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Abstract: The paper addresses the problem of attitude estimation for rigid bodies using
(possibly time-varying) vector measurements, for which we provide a necessary and sufficient
condition of distinguishability. Such a condition is shown to be strictly weaker than those
previously used for attitude observer design. Thereafter, we show that even for the single vector
case the resulting condition is sufficient to design almost globally convergent attitude observers,
and an explicit design is obtained. To overcome the weak excitation issue, the design makes full
use of historical information. Simulation results illustrate the accurate estimation despite with
noisy measurements.
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1. INTRODUCTION

The attitude of a rigid body is its orientation with respect
to an inertial reference frame. Attitude estimation is an
essential element in a wide range of robotics and aerospace
applications, in particular for control, navigation, and lo-
calization tasks. Many common sensor types, e.g. magne-
tometers, accelerometers, and monocular cameras, provide
body-fixed measurements of quantities with a known iner-
tial value, e.g. the earth’s magnetic field and gravitational
force, or the bearing to certain known landmarks. These
are known as complementary measurements Trumpf et al.
(2012). In some less common scenarios a set of known
vectors in the body-fixed frame are measured in the inertial
frame, e.g. measurements from two GPS receivers attached
to the rigid body with a known base-line. These are known
as compatible measurements Trumpf et al. (2012).

Estimation of attitude from multiple non-collinear vec-
tor measurements was formulated as a total least-squares
problem over rotation matrices by Wahba (1965). Several
efficient algorithms exist for its solution, including singu-
lar value decomposition methods, TRIAD, and QUEST
Shuster and Oh (1981).

However, when estimating a time-varying attitude it often
is beneficial to fuse the vector measurements with informa-
tion from gyroscopes using a dynamical model. The result-
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ing dynamic estimator commonly known as a filter or ob-
server. These approaches can significantly reduce the im-
pact of high-frequency measurement noise. Furthermore,
in many applications there is only a single vector available
for attitude estimation and in this case the attitude is not
completely determined at a single moment. Applications
for estimation from a single vector measurement include
Sun sensors in eclipse periods Namvar and Safaei (2013),
improving reliability with redundant measurements and
simplifying designs Reis et al. (2021), as well as visual-
inertial navigation with only two feature points visible in
some periods.

Among filtering approaches, extended Kalman filter is the
most widely-applied for attitude estimation. However the
domain of attraction is intrinsically local since the filter is
based on first-order linearization; see Crassidis et al. (2007)
for a recent review. Alternatively, interest in nonlinear at-
titude observers was spurred by Salcudean’s seminal work
Salcudean (1991), and has achieved significant progress
since then. There are many nonlinear attitude observers
making direct use of vector measurements, e.g., with mul-
tiple measurements Mahony et al. (2008); Trumpf et al.
(2012); Zlotnik and Forbes (2016) or single vector measure-
ments Batista et al. (2012); Grip et al. (2011); Bahrami
and Namvar (2017); Kinsey and Whitcomb (2007). The
latter works impose a persistently non-constant condition
on the single reference vector, or similar conditions in
which the uniformity of excitation with respect to time
plays an essential role to guarantee asymptotic conver-
gence. In Trumpf et al. (2012), the authors provide a
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comprehensive treatment of observability of a rigid-body
attitude kinematic model with vectorial outputs. However,
as illustrated in (Trumpf et al., 2012, Remark 3.9), the
condition is only sufficient but not necessary for distin-
guishability, a specific type of observability for nonlinear
dynamical systems Besançon (2007); Bernard (2019). In
this paper, we revisit the problem of observability analysis
and propose two novel attitude observers. To be precise,
the main contributions of the note are two-fold:

1) For the problem of attitude estimation from vector
measurements, we provide the necessary and suffi-
cient condition to distinguishability of the associated
dynamical model, which is known as the necessity to
reconstruct attitude over time in any deterministic
estimators;

2) We show that the resulting distinguishability condi-
tion is also sufficient to design a continuous-time atti-
tude observer. By focusing on single vector measure-
ments, we provide a novel almost globally convergent
attitude observer, which requires some significantly
weaker conditions than existing methods.

The constructive tool we adopt in observer design is the
parameter estimation-based observer (PEBO), which was
recently proposed in Euclidean space Ortega et al. (2015,
2021), and extended to matrix Lie groups by the authors
in Yi et al. (2021a,b). Its basic idea is to translate system
states observation into the estimation of certain constant
quantities. The interested reader may refer to Yi et al.
(2018) for the geometric interpretation to PEBOs. In con-
trast to the case with at least two non-collinear vectors
in Yi et al. (2021a,b), in this paper we consider a more
challenging scenario with only a single vector measure-
ment available under a weak excitation condition. We are
unaware of any previous results capable to deal with such a
case. In the proposed observer design, after translating the
problem into on-line parameter identification, we propose
a mechanism to integrate both the historical and current
information to achieve uniform convergence.

Notation. In ∈ Rn×n represents the identity matrix of
dimension n, and 0n ∈ Rn and 0n×m ∈ Rn×m denote the
zero column vector of dimension n and the zero matrix of
dimension n×m, respectively. We use N to represent the
set of all natural integers, and N+ for the set of positive
integers. We also define the skew-symmetric matrix

J :=

[
0 −1
1 0

]
.

Given a square matrix A ∈ Rn×n and a vector x ∈ Rn,
the Frobenius norm is defined as ∥A∥ =

√
tr(A⊤A),

and |x| represents the standard Euclidean norm. The n-
sphere is defined as Sn := {x ∈ Rn+1 : |x| = 1},
and we use SO(3) to represent the special orthogonal
group, and so(3) is the associated Lie algebra as the set
of skew-symmetric matrices satisfying SO(3) = {R ∈
R3×3|R⊤R = I3, det(R) = 1}. Given a variable R ∈
SO(3), we use |R|I to represent the normalized distance
to I3 on SO(3) with |R|2I := 1

4 tr(I3 − R). The operator

skew(·) is defined as skew(A) := 1
2 (A − A⊤) for a square

matrix A. Given a ∈ R3, we define the operator (·)× as

a× :=

[
0 −a3 a2
a3 0 −a1
−a2 a1 0

]
∈ so(3),

and its inverse operator is defined as vex(a×) = a.

2. PROBLEM FORMULATION

The aim of this note is to study the observability and
observer design of the rotation matrix representing the
coordinates of the body-fixed frame {B} with respect to
the coordinates of the inertial frame {I}, which lives in
the group SO(3). Its dynamics is given by

Ṙ = Rω×, R(0) = R0 (1)

with the rotational velocity ω ∈ R3 measured in the body-
fixed coordinate. Assume there is a vector g ∈ S2, known
in the inertial frame, being measured in the body-fixed
frame, and the output is

yB = R⊤g (2)

with yB ∈ S2, which is known as complementary measure-
ment. We also consider the compatible measurement yI,
i.e., a known vector b ∈ S2 in the body-fixed frame is
measured in the inertial frame

yI = Rb (3)

with yI ∈ S2. It is referred to (Trumpf et al., 2012, Sec. II)
for more details about the names “complementary” and
“compatible”.

Before closing this section, let us recall some definitions
used throughout the paper.

Definition 1. (Distinguishability, Bernard (2019)) Con-
sider an open set X ⊂ Rn and a complete nonlinear system

ẋ = f(x, t)

y = h(x, t)
(4)

with state x ∈ Rn and output y ∈ Rm. The system (4) is
distinguishable on X if for all (xa, xb) ∈ X × X ,

h
(
X(t; t0, xa), t

)
= h

(
X(t; t0, xb), t

)
, ∀t ≥ t0

=⇒ xa = xb,

in which X(t; t0, xa) represents the solution at time t of
(4) through x0 at time t0. In this paper, we focus on the
particular case t0 = 0.

Definition 2. (Persistent and interval excitation, Ortega
et al. (2020)) Given a bounded signal ϕ : R+ → Rn, it is
persistently excited (PE) if∫ t+T

t

ϕ(s)ϕ⊤(s)ds ≥ δIn, ∀t ≥ 0

for some T > 0, δ > 0; or intervally excited (IE), if there
exists T ≥ 0 such that∫ T

0

ϕ(s)ϕ⊤(s)ds ≥ δIn

for some δ > 0.

3. NECESSARY AND SUFFICIENT CONDITIONS TO
OBSERVABILITY

First, we consider the observability for the case with
multiple measurements

yB,i = R⊤gi, i ∈ ℓ1 := {1, . . . , n1}
yI,j = Rbj , j ∈ ℓ2 := {1, . . . , n2}

(5)
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attitude kinematic model with vectorial outputs. However,
as illustrated in (Trumpf et al., 2012, Remark 3.9), the
condition is only sufficient but not necessary for distin-
guishability, a specific type of observability for nonlinear
dynamical systems Besançon (2007); Bernard (2019). In
this paper, we revisit the problem of observability analysis
and propose two novel attitude observers. To be precise,
the main contributions of the note are two-fold:

1) For the problem of attitude estimation from vector
measurements, we provide the necessary and suffi-
cient condition to distinguishability of the associated
dynamical model, which is known as the necessity to
reconstruct attitude over time in any deterministic
estimators;

2) We show that the resulting distinguishability condi-
tion is also sufficient to design a continuous-time atti-
tude observer. By focusing on single vector measure-
ments, we provide a novel almost globally convergent
attitude observer, which requires some significantly
weaker conditions than existing methods.

The constructive tool we adopt in observer design is the
parameter estimation-based observer (PEBO), which was
recently proposed in Euclidean space Ortega et al. (2015,
2021), and extended to matrix Lie groups by the authors
in Yi et al. (2021a,b). Its basic idea is to translate system
states observation into the estimation of certain constant
quantities. The interested reader may refer to Yi et al.
(2018) for the geometric interpretation to PEBOs. In con-
trast to the case with at least two non-collinear vectors
in Yi et al. (2021a,b), in this paper we consider a more
challenging scenario with only a single vector measure-
ment available under a weak excitation condition. We are
unaware of any previous results capable to deal with such a
case. In the proposed observer design, after translating the
problem into on-line parameter identification, we propose
a mechanism to integrate both the historical and current
information to achieve uniform convergence.

Notation. In ∈ Rn×n represents the identity matrix of
dimension n, and 0n ∈ Rn and 0n×m ∈ Rn×m denote the
zero column vector of dimension n and the zero matrix of
dimension n×m, respectively. We use N to represent the
set of all natural integers, and N+ for the set of positive
integers. We also define the skew-symmetric matrix

J :=

[
0 −1
1 0

]
.

Given a square matrix A ∈ Rn×n and a vector x ∈ Rn,
the Frobenius norm is defined as ∥A∥ =

√
tr(A⊤A),

and |x| represents the standard Euclidean norm. The n-
sphere is defined as Sn := {x ∈ Rn+1 : |x| = 1},
and we use SO(3) to represent the special orthogonal
group, and so(3) is the associated Lie algebra as the set
of skew-symmetric matrices satisfying SO(3) = {R ∈
R3×3|R⊤R = I3, det(R) = 1}. Given a variable R ∈
SO(3), we use |R|I to represent the normalized distance
to I3 on SO(3) with |R|2I := 1

4 tr(I3 − R). The operator

skew(·) is defined as skew(A) := 1
2 (A − A⊤) for a square

matrix A. Given a ∈ R3, we define the operator (·)× as

a× :=

[
0 −a3 a2
a3 0 −a1
−a2 a1 0

]
∈ so(3),

and its inverse operator is defined as vex(a×) = a.

2. PROBLEM FORMULATION

The aim of this note is to study the observability and
observer design of the rotation matrix representing the
coordinates of the body-fixed frame {B} with respect to
the coordinates of the inertial frame {I}, which lives in
the group SO(3). Its dynamics is given by

Ṙ = Rω×, R(0) = R0 (1)

with the rotational velocity ω ∈ R3 measured in the body-
fixed coordinate. Assume there is a vector g ∈ S2, known
in the inertial frame, being measured in the body-fixed
frame, and the output is

yB = R⊤g (2)

with yB ∈ S2, which is known as complementary measure-
ment. We also consider the compatible measurement yI,
i.e., a known vector b ∈ S2 in the body-fixed frame is
measured in the inertial frame

yI = Rb (3)

with yI ∈ S2. It is referred to (Trumpf et al., 2012, Sec. II)
for more details about the names “complementary” and
“compatible”.

Before closing this section, let us recall some definitions
used throughout the paper.

Definition 1. (Distinguishability, Bernard (2019)) Con-
sider an open set X ⊂ Rn and a complete nonlinear system

ẋ = f(x, t)

y = h(x, t)
(4)

with state x ∈ Rn and output y ∈ Rm. The system (4) is
distinguishable on X if for all (xa, xb) ∈ X × X ,

h
(
X(t; t0, xa), t

)
= h

(
X(t; t0, xb), t

)
, ∀t ≥ t0

=⇒ xa = xb,

in which X(t; t0, xa) represents the solution at time t of
(4) through x0 at time t0. In this paper, we focus on the
particular case t0 = 0.

Definition 2. (Persistent and interval excitation, Ortega
et al. (2020)) Given a bounded signal ϕ : R+ → Rn, it is
persistently excited (PE) if∫ t+T

t

ϕ(s)ϕ⊤(s)ds ≥ δIn, ∀t ≥ 0

for some T > 0, δ > 0; or intervally excited (IE), if there
exists T ≥ 0 such that∫ T

0

ϕ(s)ϕ⊤(s)ds ≥ δIn

for some δ > 0.

3. NECESSARY AND SUFFICIENT CONDITIONS TO
OBSERVABILITY

First, we consider the observability for the case with
multiple measurements

yB,i = R⊤gi, i ∈ ℓ1 := {1, . . . , n1}
yI,j = Rbj , j ∈ ℓ2 := {1, . . . , n2}

(5)

with n1, n2 ∈ N. 1 It is clear that the single measurement
is corresponding to the case n1 + n2 = 1, for which we
will construct an asymptotically convergent observer in
the next section.

In the following proposition, we uncover a necessary and
sufficient condition to the distinguishability for attitude
estimation.

Proposition 3. The time-varying system (1) with the out-
put (5), and n := n1 + n2 ≥ 1, is distinguishable if and
only if there exist two moments t1, t2 ≥ 0 such that
i,l∈ℓ1,j,k∈ℓ2

gi(t1)× gl(t2)
 +

gi(t1)×R0Φ(0, t2)bj(t2)


+
bj(t1)×Φ(t1, t2)bk(t2)

 > 0,

(6)
in which Φ(s, t) is the state transition matrix of the time-
varying system matrix ω×(t) from s to t.

Proof. The state transition matrix Φ(s, t) of the linear
time-varying (LTV) system

ẋ = ω×x

with x ∈ R3 defined as
∂

∂t
Φ(t, s) = ω×(t)Φ(t, s)

Φ(s, s) = I3.

It is equivalent to define

Φ(s, t) = Q(s)−1Q(t),

in which Q ∈ SO(3) is generated by the dynamics

Q̇ = Qω×, Q(0) = I3 (7)

with Q ∈ SO(3). From

d

dt
(RQ⊤) = ṘQ⊤ −RQ⊤Q̇Q⊤ = 0,

we have for all t, s ≥ 0

R(t)Q(t)⊤ = R(0)Q(0)⊤ ⇐⇒ R(t) = R0Q(t)

⇐⇒ R(t) = R(s)Φ(s, t),

with R0 := R(0).

Now we collect all the measured outputs in the vector

ȳ = col(yB,1, . . . , yB,n1 , yI,1, . . . , yI,n2).

With a slight abuse of notation, we denote the output
signal ȳ from the initial condition R0 ∈ SO(3) as ȳ(t;R0).
In terms of Definition 1, the system is distinguishable from
t = 0 if and only if

ȳ(t;Ra) ̸≡ ȳ(t;Rb) =⇒ Ra ̸= Rb (8)

for any Ra, Rb ∈ SO(3). Clearly, the above condition (8)
is equivalent to the identifiability of the constant matrix
R0 ∈ SO(3) from the nonlinear regression equation

ȳ = h(R0, t) (9)

with the mapping

h(R0, t) :=




Q⊤(t)R⊤
0 g1(t)
...

Q⊤(t)R⊤
0 gn1

(t)
R0Q(t)b1(t)

...
R0Q(t)bn2

(t)



.

1 If ni = 0 (i = 1, 2), then the set ℓi is defined as the empty set ∅.

The regressor equation (9) can be rewritten as

Y (t) = R⊤
0 ϕ(t), R0 ∈ SO(3) (10)

with Y ∈ R3×n and ϕ ∈ R3×n given by

Y := Q [yB,1, . . . , yB,n1
, b1, . . . , bn2 ]

ϕ := [g1, . . . , gn1 , yI,1, . . . , yI,n2 ] .

Note that Q(t) is an available signal for attitude esti-
mation. Hence, the identifiability of the constant matrix
R0 on SO(3) from the nonlinear regression model (9) is
equivalent to the solvability of the Wahba problem for the
regression model (10) over time Wahba (1965) – invoking
that (10) holds for all t ≥ 0. That is the existence of
moments t1, t2 ≥ 0 such that

ϕi(t1)× ϕj(t2) ̸= 0 (11)

for some i, j ∈ {1, . . . , n}, with ϕi representing the i-th
column vector of ϕ.

The last step of the proof is to show that the condition (11)
is equivalent to (6). There are totally three possible cases
when (11) holds true: 1) i, j ∈ {1, . . . , n1}, 2) i, j ∈ {n1 +
1, . . . , n}, and 3) i ∈ {1, . . . , n1}, j ∈ {n1+1, . . . , n}. 2 For
the first case, the condition (11) is equivalent to

i,l∈ℓ1

gi(t1)× gl(t2)
 > 0. (12)

The second case is equivalent to for some j, k ∈ ℓ2
yI,j(t1)× yI,k(t2) ̸= 0

⇐⇒ [R(t1)bj(t1)]×R(t2)bk(t2) ̸= 0

⇐⇒ R(t1)[bj(t1)]×R(t1)
⊤R(t2)bk(t2) ̸= 0

⇐⇒ [bj(t1)]×R(t1)
⊤R(t2)bk(t2) ̸= 0

⇐⇒ [bj(t1)]×Φ(t1, t2)bk(t2) ̸= 0

(13)

where in the second implication we use the identity
(Rb)× = Rb×R

⊤, the full-rankness of R(t1) in the third
implication, and in the last

R(t1)
⊤R(t2) = Q(t1)

⊤R⊤
0 R0Q(t2)

= Φ(t1, t2).

Note that the last line of the condition (13) can be
compactly written as

j,k∈ℓ2

bj(t1)×Φ(t1, t2)bk(t2)
 > 0. (14)

Similarly, we get that for the third case the condition (11)
is equivalent to

i∈ℓ1, j∈ℓ2

gi(t1)×R0Φ(0, t2)bj(t2)
 > 0. (15)

Combining these three cases, it is sufficient to obtain (6).
On the other hand, since each term in (6) is non-negative,
if the condition (6) holds, at least one of the above cases
should be satisfied. We complete the proof. �

For the case with only complementary or compatible
measurements (n1 · n2 = 0), then the distinguishability
condition becomes
i,l∈ℓ1,j,k∈ℓ2

gi(t1)× gl(t2)
+

bj(t1)×Φ(t1, t2)bk(t2)
 > 0.

If there are two types of measurements, the identifiability
depends on the initial attitude R0, and this implies that
some region in SO(3) may be not distinguishable for a

2 We do not distinguish the order of i and j.
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given specific trajectory. However, the following corollary
shows that such a region has zero Lebesgue measure in the
group SO(3). Note that the condition below does not rely
on the initial attitude.

Corollary 4. If the condition (6) is replaced by the initial
attitude-independent term∑
i,l∈ℓ1,j,k∈ℓ2

∣∣∣gi(t1)× gl(t2)
∣∣∣ +

∣∣∣gi(t1)×Φ(0, t2)bj(t2)
∣∣∣

+
∣∣∣bj(t1)×Φ(t1, t2)bk(t2)

∣∣∣ > 0,

(16)
the distinguishability is guaranteed almost surely. 3

Proof. It is omitted for space limitation. �

Remark 5. In Trumpf et al. (2012) the authors propose the
following sufficient (but not necessary, shown in (Trumpf
et al., 2012, Remark 3.9)) condition to distinguishability
of the given system.

λ2

(∑
i∈ℓ1

∫ T

0

gi(s)g
⊤
i (s)ds

)

+

∥∥∥∥∥∥

∫ T

0

∑
j∈ℓ2

(
ω×bj(s) +

d

ds
bj(s)

)
ds

∥∥∥∥∥∥
> 0,

(17)
for some T > 0, with λ2(·) representing the second largest
eigenvalue of a square matrix. Note that in the above
condition it is necessary to impose (piece-wise) smoothness
of the signals bj . In the following corollary, we show that
the above condition is sufficient to the proposed necessary
and sufficient condition (6).

Corollary 6. Consider the time-varying system (1) with
the output (5), and n := n1 + n2 ≥ 1. If (17) holds, then
the condition in Proposition 3 is also verified.

Proof. It is omitted for space limitation. �

4. ATTITUDE OBSERVER FOR A SINGLE VECTOR
MEASUREMENT

In this section, we show that the distinguishability condi-
tion – identified in Proposition 3 – is sufficient to design
a continuous-time observer with almost globally asymp-
totically convergent estimate to the unknown attitude.
Since the scenario with only a single vector measurement is
more challenging than the multiple vector case, we focus
on the former in this section. The main results can be
extended to the case with multiple vector measurements
in a straightforward manner.

4.1 Attitude Observer Using Integral Correction Term

Let us consider the observer design with a single com-
plementary measurement (2). In the first observer design,
we construct a dynamic extension – following the PEBO
methodology Ortega et al. (2015) – in order to reformulate
attitude estimation as an on-line consistent parameter
identification problem. By adding an elaborated construc-
tion of “integral”-type correction term, we are able to
achieve asymptotic stability of the observer.
3 We refer to the initial attitude set which makes the system lose
distinguishability having zero Lebesgue measure in the entire state
space.

Proposition 7. For the system (1) with the complementary
output (2), we assume that all signals are piece-wisely
continuous and the reference satisfies the distinguishability
condition, i.e.,

∃t1, t2 > 0,
∣∣g(t1)× g(t2)

∣∣ > 0, (18)

with a known bound T > 0 on the distinguishability
interval. 4 The attitude observer

Q̇ = Qω× (19)

with Q(0) ∈ SO(3) and

˙̂
Qc = η×Q̂c, R̂ = Q̂⊤

c Q (20)

with
η = γP(Q̂cg)× (QyB) + γIξ

ξ = 2vex
(
skew(AQ̂⊤

c )
)

Ȧ =

{
QyBg

⊤, t ∈ [0, T )

03×3, t ≥ T

with the gains γP, γI > 0 and A(0) = 03×3, guarantees

R̂(t) ∈ SO(3) for all t ≥ 0 and the convergence

lim
t→∞

∥R̂(t)−R(t)∥ = 0 (21)

almost globally.

Proof. Due to the space limitation, we only provide the
sketch of the proof.

By defining a variable

E(R,Q) = QR⊤,

we have
Ė = Q̇R⊤ −QR⊤ṘR⊤ = 0.

Therefore, there exists a constant matrix Qc ∈ SO(3) such
that

Q(t)R⊤(t) = Qc, ∀t ∈ [0,+∞). (22)

Note that Q(t) is an available signal by construction, and
Qc is unknown. Invoking (22) and the full-rankness of Q,
the estimation of R is equivalent to the one of Qc.

Based on the above idea, we construct the following
auxiliary system

Σc :

{
Q̇c = Qc(ωc)×
yc = Qcbc,

(23)

in which Qc ∈ SO(3) is constant thus ωc = 03, the output

yc(t) := Q(t)yB(t),

and the “body-fixed coordinate” reference

bc := g.

It is clear that the system Σc is exactly in the same form
as the kinematic model with a compatible measurement
(1) and (3). Consider the candidate Lyapunov function

V (Q̃c) = 3 − tr(Q̃c), which has its minimal value zero at

Q̃c = I3. It yields

V̇ = − tr(η×Q̃c)

≤ − λmin(Γ)∥skew(Q̃c)∥2

after some complicated but straightforward calculations,
in which we have defined the variable Γ as

Γ = ΓP + ΓI

with
ΓP(t) := γP(I − yc(t)y

⊤
c (t))

4 Namely, there exists a known T > 0 such that 0 ≤ t1 < t2 ≤ T .
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given specific trajectory. However, the following corollary
shows that such a region has zero Lebesgue measure in the
group SO(3). Note that the condition below does not rely
on the initial attitude.

Corollary 4. If the condition (6) is replaced by the initial
attitude-independent term∑
i,l∈ℓ1,j,k∈ℓ2

∣∣∣gi(t1)× gl(t2)
∣∣∣ +

∣∣∣gi(t1)×Φ(0, t2)bj(t2)
∣∣∣

+
∣∣∣bj(t1)×Φ(t1, t2)bk(t2)

∣∣∣ > 0,

(16)
the distinguishability is guaranteed almost surely. 3

Proof. It is omitted for space limitation. �

Remark 5. In Trumpf et al. (2012) the authors propose the
following sufficient (but not necessary, shown in (Trumpf
et al., 2012, Remark 3.9)) condition to distinguishability
of the given system.

λ2

(∑
i∈ℓ1

∫ T

0

gi(s)g
⊤
i (s)ds

)

+

∥∥∥∥∥∥

∫ T

0

∑
j∈ℓ2

(
ω×bj(s) +

d

ds
bj(s)

)
ds

∥∥∥∥∥∥
> 0,

(17)
for some T > 0, with λ2(·) representing the second largest
eigenvalue of a square matrix. Note that in the above
condition it is necessary to impose (piece-wise) smoothness
of the signals bj . In the following corollary, we show that
the above condition is sufficient to the proposed necessary
and sufficient condition (6).

Corollary 6. Consider the time-varying system (1) with
the output (5), and n := n1 + n2 ≥ 1. If (17) holds, then
the condition in Proposition 3 is also verified.

Proof. It is omitted for space limitation. �

4. ATTITUDE OBSERVER FOR A SINGLE VECTOR
MEASUREMENT

In this section, we show that the distinguishability condi-
tion – identified in Proposition 3 – is sufficient to design
a continuous-time observer with almost globally asymp-
totically convergent estimate to the unknown attitude.
Since the scenario with only a single vector measurement is
more challenging than the multiple vector case, we focus
on the former in this section. The main results can be
extended to the case with multiple vector measurements
in a straightforward manner.

4.1 Attitude Observer Using Integral Correction Term

Let us consider the observer design with a single com-
plementary measurement (2). In the first observer design,
we construct a dynamic extension – following the PEBO
methodology Ortega et al. (2015) – in order to reformulate
attitude estimation as an on-line consistent parameter
identification problem. By adding an elaborated construc-
tion of “integral”-type correction term, we are able to
achieve asymptotic stability of the observer.
3 We refer to the initial attitude set which makes the system lose
distinguishability having zero Lebesgue measure in the entire state
space.

Proposition 7. For the system (1) with the complementary
output (2), we assume that all signals are piece-wisely
continuous and the reference satisfies the distinguishability
condition, i.e.,

∃t1, t2 > 0,
∣∣g(t1)× g(t2)

∣∣ > 0, (18)

with a known bound T > 0 on the distinguishability
interval. 4 The attitude observer

Q̇ = Qω× (19)

with Q(0) ∈ SO(3) and

˙̂
Qc = η×Q̂c, R̂ = Q̂⊤

c Q (20)

with
η = γP(Q̂cg)× (QyB) + γIξ

ξ = 2vex
(
skew(AQ̂⊤

c )
)

Ȧ =

{
QyBg

⊤, t ∈ [0, T )

03×3, t ≥ T

with the gains γP, γI > 0 and A(0) = 03×3, guarantees

R̂(t) ∈ SO(3) for all t ≥ 0 and the convergence

lim
t→∞

∥R̂(t)−R(t)∥ = 0 (21)

almost globally.

Proof. Due to the space limitation, we only provide the
sketch of the proof.

By defining a variable

E(R,Q) = QR⊤,

we have
Ė = Q̇R⊤ −QR⊤ṘR⊤ = 0.

Therefore, there exists a constant matrix Qc ∈ SO(3) such
that

Q(t)R⊤(t) = Qc, ∀t ∈ [0,+∞). (22)

Note that Q(t) is an available signal by construction, and
Qc is unknown. Invoking (22) and the full-rankness of Q,
the estimation of R is equivalent to the one of Qc.

Based on the above idea, we construct the following
auxiliary system

Σc :

{
Q̇c = Qc(ωc)×
yc = Qcbc,

(23)

in which Qc ∈ SO(3) is constant thus ωc = 03, the output

yc(t) := Q(t)yB(t),

and the “body-fixed coordinate” reference

bc := g.

It is clear that the system Σc is exactly in the same form
as the kinematic model with a compatible measurement
(1) and (3). Consider the candidate Lyapunov function

V (Q̃c) = 3 − tr(Q̃c), which has its minimal value zero at

Q̃c = I3. It yields

V̇ = − tr(η×Q̃c)

≤ − λmin(Γ)∥skew(Q̃c)∥2

after some complicated but straightforward calculations,
in which we have defined the variable Γ as

Γ = ΓP + ΓI

with
ΓP(t) := γP(I − yc(t)y

⊤
c (t))

4 Namely, there exists a known T > 0 such that 0 ≤ t1 < t2 ≤ T .

and

ΓI(t) :=




γI

 t

0


I − yc(s)y

⊤
c (s)


ds, t ∈ [0, T ]

ΓI(T ), t > T.

From the condition (18), it is sufficient to show the positive
definiteness of Γ, yielding the local exponential stability of
Q̃c = I3. It is indeed almost globally asymptotically stable
with more technically involved analysis, which is omitted
here. Invoking the algebraic relation R = Q⊤

c Q, we may
conclude the results. �

Remark 8. In the above attitude observer design, the error
term η contains two parts

η = γP(Q̂cg)× (Qy)  
current

+ γIξ
historical

,

which may be viewed as an observer design using a
“proportional + integral”-type error term. The first term
only utilizes the current information, making it behave
as an on-line design. The second “integral” term enables
to achieve asymptotic convergence of the estimation error
under the extremely weak identifiability condition (18).
The gain parameters γP, γI can be used as the weights on
how we trust the current and historical data.

Remark 9. The bound T > 0 is used in the dynamics
of the variable A in order to be able to guarantee its
boundedness. Indeed, the bound T is not necessarily
known apriori, since the distinguishability condition (18) is
an easily-checkable condition on measured quantities. The
proposed scheme may be modified as an adaptive design
in which such a condition is checked online continuously,
and the dynamics of A simply changes until the condition
holds. It is also natural to replace the condition (18) by
|g(t1) × g(t2)| > δ for some δ > 0, to deal with sensor
noise.

Remark 10. As shown above, the “integral” term only
accumulates information in the interval [0, T ], which, how-
ever, does not have the sort of “fading memory” property
on past measurements. As long as the excitation condition
holds, which is easily monitored on-line, the observer per-
formance can be improved considering the moving interval
[t − T, t] rather than [0, T ] in Proposition 7. Another
possible route to deal with weak excitation is to extend
the approach in Wang et al. (2021) to manifolds.

Remark 11. For the case with a single compatible mea-
surement (3), we may still get the auxiliary model (23) by

designing the dynamic extension Q̇ = Qω×, but with the
new definitions of yc := yI and gc := Qb. Then, the above
two designs are capable to solve the problem with slight
modifications accordingly.

5. SIMULATIONS

Some simulations have been carried out with realistic
considerations to evaluate the performance of the proposed
observers. We consider a single time-varying inertial vector

g(t) =


e1, t ∈ [0, 5)s

e3, t ≥ 5s,
(24)

in which ei represents the i-th standard Euclidean basis in
R3. Clearly, it satisfies the sufficient excitation condition
(18), but not for the persistently non-constant reference
vector assumption in many works Batista et al. (2012). The

attitude of the rigid-body starts from the initial condition
R(0) = diag(−1,−1, 1) under the rotational velocity ω =
[0.23 − 0.5 0.15]⊤. We take the measurement noise into
consideration for both the angular velocity readings and
the vector measurements.

We evaluate the performance of the scheme in Proposition
7. The observer is initialized from Q(0) = I3, Q̂c(0) =
I3, with the selection of gains γP = 3 and γI = 1. It
corresponds to the initial yaw, pitch and roll estimates
all being 0◦. The results of simulations are shown in Fig.
1 in the form of Euler angles, and also see the norm
of the estimation error |R̃|I in Fig. 2, which is drawn
in a logarithmic scale for the y-axis. During [0, 5] s, the

error R̃ is converging to some non-zero constant under
a constant vector measurement. This is because a single
vector output makes two of three Euler angles partially
observable Martin and Sarras (2018). After 5s the model
satisfies the distinguishability, and then all Euler angles
converge to their true values. Note that the proposed
scheme is robust vis-à-vis measurement noise.

At the end, let us compare the proposed schemes to the
complementary attitude observer in Trumpf et al. (2012),
whose convergence is guaranteed by a persistent excitation
condition. Clearly, this is not satisfied by the inertial
reference vector in (24). We consider the same initial guess

R̂(0) = I3, and the observer gain is selected as 1. We show
the simulation results for both the noisy and noise-free
cases in Fig. 3, and as expected, the estimate R̂ fails to
converge to its true values.

6. CONCLUDING REMARKS

In this paper, we studied the observability and observer
design for the attitude estimation problem with vectorial
measurements. By translating the observation problem
into one of on-line parameter identification, we provided
the necessary and sufficient condition to the distinguisha-
bility for the dynamical model on SO(3), which is com-
plementary to the existing necessary conditions in the
literature. As shown later, though the resulting distin-
guishability condition is quite weak, we are still able to use
it to derive a continuous-time attitude observer with al-
most global asymptotic stability guaranteed for the single
vector case. Finally, simulation results were presented with
satisfactory performance in the presence of measurement
noise.
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