

1 **Performance of a recirculated biogas-sparging anaerobic membrane
2 bioreactor system for treating synthetic swine wastewater containing
3 sulfadiazine antibiotic**

4

5 Xinbo Zhang^{a, b*}, Haojie Huang^{a, b}, Qing Du^{a, b}, Fu Gao^{a, b}, Zhiwen Wang^c, Guangxue Wu^d,
6 Wenshan Guo^{e, a}, Huu Hao Ngo^{e,a,*}

7

8 *^a Joint Research Centre for Protective Infrastructure Technology and Environmental
9 Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian
10 University, Tianjin 300384, China*

11 *^b Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian
12 University, Jinjing Road 26, Tianjin 300384, China*

13 *^c Frontier Science Center for Synthetic Biology and Key Laboratory of Systems
14 Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation
15 Center of Chemical Science and Engineering (Tianjin), Department of Biochemical
16 Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin
17 300072, People's Republic of China*

18 *^d Civil Engineering, School of Engineering, College of Science and Engineering,
19 University of Galway, Galway H91 TK33, Ireland*

20 *^e Centre for Technology in Water and Wastewater, School of Civil and Environmental
21 Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia*

22

23

24

25

26

27

28

29

30

31

32

33 *Correspondence authors:

Abstract

36 Anaerobic Membrane Bioreactor (AnMBR) is an efficient system for treating synthetic
 37 swine wastewater (SW). However, the presence of antibiotics in SW discourages the activity
 38 of microorganisms, resulting in less pollutants removal and biogas production. In this paper, a
 39 recirculated biogas-sparging anaerobic membrane bioreactor system was used to treat swine
 40 wastewater containing sulfadiazine (SDZ). The effects of different concentrations of SDZ on
 41 the AnMBR system's performance were explored, in terms of pollutant removal, biogas
 42 production, membrane fouling and microbial community. Results indicated that the larger
 43 concentration of SDZ triggered a strong suppression in the system's performance. When
 44 treating 1.0 mg/L SDZ, the biogas-sparging AnMBR system achieved about 77% COD
 45 removal and 0.23 L/g COD_{removed} biogas production, which without SDZ fell to 21% COD
 46 being removed and dropped biogas production by 30%. As well, the presence of SDZ (1.0 mg
 47 L) increased by about half the amount of soluble microbial product (SMP) and extracellular
 48 polymeric substances (EPS) with lower protein/polysaccharide ratio and reduced sludge
 49 particle size by 49%. Meanwhile, microbial community analysis revealed that the abundance
 50 of *Firmicutes* increased while *Chloroflexi* diminished. These jointly contributed to a shorter
 51 membrane fouling cycle declining from the initial 23 d to 7 d. Furthermore, the shift from
 52 acetoclastic methanogens to hydrogenotrophic methanogens resulted in less methane
 53 production due to the presence of SDZ, while the hydrogenotrophic methanogen
 54 *Methanobacterium* promoted the degradation of SDZ. The work showed AnMBR can
 55 effectively treat swine wastewater containing antibiotics and provides basis for practical
 56 application.

57

58 **Keywords:** Anaerobic membrane bioreactor, Antibiotic, Swine wastewater, Biogas
 59 production, Membrane fouling,

60

61 **Abbreviations :** Anaerobic membrane bioreactor (AnMBR), anaerobic sequential batch
 62 reactor (ASBR), upflow anaerobic sludge bed filter (UBF), upflow solid reactor (USR),
 63 upflow anaerobic sludge blanket (UASB), swine wastewater (SW), sulfonamides (SAs),
 64 sulfadiazine (SDZ), chemical oxygen demand (COD), organic loading rates (OLR), hydraulic
 65 retention time (HRT), sludge retention time (SRT), polyvinylidene fluoride (PVDF),
 66 transmembrane pressure (TMP), mixed liquid suspended solids concentration (MLSS), mixed
 67 liquid volatile suspended solids concentration (MLVSS), soluble microbial product (SMP),
 68 extracellular polymeric substances (EPS), Volatile fatty acids (VFAs), methane (CH₄),
 69 hydrogen (H₂), nitrogen (N₂), carbon dioxide (CO₂), electron donating functional groups
 70 (EDG), operational taxonomic units (OTU).

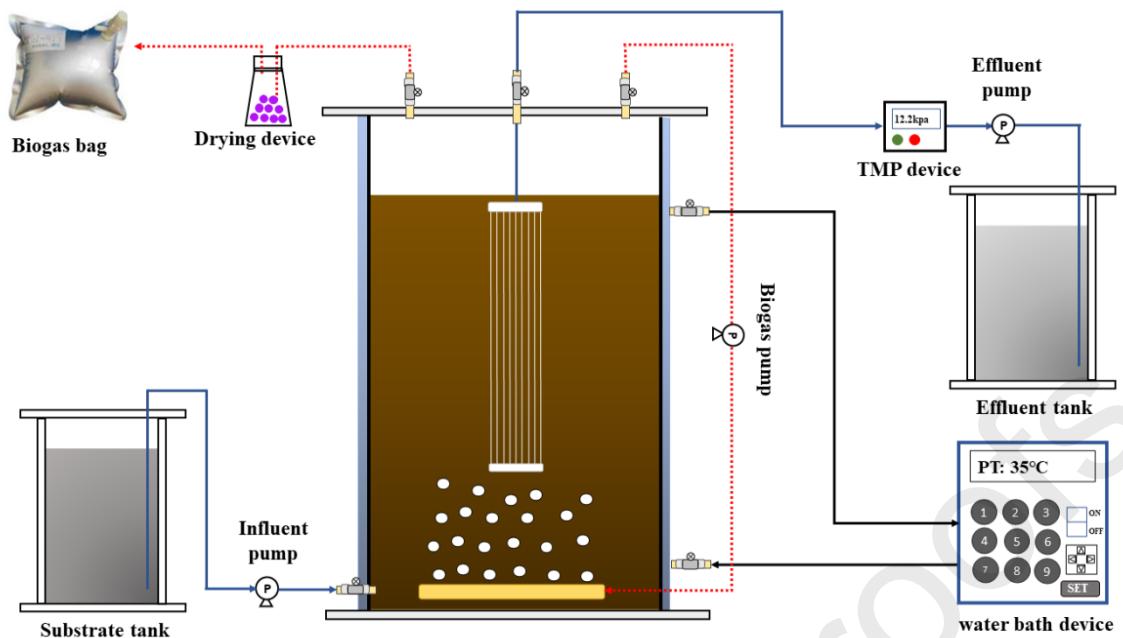
71 **1. Introduction**

72 In recent years, with the huge expansion of the livestock and poultry breeding industry,
 73 the scale of intensive breeding continues unabated, resulting in the increasing amount of
 74 swine wastewater discharged from farms and subsequently harms and pollutes the
 75 environment [1]. Swine wastewater generally originates from livestock and poultry feces and
 76 cleaning wastewater and these substances contain a lot of organic matter. Due to the needs of
 77 disease resistance, epidemic prevention and production requirements, various antibiotics have
 78 been deployed as feed additives in the livestock industry and animal husbandry to promote
 79 animal growth and reproduction, and to prevent and cure animal disease symptoms, etc. [2,
 80 3]. However, most antibiotics cannot be fully inhaled and metabolized when they are used for

81 animals, and about 30%-90% of antibiotics are excreted with feces and urine. They are only
 82 partially metabolized by animals in the form of compounds, conjugates, oxidation or
 83 hydrolysis products [4, 5]. According to research, the total antibiotics residues detected in
 84 swine wastewater were up to 3780 $\mu\text{g/L}$ [6]. The most frequently detected classes of
 85 antibiotics in swine wastewater are sulfonamides, tetracyclines and macrolides, with the
 86 concentration of 324.4, 388.7 and 72.0 $\mu\text{g/L}$, respectively [7]. Consumption of antibiotics
 87 continue rising as the global population increases and the demand for pig products also
 88 increases. In order to reduce the impact of antibiotics on the environment and human health,
 89 antibiotic residues in swine wastewater have triggered a lot of concern about how to solve this
 90 problem [8].

91 At present, anaerobic process treatment is an effective method to treat swine wastewater
 92 because of its low energy consumption, high removal rate, methane-rich biogas production,
 93 and less sludge volume [9]. For example, the anaerobic sequential batch reactor (ASBR),
 94 upflow anaerobic sludge bed filter (UBF) and upflow solid reactor (USR) can remove 75%-
 95 80% chemical oxygen demand (COD) from swine wastewater and produce a maximum
 96 volume methane yield of 1.234-1.679 $\text{L/L}\cdot\text{d}$ [10]. However, these anaerobic treatments have
 97 some disadvantages such as long hydraulic retention time and poor stability [11]. Of the
 98 anaerobic processes, anaerobic membrane bioreactors (AnMBRs) combine the characteristics
 99 of anaerobic technology and membrane filtration, and perform remarkably well in the
 100 treatment of high COD wastewater. Therefore, AnMBR can be applied to effectively treat
 101 swine wastewater. Pu et al. investigated the functioning of AnMBR for treating swine
 102 wastewater at different organic loading rates (OLR). Their results showed that the AnMBR
 103 could achieve high COD removal (71.9%-83.6%) and CH_4 energy recovery (0.18-0.23 L/g
 104 $\text{COD}_{\text{removed}}$) when the OLR ranged from 0.25 to 0.5 $\text{g COD/g VSS}\cdot\text{d}$ [12].

105 Compared with a conventional upflow anaerobic sludge blanket (UASB), AnMBR
 106 achieved superior COD removal and methane production than the UASB (increased by 30%
 107 and 0.04 $\text{L/g COD}_{\text{removed}}$, respectively) [13]. Tang et al. investigated the effects of temperature
 108 and hydraulic retention time (HRT) on an anaerobic membrane bioreactor (AnMBR). These
 109 researchers' results confirmed that HRT of 15 days and 35 $^{\circ}\text{C}$ were the ideal experimental
 110 conditions for enhanced anaerobic digestion, achieving high methane production (0.24 L/g
 111 $\text{COD}_{\text{removed}}$) and microbial activity (6.65 mg COD/g VSS·h) [14]. Bu et al. treated swine
 112 wastewater with AnMBR, which could achieve an average methane yield of 0.28 $\text{L/g VSS}\cdot\text{d}$
 113 and remove 96% COD [15]. However, most current studies have ignored the impact of
 114 antibiotics in swine wastewater [16]. As is well known, the presence of antibiotics may lead
 115 to microbial activity reduction or microbial populations' variation in anaerobic processes,
 116 subsequently affecting pollutants' removal and biogas production [17]. Some studies have
 117 confirmed that antibiotics in wastewater interrupt the digestion performance of anaerobic
 118 systems, and destroy the stability of the system, essentially causing the accumulation of VFAs
 119 and other metabolic intermediates [17-19]. In this way the efficiency of anaerobic treatment,
 120 etc., is seriously compromised. When treating swine wastewater, the effect of antibiotics on
 121 the operations of the AnMBR system must be explored to generate better energy production
 122 and water resource reuse.


123 Among all the antibiotics currently present in the environment, sulfonamides (SAs) are
 124 the most widely used class in the farming industry and the main antibiotic content detected in
 125 swine wastewater [20, 21]. SAs are usually negatively charged and repelled from the sludge
 126 surface by electrostatic repulsion, thus resulting in negligible removal by adsorption on
 127 anaerobic sludge [6]. SAs possess many aromatic rings and double-bonded functional groups
 128 that can limit microbial growth by interfering with microbial protein production, DNA
 129 replication, or other aspects of cellular metabolism. Thus, they are hardly removed by

conventional anaerobic processes [7]. Prolonging sludge retention time (SRT) may improve the degradation of antibiotics. Therefore, anaerobic membrane bioreactors (AnMBRs) are a promising alternative to conventional anaerobic processes. As previously reported, the increase in SM removal was primarily attributed to enhanced biodegradation in the AnMBR [22]. However, there still needs to be more information about AnMBRs specifically for treating swine wastewater containing SAs, including the effect of SAs on the anaerobic system and the removal mechanism. In addition, previous studies noted that membrane fouling can significantly affect the progress and rigour of the experiments, as severe membrane fouling requires membrane cleaning or membrane replacement [7, 23]. Therefore, in this study, the simple and efficient way of recirculating biogas sparging was used to extend the life cycle of membrane fouling further to ensure the rigour and smoothness of the experiment operation [24]. In this paper, the operational performance of AnMBR when treating swine wastewater in the presence and absence of sulfonamides antibiotic was compared and analyzed, including organic matter removal, gas production, membrane fouling and microbial community characteristics. The results help to devise appropriate strategies that will: firstly, improve the stability and efficiency of anaerobic treatment of actual swine wastewater; and secondly, reduce the discharge of antibiotics into the environment. It can also provide theoretical reference and guidance for the design and operation of swine wastewater treatment methods.

2. Materials and methods

2.1 The AnMBR system device and operation

The biogas-sparging AnMBR system used in the experiment is shown in Fig. 1. The whole reactor is constructed of Plexiglas, with an inner diameter of 130 cm, a height of 315 cm, and an effective volume of 3 L. The membrane module selected the hollow fiber membrane made of polyvinylidene fluoride (PVDF) (Guangzhou Haike Membrane Technology Co., Ltd.), with a pore diameter of 0.1 μ m and a specific surface area of 0.042 m^2 . During the operation, the membrane module is completely immersed in the reactor. The water inlet and outlet flow rate of the reactor were changed by adjusting the pump speed through a peristaltic pump to the AnMBR. A pressure sensor (MBS1900, Danfoss, Denmark) and a paperless recorder (BRW500-5100, Fürst) were connected to the effluent section of the membrane module to monitor the differential of the transmembrane pressure (TMP). The reactor is operated at a constant temperature of $35 \pm 1^\circ\text{C}$ which is maintained by a water bath circulation device (BILON-CX-05, Wuxi Bilang Experimental Instrument Manufacturing Co., Ltd.). The self-circulation biogas is recycled to the bottom section by the gas pump (APN-085LV-1, Iwaki, Japan) to sparge the reactor. The biogas produced by anaerobic digestion is collected by aluminum foil biogas collection bags.

166

167 **Fig. 1.** Schematic diagram of the biogas-sparging AnMBR system

168 The anaerobic sludge used in the experiment was taken from the anaerobic digester of a
 169 sewage treatment plant in Tianjin, and the concentration of the seed sludge in the reactor
 170 amounted to 2.73 gVSS/L. The AnMBR operation is divided into three phases (shown in Tab.
 171 1) and carried out in an uninterrupted manner. The wastewater used in this experiment was
 172 synthetic swine wastewater consisting of glucose as the main carbon source, and different
 173 concentrations of sulfadiazine (SDZ) were added in different phases of the experiment. The
 174 main component of synthetic swine wastewater was glucose (9000 mg/L), NH₄Cl (1800
 175 mg/L), KH₂PO₄ (150 mg/L), MgSO₄·7H₂O (30 mg/L) and small amounts of essential trace
 176 elements. Essential trace elements include FeCl₃·6H₂O (13.5 mg/L), MnCl₂·4H₂O (1 mg/L),
 177 ZnCl₂ (1 mg/L), NiCl₂·6H₂O (4.1 mg/L), CoCl₂·6H₂O (1.4 mg/L), CuCl₂·2H₂O (0.25 mg/L),
 178 H₃BO₃ (0.1 mg/L) and Na₂MoO₄·2H₂O (0.24 mg/L). The stock solutions of SDZ were
 179 prepared by dissolving 10 mg of antibiotics in 100 mL of sodium hydroxide solution, and
 180 stored in Brown bottles at - 4°C.

181 **Tab. 1.** Operating parameters of the biogas-sparging AnMBR system

Experimental Phase	SDZ Dosage (mg/L)	Operation time (d)	Hydraulic retention time (h)	Influent COD concentration (mg/L)
Phase 1	0	45		
Phase 2	0.5 ± 0.1	30	96	9600 ± 200
Phase 3	1.0 ± 0.1	20		

2.2 Analysis metnous

183 During the operation of the AnMBR system, the pH value of the influent and effluent
184 was measured by a pH portable tester (Hach HQ11D, USA), while COD was detected by
185 potassium dichromate rapid digestion spectrophotometry [25]. The mixed liquid suspended
186 solids concentration (MLSS) and the mixed liquid volatile suspended solids concentration
187 (MLVSS) were analyzed using the gravimetric method [26]. Soluble microbial product (SMP)
188 was extracted by centrifugal filtration, and extracellular polymeric substances (EPS) were
189 further separated from the sludge mixture by pyrolysis according to Hao et al. [25].
190 Carbohydrates and proteins in SMP and EPS were determined by the phenol-sulfuric acid
191 method and the Folin-Ciocalteu method, respectively [27]. The sludge particle size was
192 measured by Malvern laser particle size analyzer (Malvern Masters Sizer 2000, Malvern
193 Instruments, UK). Volatile fatty acids (VFAs) were determined by gas chromatography
194 (PerkinElmerClarus, USA). The autosampling volume was 20 μ L, the mobile phase was
195 0.05% dilute phosphoric acid at a flow rate of 0.7 mL/min, the analytical column model was
196 CosmosilPacked Column 5C18-PAQ (5 μ m, 4.6 \times 250 mm) and the column oven setting was
197 maintained at 45 °C. A UV detector was used with a measurement wavelength of 210 nm.
198 Biogas components were investigated by gas chromatography (GC-2014, Shimadzu, Japan)
199 for methane (CH₄), hydrogen (H₂) and nitrogen (N₂). The inlet temperature was set at 150°C;
200 the column model was a 5A molecular sieve, and nitrogen and hydrogen acted as the carrier
201 gas with shunt mode when the column flow rate was 1.81mL/min, and the column
202 temperature was 50°C. GC equilibrium time of 3min, reference flow rate of 30mL/min,
203 blowing flow rate of 3mL/min, and the detector heating temperature of 180°C were employed.
204 Carbon dioxide (CO₂) was detected through the absorption method [28]. The concentration of
205 sulfadiazine was tested by high performance liquid chromatography-triple quadrupole mass
206 spectrometry (LC-MS8050, Shimadzu, Japan). Solid phase extraction (SPE) was used as pre-
207 treatment for SDZ analysis, and the extraction cartridge was Oasis (HLB) (500 mg, 6 cc,
208 Waters, USA), according to Zhang et al. [29]. The column type was Shimadzu-packGISTC18
209 (size 2.1 mm, length 2 μ m), and the column temperature was set at 40 °C. The interface
210 temperature was set at 300 °C, the interface voltage was 4 kV, and the interface current was
211 1.7 μ A. The flow rate of the mass spectrometer dryer was 10 L/min, and the temperature of
212 the heating block was set at 400°C. The mobile phase components were 0.1% formic acid
213 solution and acetonitrile solution in a volume ratio of 20:80, the flow rate of the mobile phase
214 was 0.4 mL/min, the autosampling volume was set to 5 μ L, and the program run time was set
215 to 3 minutes. The linear calibration curve is $y = 2.50760 \cdot 107 x + 16502$, the correlation
216 coefficients R² were > 0.9990, the recovery was 77.12%-126.37%, the detection limit was
217 0.001-0.260 ng/L, and the relative standard deviation was < 9.34%.

218 2.3 Microbial community analysis**219 2.3.1 DNA extraction and testing**

220 The initial inoculation sludge sample was select as S0. The sludge samples were taken
221 from the reactors during the operation periods of Phase 1, Phase 2 and Phase 3, and
222 subsequently named S1, S2 and S3, respectively. All the samples were analyzed by high-
223 throughput sequencing. DNA was extracted by using E.Z.N.A.® soil kit (Omega Bio TEK,
224 Norcross, GA, USA), the concentration and purity of DNA were detected by nanodrop 2000,
225 and the quality of DNA extraction was detected by 1% agarose gel electrophoresis.

226 2.3.2 Amplicon sequencing and bioinformatics analysis

227 PCR amplification of the variable region of colony V3-V4 was done by primers 515F
228 (5'-GTGCCAGCMGCCGCGG-3') and 806R (5'-GGACTACHVGGGTWTCTAAT-3'),

229 detected and quantified using Quanifluor™-ST (Promega, USA) and then sequenced on
 230 Illumina's MiSeq PE300 platform from Illumina (commissioned by Shanghai Meiji
 231 Biomedical Technology Co., Ltd.). The raw 16S rRNA gene sequencing reads were
 232 demultiplexed, quality-filtered by fast version 0.20.0 and merged by FLASH version 1.2.7
 233 with the following criteria: (i) the 300 bp reads were truncated at any site receiving an average
 234 quality score of < 20 over a 50 bp sliding window, and the truncated reads shorter than 50 bp
 235 were discarded, reads containing ambiguous characters were also discarded; (ii) only
 236 overlapping sequences longer than 10 bp were assembled according to their overlapped
 237 sequence. The maximum mismatch ratio of the overlap region is 0.2. Reads that could not be
 238 assembled were discarded; (iii) samples were distinguished according to the barcode and
 239 primers, and the sequence direction was adjusted, exact barcode matching, 2 nucleotide
 240 mismatches in primer matching. Operational taxonomic units (OTUs) with 97% similarity
 241 cutoff were clustered using UPARSE version 7.1, and chimeric sequences were identified and
 242 removed. The taxonomy of each OTU representative sequence was analyzed by RDP
 243 Classifier version 2.2 against the 16S rRNA database (e.g. Silva v138) using a confidence
 244 threshold of 0.7.

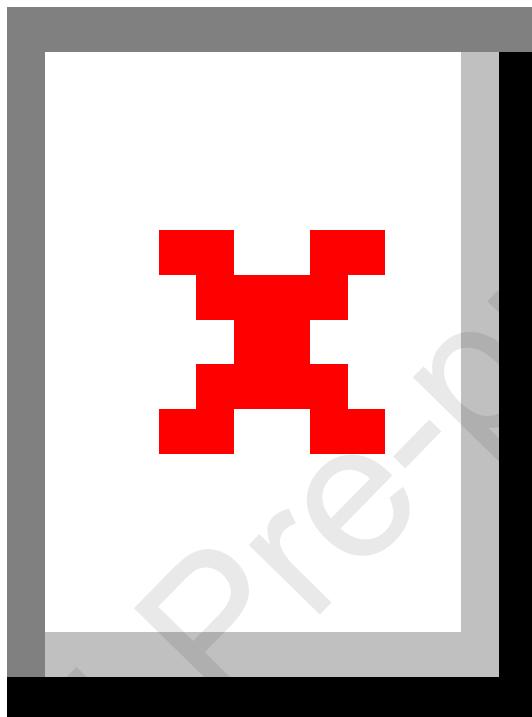
245

246 **3. Results and Discussion**247 **3.1 Operational performance of the biogas-sparging AnMBR system**248 *3.1.1 COD removal*

249 In Phase 1, the amount of COD removed by AnMBR is very high and stable at about
 250 $97.5 \pm 0.7\%$, indicating that the system was very efficient in treating high organic load
 251 wastewater. This was consistent with the conclusion of Liu et al. regarding the removal of
 252 multi-antibiotic swine wastewater by AnMBR [6]. In Phase 2, at the presence of SDZ (0.5
 253 mg/L), the COD removal rate still remained above 96% in the first 10 days and $95.7 \pm 1.6\%$
 254 in the following 20 days, confirming that a small concentration of SDZ had only a slight
 255 impact on the AnMBR system. Therefore, the system enabled high COD removal performance
 256 for the treatment of wastewater containing low concentrations of antibiotics. The slight
 257 decline in COD removal may be due to the accumulation of refractory and toxic intermediates
 258 such as aniline and pyrimidin-2-amine in the degradation process of SDZ [30-32]. In Phase 3,
 259 with the addition of SDZ (1.0 mg/L), the COD removal began to falter and decreased to
 260 86.8% after 5 days, and this process continued in the following 15 days, finally dropping to
 261 77.1%. This result was also consistent with a previous report by Cheng et al. [33]. They
 262 sequentially injected a mixture of SAs with total concentrations of 0, 0.3, 0.6, and 0.9 mg/L
 263 into the AnMBR, and the COD removal was reduced from the initial 94.21% to 58.72%,
 264 51.65%, and 18.82%, respectively. This reflected those higher concentrations of antibiotics
 265 more strongly inhibited anaerobic microorganisms. The higher concentration antibiotic led to
 266 a stronger inhibition on the organic matter biodegradation [34]. Secondly, it may be that the
 267 antibiotics of SDZ were decomposed by the anaerobic microorganisms to produce more toxic
 268 intermediate products, including aniline, pyrimidin-2-amine and 3-(methylimino) prop-1-en-
 269 1-yl hydroxylamine. These were difficult to degrade and gradually accumulated as the
 270 operating time continued [32]. They in fact affected the normal physiological metabolic
 271 behavior of microorganisms, and then caused a decrease in the removal of COD [30].

272 *3.1.2 Biogas production and composition analysis*

273 Compared to Phase 1, biogas production in Phase 2 fell from 0.43 ± 0.04 L/g COD_{removed}
 274 to 0.36 ± 0.03 L/g COD_{removed}. However, the methane content in biogas appeared to obvious


decrease from 50.1%-71.2% to 41.0%-59.7%. Despite the consequent reduction in methanogenic performance, the reactor continued to operate in a stable way. When in Phase 3, the biogas production declined sharply to 0.23 ± 0.03 L/g COD_{removed}, which was nearly 0.20 L/g COD_{removed} lower than that in Phase 1. It was clear that the biogas production performance of the AnMBR system declined significantly when a larger SDZ concentration was present in the feed water. In addition, an interesting phenomenon was observed at the beginning of SDZ addition in Phases 2 and 3: the proportion of methane showed a consistent trend of decreasing and then increasing to a stable level. Similar to Cheng et al. [33], the methane content and production rate decreased from the initial 56.3% and 0.2 L/g COD_{removed} to 41.1% and 0.13 COD_{removed}, respectively, within two weeks after the addition of SMs, indicating the inhibitory effect of SMs at the observed methane production concentrations. While the inhibitory effect of SMs on methane production gradually weakened as the microorganisms in the AnMBR slowly adapted to the SMs, a recovery trend of methane production was observed in the third week. This revealed that the presence of SDZ affected the microflora related to biogas production in the bioreactor. A study by Xu et al. found that antibiotics increased lactate dehydrogenase release levels, a cytoplasmic substance released from damaged cells, indicating a disruption of cellular integrity [35]. These findings suggest that the presence of SDZ limited the growth of anaerobic bacteria and led to cell lysis of anaerobic bacteria, influencing anaerobic digestion and ultimately causing reduced methane production. Furthermore, the methane content dropped to 44.1%-53.3%, meaning that methanogenic bacteria were very sensitive to SDZ, even at low SDZ concentrations. Although some methanogenic bacteria could attribute to degrading SDZ [32], the high concentration of antibiotics and the accumulation of intermediate products inhibited the activity of methanogens, thereby reducing the production of methane [30, 34].

3.1.3 pH and VFAs

pH is an important indicator of the normal operation of the AnMBR system. As shown in Fig. 2(c), pH did not change significantly and remained stable at 7.4-7.7 in Phases 1 and 2. However, in Phase 3, pH revealed a downward trend and floated in the 6.6-7.7 range, strongly suggesting the appearance of obvious acid accumulation. Further, the changes of VFAs in the reactor at each phase were analyzed. In Phase 1, the VFAs concentration varied between 418 mg/L and 814 mg/L. After the addition of SDZ (Phase 2), the VFAs rose to 533-1120 mg/L. Therein acetic acid and propionic acid concentration ascended from 95-212 mg/L to 102-341 mg/L and from 98-298 mg/L to 100-501 mg/L, respectively. Though the VFAs demonstrated a certain increase in Phase 2, in view of gas production and COD removal, the bioreactor's internal environment was relatively stable. Nevertheless, when in Phase 3 the VFAs appeared to virtually bolt from 649 to 4707 mg/L.

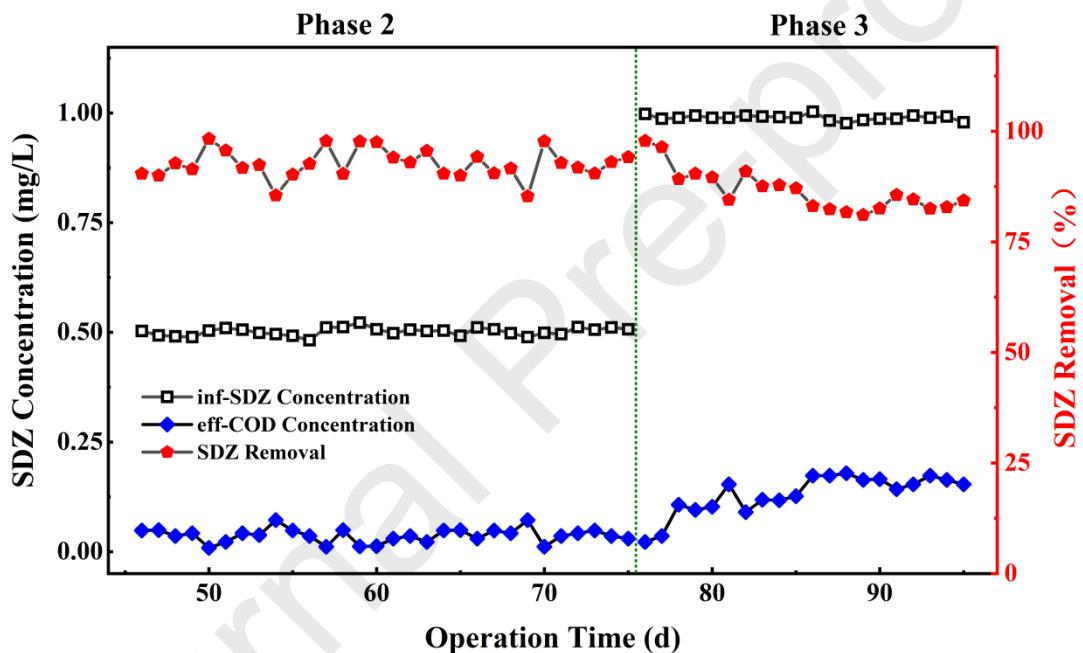
Correspondingly, the concentrations of acetic acid and propionic acid increased to 2587 mg/L and 1939 mg/L, respectively. The results showed that with the concentration increase of SDZ, a large accumulation of VFAs, especially acetic acid, occurred in the AnMBR system. The accumulation of VFAs revealed that the activity of both hydrolytic acidifying bacteria and methanogenic bacteria was inhibited due to the presence of SDZ (1.0 mg/L). Especially, the obvious accumulation of acetic acid indicated that the activity of acidophilic methanogenic bacteria was most severely inhibited. As a result, it caused the very evident decrease in the organic matter removal and gas production in Phase 3. Due to the inhibition of the activity of methanogenic bacteria in the bioreactor, the produced acetic acid could not be effectively transformed, leading to a decrease of pH and acidification in the reactor [36]. Cheng et al. proposed that sulfonamides prevented the addition of p-aminobenzoic acid into the folate molecule by competing for dihydropteroate synthase, thereby inhibiting the synthesis of folate required for the

325

326

327 328

Fig. 2. (a) Removal of COD, (b) Biogas production, (c) pH and VFAs in AnMBR ($P < 0.05$, according to the test of One-Way ANOVA)


329

3.2 Sulfadiazine removal

330 331 332 333 334 335

In Phase 2, the SDZ concentration in the AnMBR effluent was stable below 0.05 mg/L with the removal rate of $92.6 \pm 3.3\%$, indicating that AnMBR performed excellently in removing the SDZ antibiotic. When in Phase 3, the removal rate of SDZ fell slightly to $86.6 \pm 4.7\%$, yet AnMBR still exhibited a high removal rate of SDZ. The results demonstrated the effectiveness and feasibility of AnMBR when treating swine wastewater containing SDZ. Biological degradation was the primary mechanism for SDZ removal. As reported, SDZ

(pK_{a2} : 6.5) becomes negatively charged when the $pH > pK_{a2}$, leading to electrostatic repulsion between sulfadiazine and biofilms, and a low LogKow value of SDZ (LogKow < 2) leads to the poorer adsorption capacity of biofilms [29]. A 112-day mass balance test by Wang et al. demonstrated that biodegradation with negligible adsorption is the primary pathway for removing SDZ [37]. Some research had proved that antibiotics containing electron donating functional groups (EDG), such as sulfonamides, showed high biodegradability in AnMBR [38]. In addition, the interception of AnMBR created a longer retention time for SDZ in the system [39], and this contributed to the SDZ removal. However, in Phase 3, the removal rate of SDZ showed only a slight decrease. This was due to the excessive toxic effect of SDZ on microorganisms and the accumulation of intermediate products in the SDZ degradation process. Some studies have reported that sulfa antibiotics can form a variety of transformation products during the biodegradation process, including aniline, pyrimidin-2-amine and 3-(methylimino) prop-1-en-1-yl) hydroxylamine. These degradation by-products are more toxic and more stable than the parent [30]. Furthermore they inhibited the activity of microorganisms and resulted in undermining the efficiency of SDZ degradation.

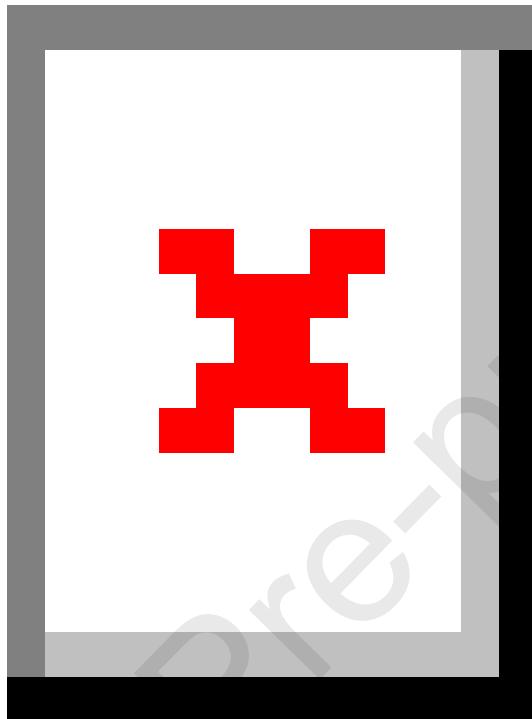
352

353 **Fig. 3. SDZ removal by AnMBR**354 **3.3 Membrane fouling**355 **3.3.1 TMP**

356 During the operation that lasted 45 days in Phase 1, membrane cleaning was conducted
 357 twice (on days 23 and 43). The fouling process was slow during the period of 0-20 d and 24-
 358 40 d, respectively, with TMP increasing slowly from 0 to 10 kPa. The fast membrane fouling
 359 rate suddenly increased during the operation time of 21-23 d and 40-43 d, with TMP jumping
 360 from 10 kPa to 33 kPa, respectively. The reason for the slow fouling rate was that the organic
 361 and inorganic particles penetrated and deposited in the membrane pores, which promoted the
 362 formation of the filter cake layer at a later stage. Meanwhile the fast fouling was mainly
 363 caused by the compression of the filter cake layer [40, 41]. After adding SDZ to the reactor,
 364 the membrane fouling cycle was shortened, and the membrane fouling rate was accelerated. In
 365 Phases 2 and 3, the membrane cleaning cycle decreased to 12 d and 7 d, respectively.

366 Membrane fouling was accelerated by 47.8% and 59.6%, respectively, compared to that
 367 without the addition of SDZ. This was restrictive for the long-term operation of AnMBR. As
 368 can be seen from Fig. 4(a), the higher SDZ concentration caused the shorter cleaning cycle
 369 and faster TMP growth. The main reason for this was due to the presence of SDZ in the
 370 bioreactor stimulating microorganisms to secrete more SMP and EPS in response to toxicity
 371 and inhibition [42]. As a result, they can adhere to the membrane surface and then accumulate
 372 gel layers and contribute to the occurrence of membrane fouling [43].

373 *3.3.2 MLSS, MLVSS and Sludge particle size*


374 The characteristics of the sludge in the bioreactor, such as MLSS, MLVSS and sludge
 375 particle size, are closely related to membrane fouling. The changes of MLSS and MLVSS and
 376 sludge particle size are depicted in Fig. 4(b). In Phase 1, the concentrations of MLSS and
 377 MLVSS remained stable at around 21.96 ± 1.26 g/L and 17.37 ± 0.84 g/L, respectively.
 378 Meanwhile, the sludge particle size showed a steady upward trend, rising from an initial 47.11
 379 μm to 82.72 μm , which was conducive to alleviating membrane fouling. Given the larger
 380 difference between the suspended matter and membrane pore size, it is less likely that the
 381 membrane will be blocked. On the contrary, when the particle size is closer to the membrane
 382 pores, more particles are attached to the membrane, thereby causing more serious membrane
 383 fouling [44, 45]. In addition, sludge flocs with larger particle size exhibit greater interaction
 384 forces and only with some difficulty are deposited on the membrane. While particles with
 385 smaller size have poor hydraulic effect and continuously accumulate on the membrane surface
 386 to form a tight filter cake layer, this accelerates membrane fouling [46].

387 In Phases 2 and 3, the concentrations of MLSS and MLVSS remained largely stable,
 388 which ensured the proper functioning of the AnMBR systems. However, the sludge particle
 389 size first increased from 82.72 μm to 98.31 μm (Phase 2) and then decreased to 50.46 μm
 390 (Phase 3). In Phase 2, the growth of sludge particle size was probably because the small
 391 concentrations of sulfadiazine did not yet affect the sludge too much, but nonetheless
 392 stimulated the secretion of EPS and SMP. This enhanced the adsorption of suspended
 393 particulate matter by the sludge particles, and led to sludge particles increasing in size.
 394 However, in Phase 3 the high concentration of SDZ and its toxic intermediates had a
 395 significant toxic effect on the microorganisms, resulting in the destruction of the sludge flocs
 396 and a further reduction in sludge particle size [47-49]. As the particles shrunk in size, they
 397 were easily accumulated and blocked near the membrane pores, which further caused serious
 398 membrane fouling of the AnMBR.

399 *3.3.3 EPS and SMP*

400 As is well known, SMP and EPS are the main factors causing membrane fouling. SMP is
 401 mainly produced from the endogenous respiration of microorganisms, and its main
 402 components include polysaccharides, proteins, nucleic acids, and humic acids. EPS refers to
 403 various types of macromolecular polymers secreted by bacteria and wrapped in vitro and
 404 between bacteria, which is the support structure of biofilm and activated sludge. EPS and
 405 SMP are regarded as the main substances causing membrane fouling [50, 51]. As shown in
 406 Fig. 4(c), EPS and SMP concentrations tended to increase during the whole operation. SMPc
 407 (polysaccharides in SMP) and SMPp (proteins in SMP) rose from 6.01 ± 0.61 mg/L and 31.30
 408 ± 1.29 mg/L to 24.85 ± 2.52 mg/L and 35.62 ± 3.98 mg/L, respectively. The ratio of SMPp /
 409 SMPc were 5.25 ± 0.55 、 2.16 ± 0.35 and 1.43 ± 0.10 in Phases 1, 2 and 3. EPSc and EPSp
 410 increased from 10.10 ± 1.35 mg/gVSS and 24.31 ± 1.92 mg/gVSS to 20.51 ± 1.33 mg/gVSS
 411 and 35.62 ± 3.98 mg/gVSS, respectively. In the meantime, EPSp/EPSc reduced from $2.45 \pm$
 412 0.44 to 1.45 ± 0.08 . Based on this it was clear that after adding SDZ, the SMP and EPS on the
 413 cake layer of the membrane module increased.

414 The increase of SMP concentration caused by the SDZ in the ANMBR may be due to the
415 large production of VFAs and cell lysis products [52]. The EPS production by
416 microorganisms was a natural reaction to the toxic environment, and played an important role
417 in protecting microorganisms against the presence of antibiotics. Microorganisms secreted
418 more SMP and EPS to form a protective "cocoon" which delayed the entry of toxic
419 compounds into the cell body [42]. SMP and EPS have complex properties including surface
420 charge, hydrophobicity/hydrophilicity and adhesive characteristics, etc., and affect the
421 flocculation, stability and adhesion behaviors of sludge flocs, thus their dramatic increase
422 accelerated membrane fouling [53]. In addition, with the increase of SDZ concentration, the
423 ratio of protein/polysaccharide decreased when the SMP and EPS concentration increased.
424 The polysaccharides in EPS were preferentially used by microorganisms, therefore the
425 decrease of protein/polysaccharide ratio may be due to the gradual inhibition of microbial
426 activity by toxicity, resulting in the increase of residual polysaccharide concentration [54].
427 According to the reported research, the smaller ratio of protein/polysaccharide in SMP would
428 increase irreversible fouling of membrane modules [25].

429

430 **Fig. 4.** (a) TMP, (b) MLSS, MLVSS and Sludge particle size and (c) SMP and EPS in
 431 AnMBR

432 **3.4 Microbial community analysis**

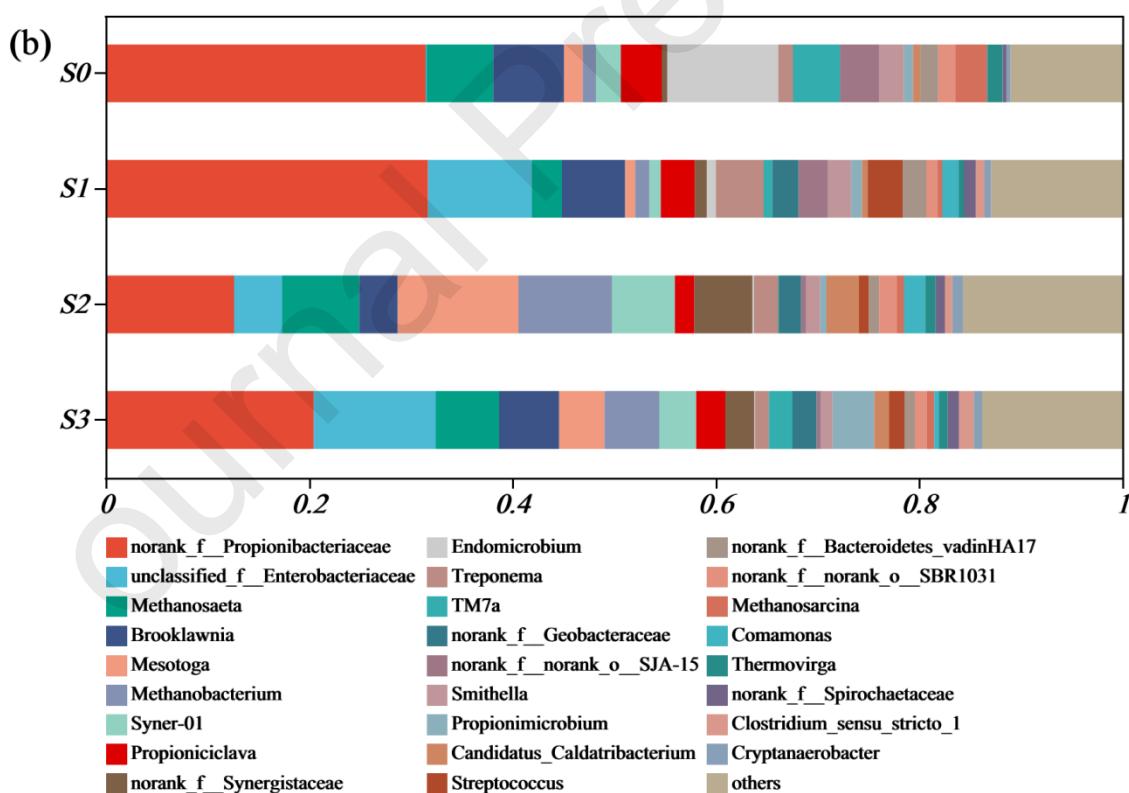
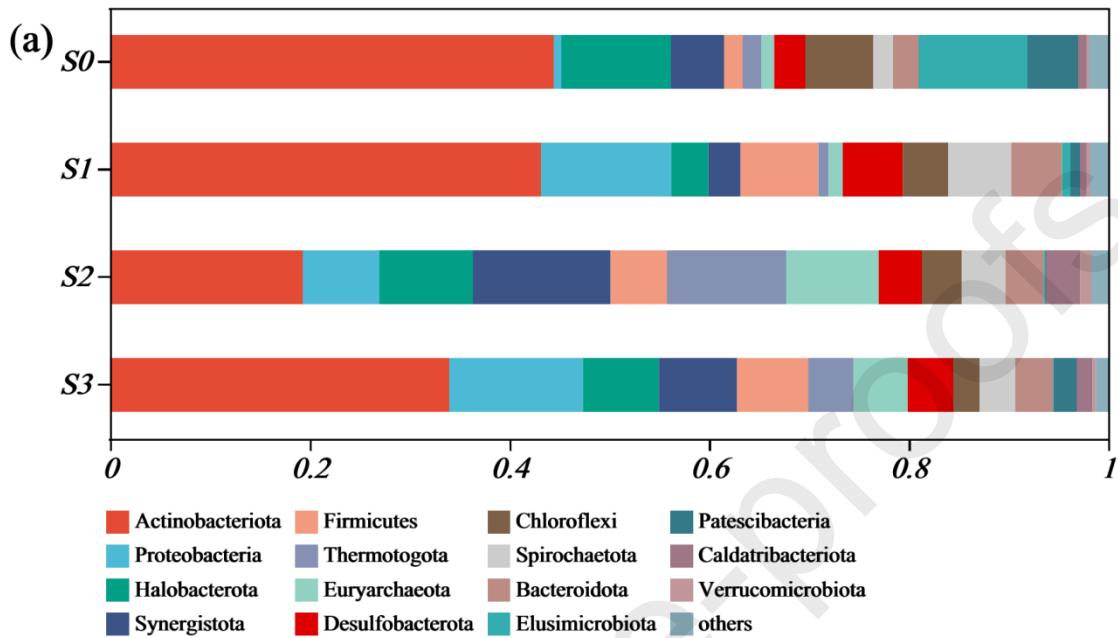
433 To explore the dynamic changes occurring in the microflora in the AnMBR system,
 434 microbiological samples were respectively analyzed in different operation phases. The
 435 operational taxonomic units (OTU) is the classification operation unit, which is obtained by
 436 clustering Reads at a similarity level of 97.0%. As shown in [Tab. 2](#), the coverage index was
 437 greater than 0.998 in all phases, indicating that the sequencing data were sufficient to capture
 438 the actual diversity of the microflora in the samples. The Sobs index, ACE index and Chao1
 439 index showed that 0.5 mg/L SDZ only slowed down the growth of microflora, while 1.0 mg/L
 440 SDZ greatly reduced the abundance of microflora. Simpson's and Shannon's indices indicated

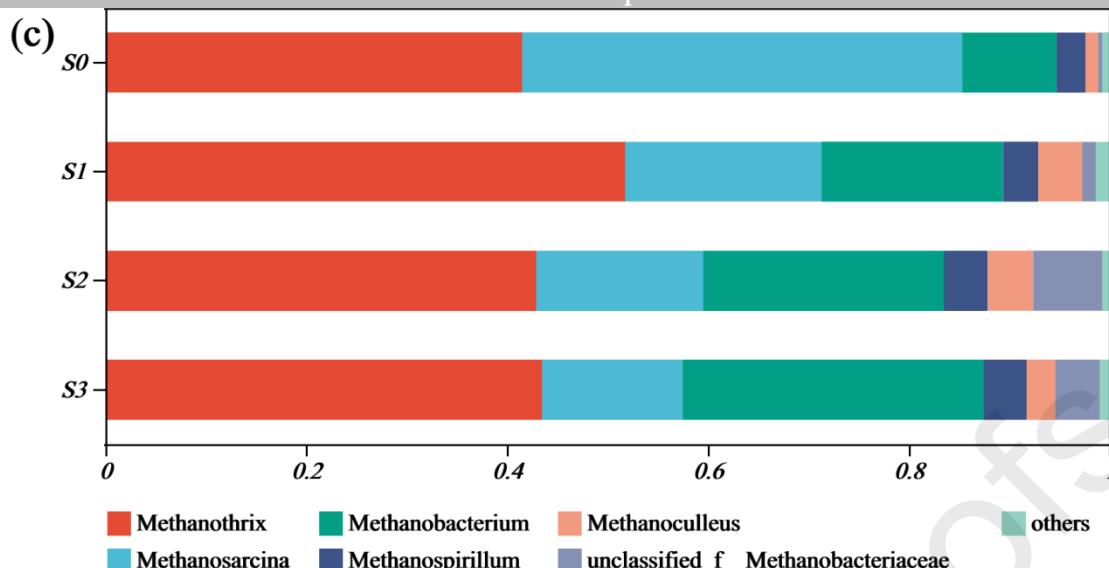
that the diversity followed the same trend as the abundance of microflora.

442 Variations in the abundance of microorganisms at different phases in the AnMBR were
 443 obtained by high-throughput sequencing analysis of the mixed sludge. The abundance of the
 444 main phylum is shown in Fig. 5(a). During the entire operation, *Actinobacteria*,
 445 *Proteobacteria*, *Halobacterota*, *Synergistota*, *Firmicutes*, *Spirochaetota* and *Thermotogota*
 446 were the top seven dominant phyla. As is well known, *Actinobacteria*, *Proteobacteria*,
 447 *Firmicutes* and *Chloroflexi* play the key roles in anaerobic hydrolytic acidification [55, 56].
 448 *Actinobacteria* have a strong ability to degrade complex carbohydrates and can generate
 449 acetic and propionic acid from glucose [57]. *Firmicutes* contain a variety of hydrolytic and
 450 acid-producing fermentative bacteria for the production of propionic and acetic acids that
 451 contribute to the removal of complex and refractory organic matter [58]. *Chloroflexi* and
 452 *Proteobacteria* are also recognized as hydrolytic bacteria [59]. Therefore, in Phase 1 the
 453 abundance of *Actinobacteria*, *Proteobacteria*, *Firmicutes* and *Chloroflexi* was dominant and
 454 greater than 55%, which ensured very thorough removal of organic matter and adequate
 455 supply of volatile fatty acids. Among the dominant phyla, *Firmicutes* can cause membrane
 456 fouling [60, 61]. The abundance of *Firmicutes* increased by 10% and 38% in Phases 2 and 3,
 457 respectively, due to the addition of SDZ, thus contributing to the accelerated membrane
 458 fouling. As reported, *Chloroflexi* can use SMP and EPS as organic carbon sources for growth
 459 [62].

460 Compared with that in Phase 1, the abundance of *Chloroflexi* dropped by 33% and 56%
 461 in Phases 2 and 3, respectively, meaning that the presence of SDZ inhibited the growth of
 462 *Chloroflexi* and exacerbated membrane fouling. *Synergistetes* and *Thermotogota* can co-
 463 metabolize with methanogenic bacteria, and *Synergistetes* can degrade long-chain fatty acids
 464 to acetic acid [63] and *Thermotogota* can reduce the CO₂ and H₂ through acetate oxidation
 465 [64]. In Phase 2, the abundance of *Synergistetes* and *Thermotogota* increased by 86% and
 466 369%, respectively, which promoted the metabolism of VFAs and caused a smaller methane
 467 ratio in biogas to emerge. In Phase 3, the abundance of *Synergistetes* and *Thermotogota*
 468 increased by 5% and 70%, respectively, which caused the accumulation of VFAs and lower
 469 biogas production and methane ratio. Additionally, as reported, *Thermotogota* enhanced
 470 biodegradation of sulfonamides in the biological treatment of amoxicillin wastewater [6]. In
 471 this study, the change in abundance of the *Thermotogota* phylum coincidentally corresponded
 472 to antibiotic concentration and degradation performance. *Spirochaeta* can produce acetic acid,
 473 ethanol, H₂, CO₂ and other intermediates through glucose fermentation [65]. After the
 474 addition of SDZ in Phases 2 and 3, the abundance of *Spirochaetota* decreased by 64% and
 475 70%, respectively. This did not favor biogas production. Interestingly, after the addition of
 476 SDZ in Phases 2 and 3, the total abundance of *Halobacterota* and *Euryarchaeota*, which
 477 included various methanogenic bacteria, increased by 120% and 55%, respectively. The
 478 observed differences in the growth of bacteria and archaea may be attributed to the working
 479 mechanism of the sulfonamide antibiotics used in this study. The structural similarity of
 480 sulfonamide antibiotics to p-aminobenzoic acid (PABA), a precursor for folate biosynthesis,
 481 has been reported to cause sulfonamides to compete with PABA for dihydropteroate synthase,
 482 which is used by bacteria to synthesize folic acid, thereby reducing the amount of folic acid
 483 necessary for bacterial growth and inhibiting bacterial growth. In contrast, the role of folate as
 484 a C1 carrier in archaea is fulfilled by methotrexate, which can be synthesized from PABA via
 485 different pathways [66]. Therefore, the addition of sulfadiazine only affected most bacteria's
 486 growth but not archaea's growth.

487 The changes in genus-level abundance at different phases are shown in Fig. 5(b).
 488 *Norank_f_Propionibacteriaceae* and *Brooklawnia* were overwhelmingly dominant.
 489 *Norank_f_Propionibacteriaceae* could transport complex nutrients for fermentative
 490 metabolism into substances such as propionic acid and butyric acid. *Brooklawnia* plays



491 important roles in hydrolysis and acid production during anaerobic degradation by taking up
 492 VFAs as the main fermentation products [67, 68]. Their stable presence ensures the proper
 493 hydrolytic acidification functioning of the system. Genus-level identifications indicated that
 494 *Thermotogota* phylum was composed entirely of *Mesotoga*, which was first described as a
 495 mesothermal genus [69]. *Mesotoga*, a genus of functional bacteria related to hydrolytic
 496 acidification, can co-oxidize with methanogenic bacteria to complete the removal of organic
 497 acids. They can use acetic acid to produce H₂ and CO₂ in anaerobic systems which helps to
 498 acetic acid accumulation and promote hydrogenotrophic methanogenesis [70, 71].
 499 Furthermore, as mentioned above, the *Thermotogota* phylum was the bacteria associated with
 500 the degradation of sulfonamide antibiotics, and *Mesotoga* was the only component of
 501 *Thermotogota* species in this study. The abundance of *Mesotoga* at each phase was 1.83%
 502 (initial sludge), 1.4% (Phase 1), 11.9% (Phase 2), and 4.5% (Phase 3). The abundance
 503 increased rapidly after the addition of SDZ. Although there was a decrease in Phase 3, it was
 504 still 300% higher than in Phase 1. The abundance presented a positive correlation with the
 505 SDZ removal rate, indicating that *Mesotoga* may be beneficial in enhancing the SDZ removal.
 506 Similarly, norank_f_Synergistaceae abundance increased from 1.2% (Phase 1) to 5.6% (Phase
 507 1) and 2.8% (Phase 3) after SDZ addition. A positive correlation between this genus and
 508 antibiotic removal was reported by Liu et al. [6]. *Treponema* (belonging to the *Spirochaetota*
 509 phylum) is a homoacetogenic bacteria that can transform organic matter while also reducing
 510 CO₂ to acetate by using H₂ as electron donors [72]. This can enhance the utilization of organic
 511 matter and methane. With the addition of SDZ, the abundance of *Treponema* decreased by
 512 48% and 70% in Phases 2 and 3, respectively, which may be one explanation for the smaller
 513 amount of methane in the biogas.


514 In order to analyze the methane production changes, methanogenic archaea were
 515 analyzed in detail as shown in Fig. 5(c). *Methanothrix*, *Methanosarcina* and
 516 *Methanobacterium* were the top three archaeal genera with the relative highest abundance,
 517 and their total abundance was greater than 85%. *Methanothrix*, *Methanosarcina* and
 518 *Methanobacterium* belong to acetoclastic methanogens, hybrid multipathway and
 519 hydrogenotrophic methanogens, respectively [72, 73]. With the addition of SDZ, the total
 520 abundance of *Methanothrix* and *Methanosarcina* decreased by 17% and 20%, while the
 521 abundance of *Methanobacterium* increased by 33% and 67% in Phases 2 and 3, respectively.
 522 This indicated that the hydrogenotrophic methanogens had higher substrate utilization, growth
 523 rate and cell yield when exposed to a high concentration of SDZ [74]. Combined with the
 524 changes in the VFAs and methane content, it is suggested here that the accumulation of VFAs
 525 (especially acetic acid and propionic acid) and reduction in methane was related to the
 526 inhibition to *Methanothrix* and *Methanosarcina* by SDZ in Phases 2 and 3. In addition,
 527 hydrogenotrophic methanogens *Methanobacterium* increased rather than decreased with SDZ
 528 concentration rise, further confirming the previous conclusion that anaerobic degradation of
 529 sulfonamide antibiotics is driven by a combination of hydrogenotrophic methanogens and
 530 homoacetylated methanogens [60]. In addition, *Methanobacterium* were also noted to
 531 potentially contribute to the mineralization of some by-products of SDZ [32].

532 **Tab. 2.** Sample alpha diversity index statistics

	Sample	Sobs	Ace	chao	shannon	simpson	coverage
	S0	478	579.935398	608.784314	3.073301	0.127575	0.998606
	S1	553	642.722713	668.000000	3.278188	0.123076	0.998734

S2	599	704.748040	693.879518	3.715691	0.052295	0.998745
S3	564	652.736035	639.370370	3.536984	0.073227	0.998913

535

536 **Fig. 5.** Abundance at the level of (a) phylum microorganism, (b) genus bacterial and (c) genus
 537 archaea

538

539 4. Conclusions

540 The biogas-sparging AnMBR system was applied to treat swine wastewater containing
 541 the antibiotic SDZ. The system could achieve high COD and SDZ removal as well as methane
 542 production when exposed to SDZ, despite the accumulation of VFA and decrease in methane
 543 production occurring due to the presence of 1.0 mg/L SDZ. Moreover, SDZ stimulated the
 544 production of SMP and EPS, diminished the protein/polysaccharide ratio due to bacterial self-
 545 protection, and reduced sludge particle size. These ultimately exacerbated membrane fouling
 546 rate, which was unfavorable for the long-term operation of the AnMBR system. Meanwhile,
 547 the increase of *Firmicutes* and decrease of *Chloroflexi* contributed to a shorter membrane
 548 fouling cycle. Furthermore, the shift from acetoclastic methanogens to hydrogenotrophic
 549 methanogens in the system resulted in lower methane production due to the presence of SDZ.
 550 This work further demonstrated the promotion of SDZ degradation by hydrogenotrophic
 551 methanogen *Methanobacterium*, as did *Mesotoga*. This work can provide the basis for
 552 practical application and help to take effective strategies when the AnMBR system is applied
 553 to treat wastewater containing antibiotics. In addition, the specific antibiotics degradation
 554 pathways and membrane fouling mitigation still need further exploration.

555

556 Acknowledgements

557 This research was supported by Tianjin Municipal Science and Technology Bureau of China
 558 (Project No.20JCZDJC00380 and 18PTZWHZ00140).

560

References:

561 [1] S. Hanamoto, Y. Minami, S.S.T. Hnin, D. Yao, Localized pollution of veterinary
562 antibiotics in watersheds receiving treated effluents from swine farms, *Science of The Total
563 Environment* 902 (2023) 166211. <https://doi.org/10.1016/j.scitotenv.2023.166211>.

564 [2] Z.-L. Ye, J. Zhang, J. Cai, S. Chen, Investigation of tetracyclines transport in the
565 presence of dissolved organic matters during struvite recovery from swine wastewater,
566 *Chemical Engineering Journal* 385 (2020) 123950. <https://doi.org/10.1016/j.cej.2019.123950>.

567 [3] H. Wang, J. Zhang, X. Yuan, L. Jiang, Q. Xia, H. Chen, Photocatalytic removal of
568 antibiotics from natural water matrices and swine wastewater via Cu(I) coordinately
569 polymeric carbon nitride framework, *Chemical Engineering Journal* 392 (2020) 123638.
570 <https://doi.org/10.1016/j.cej.2019.123638>.

571 [4] S. Zhi, J. Zhou, F. Yang, L. Tian, K. Zhang, Systematic analysis of occurrence and
572 variation tendency about 58 typical veterinary antibiotics during animal wastewater disposal
573 processes in Tianjin, China, *Ecotoxicol Environ Saf* 165 (2018) 376-385.
574 <https://doi.org/10.1016/j.ecoenv.2018.08.101>.

575 [5] J. Chen, Y.-S. Liu, J.-N. Zhang, Y.-Q. Yang, L.-X. Hu, Y.-Y. Yang, J.-L. Zhao, F.-R.
576 Chen, G.-G. Ying, Removal of antibiotics from piggery wastewater by biological aerated
577 filter system: Treatment efficiency and biodegradation kinetics, *Bioresource Technology* 238
578 (2017) 70-77. <https://doi.org/10.1016/j.biortech.2017.04.023>.

579 [6] W. Liu, R. Xia, X. Ding, W. Cui, T. Li, G. Li, W. Luo, Impacts of nano-zero-valent
580 iron on antibiotic removal by anaerobic membrane bioreactor for swine wastewater treatment,
581 *Journal of Membrane Science* 659 (2022). <https://doi.org/10.1016/j.memsci.2022.120762>.

582 [7] D.L. Cheng, H.H. Ngo, W.S. Guo, S.W. Chang, D.D. Nguyen, S.M. Kumar, B. Du,
583 Q. Wei, D. Wei, Problematic effects of antibiotics on anaerobic treatment of swine
584 wastewater, *Bioresour Technol* 263 (2018) 642-653.
585 <https://doi.org/10.1016/j.biortech.2018.05.010>.

586 [8] I. Michael, L. Rizzo, C.S. McArdell, C.M. Manaia, C. Merlin, T. Schwartz, C. Dagot,
587 D. Fatta-Kassinos, Urban wastewater treatment plants as hotspots for the release of antibiotics
588 in the environment: A review, *Water Res* 47(3) (2013) 957-995.
589 <https://doi.org/10.1016/j.watres.2012.11.027>.

590 [9] D.L. Cheng, H.H. Ngo, W.S. Guo, Y.W. Liu, J.L. Zhou, S.W. Chang, D.D. Nguyen,
591 X.T. Bui, X.B. Zhang, Bioprocessing for elimination antibiotics and hormones from swine
592 wastewater, *Sci Total Environ* 621 (2018) 1664-1682.
593 <https://doi.org/10.1016/j.scitotenv.2017.10.059>.

594 [10] H. Yang, L. Deng, L. Wang, D. Zheng, Y. Liu, S. Wang, F. Huang, Comparison of
595 three biomass-retaining reactors of the ASBR, the UBF and theUSR treating swine
596 wastewater for biogas production, *Renewable Energy* 138 (2019) 521-530.
597 <https://doi.org/10.1016/j.renene.2019.01.124>.

598 [11] D. Chen, J. Shen, X. Jiang, G. Su, W. Han, X. Sun, J. Li, Y. Mu, L. Wang,
599 Simultaneous debromination and mineralization of bromophenol in an up-flow electricity-
600 stimulated anaerobic system, *Water Res* 157 (2019) 8-18.
601 <https://doi.org/10.1016/j.watres.2019.03.054>.

602 [12] Y.H. Pu, J.L. Tang, T. Zeng, Y.S. Hu, Q.Y. Wang, J. Huang, S.W. Pan, X.C. Wang,
 603 Y.Y. Li, H.H. Ngo, A. Abomohra, Enhanced energy production and biological treatment of
 604 swine wastewater using anaerobic membrane bioreactor: Fouling mechanism and microbial
 605 community, *Bioresour Technol* 362 (2022). <https://doi.org/10.1016/j.biortech.2022.127850>.

606 [13] Y.H. Pu, J.L. Tang, T. Zeng, Y.S. Hu, J.X. Yang, X.C. Wang, J. Huang, A.
 607 Abomohra, Pollutant Removal and Energy Recovery from Swine Wastewater Using
 608 Anaerobic Membrane Bioreactor: A Comparative Study with Up-Flow Anaerobic Sludge
 609 Blanket, *WATER* 14(15) (2022). <https://doi.org/10.3390/w14152438>.

610 [14] J.L. Tang, Y.H. Pu, T. Zeng, Y.S. Hu, J. Huang, S.W. Pan, X.C.C. Wang, Y.Y. Li,
 611 A. Abomohra, Enhanced methane production coupled with livestock wastewater treatment
 612 using anaerobic membrane bioreactor: Performance and membrane filtration properties,
 613 *Bioresour Technol* 345 (2022). <https://doi.org/10.1016/j.biortech.2021.126470>.

614 [15] F. Bu, S. Du, L. Xie, R. Cao, Q. Zhou, Swine manure treatment by anaerobic
 615 membrane bioreactor with carbon, nitrogen and phosphorus recovery, *Water Sci Technol*
 616 76(7-8) (2017) 1939-1949. <https://doi.org/10.2166/wst.2017.278>.

617 [16] D.L. Cheng, H.H. Ngo, W.S. Guo, S.W. Chang, D.D. Nguyen, S.M. Kumar,
 618 Microalgae biomass from swine wastewater and its conversion to bioenergy, *Bioresour
 619 Technol* 275 (2019) 109-122. <https://doi.org/10.1016/j.biortech.2018.12.019>.

620 [17] J.Y. Ji, Y.J. Xing, Z.T. Ma, M. Zhang, P. Zheng, Acute toxicity of pharmaceutical
 621 wastewaters containing antibiotics to anaerobic digestion treatment, *Chemosphere* 91(8)
 622 (2013) 1094-8. <https://doi.org/10.1016/j.chemosphere.2013.01.009>.

623 [18] D. Cheng, H.H. Ngo, W. Guo, S.W. Chang, D.D. Nguyen, Y. Liu, X. Shan, L.D.
 624 Nghiem, L.N. Nguyen, Removal process of antibiotics during anaerobic treatment of swine
 625 wastewater, *Bioresour Technol* 300 (2020) 122707.
<https://doi.org/10.1016/j.biortech.2019.122707>.

626 [19] D. Cheng, H. Hao Ngo, W. Guo, S. Wang Chang, D. Duc Nguyen, Y. Liu, X.
 627 Zhang, X. Shan, Y. Liu, Contribution of antibiotics to the fate of antibiotic resistance genes in
 628 anaerobic treatment processes of swine wastewater: A review, *Bioresour Technol* 299 (2020)
 629 122654. <https://doi.org/10.1016/j.biortech.2019.122654>.

630 [20] Y. Han, L. Yang, X. Chen, Y. Cai, X. Zhang, M. Qian, X. Chen, H. Zhao, M.
 631 Sheng, G. Cao, G. Shen, Removal of veterinary antibiotics from swine wastewater using
 632 anaerobic and aerobic biodegradation, *Sci Total Environ* 709 (2020) 136094.
<https://doi.org/10.1016/j.scitotenv.2019.136094>.

633 [21] Z. Ma, H. Wu, K. Zhang, X. Xu, C. Wang, W. Zhu, W. Wu, Long-term low
 634 dissolved oxygen accelerates the removal of antibiotics and antibiotic resistance genes in
 635 swine wastewater treatment, *Chemical Engineering Journal* 334 (2018) 630-637.
<https://doi.org/10.1016/j.cej.2017.10.051>.

636 [22] W. Zhao, Q. Sui, X. Mei, X. Cheng, Efficient elimination of sulfonamides by an
 637 anaerobic/anoxic/oxic-membrane bioreactor process: Performance and influence of redox
 638 condition, *Science of The Total Environment* 633 (2018) 668-676.
<https://doi.org/10.1016/j.scitotenv.2018.03.207>.

639 [23] D. Cheng, H.H. Ngo, W. Guo, S.W. Chang, D.D. Nguyen, Q.A. Nguyen, J. Zhang,
 640 S. Liang, Improving sulfonamide antibiotics removal from swine wastewater by supplying a
 641
 642

645 new pomegranate derived biochar in an anaerobic membrane bioreactor, *Bioresource*
 646 *Technology* 319 (2021) 124160. <https://doi.org/10.1016/j.biortech.2020.124160>.

647 [24] C. Xiaoguang, L. Gang, L. Haibo, L. Yuling, M. Yanxue, D. Ruobin, Z. Jiqiang,
 648 Operation performance and membrane fouling of a spiral symmetry stream anaerobic
 649 membrane bioreactor supplemented with biogas aeration, *Journal of Membrane Science* 539
 650 (2017) 206-212. <https://doi.org/10.1016/j.memsci.2017.05.076>.

651 [25] Y. Hao, X. Zhang, Q. Du, H. Wang, H.H. Ngo, W. Guo, Y. Zhang, T. Long, L. Qi,
 652 A new integrated single-chamber air-cathode microbial fuel cell - Anaerobic membrane
 653 bioreactor system for improving methane production and membrane fouling mitigation,
 654 *Journal of Membrane Science* 655 (2022). <https://doi.org/10.1016/j.memsci.2022.120591>.

655 [26] M.H. McCrady, STANDARD METHODS FOR THE EXAMINATION OF
 656 WATER AND WASTE-WATER (12th ed.), American Journal of Public Health and the
 657 Nations Health 56(4) (1966) 684-684. <https://doi.org/10.2105/AJPH.56.4.684-a>.

658 [27] X. Lu, G. Zhen, Y. Liu, T. Hojo, A.L. Estrada, Y.Y. Li, Long-term effect of the
 659 antibiotic cefalexin on methane production during waste activated sludge anaerobic digestion,
 660 *Bioresour Technol* 169 (2014) 644-651. <https://doi.org/10.1016/j.biortech.2014.07.056>.

661 [28] D.T. Mai, D.C. Stuckey, S. Oh, Effect of ciprofloxacin on methane production and
 662 anaerobic microbial community, *Bioresour Technol* 261 (2018) 240-248.
 663 <https://doi.org/10.1016/j.biortech.2018.04.009>.

664 [29] X. Zhang, Z. Song, H. Hao Ngo, W. Guo, Z. Zhang, Y. Liu, D. Zhang, Z. Long,
 665 Impacts of typical pharmaceuticals and personal care products on the performance and
 666 microbial community of a sponge-based moving bed biofilm reactor, *Bioresource Technology*
 667 295 (2020). <https://doi.org/10.1016/j.biortech.2019.122298>.

668 [30] J. Wilkinson, P.S. Hooda, J. Barker, S. Barton, J. Swinden, Occurrence, fate and
 669 transformation of emerging contaminants in water: An overarching review of the field,
 670 *Environ Pollut* 231(Pt 1) (2017) 954-970. <https://doi.org/10.1016/j.envpol.2017.08.032>.

671 [31] Z. Wang, J. Gao, Y. Zhao, Y. Cui, Y. Zhang, H. Dai, D. Li, Discrepant responses of
 672 polyvinyl chloride microplastics biofilms and activated sludge under sulfadiazine stress in an
 673 anaerobic/anoxic/oxic system, *Chemical Engineering Journal* 446 (2022) 137055.
 674 <https://doi.org/10.1016/j.cej.2022.137055>.

675 [32] S. Zhang, H.L. Song, X. Cao, H. Li, J. Guo, X.L. Yang, R.P. Singh, S. Liu,
 676 Inhibition of methanogens decreased sulfadiazine removal and increased antibiotic resistance
 677 gene development in microbial fuel cells, *Bioresour Technol* 281 (2019) 188-194.
 678 <https://doi.org/10.1016/j.biortech.2019.02.089>.

679 [33] D. Cheng, H.H. Ngo, W. Guo, D. Lee, D.L. Nghiem, J. Zhang, S. Liang, S. Varjani,
 680 J. Wang, Performance of microbial fuel cell for treating swine wastewater containing
 681 sulfonamide antibiotics, *Bioresource Technology* 311 (2020).
 682 <https://doi.org/10.1016/j.biortech.2020.123588>.

683 [34] C.H. Wei, C. Sanchez-Huerta, T. Leiknes, G. Amy, H. Zhou, X. Hu, Q. Fang, H.
 684 Rong, Removal and biotransformation pathway of antibiotic sulfamethoxazole from
 685 municipal wastewater treatment by anaerobic membrane bioreactor, *J Hazard Mater* 380
 686 (2019) 120894. <https://doi.org/10.1016/j.jhazmat.2019.120894>.

687 [35] W. Xu, M. Luo, X. Lu, Z. Ye, T. Jeong, Simultaneous Removal of Nitrate and
 688 Tetracycline by an Up-Flow Immobilized Biofilter, Water 14(17) (2022).
 689 <https://doi.org/10.3390/w14172595>.

690 [36] M.A. Khan, H.H. Ngo, W. Guo, S.W. Chang, D.D. Nguyen, S. Varjani, Y. Liu, L.
 691 Deng, C. Cheng, Selective production of volatile fatty acids at different pH in an anaerobic
 692 membrane bioreactor, Bioresour Technol 283 (2019) 120-128.
 693 <https://doi.org/10.1016/j.biortech.2019.03.073>.

694 [37] Z. Wang, J. Gao, Y. Zhao, Y. Cui, Y. Zhang, H. Dai, D. Li, Discrepant responses of
 695 polyvinyl chloride microplastics biofilms and activated sludge under sulfadiazine stress in an
 696 anaerobic/anoxic/oxic system, Chemical Engineering Journal 446 (2022).
 697 <https://doi.org/10.1016/j.cej.2022.137055>.

698 [38] T. Leiknes, G. Amy, C. Hoppe-Jones, C.-H. Wei, Organic micro-pollutants' removal via anaerobic membrane bioreactor with ultrafiltration and nanofiltration, Journal of
 699 Water Reuse and Desalination 6(3) (2016) 362-370. <https://doi.org/10.2166/wrd.2015.138>.

701 [39] Y. Xiao, H. Yaohari, C. De Araujo, C.C. Sze, D.C. Stuckey, Removal of selected
 702 pharmaceuticals in an anaerobic membrane bioreactor (AnMBR) with/without powdered
 703 activated carbon (PAC), Chemical Engineering Journal 321 (2017) 335-345.
 704 <https://doi.org/10.1016/j.cej.2017.03.118>.

705 [40] Z. Lei, J. Wang, L. Leng, S. Yang, M. Dzakpasu, Q. Li, Y.-Y. Li, X.C. Wang, R.
 706 Chen, New insight into the membrane fouling of anaerobic membrane bioreactors treating
 707 sewage: Physicochemical and biological characterization of cake and gel layers, Journal of
 708 Membrane Science 632 (2021). <https://doi.org/10.1016/j.memsci.2021.119383>.

709 [41] Y. Yao, R. Xu, Z. Zhou, F. Meng, Linking dynamics in morphology, components,
 710 and microbial communities of biocakes to fouling evolution: A comparative study of
 711 anaerobic and aerobic membrane bioreactors, Chemical Engineering Journal 413 (2021)
 712 127483. <https://doi.org/10.1016/j.cej.2020.127483>.

713 [42] Y. Zhu, Y. Wang, S. Zhou, X. Jiang, X. Ma, C. Liu, Robust performance of a
 714 membrane bioreactor for removing antibiotic resistance genes exposed to antibiotics: Role of
 715 membrane foulants, Water Res 130 (2018) 139-150.
 716 <https://doi.org/10.1016/j.watres.2017.11.067>.

717 [43] J. Teng, M. Zhang, K.T. Leung, J. Chen, H. Hong, H. Lin, B.Q. Liao, A unified
 718 thermodynamic mechanism underlying fouling behaviors of soluble microbial products
 719 (SMPs) in a membrane bioreactor, Water Res 149 (2019) 477-487.
 720 <https://doi.org/10.1016/j.watres.2018.11.043>.

721 [44] W.J. Gao, H.J. Lin, K.T. Leung, H. Schraft, B.Q. Liao, Structure of cake layer in a
 722 submerged anaerobic membrane bioreactor, Journal of Membrane Science 374(1-2) (2011)
 723 110-120. <https://doi.org/10.1016/j.memsci.2011.03.019>.

724 [45] Y.-J. Liu, D.D. Sun, Particles size-associated membrane fouling in microfiltration of
 725 denitrifying granules supernatant, Chemical Engineering Journal 181-182 (2012) 494-500.
 726 <https://doi.org/10.1016/j.cej.2011.12.009>.

727 [46] Z. Zhou, Y. Tao, S. Zhang, Y. Xiao, F. Meng, D.C. Stuckey, Size-dependent
 728 microbial diversity of sub-visible particles in a submerged anaerobic membrane bioreactor
 729 (SAnMBR): Implications for membrane fouling, Water Res 159 (2019) 20-29.

731 [47] A. Zarei-Baygi, A.L. Smith, Intracellular versus extracellular antibiotic resistance
732 genes in the environment: Prevalence, horizontal transfer, and mitigation strategies, *Bioresour*
733 *Technol* 319 (2021) 124181. <https://doi.org/10.1016/j.biortech.2020.124181>.

734 [48] L.-g. Shen, Q. Lei, J.-R. Chen, H.-C. Hong, Y.-M. He, H.-J. Lin, Membrane fouling
735 in a submerged membrane bioreactor: Impacts of floc size, *Chemical Engineering Journal* 269
736 (2015) 328-334. <https://doi.org/10.1016/j.cej.2015.02.002>.

737 [49] L. Chen, P. Cheng, L. Ye, H. Chen, X. Xu, L. Zhu, Biological performance and
738 fouling mitigation in the biochar-amended anaerobic membrane bioreactor (AnMBR) treating
739 pharmaceutical wastewater, *Bioresour Technol* 302 (2020) 122805.
740 <https://doi.org/10.1016/j.biortech.2020.122805>.

741 [50] A. Deb, K. Gurung, J. Rumky, M. Sillanpaa, M. Manttari, M. Kallioinen, Dynamics
742 of microbial community and their effects on membrane fouling in an anoxic-oxic gravity-
743 driven membrane bioreactor under varying solid retention time: A pilot-scale study, *Sci Total*
744 *Environ* 807(Pt 2) (2022) 150878. <https://doi.org/10.1016/j.scitotenv.2021.150878>.

745 [51] Y. Liu, X. Cao, J. Zhang, Z. Fang, H. Zhang, X. Gao, X. Li, The use of a self-
746 generated current in a coupled MFC-AnMBR system to alleviate membrane fouling,
747 *Chemical Engineering Journal* 442 (2022) 136090. <https://doi.org/10.1016/j.cej.2022.136090>.

748 [52] S.F. Aquino, D.C. Stuckey, Soluble microbial products formation in anaerobic
749 chemostats in the presence of toxic compounds, *Water Res* 38(2) (2004) 255-266.
750 <https://doi.org/10.1016/j.watres.2003.09.031>.

751 [53] H. Lin, M. Zhang, F. Wang, F. Meng, B.-Q. Liao, H. Hong, J. Chen, W. Gao, A
752 critical review of extracellular polymeric substances (EPSs) in membrane bioreactors:
753 Characteristics, roles in membrane fouling and control strategies, *Journal of Membrane*
754 *Science* 460 (2014) 110-125. <https://doi.org/10.1016/j.memsci.2014.02.034>.

755 [54] D. Hu, L. Liu, W. Liu, L. Yu, J. Dong, F. Han, H. Wang, Z. Chen, H. Ge, B. Jiang,
756 X. Wang, Y. Cui, W. Zhang, Y. Zhang, S. Liu, L. Zhao, Improvement of sludge
757 characteristics and mitigation of membrane fouling in the treatment of pesticide wastewater
758 by electrochemical anaerobic membrane bioreactor, *Water Res* 213 (2022) 118153.
759 <https://doi.org/10.1016/j.watres.2022.118153>.

760 [55] L. Luo, S. Xu, Y. Jin, R. Han, H. Liu, F. Lü, Evaluation of methanogenic microbial
761 electrolysis cells under closed/open circuit operations, *Environmental Technology* 39(6)
762 (2018) 739-748. <https://doi.org/10.1080/09593330.2017.1310934>.

763 [56] M. Yadav, V. Vivekanand, Combined fungal and bacterial pretreatment of wheat
764 and pearl millet straw for biogas production – A study from batch to continuous stirred tank
765 reactors, *Bioresour Technol* 321 (2021) 124523.
766 <https://doi.org/10.1016/j.biortech.2020.124523>.

767 [57] J. De Vrieze, A.M. Saunders, Y. He, J. Fang, P.H. Nielsen, W. Verstraete, N. Boon,
768 Ammonia and temperature determine potential clustering in the anaerobic digestion
769 microbiome, *Water Res* 75 (2015) 312-323. <https://doi.org/10.1016/j.watres.2015.02.025>.

770 [58] G. Zhen, S. Zheng, Y. Han, Z. Zhang, X. Lu, K.-Q. Xu, Semi-continuous anolyte
771 circulation to strengthen CO₂ bioelectromethanogenesis with complex organic matters as

772 The e-/H⁺ donor for simultaneous biowaste refinery, Chemical Engineering Journal 450
 773 (2022) 133123. <https://doi.org/10.1016/j.cej.2021.133123>.

774 [59] M. Yadav, C. Joshi, K. Paritosh, J. Thakur, N. Pareek, S.K. Masakapalli, V.
 775 Vivekanand, Organic waste conversion through anaerobic digestion: A critical insight into the
 776 metabolic pathways and microbial interactions, Metabolic Engineering 69 (2022) 323-337.
 777 <https://doi.org/10.1016/j.ymben.2021.11.014>.

778 [60] Z. Cetecioglu, B. Ince, D. Orhon, O. Ince, Anaerobic sulfamethoxazole degradation
 779 is driven by homoacetogenesis coupled with hydrogenotrophic methanogenesis, Water Res 90
 780 (2016) 79-89. <https://doi.org/10.1016/j.watres.2015.12.013>.

781 [61] H. Fakhri, D.N. Arabaci, I.D. Unlu, C. Yangin-Gomec, S. Ovez, S. Aydin, Addition
 782 of *Trichocladium canadense* to an anaerobic membrane bioreactor: evaluation of the microbial
 783 composition and reactor performance, Biofouling 37(7) (2021) 711-723.
 784 <https://doi.org/10.1080/08927014.2021.1949002>.

785 [62] Z.-r. Chu, K. Wang, X.-k. Li, M.-t. Zhu, L. Yang, J. Zhang, Microbial
 786 characterization of aggregates within a one-stage nitritation-anammox system using high-
 787 throughput amplicon sequencing, Chemical Engineering Journal 262 (2015) 41-48.
 788 <https://doi.org/10.1016/j.cej.2014.09.067>.

789 [63] J. Zhang, Y. Qu, Q. Qi, P. Zhang, Y. Zhang, Y.W. Tong, Y. He, The bio-chemical
 790 cycle of iron and the function induced by ZVI addition in anaerobic digestion: A review,
 791 Water Res 186 (2020) 116405. <https://doi.org/10.1016/j.watres.2020.116405>.

792 [64] M. Yadav, C. Joshi, K. Paritosh, J. Thakur, N. Pareek, S.K. Masakapalli, V.
 793 Vivekanand, Reprint of Organic waste conversion through anaerobic digestion: A critical
 794 insight into the metabolic pathways and microbial interactions, Metab Eng 71 (2022) 62-76.
 795 <https://doi.org/10.1016/j.ymben.2022.02.001>.

796 [65] W. Wu, G. Chen, Z. Wang, Enhanced sludge digestion using anaerobic dynamic
 797 membrane bioreactor: Effects of hydraulic retention time, Energy 261 (2022).
 798 <https://doi.org/10.1016/j.energy.2022.125396>.

799 [66] D. Cheng, H.H. Ngo, W. Guo, S.W. Chang, D.D. Nguyen, Q.A. Nguyen, J. Zhang,
 800 S. Liang, Improving sulfonamide antibiotics removal from swine wastewater by supplying a
 801 new pomelo peel derived biochar in an anaerobic membrane bioreactor, Bioresour Technol
 802 319 (2021) 124160. <https://doi.org/10.1016/j.biortech.2020.124160>.

803 [67] Y. Kim, S. Li, L. Chekli, S. Phuntsho, N. Ghaffour, T. Leiknes, H.K. Shon,
 804 Influence of fertilizer draw solution properties on the process performance and microbial
 805 community structure in a side-stream anaerobic fertilizer-drawn forward osmosis -
 806 ultrafiltration bioreactor, Bioresour Technol 240 (2017) 149-156.
 807 <https://doi.org/10.1016/j.biortech.2017.02.098>.

808 [68] M. Ventura, C. Canchaya, A. Tauch, G. Chandra, G.F. Fitzgerald, K.F. Chater, D.
 809 van Sinderen, Genomics of Actinobacteria: tracing the evolutionary history of an ancient
 810 phylum, *Microbiol Mol Biol Rev* 71(3) (2007) 495-548.
 811 <https://doi.org/10.1128/MMBR.00005-07>.

812 [69] C.L. Nesbo, D.M. Bradnan, A. Adebusty, M. Dlutek, A.K. Petrus, J. Foght, W.F.
 813 Doolittle, K.M. Noll, *Mesotoga prima* gen. nov., sp. nov., the first described mesophilic
 814 species of the Thermotogales, *Extremophiles* 16(3) (2012) 387-93.

816 [70] S. Chen, Z. Tao, F. Yao, B. Wu, L. He, K. Hou, Z. Pi, J. Fu, H. Yin, Q. Huang, Y.
817 Liu, D. Wang, X. Li, Q. Yang, Enhanced anaerobic co-digestion of waste activated sludge
818 and food waste by sulfidated microscale zerovalent iron: Insights in direct interspecies
819 electron transfer mechanism, *Bioresour Technol* 316 (2020) 123901.
820 <https://doi.org/10.1016/j.biortech.2020.123901>.

821 [71] C. Wang, Y. Wang, Y. Wang, K.-k. Cheung, F. Ju, Y. Xia, T. Zhang, Genome-
822 centric microbiome analysis reveals solid retention time (SRT)-shaped species interactions
823 and niche differentiation in food waste and sludge co-digesters, *Water Res* 181 (2020)
824 115858. <https://doi.org/10.1016/j.watres.2020.115858>.

825 [72] Y. Liu, W.B. Whitman, Metabolic, Phylogenetic, and Ecological Diversity of the
826 Methanogenic Archaea, *Annals of the New York Academy of Sciences* 1125(1) (2008) 171-
827 189. <https://doi.org/10.1196/annals.1419.019>.

828 [73] B. Demirel, P. Scherer, The roles of acetotrophic and hydrogenotrophic
829 methanogens during anaerobic conversion of biomass to methane: a review, *Reviews in*
830 *Environmental Science and Bio/Technology* 7(2) (2008) 173-190.
831 <https://doi.org/10.1007/s11157-008-9131-1>.

832 [74] K. Xu, H. Liu, G. Du, J. Chen, Real-time PCR assays targeting
833 formyltetrahydrofolate synthetase gene to enumerate acetogens in natural and engineered
834 environments, *Anaerobe* 15(5) (2009) 204-13.
835 <https://doi.org/10.1016/j.anaerobe.2009.03.005>.

836

837

838

839

840

841

842

843

844

845