resilience constraints, despite the arguably greater importance of the 

Nomenclature 

Abbreviations 
ABC Artificial Bee Colony 
ACO Ant Colony Optimisation 
AGTO Artificial Gorilla Troops Optimiser 
AHA Artificial Hummingbird Algorithm 
ALO Ant Lion Optimiser 
BBO Blockhole-Based Optimisation 
BESS Battery Energy Storage System 
BOA Bat Optimisation Algorithm 
CSA Cuckoo Search Algorithm 
DA Dragonfly Algorithm 
DE Differential Evolution 
DR Demand Response 
EO Equilibrium Optimiser 
EV Electric Vehicle 

GA Genetic Algorithm 
GOA Grasshopper Optimisation Algorithm 
GSA Gravitational Search Algorithm 
GWO Grey Wolf Optimiser 
MFOA Moth-Flame Optimisation Algorithm 
MG Microgrid 
MPA Marine Predator Algorithm 
NPC Net Present Cost 
PDF Probability Density Function 
PSO Particle Swarm Optimisation 
PV Photovoltaic 
SSA Salp Swarm Algorithm 
TNPC Total Net Present Cost 
WCA Water Cycling Algorithm 
WHO Wild Horse Optimiser 
WT Wind Turbine  
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concept of energy resilience in isolated communities. This indicates that 
designing stand-alone MGs using existing methods, especially in 100%- 
renewable configurations, fails to adequately capture the true value the 
target communities place on the security of supply. Accordingly, a new 
grid-isolated MG design optimisation modelling framework that in-
corporates some heuristic constraints for resilience is needed to facilitate 
site-specific decisions on the trade-offs between cost and resilience. It is 
also noteworthy that given the recent advances in adapting wind tur-
bines (WTs) to extreme weather conditions, particularly the introduc-
tion of ‘survival mode’ for WTs, the extreme weather event impacts on 
solar photovoltaic (PV) systems are increasingly considered to be 
comparatively more important and pronounced [44,45]. 

Moreover, a recent growing body of literature has effectively shown 
that MGs can play a significant role in enabling the electrification of 
transportation at scale by providing flexibility provisions [46–50]. For 
example, Haupt et al. [51] have comprehensively studied the relative 
impact of a variety of electric vehicle (EV) charging strategies on the 
sizing of BESSs in charging hub MGs. Mortaz et al. [52] have presented 
an optimisation model for siting and sizing of vehicle-to-grid facilities in 
grid-tied MGs, whilst characterising the associated parametric sources of 
uncertainty. Furthermore, Harsh and Das [53] have formalised an 
optimal demand response (DR) coordination strategy based on EV- 
charging flexibility resources for the energy management of reconfig-
urable grid-connected MGs. 

Whilst considerable effort has been devoted to analysing the impact 
of tailor-made dispatch strategies for the optimal system integration of 
EV-charging loads in grid-connected MGs, less attention has been given 
to specifically developed scheduling strategies for grid-isolated systems. 
This is despite the common knowledge that the positive impact of 
effective peak shaving and load levelling strategies is more striking in 
the absence of a utility grid – due to the substantial reduction of the 
over-capacity needed in a fully renewable stand-alone MG. Accordingly, 
a truly optimal off-grid MG planning approach that is able to effectively 
serve EV-charging loads is needed. 

1.2. Novel contributions 

To address the aforementioned knowledge gaps, this paper in-
troduces a novel EV-charging-load-addressable MG capacity planning 
optimisation approach with specifically imposed resilience constraints. 
It then uses the developed optimisation modelling framework to sys-
tematically test the efficiencies of six competitively selected state-of-the- 
art metaheuristics in isolated MG applications, whilst additionally 
benchmarking them against the most commonly used metaheuristic in 
the literature, namely the PSO algorithm. More specifically, the novel 
contributions of the paper are as follows:  

• Presenting a multi-criteria framework for the efficiency comparison 
of metaheuristics based on descriptive statistics and the results ob-
tained from various test cases to systematically account for the 
robustness in achieving the optimal solution and the convergence 
rate.  

• Evaluating the efficiency of a number of previously unexplored 
metaheuristics in MG capacity planning optimisation applications, 
namely: the wild horse optimiser (WHO), the artificial hummingbird 
algorithm (AHA), the artificial gorilla troops optimiser (AGTO), the 
marine predator algorithm (MPA), the equilibrium optimiser (EO), 
and the moth-flame optimisation algorithm (MFOA).  

• Quantifying the relative importance of different levels of resilience to 
extreme weather events affecting the MG components on the 
configuration and cost of off-grid MGs. To this end, a specific 
sensitivity analysis is performed to approximate the possible range of 
the impact of resilience preferences on different off-grid MG design 
solutions. 

• Developing a new DR-integrated rule-based energy despatch algo-
rithm that efficiently addresses the supplying of EV-charging loads 
based on load factor improvement. 

• Characterising various sources of parametric uncertainty in an in-
tegrated manner to appropriately reflect the underlying correlations 

Table 1 
Overview of the studies on the long-term strategic optimal sizing of renewable and sustainable energy systems.  

Ref. Technologies in the candidate 
pool 

DSM 
strategy 

Responsive load 
sector(s) 

Uncertainty 
treatment technique 

Parametric uncertainty 
sources 

Optimisation 
algorithm 

Geographical 
scope 

[31] Wind, non-renewables, main grid ICSs Residential MCS Renewable generation, 
load 

GA Town 

[32] Unspecified renewables, main 
grid 

ICSs Unspecified PEM Load demand SP Region 

[33] Wind, BESS, main grid RTP Residential MCS Renewable generation, 
load, wholesale prices 

PSO Building 

[34] Solar PV, solar thermal, BESS, 
non-renewables, main grid 

DLC E-mobility MCS Load demand MILP Neighbour-hood 

[35] Wind, BESS, non-renewables, 
main grid 

ToU Residential MCS Renewable generation, 
load 

MIP Rural 
community 

[36] Wind, solar PV, PHS ToU Unspecified MCS Renewable generation PSO Region 
[37] Wind, solar PV, BESS, non- 

renewables, main grid 
RTP Residential MCS Renewable generation, 

load 
MILP Building 

[38] Wind, solar PV, BESS RTP-ICSs Residential MCS Renewable generation MILP Remote 
community 

[39] Solar PV, CHP, BESS, TS, main 
grid 

RTP-ICSs Unspecified MCS Renewable generation, 
load, wholesale prices 

NSGA-II City 

[40] Solar PV, CHP, boiler, BESS, 
main grid 

ToU Unspecified MCS Renewable generation, 
load 

MINLP Neighbour-hood 

[41] Wind, CHP, boiler, BESS, TS, 
main grid 

ToU Unspecified MCS Renewable generation, 
load 

MINLP Neighbour-hood 

[42] Wind, solar PV, BESS, TS, non- 
renewables, main grid 

ICSs Residential Interval analysis Renewable generation, 
load 

NSGA-II Town 

[43] Wind, CHP, main grid RTP Industrial, 
residential, 
commercial 

MCS Renewable generation, 
load 

SP Town 

Key: BESS = Battery Energy Storage System, CHP = Combined Heat and Power, DLC = Direct Load Control, DSM = Demand-Side Management, GA = Genetic Al-
gorithm, ICSs = Interruptible/Curtailable Services, MCS = Monte Carlo Simulation, MILP = Mixed-Integer Linear Programming, MINLP = Mixed-Integer Nonlinear 
Programming, MIP = Mixed-Integer Programming, NSGA-II = Non-dominated Sorting Genetic Algorithm II, PEM = Point Estimate Method, PSO = Particle Swarm 
Optimisation, PV = Photovoltaic, RTP = Real-Time Pricing, SP = Stochastic Programming, ToU = Time-of-Use, TS = Thermal Storage. 
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of the uncertainty factors, thereby preserving the associated multi-
variate relationships. 

1.3. Organisation of paper 

The remainder of this paper is organised as follows. Section 2 pre-
sents the test-case MGs conceptualised, which are employed to para-
metrise the proposed method, before formulating the proposed 
resilience-constrained off-grid MG sizing modelling framework consid-
ering large-scale electrification of the transport sector. Section 3 popu-
lates the model and test cases for the remote study areas and 
communities of interest, while Section 4 presents and discusses the re-
sults, including a discussion of the comparative performance of the 
selected metaheuristics. Finally, conclusions are drawn and prospects 
for further work are highlighted in Section 5. 

2. Methodology 

This section presents the proposed general stochastic, DR-integrated 
off-grid MG sizing method, which is parametrised for two 100%- 
renewable test-case systems conceptualised in Section 2.1. To this end, 
first, the underlying resilience-oriented, DR-aware, deterministic prob-
lem is formulated based on the net present valuation concept, which is 
then advanced to a stochastic version where the problem-inherent un-
certainties are systematically quantified in a computationally efficient 
manner. The proposed method also provides a platform for evaluating 
the comparative efficiencies of the selected metaheuristics and deter-
mining their rank orders based on multi-test-case-led statistical analyses. 

2.1. Test-case microgrids 

Two mainstream 100%-renewable off-grid MG configurations were 
considered as test cases, which integrate the following generation and 
storage technologies: (i) solar PV, WT, and BESS, and (ii) solar PV and 
BESS. On the consumption side, both residential loads and EV-charging 
loads (integrated based on level-1 chargers) were considered. The reader 
is referred to the Supplementary Material accompanying the paper 
(Additional File 2: Case study background information and time-series 
data) on how the residential/commercial and EV-charging load pro-
files were derived. Fig. 1 depicts the schematic diagram and directions of 
energy flow within the two notional MGs modelled. Also, the mathe-
matical models of the components of the MGs are presented in Appendix 
A. 

The selection of the PV/WT/battery and PV/battery energy config-
urations in this study was based on the results of pre-feasibility site as-
sessments that evaluated the potentials of various renewable energy 

sources in the site of interest. The assessments indicated that solar and 
wind energy were the most viable renewable energy sources for the 
specific context of a local MG that serves the targeted community with a 
high penetration of EVs. The assessments considered factors such as the 
availability of solar and wind resources, the local climate, and the site’s 
topography. Based on these assessments, the PV/WT/battery and PV/ 
battery configurations were identified as the most suitable for meeting 
the energy demands of the specific community of interest. 

2.2. Objective function 

The objective function of the underlying problem is to minimise the 
total discounted system cost. To this end, the net present cost (NPC) 
metric is utilised to estimate the discounted cost of each component over 
the project lifetime. The NPC of each component can be expressed as 
[54–56]: 

NPCc = Nc ×

(

CCc +RCc × SPPW +
O&Mc

CRF(ir,PL)
− SVc

)

. (1) 

In Eq. (1), Nc represents the optimal size of component c ∈ C = {PV,
WT, Bat, Inv}. More specifically, it represents the optimal number of 
component modules for discrete decision variables including solar PV 
panels and WTs, as well as the optimal capacity of components for 
continuous decision variables including the battery bank and inverter. 
Also, CCc, RCc, and O&Mc respectively denote the capital cost, 
replacement cost, and operation and maintenance cost of component c. 
Furthermore, SPPW, CRF, and SV respectively denote the single- 
payment-present-worth factor, the capital recovery factor, and the 
salvage value, which can be calculated as follows [56]: 

SPPW =
∑N

n=1

1
(1 + ir)CL×n, (2)  

N =

⎧
⎪⎪⎨

⎪⎪⎩

⌊
PL
CL

⌋

− 1, if PL mod CL = 0

⌊
PL
CL

⌋

, otherwise
(3)  

CRF(ir,PL) =
ir(1 + ir)PL

(1 + ir)PL
− 1

, (4)  

SV = RC ×
CL − (PL − CL ×

⌊
PL
CL

⌋
)

CL
, (5)  

where ir is the interest rate, PL is the project lifetime, and CL is the 
component’s lifetime. 

Fig. 1. Illustration of the two off-grid MG configurations: (a) PV/WT/battery, and (b) PV/battery.  
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Accordingly, the objective function is defined as the sum of the NPCs 
of the underlying components as [56]: 

minOF = TNPC =
∑

c∈C
NPCc + p, (6)  

where TNPC denotes the total net present cost of the project, p is a 
penalty parameter that adds a sufficiently large value to the objective 
function when the planning-level constraints are violated, and is equal 
to zero in the regions of the design space where the planning-level 
constraints are not violated. 

2.3. Constraints 

The total discounted system cost is minimised subject to two inter- 
dependent sets of constraints on the dispatch and investment planning 
of MGs. Specifically, the operational-level constraints are applied during 
the energy balance analyses, whereas the planning-level constraints are, 
in larger part, designed to capture the preferences of decision-makers 
around the higher-level system performance criteria, such as reli-
ability and resilience, and in lesser part, to help maintain the balance of 
analysis. 

2.3.1. Operational-level constraints 
The following set of operational-level constraints are active during 

the energy management (dispatch) phase [57–59]: 

PPV (t) +PWT(t) +Pdch(t) +
QL(t)

ηI
+

QEV(t)
ηEV

= Pch(t) +
PL(t)

ηI
+

PEV (t)
ηEV

, ∀t

(7)  

Pmin
ch ≤ Pch(t) ≤ Pmax

ch , ∀t (8)  

Pmin
dch ≤ Pdch(t) ≤ Pmax

dch ,∀t (9)  

Emin
b ≤ Eb(t) ≤ Emax

b ,∀t (10)  

Emin
b = (1 − DODmax) × Emax

b , (11)  

Pch(t) × Pdch(t) = 0, ∀t (12)  

where PPV(t) and PWT(t) respectively denote the power output from the 
solar PV and WT generation systems at time-step t of the hourly-basis, 
year-long operation of the system, Pch and Pdch respectively denote the 
charging power and discharging power of the stationary battery bank, PL 
and PEV respectively denote the residential/commercial load demand 
and EV-charging load, QL and QEV respectively denote the unserved 
residential/commercial load and unserved EV-charging load, ηI and ηEV 
respectively denote the efficiencies of the residential/commercial load 
inverter and the EV-charging load inverter, Eb is the energy content of 
the battery bank, DODmax is the maximum depth of discharge of the 
battery bank, while the superscripts min and max respectively represent 
the minimum and maximum possible values of the corresponding 
variables. 

The linear equality constraint in Eq. (7) ensures the MG-wide balance 
of power at each time-step of the system operation, while the constraints 
in Eqs. (8)-(11) enforce the dispatch of the battery bank to comply with 
the physical limits of battery storage; specifically, the associated charge 
and discharge power capacities and the allowable energy content range. 
Furthermore, the nonlinear equality constraint in Eq. (12) guarantees 
that the charge and discharge events of the battery storage do not occur 
simultaneously. 

2.3.2. Planning-level constraints 
The constraints that are active during the planning stage can be 

broadly classified into those seeking to reflect the value of energy not 
supplied and those aiming to accommodate more realistic approxima-

tions of reality. In this context, the constraints in Eqs. (13)-(16) model 
the reliability of power supply [60], while the constraints in Eqs. (17) 
and (18) model the battery autonomy days as a resilience metric, which 
is defined as the number of days the battery bank can sustain the entire 
load on the MG [19]. 

LPSPL ≥ LPSPmin
L , (13)  

LPSPEV ≥ LPSPmin
EV , (14)  

LPSPL =

∑T
t=1(QL(t) × Δt)

∑T
t=1(PL(t) × Δt)

, (15)  

LPSPEV =

∑T
t=1(QEV(t) × Δt)

∑T
t=1(PEV(t) × Δt)

, (16)  

where LPSPL and LPSPEV respectively denote the loss of power supply 
probabilities associated with the total residential/commercial loads and 
the total EV-charging loads, LPSPmin

L and LPSPmin
EV respectively denote the 

minimum allowable loss of power supply probabilities in supplying 
residential/commercial and EV-charging loads, with T denoting the 
number of time-steps in the year-long operation of the system, which is 
fixed at 8760 h. 

ADbat ≥ ADmin
bat , (17)  

ADbat =
NBCB,rDODmaxηinvηdch
∑T

t=1(PL(t) × Δt )
, (18)  

where the term NBCB,r represents the optimal capacity of the stationary 
battery (as determined over the course of the iterations), ADmin

bat is the 
minimum allowable battery autonomy days, while the term 
∑T

t=1(PL(t) × Δt) denotes the total residential/commercial loads on the 
MG. Recall that to minimise energy losses, the stationary battery is never 
discharged to serve the EV-charging loads. 

Moreover, the constraint in Eq. (19) sets the initial energy in-store to 
the maximum possible value (fully charged) to adequately handle the 
peaks that occur early in the time-series residential/commercial load 
data, while the constraint in Eq. (20) requires the terminal energy in- 
store to be greater than or equal to the initial energy in-store for the 
sake of balanced analysis. In addition, for reasons of computational ef-
ficiency, linear upper bound constraints were imposed on the decision 
variables (size of the components) in line with the potential physical 
limitations, as expressed in Eq. (21) [61,62]. 

EB(0) = NB × CB,r, (19)  

EB(T) ≥ EB(0), (20)  

0 ≤ Nc ≤ Nmax
c , ∀c (21)  

2.3.3. Overview of the dispatch strategy 
Fig. 2 provides a flowchart of the overall dispatch strategy developed 

to effectively coordinate the scheduling of the distributed energy re-
sources integrated into the MGs based on a set of pre-defined rules. It is 
noteworthy that the most efficient strategy for charging or not charging 
EV batteries using the stationary BESS depends on the connectedness to 
the main grid, specific circumstances of the charging system and the 
renewable energy sources available. It is important to carefully consider 
all of these factors when designing and implementing a charging system 
for EVs. The preliminary results from this study revealed that slightly 
overbuilding renewables would be more cost-effective than using the 
energy stored in the stationary BESS to charge EV batteries during pe-
riods of low solar and wind generation. The reader is referred to Ap-
pendix B for the mathematical formulations of the devised dispatch 
strategy. 
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2.4. Availability of generation components 

To provide an additional layer of reliability, the expected forced 
outage rates of solar PV panels and WTs were modelled. To this end, it 
was assumed that they are associated with fixed availability probabili-
ties of 96% [63]. The probability of being in each availability state can 
be determined using a binomial density function [63]. For instance, the 
probability of being in a state associated with the failure of n solar 
panels, nfail

PV , out of the total N solar panels installed, NPV , and the failure 
of n WTs, nfail

WT , out of the total N WTs installed, NWT , can be calculated as 
[63]: 

fgen
(
nfail

PV , n
fail
WT
)
=

[(
NPV

nfail
PV

)

× ANPV − nfail
PV

PV × (1 − APV)
nfail

PV

]

×

[(
NWT

nfail
WT

)

× ANWT − nfail
WT

WT × (1 − AWT)
nfail

WT

]

, (22)  

where APV and AWT respectively denote the availability of each solar PV 
panel and each WT. 

Given that a stochastic approach is employed to characterise the 
uncertainties in all the time series input data (refer to Section 2.6), 
adding another uncertainty quantification dimension would have made 
the simulations overly computationally complex – and possibly intrac-
table. Therefore, it was decided to simplify the modelling of the avail-
ability of non-dispatchable generation components. To this end, 
following the procedure described in [63], first the equivalent renew-
able power generation space considering the associated forced outage 
rates was derived as: 

Peq
gen = E

[
Pgen

]
=
∑

s∈S
Pgen(s) × fgen(s), (23)  

where s ∈ S represents the discretised search space. 
Then, substituting Eq. (22) into Eq. (23), the equivalent renewable 

power generation space for the problem under consideration can be re- 
written as [63]: 

Peq
gen =

∑NPV

nfail
PV =0

∑NWT

nfail
WT=0

[Pgen(nfail
PV , nfail

WT) × fgen
(
nfail

PV , nfail
WT
)]
. (24) 

Finally, following the steps undertaken in [63], Eq. (24) can be 
simplified as: 

Peq
gen = NPV × PPV × APV +NWT × PWT × AWT . (25) 

It should also be noted that given that the battery and inverter are 
normally installed in indoor enclosures [64], their failures can safely be 
assumed negligible. 

2.5. Demand response: EV-charging loads 

To improve the load factor and thereby minimise the risks of sub- 
optimal designs due to unnecessary excess curtailments, a new DR 
scheme is considered for the coordination of EV-charging loads. To this 
end, the EV loads are treated as deferrable loads, the effective dis-
patching of which is expected to help minimise the system-wide mis-
matches between variable generation and total load demand – thereby 
reducing the infrastructure capacity needed to serve the peak load alone. 

It is assumed that each EV owner specifies the arrival time and de-
parture time and the amount of energy required to reach the desired 
battery state-of-charge, in accordance with Fig. 3. The DR mechanism 
then seeks to find the optimum time for charging each EV within the 
specified driving pattern and constraints of EV use, as displayed in Fig. 3. 
To this end, inspired by the general idea of modelling shiftable loads 
originally proposed by Amrollahi and Bathaee [65], first, the on/off 
status of EV-charging at each time-step within the user-specified period 
of time is represented as [65]: 

∑DPk

t=ATk

Statusk(t) = Availabilityk, ∀k (26) 

Fig. 2. Flowchart of the proposed EV-addressable rule-based MG energy dispatch strategy.  
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where ATk and DPk respectively denote the arrival time and departure 
time of the k-th EV, Status is a binary variable which controls whether 
the EV is charging or not (1 represents charging, 0 not charging), while 
Availability is the timespan over which the EV needs to be charged. 

Also, to prevent the occurrence of charging and not charging de-
cisions at a single time-step, the following constraint is imposed, which 
defines the relationship between the charging and idle modes of EV 
while plugged in [65]: 

Chk(t)+Nchk(t) ≤ 1, ∀t, ∀k (27)  

where Chk corresponds to the Status variable taking a value of 1 
(charging the k-th EV); Nchk a value of 0 (not charging the EV). 

Each EV-charging load can then be shifted forward or backward 
within the pre-defined availability time period and the associated con-
straints, as illustrated in Fig. 4. The forward and backward shifting of the 
EV loads can also be conducted in a consecutive or non-consecutive 
manner [66]. 

Under these assumptions, the daily power consumption scheduling 
vector of each vehicle k ∈ K within the MG service territory is given by 
[67]: 

Pk =
[
p1

k , ⋯., p24
k

]
, ∀k (28) 

Based on the customer-specified total daily EV-charging load, Ptotal
k , 

and the plug-in availability period, the following vehicle-specific 
equality constraint needs to be met [67]: 

Ptotal
k =

∑DTk

t=ATk

pt
k.Statusk(t). (29) 

Within these constraints, the overall EV-charging shifting matrix can 
be developed as [67]: 

Stotal
k =

⎡

⎢
⎢
⎣

p1
k p24

k p23
k ⋯ p2

k

⋮ ⋮ ⋮ ⋱ ⋮
p24

k p23
k p22

k ⋯ p1
k

⎤

⎥
⎥
⎦. (30)  

Furthermore, each EV-charging power should lie within a specified 
range, in accordance with the minimum and maximum allowable 
charging capacity specifications of the corresponding EV’s battery, as 
[67]: 

pmin
k ≤ pk(t) ≤ pmax

k , ∀t, ∀k (31)  

2.6. Uncertainty quantification 

To systematically characterise the multi-dimensional uncertainties 
inherent in the problem, the formulated deterministic problem is 
transformed into a stochastic version. More specifically, the un-
certainties in forecasts of solar irradiance, ambient temperature, wind 
speed (where appropriate), as well as residential and commercial loads 
are quantified using a novel uncertainty characterisation approach 
based on probability density function (PDF) discretisation. To this end, 
first, the best-fitting distributions for the aforementioned uncertainty 
factors are built. Table 2 presents the PDF used for each random variable 
of interest. 

Subsequently, the continuous PDFs of the time-step-specific uncer-
tain parameters are approximated by a number of equal-width discrete 
intervals, and are represented by the means of those intervals and the 
associated probabilities of occurrence. The associated discretisation 
process of the PDFs is illustrated in Fig. 5. 

The following equations represent the probabilities and the associ-
ated uncertain parameter values of the discrete approximations [72]: 

pi =

∫

Ri

{x}dx for i = 1, 2, …, 7, (32)  

xi =

∫

Ri

x
{x}
pi

dx for i = 1, 2, …, 7, (33)  

where Ri denotes the i-th region on the corresponding PDF’s value axis. 
Then, based on all possible combinations of the time-step-specific 

intervals, a number of multi-dimensional scenario vectors are gener-
ated. For the uncertainty factors under consideration, the scenario 
vector is SV(t) = [GT(t),Ta(t),v(t),PL(t)]. 

Fig. 3. Illustration of the availability constraints of EVs (adapted from [65]).  

Fig. 4. Illustration of the forward and backward shifting of EV-charging loads 
within the constraints of mobility use (adapted from [66]). 

Table 2 
Determination of the best-fitting PDFs of the stochastic parameters.  

Parameter PDF Mathematical model Source 

Solar irradiance Beta 
f(x) =

Γ(α + β)
Γ(α)Γ(β)x

α− 1(1 − x)β− 1, 

where α, β > 0 are the shape 
parameters and Γ(z) is the 
gamma function. 

[68] 

Ambient temperature Normal 
f(x) =

1̅̅̅
̅̅̅

2π
√

σ
e
1
2

(x − μ
σ

)2

, where 

μ denotes the mean and σ is the 
standard deviation. 

[68,69] 

Load demand Normal 
f(x) =

1̅̅̅
̅̅̅

2π
√

σ
e
1
2

(x − μ
σ

)2

, where 

μ denotes the mean and σ is the 
standard deviation. 

[69,70] 

Wind speed Weibull 
f(x) =

k
c

(x
c

)k− 1
e
(
x
c

)k

, where 

k > 0 is the shape parameter 
and c > 0 is the scale parameter. 

[69,70]  
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To alleviate the computational burden, the mixed-integer linear 
programming (MILP)-based scenario reduction technique [73] is used, 
which can be formulated as follows: 

minNs =
∑Nd

x1=1

∑Nd

x2=1

∑Nd

x3=1

∑Nd

x4=1
ωx1 ,x2 ,x3 ,x4 , (34)  

subject to: 
∑Nd

x2=1

∑Nd

x3=1

∑Nd

x4=1
ps(x1, x2, x3, x4) = p1,x1 , x1 = 1, 2,⋯, Nd (35)  

∑Nd

x1=1

∑Nd

x3=1

∑Nd

x4=1
ps(x1, x2, x3, x4) = p2,x2 , x2 = 1, 2,⋯, Nd (36)  

∑Nd

x1=1

∑Nd

x2=1

∑Nd

x4=1
ps(x1, x2, x3, x4) = p3,x3 , x3 = 1, 2,⋯, Nd (37)  

∑Nd

x1=1

∑Nd

x2=1

∑Nd

x3=1
ps(x1, x2, x3, x4) = p4,x4 , x4 = 1, 2,⋯, Nd (38)  

∑Nd

x1=1

∑Nd

x2=1

∑Nd

x3=1

∑Nd

x4=1
ps(x1, x2, x3, x4) = 1, ∀x1, x2, x3, x4 (39)  

ps(x1, x2, x3, x4) ≤ ωx1 ,x2 ,x3 ,x4 , ∀x1, x2, x3, x4 (40)  

0 ≤ ps(x1, x2, x3, x4) ≤ 1, ∀x1, x2, x3, x4 (41)  

where Ns is the number of reduced scenarios, Nd is the number of 
discrete intervals, ωx1 ,x2 ,x3 ,x4 is a binary variable that represents the 
presence of each scenario, ps(x1, x2, x3, x4) is the new probability 
associated with the reduced scenario vector, while pn,xn denotes the 
probability that the n-th uncertainty factor takes on the value of xn. 

Finally, the deterministic model is simulated for the set of reduced 
scenario vectors, with the expected value of the minimised objective 
function and the resulting values of the decision variables representing 
the uncertainty-aware solutions in the most likely scenario. 

2.7. Overview of the proposed method 

Fig. 6 shows a flowchart of the proposed method. First, all input data, 
including scalars and historical time series are loaded. The green blocks 
represent the uncertainty characterisation components of the model. To 
characterise the uncertainties, first, the hour-specific PDFs are generated 
for each variable time-series input. Subsequently, multi-dimensional 
scenario vectors are generated and reduced. The model then proceeds 
to run the deterministic model for each reduced scenario for the opti-
mum equipment mix using the selected metaheuristic. 

The metaheuristic-based processes are represented by blue blocks in 
Fig. 6. Specifically, for each search agent of the metaheuristic algorithm, 
the proposed DR scheduling framework that uses the flexibility potential 
of EV-charging loads is run on a day-ahead basis (the yellow block) 
before applying the devised rule-based dispatch strategy on an hourly 

basis (the light coral block). Finally, for each scenario, the globally op-
timum values of the total discounted system cost and size of the com-
ponents are recorded, the expected values of which represent the most 
likely results under multi-dimensional uncertainty. It is also noteworthy 
that the selected metaheuristics are integrated into the proposed solu-
tion approach on an individual basis. Moreover, the process of updating 
the positions of the search agents of the metaheuristics in an iterative 
manner is continued until reaching the maximum number of iterations 
as the stopping criterion. 

Furthermore, Fig. 7 illustrates how different model components 
build upon each other. Specifically, at the innermost layer of the model 
lies the proposed rule-based dispatch strategy, which is aware of the fact 
that serving EV loads using the energy stored in the stationary battery is 
not energy efficient. The day-ahead demand-side management layer, 
built on the hourly dispatch strategy layer, then seeks to shift the EV- 
charging loads to maximise the load factor subject to the EV owners’ 
comfort constraints. The constraints on the operation and planning of 
the MG, to which the optimal solution must adhere are then defined. 
Finally, the objective function representing the total net present cost is 
formulated and minimised in a probabilistic manner to effectively ac-
count for the uncertainties involved. The figure also shows the key input 
data that need to be processed before use, as well as the key outputs of 
the model. 

3. Case study: Input data 

This section presents the input data supplied to the proposed model 
for three case communities residing on Aotea–Great Barrier Island, in 
Aotearoa–New Zealand, namely: Medlands, Tryphena, and Mulberry 
Grove. First, the overall geographical and climatic conditions of the case 
study sites are briefly described. The section then proceeds to more 
specifically detail the meteorological and energy consumption data 
forecasts before presenting a summary of the scalars used within the 
model. 

Fig. 8 shows the geographical locations of the three communities 
considered for off-grid MG installations. In terms of geographical loca-
tion, Mulberry Grove and Tryphena are about 6.3 km and 8.1 km from 
Medlands, respectively. Accordingly, MG 1 is populated for the case of 
Medlands, whereas MG 2 is populated for the cases of Tryphena (MG 2a) 
and Mulberry Grove (MG 2b). For more detailed background informa-
tion on the case study refer to the Supplementary Material accompa-
nying the paper (Additional File 2: Case study background information 
and time-series data). 

3.1. Techno-economic specifications 

Table 3 presents a summary of the assumed values for the technical 
and cost parameters of the components of the MGs and the associated 
sources. Note that all costs are in 2021 New Zealand Dollars and were 
derived from the local renewable energy asset market in the years 2020 
and 20211. Furthermore, the project lifetime and the expected interest 
rate were respectively assumed to be 25 years and 3.7%. The interest 
rate was estimated by taking the average over the last 10 years, from 
2012 to 2021 [74]. 

Also, Table 4 presents the values of the parameters used within the 
model, including those related to the mathematical models of the 
components integrated, as well as the operational- and planning-level 
constraints. 

3.2. Specifications of metaheuristics 

Table 5 presents the adjusted values for the parameters of the met-
aheuristics in the candidate pool, in accordance with the associated 

Fig. 5. Discretising a representative Gaussian PDF based on equal-width re-
gions (adapted from [71]). 

1 Mean NZD to USD exchange rate in 2021 [95]: 1 NZD = 1.41 USD. 
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developer-suggested values for multi-dimensional problems. A detailed 
description of the parameters used in each algorithm is provided in the 
Supplementary Material (Additional File 3: Overview of the selected 
metaheuristics). Also, the number of search agents and the maximum 
number of iterations were respectively fixed at 100 and 200 for all 
metaheuristics under consideration to enable a fair comparison. 

4. Simulation results and discussion 

This section discusses the numerical simulation results derived from 
coding the proposed method parametrised for the three MG test-cases 
modelled, which were populated for the corresponding three sites of 
interest. The model was simulated using the MATLAB R2022a software 
[89] on a standard desktop computer. The reader is referred to the 

Supplementary Material accompanying the paper (Additional File 4: 
Model validation) for additional energy flow, cash flow, and capital 
budgeting analyses, which reinforce the validity of the proposed 
method. 

4.1. Performance comparison of the selected algorithms 

A new method was used to rank the performance of the meta-
heuristics of interest in MG equipment capacity planning applications. 
The proposed ranking technique incorporates the following five 
descriptive statistics: the standard deviation, mean, and median of the 
total net present costs (TNPCs) yielded throughout the literature- 
standard 30 independent simulation runs, as well as the associated 
best- and worst-case results out of the 30 trials of optimising a solution to 

Fig. 6. Flowchart of the proposed stochastic off-grid MG sizing method considering EV-charging demand-side management.  
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Fig. 7. Illustration of the layer-by-layer structure of the proposed method.  

Fig. 8. Locations of the conceptualised MGs for installation on Aotea–Great Barrier Island (image courtesy of Google Earth™ mapping service).  

Table 3 
Techno-economic specifications of the MG components.  

Component Nameplate rating (generic) Capital cost Replacement cost O&M cost Expected life Efficiency Source 

WT 50 kW $59k/unit $45k/unit $800/unit/year 25 years N/Aa [75] 
Solar PV 330 W $350/unit $220/unit $5/unit/year 25 years 17.5% [76] 
BESS 14 kWh $14k/unit $9k/unit $30/unit/year 15 years 95%b [77] 
AC/DC converterd 50 kW $4.5k/unit $4k/unit $28/unit/year 15 years 98% [78] 
DC/DC converterd 360 W $50/unit $50/unit $1/unit/year 15 years 97% [79,80] 
Inverter 21 kW $8k/unit $8k/unit $320/unit/year 20 years 96%c [80] 
EV charger 7.6 kW $4k/unit $4k/unit $160/unit/year 20 years 99% [81]  

a Not applicable as the WT’s efficiency is controlled by the approximated power curve. 
b Individual charge and discharge efficiencies. 
c Expected value, as the inverter efficiency is modelled dynamically (in a power output-dependent manner). 
d In the optimisation model, the costs and efficiencies of the AC/DC and DC/DC converters were respectively integrated into the costs and effectiveness of the WTs 

and the solar PV panels/battery bank in the interests of reducing the dimensionality of the overall problem at hand. 
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the three MG sizing problems. 
The standard deviation measures the amount of variation or 

dispersion of the population of TNPC outputs, while the mean of the set 
of TNPC observations represents the arithmetic average of the values – 
and indicates the central tendency of the values. Also, the median is the 
value separating the higher half of the population of TNPC outputs from 
the lower half. The mean of the results, as well as the best- and worst- 
case solutions, indicate the accuracy of the algorithms under compari-
son, whereas the median and standard deviation values indicate the 
precision of the algorithms over 30 independent trials. 

Table 6 presents the total discounted system costs obtained from the 
application of the algorithms, the comparative efficiency of which is 
under investigation, to the optimal equipment capacity planning prob-
lem of the three MG instances over 30 simulation runs. The rank order of 

the algorithms is determined by taking the average of the descriptive 
statistics for each MG sizing case first (Avg. 1) – which determines the 
case-specific scores of metaheuristics when applied to the optimal MG 
sizing problems of interest – and then taking the average of the resulting 
scores over the three cases (Avg. 2). The following points should be 
noted for a better interpretation of the comparative results presented in 
Table 6:  

• Low standard deviation values indicate that data are clustered 
around the mean (i.e., the data values are concentrated close to the 
mean), whereas high standard deviation indicates that data are more 
spread out (i.e., the data values show more variation from the mean).  

• A standard deviation equal to zero indicates that there is no spread in 
data. 

• When the mean value is greater than the median value, the distri-
bution curve is skewed to the right (positively skewed). On the other 
hand, when the median value is greater than the mean value, the 
distribution curve is skewed to the left (negatively skewed).  

• The best- and worst-case values respectively indicate the minimum 
and maximum TNPCs obtained over 30 independent simulation runs. 

The comparative results presented in Table 6 are revealing in the 
following ways:  

• The MFOA and the EO have the best and worst performances, 
respectively. More specifically, the summary-statistics-based meta-
heuristic comparison framework confirms that the MFOA 

Table 4 
Summary of the parameter settings of the overall model.  

Scalar Value Scalar Value Scalar Value 

PV panels  Inverter  LPSPmin
L 100% 

ηpc 97% η10 94.5% LPSPmin
EV 100% 

μ − 0.48%/◦C η100 92.5% ADmin
bat 24 h 

NOCT 43 ◦C Battery  APV 96% 
Ta,NOCT 20 ◦C CB.r 14 kWh AWT 96% 
GT,NOCT 800 W/m2 Pmin

ch 0 kW Nmax
PV 10,000 

Tc,ref 25 ◦C Pmax
dch 5 kW Nmax

WT 2,000 
Wind turbines  σ 1.5%/month Nmax

B 100 
vr 9.5 m/s Pmin

dch 0 kW Nmax
inv 1,000 

vcut− in 3.5 m/s Pmax
dch 5 kW Overall model  

vcut− out 20 m/s DODmax 95% Δt 1 h 
Pr 50 kW Constraints  Nd 7  

Table 5 
Parameter settings of the examined metaheuristics.  

Metaheuristic Parameter settings Source 

PSO Acceleration constants = 2, inertia weight = 0.7 [82] 
MFOA Constant defining the shape of the logarithmic spiral = 1 [83] 
WHO Crossover percentage = 0.1 [84] 
AHA Probability of performing either the guided foraging or 

the territorial foraging = 50% 
[85] 

AGTO Parameter defining the exploitation power = 0.8 [86] 
MPA Ratio between the encounter rates for the Lévy and 

Brownian predators = 0.1 
[87] 

EO Generation probability = 0.5 [88]  

Table 6 
Summary-statistics-based efficiency comparison of the selected metaheuristics applied to the three MG planning cases in terms of the total net present cost ($).  

Alg. Sys. St. Dev. Best Worst Mean Median Avg. 1 Score Avg. 2 Rank 

PSO MG 1 1,523 438,177 444,152 439,070 438,611 440,003 6    
MG 2a 126 426,553 427,241 426,576 426,553 426,731 4 5 5  
MG 2b 974 272,791 278,123 272,968 272,791 274,168 5   

MFOA MG 1 296 425,539 426,589 425,651 425,539 425,830 1    
MG 2a 218 413,689 413,720 413,223 413,218 413,462 1 1 1  
MG 2b 0 256,754 257,000 256,754 256,754 256,816 1   

WHO MG 1 37,689 438,171 515,553 468,126 438,171 465,005 5    
MG 2a 1 426,553 426,554 426,553 426,553 426,553 7 6 6  
MG 2b 1 272,791 272,792 272,791 272,791 272,791 6   

AHA MG 1 106 435,838 436,287 435,972 435,944 436,010 3    
MG 2a 737 431,073 434,475 431,265 431,075 431,972 6 4 4  
MG 2b 1 266,999 267,004 267,001 267,000 267,001 3   

AGTO MG 1 256 435,791 436,546 435,945 435,804 436,021 2    
MG 2a 1 431,073 431,074 431,073 431,073 431,073 5 3 2  
MG 2b 1 266,999 267,000 266,999 266,999 266,999 2   

MPA MG 1 1 438,171 438,173 438,171 438,171 438,171 4    
MG 2a 1 426,553 426,554 426,553 426,553 426,553 2 3.33 3  
MG 2b 1 272,791 272,793 272,791 272,791 272,791 4   

EO MG 1 2,400 438,186 445,214 439,341 438,219 440,240 7    
MG 2a 1 426,553 426,554 426,553 426,553 426,553 3 5.66 7  
MG 2b 0 272,791 272,793 272,791 272,791 272,791 7    
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outperforms the other six algorithms investigated, namely the PSO, 
the WHO, the AHA, the AGTO, the MPA, and the EO. The utilisation 
of the MFOA for the optimal sizing of the cases of interest reduces the 
expected TNPC in the best run by $12,647 (~3%), $12,864 (~3%), 
and $16,037 (~6%) for MG 1, MG 2a, and MG 2b, respectively, 
compared to the EO, which is the least well-performing 
metaheuristic.  

• The standard deviation of the TNPC outputs of the MFOA and the EO 
when applied to the third MG are both equal to 0. This indicates the 
robustness of the MFOA in yielding the globally optimal solution, 
whilst substantiating the comparative inefficiency of the EO in MG 
planning applications. 

• Based on the Avg. 2 metric, the following rank order can be estab-
lished for the metaheuristics under comparison: the MFOA > the 
AGTO > the MPA > the AHA > the PSO > the WHO > the EO. 

Furthermore, Table 7 presents the optimal capacities of the candi-
date technologies for the three cases, which represent the best-case 
performance of the metaheuristics considered. It can be observed from 
the table that, compared to the AHA and the AGTO, the MFOA allocates 
more WTs in the case of MG 1 to reduce the size of the battery storage 
capacity. Also, although the number of WTs selected by the MFOA for 
MG 1 is equal to those optimised by the PSO, the WHO, the MPA, and the 
EO, it returns comparatively lower capacities for the solar PV generation 
system and the BESS. This can be explained by the MFOA’s unique 
feature of dynamically rebalancing exploration – the early stages of the 
optimisation process that represents the long-range movement of search 
agents – for improved exploitation – the local search around promising 
regions of the search space identified in the exploration phase. Such a 
rebalancing procedure is found to be particularly useful for optimising a 
solution in the general multi-dimensional, nonlinear, non-convex shape 
of the decision space of MG sizing problems. 

It is also worth recalling that the size of the inverter does not 
constitute part of the solution set in the optimisation procedure, as it is 
calculated exogenously (outside the model) based on the peak load de-
mand. It should also be noted that the optimal size of each component is 
rounded up to the nearest integer given the continuous nature of the 
selected metaheuristics. The associated TNPCs were, accordingly, 
rounded up to the nearest integer. 

Fig. 9 depicts the convergence curves of the selected metaheuristics 
in their best runs when applied to MG 1. It can be observed from the 
figure that the MFOA, the AGTO, and the MPA have almost the same 
convergence behaviour, whereas the AHA, the PSO, and the WHO take 
more iterations to converge. The figure also reveals that the weaker 
performance of the EO can be explained by its premature trapping in 
poor local optima. These observations collectively confirm the compa-
rable simulation speed of the MFOA to the fastest metaheuristics in the 
candidate pool that are associated with comparable efficiencies, namely 
the AGTO and the MPA. 

Given the demonstrated outperformance of the MFOA to the other 
metaheuristics investigated in the candidate pool, as well as the 

Table 7 
Optimal designing results for the three cases optimised by the selected algo-
rithms in their best performance.  

Algorithm Sys. PVs 
(no.) 

WTs 
(no.) 

BESS 
(no.) 

Inverter 
(kW) 

TNPC 
($) 

PSO MG 1 127 3 11 59 438,177  
MG 
2a 

792 N/Aa 7 53 426,553  

MG 
2b 

541 N/Aa 4 40 272,791 

MFOA MG 1 102 3 10 59 425,539  
MG 
2a 

784 N/Aa 7 53 413,689  

MG 
2b 

523 N/Aa 4 40 256,754 

WHO MG 1 127 3 11 59 438,171  
MG 
2a 

792 N/Aa 7 53 426,553  

MG 
2b 

541 N/Aa 4 40 272,791 

AHA MG 1 209 2 12 59 435,838  
MG 
2a 

796 N/Aa 8 53 431,073  

MG 
2b 

536 N/Aa 4 40 266,999 

AGTO MG 1 208 2 12 59 435,791  
MG 
2a 

796 N/Aa 8 53 431,073  

MG 
2b 

536 N/Aa 4 40 266,999 

MPA MG 1 127 3 11 59 438,171  
MG 
2a 

792 N/Aa 7 53 426,553  

MG 
2b 

541 N/Aa 4 40 272,791 

EO MG 1 127 3 11 59 438,186  
MG 
2a 

792 N/Aa 7 53 426,553  

MG 
2b 

541 N/Aa 4 40 272,791  

a N/A = No wind power generation is considered in MGs 2a and 2b. 

Fig. 9. Best-case convergence curves of the selected metaheuristics when applied to MG 1.  
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negligibly low standard value of the returned value of the objective 
function over 30 independent trials, all the following analyses are un-
dertaken based on the best-performance run of the MFOA. 

4.2. Impact of EV-charging flexibility 

Fig. 10 shows the impact of running the proposed scheme for the 
flexible serving of EV load demand on the shape of the aggregate EV load 
on MGs 1, 2a, and 2b for typical daily charging patterns. As the figure 
shows, the proposed scheme leads to flattening the aggregate MG-wide 
EV-charging load profiles, which in turn, reduces the peak-to-average 
ratio of the overall load profile and improves the load factor. Specif-
ically, applying the proposed scheme has shaved ~29%, ~24%, and 
~24% off the EV load profiles of MGs 1, 2a, and 2b, respectively. 
Consequently, this has led to a peak shaving of ~18%, ~15%, and 
~13%, respectively, on the corresponding overall load demand profiles 
made up of both appliance and EV loads. Accordingly, the overall peak- 
to-average ratios of the overall load profiles of MGs 1, 2a, and 2b are 
reduced by ~31%, ~26%, and ~23%, respectively. 

To further clarify the impact of the proposed EV-oriented DR model 
on the load power demand data used in the optimal capacity planning 
algorithm, Fig. 11 presents the monthly average 24-hour electricity 
consumption profile for the cases with and without DR for MG 1. The 
figure shows that implementing the proposed DR model results in 
reducing the maximum peak power demand by a significant 38%. This, 
in turn, leads to an increase in the load factor – the ratio of the average 
power demand to the maximum power demand – from 0.30 in the 
baseline case to 0.41 in the case with DR. 

Table 8 presents the comparative optimal sizing results for the three 
cases under consideration with and without shifting the EV-charging 

loads to off-peak hours subject to the constraints imposed by the 
mobility patterns of EV owners. As the table shows, leveraging the 
flexibility potential of EV loads is able to substantially reduce the total 
discounted system cost given the significant contribution of the EV loads 
to the overall demand. Specifically, it has reduced the TNPC of the 
system by ~25% (equating to ~$107k), ~25% (~$103k), and ~27% (~ 
$70k) in MGs 1, 2a, and 2b, respectively. The table is also revealing in 
two ways in terms of the impact of EV demand-side management on the 
size of the components, namely: 

1. While the lowering of the EV peak demand significantly reduces 
the need for over-building of renewable generation which would 
only be used during times of highest demand, it does not materially 
change the size of stationary storage needed. This can be mainly 
explained by the fact that onsite battery storage is not used to charge 
the EVs’ batteries, and that no DR programme is considered for 
appliance loads. 
2. Expectedly, given that EV-charging loads are addressed using 
level-1 chargers, the EV load shifting has a significant impact on the 
size of the inverter. It should be noted that given the zero unmet load 
constraint imposed, the size of the inverter directly reflects the 
magnitude of the peak load shaved. A comparison of the residential/ 
commercial and EV-charging load profiles (refer to Additional File 2 
in Supplementary Material accompanying the paper) indicates a 
large evening peak in both profiles across the three cases. This is the 
main underlying reason for the reduced size of the inverter following 
the shifting of the charging of EVs to off-peak hours. 

Furthermore, a comparison of the solution sets in the two scenarios 
indicates a considerable reduction of the percentage of excess renewable 
generation curtailed where EV-load shifting schemes are present, and 
hence the overbuilt generation capacity that would be rarely used. This, 
consequently, has improved the economics of the overall systems. It is 
worth recalling that only the excess renewable generation is directed 
towards serving the EV loads given the absence of a utility grid and the 
inefficiency of battery-to-battery charging processes. 

4.3. Economics of energy resilience 

To measure the relative importance of energy resilience in 100%- 
renewable MGs tailored to remote and isolated areas, comprehensive 
sensitivity analyses were performed. To this end, the changes in the total 
discounted system cost of MG 1 (in the case without flexible EV-charging 
loads) were quantified against the changes in the minimum allowed 
battery autonomy days. More specifically, the deterministic optimisa-
tion was run using increasing levels of the battery autonomy hours from 
1 day to 10 days in intervals of 1 day. 

Fig. 12 depicts the sensitivity of the system TNPC to changes in the 

Fig. 10. Impact of load shifting on the EV-charging load profiles for: (a) MG 1, and (b) MGs 2a and 2b.  

Fig. 11. Illustration of the impact of the proposed EV-oriented DR strategy on 
the overall monthly mean daily (24-hour) load profile of MG 1. 
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specified battery autonomy hour constraint for the three cases under 
consideration. It can be observed from the figure that in all the cases, the 
TNPC is particularly sensitive to increases in the battery autonomy hour 
above 6 days. That is, the TNPC increases monotonically with increasing 
autonomy required, but not necessarily strictly monotonically or line-
arly. For example, a significantly sharper increase in the total discounted 
system cost is expected for the designs with battery autonomy days of 8 
days compared to those with battery autonomy days of 7 days. This can 
be largely attributed to the need for larger capacities of renewable 
power generation required and the associated interactions with the 
excess generation curtailments. 

For greater insights into the relationships between the excess gen-
eration curtailment and the economics of energy resilience, Table 9 
presents the detailed MG 1 sizing results for the sensitivity cases 
considered with respect to the minimum allowed battery autonomy 
hour. As the table indicates, increasing the battery autonomy from 1 day 
to 5 days is associated with reductions in the percentage of curtailed 
generation as the extra battery capacity is primarily charged using the 
otherwise-curtailed excess generation. However, the case with 6 battery 

autonomy days represents a turning point in terms of how the excess 
generation is dealt with. 

More specifically, from a battery autonomy of 6 days onwards the 
excess generation curtailed starts to increase. This is mainly due to the 
need for adding more renewable power capacities under such more 
conservative constraints solely for resilience reasons, which practically 
play no part in serving the loads during normal operating conditions. In 
other words, highly conservative solutions in terms of renewables 
outage survivability not only necessitate oversized storage capacities, 
but also imply relatively largely underutilised renewable capacities – as 
gradual charging of the stationary battery storage using excess genera-
tion would not be sufficient in those cases. The general insight emerging 
from the above observations is that there exists a critical point, beyond 
which increasing the resilience more drastically deteriorates the eco-
nomics of a 100%-renewable off-grid power supply. Such a point can be 
viewed as a reasonable trade-off (best compromise) between cost and 
resilience. 

4.4. Effects of uncertainty 

To evaluate the effects of uncertainty on the optimal solutions, the 
deterministic and stochastic results in the presence of EV-charging load 
flexibility are compared in Table 10. In the stochastic model variant, the 
underlying parametric uncertainties are quantified using the proposed 
multi-dimensional uncertainty characterisation approach. As the table 
shows, failure to account for the variability inherent in the relevant 
time-series data would have led to an underestimation of the total dis-
counted system cost by ~24% (equating to ~$102k), ~21% (~$81k), 
and ~19% (~$43k) respectively in MGs 1, 2a, and 2b. The reason for a 
slightly higher impact of the uncertainty characterisation on the esti-
mated total discounted cost of MG 1 is the presence of WTs in the 
candidate pool which necessitates the characterisation of the uncer-
tainty in wind speed forecasts. In other words, MG 1 is associated with 
four sources of parametric uncertainty compared to the three addressed 
for MGs 2a and 2b – solar irradiance, temperature, and load demand. 
Another potential contributing factor to the more pronounced impact of 
uncertainty modelling on the results of MG 1 is its comparatively larger 
scale, which potentially results in widened mismatches between load 
and generation. 

Also, in terms of impact on the optimal component mix, the char-
acterisation of uncertainties has increased the optimal capacity of the 
solar PV system by as much as ~8% (equating to 2.3 kW), ~12% (23.8 
kW), and ~15% (19.5 kW) in MGs 1, 2a, and 2b, respectively. 
Furthermore, for the WTs integrated into MG 1, the uncertainty char-
acterisation has increased the overall capacity required by a significant 
50% (equating to 50 kW). It is noteworthy that the effective distribution 
of uncertainty reduction-related added renewable capacities (which has 
given more weight to the increase in the size of the WT generation 
system), as well as leveraging the associated power generation com-
plementarities, are the main two reasons behind the relatively smaller 
increase in the optimal capacity of the solar PV generation system in MG 
1. 

Moreover, the optimal capacity of the BESS is found to be less sen-
sitive to the variability of renewables and load demand. This can be 
mainly attributed to the fact that the EV-charging load, which cannot be 

Table 8 
Comparison of the optimal sizing results with and without EV demand-side management.  

Scenario MG PVs (no.) WTs (no.) BESS (no.) Inverter (kW) Total cost ($) Percentage of curtailed generation 

Without EV-charging flexibility MG 1 102 3 10 59 425,539 10% 
MG 2a 784 N/A 7 53 413,689 14% 
MG 2b 523 N/A 4 40 256,754 11% 

With EV-charging flexibility MG 1 85 2 9 48 319,478 4% 
MG 2a 589 N/A 6 41 310,450 6% 
MG 2b 390 N/A 3 36 187,010 5%  

Fig. 12. Sensitivity of the TNPC of MG1 (without EV-charging flexibility) to 
changes in minimum allowed battery autonomy hours. 

Table 9 
Comparative costings and configurations of MG 1 under various minimum 
allowed resilience constraints.  

Sensitivity 
case 

PVs 
(no.) 

WTs 
(no.) 

BESS 
(no.) 

Inverter 
(kW) 

Total 
cost ($) 

Percentage of 
curtailed 
generation 

0 102 3 10 59 425,539 10% 
1 102 3 10 59 425,539 7% 
2 102 3 10 59 425,539 5% 
3 102 3 10 59 425,539 3% 
4 102 3 10 59 425,539 3% 
5 102 3 10 59 425,539 2% 
6 102 3 10 59 425,539 12% 
7 127 3 11 59 459,214 15% 
8 138 4 11 59 558,851 16% 
9 154 4 12 59 595,410 21% 
10 154 4 12 59 595,410 21%  
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met using stationary battery discharges, is a substantial contributor to 
the overall load demand. The presence of a minimum allowed self- 
sufficiency ratio also contributes to the lower sensitivity of the battery 
size to the system-wide uncertainties, albeit to a lesser degree compared 
to the aforementioned large share of EV-charging power consumption. 
The effect of uncertainties on the total capacity of the inverter system is, 
additionally, directly correlated with the changes in the peak net power 
demand due to the characterisation of uncertainties. 

5. Conclusions and future work 

This paper has presented a novel probabilistic, resilience-oriented, 
EV-charging DR-integrated MG sizing method tailored to off-grid MGs, 
particularly solar PV/WT/battery and solar PV/battery systems. Using 
insights from an Aotearoa–New Zealand case study, the model has 
generalised the long-term strategic MG capacity planning optimisation 
problem in four important areas, namely:  

• The state-of-the-art metaheuristics have a significant potential to 
improve the economics of MGs, which can be leveraged to pave the 
way towards a renewables-based economy. More specifically, based 
on multi-case-study analyses, it has been found that the MFOA could 
outperform the leading metaheuristic in MG sizing applications, the 
PSO algorithm, by approximately 6% – with significant potential cost 
savings in mid- to large-scale off-grid MG developments. Also, the 
descriptive statistics-based rank order of the examined meta-
heuristics has been found to be as: the MFOA > the AGTO > the MPA 
> the AHA > the PSO > the WHO > the EO.  

• The EV-charging load is the largest contributor to the overall demand 
in an electrified transport scenario. Therefore, it is not optimal to 
charge EVs when arriving home from work as it exacerbates the 
evening peak load and, in turn, increases the peak capacity needed, 
which would then be substantially underutilised. Accordingly, an 
efficient load-shifting programme is needed to shift the EV loads to 
off-peak hours subject to the constraints imposed by the mobility 
patterns of EV owners, thereby flattening the overall load profile. For 
the cases considered, the proposed EV-load-addressable DR pro-
gramme has improved the economics of the designed MGs by a sig-
nificant ~26%, on average.  

• Ignoring the forecast uncertainties can result in significant degrees of 
deviation from reality. That is, failure to account for the system-wide 
parametric uncertainties can necessitate more expensive reinforcing 
or even reengineering of the system. It is, therefore, essential to 
holistically address the multivariate nature of the uncertainty sour-
ces. The multi-variant quantitative evidence from the studied cases 
has demonstrated the effectiveness of the proposed general frame-
work for the probabilistic characterisation of the uncertainties 
involved in producing financially robust MG designs.  

• Sensitivity analyses performed based on the proposed model have 
also demonstrated that the value that the target communities place 
on energy resilience has a significant influence on the total dis-
counted cost of grid-isolated MGs. More specifically, considering the 
battery autonomy days as the resilience metric, increasing the 
required resilience from 1 day to 10 days increases the total cost of 

the system by at least ~40%. This poses a significant barrier to the 
deployment of 100%-renewable energy systems in remote and iso-
lated areas. Therefore, effective trade-offs between system cost and 
energy resilience are of significant importance during the planning 
phase. 

In conclusion, the paper has shown the importance of resilience 
considerations and coordinated EV charging management during the 
long-term strategic planning of off-grid MGs tailored to communities 
that currently suffer from security of supply issues associated with stand- 
alone diesel generator systems. It has also substantiated the importance 
of a systematic multi-case-study-oriented, uncertainty-aware method for 
robust conclusions around the performance of metaheuristics in the MG 
sizing problem. 

Future work is also planned for a more integrative variant of the 
proposed model, where (i) the flexibility potential of residential/com-
mercial appliances is effectively utilised, (ii) the coalitional behaviour of 
off-grid utility enterprises and residential/commercial end-consumers is 
modelled using insights from cooperative game theory to effectively 
capture the interactions between different parties involved, (iii) the 
uncertainties in techno-economic specifications, such as the inflation 
rate and replacement costs of infrastructures are factored in, and (iv) the 
degradation of EV batteries is factored in to better account for the per-
formance and cost implications of EVs on the economic viability of MGs. 
Future work could also explore the integration of various energy vectors 
on a broader level – beyond MGs focused exclusively on electricity – and 
compare the performance of the selected meta-heuristics when applied 
to more complex MG configurations. This could involve investigating 
the potential for heat, cooling, hydrogen, and other forms of energy 
carriers, into a comprehensive system that maximises energy efficiency 
and minimises environmental impact. Such an integrated approach 
would provide a more holistic understanding of the challenges and op-
portunities for sustainable energy and could help aid associated in-
vestment decisions towards a more sustainable energy future. 
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Table 10 
Comparison of the deterministic and stochastic results considering flexible EV-charging loads.  

Model output Deterministic results Stochastic results 

MG 1 MG 2a MG 2b MG 1 MG 2a MG 2b 

PVs (no.) 85 589 390 92 661 449 
WTs (no.) 2 N/A N/A 3 N/A N/A 
BESS (no.) 9 6 3 11 8 4 
Inverter (kW) 48 41 36 60 52 48 
Total cost ($) 319,478 310,450 187,010 421,374 391,291 230,372 
Percentage of curtailed generation 4% 6% 5% 5% 8% 6%  
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Appendix A. Mathematical formulation of the components 

This appendix presents the mathematical formulations of the components of the conceptualised MGs. 

A1. Solar PV 

The power output from each solar PV panel at each time-step of the simulation, t, can be obtained from the following equation [54,55]: 

PPV (t) = ηAsGT(t), (A.1)  

where As denotes the surface area of each panel (m2), GT represents the total solar irradiance (W/m2), while η represents the time-variant overall PV 
system efficiency which can be calculated using Eq. (A.2) [54,55]. 

η(t) = ηrηpc

[
1 − μ

(
Tc(t) − Tc,ref

) ]
, (A.2)  

where ηr denotes the reference module efficiency, ηpc is the efficiency of the internal power converter, μ denotes the temperature coefficient of power 
of PV cells (%/◦C), Tc,ref is the reference cell temperature (◦C), and Tc(t) represents the temperature of PV cells at time-step t, which is given by [54,55]: 

Tc(t) = Ta(t)+ [(NOCT − Ta, NOCT )/GT,NOCT ]GT(t), (A.3)  

where NOCT is the nominal operating cell temperature, Ta,NOCT and GT,NOCT respectively denote the ambient temperature and total solar irradiance at 
the normal operation conditions, with Ta(t) denoting the ambient temperature (◦C). 

A2. Wind turbines 

The power output from each WT can be expressed as a function of wind speed as [90,91]: 

PWT(t) =

⎧
⎨

⎩

(
(Av(t))3

+ B
)
Pr, vcut− in ≤ v(t) < vr

Pr , vr ≤ v(t) ≤ vcut− out
0, otherwise

(A.4)  

where Pr is the rated power output of the turbine, v(t) denotes the wind speed, vcut− in is the cut-in wind speed, vcut− out is the cut-out wind speed, while A 
and B are constants which can be defined as [90,91]: 

A =
1

v3
r − v3

cut− in
, (A.5)  

B =
vcut− in

v3
r − v3

cut− in
. (A.6) 

Fig. A1 illustrates the equations used for modelling the power output of WTs with respect to wind speed [65]. 

Fig. A1. Illustration of the power curve of a typical representative WT (adapted from [65]).  
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A3. Battery 

The battery bank is the only dispatchable component in both system configurations, and thereby serves as the primary source for balancing the 
supply of demand within the systems under consideration. To this end, the energy content of the battery bank is used to couple each time-step to other 
time increments. That is, the power outputs from wind and solar PV generators are used to determine when the battery should charge or discharge. 
Accordingly, the following equation gives the battery bank energy content at each time-step [92]: 

Ebat(t) =
{

Ebat(t − 1)(1 − σ) + (ηchPch(t) )Δt, charging mode
Ebat(t − 1)(1 − σ) − (Pdch(t)

/
ηdch)Δt, discharging mode (A.7)  

where Ebat(t − 1) is the battery energy content at the previous time-step, σ denotes the hourly self-discharge rate, ηch is the charging efficiency, ηdch is 
the discharging efficiency, Pch is the charging power, Pdch is the discharging power, with Δt representing the duration of each time-step which is used to 
convert the unit of power to energy. 

In accordance with the standard practice in long-term strategic MG planning studies, it is assumed that the degradation of the stationary battery 
storage is linear. 

Accordingly, the remaining capacity of the battery bank as a function of the cycles it has undergone, can be calculated as [93]: 

Cb(cycles) = Cini −
Cini − Clast

Cyclesmax
× cycles, (A.8)  

where Cini is the capacity of the battery at the first cycle, Clast is the capacity of the battery at the last cycle, while Cyclesmax is the battery bank’s 
expected maximum number of cycles. 

The process for the calculation of the remaining capacity of the battery bank as a function of the cycles it has undergone is also illustrated in Fig. A2. 

A4. Inverter 

To better reflect reality, a dynamic model was used for the inverter, whereby the efficiency of the inverter can be obtained as follows [94]: 

ηinv =
P

P + P0 + kP2, (A.9)  

where P, P0, and k are defined as: 

Fig. A2. Illustration of the remaining capacity of the battery bank with respect to the number of cycles (adapted from [93]).  

Fig. A3. Illustration of the output power-dependent efficiency of the inverter.  
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P =
Pout

Pin
, (A.10)  

P0 = 1 − 99(
10
η10

−
1

η100
− 9)2

, (A.11)  

k =
1

η100
− P0, (A.12)  

where η10 and η100 denote the manufacturer-provided inverter efficiencies at 10% and 100% of its nameplate rating. 
Fig. A3 illustrates the equations used for modelling the output power of the inverter with respect to its dynamic efficiency for varying output power 

to rated power ratios. 

Appendix B. Dispatch strategy 

This appendix formulates the proposed dispatch strategy for the operation of the MGs of interest. To effectively handle the peak demand coincident 
with the charging of EVs, a specific rule-based dispatch strategy was developed. For energy efficiency considerations, the dispatch strategy does not 
supply the energy demand of EV loads from the battery bank’s energy in store. Accordingly, depending on the status of aggregate variable renewable 
generation, Pgen, aggregate non-EV load demand, PL, and aggregate EV-charging load demand, PEV , three dispatch scenarios may occur, which are 
defined and formulated mathematically in the following sections. 

B1. Renewable power generation equals total demand 

This case assumes the total power output from variable renewables to be equal to the sum of aggregate non-EV and EV load demands, which can be 
mathematically modelled as: 

PPV (t) +PWT(t) = PL(t)/ηinv +PEV(t)/ηEV , (B.1)  

Eb(t+Δt) = Eb(t), (B.2)  

PEV,del(t) = PEV(t), (B.3)  

where PEV,del is the actual power delivered to EVs at time-step t and ηEV denotes the efficiency of EV chargers. 

B2. Excess renewable power generation 

In this scenario, it is primarily assumed that the total variable renewable power generation exceeds the aggregate load on the MG. Accordingly, any 
surplus variable renewable power generation is dispatched to the BESS for later use. The operational strategy of the system can be mathematically 
modelled as: 

Pch(t) = PPV(t)+PWT(t) − (PL(t)/ηinv)− (PEV (t)/ηEV), (B.4)  

Eb(t+Δt) = Eb(t − 1)+Pch(t) × ηch × Δt, (B.5)  

PEV,del(t) = PEV(t). (B.6) 

A second if-statement subsequently checks whether the onsite variable renewable power generation is not able to supply the entire demand on the 
MG but there exists excess generation with respect to the non-EV loads alone (residential and commercial loads). In such circumstances, the associated 
excess generation is used to serve the EV-charging loads as far as possible, which can be modelled as: 

PEV,del(t) = PPV(t)+PWT(t) − (PL(t)/ηinv), (B.7)  

QEV(t) = PEV(t) − PEV,del(t), (B.8)  

where QEV is the lost EV-charging load, which can be obtained by subtracting the actual power delivered to the EVs’ batteries from the expected total 
EV load demand, as expressed in Eq. (B.8). 

Also, it is assumed that where it is not possible to store the excess power in the battery bank due to the energy and/or power capacity limits, the 
amount of overflown energy is spilled or dumped. 

B3. Renewable power deficit 

This scenario assumes that the total non-EV load demand is larger than the aggregate variable renewable power generation. Accordingly, the 
energy stored in the BESS is withdrawn to supply the non-EV loads to the greatest extent possible. However, the total EV load demand is remained 
unmet, which results in the loss of total EV loads, QEV , in addition to some part or whole of the non-EV loads, Qload. This scenario can be mathematically 
modelled as: 

Pdch(t) = (PL(t)/ηinv) − PPV(t) − PWT(t), (B.9) 
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Eb(t+Δt) = Eb(t − 1)− (Pdch(t)/ηdch) × Δt, (B.10)  

PEV,del(t) = 0, (B.11)  

QEV(t) = PEV(t). (B.12) 

As can be seen from Eqs. (B.11) and (B.12), the EV-charging load remains entirely unserved during the periods where residential and commercial 
loads exceed the total renewable power generation. 

Where non-EV load shedding is necessary to maintain the power balance of the system due to the depletion of the battery storage and/or in-
adequacy of its power capacity, the associated lost residential and commercial loads can be obtained from the following equation: 

QL(t) = PL(t) −
(

PPV(t)+ PWT(t)+
(

Eb(t) − Emin
b

Δt

)

× ηdch

)

× ηinv. (B.13) 

More specifically, in this scenario, the onsite storage is used to its maximum capacity to meet the residential and commercial loads. Yet, despite 
doing so, there exists unserved demand, apart from unsupplied EV-charging loads, which should be accounted for as lost load in the associated 
reliability calculations. 

Appendix C. Supplementary material 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.apenergy.2023.121007. 
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