
ST10CH15_Suchard ARjats.cls February 14, 2023 12:15

Annual Review of Statistics and Its Application

Data Integration in Bayesian
Phylogenetics
Gabriel W. Hassler,1 Andrew F. Magee,2

Zhenyu Zhang,2 Guy Baele,3 Philippe Lemey,3

Xiang Ji,4 Mathieu Fourment,5 and Marc A. Suchard1,2,6
1Department of Computational Medicine, University of California, Los Angeles, California,
USA; email: msuchard@ucla.edu
2Department of Biostatistics, University of California, Los Angeles, California, USA
3Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven,
Leuven, Belgium
4Department of Mathematics, Tulane University, New Orleans, Louisiana, USA
5Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo,
New South Wales, Australia
6Department of Human Genetics, University of California, Los Angeles, California, USA

Annu. Rev. Stat. Appl. 2023. 10:353–77

First published as a Review in Advance on
September 28, 2022

The Annual Review of Statistics and Its Application is
online at statistics.annualreviews.org

https://doi.org/10.1146/annurev-statistics-033021-
112532

Copyright © 2023 by the author(s). This work is
licensed under a Creative Commons Attribution 4.0
International License, which permits unrestricted
use, distribution, and reproduction in any medium,
provided the original author and source are credited.
See credit lines of images or other third-party
material in this article for license information.

Keywords

Bayesian networks, continuous-time Markov processes, Gaussian processes,
phylogenetic comparative methods, phylogeography

Abstract

Researchers studying the evolution of viral pathogens and other organisms
increasingly encounter and use large and complex data sets from multiple
different sources. Statistical research in Bayesian phylogenetics has risen to
this challenge. Researchers use phylogenetics not only to reconstruct the
evolutionary history of a group of organisms, but also to understand the
processes that guide its evolution and spread through space and time. To
this end, it is now the norm to integrate numerous sources of data. For ex-
ample, epidemiologists studying the spread of a virus through a region in-
corporate data including genetic sequences (e.g.,DNA), time, location (both
continuous and discrete), and environmental covariates (e.g., social connec-
tivity between regions) into a coherent statistical model. Evolutionary biolo-
gists routinely do the same with genetic sequences, location, time, fossil and
modern phenotypes, and ecological covariates. These complex, hierarchical
models readily accommodate both discrete and continuous data and have
enormous combined discrete/continuous parameter spaces including, at a
minimum, phylogenetic tree topologies and branch lengths. The increased
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size and complexity of these statistical models have spurred advances in computational methods
to make them tractable. We discuss both the modeling and computational advances, as well as
unsolved problems and areas of active research.

1. INTRODUCTION

All living things on the planet share a common evolutionary history. Phylogenetic trees capture
the evolutionary relationships between groups of organisms (Baldauf 2003). At the extremes, these
phylogenies can describe the evolution of all life on earth spanning ∼4 billion years or that of a
viral lineage over weeks. Statistical phylogenetics gives researchers the tools to study these evo-
lutionary processes and can be used to answer both fundamental biological questions, such as
“which species of ape is most closely related to humans and when did our evolutionary histories
diverge?” (Bradley 2008) and more practical ones such as “how effective are various interventions
at controlling the spread of a viral epidemic?” (Dellicour et al. 2018). Researchers typically rely on
molecular sequences (e.g., DNA, RNA, amino acids) to infer the phylogeny itself and commonly
incorporate additional sources of data to answer specific questions. For example, toward the end of
this review in Section 4, we examine a case study where researchers investigate the early spread of
SARS-CoV-2, the virus that causes COVID-19, across the world (Lemey et al. 2020).This analysis
incorporates viral genetic sequences, sample collection dates and locations, individual-level travel
history, global air traffic patterns, local SARS-CoV-2 case counts, and within-host infection dy-
namics into a coherent statistical model that allows researchers to reconstruct the early pathways
along which SARS-CoV-2 spread early in the pandemic.

From a statistical perspective, phylogenetics offers a rich array of complex hierarchical models
for inferring both the phylogeny itself and parameters associated with the underlying evolutionary
processes of interest (Nascimento et al. 2017). The complexity of these models, however, can
result in theoretical and computational challenges to inference that limit their scalability. These
challenges have led to the development of statistical methods with broad utility beyond the field
of phylogenetics itself. In this review, we first introduce the fundamental statistical approaches
to phylogenetics in Section 1.1 and the advantages of the Bayesian approach in Section 1.2. We
then discuss modern methods for inferring phylogenetic trees in Section 2 and data integration
in Section 3. As mentioned previously, in Section 4 we examine a case study that relies on many
of the methods discussed in earlier sections.

1.1. Molecular Evolution on a Phylogenetic Tree

Let the phylogenetic treeF be a bifurcating directed acyclic graph withN degree-one terminal/tip
nodes ν1, . . . , νN ; N − 2 degree-three internal nodes νN+1, . . . , ν2N−2; and one degree-two root
node ν2N − 1. With the exception of the root node, there is an edge connecting each node ν i to
its parent νpa(i) with length ti (see Figure 1 for a simple example). Depending on the statistical
model, these edge lengths are typically proportional to either the amount of time or expected
number of genetic changes separating nodes ν i and νpa(i). While some parameterizations permit
multifurcations/polytomies (i.e., nodes with more than two children), we focus on the bifurcating
case without loss of generality as multifurcations can be represented via bifurcations with edge
lengths equal to zero.Note that some parameterizations assume unrooted trees where the degree-
two root node is omitted. In the unrooted case, the phylogeny is no longer directed and there are
no fixed parent/child relationships between nodes.

Likelihood-based phylogenetic inference typically relies on molecular sequences S to inform
the phylogenetic tree.The treeF parameter space is divided into a discrete topology space (i.e., the
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Figure 1

Simple phylogeny with N = 3 degree-one tip nodes ν1, . . . , ν3; N − 2 = 1 degree-three internal node ν4; and
degree-two root node ν5. The edge connecting each node νi to its parent νpa(i) has length ti. The phylogeny
is a directed acyclic graph. It is directed in that there is a parent/child relationship between all nodes
connected by an edge, and it is acyclic in that there are no cycles or loops in the graph. Each node has exactly
one parent (except for the root, which has none).

bifurcating tree structure without the edge lengths) and a continuous edge length space. The
edge lengths inhabit a (nonnegative) continuous (2N − 2) −dimensional space, (t1, . . . , t2N−2 ) ∈
R2N−2

≥0 = {(x1, . . . , x2N−2 ) : xi ≥ 0}. The space of tree topologies is unordered, is discrete, and
grows combinatorially in the number of tips, with (2N − 3)!! = ∏N−1

i=1 2i− 1 possible tree topolo-
gies for N tips.

There are many ways to specify the likelihood p(S |F ) that are beyond the scope of this review
(see Felsenstein 2004, Sullivan & Joyce 2005, Lemey et al. 2009b for overviews). However, it is
useful to sketch a common form of these likelihoods. Let us assume that we have DNA characters,
comprising the nucleotides A, C, G, and T (the building blocks of DNA). We make the standard
assumption that the molecular sequences S are aligned into an N × M matrix, where M is the
number of nucleotides in a sequence alignment. Each column, called a site, in this alignment rep-
resents a homology assumption, in that all characters in a column share a single common ancestor
somewhere back in time. We also commonly assume that each site evolves independently and
identically (with the other sites) along the tree according to a four-state continuous-time Markov
process with the instantaneous rate matrix Q. Let smi be the nucleotide at site m for node ν i. The
transition probability of observing smi given the parent nucleotide state smpa(i) and edge length ti is
psmi smpa(i) , such that P = {pℓm} = exp(tiQ) forms the transition probability matrix.

The clear challenge to computing likelihoods under this model is that we have not observed
any sequence data associated with the internal nodes νN+1, . . . , ν2N−2 or the root node ν2N − 1 and
so must marginalize over their values. Assuming independence between sites and a prior p(sm2N−1 )
on the root, the likelihood can then be expressed as

p(S |F ) =
M∏
m=1

∑
smN+1∈{A,C,G,T }

· · ·
∑

sm2N−1∈{A,C,G,T }
p(sm2N−1 )

2N−2∏
i=1

p
(
smi
∣∣ smpa(i), ti). 1.

Naive computation of the above equation requires summing over 4N − 1 unobserved states and is
computationally intractable. Felsenstein’s pruning algorithm (Felsenstein 1973a, 1981), however,
uses a postorder traversal of the tree to compute this likelihood in O(N ) time, and all modern
implementations of this likelihood calculation rely on that basic approach. The fundamental ap-
proach of this pruning algorithm is based on dynamic programming and has found repeated redis-
covery in the message-passing algorithm (Pearl 1982) and sum-product algorithm (Kschischang
et al. 2001).
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Let sm be the nucleotides at site m associated with all tip nodes. The pruning algorithm relies
on recursively computing the probability mass function p( sm⌊i⌋ | smi ,F⌊i⌋ ), where F⌊i⌋ is the sub-
tree with root node ν i, and sm⌊i⌋ is the subvector of sm restricted to the tips in F⌊i⌋. At the root
node ν2N − 1, F⌊i⌋ = F and sm⌊2N−1⌋ = sm, and the pruning algorithm computes p( sm | sm2N−1,F ) =
p( sm⌊2N−1⌋ | sm2N−1,,F⌊2N−1⌋ ) via the following recursive relationship:

p( sm⌊i⌋ | smi ,F⌊i⌋ ) = p( sm⌊ j⌋ | smi ,F⌊i⌋ )p( sm⌊k⌋ | smi ,F⌊i⌋ )

=
∑

smj ∈{A,C,G,T }
p( sm⌊ j⌋ | smj ,F⌊ j⌋ )p( smj | smi , t j )

×
∑

smk ∈{A,C,G,T }
p( sm⌊k⌋ | smk ,F⌊k⌋ )p( smk | smi , tk ),

2.

where nodes ν j and νk are the children of node ν i. When the recursion reaches tip nodes i =
1, . . . ,N , p( sm⌊i⌋ | smi ,F⌊i⌋) = 1{sm⌊i⌋=smi }, and the actual computations of computing the likelihood are
performed via a postorder traversal of the tree (i.e., tips to root). The algorithm marginalizing
over the root sequences

p( sm |F ) =
∑

sm2N−1∈{A,C,G,T }
p( sm | sm2N−1,F )p(sm2N−1 ) 3.

and calculating p(S |F ) = ∏M
m=1 p( s

m |F ) is shown in Figure 2 on a simple example.

1.2. Why Bayesian?

In Bayesian phylogenetic inference, a common goal is to compute the posterior distribution of the
phylogenetic tree given our sequence data,

p(F |S ) ∝ p(S |F )p(F ). 4.

The tree prior p(F ) typically falls into one of two biologically motivated families. Coalescent
models (Kingman 1982, Strimmer & Pybus 2001, Minin et al. 2008, Müller et al. 2017, Faulkner
et al. 2020) are based on population genetic abstractions of sampling a (relatively) small number of
sequences from a large population. Birth-death models (Thompson 1975, Nee et al. 1994, Stadler
2010, Höhna et al. 2019, Barido-Sottani et al. 2020, MacPherson et al. 2022) provide a forward-
in-time model for the origination and termination of entire lineages. Bayesian approaches offer
several advantages, which we discuss below.

1.2.1. Quantifying uncertainty. Bayesian phylogenetics grew largely from the need to quantify
and accommodate uncertainty in the phylogenetic tree (Rannala & Yang 1996, Sinsheimer et al.
1996). Measuring uncertainty in the phylogenetic tree is a fundamentally challenging problem
as the primary parameter of interest is often the tree topology: a high-dimensional, unordered,
tip-labeled discrete parameter. Typical uncertainty estimates focus on estimating the statistical
support for a specific monophyletic clade (i.e., a group of taxa comprising all the descendants of a
given ancestor). Prior to the advent of Bayesian phylogenetic inference, phylogenetic uncertainty
had been addressed with nonparametric bootstrapping (Felsenstein 1985a) with much confusion
as to interpretation of the bootstrap p-value (see Felsenstein & Kishino 1993, Hillis & Bull 1993,
Berry & Gascuel 1996, Efron et al. 1996). Bayesian posterior probabilities provided an intuitive
and statistically coherent method of addressing this uncertainty (Alfaro et al. 2003).
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Figure 2

Example of how Felsenstein’s pruning algorithm marginalizes over the ancestral sequences. Tip nodes in
blue represent observed sequence data, while green internal nodes represent latent ancestral sequences. Pale
nodes have been marginalized. We do not explicitly condition on the tree F for notational simplicity.

1.2.2. Time-resolved trees. Early phylogenetic models focused on the case where branch
lengths are measured in genetic distances and thus unconstrained by time. However, Bayesian
approaches can naturally accommodate the time-constrained case in a hierarchical model. As the
bulk of the review assumes such models, we briefly consider the structure of a time-calibrated
phylogenetic model. First, a tree arises from the tree prior p(F ). The branch lengths t1, . . . , t2N−2

of F are in calendar time. Each branch has a branch rate θ i, such that the probability of changes
along the branch is given by exp(tiθiQ). The prior on all branch rates p(θ1, . . . , θ2N−2 ) is known as
the (molecular) clock model (Zuckerkandl & Pauling 1962). Clock models typically either assume
all branch rates are independent and identically distributed (Drummond et al. 2006) or that rates
themselves evolve along the tree according to a correlated process (Thorne et al. 1998,Drummond
& Suchard 2010).
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1.2.3. Tree as nuisance parameter. Phylogenetic methods offer opportunities to domore than
just reconstruct the evolutionary history of a group of organisms. The branching patterns in trees
themselves can be informative about patterns and processes governing biodiversity, such as mass
extinctions (Stadler 2011,May et al. 2016) or the rate of spread of infectious diseases (Stadler et al.
2012, 2013).When combined with other information, such as the locality of samples or evolution-
ary traits, phylogenetic models provide a powerful framework for studying the spatiotemporal
spread of both species and diseases, as well as the evolution of important traits (see Section 3).
In many such cases, the tree itself is a nuisance parameter. Bayesian inference via Markov chain
Monte Carlo (MCMC) provides a natural approach to numerically marginalize over the phylo-
genetic tree and study processes that condition on the tree independent of any single fixed tree’s
influence (Huelsenbeck et al. 2000, 2001; Suchard et al. 2001).

2. MODERN PHYLOGENETICS: BIG TREES AND COMPLEX MODELS

Early practitioners of Bayesian phylogenetics naturally used MCMC to sample from the poste-
rior distribution of phylogenetic trees. Since it is relatively straightforward to marginalize over
continuous nuisance parameters (e.g., the molecular substitution rate matrixQ), attention quickly
turned to improving the efficiency with which the Markov chain explores tree space (Yang &
Rannala 1997, Larget & Simon 1999, Mau et al. 1999, Li et al. 2000, Huelsenbeck & Ronquist
2001). This in turn gave rise to the observation that navigating tree space is hard (Lakner et al.
2008, Höhna & Drummond 2012,Whidden & Matsen 2015, Harrington et al. 2021).

We explore several solutions to this problem below. In Section 2.1, we discuss approaches to
improving the efficiency of MCMC-based methods. We then discuss in Section 2.2 alternatives
to MCMC inspired by phylogenetic problems. As these approaches permit researchers to more
efficiently explore the space of phylogenetic trees,we revisit in Section 2.3 the problem of assessing
uncertainty in the phylogeny estimates.

2.1. Markov Chain Monte Carlo–Based Approaches

MCMC is the workhorse of Bayesian phylogenetic inference. The efficiency of MCMC depends
on two factors: the autocorrelation between parameter proposals and the speed at which propos-
als are made and evaluated. Researchers have relied on and contributed to numerous innovative
computational and statistical methods in search of MCMC approaches that efficiently explore the
high-dimensional tree space.

2.1.1. Faster likelihood calculations. In the absence of known conjugate priors, efficient like-
lihood calculations are critical for efficient MCMC. As common models of sequence evolution
assume conditional independence between different sites in the genome, parallelization is a nat-
ural approach toward fast computation. The BEAGLE (Broad-platform Evolutionary Analysis
General Likelihood Evaluator) (Suchard & Rambaut 2009; Ayres et al. 2012, 2019) and PLL
(Phylogenetic Likelihood Library) (Izquierdo-Carrasco et al. 2013, Flouri et al. 2015) libraries
leverage the computational power of multicore processors, including graphics processing units
(GPUs) in the former case, to massively parallelize likelihood calculations and accelerate compu-
tation. These libraries also cache calculations on subtrees such that unnecessary calculations are
not repeated when, for example, a branch length on one part of the tree is updated that does not
influence the partial likelihood of other parts of the tree.

2.1.2. Sampling from high-dimensional posterior distributions. The dimensionality of
many continuous parameters (e.g., the branch lengths) scales with the size of the phylogenetic
tree. Phylogenetic analyses commonly partition genetic sequences into different genes (or some
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other genetic units) that evolve independently conditional on a tree. Modern Bayesian phyloge-
netic analyses include trees with thousands of tips (e.g., Lemey et al. 2021) and, as such, require
inference of the joint posterior of thousands of highly correlated parameters.

Baele et al. (2017a) develop an adaptive Metropolis (AM) algorithm (Haario et al. 2001) that
leverages the parallel computing to take advantage of the conditional independence of the ge-
netic partitions. The AM algorithm is a modification of MCMC where proposal distributions are
informed by the empirical posterior distribution up to that point in the chain. While AM is non-
Markovian, it remains ergodic under weak assumptions (Roberts & Rosenthal 2009). Baele et al.
(2017a) update the chain via partition-specific multivariate Gaussian proposals with covariance
influenced by the empirical posterior covariance of relevant parameters. The conditionally inde-
pendent parameter blocks allow parallel likelihood computations, and the multivariate Gaussian
proposals informed by the posterior have higher acceptance probability than naive multivariate
proposals.

HamiltonianMonte Carlo (HMC) is now a standard tool across Bayesian statistics for sampling
from high-dimensional posterior distributions. At its core, HMC also uses information about the
posterior to generate high-dimensional parameter proposals with high acceptance probability. As
the aforementioned information originates from the gradient of the log-posterior with respect to
the parameters of interest, efficient gradient calculations are essential for efficient HMC. Ji et al.
(2020) develop an O(N ) algorithm for computing the gradient of the log-posterior with respect
to all branch lengths simultaneously. These gradient calculations are also parallelizable using ex-
isting libraries (see Section 2.1.1) and result in an order of magnitude increase in computational
efficiency.

2.1.3. Navigating tree space. The discrete tree topology with (2N− 3)!! possible states is often
the most difficult model parameter to efficiently sample. As many other parameters, including the
branch lengths and latent data associated with internal nodes, are only identifiable in the context
of a particular tree, MCMC proposals that make large changes to the tree topology frequently
have very low acceptance probability.

HMC is a standard tool for sampling from high-dimensional, highly correlated, continuous
parameter spaces, but the discrete, combinatorial nature of the tree topology does not permit
traditional HMC approaches. Dinh et al. (2017) develop probabilistic path HMC (PPHMC) to
sample from spaces that form an orthant complex. Essentially, they sample the branch lengths
via HMC in a way that branch lengths may approach 0. When HMC causes a branch length to
cross 0, PPHMC randomly selects from one of the three equivalent topologies resulting from the
zero branch length. To reduce error from the leapfrog approximation crossing nondifferentiable
orthant boundaries, they introduce a smoothing function at these boundaries, which dramatically
increases the accuracy of the approximation of the Hamiltonian trajectory and Metropolis-
Hastings acceptance probability. Similar work outside of the phylogenetic context includes that
of Pakman & Paninski (2013), Mohasel Afshar & Domke (2015), and Nishimura et al. (2020).

More recently,Meyer (2021) has developed a series of AM procedures for efficiently navigating
the space of unrooted tree topologies. Like other AM algorithms, these approaches rely on statis-
tics of the posterior sample up to a point in a chain to inform future parameter proposals. In the
context of tree topologies, the relevant statistics rely on the fact that each branch splits the taxa into
two groups. The Meyer (2021) approach relies on the posterior frequency of these splits for each
possible group of taxa, with topology proposals more likely to disrupt low-frequency splits than
high-frequency splits. Similarly, Zhang et al. (2020) use parsimony (i.e., the minimum number of
genetic changes necessary to account for the observed genetic diversity) to inform tree proposals,
with highly parsimonious (i.e., few changes) proposals more likely than less parsimonious ones.
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2.2. Beyond Markov Chain Monte Carlo

While MCMC has been the dominant approach in Bayesian phylogenetics, these complex evolu-
tionary problems have inspired research in Bayesian methods other than MCMC.We discuss two
such approaches below.

2.2.1. Sequential Monte Carlo. Teh et al. (2007) propose sequential Monte Carlo (SMC) for
inferring tree-structured models. Due to the hierarchical structure of the model, the intermedi-
ate distributions are defined over forests (i.e., groups of subtrees) over the observed sequences,
and hence the dimension of the target distributions increases over each iteration. Based on this
idea, Bouchard-Côté et al. (2012) propose an efficient framework, based on partially ordered set
structures, which imposes restrictions on proposal distributions so that the final iteration results in
valid phylogenetic trees. Since this phylogenetic SMC is restricted to jointly estimate tree topol-
ogy and branch length distributions,Wang et al. (2015) propose particle MCMC,which combines
a combinatorial SMC within an MCMC in order to jointly approximate other continuous param-
eters such as the parameters of the substitution rate matrix Q. Borrowing ideas from annealed
importance sampling,Wang et al. (2020) put forward an annealed SMC algorithm to approximate
the full phylogenetic model and, as other SMC-based methods, enable the computation of the
marginal likelihood.

SMC has also been investigated in an online setting in which a posterior sample of trees is
already available from a previous analysis (e.g.,MCMCor SMC) and one wishes to directly update
the posterior approximation with additional sequences. Dinh et al. (2017) show consistency of
online SMCs in terms of weak convergence, while Fourment et al. (2018) develop sophisticated
proposals that better match the proposal density to the posterior.

2.2.2. Variational inference. Until recently, variational inference (VI) has received limited
attention in the field of phylogenetics, perhaps due to (a) the absence of conjugate prior dis-
tributions in nearly all phylogenetic models and (b) the difficulty of analytically calculating
the gradient of complex joint distributions. Dang & Kishino (2019) develop a computationally
efficient VI-based method to approximate a model which allows different equilibrium frequencies
across sequence sites. Since the likelihood of this model is in the exponential family, most of the
expectations required for optimization are obtained in closed form. This method is restricted to
unrooted trees, and the authors used closed-form coordinate ascent and stochastic VI algorithms
for solving the optimization problem. Fourment et al. (2020) use VI to approximate the marginal
likelihood of fixed unrooted topologies using stochastic gradient ascent with analytical deriva-
tives. Using the Stan language (Carpenter et al. 2017) and its automatic differentiation library,
Fourment & Darling (2019) propose a framework for approximating complex models, including
time-calibrated phylogenies with tree priors (e.g., coalescent models), molecular clock models,
and discrete phylogeography models.

The methods described so far only approximate continuous parameters of a fixed topology
and therefore evade the combinatorial problem of the discrete topology space. The first approach
developed to tackle this problem was introduced by Zhang & Matsen (2018a) using a general
Bayesian network formulation for tree probability estimation.Given a set of topologies, this struc-
ture provides an accurate and rich distribution over the topology space. Subsequently, the same
authors (Zhang &Matsen 2018b) build on the Bayesian network idea and propose jointly approx-
imating the tree structure and the branch length distributions. This method also necessitates a set
of topologies to define the structure of the Bayesian network; however, dynamic construction of
the network is an active area of research. Moretti et al. (2021) propose a hybrid method using VI
and combinatorial SMC to approximate posteriors defined on the space of phylogenetic trees.The
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main advantage of this method is that it does not require precomputing a set of topologies. With
the exception of the Stan-based method, which allows approximating a posterior using a multi-
variate normal distribution, every method described so far uses meanfield approximation, thereby
ignoring correlation between parameters. Since parameters in phylogenetic models tend to be
highly correlated, Zhang (2020) proposes using normalizing flows to improve the expressiveness
of the approximate distribution.

Recently, Ki & Terhorst (2022) synthesized this VI-based work with phylodynamic methods
to fit a complex epidemiological model with thousands of sequences. The authors showed that
their method was an order of magnitude faster than an MCMC-based approach and was able to
recover acceptable parameter estimates.

2.3. Uncertainty in Tree Space Revisited

As discussed in Section 1.2.1, Bayesian phylogenetic methods conveniently quantify uncertainty
in the tree. Many evolutionary questions can be phrased as “is there a subtree in the phylogeny
that contains some set of sequences and no other sequences?” With MCMC samples in hand,
we can easily obtain this probability by counting MCMC samples with the subtree. The fact that
this estimate can carry substantial Monte Carlo error is often ignored. For continuous random
variables, Monte Carlo error is typically addressed using the effective sample size (ESS, i.e., the
number of independent samples which would yield the same standard error of the mean). Trees,
however, are more complex objects.

Gaya et al. (2011) introduce one approach that focuses on taxa splits (i.e., bipartitions of the tips
by cutting the tree at a given edge). The tree is reduced to a series of indicator variables denoting
whether a given split is present or absent in each tree. Uncertainty in the probability of specific
splits can then be expressed via the ESS of these indicators. Fabreti & Höhna (2021) observe,
however, that this approach has difficulty with splits whose probabilities approach 0 or 1.They also
note that the Gaya et al. (2011) ESS incorrectly assumes that splits are independent. Regardless,
Fabreti & Höhna (2021) find evidence via simulation that the Gaya et al. (2011) approach may
remain robust.

Lanfear et al. (2016) propose an ESS for the phylogeny itself. They suggest two approaches
based on distances between trees. One such approach is the pseudo-ESS, where for each posterior
tree sample the distance is computed to all other tree samples. The overall tree ESS is taken to be
the median of the ESSs of these distance metrics. Lanfear et al. (2016), however, do not establish
any link between this pseudo-ESS and Monte Carlo error.

Magee et al. (2021) develop several additional approaches for computing the ESS of a phy-
logeny. One such approach employs Fréchet generalizations of covariance such that the general-
ized autocorrelation ρt between trees can be computed and the following standard identity can
be applied: ESS = n/(

∑∞
t=−∞ ρt ). Additionally, Magee et al. (2021) propose a simulation-based

approach to test whether a putative tree ESS is useful for quantifying Monte Carlo error in the
tree. They find that most tested tree ESS measures can capture Monte Carlo error in the prob-
abilities of splits, as well as other important summaries of the posterior distribution. The tree
ESS approaches additionally do not appear to suffer from the difficulties Fabreti & Höhna (2021)
identified with low and high probability splits.

3. DATA INTEGRATION

In many cases the phylogenetic tree is actually a nuisance parameter and not of scientific inter-
est itself (see Section 1.2.3). Rather, there is some other process (e.g., rate of viral transmission
between two locations, strength of natural selection) that is separate from yet dependent on the
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evolutionary history that researchers would like to explore. In these cases, researchers frequently
seek to integrate varying sources of data into a single, coherent statistical model of evolution.
These additional sources of data frequently include time (see Section 1.2.2) and geographic loca-
tion (Lemey et al. 2009a, 2010).

Before discussing specific statistical models for integrating varying types of data, we first in-
troduce a general framework in which to orient these models in Section 3.1. We then examine
models and inference methods associated with integrating both discrete and continuous data into
phylogenetic models in Sections 3.2 and 3.3, respectively.While we briefly discuss applications in
the sections below, Baele et al. (2017b) offer a more thorough overview of the different kinds of
data integrated into these phylogenetic models.

3.1. A Unified Modeling Framework

There are myriad statistical models for integrating additional data into these phylogenetic mod-
els.While each model is naturally tailored to a specific application, most share a common, general
framework (see Section 3.4.3 for a notable exception). Let xi = (xi1, . . . , xiK )t be a vector of latent
traits associated with node ν i for i = 1, . . . , 2N − 1. Similarly, let yi = (yi1, . . . , yiP ) be the data as-
sociated with tip nodes ν1, . . . , νN . For tips i = 1, . . . ,N , we posit a possibly stochastic link function
yi = f (xi ).

These models describe a data generative process where the distribution of each xi conditional
on the trait values of its parent xpa(i) is distributed with density or mass function p(xi | xpa(i) ) =
g(xi; xpa(i), θi,2), where θi represents branch-specific parameters, and2 represent universal model
parameters. Typically, θi includes at the very minimum the branch length ti. By placing a prior on
the root p(x2N−1 | θ2N−1 ), we can define a likelihood over the data Y = (y1, . . . , yN )t :

p(Y | f , g,F , θ1, . . . , θ2N−1,2 ). 5.

See Figure 3 for a model schematic.
While this framework seems (and indeed is) incredibly generalizable, all models resulting from

it share a critical property: once lineages diverge, they evolve independently. To formalize this

Figure 3

Schematic of a generalized phylogenetic model. The data y1, . . . , yN (red nodes) are assumed to have arisen
from the latent traits x1, . . . , xN (blue nodes) at the respective tips via the possibly stochastic link function f (·).
The latent tip traits x1, . . . , xN and latent internal traits xN+1, . . . , x2N−2 arise from some evolutionary
process on the phylogenetic tree where the traits of each child node xi are drawn from a distribution with
density p( xi | xpa(i) ) = g(xi; xpa(i), θi,2).
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notion, assume there are two nodes ν i and ν j that share a common parent νpa(i) = νpa( j) = νk. Let
Y⌊i⌋ and Y⌊ j⌋ be the data associated with all tip nodes descended from node ν i and ν j, respec-
tively. By construction, Y⌊i⌋ | xk and Y⌊ j⌋ | xk are independent. This conditional independence is a
defining feature of these phylogenetic models that statisticians routinely exploit to increase com-
putational efficiency of statistical inference.

Readers may note that the model of molecular sequence evolution described in Section 1.1
fits neatly within this more general framework. Specifically, the data Y are composed of discrete
nucleotides (e.g., yij � {A,C,G,T}), the link function f (xi ) = xi, and the probability mass function
g(xi; xpa(i), ti,Q) = ∏M

m=1 exp(tiQ)xpa(i)mxim .
As noted above, Bayesian methods (specifically MCMC) offer a to-date unmatched ability to

study evolutionary processes without conditioning on a particular evolutionary history. This fol-
lows simply from the fact that researchers can easily sample from the marginal density of a param-
eter of interest from a realized MCMC simulation. Let 8 represent all parameters associated with
nucleotide evolution (e.g., the substitution rate matrix Q) and let 9 = {θ1, . . . , θ2N−1,2} be the
parameters associated with some separate trait-evolutionary process. One can then sample from
the posterior

p(F ,8,9 |S,Y ) ∝ p(S |F ,8 )p(Y |F ,9 )p(F )p(8)p(9) 6.

via a Metropolis-within-Gibbs approach (Gelfand 2000) where one iteratively samples from
p(8 |F ,S ), p(9 |F ,Y ), and p(F |S,Y,8,9 ). This compartmentalization of the inference pro-
cedure means that methods for sampling from the nucleotide substitution parameters 8 are not
influenced by the trait-evolutionary model, and vice versa. The sections below focus on the con-
ditional posterior p(9 |F ,Y ).

3.2. Discrete Character Integration

Many processes of interest can be modeled as the evolution of discrete traits on the tree (Ronquist
2004). Perhaps the most common discrete outcome of interest is location in phylogeographic
models (Sanmartín et al. 2008, Comas et al. 2013, Lemey et al. 2020). However, other discrete
characters of interest include pathogen host species (Ward et al. 2014,Dearlove et al. 2016,Latinne
et al. 2020) and ecological habitat (Bryja et al. 2014, Terra-Araujo et al. 2015, Sánchez-Baracaldo
et al. 2017). Baele et al. (2017b, table 1) provide a more thorough list of discrete-trait analyses.

The most common model of discrete character evolution is essentially the same as the
continuous-time Markov model of nucleotide evolution introduced in Section 1.1. The states can
be arbitrarily defined to be whatever discrete character is evolving along the tree.

3.2.1. Developments inMarkov jump processes. Problems of both genetic sequence and dis-
crete trait evolution have motivated much work on Bayesian networks, hidden Markov models,
endpoint-conditioned Markov jump processes, and Markov reward processes to infer the number
of times specific trait changes occur or the length of time a trait is realized along an evolution
history. Siepel et al. (2006), for example, analytically derive the probability mass function of the
total number of Markov jumps in an endpoint-conditioned continuous-time Markov chain along
a graph with an arbitrary rate matrix. Similarly, Minin & Suchard (2008a,b) analytically calcu-
late the moments of the number of jumps between each pair of states. Sometimes, expectations
are insufficient and simulation is required to answer the question of interest. Hobolth & Stone
(2009) provide several approaches for simulating endpoint-conditioned continuous-time Markov
chains. Minin & Suchard (2008a) and Hobolth & Jensen (2011) develop computationally effi-
cient, simulation-free methods for calculating the moments of Markov reward processes (e.g., the
average amount of time spent in a particular state of a continuous-time Markov chain).
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Phylogenetics has also motivated the development of statistical theory related to Lie Markov
models (Sumner et al. 2012, Fernández-Sánchez et al. 2015). These models comprise inho-
mogeneous continuous-time Markov processes whose endpoint can be expressed as the result
of a time-homogeneous process (essentially the time-resolved average of the inhomogeneous
process). These processes permit the instantaneous rate matrix to vary over time (and along
different branches in a phylogeny) and are useful for identifying the root position of a phylogeny
without specifying a molecular clock (Hannaford et al. 2020).

3.2.2. Evolutionary covariates and the curse of dimensionality. Phylogenetic models are
certainly not immune from the curse of dimensionality. This phenomenon is particularly acute in
phylogeographic models where the number of discrete locations can be quite large. Assuming a
continuous-time Markov process along the phylogeny with L discrete states and infinitesimal rate
matrixQ = {qℓm}, the number of free parameters inQ scales asO(L2 ).While there is no theoretical
prohibition on inferring more parameters than there are observations, it becomes increasingly
difficult to extract meaningful information in these settings.

This challenge is also an opportunity, as one can reduce the size of the parameter space by as-
suming the O(L2 ) transition rates are functions of some low-dimensional process parameterized
by scientifically relevant covariates. Lemey et al. (2014) and Zhao et al. (2016) develop a gener-
alized linear model (GLM) that assumes the log-transition rates are a linear function of relevant
covariates (e.g., pairwise air traffic between two locations, local temperature) with the number of
parameters scaling linearly with the number of covariates. To further penalize overparameteriza-
tion within the GLM, Lemey et al. (2014) also assume a priori that some unspecified number of
covariates have no influence on the transition rates, as follows. LetZ = {zℓm,i} be the covariate ob-
servations associated with all ordered pairs ℓ,m ∈ {1, . . . ,L}2, ℓ ̸= m, and covariates i = 1, . . . ,R.
Let β = (β1, . . . ,βR )t be a vector of regression coefficients and δ = (δ1, . . . , δR )t be a vector of in-
dicator variables such that log qℓm = ∑R

i=1 δiβizℓm,i. Inference of the indicators i can be achieved
via Bayesian stochastic search variable selection (Kuo & Mallick 1998, Chipman et al. 2001). To
sample efficiently from a posterior with high correlation between regression coefficients β, Lemey
et al. (2014) rely on a Markov chain transition kernel that draws the proposal β∗ ∼ N (β,αZtZ),
where α is a tunable scaling factor. This kernel accounts for the prior expectation that coefficients
associated with correlated covariates will also be correlated. Zhao et al. (2016), as an alternative,
develop an HMC sampler for the regression coefficients. These GLM approaches are applicable
beyond phylogenetics and facilitate inference of the rate matrix of any discrete-state continuous-
time Markov process.

3.2.3. Piecewise deterministic, nonreversible Markov processes. Bouchard-Côté et al.
(2018) introduce the bouncy particle sampler (BPS) as a nonreversible, rejection-free alterna-
tive to reversible Metropolis-Hastings and HMC samplers.While they evaluate the BPS as a way
to efficiently sample from the phylogenetic rate matrix Q, it has broad utility beyond statisti-
cal phylogenetics. Inspired by the physics literature (Peters & de With 2012), the BPS relies on
piecewise linear trajectories of a particle (the parameters) through a potential field (the negative
log-posterior). Bouchard-Côté et al. (2018) generalize this sampler and develop methods to ex-
actly simulate the parameter trajectories. The BPS relies on finding the parameter value along a
line that maximizes the posterior density. Bouchard-Côté et al. (2018) use gradient calculations
from the HMC sampler of Zhao et al. (2016) to identify these maxima and sample efficiently
from a high-dimensional evolutionary rate matrix. Section 3.3.2 discusses additional applications
of piecewise deterministic, nonreversible Markov processes.
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3.3. Gaussian Processes on a Tree

While discrete-trait models discussed above are typically based on the same model of molecular
sequences introduced in Section 1.1, continuous data integration requires new statistical models.
Due to their computational tractability,Gaussian processes form the backbone of most continuous
trait analyses. The simplest such model is one where correlated traits evolve according to a P-
dimensional multivariate Brownian diffusion (MBD) process (Edwards & Cavalli-Sforza 1964,
Felsenstein 1985b). Using the notation of Section 3.1, we have

xi | xpa(i) ∼ N (xpa(i), ti6) and yi = f (xi ) = xi. 7.

Marginalizing the latent traits (except the root traits x2N−1) results in the likelihood

vec(Y) |F , x2N−1,6 ∼ N (vec(1Nxt2N−1 ),6 ⊗ 9), 8.

where � is the Kronecker product and 9 is a deterministic function of the phylogenetic tree F
capturing the phylogenetically induced covariance between taxa.

Likelihood-based inference frequently requires repeated evaluation of the likelihood function
p(Y |F , x2N−1,6 ), which naively scales as O(N 3P3 ). Exploiting the Kronecker product to invert
the variance reduces this complexity to O(N 3 + P3 ). As both N and P can be large, even this
greatly simplified calculation can be intractable. Freckleton (2012) (based on Felsenstein 1973b),
Pybus et al. (2012), and Ho & Ané (2014) develop strategies for computing this likelihood in
O(NP2 + P3 ) using approaches conceptually similar to Felsentein’s pruning algorithm for com-
puting the sequence-based likelihood (Felsenstein 1973a). The Ho & Ané (2014) approach uses
the tree structure to efficiently compute

(Y − 1Nxt2N−1 )
t9−1(Y − 1Nxt2N−1 ) 9.

in O(NP2 ) for any matrix 9 that satisfies what they dub the 3-point structure. Specifically, any
matrix 9 has a 3-point structure if, for all i, j, and k, the two smallest covariances of ψ ij, ψ ik, and
ψ jk are equal to each other. Ho & Ané (2014) generalize this to allow negative covariances in 9

under certain conditions. More recently, Bastide et al. (2020) develop an HMC-based approach
that can calculate gradients for nearly all relevant parameters in these hierarchicalGaussianmodels
in linear time.

3.3.1. Gaussian processes and matrix-normal likelihoods with missing data. Unfortu-
nately, the previous methods for computing the likelihood fail with partially missing data. Cybis
et al. (2015) address missing data within a tip in these hierarchical Gaussian process models via
data augmentation. Let ymis

i and yobsi be the missing and observed data, respectively, associated
with tip node ν i. Cybis et al. (2015) develop a procedure that can sample from ymis

i |Yobs,F ,6
for i = 1, . . . ,N . Each sample requires O(NP2 ) computations for O(N 2P2 ) complexity to sample
from all N tips.

Bastide et al. (2018), Mitov et al. (2020), and Hassler et al. (2020) develop an alternative ap-
proach that analytically integrates out missing observations rather than relying on data augmen-
tation. This approach assumes that

yi | xi ∼ N
(
xi,Rt

i

(
∞I 0
0 0

)
Ri

)
, 10.

where Ri is a permutation matrix that arranges the ∞ values to correspond to the indices of ymis
i

and the 0 values to correspond to the indices of yobsi . This specification of missingness gives rise to
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a series of nonstandard operations involving square matrices with 0 or ∞ diagonal elements. For
example, the special inverse of some arbitrary matrix is computed as follows:Rt

i

∞I 0 0
0 V 0
0 0 0

Ri


−

= Rt
i

0 0 0
0 V−1 0
0 0 ∞I

Ri. 11.

Propagating missing information up the tree via singular precision matrices allows marginal like-
lihood calculations of the observed data only in O(NP3 ).

This algorithm applies to a much broader range of statistical models than MBD on a tree
and helps solve the longstanding statistical challenge of efficiently calculating multivariate normal
likelihoods withmissing data. Specifically, it applies to anymultivariate normal likelihood with a 3-
point structured covariancematrix discussed above (Ho&Ané 2014).This structure is common in
hierarchical Gaussian models.While Allen & Tibshirani (2010) and Glanz & Carvalho (2018) use
the expectation-maximization algorithm to perform maximum likelihood imputation, the Bastide
et al. (2018)/Mitov et al. (2020)/Hassler et al. (2020) approach permits inference relying on only
the observed-data likelihood. For situations where imputation is desired, this approach allows
one to sample from the full conditional distribution of all missing observations simultaneously in
O(NP3 ) time as well.

3.3.2. Multivariate probit models and sampling from high-dimensional truncated Gaus-
sian distributions. Bayesian phylogenetics has also served as the motivation for many novel
methods in multivariate probit models. Cybis et al. (2015) develop a phylogenetically informed
multivariate probit model with correlations between both traits and taxa. Under this model, the
data are a mix of continuous and discrete traits. Underlying all traits is an MBD process on the
tree. Here, the mapping f (xi ) = ( f1(xi1 ), . . . , fP (xiP ))t between the continuous latent traits xi and
mixed continuous/discrete observed data yi is not the simple identity function. For a binary trait j,
we have yi j = f j (xi j ) = 1{xi j>0} (see Cybis et al. 2015 for mappings to ordinal or categorical traits).
For continuous traits k, the link function remains fk(xi j ) = xi j .

Let xobsi be the components of xi associated with the continuous phenotypes and let xlati
be the latent components informing the discrete traits. Efficient inference under this model
requires data augmentation of xlati for i = 1, . . . ,N . As mentioned in Section 3.3.1, this procedure
relies on sampling from xlati | yi,X\i,F ,6 for i = 1, . . . ,N , where X\i = {x j; j ̸= i}. This full
conditional posterior is a (potentially high-dimensional) truncated Gaussian distribution due to
the constraints in the stochastic link function. While Cybis et al. (2015) rely on a multiple-try
rejection sampler, this sampler can be prohibitively slow for high-dimensional truncated Gaussian
distributions. Zhang et al. (2021), however, employ a novel approach, the BPS (Bouchard-Côté
et al. 2018; see Section 3.2.3), to more efficiently sample from this challenging distribution. As
noted previously, the BPS requires calculating the gradient of the log-posterior density with
respect to the latent parameters xlati for i = 1, . . . ,N , which Zhang et al. (2021) achieve in linear
time with a postorder tree traversal similar to that employed by Pybus et al. (2012). This Zhang
et al. (2021) sampler essentially bounces off the truncations of the full conditional posterior. As
the truncations are defined on a univariate basis, evaluating when these boundary events occur
is trivial, and Zhang et al. (2021) observe increases in computational efficiency over rejection
sampling approaching two orders of magnitude.

Seeking improvement on the BPS, Zhang et al. (2022) develop a zigzag-HMC sampler
(Nishimura et al. 2020) to further address the challenge of sampling from a high-dimensional
truncatedGaussian distribution in the phylogenetic context.Zigzag-HMCdiffers from traditional
HMC as it posits a Laplace momentum that imparts the unusual property that the Hamiltonian
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Figure 4

Sampling from a two-dimensional truncated Gaussian distribution using both the bouncy particle sampler
(BPS) (left) and zigzag–Hamiltonian Monte Carlo (zigzag-HMC) (right) samplers.

trajectory may only have slopes in {±1}d where d is the dimensionality of the parameter space
(i.e., the elementwise slopes may be 1 or −1 only). As the velocity restricted to {±1}d only depends
on the sign of the momentum, the particle moves with a constant velocity until one momentum
component changes its sign, at which point the particle updates its velocity and moves along a
new linear trajectory. See Figure 4 for a simple example. For Gaussian distributions, one can ana-
lytically simulate the zigzag Hamiltonian dynamics by calculating when these sign changes occur,
eliminating the need for an accept/reject step. Zigzag-HMC handles truncations in the same way
as the BPS and it also takes advantage of the linear time log-posterior gradient evaluations. Be-
sides being more efficient than the BPS on a truncated Gaussian, zigzag-HMC also enables a joint
update of latent parameters and the across-trait correlation, further improving the sampling effi-
ciency. Importantly, this Zhang et al. (2022) method is able to learn the conditional dependence
between any two traits in large problems where the BPS fails.

3.3.3. Highly structured, high dimensional data and latent factor models. Up to this point,
we have primarily discussed the computational challenges associated with big-N problems. Big-P
data sets are increasingly common in phylogenetic problems, and the methods discussed previ-
ously scale at best quadratically in P. Bayesian latent factor models (Press & Shigemasu 1989,
Lopes & West 2004) are a common approach to reduce both computational and model com-
plexity. These models assume that the P-dimensional observed data yi arise from K < P dimen-
sional latent processes xi. Specifically, yi = f (xi ) = Ltxi + ϵi, where L is a K × P estimable ma-
trix and ϵi ∼ N (0, diag[σ]). The standard (nonphylogenetic) model assumes the prior distribution

xi
iid∼ N (0, I), but this specification precludes the requisite correlation between the latent factors

that the phylogeny induces. As such, Tolkoff et al. (2018) introduce phylogenetic factor analysis,
where the xi evolve along the phylogenetic tree via MBD. Standard procedures for sampling from
the full conditional posterior of the loadings matrix L require conditioning on the latent traits
X = (x1, . . . , xN )t , and Tolkoff et al. (2018) rely on the procedure outlined by Cybis et al. (2015)
to sample from xi | yi,X\i,F , σ for i = 1, . . . ,N with overall complexity O(N 2PK2 ). Hassler et al.
(2021) apply the likelihood calculation and data augmentation algorithms of Hassler et al. (2020)
to sample from X |Y,F ,L, σ inO(NPK3 ). As K is by design small, the cubic scaling in K is prefer-
able to the quadratic scaling in N.
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Hassler et al. (2021) also develop a novel HMC approach to efficiently sample directly from
L |Y,F , σ without conditioning on the latent factors X that applies to latent factor models gen-
erally. Hassler et al. (2021) show that one can calculate the gradient ∇Llogp(L |Y,F , σ ) required
for HMC as a function of the full conditional mean and variance of each xi, but not the values of
xi explicitly. In the phylogenetic context, Hassler et al. (2021) use methods previously developed
by Bastide et al. (2018) and Fisher et al. (2021) to calculate these gradients in O(NPK3 ). This
approach is easily transferable to nonphylogenetic latent factor models.

3.3.4. Beyond multivariate Brownian diffusion. While the continuous trait models discussed
above rely on MBD, we emphasize work on other models of continuous evolution. The closely
related Ornstein–Uhlenbeck process (Uhlenbeck & Ornstein 1930) is a Gaussian process where
traits tend to revert to some mean value (i.e., some evolutionary optimum). Recent work has fo-
cused on inferring the points along the phylogeny at which these optima change, known as adap-
tive shifts (Uyeda & Harmon 2014). Bastide et al. (2018) develop efficient likelihood calculations
under a special case of this model. Other models include diffusion on a sphere (Bouckaert 2016)
and within a latent space arising from a multidimensional scaling (Holbrook et al. 2021) when
only pairwise distances between traits are observed.

3.4. Preferential Sampling and Bias

Phylogenetic analyses typically study biological populations evolving in the real world and are
inherently observational. As such, data ascertainment is an important factor in any phylogenetic
study, with preferential sampling possibly biasing results (Karcher et al. 2016). Phylogeographic
models that capture spatiotemporal evolution are particularly susceptible to nonuniform sampling
across both space and time (Guindon & De Maio 2021, Kalkauskas et al. 2021). In infectious dis-
ease phylogeography, data ascertainment typically requires sequencing the viral genome associated
with an individual infection. Unsurprisingly, there are numerous disparities that lead to prefer-
ential sampling across both time and space. Both testing and sequencing can be expensive, and
resource-rich regions tend to sequence a higher proportion of actual infections (Brito et al. 2021).
In the extreme case there may be no sequences available from a location with high levels of known
transmission. In addition to subsampling to create more representative data sets, researchers have
developed several strategies to address bias induced by preferential sampling.

3.4.1. Directly modeling ascertainment. The coalescent tree priors mentioned in Section 1.2
enable inference of (possibly time-varying) effective population size (EPS). Unsurprisingly, es-
timates of time-varying EPS are particularly sensitive to preferential sampling in time. While
standard models (often inappropriately) assume that sequence ascertainment does not depend on
EPS, Karcher et al. (2016) explicitly model ascertainment as an inhomogeneous Poisson process,
with intensity a function of EPS. They demonstrate via simulation that this approach reduces bias
in EPS estimates when sequence ascertainment is proportional to EPS, a common scenario in
epidemiological studies.

3.4.2. Sequence-free observations. When the spatiotemporal distribution of an epidemic can
be estimated a priori, one can partially correct for preferential sampling by introducing sequence-
free samples into the phylogenetic trait reconstruction.Up to this point we have taken for granted
that all tip nodes in the phylogeny correspond to an associated molecular sequence as the se-
quences are the primary source of information for inferring the phylogeny itself. As there are
situations where one has access to information about the spatiotemporal distribution of an epi-
demic (e.g., regional case counts) but relatively few sequences from certain locations, Lemey et al.
(2020) and Kalkauskas et al. (2021) propose introducing sequence-free nodes to the phylogenetic
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tree and demonstrate that this approach can reduce bias induced by extremely biased sampling.
Of course, this approach requires prior knowledge of the true spatiotemporal distribution of the
process of interest.

3.4.3. Structured coalescent. An alternative model of discrete phylogeographic migration is
the structured coalescent (Notohara 1990), which posits a backward-in-time process where lin-
eages converge and migrate between subpopulations. Where the previously discussed discrete-
trait model assumes the tree is a priori independent of the location data, the structured coalescent
explicitly models dependence of the tree on the locations, which can reduce bias in both ancestral
state reconstructions and rates of migration between locations. As the population demographics
are explicit model parameters, they can in turn be informed by other sources of data, further avoid-
ing some biases introduced by preferential sampling of individuals in some states (De Maio et al.
2015). The primary challenge to inference under these structured coalescent models is that there
is no analog to Felsenstein’s pruning algorithm (Felsenstein 1973a, 1981; see Section 1.1) that
analytically integrates out the migration events. As such, inference under these models requires
numerically marginalizing the migration history, typically via MCMC (Vaughan et al. 2014).

De Maio et al. (2015) develop an approximation to the standard structured coalescent model
that does allow analytic integration of the migration histories, avoiding laborious numerical inte-
gration. Volz (2012) and Müller et al. (2017) also develop efficient numerical approximations of
the structured coalescent likelihood. Existing implementations of structured coalescent models,
however, still compare poorly computationally with the simpler discrete trait models and are in-
tractable for large-scale problems. Improving computational efficiency in these models is an active
area of research.

4. CASE STUDY

Phylogenetics has increasingly played a role in studying viral epidemic dynamics, sometimes in real
time (Dellicour et al. 2021,Hodcroft et al. 2021). Researchers can integrate information about the
spatiotemporal spread of a virus into phylogenetic models to identify an epidemic’s origin (Plantier
et al. 2009, Liu et al. 2013,Worobey et al. 2016) and transmission dynamics (Ehichioya et al. 2011,
Dudas et al. 2017, Du Plessis et al. 2021). In these phylodynamic analyses, the sampling time and
location of a genetic sequence are critical data that allow researchers to reconstruct how a virus
spreads through populations.

Here, we consider a case study arising out of the paper by Lemey et al. (2020) on early SARS-
CoV-2 international transmission. In addition to viral genetic sequences, sample dates, and sample
locations,Lemey et al. (2020) incorporate information on individual travel history, global air traffic
patterns, local outbreak intensity, and within-host infection dynamics. The authors seek to iden-
tify the paths along which SARS-CoV-2 traveled as it escaped Hubei province, China, and spread
globally. As discussed in Section 3.4, phylogeographic analyses are susceptible to ascertainment
bias, which is often unavoidable as viral transmission does not respect administrative boundaries
with consistent sequencing and reporting. To address this challenge, Lemey et al. (2020) integrate
both individual-level travel history and location-specific estimated case counts into their phylo-
geographic analysis.

Lemey et al. (2020) collect 282 early SARS-CoV-2 sequences from around the world. Roughly
20% of these sequences were associated with recorded international travel. As they consider 44
discrete locations, they parameterize the transition rate matrix via a GLM with pairwise air traffic
connectivity and geographic distance as covariates (see Section 3.2.2). To incorporate travel his-
tory, they introduce additional degree-2 internal nodes (i.e., nodes with a single parent and single
child) into the phylogeny and assign the travel origins to those nodes. The dates of these nodes are
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Figure 5

A toy example of the influence of travel history on discrete trait analyses. Horizontal lines represent persistent lineages within a
location, while vertical lines represent transitions between locations in the Markov chain. We inferred a tree with nine sequences (three
each from Wuhan, Australia, and Europe) where some of the infected individuals sampled in Australia had traveled from Iran or
Southeast Asia. The analysis incorporating travel history captures more information in that the virus is present in all locations and there
is less variance in the dates of transition events. This figure was modeled on the tutorial presented in the BEAST (Bayesian
Evolutionary Analysis Sampling Trees) documentation (http://beast.community/travel_history). Please note that this is a toy analysis
and should not be interpreted as providing insight into the early spread of SARS-CoV-2.

fixed to the travel dates (when known) or inferred assuming a prior informed by the SARS-CoV-2
incubation time. The travel destinations remain assigned to tip nodes. Finally, Lemey et al. (2020)
incorporate sequence-free observations from undersampled locations such as Italy and Iran.

Ultimately, incorporating these various sources of information into the discrete trait phylogeo-
graphic model resulted in more plausible transmission patterns and a statistical model with greater
out-of-sample predictive performance (see Figure 5). The Bayesian approach allows seamless in-
corporation of prior knowledge in (a) SARS-CoV-2 case counts informing the locations and dates
of sequence-free tip nodes and (b) SARS-CoV-2 within-host dynamics informing the prior on the
time between the origin and destination nodes associated with specific travelers.These approaches
also permitted accommodation of uncertainty in the phylogenetic tree itself, as the phylogenetic
tree was inferred simultaneously with all transmission dynamics via MCMC simulation.

5. DISCUSSION

Phylogenetics has motivated numerous theoretical, methodological, and computational advances
in the statistics of Bayesian networks, continuous-timeMarkov processes, and Gaussian processes.
The challenges of dealingwith complex, hierarchical statistical models with combined continuous/
discrete parameter spaces continue to spur creative statistical innovations. Many of the topics
discussed are active areas of research.

The Bayesian approach is particularly useful in phylogenetics, as the phylogeny itself is
frequently a nuisance parameter. Analyses that condition on a single phylogeny do not properly
account for the often high degree of uncertainty in the phylogenetic estimates. Numerically
marginalizing over the phylogeny via MCMC or other approaches discussed in Section 2
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conveniently addresses this uncertainty. Similarly, the Bayesian approach offers an intuitive way
to account for uncertainty in the phylogeny. Beyond properly measuring uncertainty, there are
cases where we do indeed have prior information about relevant parameter values, such as the
root date (e.g., the temporal origin of a pandemic) or branch lengths (e.g., rapidly growing
populations tend to have shorter branch lengths near the root).

Despite the many advances, there are persistent challenges in both inferring the tree itself and
data integration. The SARS-CoV-2 pandemic greatly accelerated previous gains in epidemic ge-
nomic surveillance. Bayesian methods are typically limited to several thousand taxa and currently
require down-sampling when analyzing some pandemic-scale data sets. Recent work has focused
on computationally efficient implementations of simpler models (https://beast.community/
thorney_beast) or approximate likelihoods (De Maio et al. 2022). Additionally, as discussed in
Section 3.4, common phylogeographic models exhibit a trade-off between computational effi-
ciency and robustness to sampling bias.

Finally,while we focus here on the statistical implications related to data integration in Bayesian
phylogenetics, we direct the reader to Baele et al. (2017b) for a thorough discussion of data inte-
gration from a more biological perspective with more specific examples.
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