
SoftwareX 23 (2023) 101425

l
T
C

h
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

hyperbox-brain: A Python toolbox for hyperbox-basedmachine
earning algorithms
hanh Tung Khuat ∗, Bogdan Gabrys
omplex Adaptive Systems Lab, Data Science Institute, University of Technology Sydney, NSW 2007, Australia

a r t i c l e i n f o

Article history:
Received 4 November 2022
Received in revised form 28 May 2023
Accepted 29 May 2023

Keywords:
Hyperbox-based machine learning
Hyperbox fuzzy sets
Fuzzy min–max neural networks
General fuzzy min–max neural network
Explainable machine learning
Classifier

a b s t r a c t

Hyperbox-based machine learning algorithms are an important and popular branch of machine
learning in the construction of classifiers using fuzzy sets and logic theory and neural network
architectures. This type of learning is characterised by many strong points of modern predictors
such as a high scalability, explainability, online adaptation, effective learning from a small amount
of data, native ability to deal with missing data and accommodating new classes. Nevertheless, there
is no comprehensive existing package for hyperbox-based machine learning which can serve as a
benchmark for research and allow non-expert users to apply these algorithms easily. The hyperbox-
brain is an open-source Python library implementing the leading hyperbox-based machine learning
algorithms. This library exposes a unified API which closely follows and is compatible with the
renowned scikit-learn and numpy toolboxes. The library may be installed from Python Package
Index (PyPI) and the conda package manager and is distributed under the GPL-3 license. The source
code, documentation, detailed tutorials, and the full descriptions of the API are available at https://uts-
caslab.github.io/hyperbox-brain.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version v0.1.5
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-22-00360
Permanent link to Reproducible Capsule
Legal Code License GPL-3
Code versioning system used git
Software code languages, tools, and services used Python
Compilation requirements, operating environments & dependencies Python ≥ 3.6, scikit-learn ≥ 0.24, numpy ≥ 1.14.6, scipy ≥ 1.1, joblib ≥ 0.11,

threadpoolctl ≥ 2.0.0 pandas ≥ 0.25, matplotlib ≥ 2.2.3, plotly ≥ 4.10
If available Link to developer documentation/manual https://hyperbox-brain.readthedocs.io/
Support email for questions thanhtung09t2@gmail.com

1. Motivation and significance

The hyperbox-brain toolbox has been developed by the re-
searchers within the Complex Adaptive Systems laboratory at the
University Technology Sydney. It is a result of many years of de-
veloping versatile machine learning algorithms with hyperboxes
as the foundational representation element at their core.

∗ Corresponding author.
E-mail address: thanhtung.khuat@uts.edu.au (Thanh Tung Khuat).

Hyperbox-based machine learning algorithms use min–max
hyperboxes as their fundamental building blocks to partition the
sample space into various regions. A collection of hyperboxes
representing the same class can form the regions of arbitrary
shape and complexity. Each min–max hyperbox is usually char-
acterised by the minimum and maximum vertices together with
a fuzzy membership function acting as a distance or similarity
measure. During the training procedure, these hyperboxes are
formed, as needed, and adjusted to accommodate the incoming
input samples based on the degree-of-fit of each input pattern

to given hyperboxes expressed by their membership values. The

ttps://doi.org/10.1016/j.softx.2023.101425
352-7110/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2023.101425
https://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2023.101425&domain=pdf
https://uts-caslab.github.io/hyperbox-brain
https://uts-caslab.github.io/hyperbox-brain
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00360
https://hyperbox-brain.readthedocs.io/
mailto:thanhtung09t2@gmail.com
mailto:thanhtung.khuat@uts.edu.au
https://doi.org/10.1016/j.softx.2023.101425
http://creativecommons.org/licenses/by/4.0/

Thanh Tung Khuat and Bogdan Gabrys SoftwareX 23 (2023) 101425
Fig. 1. Taxonomy of hyperbox-based machine learning algorithms.

use of hyperboxes for learning systems can deal effectively with
the pattern classification and clustering problems [1]. Moreover,
this kind of learning exposes numerous essential properties for
lifelong machine learning systems [2,3] such as scalability, ex-
plainability, incremental adaptation in dynamically changing en-
vironments, continuously learning ability from a limited amount
of data and new samples, absorption of new knowledge as well as
accommodating new classes with a better ability to avoid catas-
trophic forgetting, due to their local data cluster representations,
and capability to manage the stability-plasticity dilemma [4].

According to a recent survey [5], hyperbox-based machine
learning algorithms can be divided into three main groups as
illustrated in Fig. 1. The first group includes network structured
learning models. This group contains two types of learning algo-
rithms. The first sub-group allows the occurrence of overlapped
areas among hyperboxes representing different class labels, while
the hyperboxes belonging to different classes generated by the
algorithms in the other sub-group are not allowed to overlap
with each other. The second main group consists of hybrid tree
and network structured models. The last group includes non-
network structured models. The learning algorithms supported
by this initial release of the hypebox-brain library primarily
come from the network structured models with non-overlapping
inter-class hyperboxes.

The use of hyperbox fuzzy sets as fundamental representation
blocks for machine learning based classifiers dates back to the
early 1990s with the most prominent early works including a
fuzzy min–max neural network (FMNN) [6] proposed by Simp-
son and the variations and extension to the Adaptive Resonance
Theory (ART) such as Fuzzy ART [7] and ARTMAP [8] proposed by
Carpenter et al.

This hyperbox-brain library focuses mainly on the FMNN
and its improved, later variants such as the general fuzzy min–
max neural network (GFMMNN) [9]. Apart from scalability, ex-
plainability, incremental adaptation, and continuous learning
from limited input samples, learning algorithms of GFMMNN
also exhibit unique learning abilities such as learning from in-
terval input data, native learning ability from a mixed labelled
and unlabelled training sets [9,10], directly learning from data
with missing values without the need for data imputation [11],
combining all resulting hyperboxes in an ensemble model into
a single model [12,13], combination of multiple decision trees
into a single interpretable hyperbox-based model [14], and the
capability of growing and including new classes of data without
retraining the whole classifier [15]. All of these unique learning
characteristics are supported by the library, and their details will
be presented in the next sections.

Although many hyperbox-based machine learning algorithms
have been developed over the years with many very recent ex-
amples [5], there is no comprehensive software library gather-
ing them in one convenient package allowing their easy usage,
benchmarking and further development. Therefore, this paper
presents a scikit-learn compatible hyperbox-based machine
learning library in Python to fill this gap and serve as a facilitator

2. Software description

2.1. Software architecture

To achieve a high performance when applying machine learn-
ing algorithms for real-world problems, it is necessary to com-
bine learning algorithms with a hyperparameter search, cross-
validation, and feature engineering techniques at a large scale.
The hyperbox-brain library, therefore, is designed to be com-
patible with the scikit-learn toolbox [16] to take advantage
of the availability of cross-validation, feature transformation, hy-
perparameter optimisation, and model evaluation methods. As a
result, each model in the hyperbox-brain library inherits from
BaseEstimator or BaseEnsemble and ClassifierMixin in
the module sklearn.base. By this inheritance mechanism, the
library can set hyperparameters using set_params(), train a
model using fit(X, y), make a prediction via predict(X),
and evaluate the trained model on a hold-out dataset using
score(). To integrate with the scikit-learn, the hyperbox-
brain library employs numpy’s structured arrays [17] whose
data type is a combination of simpler data types. To accelerate
the running speed of learning algorithms, the hyperbox-brain
library uses matrix formats to store sets of coordinates for lower
and upper bounds of hyperboxes. This representation allows us
to redefine time-consuming operations of learning algorithms,
such as membership computation, expansion constraint checking,
hyperbox overlap testing, and similarity computation of hyper-
boxes, using vector and matrix operations, as presented in [18].
These vector and matrix operations can be accelerated by leverag-
ing the computational power of the numpy library. Additionally,
the use of matrix operations enables easy parallel execution of
learning algorithms on graphics processing units, especially for
high-dimensional data [18].

2.2. Supported hyperbox-based machine learning algorithms

The hyperbox-brain library currently includes 18 hyperbox-
based algorithms, which are used to train network-structured
learning models without enabling the overlapped areas among
inter-class hyperboxes. All of them are original and improved
learning algorithms for the fuzzy min–max neural network [6]
and the general fuzzy min–max neural network [9]. Of these 18
algorithms, there are three mixed-data learners and 15 learners
for numerical data. Out of 15 numerical data learners, there are
six instance-incremental learners, two batch learners, six ensem-
ble learners, and one multi-granularity learner. These algorithms
are summarised in Table 1.

2.3. Typical features of the library

scikit-learn compatibility: The library is designed to be
compatible with and benefits from the scikit-learn toolbox’s
many features including hyperparameter search, model section
for further research and applications in this field.

2

Thanh Tung Khuat and Bogdan Gabrys SoftwareX 23 (2023) 101425
Table 1
Hyperbox-based machine learning algorithms are supported by hyperbox-brain.
Model Feature type Model type Learning type

EIOL-GFMM [19] Mixed Single Instance-incremental
Freq-Cat-Onln-GFMM [1] Mixed Single Batch-incremental
OneHot-Onln-GFMM [19] Mixed Single Batch-incremental
Onln-GFMM [9] Numerical Single Instance-incremental
IOL-GFMM [20] Numerical Single Instance-incremental
FMNN [6] Numerical Single Instance-incremental
EFMNN [21] Numerical Single Instance-incremental
KNEFMNN [22] Numerical Single Instance-incremental
RFMNN [23] Numerical Single Instance-incremental
AGGLO-SM [10] Numerical Single Batch
AGGLO-2 [10] Numerical Single Batch
MRHGRC [24] Numerical Single Multi-Granularity
Decision-level Bagging [13] Numerical Combination Ensemble
Decision-level Bagging + hyperparameter
optimisation for base learners

Numerical Combination Ensemble

Model-level Bagging [13] Numerical Combination Ensemble
Model-level Bagging + hyperparameter
optimisation for base learners

Numerical Combination Ensemble

Random hyperboxes [25] Numerical Combination Ensemble
Random hyperboxes + hyperparameter
optimisation for base learners

Numerical Combination Ensemble

and evaluation techniques as well as the pipeline composition
approaches (see Section 3.2). Moreover, the library can be com-
patible with other hyperparameter optimisation libraries which
may be integrated with scikit-learn such as hyperopt [26].
Explainability: One of the interesting characteristics of the use of
hyperbox fuzzy sets for building pattern classifiers is the explain-
ability of the predicted results (see Section 3.4 for more details).
The library supports this functionality by possible parallel coordi-
nates plots based visualisation of representative hyperboxes from
different classes together with an input pattern to be classified.
Capability of directly handling missing data: General fuzzy
min–max neural networks supported by the library have the abil-
ity to handle the classification of inputs with missing data directly
without the need for replacing or imputing missing values as in
other classifiers [11].
Combination of multiple models at the model level: Learning
algorithms for the GFMMNN in the library can combine multiple
decision trees [14] or resulting hyperboxes generated by multiple
hyperbox-based models [13] into a single model. This feature
contributes to the increase of explainability of ensemble models.
Data editing and pruning approaches: By integrating the re-
peated cross-validation methods provided by the scikit-learn
and hyperbox-based learning algorithms, evidence from training
multiple models can be used for identifying which points from
the original data set or the hyperboxes from the generated mul-
tiple models should be retained and those that should be edited
out [27] or pruned [12] before further processing.
Native ability to learn from both labelled and unlabelled data:
One of the outstanding features of learning algorithms for the
GFMMNN is the ability to form classification boundaries between
known classes and ability to cluster data and represent them as
hyperboxes when labels are not available in the data [9,10]. Un-
labelled hyperboxes may be then labelled based on the evidence
of incoming input patterns.
Ability to learn from new classes in an incremental man-
ner: Incremental learning algorithms of hyperbox-based models
provided in the library can grow and include new classes of
data without the need for retraining the whole classifier [15].
Incremental learning algorithms themselves can develop new
hyperboxes to represent clusters of new data with potentially
new labels both in the middle of normal training process and in
the operating time where the initial training has been completed.
This characteristic is a key feature for life-long learning systems.
Documentation and tutorials: A comprehensive documentation
is developed using sphinx and numpydoc and is provided to

users via the Read the Doc platform.1 It provides a detailed API
reference, essential background, and a wide range of tutorials and
examples2 under the interactive Jupyter notebook to allow new
users to explore how the classifiers in the library are used for
solving classification problems.
Build robustness: The library uses GitHub Actions for continuous
integration. Automated scripts are used for automated testing
and building the library under different versions of Python and
operating systems. Tests are executed for each commit made to
master branch or when a pull request is opened.
Quality assurance: Code in the project follows the PEP8 style
standard for Python. In addition, essential utility functions and
code blocks with high complexity are accompanied with a set of
unit tests. Furthermore, continuous integration is conducted to
guarantee backward compatibility and integrate new code in an
easy fashion.
Community-based development: We welcome the contributions
from the community to the library via collaborative tools such as
Git and GitHub. We provide a documented contribution guide-
line3 to describe various ways that contributors can join and
contribute to the library. In addition, GitHub’s issue tracker and
discussion are used to discuss ideas and report bugs regarding
the library. The hyperbox-brain library is distributed under the
GPL-3.0 license.

2.4. Software functionalities

This library aims to provide users with a wide range of learn-
ing algorithm categories suitable for addressing different ML
problems and is therefore organised into the following modules:

• base: Providing base classes and functions for all hyperbox-
based models in the library.

• mixed data learner: Containing the specialised estimators
which can work on mixed-attribute data. However, categor-
ical features given in a text form can also be encoded by
various encoding methods so that they can be processed
by the following learning algorithms for the numerical data
only [28].

1 https://hyperbox-brain.readthedocs.io/en/latest/
2 https://hyperbox-brain.readthedocs.io/en/latest/tutorials/tutorial_index.

html
3 https://hyperbox-brain.readthedocs.io/en/latest/developers/contributing.

html
3

https://hyperbox-brain.readthedocs.io/en/latest/
https://hyperbox-brain.readthedocs.io/en/latest/tutorials/tutorial_index.html
https://hyperbox-brain.readthedocs.io/en/latest/tutorials/tutorial_index.html
https://hyperbox-brain.readthedocs.io/en/latest/developers/contributing.html
https://hyperbox-brain.readthedocs.io/en/latest/developers/contributing.html

Thanh Tung Khuat and Bogdan Gabrys SoftwareX 23 (2023) 101425

3

f
h
o
w

3

b
s
c
l
i
i
a
d
s
b
v

1
1
1
1
1

1
1

1
1
1
2

h

• incremental learner: Including estimators for numerical
data which use the instance based incremental learning
approaches.

• batch learner: Comprising hyperbox-based learning algo-
rithms for numerical data using batch learning approaches.

• multigranular learner: Containing classifiers for numerical
data using the multigranularity learning methods.

• ensemble learner: Including the combination of hyperbox-
based learners integrated with various ensemble learning
methods.

• utils: Containing utility functions associated with unit tests
which can be executed on all supported Python versions by
the continuous integration workflow.

. Illustrative examples

This section presents several examples showcasing the typical
unctionalities of the hyperbox-brain library. Additionally, we
ave created a detailed tutorial4 that covers the use of vari-
us learning algorithms and fundamental functionalities available
ithin the library.

.1. Installation and usage

The hyperbox-brain toolbox can be downloaded and in-
stalled via PyPI using the command pip install hyperbox-
rain or from conda-forge using the command conda in-
tall -c conda-forge hyperbox-brain. It is also possible to
lone the source code directly from GitHub.5 In this case, the
ibrary can be installed by executing the existing setup script
n the root directory through the command python setup.py
nstall. Once installed, all available hyperbox-based algorithms
nd functions in the library can be accessed via importing the
esirable class within the hbbrain module. Listing 1 shows a
imple example of fitting and assessing a model in hyperbox-
rain. More elaborate examples and tutorials can be accessed
ia the online documentation.

1 >>> from sklearn.datasets import load_iris
2 >>> from sklearn.preprocessing import

MinMaxScaler
3 >>> from sklearn.model_selection import

train_test_split
4 >>> from sklearn.metrics import accuracy_score
5 >>> from hbbrain.numerical_data.

incremental_learner.onln_gfmm import
OnlineGFMM

6 >>> # Load dataset
7 >>> X, y = load_iris(return_X_y=True)
8 >>> # Normalise features into [0, 1] as required

by hyperbox -based models
9 >>> scaler = MinMaxScaler()
0 >>> scaler.fit(X)
1 MinMaxScaler()
2 >>> XX = scaler.transform(X)
3 >>> # Split data into training and testing sets
4 >>> X_train, X_test, y_train, y_test =

train_test_split(XX, y, test_size=0.3,
random_state=42)

5 >>> # Training a model
6 >>> clf = OnlineGFMM(theta=0.1).fit(X_train,

y_train)
7 >>> # Make prediction
8 >>> y_pred = clf.predict(X_test)
9 >>> acc = accuracy_score(y_test, y_pred)
0 >>> print(f’Accuracy = {acc * 100: .2f}\%’)

4 https://hyperbox-brain.readthedocs.io/en/latest/tutorials/tutorial_index.
tml
5 https://github.com/UTS-CASLab/hyperbox-brain

21 Accuracy = 97.78%

Listing 1: Illustrative code example of using the library to train
and test an GFMM classifier

3.2. Scikit-learn compatibility

A critical property of the compatibility of hyperbox-brain
with scikit-learn is the inheritance and usage of hyperparam-
eter optimisation, model selection and evaluation, and pipeline
functionalities. For example,

• train_test_split of the scikit-learn can be used
with hyperbox-based models of hyperbox-brain as shown
in the example in Section 3.1.

• cross_val_score method of the scikit-learn can be
transparently applied to hyperbox-based models for cross-
validation evaluation as Listing 2:
1 >>> # Instantiating a hyperbox-based model
2 >>> clf = OnlineGFMM(theta=0.1)
3 >>> from sklearn.model_selection import

cross_val_score
4 >>> # usage cross_val_score on the hyperbox-

based model
5 >>> cross_val_score(clf, XX, y, cv=5)
6 array([0.96666667, 0.96666667, 0.86666667,

0.9, 1.])

Listing 2: An example shows how to use classifiers in the library
within the cross-validation evaluation module of sklearn

• Hyperparameter search functions such as grid_search
and random_search can be used directly for models in the
hyperbox-brain as described in the online examples.6

• Hyperbox-based estimators can be integrated with
Pipeline of the scitkit-learn to form a combination
of feature engineering methods and classifiers as various
examples shown in the online tutorials.7

3.3. Learning from labelled and unlabelled data

This example demonstrates how to use various learning algo-
rithms of the GFMMNN for learning from datasets including both
labelled and unlabelled samples. We refer readers to the tutorial8
for a complete demonstration. To accomplish this, we created
a synthetic training dataset consisting of 250 samples, which
includes 29 unlabelled samples, 112 samples labelled as class 1,
and 109 samples labelled as class 2. The illustration of this train-
ing dataset is presented in Fig. 2. The synthetic testing dataset
includes 500 samples labelled as class 1 and 500 samples labelled
as class 2. We will compare the performance of a GFMMNN
trained on fully labelled training data (125 samples with class 1
and 125 samples with class 2) with that of GFMM models trained
on mixed labelled and unlabelled data, based on the resulting
hyperboxes and their classification accuracy. In this example, all
four learning algorithms use the same maximum hyperbox size
parameter (θ = 0.2). Table 2 shows the performance of the
four learning algorithms of the GFMMNN trained on fully labelled
and mixed labelled and unlabelled data. It can be seen that the
accuracy of the learning algorithms trained on the mixed labelled
and unlabelled data is very close to that of the algorithms trained
on the fully labelled data.

6 https://hyperbox-brain.readthedocs.io/en/latest/tutorials/hyperparameter_
opt.html
7 https://hyperbox-brain.readthedocs.io/en/latest/tutorials/pipline_

integration.html
8 https://hyperbox-brain.readthedocs.io/en/latest/tutorials/learning_from_

labelled_unlabelled_data.html
4

https://hyperbox-brain.readthedocs.io/en/latest/tutorials/tutorial_index.html
https://hyperbox-brain.readthedocs.io/en/latest/tutorials/tutorial_index.html
https://github.com/UTS-CASLab/hyperbox-brain
https://hyperbox-brain.readthedocs.io/en/latest/tutorials/hyperparameter_opt.html
https://hyperbox-brain.readthedocs.io/en/latest/tutorials/hyperparameter_opt.html
https://hyperbox-brain.readthedocs.io/en/latest/tutorials/pipline_integration.html
https://hyperbox-brain.readthedocs.io/en/latest/tutorials/pipline_integration.html
https://hyperbox-brain.readthedocs.io/en/latest/tutorials/learning_from_labelled_unlabelled_data.html
https://hyperbox-brain.readthedocs.io/en/latest/tutorials/learning_from_labelled_unlabelled_data.html

Thanh Tung Khuat and Bogdan Gabrys SoftwareX 23 (2023) 101425

O
l
a
w
h
s
t
t
b
t

Fig. 2. (a) Illustration of the labelled and unlabelled training dataset. (b) Summary of the number of samples for each class in the training set.

Fig. 3. The hyperboxes generated by the GFMMNN model were trained on (a) fully labelled data and (b) a combination of labelled and unlabelled data. The decision
boundaries between two classes are represented by the dark-blue line. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

Table 2
The results of learning algorithms of the GFMM model trained on fully labelled
data, labelled and unlabelled data.
Model Mode No. hyperboxes Accuracy (%)

Onln-GFMM Fully labelled data 22 86.1
Labelled and unlabelled data 22 86

IOL-GFMM Fully labelled data 50 87.9
Labelled and unlabelled data 51 87.5

AGGLO-2 Fully labelled data 43 87.3
Labelled and unlabelled data 42 87

AGGLO-SM Fully labelled data 45 86.2
Labelled and unlabelled data 45 86.4

Fig. 3 shows the resulting hyperboxes generated from the
nln-GFMM algorithm trained on fully labelled data and mixed
abelled and unlabelled data, along with their decision bound-
ries. It can be observed that in this case, all unlabelled samples
ere absorbed and assigned appropriate class labels to form
yperboxes. Unlabelled samples located in areas dominated by
amples belonging to only one class were correctly classified to
he same class. Only samples in the overlapping areas between
wo classes resulted in a slight difference in the resulting hyper-
oxes between the model trained on a fully labelled dataset and
he model trained on a mixed labelled and unlabelled dataset.

3.4. Explainability of the predicted outcomes

This part is dedicated to clarify the explanability of hyperbox-
based learning algorithms for the predicted results of a given
input pattern through different types of visualisation supported
by the hyperbox-brain library.

For two dimensional training samples, the library provides
a functionality to show the generated hyperboxes and decision
boundaries among classes of a trained model, e.g., GFMMNN, by
a hyperbox-based machine learning algorithm as in Fig. 4(a). For
a given two dimensional input pattern and a trained hyperbox-
based model, the library shows representative hyperboxes of all
class labels joining the prediction to make the predicted class in a
two dimensional plane as shown in Fig. 4(b). The predicted class
for an unseen pattern is the same with the hyperbox which has
the highest membership value to that input pattern. Let us take
the GFMMNN [9] as an example, the membership degree between
a hyperbox and an input sample is computed based on the longest
distance between that hyperbox and the input sample over all
features. The smaller this distance is, the higher membership
value is. Therefore, it is easily observed that the green hyperbox
in Fig. 4(b) is closer to the input pattern than the blue hyperbox.
As a result, the predicted class for the input pattern in this case
is green.
5

Thanh Tung Khuat and Bogdan Gabrys SoftwareX 23 (2023) 101425

(
p
t

I
f

p
a
j
m
p
s
o
i

4

Fig. 4. (a) Visualisation of two dimensional hyperboxes of a trained GFMMNN. The decision boundaries between two classes are represented by the dark-blue line.
b) Illustration of two dimensional representative (i.e. winning) hyperboxes from two distinct classes used for the classification of an input pattern as a part of
ossible suggested decision explanation approach. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
his article.)

Fig. 5. A parallel coordinates graph shows the representative (i.e. winning) hyperboxes for all classes in the context of an input pattern (black colour) to be classified.
n this case, the predicted class for the input pattern is green (class 2) based on the highest membership value. (For interpretation of the references to colour in this
igure legend, the reader is referred to the web version of this article.)

The library also provides a general way of explanation for
redicted outcomes using the parallel coordinates graph to visu-
lise the coordinates of representative hyperboxes of all classes
oining the prediction process as shown in Fig. 5. In this case, the
embership value between the green hyperbox and the input
attern is computed based on the fourth feature (F4), which
hows the smallest distance compared to the distance values of
ther hyperboxes to the input pattern. Hence, the predicted class
n this case is green.

. Impact

The hyperbox-brain library is intended for researchers and
practitioners as an easily accessible toolbox of hyperbox-based
machine learning algorithms. This library is implemented in
Python, providing numerous learning algorithms using hyper-
boxes as fundamental building blocks for solving classification

and clustering problems. Our purpose is to create an easy-to-
use package which may be extended by the community, while
also providing essential functionality and characteristics to enable
researchers and practitioners to benchmark, reproduce, further
develop and apply this type of algorithms for their problems.
As presented in Section 1, machine learning algorithms based
on hyperbox representations exhibits many fundamental char-
acteristics of a modern smart adaptive learning system such as
scalability, explainability, incremental learning and adaptation
in dynamically changing environments, continuously learning
ability from a limited amount of data and new samples. As far as
we know, however, there is currently no comprehensive library
for this type of machine learning.

The hyperbox-brain library is already being used by re-
searchers and developers to build classifiers for their problems.
The library has been downloaded more than 6500 times from the
6

Thanh Tung Khuat and Bogdan Gabrys SoftwareX 23 (2023) 101425

P
t

5

w
m
t
g
p
p
a
l
e
t
c
r
f

C

t

yPi Python package manager9 and more than 1900 times from
he Anaconda site10 (until May, 2023).

. Conclusion

The hypberbox-brain is a free licensed Python toolbox
hich implements popular hyperbox based machine learning
odels. With the high compatibility with scikit-learn API,

his library provides users with an easy-to-use package of al-
orithms which can be integrated with existing cross-validation,
ipeline, model selection and evaluation techniques to formulate
owerful data analytics pipelines. As shown in Fig. 1, there
re many existing hyperbox-based learning algorithms in the
iterature, therefore, we are continuously adding new models,
nhancing usability, code quality, unit tests, documents, and
utorials. Finally, we strongly encourage the contributions of the
ommunity to expand this free library for the benefit of both
esearchers and practitioners interested in and able to benefit
rom this type of ML algorithms.

RediT authorship contribution statement

Thanh Tung Khuat: Conceptualization, Methodology, Valida-
ion, Software, Writing – original draft. Bogdan Gabrys: Concep-
tualization, Methodology, Writing – review & editing, Supervi-
sion, Project administration.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

I have shared the link to the source code and documents in
the manuscript

References

[1] Khuat TT, Gabrys B. A comparative study of general fuzzy min-max
neural networks for pattern classification problems. Neurocomputing
2020;386:110–25.

[2] Hamker FH. Life-long learning cell structures—Continuously learning
without catastrophic interference. Neural Netw 2001;14(4–5):551–73.

[3] Crowder JA, Carbone J, Friess S. Methodologies for continuous, life-long
machine learning for AI systems. In: Artificial psychology: psychological
modeling and testing of AI systems. Springer International Publishing;
2020, p. 129–38.

[4] McCloskey M, Cohen NJ. Catastrophic interference in connectionist net-
works: The sequential learning problem. In: Psychology of learning and
motivation, vol. 24. Elsevier; 1989, p. 109–65.

[5] Khuat TT, Ruta D, Gabrys B. Hyperbox-based machine learning algorithms:
A comprehensive survey. Soft Comput 2021;25(2):1325–63.

[6] Simpson PK. Fuzzy min—Max neural NetWorks—Part 1: Classification. IEEE
Trans Neural Netw 1992;3(5):776–86.

9 https://pepy.tech/project/hyperbox-brain
10 https://anaconda.org/conda-forge/hyperbox-brain

[7] Carpenter GA, Grossberg S, Rosen DB. Fuzzy ART: Fast stable learning and
categorization of analog patterns by an adaptive resonance system. Neural
Netw 1991;4(6):759–71.

[8] Carpenter GA, Grossberg S, Reynolds JH. ARTMAP: Supervised real-time
learning and classification of nonstationary data by a self-organizing neural
network. Neural Netw 1991;4(5):565–88.

[9] Gabrys B, Bargiela A. General fuzzy min-max neural network for clustering
and classification. IEEE Trans Neural Netw 2000;11(3):769–83.

[10] Gabrys B. Agglomerative learning algorithms for general fuzzy min-max
neural network. J VLSI Signal Process Syst Signal Image Video Technol
2002;32(1):67–82.

[11] Gabrys B. Neuro-fuzzy approach to processing inputs with missing
values in pattern recognition problems. Internat J Approx Reason
2002;30(3):149–79.

[12] Gabrys B. Learning hybrid neuro-fuzzy classifier models from data: To
combine or not to combine? Fuzzy Sets and Systems 2004;147(1):
39–56.

[13] Gabrys B. Combining neuro-fuzzy classifiers for improved generalisation
and reliability. In: Proceedings of the 2002 international joint conference
on neural networks, vol. 3. IEEE; 2002, p. 2410–5.

[14] Eastwood M, Gabrys B. Model level combination of tree ensemble hyper-
boxes via GFMM. In: Proceedings of the eighth international conference
on fuzzy systems and knowledge discovery, vol. 1. 2011, p. 443–7.

[15] Gabrys B, Bargiela A. Neural networks based decision support in presence
of uncertainties. J Water Resour Plan Manag 1999;125:272–80.

[16] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O,
et al. Scikit-learn: Machine learning in Python. J Mach Learn Res
2011;12:2825–30.

[17] Harris CR, Millman KJ, Van Der Walt SJ, Gommers R, Virtanen P,
Cournapeau D, et al. Array programming with numpy. Nature
2020;585(7825):357–62.

[18] Khuat TT, Gabrys B. Accelerated training algorithms of general fuzzy
min-max neural network using gpu for very high dimensional data. In:
Proceedings of the 26th international conference on neural information
processing. Springer; 2019, p. 583–95.

[19] Khuat TT, Gabrys B. An online learning algorithm for a neuro-fuzzy
classifier with mixed-attribute data. Appl Soft Comput 2023;137:110152.

[20] Khuat TT, Chen F, Gabrys B. An improved online learning algorithm for
general fuzzy min-max neural network. In: Proceedings of the international
joint conference on neural networks. 2020, p. 1–9.

[21] Mohammed MF, Lim CP. An enhanced fuzzy min–max neural net-
work for pattern classification. IEEE Trans Neural Netw Learn Syst
2014;26(3):417–29.

[22] Mohammed MF, Lim CP. Improving the fuzzy min-max neural network
with a K-nearest hyperbox expansion rule for pattern classification. Appl
Soft Comput 2017;52:135–45.

[23] Al Sayaydeh ON, Mohammed MF, Alhroob E, Tao H, Lim CP. A refined
fuzzy min–max neural network with new learning procedures for pattern
classification. IEEE Trans Fuzzy Syst 2020;28(10):2480–94.

[24] Khuat TT, Chen F, Gabrys B. An effective multiresolution hierarchical
granular representation based classifier using general fuzzy min-max
neural network. IEEE Trans Fuzzy Syst 2021;29(2):427–41.

[25] Khuat TT, Gabrys B. Random hyperboxes. IEEE Trans Neural Netw Learn
Syst 2023;34(2):1008–22.

[26] Bergstra J, Yamins D, Cox D. Making a science of model search: Hyperpa-
rameter optimization in hundreds of dimensions for vision architectures.
In: Proceedings of international conference on machine learning. 2013, p.
115–23.

[27] Gabrys B. Data editing for neural fuzzy classifier. In: Proceedings of the
SOCO/ISFI’2001 conference. 2001, p. 77.

[28] Khuat TT, Gabrys B. An in-depth comparison of methods handling mixed-
attribute data for general fuzzy min–max neural network. Neurocomputing
2021;464:175–202.
7

http://refhub.elsevier.com/S2352-7110(23)00121-8/sb1
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb1
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb1
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb1
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb1
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb2
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb2
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb2
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb3
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb3
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb3
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb3
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb3
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb3
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb3
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb4
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb4
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb4
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb4
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb4
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb5
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb5
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb5
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb6
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb6
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb6
https://pepy.tech/project/hyperbox-brain
https://anaconda.org/conda-forge/hyperbox-brain
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb7
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb7
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb7
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb7
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb7
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb8
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb8
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb8
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb8
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb8
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb9
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb9
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb9
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb10
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb10
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb10
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb10
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb10
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb11
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb11
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb11
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb11
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb11
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb12
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb12
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb12
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb12
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb12
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb13
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb13
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb13
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb13
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb13
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb14
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb14
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb14
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb14
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb14
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb15
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb15
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb15
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb16
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb16
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb16
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb16
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb16
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb17
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb17
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb17
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb17
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb17
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb18
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb18
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb18
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb18
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb18
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb18
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb18
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb19
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb19
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb19
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb20
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb20
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb20
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb20
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb20
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb21
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb21
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb21
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb21
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb21
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb22
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb22
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb22
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb22
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb22
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb23
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb23
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb23
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb23
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb23
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb24
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb24
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb24
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb24
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb24
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb25
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb25
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb25
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb26
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb26
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb26
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb26
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb26
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb26
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb26
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb27
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb27
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb27
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb28
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb28
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb28
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb28
http://refhub.elsevier.com/S2352-7110(23)00121-8/sb28

	hyperbox-brain: A Python toolbox for hyperbox-based machine learning algorithms
	Motivation and significance
	Software description
	Software architecture
	Supported hyperbox-based machine learning algorithms
	Typical features of the library
	Software functionalities

	Illustrative examples
	Installation and usage
	Scikit-learn compatibility
	Learning from labelled and unlabelled data
	Explainability of the predicted outcomes

	Impact
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

