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Abstract 

Background  Alcohol is a good and environment-friendly fuel that can be microbially produced, capable of eliminat-
ing many of the limitations of the present-day fossil fuels. However, the inherent toxic nature of alcohols to the micro-
bial cells leads to end-product inhibition that limits large-scale alcohol production by fermentation. Fundamental 
knowledge about the stress responses of microorganisms to alcohols would greatly facilitate to improve the microbial 
alcohol tolerance. The current study elucidates and compares the changes in the membrane proteome of Escherichia 
coli in response to a range of alcohols.

Results  Although alcohol toxicity increased exponentially with alcohol chain length (2–6 carbon), similar stress 
responses were observed in the inner and outer membrane proteome of E. coli in the presence of 2-, 4- and 6-carbon 
alcohols at the MIC50. This pertains to: (1) increased levels of inner membrane transporters for uptake of energy-
producing metabolites, (2) reduced levels of non-essential proteins, associated with anaerobic, carbon starvation 
and osmotic stress, for energy conservation, (3) increased levels of murein degrading enzymes (MltA, EmtA, MliC 
and DigH) promoting cell elongation and 4) reduced levels of most outer membrane β-barrel proteins (LptD, FadL, 
LamB, TolC and BamA). Major outer membrane β-barrel protein OmpC, which is known to contribute to ethanol toler-
ance and membrane integrity, was notably reduced by alcohol stress. While LPS is important for OmpC trimerisation, 
LPS release by EDTA did not lower OmpC levels. This suggests that LPS release, which is reported under alcohol stress, 
does not contribute to the reduced levels of OmpC in the presence of alcohol.

Conclusions  Since alcohol primarily targets the integrity of the membrane, maintenance of outer membrane OmpC 
levels in the presence of alcohol might help in the survival of E. coli to higher alcohol concentrations. The study 
provides important information about the membrane protein responses of E. coli to a range of alcohols, which can be 
used to develop targeted strategies for increased microbial alcohol tolerance and hence bioalcohol production.
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Introduction
Microbial alcohol production, especially of alcohols 
with higher numbers of carbon atoms, is potentially an 
environmentally friendly alternative energy source to 
non-renewable fossil fuels [1–5]. However, alcohol tox-
icity is a limiting factor to the wide-spread production 
and use of bioalcohol. Accordingly, there is an increased 
interest in resolving the mechanisms of alcohol toxic-
ity in microorganisms and hence develop more alcohol-
tolerant microbes by, for example, genetic engineering 
approaches. In this regard, Escherichia coli is of special 
interest, since it is genetically tractable and the most 
well-understood bacterial species that is widely consid-
ered for commercial biofuel production [6, 7]. Therefore, 
it is a good model system for studying how microbial cells 
respond to the toxic effects of alcohols and whether the 
stress responses vary with an increase in alcohol chain 
length. E. coli has been engineered to produce several 
alcohols, such as ethanol [8–13], butanol [14–16], isopro-
panol [17], hexanol [18] and octanol [19]. The production 
of ethanol by E. coli is preferable as it can metabolize a 
range of substrates, including the sugars derived from lig-
nocellulosic biomasses readily available from agricultural 
wastes [20]. It can also be engineered to produce higher 
alcohol titres than native producers, as demonstrated 
for isopropanol [17]. Furthermore, long chain, non-nat-
ural alcohols, such as hexanol and octanol, which have 
a higher energy content and are more environmentally 
friendly [1, 2], have been produced biologically in geneti-
cally engineered E. coli [18, 19, 21].

Various approaches have been applied to understand 
alcohol stress responses in E. coli, including transcrip-
tomics [22, 23] and proteomics [24, 25], with a particu-
lar focus on ethanol and butanol stress response. Ethanol 
and butanol elicit changes in the RNA expression or lev-
els of E. coli stress proteins [23–25]. Ethanol exposure 
increases the amount of various heat shock and general 

stress response proteins [24], while butanol exposure 
increases the expression of various oxidative, cell enve-
lope and heat stress genes [25]. The amount of alcohol 
dehydrogenase YqhD increases following exposure to 
ethanol [24] and butanol [25]. Increased RNA expression 
or abundance of various inner membrane proteins was 
also reported for ethanol and butanol. These included 
subunits of efflux pumps, which export toxic compounds 
from the cells, as well as electron transport chain and 
metabolite transporter proteins, which help to meet the 
energy shortage arising under alcohol stress ([24, 25], 
Additional file 1: Table S1). Similarly, many genes associ-
ated with increased butanol tolerance in E. coli, encode 
membrane proteins, such as antiporters, efflux pumps, 
membrane lipoproteins, amino acid and sugar transport-
ers [26].

Alcohol increases membrane fluidity or leakage in 
bacterial cells [27, 28]. Alcohols such as butanol affects 
the functional and structural properties of membrane 
and leads to increased permeability to ions and pro-
tons, thereby disrupting the proton gradient across the 
membrane [29]. The proton motive force (PMF) across 
the bacterial membrane is necessary for ATP genera-
tion [30]. Therefore, alcohol stress leads to ATP shortage 
or energy limitation in the bacterial cells (Fig.  1). Thus, 
maintenance of membrane integrity is crucial for bacte-
ria to tolerate alcohols. In Gram-negative bacteria, such 
as E. coli, outer membrane proteins play an important 
role in maintaining the integrity, stability, and rigidity 
of the bacterial membrane. OmpA, which is one of the 
most abundant outer membrane proteins, supports the 
bacterial cell wall by interacting with the peptidoglycan 
[31, 32]. OmpC, another abundant outer membrane pro-
tein, maintains lipid asymmetry by transporting lipids 
from the outer- to the inner-membrane during the sta-
tionary phase, which in turn contributes to the integrity 
of the outer membrane [33, 34]. When OmpC is absent, 

NADH2NAD

½ 
O2

Low H+  concentration
High negative charge

ATPADP + 
Pi

High H+  concentration
High positive charge

2 H+ 2 H+ 2 H+

2 H+

2 H+

Electron transport chain

Inner membrane

Low H+ concentration ATPADP + Pi

H
ig

h 
H

+ 
co

nc
en

tr
at

io
n

H+

H+

Electron transport chain

Outer membrane

Inner membrane

H+

NADH NAD+

H+H+

AT
P 

sy
nt

ha
se

Periplasm

Cytosol

Bacterial 
membrane

Membrane 
leakage by 

alcohol Disruption 
of proton 
gradient

Shortage of 
ATP/ energy

* **
*

**

*** 

NADH dehydrogenase

Cytochrome bd-I

Cytochrome bo3

**  
*  

Fig. 1  Effect of alcohol on the E. coli cells. Increased membrane permeability due to alcohol leads to ATP shortage or energy limitation [29, 79, 80]
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phospholipids accumulate in the outer membrane’s outer 
leaflet during stationary phase, thus disrupting the outer 
membrane lipid asymmetry [33]. OmpC also influences 
the function and integrity of the outer membrane by 
other mechanisms that have not yet been fully accounted 
for [33]. LptD is an outer membrane β-barrel protein, 
which facilitates the transportation of LPS to the outer 
leaflet of the outer membrane [35], thereby helping in 
the maintenance of the asymmetric organization of outer 
membrane lipids.

Despite the importance of outer membrane proteins, 
there has been a greater focus on cytosolic and inner 
membrane protein responses to alcohol in proteomic 
and transcriptomic studies. Nonetheless, the amount of 
OmpC was found to increase in response to ethanol by 
2-D gel electrophoresis and western blot analysis [36]. In 
contrast, it was reduced in the cell membranes of E. coli 
exposed to butanol [37]. This suggests that alcohols of 
different chain length may elicit different responses con-
cerning the levels of outer membrane proteins, although 
it is not understood why this might be the case. (Addi-
tional file 1: Table S2) summarizes reported examples of 
changes in the level of various outer membrane proteins 
under ethanol and butanol stress. It is not understood 
whether similar responses will be observed for longer 
chain alcohols such as hexanol or whether the effects of 
alcohols correlate with chain length. This study, there-
fore, aimed to resolve membrane protein responses by 
E. coli exposed to a range of alcohols to characterize the 
membrane proteomic response of E. coli under alcohol 
stress.

Results and discussion
Glucose supplementation increases the MIC50 of alcohols
Alcohol stress leads to an increased abundance of sugar 
and amino acid transporters [24, 25], reflecting the 
increase in the passage of energy-producing compounds 
into E. coli. This is believed to compensate for energy 
limitation arising under alcohol stress (Fig. 1). Moreover, 
glucose supplementation increases the tolerance of Pseu-
domonas putida to butanol [38] and we postulated that 
higher alcohol tolerance could be similarly achieved for 
E. coli with glucose supplementation. Studies on bacte-
rial stress responses are mostly carried out on bacterial 
samples exposed to the inhibiting compound at concen-
trations that lead to ~ 50% growth inhibition (MIC50) [25, 
36]. Higher alcohol tolerance would increase the MIC50 
of alcohols, allow the membrane protein responses of E. 
coli to be determined under higher alcohol concentra-
tions, and thus provide greater resolution of the alcohol 
effect on the E. coli cell membrane.

In the current study, E. coli cultures maintained higher 
cell densities at the same concentration of alcohol in the 
presence of glucose and glucose supplementation, there-
fore, resulted in an increase in the MIC50 values of the 
corresponding alcohols (Fig.  2, Additional file  2: Figure 
S1). For example, at 0.9% butanol, the growth inhibition 
of E. coli was significantly reduced from 92.7% to 48.8% 
when the growth medium was supplemented with 5 g/L 
glucose, and the MIC50 of butanol increased from 0.62% 
to 0.9% in the presence of glucose. The growth inhibition 
of E. coli by propanol, though similar to other alcohols in 
the absence of glucose, is different from other alcohols in 
the presence of glucose. Glucose was only protective at 
2% propanol, where the growth inhibition was reduced 
from 87% to 53%. Propanol showed a similar amount of 
growth inhibition at concentrations of 1.5% and 2% in 
the presence of glucose (Additional file 2: Figure S1). The 
higher concentration, i.e., 2%, was selected as the MIC50 
value of propanol as well as the propanol concentration 
to be used for the study. Glucose is readily used to gen-
erate energy and supplementation of the growth media 
with glucose compensates for the energy shortage arising 
from the presence of alcohol (Fig. 1). Hence, glucose sup-
plementation is a useful method for studying the effect of 
alcohol on the E. coli membrane proteome, as it removes 
the interferences from stress responses to lack of energy 
sources under alcohol stress.

Changes in the inner membrane proteome of E. coli 
in the presence of alcohol
i. Alcohol stress results in increased levels of inner membrane 
proteins associated with the transport of energy compounds
Sequential window acquisition of all theoretical spec-
tra–mass spectrometry (SWATH–MS) [39], a label-free 
quantitative proteomics approach with high data repro-
ducibility and accuracy, was used to compare the changes 
in the membrane proteome under different stress con-
ditions. Two hundred and six membrane proteins were 
quantified by SWATH–MS analysis of membrane pro-
tein extracts from E. coli grown in the presence of etha-
nol, butanol and hexanol at the MIC50 (Fig. 3A–C). The 
different categories of membrane proteins discussed 
in this study are presented in Fig.  3D. Fold change > 2 
or log2 fold change (LFC) > 1, representing the proteins 
that have at least doubled in their quantities under alco-
hol stress, were considered as proteins with increased 
abundance. Fold change < 0.5 or LFC < −  1, represent-
ing the protein populations that have reduced to at least 
half their quantities under alcohol stress compared to the 
control condition, were considered as the proteins with 
decreased abundance. Fold change confidence (FCC) is 
indicative of the reliability or the reproducibility of the 
reported fold change. An FCC value greater than 0.75 
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for the corresponding LFC value was considered equiva-
lent to a p value lower than 0.05 (i.e., significant). There-
fore, only LFC values with FCC > 0.75 were considered 
in this study. A significant increase in abundance or log2 
fold change (LFC) was observed for various inner mem-
brane energy-producing metabolite transporters upon 
exposure to all three alcohols. Specifically, subunits of 
the oligopeptide transport system OppABCDF (OppC 
and OppD), antimicrobial peptide transporter (SbmA) 
and sugar transport systems, such as mannose-specific 
enzyme II ManXYZ complex (PtnC and PtnD), galacti-
tol-specific enzyme II GatABC complex (PtkC), were all 
more abundant under alcohol stress (Figs. 3E, 4A and 5C, 
Additional file  1: Table  S3). Among the membrane pro-
teins discussed in this study, PtkC (LFC > 4.6) showed the 
maximum increase in abundance in the presence of etha-
nol and butanol, while SbmA (LFC ≃ 3.71) showed the 
maximum increase in the presence of hexanol (Fig. 3A–
C, green stars in Fig.  4A). Under butanol stress, SbmA 
also showed a very high increase in abundance.

These observations are consistent with previous 
studies demonstrating that alcohol exposure increases 
the levels of various sugar and oligopeptide transporter 
subunits [24, 25]. Increased amounts of OppA, OppD, 
OppF, PtnAB and PtnC under butanol stress [25], as 
well as PtnAB and PtnD under ethanol stress [24], 
have been reported for E. coli. Here, we demonstrate 
that the same applies for hexanol stress. An increase 
in the levels of these sugar and peptide transporters 
(Fig.  4A), known to import various energy-producing 
substrates into the cytosol (Additional file 1: Table S3), 
possibly helps to elevate the supply of energy sources 
under alcohol stress, since alcohol leads to energy 
shortage (Fig. 1). Additionally, we report an increased 
level of membrane transporter, YghB (LFC > 1.6), in 
the presence of ethanol, butanol and hexanol, which is 
involved in maintaining the proton motive force (PMF) 
of the inner membrane [40, Additional file 1: Table S3] 
following membrane leakage due to alcohol exposure.
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ii. Alcohol stress elicits an inverse response to anaerobic 
stress regarding the abundance of inner membrane subunits 
of efflux pumps and electron transport proteins
Significant increases in the levels of inner mem-
brane subunits of TolC-associated efflux pumps were 
observed, including MdtA (LFC > 3), MdtB (LFC > 2.9), 
MdtC (LFC > 2.9), and AcrD (LFC > 2.5) in the presence 
of ethanol and butanol, and AcrA and AcrB (LFC > 2.3) 
in the presence of butanol and hexanol (Figs.  3E, 4B 
and 5C). This is in agreement with a study reporting an 
upregulation of acrB in the presence of butanol [25]. 
However, the levels of subunits MdtE and MdtF were 
significantly reduced in the presence of ethanol, butanol 

and hexanol (LFC < − 2.5). MdtA (LFC ≃ 3.92) and MdtB 
(LFC ≃ 3.9) under ethanol stress, and AcrA (LFC ≃ 
2.87) under hexanol stress, showed a very high increase 
in abundance among the membrane proteins. MdtE 
(−  6.09 ≤ LFC ≤ −  2.88) in the presence of each of the 
three alcohols and MdtF under ethanol (LFC ≃ −  5.35) 
and butanol (LFC ≃ − 3.62) stress, were among the mem-
brane proteins showing very high reduction in their 
abundance (Fig. 3A–C, green stars in Fig. 4B).

Energy-dependent efflux pumps remove toxic organic 
solvents from bacteria [41]. The outer membrane pro-
tein TolC associates with a range of inner membrane 
subunits (AcrA, AcrB, AcrD, MdtA, MdtB, MdtC, 

A

B

-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9

10

C
ha

ng
es

in
pr
ot
ei
n
le
ve

ls
(L
FC

)

AcrA
AcrB AcrD

TolC

MdtE
MdtF

MdtA MdtB
MdtC

AcrAB-TolC AcrAD-TolC

MdtABC-TolC MdtEF-TolC

Ethanol
Butanol
Hexanol To

lC

Outer 
Membrane

Inner Membrane

AcrB

Ac
rA

To
lC

Outer 
Membrane

Inner Membrane

AcrD

Ac
rA

To
lC

M
dt

A

MdtB

Outer 
Membrane

Inner Membrane

To
lC

Outer 
Membrane

Inner Membrane

MdtF

M
dt

E

MdtC

0

1

2

3

4

5

6

7

8

9

10

Ch
an

ge
s
in

pr
ot
ei
n
le
ve

ls
(L
FC

)

OppB

OppC

PtnC
PtnD

PtkC

SbmA

YghB

Ethanol
Butanol
Hexanol

OppABCDF

ManXYZ complex

GatABC complex

Inner membrane

Cytosol

Pt
kC

Transport of galactiol
PtkAPtkB

O
pp

B

OppD

Inner membrane

Cytosol

Transport of oligopeptides

O
pp

C

OppF

OppA

Inner membrane

Cytosol

Transport of mannose, glucose, fructose, trehalose, 
glucosamine and N-acetyl glucosamine

Pt
nC

Pt
nD

PtnAB

LFC = 1 above which proteins
significantly increase in abundance

Membrane proteins, labelled in Figure 3(A-C),
showing very high variations in their amount
in response to ethanol, butanol or hexanol

X

X X X

Insignificant LFC values (FCC < 0.75) LFC = -1 below which proteins
significantly decrease in abundance

X

Fig. 4  Changes in the inner membrane proteome of E. coli under alcohol stress (I). A comparison of the changes in the abundance of A subunits 
of inner membrane transporters, B inner membrane subunits of the electron transport chain under conditions of ethanol (blue), butanol (orange) 
and hexanol (light blue) stress. Error bars denote the standard deviations across the peptides tested with the three biological replicates. Diagrams 
of the inner membrane protein subunits are made using information in (Additional file 1: Table S3)



Page 7 of 18Sen et al. Biotechnology for Biofuels and Bioproducts          (2023) 16:147 	

MdtE and MdtF) to form different efflux pump sys-
tems, such as AcrAB–TolC, AcrAD–TolC, MdtABC–
TolC and MdtEF–TolC [42, 43]. AcrB and MdtB have 
previously been linked to butanol tolerance [26]. Here, 
we observed a significant reduction in the abundance 

of MdtE and MdtF under alcohol stress (Fig.  4B). The 
expression of MdtEF is known to increase > 20-fold 
under anaerobic conditions and has been reported 
to play a critical role in the survival of E. coli during 
anaerobic growth [44]. The reduced level of MdtE and 
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MdtF, which is relatively non-essential under the aer-
obic conditions used here, might reflect the induction 
of other essential proteins necessary for survival under 
conditions of decreased ATP generation due to alcohol 
(Fig. 1).

Electron transport chain protein subunits, such as 
MbhL, MbhS and CybH subunits of hydrogenase 1 and 
the AppC subunit of cytochrome bd-II were also reduced 
(− 1.6 ≥ LFC ≥ − 5.91) under alcohol stress (Figs. 3E, 5A, 
C). The extent of reduction in AppC protein levels was 
greater in the presence of ethanol (LFC ≃ − 3.29) com-
pared to hexanol (LFC ≃ −  1.64). Similarly, the extent 
of reduction in MbhL protein levels was greater in the 
presence of ethanol (LFC ≃ −  5.91) compared to  hex-
anol (LFC ≃ − 2.97). Among the membrane proteins dis-
cussed in this study, MbhL showed a very high decrease 
in abundance under ethanol and hexanol stress, while 
MbhS showed a very high decrease in abundance under 
hexanol stress (Fig.  3A, C, green stars in Fig.  5A). An 
earlier study reported an upregulation of other mem-
bers of the electron transport chain, such as nuo operon 
(NADH dehydrogenase 1), cyo operon (cytochrome bo3) 
and sdhABCD (succinate dehydrogenase), under butanol 
stress [25]. Hydrogenase 1 upregulates under anaero-
bic conditions [45, Additional file  1: Table  S3]. Similar 
to the reduced amounts of MdtE and MdtF, a decreased 
level of MbhL, MbhS and CybH might enable the bacte-
ria to reduce the expression of relatively less important 
proteins, such as hydrogenase-1 under energy-deficient 
conditions due to alcohol (Fig. 1). This may conserve the 
limited energy available to produce other important pro-
teins that might facilitate cellular survival under alcohol 
stress.

iii. Alcohol reduces the levels of inner membrane proteins 
involved in outer membrane biogenesis
The level of inner membrane proteins involved in outer 
membrane biogenesis, such as WbbK (LFC < −  1.4) and 
WecF (LFC < −  2), was also reduced in the presence of 
ethanol, butanol and hexanol (Figs.  3E, 5B, C). WbbK 
contributes to LPS synthesis [46], and WecF is required 
for the synthesis of the cyclic form of the enterobacterial 
common antigen (ECA) [47]. LPS is the major compo-
nent of the outer membrane of Gram-negative bacteria, 
which provides a permeability barrier and protection to 
the bacteria against hydrophobic molecules [48]. Other 
than LPS, ECA (cyclic) is also a component of the outer 
membrane and plays an important role in outer mem-
brane integrity [49]. This suggests that alcohol might 
lead to impaired synthesis of LPS and ECA (cyclic), 
which would likely compromise the integrity and correct 

functioning of the outer membrane in the presence of 
alcohol.

Changes in the outer membrane proteome of E. coli 
in the presence of alcohol
i. Alcohol stress leads to changes in the outer membrane 
lipoprotein content that facilitates cell elongation and energy 
conservation
The levels of outer membrane lipoproteins MltA 
(LFC > 3.2), DigH (LFC > 2.8), EmtA (LFC > 2.6) and MliC 
(LFC > 2) increased under ethanol, butanol and hexanol 
stresses, to at least four times their original abundance in 
E. coli (Fig.  6A). Among the membrane proteins, MltA 
(LFC > 3.2) and EmtA (LFC > 2.6) showed a very high 
increase in abundance under all three alcohol stresses. 
Similarly, DigH (LFC > 2.8) showed a very high increase in 
protein levels under butanol and hexanol stress (Fig. 3A–
C, green stars in Fig.  6A). Outer membrane proteins 
can be broadly classified into lipoproteins and β-barrel/
channel proteins [50]. Outer membrane lipoproteins are 
proteins anchored to the outer membrane through their 
attached lipids. MliC plays a potential role in murein 
recycling after excessive hydrolysis of the murein back-
bone by lytic transglycosylases [51, Additional file  1: 
Table S4]. Similarly, MltA and EmtA have been reported 
to be murein hydrolyzing enzymes, while DigH is a gly-
cosyl hydrolase that may have muramidase activity 
[52–55, Additional file 1: Table S4]. Since peptidoglycan 
(also known as murein) determines the bacterial cell 
shape, peptidoglycan degradation is an important step 
in bacterial cell elongation [56]. The elongation of bacte-
rial cells under alcohol stress has been documented [25, 
57]. Therefore, the increase in the levels of these murein 
degradative proteins, as seen in this current study, might 
facilitate the elongation of the cells under alcohol stress. 
Bacterial cell elongation decreases the surface area/vol-
ume ratio of the cells, which enables bacteria to sustain 
greater cell volume with a lower amount of membrane 
area exposed to toxic solvents [41]. The extent of increase 
in the levels of murein-degrading enzymes were similar 
in the presence of ethanol, butanol and hexanol. There-
fore, one could postulate that the extent of cell elongation 
upon exposure to alcohols of different chain lengths, and 
at same levels of inhibition, is the same. However, cell 
elongation might be influenced by other factors also and 
these would all need to be considered when assessing fac-
tors governing cell elongation induced by alcohols of dif-
ferent chain lengths.

In the presence of ethanol, butanol and hexanol the 
level of other lipoproteins such as Slp (LFC < −  2.42), 
OsmE (LFC < −  1.74) and Blc (LFC <−  1.78) were 
reduced in the outer membrane (Fig. 6A). Slp under all 
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three alcohol stresses, and OsmE (LFC ≃ −  3.65) and 
Blc (LFC ≃ −  3.56) under butanol stress (Fig.  3A–C, 
green stars in Fig.  6A), were among the membrane 
proteins showing very high reductions in their levels. 
OsmE was reduced more in the presence of ethanol 
(LFC ≃ − 2.98) and butanol (LFC ≃ − 3.65) compared 
to hexanol (LFC ≃ −  1.74). Slp, Blc and OsmE are 
induced during stationary phase and other stressful 
conditions, such as carbon starvation, high osmolarity 
and osmotic pressure, respectively [58–60, Additional 
file  1: Table  S4]. In the current study, although the E. 

coli cells were harvested at stationary phase, they were 
grown in the presence of a carbon source (glucose) and 
under average osmolarity (Lennox LB Broth). There-
fore, under the conditions used in this study, Slp, Blc 
and OsmE proteins were less important than other pro-
teins necessary for E. coli survival under alcohol stress. 
Due to the limited availability of energy in the presence 
of alcohol (Fig. 1), there is a reduction in the levels of 
lipoproteins that are less essential (Slp, Blc and OsmE) 
and increase in the abundance of lipoproteins necessary 
to deal with the toxic effect of alcohol on the membrane 
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(MltA, EmtA, DigH and MliC) (Fig. 6C). This observa-
tion is similar to the reduced levels of anaerobic pro-
teins (MdtE, MdtF, MbhL, MbhS and CybH) observed 
in the presence of alcohol (Figs. 4B and 5A).

Among the outer membrane lipoproteins discussed 
in this study, the significant increase in the levels of the 
murein degrading enzymes MltA, EmtA, DigH and MliC 
under butanol stress was validated by targeted mass 
spectrometry (MRMHR) (Fig.  7G). MltA, EmtA, DigH 
and MliC were selected, since the increase in the amount 
of these proteins could contribute to bacterial cell elon-
gation, a phenomenon that is widely observed in the 
presence of alcohol [25, 57]. The level of peptides (Addi-
tional file 1: Table S8) generated from these proteins was 
significantly higher in the presence of butanol (orange 
bars) compared to the control (blue bars). Under butanol 
stress, MltA, DigH, EmtA and MliC proteins showed 
LFC values of ~ 5, 5.1, 4 and 2.9, respectively (Fig. 7H).

ii. Alcohol stress leads to lower levels of most outer 
membrane β‑barrel proteins
The levels of outer membrane β-barrel proteins such 
as OmpC (LFC < −  1.94), OmpF (LFC < −  1.97), FadL 
(LFC < − 2.26), LptD (LFC < − 1.46), BtuB (LFC < − 2.19) 

and LamB (LFC < −  1.51) were all reduced under etha-
nol, butanol and hexanol stress (Figs.  3E, 6B, C). In the 
presence of butanol and hexanol, the level of OmpT 
(LFC < − 1.97) and FhuA (LFC < − 1.5) was reduced in the 
outer membrane (Fig. 6B), although there was no change 
in their levels in the presence of ethanol (1 > LFC > − 1). 
In the presence of ethanol and butanol, the level of 
BamA (LFC < −  1.58) and TolC (LFC < −  1.41) in the 
outer membrane was reduced although TolC showed no 
change in membrane protein levels under hexanol stress 
(1 > LFC > −  1). LptD was reduced to a greater extent in 
the presence of ethanol and butanol (≤ 14.8% of its origi-
nal level) compared to hexanol (33.3% of its original 
level). OmpF showed higher reduction under ethanol 
(LFC ≃ − 5.33) compared to butanol (LFC ≃ − 2.55) and 
hexanol (LFC ≃ − 1.97), while OmpC reduced to ≤ 26% of 
its original level under ethanol (LFC ≃ −  1.94), butanol 
and hexanol (LFC ≃ −  2.4) stress. OmpF was among 
the membrane proteins showing a very high reduction 
in abundance under ethanol stress (Fig.  3A, green star 
in Fig.  6B). Earlier studies have reported a reduction in 
the levels of OmpT and OmpF on ethanol exposure [36] 
and a decrease in the levels of OmpC and OmpF in the 
presence of butanol [37], which is consistent with our 
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findings. As OmpC maintains outer membrane integrity 
[33], reduction in OmpC levels would likely compromise 
the outer membrane barrier functions. As LptD trans-
ports LPS to the outer membrane [35], lower levels of 
LptD (Figs. 6B, 7E) under alcohol stress would affect the 
transportation of LPS to the outer membrane and, there-
fore, the outer membrane lipid asymmetry and integrity.

Among the outer membrane β-barrel proteins dis-
cussed in this study, the decrease in the levels of essen-
tial outer membrane β-barrel proteins, such as BamA and 
LptD [61], abundant outer membrane β-barrel proteins, 
such as protease OmpT and efflux pump subunit TolC 
[62–64], and substrate-specific porins, such as LamB and 
FadL [65, 66, Additional file  1: Table  S4] under butanol 
stress was validated by MRMHR MS. The level of peptides 
(Additional file 1: Table S8) generated from these proteins 
was significantly lower in the presence of butanol (orange 
bars) compared to the control (blue bars) (Fig. 7A–F, H), 
suggesting that alcohol stress leads to reduced levels of 
different types of outer membrane β-barrel proteins of 
diverse functions.

The membrane protein responses were very simi-
lar for the three alcohols. However, slight differences 
were observed in the extent of protein level changes 
in between the alcohols, mostly for outer membrane 
β-barrel proteins. Among the differentially abundant 
membrane proteins under alcohol stress, the changes in 
the protein levels were higher in the presence of short 
chain alcohols such as ethanol compared to medium 
chain alcohols, such as hexanol, for many proteins. Elu-
cidating the regulation of these individual proteins under 
alcohol stress might address the reasons behind these dif-
ferences. It should be noted that some of E. coli’s mem-
brane proteomic stress responses to alcohol observed in 
the current study might vary in engineered E. coli strains 
with modified metabolic pathways.

OmpC, but not OmpA, was reduced upon exposure 
to a broad range of alcohols
The observed reduction in the amount of OmpC in the 
E. coli Bw25113 membranes in the presence of alco-
hol was further corroborated, for ethanol, propanol, 
butanol, pentanol and hexanol, by SDS–PAGE analysis 
(Fig.  8B, lanes 2–6). OmpC, OmpF and OmpA bands 
(lane * 2) were assigned using deletion mutants ΔompC, 
ΔompF and ΔompA (Fig.  8A, lanes 4–6). Low osmolar-
ity growth medium (medium A) was used to stimulate a 
higher expression of OmpF (lane 2), relative to LB Broth 
with 5 g/L glucose (lane 3). While OmpA and OmpC are 
the most abundant outer membrane β-barrel proteins in 
E. coli (based on the number of protein molecules syn-
thesized per generation or cell cycle; Supplementary 
information in [62]), OmpA was less affected by alcohol 

in comparison with OmpC. Alcohols with longer carbon 
chain lengths, such as butanol, pentanol and hexanol, 
elicited a greater reduction in the amount of OmpC in 
the outer membrane compared to short chain alcohols, 
such as ethanol and propanol. The effect of butanol 
in reducing OmpC levels was also observed in other 
strains of E. coli, such as E. coli K12 (ATCC 10798) and 
W3110 (Fig. 8E, G, lanes 5 and 6). As observed for E. coli 
Bw25113, butanol did not affect the level of OmpA in 
E. coli W3110 and K12 (ATCC 10798), compared to the 
large change in the level of OmpC under butanol stress.

OmpC plays an important role in alcohol tolerance. 
OmpC contributes to ethanol tolerance via an unknown 
EnvZ/OmpR-related mechanism, whereby in the absence 
of EnvZ, OmpR and OmpC, E. coli showed an increase 
in intracellular ethanol and decreased ethanol tolerance 
[36]. This is supported by another study reporting strong 
inhibition of cell growth under ethanol stress in ompC-
deleted strains, compared to the wild type [32]. Higher 
amounts of OmpC have also been described in the cell 
membrane of isobutanol-adapted E. coli strains in the 
presence of isobutanol, compared to the wild type [67]. 
Other reports described a slight increase in butanol tol-
erance of E. coli following an overexpression of ompC 
[68, 69]. Hence, an understanding of OmpC regulation 
under alcohol stress is important. Lower levels of OmpC 
under alcohol stress would also affect the outer mem-
brane structural integrity, as OmpC is involved in the 
functioning and integrity of the outer membrane [33]. 
Since OmpC is known to play an important role in alco-
hol tolerance, prevention of reduction of OmpC levels 
under alcohol stress might facilitate improved alcohol 
tolerance in the bacteria. Hence, factors contributing to 
OmpC reduction in the outer membrane under alcohol 
stress need to be identified.

LPS release does not contribute to lower amount of OmpC 
in E. coli under alcohol stress
OmpC levels in the membrane of E. coli WBB06 were 
much lower (Fig. 8F, lanes 3 and 4) than the parent strain 
E. coli W3110 (Fig.  8E, lanes 3 and 4). In contrast to 
OmpC, the amount of OmpA in the cell membrane was 
relatively unchanged in WBB06 compared to the par-
ent strain. E. coli WBB06 has mutations in LPS synthesis 
(waaF) and activity (waaC) genes compared to its par-
ent strain E. coli W3110 [70]. This suggests that impaired 
LPS synthesis/activity might contribute to reduced levels 
of OmpC in the cell membrane, as observed here. This 
is consistent with reports showing that the presence of 
defective LPS or compounds that inhibit LPS synthe-
sis reduce OmpC but not OmpA levels [71, 72]. One 
explanation for this difference could be that OmpC tri-
merisation, prior to the insertion of OmpC into the outer 
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membrane, is impaired by the lack of functional LPS, 
since LPS is required to assemble OmpC into trimers 
[73, 74]. No such requirement applies to OmpA [74], as 
OmpA is a monomer.

It was observed that WBB06 was also the most sensi-
tive strain to butanol toxicity among different strains of E. 
coli, such as E. coli W3110, K12 (ATCC 10798), WBB06 
and Bw25113 (Fig.  8D), suggesting the importance of 
LPS in alcohol tolerance. An earlier study showed ompC 

gene transcription being upregulated despite lower lev-
els of OmpC protein under butanol stress [37], indi-
cating the presence of a post transcriptional or post 
translational regulatory mechanism that controls the lev-
els of OmpC under alcohol stress. LPS is released from 
the outer membrane of E. coli upon butanol exposure 
[57], which may negatively impact the OmpC trimerisa-
tion and assembly processes after translation and prior 
to the insertion of OmpC in the outer membrane due to 
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*2 denotes lane 2 with the positions of the protein bands marked separately due to space constraints. B E. coli Bw25113 grown in LB Broth (with 
5 g/L glucose) (lane 1), E. coli Bw25113 grown in LB Broth (with 5 g/L glucose) in the presence of ethanol (lane 2), propanol (lane 3), butanol (lane 
4), pentanol (lane 5) and hexanol (lane 6) at concentrations leading to ~ 50% growth inhibition. C Two biological replicates of E. coli Bw25113 grown 
in LB Broth with 5 g/L glucose and 5 mM EDTA (lanes 3 and 4). D Concentration of butanol leading to ~ 50% growth inhibition (MIC50) in different 
strains of E. coli grown in LB Broth (with 5 g/L glucose). Two biological replicates of E. coli (E) W3110, F WBB06 and (G) K12 (ATCC 10798) grown 
in the presence (lanes 5 and 6) and absence (lanes 3 and 4) of butanol. LB Broth (with 5 g/L glucose) was used as the growth media for these strains 
and butanol was added at concentrations leading to 50% growth inhibition, as shown in (D)
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the scarcity of LPS in the outer membrane. OmpA levels 
would not be substantially affected by LPS shortage [74]. 
This could account for the lower levels of OmpC pre-
sent under alcohol stress, despite little change in OmpA 
levels (Fig. 8B, E, G). Since LPS is important for the tri-
merisation of OmpC before its insertion in the outer 
membrane, we hypothesised that removing LPS from the 
outer membrane might also induce a reduction in OmpC 
levels in the outer membrane. Exposure of E. coli cells to 
EDTA also releases LPS [57]. In the current study, E. coli 
cells grown in the presence of 5 mM EDTA resulted in 
about 50% growth inhibition when the media was supple-
mented with 5 g/L of glucose. E. coli cells grown in the 
presence of 0.9% butanol resulted in about 50% growth 
inhibition when the media was supplemented with 5 
g/L of glucose (Additional file  2: Figure S1C). Exposure 
to 5 mM EDTA releases more LPS from E. coli than 
0.9% butanol [48]. Growing E. coli Bw25113 in EDTA at 
MIC50, however, did not reduce the membrane levels of 
OmpC (Fig. 8C, lanes 3 and 4), unlike growth of E. coli in 
butanol at MIC50 (Fig. 8B, E, G). This suggests that LPS 
release due to alcohol stress directly does not contrib-
ute to the reduced OmpC amount observed in the E. coli 
membrane in the presence of alcohol.

There could be more than one factor contributing to 
the lower levels of OmpC under alcohol stress. Identifi-
cation of the factors contributing to OmpC reduction 
under alcohol stress might also address why the extent 
of OmpC reduction is more pronounced in the presence 
of medium chain alcohols such as hexanol compared 
to short chain alcohols, such as ethanol. As mentioned 
before, alcohol exposure reduces the amount of the outer 
membrane β-barrel protein LptD (Figs. 6B, 7E), which is 
required for the transportation of LPS to the outer mem-
brane. This might lead to reduced amounts of LPS in 
the outer membrane and hence, affect the OmpC trim-
erisation and assembly processes. Thus, one factor con-
tributing to the sharp decline in OmpC levels compared 
to OmpA levels in the outer membrane, under alcohol 
stress, could be the reduced LPS transport.

Conclusions
The exponential increase in toxicity with alcohol chain 
length suggests that alcohol toxicity is amplified by steric 
factors as the chain length increases (2C–6C). Neverthe-
less, here we report a conserved membrane proteomic 
response by E. coli to ethanol, butanol and hexanol at 
the MIC50, suggesting that strategies for increased tol-
erance to one alcohol might apply to other alcohols as 
well. We confirmed that key phenotypes, such as reduced 
OmpC level under alcohol stress, were also observed in a 
range of E. coli strains. Since OmpC contributes to outer 

membrane stabilization and alcohol tolerance, the mech-
anism of OmpC reduction under alcohol stress should be 
investigated to prevent such a response of E. coli to alco-
hol. Identifying strategies for maintaining OmpC levels in 
the outer membrane under alcohol stress could improve 
the tolerance of E. coli to a range of alcohols.

Materials and methods
Culture medium
All strains of E. coli (Additional file  1: Table  S5) were 
grown in 20 mL of BD Difco™ Luria–Bertani Broth (Len-
nox) with the following composition: 10  g/L tryptone, 
5  g/L yeast extract, 5  g/L NaCl and 5  g/L glucose. To 
stimulate the expression of OmpF, E. coli Bw25113 was 
grown in 20  mL of medium A with the following com-
position: 7 g/L nutrient broth, 1 g/L yeast extract, 2 g/L 
glycerol, 3.7 g/L K2HPO4 and 1.3 g/L KH2PO4 [75].

Growth inhibition studies under alcohol stress
A comparison of the relative growth inhibition of E. coli 
at different concentrations of ethanol (C2), propanol 
(C3), butanol (C4), pentanol (C5) and hexanol (C6), was 
carried out using E. coli Bw25113, grown in 20 mL of BD 
Difco™ Luria–Bertani (Lennox) with or without 5  g/L 
glucose (in 50  mL Greiner bio-one centrifuge tubes) at 
37  °C with constant shaking at 200 RPM. Suitable con-
centrations of alcohol were obtained in the growth media 
by adding different volumes of 100% alcohol to com-
pletely cooled media and by making the final volume to 
20  mL. For example, for 0.9% (v/v) butanol, 180  μL of 
100% butanol was added to completely cooled 20 mL of 
growth media. The optical density at 600 nm (OD600) of 
the growth medium was measured after 18 h. The OD600 
at different concentrations of alcohol was used to com-
pare the growth inhibition of E. coli due to alcohol stress 
in the presence and absence of glucose. The % growth 
inhibition at different concentrations of alcohol was cal-
culated by the following formula:

Three biological replicates were used for each condi-
tion. An unpaired t test was used to determine the sta-
tistical significance of the differences between growth 
conditions. A P value < 0.05 was considered significant. 
MIC50 is the minimum inhibitory concentration of a 
toxic compound required to bring about 50% growth 
inhibition. The MIC50 values of C2–C6 alcohols were 
determined in the presence and absence of glucose. In 
the presence of glucose, alcohol concentrations resulting 
in about (50 ± 3) % growth inhibition was considered as 

% growth inhibition

=

OD600 without alcohol − OD600 with alcohol

OD600 without alcohol
X 100
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MIC50 values of C2–C6 alcohols. In the absence of glu-
cose, the MIC50 values of the alcohols were determined 
through linear interpolation of the two data points clos-
est to 50% growth inhibition, in a % growth inhibition vs 
alcohol concentration graph (Additional file 2: Figure S1), 
since the data points were beyond the range of (50 ± 3) % 
growth inhibition for some alcohols.

Extraction of whole membranes of E. coli
The alcohol concentration corresponding to MIC50, in 
the presence of glucose (5 g/L), was added to the growth 
media, while the control was grown without any alcohol. 
The cultures were grown for 18 h at 37 °C with constant 
shaking at 200 RPM. Then, the cell membranes of the E. 
coli cells were isolated by the method described in [67] 
with modifications. The bacterial cells were separated 
from the culture media by centrifugation at 4000 xg for 
10 min using an Eppendorf Centrifuge 5810 R. The cells 
were then washed with phosphate-buffered saline (PBS) 
three times followed by centrifugation. The cell pellets 
were frozen at −  20  °C for 24  h and thawed at 0  °C in 
lysis buffer (10  mM Na2HPO4–NaOH buffer of pH 7.2) 
along with the DNase and protease inhibitor PMSF (phe-
nylmethylsulfonyl fluoride). The cells were lysed using 
an EmulsiFlex™-C3 (AVESTIN, Canada) high-pressure 
homogenizer. The intact cells were removed by centrifu-
gation at 1500xg for 20  min. The supernatant was sub-
jected to ultracentrifugation at 100,000xg for 1  h, using 
Beckman Coulter Optima XPN-100 Ultracentrifuge, to 
isolate the cell membranes. The pelleted cell membrane 
isolates were then washed with lysis buffer to remove 
cytosolic protein contaminants. The cell membrane pel-
let was then dissolved in 60  µL of 100  mM triethylam-
monium bicarbonate–sodium deoxycholate–urea buffer 
(8 M Urea, 1% sodium deoxycholate and 100 mM trieth-
ylammonium bicarbonate) and kept at 4 °C overnight.

Determination of protein concentration by BCA assay
Bovine serum albumin (BSA) stock solution (2  mg/mL) 
was used to prepare the standard curve (2, 1.5, 1, 0.75, 
0.50, 0.25, 0.125, 0.025 and 0 mg/mL). The protein con-
tent of all of the membrane extracts were determined 
using the Pierce™ BCA protein assay kit. The protein con-
centration for each sample was normalized to the lowest 
sample concentration prior to SDS–PAGE, SWATH–MS 
and targeted mass spectrometry to ensure that each sam-
ple had the same quantity of protein.

SDS–PAGE analysis
2X Laemmli sample buffer (125  mM Tris–HCl pH 6.8, 
0.05% (w/v) bromophenol blue, 4% SDS and 20% glyc-
erol) was added to the membrane extracts in a 1:1 ratio 
and heated to 95 °C for 5–10 min. The samples were then 

loaded (5 µL), along with prestained protein ladder from 
Bio-Rad (10–250 kDa), onto a 5 M urea-10% polyacryla-
mide gel and SDS–PAGE was performed at 80  V for 
2.5 h. The gel was then stained with Coomassie brilliant 
blue staining solution for 20 min followed by destaining 
overnight. The next day, the gel image was captured using 
Molecular Imager Gel Doc XR + (Bio-Rad).

SWATH–MS analysis
All LCMS analyses were performed by Protein and Pro-
teomics Centre, Department of Biological Sciences, 
National University of Singapore. In this study, four dif-
ferent conditions with biological triplicates each were 
used:

1)	 E. coli grown without alcohol (condition 1)—control 
condition

2)	 E. coli grown with ethanol (condition 2)—stress con-
dition

3)	 E. coli grown with butanol (condition 3)—stress con-
dition

4)	 E. coli grown with hexanol (condition 4)—stress con-
dition

The 12 samples of E. coli membrane fractions were pro-
cessed using the S-Trap micro-column (Protifi) accord-
ing to the manufacturer’s recommendations to generate 
the peptides to be analyzed by LC–MS. Reversed phase 
(RP) liquid chromatographic separation of the peptides 
were performed on the nanoLC425 system (Eksigent) 
using a C18 ProteCol 300 μm × 10 mm trap column (Tra-
jan Scientific and Medical) and a ChromXP-C18-CL 
75  μm × 150 mm analytical column (Eksigent). The RP 
solvent A (2% acetonitrile, 0.1% formic acid) and sol-
vent B (98% acetonitrile, 0.1% formic acid) were used. 
The peptides were eluted using a two-step gradient as 
shown in the (Additional file 1: Table S6). MS analysis of 
the eluted peptides were performed in TripleTOF 6600 
system (SCIEX). For reference spectral library genera-
tion, three technical replicate injections of the pooled 12 
samples were analyzed in IDA (information-dependent 
acquisition) mode. Precursor ions were selected from 
400 to 1600 m/z with 250 ms accumulation time. For 
MS/MS fragmentation, a maximum of 50 precursors 
were selected with dynamic exclusion for 15 s. The MS/
MS fragmentation spectra were collected in high sensi-
tivity mode with 50 ms accumulation time across 100–
1800 m/z mass range and rolling collision energy enabled.

SWATH–MS mode was used for SWATH data acqui-
sition. Precursor ion data were collected from 400 to 
1600  m/z mass range with 50 ms accumulation time. A 
100 SWATH variable window setup across 400–1200 m/z 
mass range (Additional file 1: Table S7) was used with a 
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window overlap of 1 Da and a minimum window width 
of 4 Da. Rolling collision energy was enabled for each 
window with 5 eV spread. Fragment ion spectra was col-
lected in high sensitivity mode across a mass range of 
100–1800 m/z and accumulation time 30 ms.

The reference spectral library was generated by a 
combined search of three technical replicates using the 
ProteinPilot 5.02 software (SCIEX). The spectra were 
identified by searching against UniProt E. coli (strain 
K12) reference proteome (UP000000625, 2020 July 
release, 4391 entries), spiked with common contaminant 
proteins (cRAP) using the “thorough search” mode in the 
Paragon search engine (v5.0.0.0). The following param-
eters were specified: cysteine alkylation using methyl 
methanethiosulfonate, common biological modifications 
and detected protein threshold at 0.05. False discovery 
rate (FDR) analysis was automatically performed against 
a decoy database comprising reverse protein sequences 
generated from the input database.

SWATH raw files were analyzed against the refer-
ence ion library using the OneOmics workflow hosted 
on SCIEX Cloud OS platform, as described in [76], with 
some modifications. The peak area extraction parameters 
were: 75 ppm ion library tolerance, 10 min extracted ion 
chromatogram (XIC) extraction window, considering 
only peptides with at least 99% confidence and less than 
1% FDR, and excluding shared peptides. The change in 
the abundance of every protein under the stress condi-
tions compared to the control condition was represented 
by fold change. The fold change for every protein was cal-
culated by the following formula:

The relative abundance of the membrane proteins 
detected by SWATH–MS were calculated by utiliz-
ing the normalized peak areas of each protein obtained 
through SWATH–MS data processing. The fold change 
values were converted to log2 fold change (LFC) val-
ues. Fold change confidence (FCC), a value calculated 
from the peptide variance and the peptide signal qual-
ity values [77], is an indication of the reproducibility of 
the reported fold change Briefly, peptide fold changes 
are first calculated using weighted fragment ion ratios 
between all replicates in the experimental group against 
the control group. Peptide fold change confidences are 
also determined using averaged transition-level repro-
ducibility values weighted by median peptide signal-to-
noise and normalization metrics. Subsequently, protein 
level fold changes and confidences are then calculated 
for two possible directions: increased or decreased. The 
median ratio of all peptides reporting one direction (e.g., 

Fold change =
Protein abundance under condition 2, 3 or 4 (stress condition)

Protein abundance under condition 1 (control condition)

increased) is used to determine the protein fold change. 
The FCC is then computed as a function of the number 
of peptides used and their reproducibility metrics, as well 
as weighted signal-to-noise metrics. The same process is 
repeated for peptides in the opposite direction, and the 
final reported confidence is the direction with the highest 
confidence. A fold change confidence value of > 0.75 has 
been determined to be roughly equivalent to a p value 
of < 0.05 [78].

Data visualization
Global membrane proteome responses of E. coli Bw25113 
under stress conditions in comparison with control were 
visualized as volcano plots representing fold change confi-
dence (statistical significance) with respect to fold changes 
of all the detected membrane proteins. Only the mem-
brane protein fold changes were visualized. Cytosolic and 
periplasmic proteins were considered as contaminants.

Targeted mass spectrometry validation
Targeted MS validation of selected proteins was per-
formed using high-resolution MRM (MRMHR). Repre-
sentative peptides were selected from the SWATH MS 
data based on proteotypicity, i.e., unique to protein and 
good MS detectability. Proteomics sample processing 
and LCMS analysis were performed as described above, 
except the following. The RP solvent A was 0.1% formic 
acid, while solvent B was 0.1% formic acid in acetonitrile. 
The peptides were chromatographically separated using a 
Acclaim PepMap100 C18 3 μm 100 Å, 75 μm × 250 mm 

analytical column (Thermo Scientific). The MRMHR 
MS analysis consisted of a TOF–MS scan across 400–
1600 m/z with 50 ms accumulation time and 33 product 
ion scans across 100–1800 m/z with 85 ms accumulation 
time. The product ion scan parameters are detailed in 
(Additional file 1: Table S8). MRMHR data were processed 
using the Quantitation Workflow in the Analytics Mod-
ule in SCIEX OS 2.1.6. Peak integration was performed 
with the AutoPeak algorithm with the following param-
eters: retention time half window 60  s and XIC width 
0.05 Da.
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